Loading...
1
2#include <linux/device.h>
3#include <linux/io.h>
4#include <linux/ioport.h>
5#include <linux/module.h>
6#include <linux/of_address.h>
7#include <linux/pci_regs.h>
8#include <linux/sizes.h>
9#include <linux/slab.h>
10#include <linux/string.h>
11
12/* Max address size we deal with */
13#define OF_MAX_ADDR_CELLS 4
14#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16
17static struct of_bus *of_match_bus(struct device_node *np);
18static int __of_address_to_resource(struct device_node *dev,
19 const __be32 *addrp, u64 size, unsigned int flags,
20 const char *name, struct resource *r);
21
22/* Debug utility */
23#ifdef DEBUG
24static void of_dump_addr(const char *s, const __be32 *addr, int na)
25{
26 printk(KERN_DEBUG "%s", s);
27 while (na--)
28 printk(" %08x", be32_to_cpu(*(addr++)));
29 printk("\n");
30}
31#else
32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33#endif
34
35/* Callbacks for bus specific translators */
36struct of_bus {
37 const char *name;
38 const char *addresses;
39 int (*match)(struct device_node *parent);
40 void (*count_cells)(struct device_node *child,
41 int *addrc, int *sizec);
42 u64 (*map)(__be32 *addr, const __be32 *range,
43 int na, int ns, int pna);
44 int (*translate)(__be32 *addr, u64 offset, int na);
45 unsigned int (*get_flags)(const __be32 *addr);
46};
47
48/*
49 * Default translator (generic bus)
50 */
51
52static void of_bus_default_count_cells(struct device_node *dev,
53 int *addrc, int *sizec)
54{
55 if (addrc)
56 *addrc = of_n_addr_cells(dev);
57 if (sizec)
58 *sizec = of_n_size_cells(dev);
59}
60
61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62 int na, int ns, int pna)
63{
64 u64 cp, s, da;
65
66 cp = of_read_number(range, na);
67 s = of_read_number(range + na + pna, ns);
68 da = of_read_number(addr, na);
69
70 pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71 (unsigned long long)cp, (unsigned long long)s,
72 (unsigned long long)da);
73
74 if (da < cp || da >= (cp + s))
75 return OF_BAD_ADDR;
76 return da - cp;
77}
78
79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80{
81 u64 a = of_read_number(addr, na);
82 memset(addr, 0, na * 4);
83 a += offset;
84 if (na > 1)
85 addr[na - 2] = cpu_to_be32(a >> 32);
86 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87
88 return 0;
89}
90
91static unsigned int of_bus_default_get_flags(const __be32 *addr)
92{
93 return IORESOURCE_MEM;
94}
95
96#ifdef CONFIG_OF_ADDRESS_PCI
97/*
98 * PCI bus specific translator
99 */
100
101static int of_bus_pci_match(struct device_node *np)
102{
103 /*
104 * "pciex" is PCI Express
105 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106 * "ht" is hypertransport
107 */
108 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110}
111
112static void of_bus_pci_count_cells(struct device_node *np,
113 int *addrc, int *sizec)
114{
115 if (addrc)
116 *addrc = 3;
117 if (sizec)
118 *sizec = 2;
119}
120
121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122{
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
125
126 switch((w >> 24) & 0x03) {
127 case 0x01:
128 flags |= IORESOURCE_IO;
129 break;
130 case 0x02: /* 32 bits */
131 case 0x03: /* 64 bits */
132 flags |= IORESOURCE_MEM;
133 break;
134 }
135 if (w & 0x40000000)
136 flags |= IORESOURCE_PREFETCH;
137 return flags;
138}
139
140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141 int pna)
142{
143 u64 cp, s, da;
144 unsigned int af, rf;
145
146 af = of_bus_pci_get_flags(addr);
147 rf = of_bus_pci_get_flags(range);
148
149 /* Check address type match */
150 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151 return OF_BAD_ADDR;
152
153 /* Read address values, skipping high cell */
154 cp = of_read_number(range + 1, na - 1);
155 s = of_read_number(range + na + pna, ns);
156 da = of_read_number(addr + 1, na - 1);
157
158 pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159 (unsigned long long)cp, (unsigned long long)s,
160 (unsigned long long)da);
161
162 if (da < cp || da >= (cp + s))
163 return OF_BAD_ADDR;
164 return da - cp;
165}
166
167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168{
169 return of_bus_default_translate(addr + 1, offset, na - 1);
170}
171#endif /* CONFIG_OF_ADDRESS_PCI */
172
173#ifdef CONFIG_PCI
174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175 unsigned int *flags)
176{
177 const __be32 *prop;
178 unsigned int psize;
179 struct device_node *parent;
180 struct of_bus *bus;
181 int onesize, i, na, ns;
182
183 /* Get parent & match bus type */
184 parent = of_get_parent(dev);
185 if (parent == NULL)
186 return NULL;
187 bus = of_match_bus(parent);
188 if (strcmp(bus->name, "pci")) {
189 of_node_put(parent);
190 return NULL;
191 }
192 bus->count_cells(dev, &na, &ns);
193 of_node_put(parent);
194 if (!OF_CHECK_ADDR_COUNT(na))
195 return NULL;
196
197 /* Get "reg" or "assigned-addresses" property */
198 prop = of_get_property(dev, bus->addresses, &psize);
199 if (prop == NULL)
200 return NULL;
201 psize /= 4;
202
203 onesize = na + ns;
204 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205 u32 val = be32_to_cpu(prop[0]);
206 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207 if (size)
208 *size = of_read_number(prop + na, ns);
209 if (flags)
210 *flags = bus->get_flags(prop);
211 return prop;
212 }
213 }
214 return NULL;
215}
216EXPORT_SYMBOL(of_get_pci_address);
217
218int of_pci_address_to_resource(struct device_node *dev, int bar,
219 struct resource *r)
220{
221 const __be32 *addrp;
222 u64 size;
223 unsigned int flags;
224
225 addrp = of_get_pci_address(dev, bar, &size, &flags);
226 if (addrp == NULL)
227 return -EINVAL;
228 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229}
230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231
232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233 struct device_node *node)
234{
235 const int na = 3, ns = 2;
236 int rlen;
237
238 parser->node = node;
239 parser->pna = of_n_addr_cells(node);
240 parser->np = parser->pna + na + ns;
241
242 parser->range = of_get_property(node, "ranges", &rlen);
243 if (parser->range == NULL)
244 return -ENOENT;
245
246 parser->end = parser->range + rlen / sizeof(__be32);
247
248 return 0;
249}
250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251
252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253 struct of_pci_range *range)
254{
255 const int na = 3, ns = 2;
256
257 if (!range)
258 return NULL;
259
260 if (!parser->range || parser->range + parser->np > parser->end)
261 return NULL;
262
263 range->pci_space = parser->range[0];
264 range->flags = of_bus_pci_get_flags(parser->range);
265 range->pci_addr = of_read_number(parser->range + 1, ns);
266 range->cpu_addr = of_translate_address(parser->node,
267 parser->range + na);
268 range->size = of_read_number(parser->range + parser->pna + na, ns);
269
270 parser->range += parser->np;
271
272 /* Now consume following elements while they are contiguous */
273 while (parser->range + parser->np <= parser->end) {
274 u32 flags, pci_space;
275 u64 pci_addr, cpu_addr, size;
276
277 pci_space = be32_to_cpup(parser->range);
278 flags = of_bus_pci_get_flags(parser->range);
279 pci_addr = of_read_number(parser->range + 1, ns);
280 cpu_addr = of_translate_address(parser->node,
281 parser->range + na);
282 size = of_read_number(parser->range + parser->pna + na, ns);
283
284 if (flags != range->flags)
285 break;
286 if (pci_addr != range->pci_addr + range->size ||
287 cpu_addr != range->cpu_addr + range->size)
288 break;
289
290 range->size += size;
291 parser->range += parser->np;
292 }
293
294 return range;
295}
296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297
298/*
299 * of_pci_range_to_resource - Create a resource from an of_pci_range
300 * @range: the PCI range that describes the resource
301 * @np: device node where the range belongs to
302 * @res: pointer to a valid resource that will be updated to
303 * reflect the values contained in the range.
304 *
305 * Returns EINVAL if the range cannot be converted to resource.
306 *
307 * Note that if the range is an IO range, the resource will be converted
308 * using pci_address_to_pio() which can fail if it is called too early or
309 * if the range cannot be matched to any host bridge IO space (our case here).
310 * To guard against that we try to register the IO range first.
311 * If that fails we know that pci_address_to_pio() will do too.
312 */
313int of_pci_range_to_resource(struct of_pci_range *range,
314 struct device_node *np, struct resource *res)
315{
316 int err;
317 res->flags = range->flags;
318 res->parent = res->child = res->sibling = NULL;
319 res->name = np->full_name;
320
321 if (res->flags & IORESOURCE_IO) {
322 unsigned long port;
323 err = pci_register_io_range(range->cpu_addr, range->size);
324 if (err)
325 goto invalid_range;
326 port = pci_address_to_pio(range->cpu_addr);
327 if (port == (unsigned long)-1) {
328 err = -EINVAL;
329 goto invalid_range;
330 }
331 res->start = port;
332 } else {
333 if ((sizeof(resource_size_t) < 8) &&
334 upper_32_bits(range->cpu_addr)) {
335 err = -EINVAL;
336 goto invalid_range;
337 }
338
339 res->start = range->cpu_addr;
340 }
341 res->end = res->start + range->size - 1;
342 return 0;
343
344invalid_range:
345 res->start = (resource_size_t)OF_BAD_ADDR;
346 res->end = (resource_size_t)OF_BAD_ADDR;
347 return err;
348}
349#endif /* CONFIG_PCI */
350
351/*
352 * ISA bus specific translator
353 */
354
355static int of_bus_isa_match(struct device_node *np)
356{
357 return !strcmp(np->name, "isa");
358}
359
360static void of_bus_isa_count_cells(struct device_node *child,
361 int *addrc, int *sizec)
362{
363 if (addrc)
364 *addrc = 2;
365 if (sizec)
366 *sizec = 1;
367}
368
369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
370 int pna)
371{
372 u64 cp, s, da;
373
374 /* Check address type match */
375 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
376 return OF_BAD_ADDR;
377
378 /* Read address values, skipping high cell */
379 cp = of_read_number(range + 1, na - 1);
380 s = of_read_number(range + na + pna, ns);
381 da = of_read_number(addr + 1, na - 1);
382
383 pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
384 (unsigned long long)cp, (unsigned long long)s,
385 (unsigned long long)da);
386
387 if (da < cp || da >= (cp + s))
388 return OF_BAD_ADDR;
389 return da - cp;
390}
391
392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
393{
394 return of_bus_default_translate(addr + 1, offset, na - 1);
395}
396
397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
398{
399 unsigned int flags = 0;
400 u32 w = be32_to_cpup(addr);
401
402 if (w & 1)
403 flags |= IORESOURCE_IO;
404 else
405 flags |= IORESOURCE_MEM;
406 return flags;
407}
408
409/*
410 * Array of bus specific translators
411 */
412
413static struct of_bus of_busses[] = {
414#ifdef CONFIG_OF_ADDRESS_PCI
415 /* PCI */
416 {
417 .name = "pci",
418 .addresses = "assigned-addresses",
419 .match = of_bus_pci_match,
420 .count_cells = of_bus_pci_count_cells,
421 .map = of_bus_pci_map,
422 .translate = of_bus_pci_translate,
423 .get_flags = of_bus_pci_get_flags,
424 },
425#endif /* CONFIG_OF_ADDRESS_PCI */
426 /* ISA */
427 {
428 .name = "isa",
429 .addresses = "reg",
430 .match = of_bus_isa_match,
431 .count_cells = of_bus_isa_count_cells,
432 .map = of_bus_isa_map,
433 .translate = of_bus_isa_translate,
434 .get_flags = of_bus_isa_get_flags,
435 },
436 /* Default */
437 {
438 .name = "default",
439 .addresses = "reg",
440 .match = NULL,
441 .count_cells = of_bus_default_count_cells,
442 .map = of_bus_default_map,
443 .translate = of_bus_default_translate,
444 .get_flags = of_bus_default_get_flags,
445 },
446};
447
448static struct of_bus *of_match_bus(struct device_node *np)
449{
450 int i;
451
452 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
453 if (!of_busses[i].match || of_busses[i].match(np))
454 return &of_busses[i];
455 BUG();
456 return NULL;
457}
458
459static int of_empty_ranges_quirk(struct device_node *np)
460{
461 if (IS_ENABLED(CONFIG_PPC)) {
462 /* To save cycles, we cache the result for global "Mac" setting */
463 static int quirk_state = -1;
464
465 /* PA-SEMI sdc DT bug */
466 if (of_device_is_compatible(np, "1682m-sdc"))
467 return true;
468
469 /* Make quirk cached */
470 if (quirk_state < 0)
471 quirk_state =
472 of_machine_is_compatible("Power Macintosh") ||
473 of_machine_is_compatible("MacRISC");
474 return quirk_state;
475 }
476 return false;
477}
478
479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
480 struct of_bus *pbus, __be32 *addr,
481 int na, int ns, int pna, const char *rprop)
482{
483 const __be32 *ranges;
484 unsigned int rlen;
485 int rone;
486 u64 offset = OF_BAD_ADDR;
487
488 /*
489 * Normally, an absence of a "ranges" property means we are
490 * crossing a non-translatable boundary, and thus the addresses
491 * below the current cannot be converted to CPU physical ones.
492 * Unfortunately, while this is very clear in the spec, it's not
493 * what Apple understood, and they do have things like /uni-n or
494 * /ht nodes with no "ranges" property and a lot of perfectly
495 * useable mapped devices below them. Thus we treat the absence of
496 * "ranges" as equivalent to an empty "ranges" property which means
497 * a 1:1 translation at that level. It's up to the caller not to try
498 * to translate addresses that aren't supposed to be translated in
499 * the first place. --BenH.
500 *
501 * As far as we know, this damage only exists on Apple machines, so
502 * This code is only enabled on powerpc. --gcl
503 */
504 ranges = of_get_property(parent, rprop, &rlen);
505 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
506 pr_debug("OF: no ranges; cannot translate\n");
507 return 1;
508 }
509 if (ranges == NULL || rlen == 0) {
510 offset = of_read_number(addr, na);
511 memset(addr, 0, pna * 4);
512 pr_debug("OF: empty ranges; 1:1 translation\n");
513 goto finish;
514 }
515
516 pr_debug("OF: walking ranges...\n");
517
518 /* Now walk through the ranges */
519 rlen /= 4;
520 rone = na + pna + ns;
521 for (; rlen >= rone; rlen -= rone, ranges += rone) {
522 offset = bus->map(addr, ranges, na, ns, pna);
523 if (offset != OF_BAD_ADDR)
524 break;
525 }
526 if (offset == OF_BAD_ADDR) {
527 pr_debug("OF: not found !\n");
528 return 1;
529 }
530 memcpy(addr, ranges + na, 4 * pna);
531
532 finish:
533 of_dump_addr("OF: parent translation for:", addr, pna);
534 pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
535
536 /* Translate it into parent bus space */
537 return pbus->translate(addr, offset, pna);
538}
539
540/*
541 * Translate an address from the device-tree into a CPU physical address,
542 * this walks up the tree and applies the various bus mappings on the
543 * way.
544 *
545 * Note: We consider that crossing any level with #size-cells == 0 to mean
546 * that translation is impossible (that is we are not dealing with a value
547 * that can be mapped to a cpu physical address). This is not really specified
548 * that way, but this is traditionally the way IBM at least do things
549 */
550static u64 __of_translate_address(struct device_node *dev,
551 const __be32 *in_addr, const char *rprop)
552{
553 struct device_node *parent = NULL;
554 struct of_bus *bus, *pbus;
555 __be32 addr[OF_MAX_ADDR_CELLS];
556 int na, ns, pna, pns;
557 u64 result = OF_BAD_ADDR;
558
559 pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
560
561 /* Increase refcount at current level */
562 of_node_get(dev);
563
564 /* Get parent & match bus type */
565 parent = of_get_parent(dev);
566 if (parent == NULL)
567 goto bail;
568 bus = of_match_bus(parent);
569
570 /* Count address cells & copy address locally */
571 bus->count_cells(dev, &na, &ns);
572 if (!OF_CHECK_COUNTS(na, ns)) {
573 pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
574 goto bail;
575 }
576 memcpy(addr, in_addr, na * 4);
577
578 pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
579 bus->name, na, ns, of_node_full_name(parent));
580 of_dump_addr("OF: translating address:", addr, na);
581
582 /* Translate */
583 for (;;) {
584 /* Switch to parent bus */
585 of_node_put(dev);
586 dev = parent;
587 parent = of_get_parent(dev);
588
589 /* If root, we have finished */
590 if (parent == NULL) {
591 pr_debug("OF: reached root node\n");
592 result = of_read_number(addr, na);
593 break;
594 }
595
596 /* Get new parent bus and counts */
597 pbus = of_match_bus(parent);
598 pbus->count_cells(dev, &pna, &pns);
599 if (!OF_CHECK_COUNTS(pna, pns)) {
600 pr_err("prom_parse: Bad cell count for %s\n",
601 of_node_full_name(dev));
602 break;
603 }
604
605 pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
606 pbus->name, pna, pns, of_node_full_name(parent));
607
608 /* Apply bus translation */
609 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
610 break;
611
612 /* Complete the move up one level */
613 na = pna;
614 ns = pns;
615 bus = pbus;
616
617 of_dump_addr("OF: one level translation:", addr, na);
618 }
619 bail:
620 of_node_put(parent);
621 of_node_put(dev);
622
623 return result;
624}
625
626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
627{
628 return __of_translate_address(dev, in_addr, "ranges");
629}
630EXPORT_SYMBOL(of_translate_address);
631
632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
633{
634 return __of_translate_address(dev, in_addr, "dma-ranges");
635}
636EXPORT_SYMBOL(of_translate_dma_address);
637
638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
639 unsigned int *flags)
640{
641 const __be32 *prop;
642 unsigned int psize;
643 struct device_node *parent;
644 struct of_bus *bus;
645 int onesize, i, na, ns;
646
647 /* Get parent & match bus type */
648 parent = of_get_parent(dev);
649 if (parent == NULL)
650 return NULL;
651 bus = of_match_bus(parent);
652 bus->count_cells(dev, &na, &ns);
653 of_node_put(parent);
654 if (!OF_CHECK_ADDR_COUNT(na))
655 return NULL;
656
657 /* Get "reg" or "assigned-addresses" property */
658 prop = of_get_property(dev, bus->addresses, &psize);
659 if (prop == NULL)
660 return NULL;
661 psize /= 4;
662
663 onesize = na + ns;
664 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
665 if (i == index) {
666 if (size)
667 *size = of_read_number(prop + na, ns);
668 if (flags)
669 *flags = bus->get_flags(prop);
670 return prop;
671 }
672 return NULL;
673}
674EXPORT_SYMBOL(of_get_address);
675
676#ifdef PCI_IOBASE
677struct io_range {
678 struct list_head list;
679 phys_addr_t start;
680 resource_size_t size;
681};
682
683static LIST_HEAD(io_range_list);
684static DEFINE_SPINLOCK(io_range_lock);
685#endif
686
687/*
688 * Record the PCI IO range (expressed as CPU physical address + size).
689 * Return a negative value if an error has occured, zero otherwise
690 */
691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
692{
693 int err = 0;
694
695#ifdef PCI_IOBASE
696 struct io_range *range;
697 resource_size_t allocated_size = 0;
698
699 /* check if the range hasn't been previously recorded */
700 spin_lock(&io_range_lock);
701 list_for_each_entry(range, &io_range_list, list) {
702 if (addr >= range->start && addr + size <= range->start + size) {
703 /* range already registered, bail out */
704 goto end_register;
705 }
706 allocated_size += range->size;
707 }
708
709 /* range not registed yet, check for available space */
710 if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
711 /* if it's too big check if 64K space can be reserved */
712 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
713 err = -E2BIG;
714 goto end_register;
715 }
716
717 size = SZ_64K;
718 pr_warn("Requested IO range too big, new size set to 64K\n");
719 }
720
721 /* add the range to the list */
722 range = kzalloc(sizeof(*range), GFP_ATOMIC);
723 if (!range) {
724 err = -ENOMEM;
725 goto end_register;
726 }
727
728 range->start = addr;
729 range->size = size;
730
731 list_add_tail(&range->list, &io_range_list);
732
733end_register:
734 spin_unlock(&io_range_lock);
735#endif
736
737 return err;
738}
739
740phys_addr_t pci_pio_to_address(unsigned long pio)
741{
742 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
743
744#ifdef PCI_IOBASE
745 struct io_range *range;
746 resource_size_t allocated_size = 0;
747
748 if (pio > IO_SPACE_LIMIT)
749 return address;
750
751 spin_lock(&io_range_lock);
752 list_for_each_entry(range, &io_range_list, list) {
753 if (pio >= allocated_size && pio < allocated_size + range->size) {
754 address = range->start + pio - allocated_size;
755 break;
756 }
757 allocated_size += range->size;
758 }
759 spin_unlock(&io_range_lock);
760#endif
761
762 return address;
763}
764
765unsigned long __weak pci_address_to_pio(phys_addr_t address)
766{
767#ifdef PCI_IOBASE
768 struct io_range *res;
769 resource_size_t offset = 0;
770 unsigned long addr = -1;
771
772 spin_lock(&io_range_lock);
773 list_for_each_entry(res, &io_range_list, list) {
774 if (address >= res->start && address < res->start + res->size) {
775 addr = address - res->start + offset;
776 break;
777 }
778 offset += res->size;
779 }
780 spin_unlock(&io_range_lock);
781
782 return addr;
783#else
784 if (address > IO_SPACE_LIMIT)
785 return (unsigned long)-1;
786
787 return (unsigned long) address;
788#endif
789}
790
791static int __of_address_to_resource(struct device_node *dev,
792 const __be32 *addrp, u64 size, unsigned int flags,
793 const char *name, struct resource *r)
794{
795 u64 taddr;
796
797 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
798 return -EINVAL;
799 taddr = of_translate_address(dev, addrp);
800 if (taddr == OF_BAD_ADDR)
801 return -EINVAL;
802 memset(r, 0, sizeof(struct resource));
803 if (flags & IORESOURCE_IO) {
804 unsigned long port;
805 port = pci_address_to_pio(taddr);
806 if (port == (unsigned long)-1)
807 return -EINVAL;
808 r->start = port;
809 r->end = port + size - 1;
810 } else {
811 r->start = taddr;
812 r->end = taddr + size - 1;
813 }
814 r->flags = flags;
815 r->name = name ? name : dev->full_name;
816
817 return 0;
818}
819
820/**
821 * of_address_to_resource - Translate device tree address and return as resource
822 *
823 * Note that if your address is a PIO address, the conversion will fail if
824 * the physical address can't be internally converted to an IO token with
825 * pci_address_to_pio(), that is because it's either called to early or it
826 * can't be matched to any host bridge IO space
827 */
828int of_address_to_resource(struct device_node *dev, int index,
829 struct resource *r)
830{
831 const __be32 *addrp;
832 u64 size;
833 unsigned int flags;
834 const char *name = NULL;
835
836 addrp = of_get_address(dev, index, &size, &flags);
837 if (addrp == NULL)
838 return -EINVAL;
839
840 /* Get optional "reg-names" property to add a name to a resource */
841 of_property_read_string_index(dev, "reg-names", index, &name);
842
843 return __of_address_to_resource(dev, addrp, size, flags, name, r);
844}
845EXPORT_SYMBOL_GPL(of_address_to_resource);
846
847struct device_node *of_find_matching_node_by_address(struct device_node *from,
848 const struct of_device_id *matches,
849 u64 base_address)
850{
851 struct device_node *dn = of_find_matching_node(from, matches);
852 struct resource res;
853
854 while (dn) {
855 if (!of_address_to_resource(dn, 0, &res) &&
856 res.start == base_address)
857 return dn;
858
859 dn = of_find_matching_node(dn, matches);
860 }
861
862 return NULL;
863}
864
865
866/**
867 * of_iomap - Maps the memory mapped IO for a given device_node
868 * @device: the device whose io range will be mapped
869 * @index: index of the io range
870 *
871 * Returns a pointer to the mapped memory
872 */
873void __iomem *of_iomap(struct device_node *np, int index)
874{
875 struct resource res;
876
877 if (of_address_to_resource(np, index, &res))
878 return NULL;
879
880 return ioremap(res.start, resource_size(&res));
881}
882EXPORT_SYMBOL(of_iomap);
883
884/*
885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
886 * for a given device_node
887 * @device: the device whose io range will be mapped
888 * @index: index of the io range
889 * @name: name of the resource
890 *
891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
892 * error code on failure. Usage example:
893 *
894 * base = of_io_request_and_map(node, 0, "foo");
895 * if (IS_ERR(base))
896 * return PTR_ERR(base);
897 */
898void __iomem *of_io_request_and_map(struct device_node *np, int index,
899 const char *name)
900{
901 struct resource res;
902 void __iomem *mem;
903
904 if (of_address_to_resource(np, index, &res))
905 return IOMEM_ERR_PTR(-EINVAL);
906
907 if (!request_mem_region(res.start, resource_size(&res), name))
908 return IOMEM_ERR_PTR(-EBUSY);
909
910 mem = ioremap(res.start, resource_size(&res));
911 if (!mem) {
912 release_mem_region(res.start, resource_size(&res));
913 return IOMEM_ERR_PTR(-ENOMEM);
914 }
915
916 return mem;
917}
918EXPORT_SYMBOL(of_io_request_and_map);
919
920/**
921 * of_dma_get_range - Get DMA range info
922 * @np: device node to get DMA range info
923 * @dma_addr: pointer to store initial DMA address of DMA range
924 * @paddr: pointer to store initial CPU address of DMA range
925 * @size: pointer to store size of DMA range
926 *
927 * Look in bottom up direction for the first "dma-ranges" property
928 * and parse it.
929 * dma-ranges format:
930 * DMA addr (dma_addr) : naddr cells
931 * CPU addr (phys_addr_t) : pna cells
932 * size : nsize cells
933 *
934 * It returns -ENODEV if "dma-ranges" property was not found
935 * for this device in DT.
936 */
937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
938{
939 struct device_node *node = of_node_get(np);
940 const __be32 *ranges = NULL;
941 int len, naddr, nsize, pna;
942 int ret = 0;
943 u64 dmaaddr;
944
945 if (!node)
946 return -EINVAL;
947
948 while (1) {
949 naddr = of_n_addr_cells(node);
950 nsize = of_n_size_cells(node);
951 node = of_get_next_parent(node);
952 if (!node)
953 break;
954
955 ranges = of_get_property(node, "dma-ranges", &len);
956
957 /* Ignore empty ranges, they imply no translation required */
958 if (ranges && len > 0)
959 break;
960
961 /*
962 * At least empty ranges has to be defined for parent node if
963 * DMA is supported
964 */
965 if (!ranges)
966 break;
967 }
968
969 if (!ranges) {
970 pr_debug("%s: no dma-ranges found for node(%s)\n",
971 __func__, np->full_name);
972 ret = -ENODEV;
973 goto out;
974 }
975
976 len /= sizeof(u32);
977
978 pna = of_n_addr_cells(node);
979
980 /* dma-ranges format:
981 * DMA addr : naddr cells
982 * CPU addr : pna cells
983 * size : nsize cells
984 */
985 dmaaddr = of_read_number(ranges, naddr);
986 *paddr = of_translate_dma_address(np, ranges);
987 if (*paddr == OF_BAD_ADDR) {
988 pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
989 __func__, dma_addr, np->full_name);
990 ret = -EINVAL;
991 goto out;
992 }
993 *dma_addr = dmaaddr;
994
995 *size = of_read_number(ranges + naddr + pna, nsize);
996
997 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
998 *dma_addr, *paddr, *size);
999
1000out:
1001 of_node_put(node);
1002
1003 return ret;
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np: device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016 struct device_node *node = of_node_get(np);
1017
1018 while (node) {
1019 if (of_property_read_bool(node, "dma-coherent")) {
1020 of_node_put(node);
1021 return true;
1022 }
1023 node = of_get_next_parent(node);
1024 }
1025 of_node_put(node);
1026 return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) "OF: " fmt
3
4#include <linux/device.h>
5#include <linux/fwnode.h>
6#include <linux/io.h>
7#include <linux/ioport.h>
8#include <linux/logic_pio.h>
9#include <linux/module.h>
10#include <linux/of_address.h>
11#include <linux/overflow.h>
12#include <linux/pci.h>
13#include <linux/pci_regs.h>
14#include <linux/sizes.h>
15#include <linux/slab.h>
16#include <linux/string.h>
17#include <linux/dma-direct.h> /* for bus_dma_region */
18
19#include "of_private.h"
20
21/* Max address size we deal with */
22#define OF_MAX_ADDR_CELLS 4
23#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
24#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
25
26/* Debug utility */
27#ifdef DEBUG
28static void of_dump_addr(const char *s, const __be32 *addr, int na)
29{
30 pr_debug("%s", s);
31 while (na--)
32 pr_cont(" %08x", be32_to_cpu(*(addr++)));
33 pr_cont("\n");
34}
35#else
36static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
37#endif
38
39/* Callbacks for bus specific translators */
40struct of_bus {
41 const char *name;
42 const char *addresses;
43 int (*match)(struct device_node *parent);
44 void (*count_cells)(struct device_node *child,
45 int *addrc, int *sizec);
46 u64 (*map)(__be32 *addr, const __be32 *range,
47 int na, int ns, int pna, int fna);
48 int (*translate)(__be32 *addr, u64 offset, int na);
49 int flag_cells;
50 unsigned int (*get_flags)(const __be32 *addr);
51};
52
53/*
54 * Default translator (generic bus)
55 */
56
57static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
59{
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
64}
65
66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna, int fna)
68{
69 u64 cp, s, da;
70
71 cp = of_read_number(range + fna, na - fna);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr + fna, na - fna);
74
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
76
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
80}
81
82static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83{
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90
91 return 0;
92}
93
94static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
95{
96 return of_read_number(addr, 1);
97}
98
99static unsigned int of_bus_default_get_flags(const __be32 *addr)
100{
101 return IORESOURCE_MEM;
102}
103
104static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
105 int ns, int pna, int fna)
106{
107 /* Check that flags match */
108 if (*addr != *range)
109 return OF_BAD_ADDR;
110
111 return of_bus_default_map(addr, range, na, ns, pna, fna);
112}
113
114static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
115{
116 /* Keep "flags" part (high cell) in translated address */
117 return of_bus_default_translate(addr + 1, offset, na - 1);
118}
119
120#ifdef CONFIG_PCI
121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122{
123 unsigned int flags = 0;
124 u32 w = be32_to_cpup(addr);
125
126 if (!IS_ENABLED(CONFIG_PCI))
127 return 0;
128
129 switch((w >> 24) & 0x03) {
130 case 0x01:
131 flags |= IORESOURCE_IO;
132 break;
133 case 0x02: /* 32 bits */
134 flags |= IORESOURCE_MEM;
135 break;
136
137 case 0x03: /* 64 bits */
138 flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
139 break;
140 }
141 if (w & 0x40000000)
142 flags |= IORESOURCE_PREFETCH;
143 return flags;
144}
145
146/*
147 * PCI bus specific translator
148 */
149
150static bool of_node_is_pcie(const struct device_node *np)
151{
152 bool is_pcie = of_node_name_eq(np, "pcie");
153
154 if (is_pcie)
155 pr_warn_once("%pOF: Missing device_type\n", np);
156
157 return is_pcie;
158}
159
160static int of_bus_pci_match(struct device_node *np)
161{
162 /*
163 * "pciex" is PCI Express
164 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
165 * "ht" is hypertransport
166 *
167 * If none of the device_type match, and that the node name is
168 * "pcie", accept the device as PCI (with a warning).
169 */
170 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
171 of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
172 of_node_is_pcie(np);
173}
174
175static void of_bus_pci_count_cells(struct device_node *np,
176 int *addrc, int *sizec)
177{
178 if (addrc)
179 *addrc = 3;
180 if (sizec)
181 *sizec = 2;
182}
183
184static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
185 int pna, int fna)
186{
187 unsigned int af, rf;
188
189 af = of_bus_pci_get_flags(addr);
190 rf = of_bus_pci_get_flags(range);
191
192 /* Check address type match */
193 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
194 return OF_BAD_ADDR;
195
196 return of_bus_default_map(addr, range, na, ns, pna, fna);
197}
198
199#endif /* CONFIG_PCI */
200
201static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
202{
203 if (overflows_type(start, r->start))
204 return -EOVERFLOW;
205
206 r->start = start;
207
208 if (!size)
209 r->end = wrapping_sub(typeof(r->end), r->start, 1);
210 else if (size && check_add_overflow(r->start, size - 1, &r->end))
211 return -EOVERFLOW;
212
213 return 0;
214}
215
216/*
217 * of_pci_range_to_resource - Create a resource from an of_pci_range
218 * @range: the PCI range that describes the resource
219 * @np: device node where the range belongs to
220 * @res: pointer to a valid resource that will be updated to
221 * reflect the values contained in the range.
222 *
223 * Returns -EINVAL if the range cannot be converted to resource.
224 *
225 * Note that if the range is an IO range, the resource will be converted
226 * using pci_address_to_pio() which can fail if it is called too early or
227 * if the range cannot be matched to any host bridge IO space (our case here).
228 * To guard against that we try to register the IO range first.
229 * If that fails we know that pci_address_to_pio() will do too.
230 */
231int of_pci_range_to_resource(const struct of_pci_range *range,
232 const struct device_node *np, struct resource *res)
233{
234 u64 start;
235 int err;
236 res->flags = range->flags;
237 res->parent = res->child = res->sibling = NULL;
238 res->name = np->full_name;
239
240 if (res->flags & IORESOURCE_IO) {
241 unsigned long port;
242 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
243 range->size);
244 if (err)
245 goto invalid_range;
246 port = pci_address_to_pio(range->cpu_addr);
247 if (port == (unsigned long)-1) {
248 err = -EINVAL;
249 goto invalid_range;
250 }
251 start = port;
252 } else {
253 start = range->cpu_addr;
254 }
255 return __of_address_resource_bounds(res, start, range->size);
256
257invalid_range:
258 res->start = (resource_size_t)OF_BAD_ADDR;
259 res->end = (resource_size_t)OF_BAD_ADDR;
260 return err;
261}
262EXPORT_SYMBOL(of_pci_range_to_resource);
263
264/*
265 * of_range_to_resource - Create a resource from a ranges entry
266 * @np: device node where the range belongs to
267 * @index: the 'ranges' index to convert to a resource
268 * @res: pointer to a valid resource that will be updated to
269 * reflect the values contained in the range.
270 *
271 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
272 * cannot be converted to resource.
273 */
274int of_range_to_resource(struct device_node *np, int index, struct resource *res)
275{
276 int ret, i = 0;
277 struct of_range_parser parser;
278 struct of_range range;
279
280 ret = of_range_parser_init(&parser, np);
281 if (ret)
282 return ret;
283
284 for_each_of_range(&parser, &range)
285 if (i++ == index)
286 return of_pci_range_to_resource(&range, np, res);
287
288 return -ENOENT;
289}
290EXPORT_SYMBOL(of_range_to_resource);
291
292/*
293 * ISA bus specific translator
294 */
295
296static int of_bus_isa_match(struct device_node *np)
297{
298 return of_node_name_eq(np, "isa");
299}
300
301static void of_bus_isa_count_cells(struct device_node *child,
302 int *addrc, int *sizec)
303{
304 if (addrc)
305 *addrc = 2;
306 if (sizec)
307 *sizec = 1;
308}
309
310static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
311 int pna, int fna)
312{
313 /* Check address type match */
314 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
315 return OF_BAD_ADDR;
316
317 return of_bus_default_map(addr, range, na, ns, pna, fna);
318}
319
320static unsigned int of_bus_isa_get_flags(const __be32 *addr)
321{
322 unsigned int flags = 0;
323 u32 w = be32_to_cpup(addr);
324
325 if (w & 1)
326 flags |= IORESOURCE_IO;
327 else
328 flags |= IORESOURCE_MEM;
329 return flags;
330}
331
332static int of_bus_default_flags_match(struct device_node *np)
333{
334 /*
335 * Check for presence first since of_bus_n_addr_cells() will warn when
336 * walking parent nodes.
337 */
338 return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
339}
340
341static int of_bus_default_match(struct device_node *np)
342{
343 /*
344 * Check for presence first since of_bus_n_addr_cells() will warn when
345 * walking parent nodes.
346 */
347 return of_property_present(np, "#address-cells");
348}
349
350/*
351 * Array of bus specific translators
352 */
353
354static const struct of_bus of_busses[] = {
355#ifdef CONFIG_PCI
356 /* PCI */
357 {
358 .name = "pci",
359 .addresses = "assigned-addresses",
360 .match = of_bus_pci_match,
361 .count_cells = of_bus_pci_count_cells,
362 .map = of_bus_pci_map,
363 .translate = of_bus_default_flags_translate,
364 .flag_cells = 1,
365 .get_flags = of_bus_pci_get_flags,
366 },
367#endif /* CONFIG_PCI */
368 /* ISA */
369 {
370 .name = "isa",
371 .addresses = "reg",
372 .match = of_bus_isa_match,
373 .count_cells = of_bus_isa_count_cells,
374 .map = of_bus_isa_map,
375 .translate = of_bus_default_flags_translate,
376 .flag_cells = 1,
377 .get_flags = of_bus_isa_get_flags,
378 },
379 /* Default with flags cell */
380 {
381 .name = "default-flags",
382 .addresses = "reg",
383 .match = of_bus_default_flags_match,
384 .count_cells = of_bus_default_count_cells,
385 .map = of_bus_default_flags_map,
386 .translate = of_bus_default_flags_translate,
387 .flag_cells = 1,
388 .get_flags = of_bus_default_flags_get_flags,
389 },
390 /* Default */
391 {
392 .name = "default",
393 .addresses = "reg",
394 .match = of_bus_default_match,
395 .count_cells = of_bus_default_count_cells,
396 .map = of_bus_default_map,
397 .translate = of_bus_default_translate,
398 .get_flags = of_bus_default_get_flags,
399 },
400};
401
402static const struct of_bus *of_match_bus(struct device_node *np)
403{
404 int i;
405
406 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
407 if (!of_busses[i].match || of_busses[i].match(np))
408 return &of_busses[i];
409 return NULL;
410}
411
412static int of_empty_ranges_quirk(const struct device_node *np)
413{
414 if (IS_ENABLED(CONFIG_PPC)) {
415 /* To save cycles, we cache the result for global "Mac" setting */
416 static int quirk_state = -1;
417
418 /* PA-SEMI sdc DT bug */
419 if (of_device_is_compatible(np, "1682m-sdc"))
420 return true;
421
422 /* Make quirk cached */
423 if (quirk_state < 0)
424 quirk_state =
425 of_machine_is_compatible("Power Macintosh") ||
426 of_machine_is_compatible("MacRISC");
427 return quirk_state;
428 }
429 return false;
430}
431
432static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
433 const struct of_bus *pbus, __be32 *addr,
434 int na, int ns, int pna, const char *rprop)
435{
436 const __be32 *ranges;
437 unsigned int rlen;
438 int rone;
439 u64 offset = OF_BAD_ADDR;
440
441 /*
442 * Normally, an absence of a "ranges" property means we are
443 * crossing a non-translatable boundary, and thus the addresses
444 * below the current cannot be converted to CPU physical ones.
445 * Unfortunately, while this is very clear in the spec, it's not
446 * what Apple understood, and they do have things like /uni-n or
447 * /ht nodes with no "ranges" property and a lot of perfectly
448 * useable mapped devices below them. Thus we treat the absence of
449 * "ranges" as equivalent to an empty "ranges" property which means
450 * a 1:1 translation at that level. It's up to the caller not to try
451 * to translate addresses that aren't supposed to be translated in
452 * the first place. --BenH.
453 *
454 * As far as we know, this damage only exists on Apple machines, so
455 * This code is only enabled on powerpc. --gcl
456 *
457 * This quirk also applies for 'dma-ranges' which frequently exist in
458 * child nodes without 'dma-ranges' in the parent nodes. --RobH
459 */
460 ranges = of_get_property(parent, rprop, &rlen);
461 if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
462 strcmp(rprop, "dma-ranges")) {
463 pr_debug("no ranges; cannot translate\n");
464 return 1;
465 }
466 if (ranges == NULL || rlen == 0) {
467 offset = of_read_number(addr, na);
468 /* set address to zero, pass flags through */
469 memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
470 pr_debug("empty ranges; 1:1 translation\n");
471 goto finish;
472 }
473
474 pr_debug("walking ranges...\n");
475
476 /* Now walk through the ranges */
477 rlen /= 4;
478 rone = na + pna + ns;
479 for (; rlen >= rone; rlen -= rone, ranges += rone) {
480 offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
481 if (offset != OF_BAD_ADDR)
482 break;
483 }
484 if (offset == OF_BAD_ADDR) {
485 pr_debug("not found !\n");
486 return 1;
487 }
488 memcpy(addr, ranges + na, 4 * pna);
489
490 finish:
491 of_dump_addr("parent translation for:", addr, pna);
492 pr_debug("with offset: %llx\n", offset);
493
494 /* Translate it into parent bus space */
495 return pbus->translate(addr, offset, pna);
496}
497
498/*
499 * Translate an address from the device-tree into a CPU physical address,
500 * this walks up the tree and applies the various bus mappings on the
501 * way.
502 *
503 * Note: We consider that crossing any level with #size-cells == 0 to mean
504 * that translation is impossible (that is we are not dealing with a value
505 * that can be mapped to a cpu physical address). This is not really specified
506 * that way, but this is traditionally the way IBM at least do things
507 *
508 * Whenever the translation fails, the *host pointer will be set to the
509 * device that had registered logical PIO mapping, and the return code is
510 * relative to that node.
511 */
512static u64 __of_translate_address(struct device_node *node,
513 struct device_node *(*get_parent)(const struct device_node *),
514 const __be32 *in_addr, const char *rprop,
515 struct device_node **host)
516{
517 struct device_node *dev __free(device_node) = of_node_get(node);
518 struct device_node *parent __free(device_node) = get_parent(dev);
519 const struct of_bus *bus, *pbus;
520 __be32 addr[OF_MAX_ADDR_CELLS];
521 int na, ns, pna, pns;
522
523 pr_debug("** translation for device %pOF **\n", dev);
524
525 *host = NULL;
526
527 if (parent == NULL)
528 return OF_BAD_ADDR;
529 bus = of_match_bus(parent);
530 if (!bus)
531 return OF_BAD_ADDR;
532
533 /* Count address cells & copy address locally */
534 bus->count_cells(dev, &na, &ns);
535 if (!OF_CHECK_COUNTS(na, ns)) {
536 pr_debug("Bad cell count for %pOF\n", dev);
537 return OF_BAD_ADDR;
538 }
539 memcpy(addr, in_addr, na * 4);
540
541 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
542 bus->name, na, ns, parent);
543 of_dump_addr("translating address:", addr, na);
544
545 /* Translate */
546 for (;;) {
547 struct logic_pio_hwaddr *iorange;
548
549 /* Switch to parent bus */
550 of_node_put(dev);
551 dev = parent;
552 parent = get_parent(dev);
553
554 /* If root, we have finished */
555 if (parent == NULL) {
556 pr_debug("reached root node\n");
557 return of_read_number(addr, na);
558 }
559
560 /*
561 * For indirectIO device which has no ranges property, get
562 * the address from reg directly.
563 */
564 iorange = find_io_range_by_fwnode(&dev->fwnode);
565 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
566 u64 result = of_read_number(addr + 1, na - 1);
567 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
568 dev, result);
569 *host = no_free_ptr(dev);
570 return result;
571 }
572
573 /* Get new parent bus and counts */
574 pbus = of_match_bus(parent);
575 if (!pbus)
576 return OF_BAD_ADDR;
577 pbus->count_cells(dev, &pna, &pns);
578 if (!OF_CHECK_COUNTS(pna, pns)) {
579 pr_err("Bad cell count for %pOF\n", dev);
580 return OF_BAD_ADDR;
581 }
582
583 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
584 pbus->name, pna, pns, parent);
585
586 /* Apply bus translation */
587 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
588 return OF_BAD_ADDR;
589
590 /* Complete the move up one level */
591 na = pna;
592 ns = pns;
593 bus = pbus;
594
595 of_dump_addr("one level translation:", addr, na);
596 }
597
598 unreachable();
599}
600
601u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
602{
603 struct device_node *host;
604 u64 ret;
605
606 ret = __of_translate_address(dev, of_get_parent,
607 in_addr, "ranges", &host);
608 if (host) {
609 of_node_put(host);
610 return OF_BAD_ADDR;
611 }
612
613 return ret;
614}
615EXPORT_SYMBOL(of_translate_address);
616
617#ifdef CONFIG_HAS_DMA
618struct device_node *__of_get_dma_parent(const struct device_node *np)
619{
620 struct of_phandle_args args;
621 int ret, index;
622
623 index = of_property_match_string(np, "interconnect-names", "dma-mem");
624 if (index < 0)
625 return of_get_parent(np);
626
627 ret = of_parse_phandle_with_args(np, "interconnects",
628 "#interconnect-cells",
629 index, &args);
630 if (ret < 0)
631 return of_get_parent(np);
632
633 return args.np;
634}
635#endif
636
637static struct device_node *of_get_next_dma_parent(struct device_node *np)
638{
639 struct device_node *parent;
640
641 parent = __of_get_dma_parent(np);
642 of_node_put(np);
643
644 return parent;
645}
646
647u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
648{
649 struct device_node *host;
650 u64 ret;
651
652 ret = __of_translate_address(dev, __of_get_dma_parent,
653 in_addr, "dma-ranges", &host);
654
655 if (host) {
656 of_node_put(host);
657 return OF_BAD_ADDR;
658 }
659
660 return ret;
661}
662EXPORT_SYMBOL(of_translate_dma_address);
663
664/**
665 * of_translate_dma_region - Translate device tree address and size tuple
666 * @dev: device tree node for which to translate
667 * @prop: pointer into array of cells
668 * @start: return value for the start of the DMA range
669 * @length: return value for the length of the DMA range
670 *
671 * Returns a pointer to the cell immediately following the translated DMA region.
672 */
673const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
674 phys_addr_t *start, size_t *length)
675{
676 struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
677 u64 address, size;
678 int na, ns;
679
680 if (!parent)
681 return NULL;
682
683 na = of_bus_n_addr_cells(parent);
684 ns = of_bus_n_size_cells(parent);
685
686 address = of_translate_dma_address(dev, prop);
687 if (address == OF_BAD_ADDR)
688 return NULL;
689
690 size = of_read_number(prop + na, ns);
691
692 if (start)
693 *start = address;
694
695 if (length)
696 *length = size;
697
698 return prop + na + ns;
699}
700EXPORT_SYMBOL(of_translate_dma_region);
701
702const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
703 u64 *size, unsigned int *flags)
704{
705 const __be32 *prop;
706 unsigned int psize;
707 struct device_node *parent __free(device_node) = of_get_parent(dev);
708 const struct of_bus *bus;
709 int onesize, i, na, ns;
710
711 if (parent == NULL)
712 return NULL;
713
714 /* match the parent's bus type */
715 bus = of_match_bus(parent);
716 if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0)))
717 return NULL;
718
719 /* Get "reg" or "assigned-addresses" property */
720 prop = of_get_property(dev, bus->addresses, &psize);
721 if (prop == NULL)
722 return NULL;
723 psize /= 4;
724
725 bus->count_cells(dev, &na, &ns);
726 if (!OF_CHECK_ADDR_COUNT(na))
727 return NULL;
728
729 onesize = na + ns;
730 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
731 u32 val = be32_to_cpu(prop[0]);
732 /* PCI bus matches on BAR number instead of index */
733 if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
734 ((index >= 0) && (i == index))) {
735 if (size)
736 *size = of_read_number(prop + na, ns);
737 if (flags)
738 *flags = bus->get_flags(prop);
739 return prop;
740 }
741 }
742 return NULL;
743}
744EXPORT_SYMBOL(__of_get_address);
745
746/**
747 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
748 * @np: device tree node for which to retrieve "reg" from
749 * @idx: "reg" entry index to read
750 * @addr: return value for the untranslated address
751 * @size: return value for the entry size
752 *
753 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
754 * size values filled in.
755 */
756int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
757{
758 const __be32 *prop = of_get_address(np, idx, size, NULL);
759
760 if (!prop)
761 return -EINVAL;
762
763 *addr = of_read_number(prop, of_n_addr_cells(np));
764
765 return 0;
766}
767EXPORT_SYMBOL(of_property_read_reg);
768
769static int parser_init(struct of_pci_range_parser *parser,
770 struct device_node *node, const char *name)
771{
772 int rlen;
773
774 parser->node = node;
775 parser->pna = of_n_addr_cells(node);
776 parser->na = of_bus_n_addr_cells(node);
777 parser->ns = of_bus_n_size_cells(node);
778 parser->dma = !strcmp(name, "dma-ranges");
779 parser->bus = of_match_bus(node);
780
781 parser->range = of_get_property(node, name, &rlen);
782 if (parser->range == NULL)
783 return -ENOENT;
784
785 parser->end = parser->range + rlen / sizeof(__be32);
786
787 return 0;
788}
789
790int of_pci_range_parser_init(struct of_pci_range_parser *parser,
791 struct device_node *node)
792{
793 return parser_init(parser, node, "ranges");
794}
795EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
796
797int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
798 struct device_node *node)
799{
800 return parser_init(parser, node, "dma-ranges");
801}
802EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
803#define of_dma_range_parser_init of_pci_dma_range_parser_init
804
805struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
806 struct of_pci_range *range)
807{
808 int na = parser->na;
809 int ns = parser->ns;
810 int np = parser->pna + na + ns;
811 int busflag_na = parser->bus->flag_cells;
812
813 if (!range)
814 return NULL;
815
816 if (!parser->range || parser->range + np > parser->end)
817 return NULL;
818
819 range->flags = parser->bus->get_flags(parser->range);
820
821 range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
822
823 if (parser->dma)
824 range->cpu_addr = of_translate_dma_address(parser->node,
825 parser->range + na);
826 else
827 range->cpu_addr = of_translate_address(parser->node,
828 parser->range + na);
829 range->size = of_read_number(parser->range + parser->pna + na, ns);
830
831 parser->range += np;
832
833 /* Now consume following elements while they are contiguous */
834 while (parser->range + np <= parser->end) {
835 u32 flags = 0;
836 u64 bus_addr, cpu_addr, size;
837
838 flags = parser->bus->get_flags(parser->range);
839 bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
840 if (parser->dma)
841 cpu_addr = of_translate_dma_address(parser->node,
842 parser->range + na);
843 else
844 cpu_addr = of_translate_address(parser->node,
845 parser->range + na);
846 size = of_read_number(parser->range + parser->pna + na, ns);
847
848 if (flags != range->flags)
849 break;
850 if (bus_addr != range->bus_addr + range->size ||
851 cpu_addr != range->cpu_addr + range->size)
852 break;
853
854 range->size += size;
855 parser->range += np;
856 }
857
858 return range;
859}
860EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
861
862static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
863 u64 size)
864{
865 u64 taddr;
866 unsigned long port;
867 struct device_node *host;
868
869 taddr = __of_translate_address(dev, of_get_parent,
870 in_addr, "ranges", &host);
871 if (host) {
872 /* host-specific port access */
873 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
874 of_node_put(host);
875 } else {
876 /* memory-mapped I/O range */
877 port = pci_address_to_pio(taddr);
878 }
879
880 if (port == (unsigned long)-1)
881 return OF_BAD_ADDR;
882
883 return port;
884}
885
886#ifdef CONFIG_HAS_DMA
887/**
888 * of_dma_get_range - Get DMA range info and put it into a map array
889 * @np: device node to get DMA range info
890 * @map: dma range structure to return
891 *
892 * Look in bottom up direction for the first "dma-ranges" property
893 * and parse it. Put the information into a DMA offset map array.
894 *
895 * dma-ranges format:
896 * DMA addr (dma_addr) : naddr cells
897 * CPU addr (phys_addr_t) : pna cells
898 * size : nsize cells
899 *
900 * It returns -ENODEV if "dma-ranges" property was not found for this
901 * device in the DT.
902 */
903int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
904{
905 struct device_node *node __free(device_node) = of_node_get(np);
906 const __be32 *ranges = NULL;
907 bool found_dma_ranges = false;
908 struct of_range_parser parser;
909 struct of_range range;
910 struct bus_dma_region *r;
911 int len, num_ranges = 0;
912
913 while (node) {
914 ranges = of_get_property(node, "dma-ranges", &len);
915
916 /* Ignore empty ranges, they imply no translation required */
917 if (ranges && len > 0)
918 break;
919
920 /* Once we find 'dma-ranges', then a missing one is an error */
921 if (found_dma_ranges && !ranges)
922 return -ENODEV;
923
924 found_dma_ranges = true;
925
926 node = of_get_next_dma_parent(node);
927 }
928
929 if (!node || !ranges) {
930 pr_debug("no dma-ranges found for node(%pOF)\n", np);
931 return -ENODEV;
932 }
933 of_dma_range_parser_init(&parser, node);
934 for_each_of_range(&parser, &range) {
935 if (range.cpu_addr == OF_BAD_ADDR) {
936 pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
937 range.bus_addr, node);
938 continue;
939 }
940 num_ranges++;
941 }
942
943 if (!num_ranges)
944 return -EINVAL;
945
946 r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
947 if (!r)
948 return -ENOMEM;
949
950 /*
951 * Record all info in the generic DMA ranges array for struct device,
952 * returning an error if we don't find any parsable ranges.
953 */
954 *map = r;
955 of_dma_range_parser_init(&parser, node);
956 for_each_of_range(&parser, &range) {
957 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
958 range.bus_addr, range.cpu_addr, range.size);
959 if (range.cpu_addr == OF_BAD_ADDR)
960 continue;
961 r->cpu_start = range.cpu_addr;
962 r->dma_start = range.bus_addr;
963 r->size = range.size;
964 r++;
965 }
966 return 0;
967}
968#endif /* CONFIG_HAS_DMA */
969
970/**
971 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
972 * @np: The node to start searching from or NULL to start from the root
973 *
974 * Gets the highest CPU physical address that is addressable by all DMA masters
975 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
976 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
977 */
978phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
979{
980 phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
981 struct of_range_parser parser;
982 phys_addr_t subtree_max_addr;
983 struct device_node *child;
984 struct of_range range;
985 const __be32 *ranges;
986 u64 cpu_end = 0;
987 int len;
988
989 if (!np)
990 np = of_root;
991
992 ranges = of_get_property(np, "dma-ranges", &len);
993 if (ranges && len) {
994 of_dma_range_parser_init(&parser, np);
995 for_each_of_range(&parser, &range)
996 if (range.cpu_addr + range.size > cpu_end)
997 cpu_end = range.cpu_addr + range.size - 1;
998
999 if (max_cpu_addr > cpu_end)
1000 max_cpu_addr = cpu_end;
1001 }
1002
1003 for_each_available_child_of_node(np, child) {
1004 subtree_max_addr = of_dma_get_max_cpu_address(child);
1005 if (max_cpu_addr > subtree_max_addr)
1006 max_cpu_addr = subtree_max_addr;
1007 }
1008
1009 return max_cpu_addr;
1010}
1011
1012/**
1013 * of_dma_is_coherent - Check if device is coherent
1014 * @np: device node
1015 *
1016 * It returns true if "dma-coherent" property was found
1017 * for this device in the DT, or if DMA is coherent by
1018 * default for OF devices on the current platform and no
1019 * "dma-noncoherent" property was found for this device.
1020 */
1021bool of_dma_is_coherent(struct device_node *np)
1022{
1023 struct device_node *node __free(device_node) = of_node_get(np);
1024
1025 while (node) {
1026 if (of_property_read_bool(node, "dma-coherent"))
1027 return true;
1028
1029 if (of_property_read_bool(node, "dma-noncoherent"))
1030 return false;
1031
1032 node = of_get_next_dma_parent(node);
1033 }
1034 return dma_default_coherent;
1035}
1036EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1037
1038/**
1039 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1040 * @np: device node
1041 *
1042 * Returns true if the "nonposted-mmio" property was found for
1043 * the device's bus.
1044 *
1045 * This is currently only enabled on builds that support Apple ARM devices, as
1046 * an optimization.
1047 */
1048static bool of_mmio_is_nonposted(const struct device_node *np)
1049{
1050 if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1051 return false;
1052
1053 struct device_node *parent __free(device_node) = of_get_parent(np);
1054 if (!parent)
1055 return false;
1056
1057 return of_property_read_bool(parent, "nonposted-mmio");
1058}
1059
1060static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1061 struct resource *r)
1062{
1063 u64 taddr;
1064 const __be32 *addrp;
1065 u64 size;
1066 unsigned int flags;
1067 const char *name = NULL;
1068
1069 addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1070 if (addrp == NULL)
1071 return -EINVAL;
1072
1073 /* Get optional "reg-names" property to add a name to a resource */
1074 if (index >= 0)
1075 of_property_read_string_index(dev, "reg-names", index, &name);
1076
1077 if (flags & IORESOURCE_MEM)
1078 taddr = of_translate_address(dev, addrp);
1079 else if (flags & IORESOURCE_IO)
1080 taddr = of_translate_ioport(dev, addrp, size);
1081 else
1082 return -EINVAL;
1083
1084 if (taddr == OF_BAD_ADDR)
1085 return -EINVAL;
1086 memset(r, 0, sizeof(struct resource));
1087
1088 if (of_mmio_is_nonposted(dev))
1089 flags |= IORESOURCE_MEM_NONPOSTED;
1090
1091 r->flags = flags;
1092 r->name = name ? name : dev->full_name;
1093
1094 return __of_address_resource_bounds(r, taddr, size);
1095}
1096
1097/**
1098 * of_address_to_resource - Translate device tree address and return as resource
1099 * @dev: Caller's Device Node
1100 * @index: Index into the array
1101 * @r: Pointer to resource array
1102 *
1103 * Returns -EINVAL if the range cannot be converted to resource.
1104 *
1105 * Note that if your address is a PIO address, the conversion will fail if
1106 * the physical address can't be internally converted to an IO token with
1107 * pci_address_to_pio(), that is because it's either called too early or it
1108 * can't be matched to any host bridge IO space
1109 */
1110int of_address_to_resource(struct device_node *dev, int index,
1111 struct resource *r)
1112{
1113 return __of_address_to_resource(dev, index, -1, r);
1114}
1115EXPORT_SYMBOL_GPL(of_address_to_resource);
1116
1117int of_pci_address_to_resource(struct device_node *dev, int bar,
1118 struct resource *r)
1119{
1120
1121 if (!IS_ENABLED(CONFIG_PCI))
1122 return -ENOSYS;
1123
1124 return __of_address_to_resource(dev, -1, bar, r);
1125}
1126EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1127
1128/**
1129 * of_iomap - Maps the memory mapped IO for a given device_node
1130 * @np: the device whose io range will be mapped
1131 * @index: index of the io range
1132 *
1133 * Returns a pointer to the mapped memory
1134 */
1135void __iomem *of_iomap(struct device_node *np, int index)
1136{
1137 struct resource res;
1138
1139 if (of_address_to_resource(np, index, &res))
1140 return NULL;
1141
1142 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1143 return ioremap_np(res.start, resource_size(&res));
1144 else
1145 return ioremap(res.start, resource_size(&res));
1146}
1147EXPORT_SYMBOL(of_iomap);
1148
1149/*
1150 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1151 * for a given device_node
1152 * @device: the device whose io range will be mapped
1153 * @index: index of the io range
1154 * @name: name "override" for the memory region request or NULL
1155 *
1156 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1157 * error code on failure. Usage example:
1158 *
1159 * base = of_io_request_and_map(node, 0, "foo");
1160 * if (IS_ERR(base))
1161 * return PTR_ERR(base);
1162 */
1163void __iomem *of_io_request_and_map(struct device_node *np, int index,
1164 const char *name)
1165{
1166 struct resource res;
1167 void __iomem *mem;
1168
1169 if (of_address_to_resource(np, index, &res))
1170 return IOMEM_ERR_PTR(-EINVAL);
1171
1172 if (!name)
1173 name = res.name;
1174 if (!request_mem_region(res.start, resource_size(&res), name))
1175 return IOMEM_ERR_PTR(-EBUSY);
1176
1177 if (res.flags & IORESOURCE_MEM_NONPOSTED)
1178 mem = ioremap_np(res.start, resource_size(&res));
1179 else
1180 mem = ioremap(res.start, resource_size(&res));
1181
1182 if (!mem) {
1183 release_mem_region(res.start, resource_size(&res));
1184 return IOMEM_ERR_PTR(-ENOMEM);
1185 }
1186
1187 return mem;
1188}
1189EXPORT_SYMBOL(of_io_request_and_map);