Linux Audio

Check our new training course

Loading...
v4.6
 
 
   1
   2#include <linux/device.h>
 
   3#include <linux/io.h>
   4#include <linux/ioport.h>
 
   5#include <linux/module.h>
   6#include <linux/of_address.h>
 
   7#include <linux/pci_regs.h>
   8#include <linux/sizes.h>
   9#include <linux/slab.h>
  10#include <linux/string.h>
 
 
 
  11
  12/* Max address size we deal with */
  13#define OF_MAX_ADDR_CELLS	4
  14#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  15#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  16
  17static struct of_bus *of_match_bus(struct device_node *np);
  18static int __of_address_to_resource(struct device_node *dev,
  19		const __be32 *addrp, u64 size, unsigned int flags,
  20		const char *name, struct resource *r);
  21
  22/* Debug utility */
  23#ifdef DEBUG
  24static void of_dump_addr(const char *s, const __be32 *addr, int na)
  25{
  26	printk(KERN_DEBUG "%s", s);
  27	while (na--)
  28		printk(" %08x", be32_to_cpu(*(addr++)));
  29	printk("\n");
  30}
  31#else
  32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  33#endif
  34
  35/* Callbacks for bus specific translators */
  36struct of_bus {
  37	const char	*name;
  38	const char	*addresses;
  39	int		(*match)(struct device_node *parent);
  40	void		(*count_cells)(struct device_node *child,
  41				       int *addrc, int *sizec);
  42	u64		(*map)(__be32 *addr, const __be32 *range,
  43				int na, int ns, int pna);
  44	int		(*translate)(__be32 *addr, u64 offset, int na);
 
  45	unsigned int	(*get_flags)(const __be32 *addr);
  46};
  47
  48/*
  49 * Default translator (generic bus)
  50 */
  51
  52static void of_bus_default_count_cells(struct device_node *dev,
  53				       int *addrc, int *sizec)
  54{
  55	if (addrc)
  56		*addrc = of_n_addr_cells(dev);
  57	if (sizec)
  58		*sizec = of_n_size_cells(dev);
  59}
  60
  61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  62		int na, int ns, int pna)
  63{
  64	u64 cp, s, da;
  65
  66	cp = of_read_number(range, na);
  67	s  = of_read_number(range + na + pna, ns);
  68	da = of_read_number(addr, na);
  69
  70	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
  71		 (unsigned long long)cp, (unsigned long long)s,
  72		 (unsigned long long)da);
  73
  74	if (da < cp || da >= (cp + s))
  75		return OF_BAD_ADDR;
  76	return da - cp;
  77}
  78
  79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  80{
  81	u64 a = of_read_number(addr, na);
  82	memset(addr, 0, na * 4);
  83	a += offset;
  84	if (na > 1)
  85		addr[na - 2] = cpu_to_be32(a >> 32);
  86	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  87
  88	return 0;
  89}
  90
 
 
 
 
 
  91static unsigned int of_bus_default_get_flags(const __be32 *addr)
  92{
  93	return IORESOURCE_MEM;
  94}
  95
  96#ifdef CONFIG_OF_ADDRESS_PCI
  97/*
  98 * PCI bus specific translator
  99 */
 100
 101static int of_bus_pci_match(struct device_node *np)
 102{
 103	/*
 104 	 * "pciex" is PCI Express
 105	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 106	 * "ht" is hypertransport
 107	 */
 108	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
 109		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
 110}
 111
 112static void of_bus_pci_count_cells(struct device_node *np,
 113				   int *addrc, int *sizec)
 114{
 115	if (addrc)
 116		*addrc = 3;
 117	if (sizec)
 118		*sizec = 2;
 119}
 120
 
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 
 
 
 126	switch((w >> 24) & 0x03) {
 127	case 0x01:
 128		flags |= IORESOURCE_IO;
 129		break;
 130	case 0x02: /* 32 bits */
 131	case 0x03: /* 64 bits */
 132		flags |= IORESOURCE_MEM;
 133		break;
 
 
 
 
 134	}
 135	if (w & 0x40000000)
 136		flags |= IORESOURCE_PREFETCH;
 137	return flags;
 138}
 139
 140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 141		int pna)
 142{
 143	u64 cp, s, da;
 144	unsigned int af, rf;
 145
 146	af = of_bus_pci_get_flags(addr);
 147	rf = of_bus_pci_get_flags(range);
 148
 149	/* Check address type match */
 150	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 151		return OF_BAD_ADDR;
 152
 153	/* Read address values, skipping high cell */
 154	cp = of_read_number(range + 1, na - 1);
 155	s  = of_read_number(range + na + pna, ns);
 156	da = of_read_number(addr + 1, na - 1);
 157
 158	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
 159		 (unsigned long long)cp, (unsigned long long)s,
 160		 (unsigned long long)da);
 161
 162	if (da < cp || da >= (cp + s))
 163		return OF_BAD_ADDR;
 164	return da - cp;
 165}
 166
 167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 168{
 169	return of_bus_default_translate(addr + 1, offset, na - 1);
 170}
 171#endif /* CONFIG_OF_ADDRESS_PCI */
 172
 173#ifdef CONFIG_PCI
 174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 175			unsigned int *flags)
 176{
 177	const __be32 *prop;
 178	unsigned int psize;
 179	struct device_node *parent;
 180	struct of_bus *bus;
 181	int onesize, i, na, ns;
 182
 183	/* Get parent & match bus type */
 184	parent = of_get_parent(dev);
 185	if (parent == NULL)
 186		return NULL;
 187	bus = of_match_bus(parent);
 188	if (strcmp(bus->name, "pci")) {
 189		of_node_put(parent);
 190		return NULL;
 191	}
 192	bus->count_cells(dev, &na, &ns);
 193	of_node_put(parent);
 194	if (!OF_CHECK_ADDR_COUNT(na))
 195		return NULL;
 196
 197	/* Get "reg" or "assigned-addresses" property */
 198	prop = of_get_property(dev, bus->addresses, &psize);
 199	if (prop == NULL)
 200		return NULL;
 201	psize /= 4;
 202
 203	onesize = na + ns;
 204	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 205		u32 val = be32_to_cpu(prop[0]);
 206		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 207			if (size)
 208				*size = of_read_number(prop + na, ns);
 209			if (flags)
 210				*flags = bus->get_flags(prop);
 211			return prop;
 212		}
 213	}
 214	return NULL;
 215}
 216EXPORT_SYMBOL(of_get_pci_address);
 217
 218int of_pci_address_to_resource(struct device_node *dev, int bar,
 219			       struct resource *r)
 220{
 221	const __be32	*addrp;
 222	u64		size;
 223	unsigned int	flags;
 224
 225	addrp = of_get_pci_address(dev, bar, &size, &flags);
 226	if (addrp == NULL)
 227		return -EINVAL;
 228	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 
 
 
 229}
 230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 231
 232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 233				struct device_node *node)
 234{
 235	const int na = 3, ns = 2;
 236	int rlen;
 237
 238	parser->node = node;
 239	parser->pna = of_n_addr_cells(node);
 240	parser->np = parser->pna + na + ns;
 241
 242	parser->range = of_get_property(node, "ranges", &rlen);
 243	if (parser->range == NULL)
 244		return -ENOENT;
 245
 246	parser->end = parser->range + rlen / sizeof(__be32);
 247
 248	return 0;
 249}
 250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 251
 252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 253						struct of_pci_range *range)
 254{
 255	const int na = 3, ns = 2;
 256
 257	if (!range)
 258		return NULL;
 259
 260	if (!parser->range || parser->range + parser->np > parser->end)
 261		return NULL;
 262
 263	range->pci_space = parser->range[0];
 264	range->flags = of_bus_pci_get_flags(parser->range);
 265	range->pci_addr = of_read_number(parser->range + 1, ns);
 266	range->cpu_addr = of_translate_address(parser->node,
 267				parser->range + na);
 268	range->size = of_read_number(parser->range + parser->pna + na, ns);
 269
 270	parser->range += parser->np;
 271
 272	/* Now consume following elements while they are contiguous */
 273	while (parser->range + parser->np <= parser->end) {
 274		u32 flags, pci_space;
 275		u64 pci_addr, cpu_addr, size;
 276
 277		pci_space = be32_to_cpup(parser->range);
 278		flags = of_bus_pci_get_flags(parser->range);
 279		pci_addr = of_read_number(parser->range + 1, ns);
 280		cpu_addr = of_translate_address(parser->node,
 281				parser->range + na);
 282		size = of_read_number(parser->range + parser->pna + na, ns);
 283
 284		if (flags != range->flags)
 285			break;
 286		if (pci_addr != range->pci_addr + range->size ||
 287		    cpu_addr != range->cpu_addr + range->size)
 288			break;
 289
 290		range->size += size;
 291		parser->range += parser->np;
 292	}
 293
 294	return range;
 295}
 296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 
 297
 298/*
 299 * of_pci_range_to_resource - Create a resource from an of_pci_range
 300 * @range:	the PCI range that describes the resource
 301 * @np:		device node where the range belongs to
 302 * @res:	pointer to a valid resource that will be updated to
 303 *              reflect the values contained in the range.
 304 *
 305 * Returns EINVAL if the range cannot be converted to resource.
 306 *
 307 * Note that if the range is an IO range, the resource will be converted
 308 * using pci_address_to_pio() which can fail if it is called too early or
 309 * if the range cannot be matched to any host bridge IO space (our case here).
 310 * To guard against that we try to register the IO range first.
 311 * If that fails we know that pci_address_to_pio() will do too.
 312 */
 313int of_pci_range_to_resource(struct of_pci_range *range,
 314			     struct device_node *np, struct resource *res)
 315{
 316	int err;
 317	res->flags = range->flags;
 318	res->parent = res->child = res->sibling = NULL;
 319	res->name = np->full_name;
 320
 321	if (res->flags & IORESOURCE_IO) {
 322		unsigned long port;
 323		err = pci_register_io_range(range->cpu_addr, range->size);
 
 324		if (err)
 325			goto invalid_range;
 326		port = pci_address_to_pio(range->cpu_addr);
 327		if (port == (unsigned long)-1) {
 328			err = -EINVAL;
 329			goto invalid_range;
 330		}
 331		res->start = port;
 332	} else {
 333		if ((sizeof(resource_size_t) < 8) &&
 334		    upper_32_bits(range->cpu_addr)) {
 335			err = -EINVAL;
 336			goto invalid_range;
 337		}
 338
 339		res->start = range->cpu_addr;
 340	}
 341	res->end = res->start + range->size - 1;
 342	return 0;
 343
 344invalid_range:
 345	res->start = (resource_size_t)OF_BAD_ADDR;
 346	res->end = (resource_size_t)OF_BAD_ADDR;
 347	return err;
 348}
 349#endif /* CONFIG_PCI */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350
 351/*
 352 * ISA bus specific translator
 353 */
 354
 355static int of_bus_isa_match(struct device_node *np)
 356{
 357	return !strcmp(np->name, "isa");
 358}
 359
 360static void of_bus_isa_count_cells(struct device_node *child,
 361				   int *addrc, int *sizec)
 362{
 363	if (addrc)
 364		*addrc = 2;
 365	if (sizec)
 366		*sizec = 1;
 367}
 368
 369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 370		int pna)
 371{
 372	u64 cp, s, da;
 373
 374	/* Check address type match */
 375	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 376		return OF_BAD_ADDR;
 377
 378	/* Read address values, skipping high cell */
 379	cp = of_read_number(range + 1, na - 1);
 380	s  = of_read_number(range + na + pna, ns);
 381	da = of_read_number(addr + 1, na - 1);
 382
 383	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
 384		 (unsigned long long)cp, (unsigned long long)s,
 385		 (unsigned long long)da);
 386
 387	if (da < cp || da >= (cp + s))
 388		return OF_BAD_ADDR;
 389	return da - cp;
 390}
 391
 392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 393{
 394	return of_bus_default_translate(addr + 1, offset, na - 1);
 395}
 396
 397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 398{
 399	unsigned int flags = 0;
 400	u32 w = be32_to_cpup(addr);
 401
 402	if (w & 1)
 403		flags |= IORESOURCE_IO;
 404	else
 405		flags |= IORESOURCE_MEM;
 406	return flags;
 407}
 408
 
 
 
 
 
 409/*
 410 * Array of bus specific translators
 411 */
 412
 413static struct of_bus of_busses[] = {
 414#ifdef CONFIG_OF_ADDRESS_PCI
 415	/* PCI */
 416	{
 417		.name = "pci",
 418		.addresses = "assigned-addresses",
 419		.match = of_bus_pci_match,
 420		.count_cells = of_bus_pci_count_cells,
 421		.map = of_bus_pci_map,
 422		.translate = of_bus_pci_translate,
 
 423		.get_flags = of_bus_pci_get_flags,
 424	},
 425#endif /* CONFIG_OF_ADDRESS_PCI */
 426	/* ISA */
 427	{
 428		.name = "isa",
 429		.addresses = "reg",
 430		.match = of_bus_isa_match,
 431		.count_cells = of_bus_isa_count_cells,
 432		.map = of_bus_isa_map,
 433		.translate = of_bus_isa_translate,
 
 434		.get_flags = of_bus_isa_get_flags,
 435	},
 
 
 
 
 
 
 
 
 
 
 
 436	/* Default */
 437	{
 438		.name = "default",
 439		.addresses = "reg",
 440		.match = NULL,
 441		.count_cells = of_bus_default_count_cells,
 442		.map = of_bus_default_map,
 443		.translate = of_bus_default_translate,
 444		.get_flags = of_bus_default_get_flags,
 445	},
 446};
 447
 448static struct of_bus *of_match_bus(struct device_node *np)
 449{
 450	int i;
 451
 452	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 453		if (!of_busses[i].match || of_busses[i].match(np))
 454			return &of_busses[i];
 455	BUG();
 456	return NULL;
 457}
 458
 459static int of_empty_ranges_quirk(struct device_node *np)
 460{
 461	if (IS_ENABLED(CONFIG_PPC)) {
 462		/* To save cycles, we cache the result for global "Mac" setting */
 463		static int quirk_state = -1;
 464
 465		/* PA-SEMI sdc DT bug */
 466		if (of_device_is_compatible(np, "1682m-sdc"))
 467			return true;
 468
 469		/* Make quirk cached */
 470		if (quirk_state < 0)
 471			quirk_state =
 472				of_machine_is_compatible("Power Macintosh") ||
 473				of_machine_is_compatible("MacRISC");
 474		return quirk_state;
 475	}
 476	return false;
 477}
 478
 479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 480			    struct of_bus *pbus, __be32 *addr,
 481			    int na, int ns, int pna, const char *rprop)
 482{
 483	const __be32 *ranges;
 484	unsigned int rlen;
 485	int rone;
 486	u64 offset = OF_BAD_ADDR;
 487
 488	/*
 489	 * Normally, an absence of a "ranges" property means we are
 490	 * crossing a non-translatable boundary, and thus the addresses
 491	 * below the current cannot be converted to CPU physical ones.
 492	 * Unfortunately, while this is very clear in the spec, it's not
 493	 * what Apple understood, and they do have things like /uni-n or
 494	 * /ht nodes with no "ranges" property and a lot of perfectly
 495	 * useable mapped devices below them. Thus we treat the absence of
 496	 * "ranges" as equivalent to an empty "ranges" property which means
 497	 * a 1:1 translation at that level. It's up to the caller not to try
 498	 * to translate addresses that aren't supposed to be translated in
 499	 * the first place. --BenH.
 500	 *
 501	 * As far as we know, this damage only exists on Apple machines, so
 502	 * This code is only enabled on powerpc. --gcl
 
 
 
 503	 */
 504	ranges = of_get_property(parent, rprop, &rlen);
 505	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 506		pr_debug("OF: no ranges; cannot translate\n");
 
 507		return 1;
 508	}
 509	if (ranges == NULL || rlen == 0) {
 510		offset = of_read_number(addr, na);
 511		memset(addr, 0, pna * 4);
 512		pr_debug("OF: empty ranges; 1:1 translation\n");
 513		goto finish;
 514	}
 515
 516	pr_debug("OF: walking ranges...\n");
 517
 518	/* Now walk through the ranges */
 519	rlen /= 4;
 520	rone = na + pna + ns;
 521	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 522		offset = bus->map(addr, ranges, na, ns, pna);
 523		if (offset != OF_BAD_ADDR)
 524			break;
 525	}
 526	if (offset == OF_BAD_ADDR) {
 527		pr_debug("OF: not found !\n");
 528		return 1;
 529	}
 530	memcpy(addr, ranges + na, 4 * pna);
 531
 532 finish:
 533	of_dump_addr("OF: parent translation for:", addr, pna);
 534	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
 535
 536	/* Translate it into parent bus space */
 537	return pbus->translate(addr, offset, pna);
 538}
 539
 540/*
 541 * Translate an address from the device-tree into a CPU physical address,
 542 * this walks up the tree and applies the various bus mappings on the
 543 * way.
 544 *
 545 * Note: We consider that crossing any level with #size-cells == 0 to mean
 546 * that translation is impossible (that is we are not dealing with a value
 547 * that can be mapped to a cpu physical address). This is not really specified
 548 * that way, but this is traditionally the way IBM at least do things
 
 
 
 
 549 */
 550static u64 __of_translate_address(struct device_node *dev,
 551				  const __be32 *in_addr, const char *rprop)
 
 
 552{
 553	struct device_node *parent = NULL;
 554	struct of_bus *bus, *pbus;
 555	__be32 addr[OF_MAX_ADDR_CELLS];
 556	int na, ns, pna, pns;
 557	u64 result = OF_BAD_ADDR;
 558
 559	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
 560
 561	/* Increase refcount at current level */
 562	of_node_get(dev);
 563
 
 564	/* Get parent & match bus type */
 565	parent = of_get_parent(dev);
 566	if (parent == NULL)
 567		goto bail;
 568	bus = of_match_bus(parent);
 569
 570	/* Count address cells & copy address locally */
 571	bus->count_cells(dev, &na, &ns);
 572	if (!OF_CHECK_COUNTS(na, ns)) {
 573		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
 574		goto bail;
 575	}
 576	memcpy(addr, in_addr, na * 4);
 577
 578	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
 579	    bus->name, na, ns, of_node_full_name(parent));
 580	of_dump_addr("OF: translating address:", addr, na);
 581
 582	/* Translate */
 583	for (;;) {
 
 
 584		/* Switch to parent bus */
 585		of_node_put(dev);
 586		dev = parent;
 587		parent = of_get_parent(dev);
 588
 589		/* If root, we have finished */
 590		if (parent == NULL) {
 591			pr_debug("OF: reached root node\n");
 592			result = of_read_number(addr, na);
 593			break;
 594		}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 596		/* Get new parent bus and counts */
 597		pbus = of_match_bus(parent);
 598		pbus->count_cells(dev, &pna, &pns);
 599		if (!OF_CHECK_COUNTS(pna, pns)) {
 600			pr_err("prom_parse: Bad cell count for %s\n",
 601			       of_node_full_name(dev));
 602			break;
 603		}
 604
 605		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
 606		    pbus->name, pna, pns, of_node_full_name(parent));
 607
 608		/* Apply bus translation */
 609		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 610			break;
 611
 612		/* Complete the move up one level */
 613		na = pna;
 614		ns = pns;
 615		bus = pbus;
 616
 617		of_dump_addr("OF: one level translation:", addr, na);
 618	}
 619 bail:
 620	of_node_put(parent);
 621	of_node_put(dev);
 622
 623	return result;
 624}
 625
 626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 627{
 628	return __of_translate_address(dev, in_addr, "ranges");
 
 
 
 
 
 
 
 
 
 
 629}
 630EXPORT_SYMBOL(of_translate_address);
 631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 633{
 634	return __of_translate_address(dev, in_addr, "dma-ranges");
 
 
 
 
 
 
 
 
 
 
 
 635}
 636EXPORT_SYMBOL(of_translate_dma_address);
 637
 638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 639		    unsigned int *flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640{
 641	const __be32 *prop;
 642	unsigned int psize;
 643	struct device_node *parent;
 644	struct of_bus *bus;
 645	int onesize, i, na, ns;
 646
 647	/* Get parent & match bus type */
 648	parent = of_get_parent(dev);
 649	if (parent == NULL)
 650		return NULL;
 651	bus = of_match_bus(parent);
 
 
 
 
 652	bus->count_cells(dev, &na, &ns);
 653	of_node_put(parent);
 654	if (!OF_CHECK_ADDR_COUNT(na))
 655		return NULL;
 656
 657	/* Get "reg" or "assigned-addresses" property */
 658	prop = of_get_property(dev, bus->addresses, &psize);
 659	if (prop == NULL)
 660		return NULL;
 661	psize /= 4;
 662
 663	onesize = na + ns;
 664	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 665		if (i == index) {
 
 
 
 666			if (size)
 667				*size = of_read_number(prop + na, ns);
 668			if (flags)
 669				*flags = bus->get_flags(prop);
 670			return prop;
 671		}
 
 672	return NULL;
 673}
 674EXPORT_SYMBOL(of_get_address);
 675
 676#ifdef PCI_IOBASE
 677struct io_range {
 678	struct list_head list;
 679	phys_addr_t start;
 680	resource_size_t size;
 681};
 
 
 
 
 
 
 
 682
 683static LIST_HEAD(io_range_list);
 684static DEFINE_SPINLOCK(io_range_lock);
 685#endif
 686
 687/*
 688 * Record the PCI IO range (expressed as CPU physical address + size).
 689 * Return a negative value if an error has occured, zero otherwise
 690 */
 691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
 
 
 
 692{
 693	int err = 0;
 694
 695#ifdef PCI_IOBASE
 696	struct io_range *range;
 697	resource_size_t allocated_size = 0;
 698
 699	/* check if the range hasn't been previously recorded */
 700	spin_lock(&io_range_lock);
 701	list_for_each_entry(range, &io_range_list, list) {
 702		if (addr >= range->start && addr + size <= range->start + size) {
 703			/* range already registered, bail out */
 704			goto end_register;
 705		}
 706		allocated_size += range->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	}
 708
 709	/* range not registed yet, check for available space */
 710	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
 711		/* if it's too big check if 64K space can be reserved */
 712		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
 713			err = -E2BIG;
 714			goto end_register;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715		}
 
 716
 717		size = SZ_64K;
 718		pr_warn("Requested IO range too big, new size set to 64K\n");
 719	}
 720
 721	/* add the range to the list */
 722	range = kzalloc(sizeof(*range), GFP_ATOMIC);
 723	if (!range) {
 724		err = -ENOMEM;
 725		goto end_register;
 726	}
 727
 728	range->start = addr;
 729	range->size = size;
 
 
 
 
 
 
 
 730
 731	list_add_tail(&range->list, &io_range_list);
 
 
 
 732
 733end_register:
 734	spin_unlock(&io_range_lock);
 735#endif
 
 
 736
 737	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738}
 
 739
 740phys_addr_t pci_pio_to_address(unsigned long pio)
 
 
 
 
 
 
 
 
 741{
 742	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
 
 
 
 
 
 
 
 743
 744#ifdef PCI_IOBASE
 745	struct io_range *range;
 746	resource_size_t allocated_size = 0;
 747
 748	if (pio > IO_SPACE_LIMIT)
 749		return address;
 
 
 
 
 750
 751	spin_lock(&io_range_lock);
 752	list_for_each_entry(range, &io_range_list, list) {
 753		if (pio >= allocated_size && pio < allocated_size + range->size) {
 754			address = range->start + pio - allocated_size;
 755			break;
 756		}
 757		allocated_size += range->size;
 
 758	}
 759	spin_unlock(&io_range_lock);
 760#endif
 761
 762	return address;
 763}
 764
 765unsigned long __weak pci_address_to_pio(phys_addr_t address)
 
 
 
 
 
 
 
 
 
 766{
 767#ifdef PCI_IOBASE
 768	struct io_range *res;
 769	resource_size_t offset = 0;
 770	unsigned long addr = -1;
 771
 772	spin_lock(&io_range_lock);
 773	list_for_each_entry(res, &io_range_list, list) {
 774		if (address >= res->start && address < res->start + res->size) {
 775			addr = address - res->start + offset;
 
 
 
 
 
 776			break;
 777		}
 778		offset += res->size;
 779	}
 780	spin_unlock(&io_range_lock);
 
 
 
 781
 782	return addr;
 783#else
 784	if (address > IO_SPACE_LIMIT)
 785		return (unsigned long)-1;
 
 
 
 
 
 
 
 
 
 
 786
 787	return (unsigned long) address;
 788#endif
 
 
 
 
 
 
 
 
 
 789}
 790
 791static int __of_address_to_resource(struct device_node *dev,
 792		const __be32 *addrp, u64 size, unsigned int flags,
 793		const char *name, struct resource *r)
 794{
 795	u64 taddr;
 
 
 
 
 
 
 
 
 
 
 
 
 796
 797	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
 
 
 
 
 798		return -EINVAL;
 799	taddr = of_translate_address(dev, addrp);
 800	if (taddr == OF_BAD_ADDR)
 801		return -EINVAL;
 802	memset(r, 0, sizeof(struct resource));
 803	if (flags & IORESOURCE_IO) {
 804		unsigned long port;
 805		port = pci_address_to_pio(taddr);
 806		if (port == (unsigned long)-1)
 807			return -EINVAL;
 808		r->start = port;
 809		r->end = port + size - 1;
 810	} else {
 811		r->start = taddr;
 812		r->end = taddr + size - 1;
 813	}
 814	r->flags = flags;
 815	r->name = name ? name : dev->full_name;
 816
 817	return 0;
 818}
 819
 820/**
 821 * of_address_to_resource - Translate device tree address and return as resource
 
 
 
 
 
 822 *
 823 * Note that if your address is a PIO address, the conversion will fail if
 824 * the physical address can't be internally converted to an IO token with
 825 * pci_address_to_pio(), that is because it's either called to early or it
 826 * can't be matched to any host bridge IO space
 827 */
 828int of_address_to_resource(struct device_node *dev, int index,
 829			   struct resource *r)
 830{
 831	const __be32	*addrp;
 832	u64		size;
 833	unsigned int	flags;
 834	const char	*name = NULL;
 835
 836	addrp = of_get_address(dev, index, &size, &flags);
 837	if (addrp == NULL)
 838		return -EINVAL;
 839
 840	/* Get optional "reg-names" property to add a name to a resource */
 841	of_property_read_string_index(dev, "reg-names",	index, &name);
 842
 843	return __of_address_to_resource(dev, addrp, size, flags, name, r);
 844}
 845EXPORT_SYMBOL_GPL(of_address_to_resource);
 846
 847struct device_node *of_find_matching_node_by_address(struct device_node *from,
 848					const struct of_device_id *matches,
 849					u64 base_address)
 850{
 851	struct device_node *dn = of_find_matching_node(from, matches);
 852	struct resource res;
 853
 854	while (dn) {
 855		if (!of_address_to_resource(dn, 0, &res) &&
 856		    res.start == base_address)
 857			return dn;
 858
 859		dn = of_find_matching_node(dn, matches);
 860	}
 861
 862	return NULL;
 863}
 864
 865
 866/**
 867 * of_iomap - Maps the memory mapped IO for a given device_node
 868 * @device:	the device whose io range will be mapped
 869 * @index:	index of the io range
 870 *
 871 * Returns a pointer to the mapped memory
 872 */
 873void __iomem *of_iomap(struct device_node *np, int index)
 874{
 875	struct resource res;
 876
 877	if (of_address_to_resource(np, index, &res))
 878		return NULL;
 879
 880	return ioremap(res.start, resource_size(&res));
 
 
 
 881}
 882EXPORT_SYMBOL(of_iomap);
 883
 884/*
 885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 886 *			   for a given device_node
 887 * @device:	the device whose io range will be mapped
 888 * @index:	index of the io range
 889 * @name:	name of the resource
 890 *
 891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 892 * error code on failure. Usage example:
 893 *
 894 *	base = of_io_request_and_map(node, 0, "foo");
 895 *	if (IS_ERR(base))
 896 *		return PTR_ERR(base);
 897 */
 898void __iomem *of_io_request_and_map(struct device_node *np, int index,
 899					const char *name)
 900{
 901	struct resource res;
 902	void __iomem *mem;
 903
 904	if (of_address_to_resource(np, index, &res))
 905		return IOMEM_ERR_PTR(-EINVAL);
 906
 
 
 907	if (!request_mem_region(res.start, resource_size(&res), name))
 908		return IOMEM_ERR_PTR(-EBUSY);
 909
 910	mem = ioremap(res.start, resource_size(&res));
 
 
 
 
 911	if (!mem) {
 912		release_mem_region(res.start, resource_size(&res));
 913		return IOMEM_ERR_PTR(-ENOMEM);
 914	}
 915
 916	return mem;
 917}
 918EXPORT_SYMBOL(of_io_request_and_map);
 919
 920/**
 921 * of_dma_get_range - Get DMA range info
 922 * @np:		device node to get DMA range info
 923 * @dma_addr:	pointer to store initial DMA address of DMA range
 924 * @paddr:	pointer to store initial CPU address of DMA range
 925 * @size:	pointer to store size of DMA range
 926 *
 927 * Look in bottom up direction for the first "dma-ranges" property
 928 * and parse it.
 929 *  dma-ranges format:
 930 *	DMA addr (dma_addr)	: naddr cells
 931 *	CPU addr (phys_addr_t)	: pna cells
 932 *	size			: nsize cells
 933 *
 934 * It returns -ENODEV if "dma-ranges" property was not found
 935 * for this device in DT.
 936 */
 937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 938{
 939	struct device_node *node = of_node_get(np);
 940	const __be32 *ranges = NULL;
 941	int len, naddr, nsize, pna;
 942	int ret = 0;
 943	u64 dmaaddr;
 944
 945	if (!node)
 946		return -EINVAL;
 947
 948	while (1) {
 949		naddr = of_n_addr_cells(node);
 950		nsize = of_n_size_cells(node);
 951		node = of_get_next_parent(node);
 952		if (!node)
 953			break;
 954
 955		ranges = of_get_property(node, "dma-ranges", &len);
 956
 957		/* Ignore empty ranges, they imply no translation required */
 958		if (ranges && len > 0)
 959			break;
 960
 961		/*
 962		 * At least empty ranges has to be defined for parent node if
 963		 * DMA is supported
 964		 */
 965		if (!ranges)
 966			break;
 967	}
 968
 969	if (!ranges) {
 970		pr_debug("%s: no dma-ranges found for node(%s)\n",
 971			 __func__, np->full_name);
 972		ret = -ENODEV;
 973		goto out;
 974	}
 975
 976	len /= sizeof(u32);
 977
 978	pna = of_n_addr_cells(node);
 979
 980	/* dma-ranges format:
 981	 * DMA addr	: naddr cells
 982	 * CPU addr	: pna cells
 983	 * size		: nsize cells
 984	 */
 985	dmaaddr = of_read_number(ranges, naddr);
 986	*paddr = of_translate_dma_address(np, ranges);
 987	if (*paddr == OF_BAD_ADDR) {
 988		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
 989		       __func__, dma_addr, np->full_name);
 990		ret = -EINVAL;
 991		goto out;
 992	}
 993	*dma_addr = dmaaddr;
 994
 995	*size = of_read_number(ranges + naddr + pna, nsize);
 996
 997	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 998		 *dma_addr, *paddr, *size);
 999
1000out:
1001	of_node_put(node);
1002
1003	return ret;
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np:	device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016	struct device_node *node = of_node_get(np);
1017
1018	while (node) {
1019		if (of_property_read_bool(node, "dma-coherent")) {
1020			of_node_put(node);
1021			return true;
1022		}
1023		node = of_get_next_parent(node);
1024	}
1025	of_node_put(node);
1026	return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/pci.h>
  12#include <linux/pci_regs.h>
  13#include <linux/sizes.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16#include <linux/dma-direct.h> /* for bus_dma_region */
  17
  18#include "of_private.h"
  19
  20/* Max address size we deal with */
  21#define OF_MAX_ADDR_CELLS	4
  22#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  23#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  24
 
 
 
 
 
  25/* Debug utility */
  26#ifdef DEBUG
  27static void of_dump_addr(const char *s, const __be32 *addr, int na)
  28{
  29	pr_debug("%s", s);
  30	while (na--)
  31		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  32	pr_cont("\n");
  33}
  34#else
  35static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  36#endif
  37
  38/* Callbacks for bus specific translators */
  39struct of_bus {
  40	const char	*name;
  41	const char	*addresses;
  42	int		(*match)(struct device_node *parent);
  43	void		(*count_cells)(struct device_node *child,
  44				       int *addrc, int *sizec);
  45	u64		(*map)(__be32 *addr, const __be32 *range,
  46				int na, int ns, int pna, int fna);
  47	int		(*translate)(__be32 *addr, u64 offset, int na);
  48	int		flag_cells;
  49	unsigned int	(*get_flags)(const __be32 *addr);
  50};
  51
  52/*
  53 * Default translator (generic bus)
  54 */
  55
  56static void of_bus_default_count_cells(struct device_node *dev,
  57				       int *addrc, int *sizec)
  58{
  59	if (addrc)
  60		*addrc = of_n_addr_cells(dev);
  61	if (sizec)
  62		*sizec = of_n_size_cells(dev);
  63}
  64
  65static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  66		int na, int ns, int pna, int fna)
  67{
  68	u64 cp, s, da;
  69
  70	cp = of_read_number(range + fna, na - fna);
  71	s  = of_read_number(range + na + pna, ns);
  72	da = of_read_number(addr + fna, na - fna);
  73
  74	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n", cp, s, da);
 
 
  75
  76	if (da < cp || da >= (cp + s))
  77		return OF_BAD_ADDR;
  78	return da - cp;
  79}
  80
  81static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  82{
  83	u64 a = of_read_number(addr, na);
  84	memset(addr, 0, na * 4);
  85	a += offset;
  86	if (na > 1)
  87		addr[na - 2] = cpu_to_be32(a >> 32);
  88	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  89
  90	return 0;
  91}
  92
  93static unsigned int of_bus_default_flags_get_flags(const __be32 *addr)
  94{
  95	return of_read_number(addr, 1);
  96}
  97
  98static unsigned int of_bus_default_get_flags(const __be32 *addr)
  99{
 100	return IORESOURCE_MEM;
 101}
 102
 103static u64 of_bus_default_flags_map(__be32 *addr, const __be32 *range, int na,
 104				    int ns, int pna, int fna)
 
 
 
 
 105{
 106	/* Check that flags match */
 107	if (*addr != *range)
 108		return OF_BAD_ADDR;
 109
 110	return of_bus_default_map(addr, range, na, ns, pna, fna);
 
 
 111}
 112
 113static int of_bus_default_flags_translate(__be32 *addr, u64 offset, int na)
 
 114{
 115	/* Keep "flags" part (high cell) in translated address */
 116	return of_bus_default_translate(addr + 1, offset, na - 1);
 
 
 117}
 118
 119#ifdef CONFIG_PCI
 120static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 121{
 122	unsigned int flags = 0;
 123	u32 w = be32_to_cpup(addr);
 124
 125	if (!IS_ENABLED(CONFIG_PCI))
 126		return 0;
 127
 128	switch((w >> 24) & 0x03) {
 129	case 0x01:
 130		flags |= IORESOURCE_IO;
 131		break;
 132	case 0x02: /* 32 bits */
 
 133		flags |= IORESOURCE_MEM;
 134		break;
 135
 136	case 0x03: /* 64 bits */
 137		flags |= IORESOURCE_MEM | IORESOURCE_MEM_64;
 138		break;
 139	}
 140	if (w & 0x40000000)
 141		flags |= IORESOURCE_PREFETCH;
 142	return flags;
 143}
 144
 145/*
 146 * PCI bus specific translator
 147 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149static bool of_node_is_pcie(struct device_node *np)
 
 
 150{
 151	bool is_pcie = of_node_name_eq(np, "pcie");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152
 153	if (is_pcie)
 154		pr_warn_once("%pOF: Missing device_type\n", np);
 
 
 
 155
 156	return is_pcie;
 
 
 
 
 
 
 
 
 
 
 
 157}
 
 158
 159static int of_bus_pci_match(struct device_node *np)
 
 160{
 161	/*
 162 	 * "pciex" is PCI Express
 163	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 164	 * "ht" is hypertransport
 165	 *
 166	 * If none of the device_type match, and that the node name is
 167	 * "pcie", accept the device as PCI (with a warning).
 168	 */
 169	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 170		of_node_is_type(np, "vci") || of_node_is_type(np, "ht") ||
 171		of_node_is_pcie(np);
 172}
 
 173
 174static void of_bus_pci_count_cells(struct device_node *np,
 175				   int *addrc, int *sizec)
 176{
 177	if (addrc)
 178		*addrc = 3;
 179	if (sizec)
 180		*sizec = 2;
 
 
 
 
 
 
 
 
 
 
 181}
 
 182
 183static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 184		int pna, int fna)
 185{
 186	unsigned int af, rf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	af = of_bus_pci_get_flags(addr);
 189	rf = of_bus_pci_get_flags(range);
 
 
 
 190
 191	/* Check address type match */
 192	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 193		return OF_BAD_ADDR;
 194
 195	return of_bus_default_map(addr, range, na, ns, pna, fna);
 196}
 197
 198#endif /* CONFIG_PCI */
 199
 200/*
 201 * of_pci_range_to_resource - Create a resource from an of_pci_range
 202 * @range:	the PCI range that describes the resource
 203 * @np:		device node where the range belongs to
 204 * @res:	pointer to a valid resource that will be updated to
 205 *              reflect the values contained in the range.
 206 *
 207 * Returns -EINVAL if the range cannot be converted to resource.
 208 *
 209 * Note that if the range is an IO range, the resource will be converted
 210 * using pci_address_to_pio() which can fail if it is called too early or
 211 * if the range cannot be matched to any host bridge IO space (our case here).
 212 * To guard against that we try to register the IO range first.
 213 * If that fails we know that pci_address_to_pio() will do too.
 214 */
 215int of_pci_range_to_resource(struct of_pci_range *range,
 216			     struct device_node *np, struct resource *res)
 217{
 218	int err;
 219	res->flags = range->flags;
 220	res->parent = res->child = res->sibling = NULL;
 221	res->name = np->full_name;
 222
 223	if (res->flags & IORESOURCE_IO) {
 224		unsigned long port;
 225		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 226				range->size);
 227		if (err)
 228			goto invalid_range;
 229		port = pci_address_to_pio(range->cpu_addr);
 230		if (port == (unsigned long)-1) {
 231			err = -EINVAL;
 232			goto invalid_range;
 233		}
 234		res->start = port;
 235	} else {
 236		if ((sizeof(resource_size_t) < 8) &&
 237		    upper_32_bits(range->cpu_addr)) {
 238			err = -EINVAL;
 239			goto invalid_range;
 240		}
 241
 242		res->start = range->cpu_addr;
 243	}
 244	res->end = res->start + range->size - 1;
 245	return 0;
 246
 247invalid_range:
 248	res->start = (resource_size_t)OF_BAD_ADDR;
 249	res->end = (resource_size_t)OF_BAD_ADDR;
 250	return err;
 251}
 252EXPORT_SYMBOL(of_pci_range_to_resource);
 253
 254/*
 255 * of_range_to_resource - Create a resource from a ranges entry
 256 * @np:		device node where the range belongs to
 257 * @index:	the 'ranges' index to convert to a resource
 258 * @res:	pointer to a valid resource that will be updated to
 259 *              reflect the values contained in the range.
 260 *
 261 * Returns ENOENT if the entry is not found or EINVAL if the range cannot be
 262 * converted to resource.
 263 */
 264int of_range_to_resource(struct device_node *np, int index, struct resource *res)
 265{
 266	int ret, i = 0;
 267	struct of_range_parser parser;
 268	struct of_range range;
 269
 270	ret = of_range_parser_init(&parser, np);
 271	if (ret)
 272		return ret;
 273
 274	for_each_of_range(&parser, &range)
 275		if (i++ == index)
 276			return of_pci_range_to_resource(&range, np, res);
 277
 278	return -ENOENT;
 279}
 280EXPORT_SYMBOL(of_range_to_resource);
 281
 282/*
 283 * ISA bus specific translator
 284 */
 285
 286static int of_bus_isa_match(struct device_node *np)
 287{
 288	return of_node_name_eq(np, "isa");
 289}
 290
 291static void of_bus_isa_count_cells(struct device_node *child,
 292				   int *addrc, int *sizec)
 293{
 294	if (addrc)
 295		*addrc = 2;
 296	if (sizec)
 297		*sizec = 1;
 298}
 299
 300static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 301		int pna, int fna)
 302{
 
 
 303	/* Check address type match */
 304	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 305		return OF_BAD_ADDR;
 306
 307	return of_bus_default_map(addr, range, na, ns, pna, fna);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308}
 309
 310static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 311{
 312	unsigned int flags = 0;
 313	u32 w = be32_to_cpup(addr);
 314
 315	if (w & 1)
 316		flags |= IORESOURCE_IO;
 317	else
 318		flags |= IORESOURCE_MEM;
 319	return flags;
 320}
 321
 322static int of_bus_default_flags_match(struct device_node *np)
 323{
 324	return of_bus_n_addr_cells(np) == 3;
 325}
 326
 327/*
 328 * Array of bus specific translators
 329 */
 330
 331static struct of_bus of_busses[] = {
 332#ifdef CONFIG_PCI
 333	/* PCI */
 334	{
 335		.name = "pci",
 336		.addresses = "assigned-addresses",
 337		.match = of_bus_pci_match,
 338		.count_cells = of_bus_pci_count_cells,
 339		.map = of_bus_pci_map,
 340		.translate = of_bus_default_flags_translate,
 341		.flag_cells = 1,
 342		.get_flags = of_bus_pci_get_flags,
 343	},
 344#endif /* CONFIG_PCI */
 345	/* ISA */
 346	{
 347		.name = "isa",
 348		.addresses = "reg",
 349		.match = of_bus_isa_match,
 350		.count_cells = of_bus_isa_count_cells,
 351		.map = of_bus_isa_map,
 352		.translate = of_bus_default_flags_translate,
 353		.flag_cells = 1,
 354		.get_flags = of_bus_isa_get_flags,
 355	},
 356	/* Default with flags cell */
 357	{
 358		.name = "default-flags",
 359		.addresses = "reg",
 360		.match = of_bus_default_flags_match,
 361		.count_cells = of_bus_default_count_cells,
 362		.map = of_bus_default_flags_map,
 363		.translate = of_bus_default_flags_translate,
 364		.flag_cells = 1,
 365		.get_flags = of_bus_default_flags_get_flags,
 366	},
 367	/* Default */
 368	{
 369		.name = "default",
 370		.addresses = "reg",
 371		.match = NULL,
 372		.count_cells = of_bus_default_count_cells,
 373		.map = of_bus_default_map,
 374		.translate = of_bus_default_translate,
 375		.get_flags = of_bus_default_get_flags,
 376	},
 377};
 378
 379static struct of_bus *of_match_bus(struct device_node *np)
 380{
 381	int i;
 382
 383	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 384		if (!of_busses[i].match || of_busses[i].match(np))
 385			return &of_busses[i];
 386	BUG();
 387	return NULL;
 388}
 389
 390static int of_empty_ranges_quirk(struct device_node *np)
 391{
 392	if (IS_ENABLED(CONFIG_PPC)) {
 393		/* To save cycles, we cache the result for global "Mac" setting */
 394		static int quirk_state = -1;
 395
 396		/* PA-SEMI sdc DT bug */
 397		if (of_device_is_compatible(np, "1682m-sdc"))
 398			return true;
 399
 400		/* Make quirk cached */
 401		if (quirk_state < 0)
 402			quirk_state =
 403				of_machine_is_compatible("Power Macintosh") ||
 404				of_machine_is_compatible("MacRISC");
 405		return quirk_state;
 406	}
 407	return false;
 408}
 409
 410static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 411			    struct of_bus *pbus, __be32 *addr,
 412			    int na, int ns, int pna, const char *rprop)
 413{
 414	const __be32 *ranges;
 415	unsigned int rlen;
 416	int rone;
 417	u64 offset = OF_BAD_ADDR;
 418
 419	/*
 420	 * Normally, an absence of a "ranges" property means we are
 421	 * crossing a non-translatable boundary, and thus the addresses
 422	 * below the current cannot be converted to CPU physical ones.
 423	 * Unfortunately, while this is very clear in the spec, it's not
 424	 * what Apple understood, and they do have things like /uni-n or
 425	 * /ht nodes with no "ranges" property and a lot of perfectly
 426	 * useable mapped devices below them. Thus we treat the absence of
 427	 * "ranges" as equivalent to an empty "ranges" property which means
 428	 * a 1:1 translation at that level. It's up to the caller not to try
 429	 * to translate addresses that aren't supposed to be translated in
 430	 * the first place. --BenH.
 431	 *
 432	 * As far as we know, this damage only exists on Apple machines, so
 433	 * This code is only enabled on powerpc. --gcl
 434	 *
 435	 * This quirk also applies for 'dma-ranges' which frequently exist in
 436	 * child nodes without 'dma-ranges' in the parent nodes. --RobH
 437	 */
 438	ranges = of_get_property(parent, rprop, &rlen);
 439	if (ranges == NULL && !of_empty_ranges_quirk(parent) &&
 440	    strcmp(rprop, "dma-ranges")) {
 441		pr_debug("no ranges; cannot translate\n");
 442		return 1;
 443	}
 444	if (ranges == NULL || rlen == 0) {
 445		offset = of_read_number(addr, na);
 446		memset(addr, 0, pna * 4);
 447		pr_debug("empty ranges; 1:1 translation\n");
 448		goto finish;
 449	}
 450
 451	pr_debug("walking ranges...\n");
 452
 453	/* Now walk through the ranges */
 454	rlen /= 4;
 455	rone = na + pna + ns;
 456	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 457		offset = bus->map(addr, ranges, na, ns, pna, bus->flag_cells);
 458		if (offset != OF_BAD_ADDR)
 459			break;
 460	}
 461	if (offset == OF_BAD_ADDR) {
 462		pr_debug("not found !\n");
 463		return 1;
 464	}
 465	memcpy(addr, ranges + na, 4 * pna);
 466
 467 finish:
 468	of_dump_addr("parent translation for:", addr, pna);
 469	pr_debug("with offset: %llx\n", offset);
 470
 471	/* Translate it into parent bus space */
 472	return pbus->translate(addr, offset, pna);
 473}
 474
 475/*
 476 * Translate an address from the device-tree into a CPU physical address,
 477 * this walks up the tree and applies the various bus mappings on the
 478 * way.
 479 *
 480 * Note: We consider that crossing any level with #size-cells == 0 to mean
 481 * that translation is impossible (that is we are not dealing with a value
 482 * that can be mapped to a cpu physical address). This is not really specified
 483 * that way, but this is traditionally the way IBM at least do things
 484 *
 485 * Whenever the translation fails, the *host pointer will be set to the
 486 * device that had registered logical PIO mapping, and the return code is
 487 * relative to that node.
 488 */
 489static u64 __of_translate_address(struct device_node *dev,
 490				  struct device_node *(*get_parent)(const struct device_node *),
 491				  const __be32 *in_addr, const char *rprop,
 492				  struct device_node **host)
 493{
 494	struct device_node *parent = NULL;
 495	struct of_bus *bus, *pbus;
 496	__be32 addr[OF_MAX_ADDR_CELLS];
 497	int na, ns, pna, pns;
 498	u64 result = OF_BAD_ADDR;
 499
 500	pr_debug("** translation for device %pOF **\n", dev);
 501
 502	/* Increase refcount at current level */
 503	of_node_get(dev);
 504
 505	*host = NULL;
 506	/* Get parent & match bus type */
 507	parent = get_parent(dev);
 508	if (parent == NULL)
 509		goto bail;
 510	bus = of_match_bus(parent);
 511
 512	/* Count address cells & copy address locally */
 513	bus->count_cells(dev, &na, &ns);
 514	if (!OF_CHECK_COUNTS(na, ns)) {
 515		pr_debug("Bad cell count for %pOF\n", dev);
 516		goto bail;
 517	}
 518	memcpy(addr, in_addr, na * 4);
 519
 520	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 521	    bus->name, na, ns, parent);
 522	of_dump_addr("translating address:", addr, na);
 523
 524	/* Translate */
 525	for (;;) {
 526		struct logic_pio_hwaddr *iorange;
 527
 528		/* Switch to parent bus */
 529		of_node_put(dev);
 530		dev = parent;
 531		parent = get_parent(dev);
 532
 533		/* If root, we have finished */
 534		if (parent == NULL) {
 535			pr_debug("reached root node\n");
 536			result = of_read_number(addr, na);
 537			break;
 538		}
 539
 540		/*
 541		 * For indirectIO device which has no ranges property, get
 542		 * the address from reg directly.
 543		 */
 544		iorange = find_io_range_by_fwnode(&dev->fwnode);
 545		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 546			result = of_read_number(addr + 1, na - 1);
 547			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 548				 dev, result);
 549			*host = of_node_get(dev);
 550			break;
 551		}
 552
 553		/* Get new parent bus and counts */
 554		pbus = of_match_bus(parent);
 555		pbus->count_cells(dev, &pna, &pns);
 556		if (!OF_CHECK_COUNTS(pna, pns)) {
 557			pr_err("Bad cell count for %pOF\n", dev);
 
 558			break;
 559		}
 560
 561		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 562		    pbus->name, pna, pns, parent);
 563
 564		/* Apply bus translation */
 565		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 566			break;
 567
 568		/* Complete the move up one level */
 569		na = pna;
 570		ns = pns;
 571		bus = pbus;
 572
 573		of_dump_addr("one level translation:", addr, na);
 574	}
 575 bail:
 576	of_node_put(parent);
 577	of_node_put(dev);
 578
 579	return result;
 580}
 581
 582u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 583{
 584	struct device_node *host;
 585	u64 ret;
 586
 587	ret = __of_translate_address(dev, of_get_parent,
 588				     in_addr, "ranges", &host);
 589	if (host) {
 590		of_node_put(host);
 591		return OF_BAD_ADDR;
 592	}
 593
 594	return ret;
 595}
 596EXPORT_SYMBOL(of_translate_address);
 597
 598#ifdef CONFIG_HAS_DMA
 599struct device_node *__of_get_dma_parent(const struct device_node *np)
 600{
 601	struct of_phandle_args args;
 602	int ret, index;
 603
 604	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 605	if (index < 0)
 606		return of_get_parent(np);
 607
 608	ret = of_parse_phandle_with_args(np, "interconnects",
 609					 "#interconnect-cells",
 610					 index, &args);
 611	if (ret < 0)
 612		return of_get_parent(np);
 613
 614	return of_node_get(args.np);
 615}
 616#endif
 617
 618static struct device_node *of_get_next_dma_parent(struct device_node *np)
 619{
 620	struct device_node *parent;
 621
 622	parent = __of_get_dma_parent(np);
 623	of_node_put(np);
 624
 625	return parent;
 626}
 627
 628u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 629{
 630	struct device_node *host;
 631	u64 ret;
 632
 633	ret = __of_translate_address(dev, __of_get_dma_parent,
 634				     in_addr, "dma-ranges", &host);
 635
 636	if (host) {
 637		of_node_put(host);
 638		return OF_BAD_ADDR;
 639	}
 640
 641	return ret;
 642}
 643EXPORT_SYMBOL(of_translate_dma_address);
 644
 645/**
 646 * of_translate_dma_region - Translate device tree address and size tuple
 647 * @dev: device tree node for which to translate
 648 * @prop: pointer into array of cells
 649 * @start: return value for the start of the DMA range
 650 * @length: return value for the length of the DMA range
 651 *
 652 * Returns a pointer to the cell immediately following the translated DMA region.
 653 */
 654const __be32 *of_translate_dma_region(struct device_node *dev, const __be32 *prop,
 655				      phys_addr_t *start, size_t *length)
 656{
 657	struct device_node *parent;
 658	u64 address, size;
 659	int na, ns;
 660
 661	parent = __of_get_dma_parent(dev);
 662	if (!parent)
 663		return NULL;
 664
 665	na = of_bus_n_addr_cells(parent);
 666	ns = of_bus_n_size_cells(parent);
 667
 668	of_node_put(parent);
 669
 670	address = of_translate_dma_address(dev, prop);
 671	if (address == OF_BAD_ADDR)
 672		return NULL;
 673
 674	size = of_read_number(prop + na, ns);
 675
 676	if (start)
 677		*start = address;
 678
 679	if (length)
 680		*length = size;
 681
 682	return prop + na + ns;
 683}
 684EXPORT_SYMBOL(of_translate_dma_region);
 685
 686const __be32 *__of_get_address(struct device_node *dev, int index, int bar_no,
 687			       u64 *size, unsigned int *flags)
 688{
 689	const __be32 *prop;
 690	unsigned int psize;
 691	struct device_node *parent;
 692	struct of_bus *bus;
 693	int onesize, i, na, ns;
 694
 695	/* Get parent & match bus type */
 696	parent = of_get_parent(dev);
 697	if (parent == NULL)
 698		return NULL;
 699	bus = of_match_bus(parent);
 700	if (strcmp(bus->name, "pci") && (bar_no >= 0)) {
 701		of_node_put(parent);
 702		return NULL;
 703	}
 704	bus->count_cells(dev, &na, &ns);
 705	of_node_put(parent);
 706	if (!OF_CHECK_ADDR_COUNT(na))
 707		return NULL;
 708
 709	/* Get "reg" or "assigned-addresses" property */
 710	prop = of_get_property(dev, bus->addresses, &psize);
 711	if (prop == NULL)
 712		return NULL;
 713	psize /= 4;
 714
 715	onesize = na + ns;
 716	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 717		u32 val = be32_to_cpu(prop[0]);
 718		/* PCI bus matches on BAR number instead of index */
 719		if (((bar_no >= 0) && ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0))) ||
 720		    ((index >= 0) && (i == index))) {
 721			if (size)
 722				*size = of_read_number(prop + na, ns);
 723			if (flags)
 724				*flags = bus->get_flags(prop);
 725			return prop;
 726		}
 727	}
 728	return NULL;
 729}
 730EXPORT_SYMBOL(__of_get_address);
 731
 732/**
 733 * of_property_read_reg - Retrieve the specified "reg" entry index without translating
 734 * @np: device tree node for which to retrieve "reg" from
 735 * @idx: "reg" entry index to read
 736 * @addr: return value for the untranslated address
 737 * @size: return value for the entry size
 738 *
 739 * Returns -EINVAL if "reg" is not found. Returns 0 on success with addr and
 740 * size values filled in.
 741 */
 742int of_property_read_reg(struct device_node *np, int idx, u64 *addr, u64 *size)
 743{
 744	const __be32 *prop = of_get_address(np, idx, size, NULL);
 745
 746	if (!prop)
 747		return -EINVAL;
 
 748
 749	*addr = of_read_number(prop, of_n_addr_cells(np));
 750
 751	return 0;
 752}
 753EXPORT_SYMBOL(of_property_read_reg);
 754
 755static int parser_init(struct of_pci_range_parser *parser,
 756			struct device_node *node, const char *name)
 757{
 758	int rlen;
 759
 760	parser->node = node;
 761	parser->pna = of_n_addr_cells(node);
 762	parser->na = of_bus_n_addr_cells(node);
 763	parser->ns = of_bus_n_size_cells(node);
 764	parser->dma = !strcmp(name, "dma-ranges");
 765	parser->bus = of_match_bus(node);
 766
 767	parser->range = of_get_property(node, name, &rlen);
 768	if (parser->range == NULL)
 769		return -ENOENT;
 770
 771	parser->end = parser->range + rlen / sizeof(__be32);
 772
 773	return 0;
 774}
 775
 776int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 777				struct device_node *node)
 778{
 779	return parser_init(parser, node, "ranges");
 780}
 781EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 782
 783int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 784				struct device_node *node)
 785{
 786	return parser_init(parser, node, "dma-ranges");
 787}
 788EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 789#define of_dma_range_parser_init of_pci_dma_range_parser_init
 790
 791struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 792						struct of_pci_range *range)
 793{
 794	int na = parser->na;
 795	int ns = parser->ns;
 796	int np = parser->pna + na + ns;
 797	int busflag_na = parser->bus->flag_cells;
 798
 799	if (!range)
 800		return NULL;
 801
 802	if (!parser->range || parser->range + np > parser->end)
 803		return NULL;
 804
 805	range->flags = parser->bus->get_flags(parser->range);
 806
 807	range->bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 808
 809	if (parser->dma)
 810		range->cpu_addr = of_translate_dma_address(parser->node,
 811				parser->range + na);
 812	else
 813		range->cpu_addr = of_translate_address(parser->node,
 814				parser->range + na);
 815	range->size = of_read_number(parser->range + parser->pna + na, ns);
 816
 817	parser->range += np;
 818
 819	/* Now consume following elements while they are contiguous */
 820	while (parser->range + np <= parser->end) {
 821		u32 flags = 0;
 822		u64 bus_addr, cpu_addr, size;
 823
 824		flags = parser->bus->get_flags(parser->range);
 825		bus_addr = of_read_number(parser->range + busflag_na, na - busflag_na);
 826		if (parser->dma)
 827			cpu_addr = of_translate_dma_address(parser->node,
 828					parser->range + na);
 829		else
 830			cpu_addr = of_translate_address(parser->node,
 831					parser->range + na);
 832		size = of_read_number(parser->range + parser->pna + na, ns);
 833
 834		if (flags != range->flags)
 835			break;
 836		if (bus_addr != range->bus_addr + range->size ||
 837		    cpu_addr != range->cpu_addr + range->size)
 838			break;
 839
 840		range->size += size;
 841		parser->range += np;
 842	}
 843
 844	return range;
 845}
 846EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 847
 848static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 849			u64 size)
 850{
 851	u64 taddr;
 852	unsigned long port;
 853	struct device_node *host;
 854
 855	taddr = __of_translate_address(dev, of_get_parent,
 856				       in_addr, "ranges", &host);
 857	if (host) {
 858		/* host-specific port access */
 859		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 860		of_node_put(host);
 861	} else {
 862		/* memory-mapped I/O range */
 863		port = pci_address_to_pio(taddr);
 864	}
 865
 866	if (port == (unsigned long)-1)
 867		return OF_BAD_ADDR;
 868
 869	return port;
 870}
 871
 872#ifdef CONFIG_HAS_DMA
 873/**
 874 * of_dma_get_range - Get DMA range info and put it into a map array
 875 * @np:		device node to get DMA range info
 876 * @map:	dma range structure to return
 877 *
 878 * Look in bottom up direction for the first "dma-ranges" property
 879 * and parse it.  Put the information into a DMA offset map array.
 880 *
 881 * dma-ranges format:
 882 *	DMA addr (dma_addr)	: naddr cells
 883 *	CPU addr (phys_addr_t)	: pna cells
 884 *	size			: nsize cells
 885 *
 886 * It returns -ENODEV if "dma-ranges" property was not found for this
 887 * device in the DT.
 888 */
 889int of_dma_get_range(struct device_node *np, const struct bus_dma_region **map)
 890{
 891	struct device_node *node = of_node_get(np);
 892	const __be32 *ranges = NULL;
 893	bool found_dma_ranges = false;
 894	struct of_range_parser parser;
 895	struct of_range range;
 896	struct bus_dma_region *r;
 897	int len, num_ranges = 0;
 898	int ret = 0;
 899
 900	while (node) {
 901		ranges = of_get_property(node, "dma-ranges", &len);
 902
 903		/* Ignore empty ranges, they imply no translation required */
 904		if (ranges && len > 0)
 905			break;
 906
 907		/* Once we find 'dma-ranges', then a missing one is an error */
 908		if (found_dma_ranges && !ranges) {
 909			ret = -ENODEV;
 910			goto out;
 911		}
 912		found_dma_ranges = true;
 913
 914		node = of_get_next_dma_parent(node);
 
 915	}
 916
 917	if (!node || !ranges) {
 918		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 919		ret = -ENODEV;
 920		goto out;
 
 921	}
 922
 923	of_dma_range_parser_init(&parser, node);
 924	for_each_of_range(&parser, &range) {
 925		if (range.cpu_addr == OF_BAD_ADDR) {
 926			pr_err("translation of DMA address(%llx) to CPU address failed node(%pOF)\n",
 927			       range.bus_addr, node);
 928			continue;
 929		}
 930		num_ranges++;
 931	}
 932
 933	if (!num_ranges) {
 934		ret = -EINVAL;
 935		goto out;
 936	}
 937
 938	r = kcalloc(num_ranges + 1, sizeof(*r), GFP_KERNEL);
 939	if (!r) {
 940		ret = -ENOMEM;
 941		goto out;
 942	}
 943
 944	/*
 945	 * Record all info in the generic DMA ranges array for struct device,
 946	 * returning an error if we don't find any parsable ranges.
 947	 */
 948	*map = r;
 949	of_dma_range_parser_init(&parser, node);
 950	for_each_of_range(&parser, &range) {
 951		pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 952			 range.bus_addr, range.cpu_addr, range.size);
 953		if (range.cpu_addr == OF_BAD_ADDR)
 954			continue;
 955		r->cpu_start = range.cpu_addr;
 956		r->dma_start = range.bus_addr;
 957		r->size = range.size;
 958		r++;
 959	}
 960out:
 961	of_node_put(node);
 962	return ret;
 963}
 964#endif /* CONFIG_HAS_DMA */
 965
 966/**
 967 * of_dma_get_max_cpu_address - Gets highest CPU address suitable for DMA
 968 * @np: The node to start searching from or NULL to start from the root
 969 *
 970 * Gets the highest CPU physical address that is addressable by all DMA masters
 971 * in the sub-tree pointed by np, or the whole tree if NULL is passed. If no
 972 * DMA constrained device is found, it returns PHYS_ADDR_MAX.
 973 */
 974phys_addr_t __init of_dma_get_max_cpu_address(struct device_node *np)
 975{
 976	phys_addr_t max_cpu_addr = PHYS_ADDR_MAX;
 977	struct of_range_parser parser;
 978	phys_addr_t subtree_max_addr;
 979	struct device_node *child;
 980	struct of_range range;
 981	const __be32 *ranges;
 982	u64 cpu_end = 0;
 983	int len;
 984
 985	if (!np)
 986		np = of_root;
 
 987
 988	ranges = of_get_property(np, "dma-ranges", &len);
 989	if (ranges && len) {
 990		of_dma_range_parser_init(&parser, np);
 991		for_each_of_range(&parser, &range)
 992			if (range.cpu_addr + range.size > cpu_end)
 993				cpu_end = range.cpu_addr + range.size - 1;
 994
 995		if (max_cpu_addr > cpu_end)
 996			max_cpu_addr = cpu_end;
 997	}
 998
 999	for_each_available_child_of_node(np, child) {
1000		subtree_max_addr = of_dma_get_max_cpu_address(child);
1001		if (max_cpu_addr > subtree_max_addr)
1002			max_cpu_addr = subtree_max_addr;
1003	}
 
 
1004
1005	return max_cpu_addr;
1006}
1007
1008/**
1009 * of_dma_is_coherent - Check if device is coherent
1010 * @np:	device node
1011 *
1012 * It returns true if "dma-coherent" property was found
1013 * for this device in the DT, or if DMA is coherent by
1014 * default for OF devices on the current platform and no
1015 * "dma-noncoherent" property was found for this device.
1016 */
1017bool of_dma_is_coherent(struct device_node *np)
1018{
1019	struct device_node *node;
1020	bool is_coherent = dma_default_coherent;
 
 
1021
1022	node = of_node_get(np);
1023
1024	while (node) {
1025		if (of_property_read_bool(node, "dma-coherent")) {
1026			is_coherent = true;
1027			break;
1028		}
1029		if (of_property_read_bool(node, "dma-noncoherent")) {
1030			is_coherent = false;
1031			break;
1032		}
1033		node = of_get_next_dma_parent(node);
1034	}
1035	of_node_put(node);
1036	return is_coherent;
1037}
1038EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1039
1040/**
1041 * of_mmio_is_nonposted - Check if device uses non-posted MMIO
1042 * @np:	device node
1043 *
1044 * Returns true if the "nonposted-mmio" property was found for
1045 * the device's bus.
1046 *
1047 * This is currently only enabled on builds that support Apple ARM devices, as
1048 * an optimization.
1049 */
1050static bool of_mmio_is_nonposted(struct device_node *np)
1051{
1052	struct device_node *parent;
1053	bool nonposted;
1054
1055	if (!IS_ENABLED(CONFIG_ARCH_APPLE))
1056		return false;
1057
1058	parent = of_get_parent(np);
1059	if (!parent)
1060		return false;
1061
1062	nonposted = of_property_read_bool(parent, "nonposted-mmio");
1063
1064	of_node_put(parent);
1065	return nonposted;
1066}
1067
1068static int __of_address_to_resource(struct device_node *dev, int index, int bar_no,
1069		struct resource *r)
 
1070{
1071	u64 taddr;
1072	const __be32	*addrp;
1073	u64		size;
1074	unsigned int	flags;
1075	const char	*name = NULL;
1076
1077	addrp = __of_get_address(dev, index, bar_no, &size, &flags);
1078	if (addrp == NULL)
1079		return -EINVAL;
1080
1081	/* Get optional "reg-names" property to add a name to a resource */
1082	if (index >= 0)
1083		of_property_read_string_index(dev, "reg-names",	index, &name);
1084
1085	if (flags & IORESOURCE_MEM)
1086		taddr = of_translate_address(dev, addrp);
1087	else if (flags & IORESOURCE_IO)
1088		taddr = of_translate_ioport(dev, addrp, size);
1089	else
1090		return -EINVAL;
1091
1092	if (taddr == OF_BAD_ADDR)
1093		return -EINVAL;
1094	memset(r, 0, sizeof(struct resource));
1095
1096	if (of_mmio_is_nonposted(dev))
1097		flags |= IORESOURCE_MEM_NONPOSTED;
1098
1099	r->start = taddr;
1100	r->end = taddr + size - 1;
 
 
 
 
 
1101	r->flags = flags;
1102	r->name = name ? name : dev->full_name;
1103
1104	return 0;
1105}
1106
1107/**
1108 * of_address_to_resource - Translate device tree address and return as resource
1109 * @dev:	Caller's Device Node
1110 * @index:	Index into the array
1111 * @r:		Pointer to resource array
1112 *
1113 * Returns -EINVAL if the range cannot be converted to resource.
1114 *
1115 * Note that if your address is a PIO address, the conversion will fail if
1116 * the physical address can't be internally converted to an IO token with
1117 * pci_address_to_pio(), that is because it's either called too early or it
1118 * can't be matched to any host bridge IO space
1119 */
1120int of_address_to_resource(struct device_node *dev, int index,
1121			   struct resource *r)
1122{
1123	return __of_address_to_resource(dev, index, -1, r);
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125EXPORT_SYMBOL_GPL(of_address_to_resource);
1126
1127int of_pci_address_to_resource(struct device_node *dev, int bar,
1128			       struct resource *r)
 
1129{
 
 
1130
1131	if (!IS_ENABLED(CONFIG_PCI))
1132		return -ENOSYS;
 
 
 
 
 
1133
1134	return __of_address_to_resource(dev, -1, bar, r);
1135}
1136EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
1137
1138/**
1139 * of_iomap - Maps the memory mapped IO for a given device_node
1140 * @np:		the device whose io range will be mapped
1141 * @index:	index of the io range
1142 *
1143 * Returns a pointer to the mapped memory
1144 */
1145void __iomem *of_iomap(struct device_node *np, int index)
1146{
1147	struct resource res;
1148
1149	if (of_address_to_resource(np, index, &res))
1150		return NULL;
1151
1152	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1153		return ioremap_np(res.start, resource_size(&res));
1154	else
1155		return ioremap(res.start, resource_size(&res));
1156}
1157EXPORT_SYMBOL(of_iomap);
1158
1159/*
1160 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
1161 *			   for a given device_node
1162 * @device:	the device whose io range will be mapped
1163 * @index:	index of the io range
1164 * @name:	name "override" for the memory region request or NULL
1165 *
1166 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
1167 * error code on failure. Usage example:
1168 *
1169 *	base = of_io_request_and_map(node, 0, "foo");
1170 *	if (IS_ERR(base))
1171 *		return PTR_ERR(base);
1172 */
1173void __iomem *of_io_request_and_map(struct device_node *np, int index,
1174				    const char *name)
1175{
1176	struct resource res;
1177	void __iomem *mem;
1178
1179	if (of_address_to_resource(np, index, &res))
1180		return IOMEM_ERR_PTR(-EINVAL);
1181
1182	if (!name)
1183		name = res.name;
1184	if (!request_mem_region(res.start, resource_size(&res), name))
1185		return IOMEM_ERR_PTR(-EBUSY);
1186
1187	if (res.flags & IORESOURCE_MEM_NONPOSTED)
1188		mem = ioremap_np(res.start, resource_size(&res));
1189	else
1190		mem = ioremap(res.start, resource_size(&res));
1191
1192	if (!mem) {
1193		release_mem_region(res.start, resource_size(&res));
1194		return IOMEM_ERR_PTR(-ENOMEM);
1195	}
1196
1197	return mem;
1198}
1199EXPORT_SYMBOL(of_io_request_and_map);