Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
 
 
   1
   2#include <linux/device.h>
 
   3#include <linux/io.h>
   4#include <linux/ioport.h>
 
   5#include <linux/module.h>
   6#include <linux/of_address.h>
 
 
   7#include <linux/pci_regs.h>
   8#include <linux/sizes.h>
   9#include <linux/slab.h>
  10#include <linux/string.h>
 
 
 
  11
  12/* Max address size we deal with */
  13#define OF_MAX_ADDR_CELLS	4
  14#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  15#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  16
  17static struct of_bus *of_match_bus(struct device_node *np);
  18static int __of_address_to_resource(struct device_node *dev,
  19		const __be32 *addrp, u64 size, unsigned int flags,
  20		const char *name, struct resource *r);
  21
  22/* Debug utility */
  23#ifdef DEBUG
  24static void of_dump_addr(const char *s, const __be32 *addr, int na)
  25{
  26	printk(KERN_DEBUG "%s", s);
  27	while (na--)
  28		printk(" %08x", be32_to_cpu(*(addr++)));
  29	printk("\n");
  30}
  31#else
  32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  33#endif
  34
  35/* Callbacks for bus specific translators */
  36struct of_bus {
  37	const char	*name;
  38	const char	*addresses;
  39	int		(*match)(struct device_node *parent);
  40	void		(*count_cells)(struct device_node *child,
  41				       int *addrc, int *sizec);
  42	u64		(*map)(__be32 *addr, const __be32 *range,
  43				int na, int ns, int pna);
  44	int		(*translate)(__be32 *addr, u64 offset, int na);
 
  45	unsigned int	(*get_flags)(const __be32 *addr);
  46};
  47
  48/*
  49 * Default translator (generic bus)
  50 */
  51
  52static void of_bus_default_count_cells(struct device_node *dev,
  53				       int *addrc, int *sizec)
  54{
  55	if (addrc)
  56		*addrc = of_n_addr_cells(dev);
  57	if (sizec)
  58		*sizec = of_n_size_cells(dev);
  59}
  60
  61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  62		int na, int ns, int pna)
  63{
  64	u64 cp, s, da;
  65
  66	cp = of_read_number(range, na);
  67	s  = of_read_number(range + na + pna, ns);
  68	da = of_read_number(addr, na);
  69
  70	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
  71		 (unsigned long long)cp, (unsigned long long)s,
  72		 (unsigned long long)da);
  73
  74	if (da < cp || da >= (cp + s))
  75		return OF_BAD_ADDR;
  76	return da - cp;
  77}
  78
  79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  80{
  81	u64 a = of_read_number(addr, na);
  82	memset(addr, 0, na * 4);
  83	a += offset;
  84	if (na > 1)
  85		addr[na - 2] = cpu_to_be32(a >> 32);
  86	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  87
  88	return 0;
  89}
  90
 
 
 
 
 
  91static unsigned int of_bus_default_get_flags(const __be32 *addr)
  92{
  93	return IORESOURCE_MEM;
  94}
  95
  96#ifdef CONFIG_OF_ADDRESS_PCI
  97/*
  98 * PCI bus specific translator
  99 */
 100
 101static int of_bus_pci_match(struct device_node *np)
 102{
 103	/*
 104 	 * "pciex" is PCI Express
 105	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 106	 * "ht" is hypertransport
 107	 */
 108	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
 109		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
 110}
 111
 112static void of_bus_pci_count_cells(struct device_node *np,
 113				   int *addrc, int *sizec)
 114{
 115	if (addrc)
 116		*addrc = 3;
 117	if (sizec)
 118		*sizec = 2;
 119}
 120
 
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 
 
 
 126	switch((w >> 24) & 0x03) {
 127	case 0x01:
 128		flags |= IORESOURCE_IO;
 129		break;
 130	case 0x02: /* 32 bits */
 131	case 0x03: /* 64 bits */
 132		flags |= IORESOURCE_MEM;
 133		break;
 
 
 
 
 134	}
 135	if (w & 0x40000000)
 136		flags |= IORESOURCE_PREFETCH;
 137	return flags;
 138}
 139
 140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 141		int pna)
 142{
 143	u64 cp, s, da;
 144	unsigned int af, rf;
 145
 146	af = of_bus_pci_get_flags(addr);
 147	rf = of_bus_pci_get_flags(range);
 148
 149	/* Check address type match */
 150	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 151		return OF_BAD_ADDR;
 152
 153	/* Read address values, skipping high cell */
 154	cp = of_read_number(range + 1, na - 1);
 155	s  = of_read_number(range + na + pna, ns);
 156	da = of_read_number(addr + 1, na - 1);
 157
 158	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
 159		 (unsigned long long)cp, (unsigned long long)s,
 160		 (unsigned long long)da);
 161
 162	if (da < cp || da >= (cp + s))
 163		return OF_BAD_ADDR;
 164	return da - cp;
 165}
 166
 167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 168{
 169	return of_bus_default_translate(addr + 1, offset, na - 1);
 170}
 171#endif /* CONFIG_OF_ADDRESS_PCI */
 172
 173#ifdef CONFIG_PCI
 174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 175			unsigned int *flags)
 176{
 177	const __be32 *prop;
 178	unsigned int psize;
 179	struct device_node *parent;
 180	struct of_bus *bus;
 181	int onesize, i, na, ns;
 182
 183	/* Get parent & match bus type */
 184	parent = of_get_parent(dev);
 185	if (parent == NULL)
 186		return NULL;
 187	bus = of_match_bus(parent);
 188	if (strcmp(bus->name, "pci")) {
 189		of_node_put(parent);
 190		return NULL;
 191	}
 192	bus->count_cells(dev, &na, &ns);
 193	of_node_put(parent);
 194	if (!OF_CHECK_ADDR_COUNT(na))
 195		return NULL;
 196
 197	/* Get "reg" or "assigned-addresses" property */
 198	prop = of_get_property(dev, bus->addresses, &psize);
 199	if (prop == NULL)
 200		return NULL;
 201	psize /= 4;
 202
 203	onesize = na + ns;
 204	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 205		u32 val = be32_to_cpu(prop[0]);
 206		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 207			if (size)
 208				*size = of_read_number(prop + na, ns);
 209			if (flags)
 210				*flags = bus->get_flags(prop);
 211			return prop;
 212		}
 213	}
 214	return NULL;
 215}
 216EXPORT_SYMBOL(of_get_pci_address);
 217
 218int of_pci_address_to_resource(struct device_node *dev, int bar,
 219			       struct resource *r)
 220{
 221	const __be32	*addrp;
 222	u64		size;
 223	unsigned int	flags;
 224
 225	addrp = of_get_pci_address(dev, bar, &size, &flags);
 226	if (addrp == NULL)
 227		return -EINVAL;
 228	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 
 
 
 229}
 230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 231
 232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 233				struct device_node *node)
 234{
 235	const int na = 3, ns = 2;
 236	int rlen;
 237
 238	parser->node = node;
 239	parser->pna = of_n_addr_cells(node);
 240	parser->np = parser->pna + na + ns;
 241
 242	parser->range = of_get_property(node, "ranges", &rlen);
 243	if (parser->range == NULL)
 244		return -ENOENT;
 245
 246	parser->end = parser->range + rlen / sizeof(__be32);
 247
 248	return 0;
 249}
 250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 251
 252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 253						struct of_pci_range *range)
 254{
 255	const int na = 3, ns = 2;
 256
 257	if (!range)
 258		return NULL;
 259
 260	if (!parser->range || parser->range + parser->np > parser->end)
 261		return NULL;
 
 262
 263	range->pci_space = parser->range[0];
 264	range->flags = of_bus_pci_get_flags(parser->range);
 265	range->pci_addr = of_read_number(parser->range + 1, ns);
 266	range->cpu_addr = of_translate_address(parser->node,
 267				parser->range + na);
 268	range->size = of_read_number(parser->range + parser->pna + na, ns);
 269
 270	parser->range += parser->np;
 271
 272	/* Now consume following elements while they are contiguous */
 273	while (parser->range + parser->np <= parser->end) {
 274		u32 flags, pci_space;
 275		u64 pci_addr, cpu_addr, size;
 276
 277		pci_space = be32_to_cpup(parser->range);
 278		flags = of_bus_pci_get_flags(parser->range);
 279		pci_addr = of_read_number(parser->range + 1, ns);
 280		cpu_addr = of_translate_address(parser->node,
 281				parser->range + na);
 282		size = of_read_number(parser->range + parser->pna + na, ns);
 283
 284		if (flags != range->flags)
 285			break;
 286		if (pci_addr != range->pci_addr + range->size ||
 287		    cpu_addr != range->cpu_addr + range->size)
 288			break;
 289
 290		range->size += size;
 291		parser->range += parser->np;
 292	}
 
 293
 294	return range;
 295}
 296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 297
 298/*
 299 * of_pci_range_to_resource - Create a resource from an of_pci_range
 300 * @range:	the PCI range that describes the resource
 301 * @np:		device node where the range belongs to
 302 * @res:	pointer to a valid resource that will be updated to
 303 *              reflect the values contained in the range.
 304 *
 305 * Returns EINVAL if the range cannot be converted to resource.
 306 *
 307 * Note that if the range is an IO range, the resource will be converted
 308 * using pci_address_to_pio() which can fail if it is called too early or
 309 * if the range cannot be matched to any host bridge IO space (our case here).
 310 * To guard against that we try to register the IO range first.
 311 * If that fails we know that pci_address_to_pio() will do too.
 312 */
 313int of_pci_range_to_resource(struct of_pci_range *range,
 314			     struct device_node *np, struct resource *res)
 315{
 
 316	int err;
 317	res->flags = range->flags;
 318	res->parent = res->child = res->sibling = NULL;
 319	res->name = np->full_name;
 320
 321	if (res->flags & IORESOURCE_IO) {
 322		unsigned long port;
 323		err = pci_register_io_range(range->cpu_addr, range->size);
 
 324		if (err)
 325			goto invalid_range;
 326		port = pci_address_to_pio(range->cpu_addr);
 327		if (port == (unsigned long)-1) {
 328			err = -EINVAL;
 329			goto invalid_range;
 330		}
 331		res->start = port;
 332	} else {
 333		if ((sizeof(resource_size_t) < 8) &&
 334		    upper_32_bits(range->cpu_addr)) {
 335			err = -EINVAL;
 336			goto invalid_range;
 337		}
 338
 339		res->start = range->cpu_addr;
 340	}
 341	res->end = res->start + range->size - 1;
 342	return 0;
 343
 344invalid_range:
 345	res->start = (resource_size_t)OF_BAD_ADDR;
 346	res->end = (resource_size_t)OF_BAD_ADDR;
 347	return err;
 348}
 349#endif /* CONFIG_PCI */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350
 351/*
 352 * ISA bus specific translator
 353 */
 354
 355static int of_bus_isa_match(struct device_node *np)
 356{
 357	return !strcmp(np->name, "isa");
 358}
 359
 360static void of_bus_isa_count_cells(struct device_node *child,
 361				   int *addrc, int *sizec)
 362{
 363	if (addrc)
 364		*addrc = 2;
 365	if (sizec)
 366		*sizec = 1;
 367}
 368
 369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 370		int pna)
 371{
 372	u64 cp, s, da;
 373
 374	/* Check address type match */
 375	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 376		return OF_BAD_ADDR;
 377
 378	/* Read address values, skipping high cell */
 379	cp = of_read_number(range + 1, na - 1);
 380	s  = of_read_number(range + na + pna, ns);
 381	da = of_read_number(addr + 1, na - 1);
 382
 383	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
 384		 (unsigned long long)cp, (unsigned long long)s,
 385		 (unsigned long long)da);
 386
 387	if (da < cp || da >= (cp + s))
 388		return OF_BAD_ADDR;
 389	return da - cp;
 390}
 391
 392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 393{
 394	return of_bus_default_translate(addr + 1, offset, na - 1);
 395}
 396
 397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 398{
 399	unsigned int flags = 0;
 400	u32 w = be32_to_cpup(addr);
 401
 402	if (w & 1)
 403		flags |= IORESOURCE_IO;
 404	else
 405		flags |= IORESOURCE_MEM;
 406	return flags;
 407}
 408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409/*
 410 * Array of bus specific translators
 411 */
 412
 413static struct of_bus of_busses[] = {
 414#ifdef CONFIG_OF_ADDRESS_PCI
 415	/* PCI */
 416	{
 417		.name = "pci",
 418		.addresses = "assigned-addresses",
 419		.match = of_bus_pci_match,
 420		.count_cells = of_bus_pci_count_cells,
 421		.map = of_bus_pci_map,
 422		.translate = of_bus_pci_translate,
 
 423		.get_flags = of_bus_pci_get_flags,
 424	},
 425#endif /* CONFIG_OF_ADDRESS_PCI */
 426	/* ISA */
 427	{
 428		.name = "isa",
 429		.addresses = "reg",
 430		.match = of_bus_isa_match,
 431		.count_cells = of_bus_isa_count_cells,
 432		.map = of_bus_isa_map,
 433		.translate = of_bus_isa_translate,
 
 434		.get_flags = of_bus_isa_get_flags,
 435	},
 
 
 
 
 
 
 
 
 
 
 
 436	/* Default */
 437	{
 438		.name = "default",
 439		.addresses = "reg",
 440		.match = NULL,
 441		.count_cells = of_bus_default_count_cells,
 442		.map = of_bus_default_map,
 443		.translate = of_bus_default_translate,
 444		.get_flags = of_bus_default_get_flags,
 445	},
 446};
 447
 448static struct of_bus *of_match_bus(struct device_node *np)
 449{
 450	int i;
 451
 452	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 453		if (!of_busses[i].match || of_busses[i].match(np))
 454			return &of_busses[i];
 455	BUG();
 456	return NULL;
 457}
 458
 459static int of_empty_ranges_quirk(struct device_node *np)
 460{
 461	if (IS_ENABLED(CONFIG_PPC)) {
 462		/* To save cycles, we cache the result for global "Mac" setting */
 463		static int quirk_state = -1;
 464
 465		/* PA-SEMI sdc DT bug */
 466		if (of_device_is_compatible(np, "1682m-sdc"))
 467			return true;
 468
 469		/* Make quirk cached */
 470		if (quirk_state < 0)
 471			quirk_state =
 472				of_machine_is_compatible("Power Macintosh") ||
 473				of_machine_is_compatible("MacRISC");
 474		return quirk_state;
 475	}
 476	return false;
 477}
 478
 479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 480			    struct of_bus *pbus, __be32 *addr,
 481			    int na, int ns, int pna, const char *rprop)
 482{
 483	const __be32 *ranges;
 484	unsigned int rlen;
 485	int rone;
 486	u64 offset = OF_BAD_ADDR;
 487
 488	/*
 489	 * Normally, an absence of a "ranges" property means we are
 490	 * crossing a non-translatable boundary, and thus the addresses
 491	 * below the current cannot be converted to CPU physical ones.
 492	 * Unfortunately, while this is very clear in the spec, it's not
 493	 * what Apple understood, and they do have things like /uni-n or
 494	 * /ht nodes with no "ranges" property and a lot of perfectly
 495	 * useable mapped devices below them. Thus we treat the absence of
 496	 * "ranges" as equivalent to an empty "ranges" property which means
 497	 * a 1:1 translation at that level. It's up to the caller not to try
 498	 * to translate addresses that aren't supposed to be translated in
 499	 * the first place. --BenH.
 500	 *
 501	 * As far as we know, this damage only exists on Apple machines, so
 502	 * This code is only enabled on powerpc. --gcl
 
 
 
 503	 */
 504	ranges = of_get_property(parent, rprop, &rlen);
 505	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 506		pr_debug("OF: no ranges; cannot translate\n");
 
 507		return 1;
 508	}
 509	if (ranges == NULL || rlen == 0) {
 510		offset = of_read_number(addr, na);
 511		memset(addr, 0, pna * 4);
 512		pr_debug("OF: empty ranges; 1:1 translation\n");
 
 513		goto finish;
 514	}
 515
 516	pr_debug("OF: walking ranges...\n");
 517
 518	/* Now walk through the ranges */
 519	rlen /= 4;
 520	rone = na + pna + ns;
 521	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 522		offset = bus->map(addr, ranges, na, ns, pna);
 523		if (offset != OF_BAD_ADDR)
 524			break;
 525	}
 526	if (offset == OF_BAD_ADDR) {
 527		pr_debug("OF: not found !\n");
 528		return 1;
 529	}
 530	memcpy(addr, ranges + na, 4 * pna);
 531
 532 finish:
 533	of_dump_addr("OF: parent translation for:", addr, pna);
 534	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
 535
 536	/* Translate it into parent bus space */
 537	return pbus->translate(addr, offset, pna);
 538}
 539
 540/*
 541 * Translate an address from the device-tree into a CPU physical address,
 542 * this walks up the tree and applies the various bus mappings on the
 543 * way.
 544 *
 545 * Note: We consider that crossing any level with #size-cells == 0 to mean
 546 * that translation is impossible (that is we are not dealing with a value
 547 * that can be mapped to a cpu physical address). This is not really specified
 548 * that way, but this is traditionally the way IBM at least do things
 
 
 
 
 549 */
 550static u64 __of_translate_address(struct device_node *dev,
 551				  const __be32 *in_addr, const char *rprop)
 552{
 553	struct device_node *parent = NULL;
 554	struct of_bus *bus, *pbus;
 
 
 
 555	__be32 addr[OF_MAX_ADDR_CELLS];
 556	int na, ns, pna, pns;
 557	u64 result = OF_BAD_ADDR;
 558
 559	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
 560
 561	/* Increase refcount at current level */
 562	of_node_get(dev);
 563
 564	/* Get parent & match bus type */
 565	parent = of_get_parent(dev);
 566	if (parent == NULL)
 567		goto bail;
 568	bus = of_match_bus(parent);
 
 
 569
 570	/* Count address cells & copy address locally */
 571	bus->count_cells(dev, &na, &ns);
 572	if (!OF_CHECK_COUNTS(na, ns)) {
 573		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
 574		goto bail;
 575	}
 576	memcpy(addr, in_addr, na * 4);
 577
 578	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
 579	    bus->name, na, ns, of_node_full_name(parent));
 580	of_dump_addr("OF: translating address:", addr, na);
 581
 582	/* Translate */
 583	for (;;) {
 
 
 584		/* Switch to parent bus */
 585		of_node_put(dev);
 586		dev = parent;
 587		parent = of_get_parent(dev);
 588
 589		/* If root, we have finished */
 590		if (parent == NULL) {
 591			pr_debug("OF: reached root node\n");
 592			result = of_read_number(addr, na);
 593			break;
 
 
 
 
 
 
 
 
 
 
 
 
 594		}
 595
 596		/* Get new parent bus and counts */
 597		pbus = of_match_bus(parent);
 
 
 598		pbus->count_cells(dev, &pna, &pns);
 599		if (!OF_CHECK_COUNTS(pna, pns)) {
 600			pr_err("prom_parse: Bad cell count for %s\n",
 601			       of_node_full_name(dev));
 602			break;
 603		}
 604
 605		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
 606		    pbus->name, pna, pns, of_node_full_name(parent));
 607
 608		/* Apply bus translation */
 609		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 610			break;
 611
 612		/* Complete the move up one level */
 613		na = pna;
 614		ns = pns;
 615		bus = pbus;
 616
 617		of_dump_addr("OF: one level translation:", addr, na);
 618	}
 619 bail:
 620	of_node_put(parent);
 621	of_node_put(dev);
 622
 623	return result;
 624}
 625
 626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 627{
 628	return __of_translate_address(dev, in_addr, "ranges");
 
 
 
 
 
 
 
 
 
 
 629}
 630EXPORT_SYMBOL(of_translate_address);
 631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 633{
 634	return __of_translate_address(dev, in_addr, "dma-ranges");
 
 
 
 
 
 
 
 
 
 
 
 635}
 636EXPORT_SYMBOL(of_translate_dma_address);
 637
 638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 639		    unsigned int *flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640{
 641	const __be32 *prop;
 642	unsigned int psize;
 643	struct device_node *parent;
 644	struct of_bus *bus;
 645	int onesize, i, na, ns;
 646
 647	/* Get parent & match bus type */
 648	parent = of_get_parent(dev);
 649	if (parent == NULL)
 650		return NULL;
 
 
 651	bus = of_match_bus(parent);
 652	bus->count_cells(dev, &na, &ns);
 653	of_node_put(parent);
 654	if (!OF_CHECK_ADDR_COUNT(na))
 655		return NULL;
 656
 657	/* Get "reg" or "assigned-addresses" property */
 658	prop = of_get_property(dev, bus->addresses, &psize);
 659	if (prop == NULL)
 660		return NULL;
 661	psize /= 4;
 662
 
 
 
 
 663	onesize = na + ns;
 664	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 665		if (i == index) {
 
 
 
 666			if (size)
 667				*size = of_read_number(prop + na, ns);
 668			if (flags)
 669				*flags = bus->get_flags(prop);
 670			return prop;
 671		}
 
 672	return NULL;
 673}
 674EXPORT_SYMBOL(of_get_address);
 675
 676#ifdef PCI_IOBASE
 677struct io_range {
 678	struct list_head list;
 679	phys_addr_t start;
 680	resource_size_t size;
 681};
 
 
 
 
 
 
 
 682
 683static LIST_HEAD(io_range_list);
 684static DEFINE_SPINLOCK(io_range_lock);
 685#endif
 686
 687/*
 688 * Record the PCI IO range (expressed as CPU physical address + size).
 689 * Return a negative value if an error has occured, zero otherwise
 690 */
 691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
 
 
 
 692{
 693	int err = 0;
 694
 695#ifdef PCI_IOBASE
 696	struct io_range *range;
 697	resource_size_t allocated_size = 0;
 698
 699	/* check if the range hasn't been previously recorded */
 700	spin_lock(&io_range_lock);
 701	list_for_each_entry(range, &io_range_list, list) {
 702		if (addr >= range->start && addr + size <= range->start + size) {
 703			/* range already registered, bail out */
 704			goto end_register;
 705		}
 706		allocated_size += range->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	}
 708
 709	/* range not registed yet, check for available space */
 710	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
 711		/* if it's too big check if 64K space can be reserved */
 712		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
 713			err = -E2BIG;
 714			goto end_register;
 715		}
 716
 717		size = SZ_64K;
 718		pr_warn("Requested IO range too big, new size set to 64K\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	}
 720
 721	/* add the range to the list */
 722	range = kzalloc(sizeof(*range), GFP_ATOMIC);
 723	if (!range) {
 724		err = -ENOMEM;
 725		goto end_register;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726	}
 727
 728	range->start = addr;
 729	range->size = size;
 
 
 
 
 
 
 
 
 
 
 
 730
 731	list_add_tail(&range->list, &io_range_list);
 
 732
 733end_register:
 734	spin_unlock(&io_range_lock);
 735#endif
 736
 737	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738}
 
 739
 740phys_addr_t pci_pio_to_address(unsigned long pio)
 
 
 
 
 
 
 
 
 741{
 742	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
 
 
 
 
 
 
 
 743
 744#ifdef PCI_IOBASE
 745	struct io_range *range;
 746	resource_size_t allocated_size = 0;
 747
 748	if (pio > IO_SPACE_LIMIT)
 749		return address;
 
 
 
 
 750
 751	spin_lock(&io_range_lock);
 752	list_for_each_entry(range, &io_range_list, list) {
 753		if (pio >= allocated_size && pio < allocated_size + range->size) {
 754			address = range->start + pio - allocated_size;
 755			break;
 756		}
 757		allocated_size += range->size;
 
 758	}
 759	spin_unlock(&io_range_lock);
 760#endif
 761
 762	return address;
 763}
 764
 765unsigned long __weak pci_address_to_pio(phys_addr_t address)
 
 
 
 
 
 
 
 
 
 766{
 767#ifdef PCI_IOBASE
 768	struct io_range *res;
 769	resource_size_t offset = 0;
 770	unsigned long addr = -1;
 771
 772	spin_lock(&io_range_lock);
 773	list_for_each_entry(res, &io_range_list, list) {
 774		if (address >= res->start && address < res->start + res->size) {
 775			addr = address - res->start + offset;
 776			break;
 777		}
 778		offset += res->size;
 
 779	}
 780	spin_unlock(&io_range_lock);
 
 
 781
 782	return addr;
 783#else
 784	if (address > IO_SPACE_LIMIT)
 785		return (unsigned long)-1;
 
 
 
 
 
 
 
 
 
 
 786
 787	return (unsigned long) address;
 788#endif
 
 
 
 789}
 790
 791static int __of_address_to_resource(struct device_node *dev,
 792		const __be32 *addrp, u64 size, unsigned int flags,
 793		const char *name, struct resource *r)
 794{
 795	u64 taddr;
 
 
 
 
 796
 797	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 798		return -EINVAL;
 799	taddr = of_translate_address(dev, addrp);
 800	if (taddr == OF_BAD_ADDR)
 801		return -EINVAL;
 802	memset(r, 0, sizeof(struct resource));
 803	if (flags & IORESOURCE_IO) {
 804		unsigned long port;
 805		port = pci_address_to_pio(taddr);
 806		if (port == (unsigned long)-1)
 807			return -EINVAL;
 808		r->start = port;
 809		r->end = port + size - 1;
 810	} else {
 811		r->start = taddr;
 812		r->end = taddr + size - 1;
 813	}
 814	r->flags = flags;
 815	r->name = name ? name : dev->full_name;
 816
 817	return 0;
 818}
 819
 820/**
 821 * of_address_to_resource - Translate device tree address and return as resource
 
 
 
 
 
 822 *
 823 * Note that if your address is a PIO address, the conversion will fail if
 824 * the physical address can't be internally converted to an IO token with
 825 * pci_address_to_pio(), that is because it's either called to early or it
 826 * can't be matched to any host bridge IO space
 827 */
 828int of_address_to_resource(struct device_node *dev, int index,
 829			   struct resource *r)
 830{
 831	const __be32	*addrp;
 832	u64		size;
 833	unsigned int	flags;
 834	const char	*name = NULL;
 835
 836	addrp = of_get_address(dev, index, &size, &flags);
 837	if (addrp == NULL)
 838		return -EINVAL;
 839
 840	/* Get optional "reg-names" property to add a name to a resource */
 841	of_property_read_string_index(dev, "reg-names",	index, &name);
 842
 843	return __of_address_to_resource(dev, addrp, size, flags, name, r);
 844}
 845EXPORT_SYMBOL_GPL(of_address_to_resource);
 846
 847struct device_node *of_find_matching_node_by_address(struct device_node *from,
 848					const struct of_device_id *matches,
 849					u64 base_address)
 850{
 851	struct device_node *dn = of_find_matching_node(from, matches);
 852	struct resource res;
 853
 854	while (dn) {
 855		if (!of_address_to_resource(dn, 0, &res) &&
 856		    res.start == base_address)
 857			return dn;
 858
 859		dn = of_find_matching_node(dn, matches);
 860	}
 861
 862	return NULL;
 863}
 864
 865
 866/**
 867 * of_iomap - Maps the memory mapped IO for a given device_node
 868 * @device:	the device whose io range will be mapped
 869 * @index:	index of the io range
 870 *
 871 * Returns a pointer to the mapped memory
 872 */
 873void __iomem *of_iomap(struct device_node *np, int index)
 874{
 875	struct resource res;
 876
 877	if (of_address_to_resource(np, index, &res))
 878		return NULL;
 879
 880	return ioremap(res.start, resource_size(&res));
 
 
 
 881}
 882EXPORT_SYMBOL(of_iomap);
 883
 884/*
 885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 886 *			   for a given device_node
 887 * @device:	the device whose io range will be mapped
 888 * @index:	index of the io range
 889 * @name:	name of the resource
 890 *
 891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 892 * error code on failure. Usage example:
 893 *
 894 *	base = of_io_request_and_map(node, 0, "foo");
 895 *	if (IS_ERR(base))
 896 *		return PTR_ERR(base);
 897 */
 898void __iomem *of_io_request_and_map(struct device_node *np, int index,
 899					const char *name)
 900{
 901	struct resource res;
 902	void __iomem *mem;
 903
 904	if (of_address_to_resource(np, index, &res))
 905		return IOMEM_ERR_PTR(-EINVAL);
 906
 
 
 907	if (!request_mem_region(res.start, resource_size(&res), name))
 908		return IOMEM_ERR_PTR(-EBUSY);
 909
 910	mem = ioremap(res.start, resource_size(&res));
 
 
 
 
 911	if (!mem) {
 912		release_mem_region(res.start, resource_size(&res));
 913		return IOMEM_ERR_PTR(-ENOMEM);
 914	}
 915
 916	return mem;
 917}
 918EXPORT_SYMBOL(of_io_request_and_map);
 919
 920/**
 921 * of_dma_get_range - Get DMA range info
 922 * @np:		device node to get DMA range info
 923 * @dma_addr:	pointer to store initial DMA address of DMA range
 924 * @paddr:	pointer to store initial CPU address of DMA range
 925 * @size:	pointer to store size of DMA range
 926 *
 927 * Look in bottom up direction for the first "dma-ranges" property
 928 * and parse it.
 929 *  dma-ranges format:
 930 *	DMA addr (dma_addr)	: naddr cells
 931 *	CPU addr (phys_addr_t)	: pna cells
 932 *	size			: nsize cells
 933 *
 934 * It returns -ENODEV if "dma-ranges" property was not found
 935 * for this device in DT.
 936 */
 937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 938{
 939	struct device_node *node = of_node_get(np);
 940	const __be32 *ranges = NULL;
 941	int len, naddr, nsize, pna;
 942	int ret = 0;
 943	u64 dmaaddr;
 944
 945	if (!node)
 946		return -EINVAL;
 947
 948	while (1) {
 949		naddr = of_n_addr_cells(node);
 950		nsize = of_n_size_cells(node);
 951		node = of_get_next_parent(node);
 952		if (!node)
 953			break;
 954
 955		ranges = of_get_property(node, "dma-ranges", &len);
 956
 957		/* Ignore empty ranges, they imply no translation required */
 958		if (ranges && len > 0)
 959			break;
 960
 961		/*
 962		 * At least empty ranges has to be defined for parent node if
 963		 * DMA is supported
 964		 */
 965		if (!ranges)
 966			break;
 967	}
 968
 969	if (!ranges) {
 970		pr_debug("%s: no dma-ranges found for node(%s)\n",
 971			 __func__, np->full_name);
 972		ret = -ENODEV;
 973		goto out;
 974	}
 975
 976	len /= sizeof(u32);
 977
 978	pna = of_n_addr_cells(node);
 979
 980	/* dma-ranges format:
 981	 * DMA addr	: naddr cells
 982	 * CPU addr	: pna cells
 983	 * size		: nsize cells
 984	 */
 985	dmaaddr = of_read_number(ranges, naddr);
 986	*paddr = of_translate_dma_address(np, ranges);
 987	if (*paddr == OF_BAD_ADDR) {
 988		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
 989		       __func__, dma_addr, np->full_name);
 990		ret = -EINVAL;
 991		goto out;
 992	}
 993	*dma_addr = dmaaddr;
 994
 995	*size = of_read_number(ranges + naddr + pna, nsize);
 996
 997	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 998		 *dma_addr, *paddr, *size);
 999
1000out:
1001	of_node_put(node);
1002
1003	return ret;
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np:	device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016	struct device_node *node = of_node_get(np);
1017
1018	while (node) {
1019		if (of_property_read_bool(node, "dma-coherent")) {
1020			of_node_put(node);
1021			return true;
1022		}
1023		node = of_get_next_parent(node);
1024	}
1025	of_node_put(node);
1026	return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/overflow.h>
  12#include <linux/pci.h>
  13#include <linux/pci_regs.h>
  14#include <linux/sizes.h>
  15#include <linux/slab.h>
  16#include <linux/string.h>
  17#include <linux/dma-direct.h> /* for bus_dma_region */
  18
  19#include "of_private.h"
  20
  21/* Max address size we deal with */
  22#define OF_MAX_ADDR_CELLS	4
  23#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  24#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  25
 
 
 
 
 
  26/* Debug utility */
  27#ifdef DEBUG
  28static void of_dump_addr(const char *s, const __be32 *addr, int na)
  29{
  30	pr_debug("%s", s);
  31	while (na--)
  32		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  33	pr_cont("\n");
  34}
  35#else
  36static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  37#endif
  38
  39/* Callbacks for bus specific translators */
  40struct of_bus {
  41	const char	*name;
  42	const char	*addresses;
  43	int		(*match)(struct device_node *parent);
  44	void		(*count_cells)(struct device_node *child,
  45				       int *addrc, int *sizec);
  46	u64		(*map)(__be32 *addr, const __be32 *range,
  47				int na, int ns, int pna, int fna);
  48	int		(*translate)(__be32 *addr, u64 offset, int na);
  49	int		flag_cells;
  50	unsigned int	(*get_flags)(const __be32 *addr);
  51};
  52
  53/*
  54 * Default translator (generic bus)
  55 */
  56
  57static void of_bus_default_count_cells(struct device_node *dev,
  58				       int *addrc, int *sizec)
  59{
  60	if (addrc)
  61		*addrc = of_n_addr_cells(dev);
  62	if (sizec)
  63		*sizec = of_n_size_cells(dev);
  64}
  65
  66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  67		int na, int ns, int pna, int fna)
  68{
  69	u64 cp, s, da;
  70
  71	cp = of_read_number(range + fna, na - fna);
  72	s  = of_read_number(range + na + pna, ns);
  73	da = of_read_number(addr + fna, na - fna);
  74
  75	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 
 
  76
  77	if (da < cp || da >= (cp + s))
  78		return OF_BAD_ADDR;
  79	return da - cp;
  80}
  81
  82static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  83{
  84	u64 a = of_read_number(addr, na);
  85	memset(addr, 0, na * 4);
  86	a += offset;
  87	if (na > 1)
  88		addr[na - 2] = cpu_to_be32(a >> 32);
  89	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  90
  91	return 0;
  92}
  93
  94static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
  95{
  96	return of_read_number(addr, 1);
  97}
  98
  99static unsigned int of_bus_default_get_flags(const __be32 *addr)
 100{
 101	return IORESOURCE_MEM;
 102}
 103
 104static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
 105				    int ns, int pna, int fna)
 
 
 
 
 106{
 107	/* Check that flags match */
 108	if (*addr != *range)
 109		return OF_BAD_ADDR;
 110
 111	return of_bus_default_map(addr, range, na, ns, pna, fna);
 
 
 112}
 113
 114static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
 
 115{
 116	/* Keep "flags" part (high cell) in translated address */
 117	return of_bus_default_translate(addr + 1, offset, na - 1);
 
 
 118}
 119
 120#ifdef CONFIG_PCI
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 126	if (!IS_ENABLED(CONFIG_PCI))
 127		return 0;
 128
 129	switch((w >> 24) & 0x03) {
 130	case 0x01:
 131		flags |= IORESOURCE_IO;
 132		break;
 133	case 0x02: /* 32 bits */
 
 134		flags |= IORESOURCE_MEM;
 135		break;
 136
 137	case 0x03: /* 64 bits */
 138		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 139		break;
 140	}
 141	if (w & 0x40000000)
 142		flags |= IORESOURCE_PREFETCH;
 143	return flags;
 144}
 145
 146/*
 147 * PCI bus specific translator
 148 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149
 150static bool of_node_is_pcie(const struct device_node *np)
 151{
 152	bool is_pcie = of_node_name_eq(np, "pcie");
 
 
 153
 154	if (is_pcie)
 155		pr_warn_once("%pOF: Missing device_type\n", np);
 
 
 
 
 
 
 
 156
 157	return is_pcie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 
 159
 160static int of_bus_pci_match(struct device_node *np)
 
 161{
 162	/*
 163 	 * "pciex" is PCI Express
 164	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 165	 * "ht" is hypertransport
 166	 *
 167	 * If none of the device_type match, and that the node name is
 168	 * "pcie", accept the device as PCI (with a warning).
 169	 */
 170	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 171		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 172		of_node_is_pcie(np);
 173}
 
 174
 175static void of_bus_pci_count_cells(struct device_node *np,
 176				   int *addrc, int *sizec)
 177{
 178	if (addrc)
 179		*addrc = 3;
 180	if (sizec)
 181		*sizec = 2;
 
 
 
 
 
 
 
 
 
 
 182}
 
 183
 184static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 185		int pna, int fna)
 186{
 187	unsigned int af, rf;
 188
 189	af = of_bus_pci_get_flags(addr);
 190	rf = of_bus_pci_get_flags(range);
 191
 192	/* Check address type match */
 193	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 194		return OF_BAD_ADDR;
 195
 196	return of_bus_default_map(addr, range, na, ns, pna, fna);
 197}
 
 
 
 
 198
 199#endif /* CONFIG_PCI */
 200
 201static int __of_address_resource_bounds(struct resource *r, u64 start, u64 size)
 202{
 203	if (overflows_type(start, r->start))
 204		return -EOVERFLOW;
 
 
 
 
 
 
 
 205
 206	r->start = start;
 
 
 
 
 207
 208	if (!size)
 209		r->end = wrapping_sub(typeof(r->end), r->start, 1);
 210	else if (size && check_add_overflow(r->start, size - 1, &r->end))
 211		return -EOVERFLOW;
 212
 213	return 0;
 214}
 
 215
 216/*
 217 * of_pci_range_to_resource - Create a resource from an of_pci_range
 218 * @range:	the PCI range that describes the resource
 219 * @np:		device node where the range belongs to
 220 * @res:	pointer to a valid resource that will be updated to
 221 *              reflect the values contained in the range.
 222 *
 223 * Returns -EINVAL if the range cannot be converted to resource.
 224 *
 225 * Note that if the range is an IO range, the resource will be converted
 226 * using pci_address_to_pio() which can fail if it is called too early or
 227 * if the range cannot be matched to any host bridge IO space (our case here).
 228 * To guard against that we try to register the IO range first.
 229 * If that fails we know that pci_address_to_pio() will do too.
 230 */
 231int of_pci_range_to_resource(const struct of_pci_range *range,
 232			     const struct device_node *np, struct resource *res)
 233{
 234	u64 start;
 235	int err;
 236	res->flags = range->flags;
 237	res->parent = res->child = res->sibling = NULL;
 238	res->name = np->full_name;
 239
 240	if (res->flags & IORESOURCE_IO) {
 241		unsigned long port;
 242		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 243				range->size);
 244		if (err)
 245			goto invalid_range;
 246		port = pci_address_to_pio(range->cpu_addr);
 247		if (port == (unsigned long)-1) {
 248			err = -EINVAL;
 249			goto invalid_range;
 250		}
 251		start = port;
 252	} else {
 253		start = range->cpu_addr;
 
 
 
 
 
 
 254	}
 255	return __of_address_resource_bounds(res, start, range->size);
 
 256
 257invalid_range:
 258	res->start = (resource_size_t)OF_BAD_ADDR;
 259	res->end = (resource_size_t)OF_BAD_ADDR;
 260	return err;
 261}
 262EXPORT_SYMBOL(of_pci_range_to_resource);
 263
 264/*
 265 * of_range_to_resource - Create a resource from a ranges entry
 266 * @np:		device node where the range belongs to
 267 * @index:	the 'ranges' index to convert to a resource
 268 * @res:	pointer to a valid resource that will be updated to
 269 *              reflect the values contained in the range.
 270 *
 271 * Returns -ENOENT if the entry is not found or -EOVERFLOW if the range
 272 * cannot be converted to resource.
 273 */
 274int of_range_to_resource(struct device_node *np, int index, struct resource *res)
 275{
 276	int ret, i = 0;
 277	struct of_range_parser parser;
 278	struct of_range range;
 279
 280	ret = of_range_parser_init(&parser, np);
 281	if (ret)
 282		return ret;
 283
 284	for_each_of_range(&parser, &range)
 285		if (i++ == index)
 286			return of_pci_range_to_resource(&range, np, res);
 287
 288	return -ENOENT;
 289}
 290EXPORT_SYMBOL(of_range_to_resource);
 291
 292/*
 293 * ISA bus specific translator
 294 */
 295
 296static int of_bus_isa_match(struct device_node *np)
 297{
 298	return of_node_name_eq(np, "isa");
 299}
 300
 301static void of_bus_isa_count_cells(struct device_node *child,
 302				   int *addrc, int *sizec)
 303{
 304	if (addrc)
 305		*addrc = 2;
 306	if (sizec)
 307		*sizec = 1;
 308}
 309
 310static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 311		int pna, int fna)
 312{
 
 
 313	/* Check address type match */
 314	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 315		return OF_BAD_ADDR;
 316
 317	return of_bus_default_map(addr, range, na, ns, pna, fna);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318}
 319
 320static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 321{
 322	unsigned int flags = 0;
 323	u32 w = be32_to_cpup(addr);
 324
 325	if (w & 1)
 326		flags |= IORESOURCE_IO;
 327	else
 328		flags |= IORESOURCE_MEM;
 329	return flags;
 330}
 331
 332static int of_bus_default_flags_match(struct device_node *np)
 333{
 334	/*
 335	 * Check for presence first since of_bus_n_addr_cells() will warn when
 336	 * walking parent nodes.
 337	 */
 338	return of_property_present(np, "#address-cells") && (of_bus_n_addr_cells(np) == 3);
 339}
 340
 341static int of_bus_default_match(struct device_node *np)
 342{
 343	/*
 344	 * Check for presence first since of_bus_n_addr_cells() will warn when
 345	 * walking parent nodes.
 346	 */
 347	return of_property_present(np, "#address-cells");
 348}
 349
 350/*
 351 * Array of bus specific translators
 352 */
 353
 354static const struct of_bus of_busses[] = {
 355#ifdef CONFIG_PCI
 356	/* PCI */
 357	{
 358		.name = "pci",
 359		.addresses = "assigned-addresses",
 360		.match = of_bus_pci_match,
 361		.count_cells = of_bus_pci_count_cells,
 362		.map = of_bus_pci_map,
 363		.translate = of_bus_default_flags_translate,
 364		.flag_cells = 1,
 365		.get_flags = of_bus_pci_get_flags,
 366	},
 367#endif /* CONFIG_PCI */
 368	/* ISA */
 369	{
 370		.name = "isa",
 371		.addresses = "reg",
 372		.match = of_bus_isa_match,
 373		.count_cells = of_bus_isa_count_cells,
 374		.map = of_bus_isa_map,
 375		.translate = of_bus_default_flags_translate,
 376		.flag_cells = 1,
 377		.get_flags = of_bus_isa_get_flags,
 378	},
 379	/* Default with flags cell */
 380	{
 381		.name = "default-flags",
 382		.addresses = "reg",
 383		.match = of_bus_default_flags_match,
 384		.count_cells = of_bus_default_count_cells,
 385		.map = of_bus_default_flags_map,
 386		.translate = of_bus_default_flags_translate,
 387		.flag_cells = 1,
 388		.get_flags = of_bus_default_flags_get_flags,
 389	},
 390	/* Default */
 391	{
 392		.name = "default",
 393		.addresses = "reg",
 394		.match = of_bus_default_match,
 395		.count_cells = of_bus_default_count_cells,
 396		.map = of_bus_default_map,
 397		.translate = of_bus_default_translate,
 398		.get_flags = of_bus_default_get_flags,
 399	},
 400};
 401
 402static const struct of_bus *of_match_bus(struct device_node *np)
 403{
 404	int i;
 405
 406	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 407		if (!of_busses[i].match || of_busses[i].match(np))
 408			return &of_busses[i];
 
 409	return NULL;
 410}
 411
 412static int of_empty_ranges_quirk(const struct device_node *np)
 413{
 414	if (IS_ENABLED(CONFIG_PPC)) {
 415		/* To save cycles, we cache the result for global "Mac" setting */
 416		static int quirk_state = -1;
 417
 418		/* PA-SEMI sdc DT bug */
 419		if (of_device_is_compatible(np, "1682m-sdc"))
 420			return true;
 421
 422		/* Make quirk cached */
 423		if (quirk_state < 0)
 424			quirk_state =
 425				of_machine_is_compatible("Power Macintosh") ||
 426				of_machine_is_compatible("MacRISC");
 427		return quirk_state;
 428	}
 429	return false;
 430}
 431
 432static int of_translate_one(const struct device_node *parent, const struct of_bus *bus,
 433			    const struct of_bus *pbus, __be32 *addr,
 434			    int na, int ns, int pna, const char *rprop)
 435{
 436	const __be32 *ranges;
 437	unsigned int rlen;
 438	int rone;
 439	u64 offset = OF_BAD_ADDR;
 440
 441	/*
 442	 * Normally, an absence of a "ranges" property means we are
 443	 * crossing a non-translatable boundary, and thus the addresses
 444	 * below the current cannot be converted to CPU physical ones.
 445	 * Unfortunately, while this is very clear in the spec, it's not
 446	 * what Apple understood, and they do have things like /uni-n or
 447	 * /ht nodes with no "ranges" property and a lot of perfectly
 448	 * useable mapped devices below them. Thus we treat the absence of
 449	 * "ranges" as equivalent to an empty "ranges" property which means
 450	 * a 1:1 translation at that level. It's up to the caller not to try
 451	 * to translate addresses that aren't supposed to be translated in
 452	 * the first place. --BenH.
 453	 *
 454	 * As far as we know, this damage only exists on Apple machines, so
 455	 * This code is only enabled on powerpc. --gcl
 456	 *
 457	 * This quirk also applies for 'dma-ranges' which frequently exist in
 458	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 459	 */
 460	ranges = of_get_property(parent, rprop, &rlen);
 461	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 462	    strcmp(rprop, "dma-ranges")) {
 463		pr_debug("no ranges; cannot translate\n");
 464		return 1;
 465	}
 466	if (ranges == NULL || rlen == 0) {
 467		offset = of_read_number(addr, na);
 468		/* set address to zero, pass flags through */
 469		memset(addr + pbus->flag_cells, 0, (pna - pbus->flag_cells) * 4);
 470		pr_debug("empty ranges; 1:1 translation\n");
 471		goto finish;
 472	}
 473
 474	pr_debug("walking ranges...\n");
 475
 476	/* Now walk through the ranges */
 477	rlen /= 4;
 478	rone = na + pna + ns;
 479	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 480		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
 481		if (offset != OF_BAD_ADDR)
 482			break;
 483	}
 484	if (offset == OF_BAD_ADDR) {
 485		pr_debug("not found !\n");
 486		return 1;
 487	}
 488	memcpy(addr, ranges + na, 4 * pna);
 489
 490 finish:
 491	of_dump_addr("parent translation for:", addr, pna);
 492	pr_debug("with offset: %llx\n", offset);
 493
 494	/* Translate it into parent bus space */
 495	return pbus->translate(addr, offset, pna);
 496}
 497
 498/*
 499 * Translate an address from the device-tree into a CPU physical address,
 500 * this walks up the tree and applies the various bus mappings on the
 501 * way.
 502 *
 503 * Note: We consider that crossing any level with #size-cells == 0 to mean
 504 * that translation is impossible (that is we are not dealing with a value
 505 * that can be mapped to a cpu physical address). This is not really specified
 506 * that way, but this is traditionally the way IBM at least do things
 507 *
 508 * Whenever the translation fails, the *host pointer will be set to the
 509 * device that had registered logical PIO mapping, and the return code is
 510 * relative to that node.
 511 */
 512static u64 __of_translate_address(struct device_node *node,
 513				  struct device_node *(*get_parent)(const struct device_node *),
 514				  const __be32 *in_addr, const char *rprop,
 515				  struct device_node **host)
 516{
 517	struct device_node *dev __free(device_node) = of_node_get(node);
 518	struct device_node *parent __free(device_node) = get_parent(dev);
 519	const struct of_bus *bus, *pbus;
 520	__be32 addr[OF_MAX_ADDR_CELLS];
 521	int na, ns, pna, pns;
 
 522
 523	pr_debug("** translation for device %pOF **\n", dev);
 524
 525	*host = NULL;
 
 526
 
 
 527	if (parent == NULL)
 528		return OF_BAD_ADDR;
 529	bus = of_match_bus(parent);
 530	if (!bus)
 531		return OF_BAD_ADDR;
 532
 533	/* Count address cells & copy address locally */
 534	bus->count_cells(dev, &na, &ns);
 535	if (!OF_CHECK_COUNTS(na, ns)) {
 536		pr_debug("Bad cell count for %pOF\n", dev);
 537		return OF_BAD_ADDR;
 538	}
 539	memcpy(addr, in_addr, na * 4);
 540
 541	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 542	    bus->name, na, ns, parent);
 543	of_dump_addr("translating address:", addr, na);
 544
 545	/* Translate */
 546	for (;;) {
 547		struct logic_pio_hwaddr *iorange;
 548
 549		/* Switch to parent bus */
 550		of_node_put(dev);
 551		dev = parent;
 552		parent = get_parent(dev);
 553
 554		/* If root, we have finished */
 555		if (parent == NULL) {
 556			pr_debug("reached root node\n");
 557			return of_read_number(addr, na);
 558		}
 559
 560		/*
 561		 * For indirectIO device which has no ranges property, get
 562		 * the address from reg directly.
 563		 */
 564		iorange = find_io_range_by_fwnode(&dev->fwnode);
 565		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 566			u64 result = of_read_number(addr + 1, na - 1);
 567			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 568				 dev, result);
 569			*host = no_free_ptr(dev);
 570			return result;
 571		}
 572
 573		/* Get new parent bus and counts */
 574		pbus = of_match_bus(parent);
 575		if (!pbus)
 576			return OF_BAD_ADDR;
 577		pbus->count_cells(dev, &pna, &pns);
 578		if (!OF_CHECK_COUNTS(pna, pns)) {
 579			pr_err("Bad cell count for %pOF\n", dev);
 580			return OF_BAD_ADDR;
 
 581		}
 582
 583		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 584		    pbus->name, pna, pns, parent);
 585
 586		/* Apply bus translation */
 587		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 588			return OF_BAD_ADDR;
 589
 590		/* Complete the move up one level */
 591		na = pna;
 592		ns = pns;
 593		bus = pbus;
 594
 595		of_dump_addr("one level translation:", addr, na);
 596	}
 
 
 
 597
 598	unreachable();
 599}
 600
 601u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 602{
 603	struct device_node *host;
 604	u64 ret;
 605
 606	ret = __of_translate_address(dev, of_get_parent,
 607				     in_addr, "ranges", &host);
 608	if (host) {
 609		of_node_put(host);
 610		return OF_BAD_ADDR;
 611	}
 612
 613	return ret;
 614}
 615EXPORT_SYMBOL(of_translate_address);
 616
 617#ifdef CONFIG_HAS_DMA
 618struct device_node *__of_get_dma_parent(const struct device_node *np)
 619{
 620	struct of_phandle_args args;
 621	int ret, index;
 622
 623	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 624	if (index < 0)
 625		return of_get_parent(np);
 626
 627	ret = of_parse_phandle_with_args(np, "interconnects",
 628					 "#interconnect-cells",
 629					 index, &args);
 630	if (ret < 0)
 631		return of_get_parent(np);
 632
 633	return args.np;
 634}
 635#endif
 636
 637static struct device_node *of_get_next_dma_parent(struct device_node *np)
 638{
 639	struct device_node *parent;
 640
 641	parent = __of_get_dma_parent(np);
 642	of_node_put(np);
 643
 644	return parent;
 645}
 646
 647u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 648{
 649	struct device_node *host;
 650	u64 ret;
 651
 652	ret = __of_translate_address(dev, __of_get_dma_parent,
 653				     in_addr, "dma-ranges", &host);
 654
 655	if (host) {
 656		of_node_put(host);
 657		return OF_BAD_ADDR;
 658	}
 659
 660	return ret;
 661}
 662EXPORT_SYMBOL(of_translate_dma_address);
 663
 664/**
 665 * of_translate_dma_region - Translate device tree address and size tuple
 666 * @dev: device tree node for which to translate
 667 * @prop: pointer into array of cells
 668 * @start: return value for the start of the DMA range
 669 * @length: return value for the length of the DMA range
 670 *
 671 * Returns a pointer to the cell immediately following the translated DMA region.
 672 */
 673const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
 674				      phys_addr_t *start, size_t *length)
 675{
 676	struct device_node *parent __free(device_node) = __of_get_dma_parent(dev);
 677	u64 address, size;
 678	int na, ns;
 679
 680	if (!parent)
 681		return NULL;
 682
 683	na = of_bus_n_addr_cells(parent);
 684	ns = of_bus_n_size_cells(parent);
 685
 686	address = of_translate_dma_address(dev, prop);
 687	if (address == OF_BAD_ADDR)
 688		return NULL;
 689
 690	size = of_read_number(prop + na, ns);
 691
 692	if (start)
 693		*start = address;
 694
 695	if (length)
 696		*length = size;
 697
 698	return prop + na + ns;
 699}
 700EXPORT_SYMBOL(of_translate_dma_region);
 701
 702const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 703			       u64 *size, unsigned int *flags)
 704{
 705	const __be32 *prop;
 706	unsigned int psize;
 707	struct device_node *parent __free(device_node) = of_get_parent(dev);
 708	const struct of_bus *bus;
 709	int onesize, i, na, ns;
 710
 
 
 711	if (parent == NULL)
 712		return NULL;
 713
 714	/* match the parent's bus type */
 715	bus = of_match_bus(parent);
 716	if (!bus || (strcmp(bus->name, "pci") && (bar_no >= 0)))
 
 
 717		return NULL;
 718
 719	/* Get "reg" or "assigned-addresses" property */
 720	prop = of_get_property(dev, bus->addresses, &psize);
 721	if (prop == NULL)
 722		return NULL;
 723	psize /= 4;
 724
 725	bus->count_cells(dev, &na, &ns);
 726	if (!OF_CHECK_ADDR_COUNT(na))
 727		return NULL;
 728
 729	onesize = na + ns;
 730	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 731		u32 val = be32_to_cpu(prop[0]);
 732		/* PCI bus matches on BAR number instead of index */
 733		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 734		    ((index >= 0) && (i == index))) {
 735			if (size)
 736				*size = of_read_number(prop + na, ns);
 737			if (flags)
 738				*flags = bus->get_flags(prop);
 739			return prop;
 740		}
 741	}
 742	return NULL;
 743}
 744EXPORT_SYMBOL(__of_get_address);
 745
 746/**
 747 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
 748 * @np: device tree node for which to retrieve "reg" from
 749 * @idx: "reg" entry index to read
 750 * @addr: return value for the untranslated address
 751 * @size: return value for the entry size
 752 *
 753 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
 754 * size values filled in.
 755 */
 756int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
 757{
 758	const __be32 *prop = of_get_address(np, idx, size, NULL);
 759
 760	if (!prop)
 761		return -EINVAL;
 
 762
 763	*addr = of_read_number(prop, of_n_addr_cells(np));
 764
 765	return 0;
 766}
 767EXPORT_SYMBOL(of_property_read_reg);
 768
 769static int parser_init(struct of_pci_range_parser *parser,
 770			struct device_node *node, const char *name)
 771{
 772	int rlen;
 773
 774	parser->node = node;
 775	parser->pna = of_n_addr_cells(node);
 776	parser->na = of_bus_n_addr_cells(node);
 777	parser->ns = of_bus_n_size_cells(node);
 778	parser->dma = !strcmp(name, "dma-ranges");
 779	parser->bus = of_match_bus(node);
 780
 781	parser->range = of_get_property(node, name, &rlen);
 782	if (parser->range == NULL)
 783		return -ENOENT;
 784
 785	parser->end = parser->range + rlen / sizeof(__be32);
 786
 787	return 0;
 788}
 789
 790int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 791				struct device_node *node)
 792{
 793	return parser_init(parser, node, "ranges");
 794}
 795EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 796
 797int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 798				struct device_node *node)
 799{
 800	return parser_init(parser, node, "dma-ranges");
 801}
 802EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 803#define of_dma_range_parser_init of_pci_dma_range_parser_init
 804
 805struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 806						struct of_pci_range *range)
 807{
 808	int na = parser->na;
 809	int ns = parser->ns;
 810	int np = parser->pna + na + ns;
 811	int busflag_na = parser->bus->flag_cells;
 812
 813	if (!range)
 814		return NULL;
 815
 816	if (!parser->range || parser->range + np > parser->end)
 817		return NULL;
 818
 819	range->flags = parser->bus->get_flags(parser->range);
 820
 821	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 822
 823	if (parser->dma)
 824		range->cpu_addr = of_translate_dma_address(parser->node,
 825				parser->range + na);
 826	else
 827		range->cpu_addr = of_translate_address(parser->node,
 828				parser->range + na);
 829	range->size = of_read_number(parser->range + parser->pna + na, ns);
 830
 831	parser->range += np;
 832
 833	/* Now consume following elements while they are contiguous */
 834	while (parser->range + np <= parser->end) {
 835		u32 flags = 0;
 836		u64 bus_addr, cpu_addr, size;
 837
 838		flags = parser->bus->get_flags(parser->range);
 839		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 840		if (parser->dma)
 841			cpu_addr = of_translate_dma_address(parser->node,
 842					parser->range + na);
 843		else
 844			cpu_addr = of_translate_address(parser->node,
 845					parser->range + na);
 846		size = of_read_number(parser->range + parser->pna + na, ns);
 847
 848		if (flags != range->flags)
 849			break;
 850		if (bus_addr != range->bus_addr + range->size ||
 851		    cpu_addr != range->cpu_addr + range->size)
 852			break;
 853
 854		range->size += size;
 855		parser->range += np;
 856	}
 857
 858	return range;
 859}
 860EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 
 
 
 
 861
 862static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 863			u64 size)
 864{
 865	u64 taddr;
 866	unsigned long port;
 867	struct device_node *host;
 868
 869	taddr = __of_translate_address(dev, of_get_parent,
 870				       in_addr, "ranges", &host);
 871	if (host) {
 872		/* host-specific port access */
 873		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 874		of_node_put(host);
 875	} else {
 876		/* memory-mapped I/O range */
 877		port = pci_address_to_pio(taddr);
 878	}
 879
 880	if (port == (unsigned long)-1)
 881		return OF_BAD_ADDR;
 882
 883	return port;
 884}
 885
 886#ifdef CONFIG_HAS_DMA
 887/**
 888 * of_dma_get_range - Get DMA range info and put it into a map array
 889 * @np:		device node to get DMA range info
 890 * @map:	dma range structure to return
 891 *
 892 * Look in bottom up direction for the first "dma-ranges" property
 893 * and parse it.  Put the information into a DMA offset map array.
 894 *
 895 * dma-ranges format:
 896 *	DMA addr (dma_addr)	: naddr cells
 897 *	CPU addr (phys_addr_t)	: pna cells
 898 *	size			: nsize cells
 899 *
 900 * It returns -ENODEV if "dma-ranges" property was not found for this
 901 * device in the DT.
 902 */
 903int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 904{
 905	struct device_node *node __free(device_node) = of_node_get(np);
 906	const __be32 *ranges = NULL;
 907	bool found_dma_ranges = false;
 908	struct of_range_parser parser;
 909	struct of_range range;
 910	struct bus_dma_region *r;
 911	int len, num_ranges = 0;
 912
 913	while (node) {
 914		ranges = of_get_property(node, "dma-ranges", &len);
 915
 916		/* Ignore empty ranges, they imply no translation required */
 917		if (ranges && len > 0)
 918			break;
 919
 920		/* Once we find 'dma-ranges', then a missing one is an error */
 921		if (found_dma_ranges && !ranges)
 922			return -ENODEV;
 923
 924		found_dma_ranges = true;
 925
 926		node = of_get_next_dma_parent(node);
 927	}
 928
 929	if (!node || !ranges) {
 930		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 931		return -ENODEV;
 932	}
 933	of_dma_range_parser_init(&parser, node);
 934	for_each_of_range(&parser, &range) {
 935		if (range.cpu_addr == OF_BAD_ADDR) {
 936			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 937			       range.bus_addr, node);
 938			continue;
 939		}
 940		num_ranges++;
 941	}
 942
 943	if (!num_ranges)
 944		return -EINVAL;
 945
 946	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 947	if (!r)
 948		return -ENOMEM;
 949
 950	/*
 951	 * Record all info in the generic DMA ranges array for struct device,
 952	 * returning an error if we don't find any parsable ranges.
 953	 */
 954	*map = r;
 955	of_dma_range_parser_init(&parser, node);
 956	for_each_of_range(&parser, &range) {
 957		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 958			 range.bus_addr, range.cpu_addr, range.size);
 959		if (range.cpu_addr == OF_BAD_ADDR)
 960			continue;
 961		r->cpu_start = range.cpu_addr;
 962		r->dma_start = range.bus_addr;
 963		r->size = range.size;
 964		r++;
 965	}
 966	return 0;
 967}
 968#endif /* CONFIG_HAS_DMA */
 969
 970/**
 971 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
 972 * @np: The node to start searching from or NULL to start from the root
 973 *
 974 * Gets the highest CPU physical address that is addressable by all DMA masters
 975 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
 976 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
 977 */
 978phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
 979{
 980	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
 981	struct of_range_parser parser;
 982	phys_addr_t subtree_max_addr;
 983	struct device_node *child;
 984	struct of_range range;
 985	const __be32 *ranges;
 986	u64 cpu_end = 0;
 987	int len;
 988
 989	if (!np)
 990		np = of_root;
 
 991
 992	ranges = of_get_property(np, "dma-ranges", &len);
 993	if (ranges && len) {
 994		of_dma_range_parser_init(&parser, np);
 995		for_each_of_range(&parser, &range)
 996			if (range.cpu_addr + range.size > cpu_end)
 997				cpu_end = range.cpu_addr + range.size - 1;
 998
 999		if (max_cpu_addr > cpu_end)
1000			max_cpu_addr = cpu_end;
1001	}
1002
1003	for_each_available_child_of_node(np, child) {
1004		subtree_max_addr = of_dma_get_max_cpu_address(child);
1005		if (max_cpu_addr > subtree_max_addr)
1006			max_cpu_addr = subtree_max_addr;
1007	}
 
 
1008
1009	return max_cpu_addr;
1010}
1011
1012/**
1013 * of_dma_is_coherent - Check if device is coherent
1014 * @np:	device node
1015 *
1016 * It returns true if "dma-coherent" property was found
1017 * for this device in the DT, or if DMA is coherent by
1018 * default for OF devices on the current platform and no
1019 * "dma-noncoherent" property was found for this device.
1020 */
1021bool of_dma_is_coherent(struct device_node *np)
1022{
1023	struct device_node *node __free(device_node) = of_node_get(np);
 
 
 
1024
1025	while (node) {
1026		if (of_property_read_bool(node, "dma-coherent"))
1027			return true;
1028
1029		if (of_property_read_bool(node, "dma-noncoherent"))
1030			return false;
1031
1032		node = of_get_next_dma_parent(node);
1033	}
1034	return dma_default_coherent;
1035}
1036EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1037
1038/**
1039 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1040 * @np:	device node
1041 *
1042 * Returns true if the "nonposted-mmio" property was found for
1043 * the device's bus.
1044 *
1045 * This is currently only enabled on builds that support Apple ARM devices, as
1046 * an optimization.
1047 */
1048static bool of_mmio_is_nonposted(const struct device_node *np)
1049{
1050	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1051		return false;
1052
1053	struct device_node *parent __free(device_node) = of_get_parent(np);
1054	if (!parent)
1055		return false;
1056
1057	return of_property_read_bool(parent, "nonposted-mmio");
1058}
1059
1060static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1061		struct resource *r)
 
1062{
1063	u64 taddr;
1064	const __be32	*addrp;
1065	u64		size;
1066	unsigned int	flags;
1067	const char	*name = NULL;
1068
1069	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1070	if (addrp == NULL)
1071		return -EINVAL;
1072
1073	/* Get optional "reg-names" property to add a name to a resource */
1074	if (index >= 0)
1075		of_property_read_string_index(dev, "reg-names",	index, &name);
1076
1077	if (flags & IORESOURCE_MEM)
1078		taddr = of_translate_address(dev, addrp);
1079	else if (flags & IORESOURCE_IO)
1080		taddr = of_translate_ioport(dev, addrp, size);
1081	else
1082		return -EINVAL;
1083
1084	if (taddr == OF_BAD_ADDR)
1085		return -EINVAL;
1086	memset(r, 0, sizeof(struct resource));
1087
1088	if (of_mmio_is_nonposted(dev))
1089		flags |= IORESOURCE_MEM_NONPOSTED;
1090
 
 
 
 
 
 
 
1091	r->flags = flags;
1092	r->name = name ? name : dev->full_name;
1093
1094	return __of_address_resource_bounds(r, taddr, size);
1095}
1096
1097/**
1098 * of_address_to_resource - Translate device tree address and return as resource
1099 * @dev:	Caller's Device Node
1100 * @index:	Index into the array
1101 * @r:		Pointer to resource array
1102 *
1103 * Returns -EINVAL if the range cannot be converted to resource.
1104 *
1105 * Note that if your address is a PIO address, the conversion will fail if
1106 * the physical address can't be internally converted to an IO token with
1107 * pci_address_to_pio(), that is because it's either called too early or it
1108 * can't be matched to any host bridge IO space
1109 */
1110int of_address_to_resource(struct device_node *dev, int index,
1111			   struct resource *r)
1112{
1113	return __of_address_to_resource(dev, index, -1, r);
 
 
 
 
 
 
 
 
 
 
 
 
1114}
1115EXPORT_SYMBOL_GPL(of_address_to_resource);
1116
1117int of_pci_address_to_resource(struct device_node *dev, int bar,
1118			       struct resource *r)
 
1119{
 
 
1120
1121	if (!IS_ENABLED(CONFIG_PCI))
1122		return -ENOSYS;
 
 
1123
1124	return __of_address_to_resource(dev, -1, bar, r);
 
 
 
1125}
1126EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1127
1128/**
1129 * of_iomap - Maps the memory mapped IO for a given device_node
1130 * @np:		the device whose io range will be mapped
1131 * @index:	index of the io range
1132 *
1133 * Returns a pointer to the mapped memory
1134 */
1135void __iomem *of_iomap(struct device_node *np, int index)
1136{
1137	struct resource res;
1138
1139	if (of_address_to_resource(np, index, &res))
1140		return NULL;
1141
1142	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1143		return ioremap_np(res.start, resource_size(&res));
1144	else
1145		return ioremap(res.start, resource_size(&res));
1146}
1147EXPORT_SYMBOL(of_iomap);
1148
1149/*
1150 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1151 *			   for a given device_node
1152 * @device:	the device whose io range will be mapped
1153 * @index:	index of the io range
1154 * @name:	name "override" for the memory region request or NULL
1155 *
1156 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1157 * error code on failure. Usage example:
1158 *
1159 *	base = of_io_request_and_map(node, 0, "foo");
1160 *	if (IS_ERR(base))
1161 *		return PTR_ERR(base);
1162 */
1163void __iomem *of_io_request_and_map(struct device_node *np, int index,
1164				    const char *name)
1165{
1166	struct resource res;
1167	void __iomem *mem;
1168
1169	if (of_address_to_resource(np, index, &res))
1170		return IOMEM_ERR_PTR(-EINVAL);
1171
1172	if (!name)
1173		name = res.name;
1174	if (!request_mem_region(res.start, resource_size(&res), name))
1175		return IOMEM_ERR_PTR(-EBUSY);
1176
1177	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1178		mem = ioremap_np(res.start, resource_size(&res));
1179	else
1180		mem = ioremap(res.start, resource_size(&res));
1181
1182	if (!mem) {
1183		release_mem_region(res.start, resource_size(&res));
1184		return IOMEM_ERR_PTR(-ENOMEM);
1185	}
1186
1187	return mem;
1188}
1189EXPORT_SYMBOL(of_io_request_and_map);