Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.6
 
 
   1
   2#include <linux/device.h>
 
   3#include <linux/io.h>
   4#include <linux/ioport.h>
 
   5#include <linux/module.h>
   6#include <linux/of_address.h>
 
   7#include <linux/pci_regs.h>
   8#include <linux/sizes.h>
   9#include <linux/slab.h>
  10#include <linux/string.h>
  11
  12/* Max address size we deal with */
  13#define OF_MAX_ADDR_CELLS	4
  14#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  15#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  16
  17static struct of_bus *of_match_bus(struct device_node *np);
  18static int __of_address_to_resource(struct device_node *dev,
  19		const __be32 *addrp, u64 size, unsigned int flags,
  20		const char *name, struct resource *r);
  21
  22/* Debug utility */
  23#ifdef DEBUG
  24static void of_dump_addr(const char *s, const __be32 *addr, int na)
  25{
  26	printk(KERN_DEBUG "%s", s);
  27	while (na--)
  28		printk(" %08x", be32_to_cpu(*(addr++)));
  29	printk("\n");
  30}
  31#else
  32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  33#endif
  34
  35/* Callbacks for bus specific translators */
  36struct of_bus {
  37	const char	*name;
  38	const char	*addresses;
  39	int		(*match)(struct device_node *parent);
  40	void		(*count_cells)(struct device_node *child,
  41				       int *addrc, int *sizec);
  42	u64		(*map)(__be32 *addr, const __be32 *range,
  43				int na, int ns, int pna);
  44	int		(*translate)(__be32 *addr, u64 offset, int na);
  45	unsigned int	(*get_flags)(const __be32 *addr);
  46};
  47
  48/*
  49 * Default translator (generic bus)
  50 */
  51
  52static void of_bus_default_count_cells(struct device_node *dev,
  53				       int *addrc, int *sizec)
  54{
  55	if (addrc)
  56		*addrc = of_n_addr_cells(dev);
  57	if (sizec)
  58		*sizec = of_n_size_cells(dev);
  59}
  60
  61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  62		int na, int ns, int pna)
  63{
  64	u64 cp, s, da;
  65
  66	cp = of_read_number(range, na);
  67	s  = of_read_number(range + na + pna, ns);
  68	da = of_read_number(addr, na);
  69
  70	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
  71		 (unsigned long long)cp, (unsigned long long)s,
  72		 (unsigned long long)da);
  73
  74	if (da < cp || da >= (cp + s))
  75		return OF_BAD_ADDR;
  76	return da - cp;
  77}
  78
  79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  80{
  81	u64 a = of_read_number(addr, na);
  82	memset(addr, 0, na * 4);
  83	a += offset;
  84	if (na > 1)
  85		addr[na - 2] = cpu_to_be32(a >> 32);
  86	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  87
  88	return 0;
  89}
  90
  91static unsigned int of_bus_default_get_flags(const __be32 *addr)
  92{
  93	return IORESOURCE_MEM;
  94}
  95
  96#ifdef CONFIG_OF_ADDRESS_PCI
  97/*
  98 * PCI bus specific translator
  99 */
 100
 101static int of_bus_pci_match(struct device_node *np)
 102{
 103	/*
 104 	 * "pciex" is PCI Express
 105	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 106	 * "ht" is hypertransport
 107	 */
 108	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
 109		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
 110}
 111
 112static void of_bus_pci_count_cells(struct device_node *np,
 113				   int *addrc, int *sizec)
 114{
 115	if (addrc)
 116		*addrc = 3;
 117	if (sizec)
 118		*sizec = 2;
 119}
 120
 121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 122{
 123	unsigned int flags = 0;
 124	u32 w = be32_to_cpup(addr);
 125
 126	switch((w >> 24) & 0x03) {
 127	case 0x01:
 128		flags |= IORESOURCE_IO;
 129		break;
 130	case 0x02: /* 32 bits */
 131	case 0x03: /* 64 bits */
 132		flags |= IORESOURCE_MEM;
 133		break;
 134	}
 135	if (w & 0x40000000)
 136		flags |= IORESOURCE_PREFETCH;
 137	return flags;
 138}
 139
 140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 141		int pna)
 142{
 143	u64 cp, s, da;
 144	unsigned int af, rf;
 145
 146	af = of_bus_pci_get_flags(addr);
 147	rf = of_bus_pci_get_flags(range);
 148
 149	/* Check address type match */
 150	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 151		return OF_BAD_ADDR;
 152
 153	/* Read address values, skipping high cell */
 154	cp = of_read_number(range + 1, na - 1);
 155	s  = of_read_number(range + na + pna, ns);
 156	da = of_read_number(addr + 1, na - 1);
 157
 158	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
 159		 (unsigned long long)cp, (unsigned long long)s,
 160		 (unsigned long long)da);
 161
 162	if (da < cp || da >= (cp + s))
 163		return OF_BAD_ADDR;
 164	return da - cp;
 165}
 166
 167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 168{
 169	return of_bus_default_translate(addr + 1, offset, na - 1);
 170}
 171#endif /* CONFIG_OF_ADDRESS_PCI */
 172
 173#ifdef CONFIG_PCI
 174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 175			unsigned int *flags)
 176{
 177	const __be32 *prop;
 178	unsigned int psize;
 179	struct device_node *parent;
 180	struct of_bus *bus;
 181	int onesize, i, na, ns;
 182
 183	/* Get parent & match bus type */
 184	parent = of_get_parent(dev);
 185	if (parent == NULL)
 186		return NULL;
 187	bus = of_match_bus(parent);
 188	if (strcmp(bus->name, "pci")) {
 189		of_node_put(parent);
 190		return NULL;
 191	}
 192	bus->count_cells(dev, &na, &ns);
 193	of_node_put(parent);
 194	if (!OF_CHECK_ADDR_COUNT(na))
 195		return NULL;
 196
 197	/* Get "reg" or "assigned-addresses" property */
 198	prop = of_get_property(dev, bus->addresses, &psize);
 199	if (prop == NULL)
 200		return NULL;
 201	psize /= 4;
 202
 203	onesize = na + ns;
 204	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 205		u32 val = be32_to_cpu(prop[0]);
 206		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 207			if (size)
 208				*size = of_read_number(prop + na, ns);
 209			if (flags)
 210				*flags = bus->get_flags(prop);
 211			return prop;
 212		}
 213	}
 214	return NULL;
 215}
 216EXPORT_SYMBOL(of_get_pci_address);
 217
 218int of_pci_address_to_resource(struct device_node *dev, int bar,
 219			       struct resource *r)
 220{
 221	const __be32	*addrp;
 222	u64		size;
 223	unsigned int	flags;
 224
 225	addrp = of_get_pci_address(dev, bar, &size, &flags);
 226	if (addrp == NULL)
 227		return -EINVAL;
 228	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 229}
 230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 231
 232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 233				struct device_node *node)
 234{
 235	const int na = 3, ns = 2;
 236	int rlen;
 237
 238	parser->node = node;
 239	parser->pna = of_n_addr_cells(node);
 240	parser->np = parser->pna + na + ns;
 241
 242	parser->range = of_get_property(node, "ranges", &rlen);
 243	if (parser->range == NULL)
 244		return -ENOENT;
 245
 246	parser->end = parser->range + rlen / sizeof(__be32);
 247
 248	return 0;
 249}
 
 
 
 
 
 
 250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 251
 
 
 
 
 
 
 
 252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 253						struct of_pci_range *range)
 254{
 255	const int na = 3, ns = 2;
 256
 257	if (!range)
 258		return NULL;
 259
 260	if (!parser->range || parser->range + parser->np > parser->end)
 261		return NULL;
 262
 263	range->pci_space = parser->range[0];
 264	range->flags = of_bus_pci_get_flags(parser->range);
 265	range->pci_addr = of_read_number(parser->range + 1, ns);
 266	range->cpu_addr = of_translate_address(parser->node,
 267				parser->range + na);
 268	range->size = of_read_number(parser->range + parser->pna + na, ns);
 269
 270	parser->range += parser->np;
 271
 272	/* Now consume following elements while they are contiguous */
 273	while (parser->range + parser->np <= parser->end) {
 274		u32 flags, pci_space;
 275		u64 pci_addr, cpu_addr, size;
 276
 277		pci_space = be32_to_cpup(parser->range);
 278		flags = of_bus_pci_get_flags(parser->range);
 279		pci_addr = of_read_number(parser->range + 1, ns);
 280		cpu_addr = of_translate_address(parser->node,
 281				parser->range + na);
 282		size = of_read_number(parser->range + parser->pna + na, ns);
 283
 284		if (flags != range->flags)
 285			break;
 286		if (pci_addr != range->pci_addr + range->size ||
 287		    cpu_addr != range->cpu_addr + range->size)
 288			break;
 289
 290		range->size += size;
 291		parser->range += parser->np;
 292	}
 293
 294	return range;
 295}
 296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 297
 298/*
 299 * of_pci_range_to_resource - Create a resource from an of_pci_range
 300 * @range:	the PCI range that describes the resource
 301 * @np:		device node where the range belongs to
 302 * @res:	pointer to a valid resource that will be updated to
 303 *              reflect the values contained in the range.
 304 *
 305 * Returns EINVAL if the range cannot be converted to resource.
 306 *
 307 * Note that if the range is an IO range, the resource will be converted
 308 * using pci_address_to_pio() which can fail if it is called too early or
 309 * if the range cannot be matched to any host bridge IO space (our case here).
 310 * To guard against that we try to register the IO range first.
 311 * If that fails we know that pci_address_to_pio() will do too.
 312 */
 313int of_pci_range_to_resource(struct of_pci_range *range,
 314			     struct device_node *np, struct resource *res)
 315{
 316	int err;
 317	res->flags = range->flags;
 318	res->parent = res->child = res->sibling = NULL;
 319	res->name = np->full_name;
 320
 321	if (res->flags & IORESOURCE_IO) {
 322		unsigned long port;
 323		err = pci_register_io_range(range->cpu_addr, range->size);
 
 324		if (err)
 325			goto invalid_range;
 326		port = pci_address_to_pio(range->cpu_addr);
 327		if (port == (unsigned long)-1) {
 328			err = -EINVAL;
 329			goto invalid_range;
 330		}
 331		res->start = port;
 332	} else {
 333		if ((sizeof(resource_size_t) < 8) &&
 334		    upper_32_bits(range->cpu_addr)) {
 335			err = -EINVAL;
 336			goto invalid_range;
 337		}
 338
 339		res->start = range->cpu_addr;
 340	}
 341	res->end = res->start + range->size - 1;
 342	return 0;
 343
 344invalid_range:
 345	res->start = (resource_size_t)OF_BAD_ADDR;
 346	res->end = (resource_size_t)OF_BAD_ADDR;
 347	return err;
 348}
 
 349#endif /* CONFIG_PCI */
 350
 351/*
 352 * ISA bus specific translator
 353 */
 354
 355static int of_bus_isa_match(struct device_node *np)
 356{
 357	return !strcmp(np->name, "isa");
 358}
 359
 360static void of_bus_isa_count_cells(struct device_node *child,
 361				   int *addrc, int *sizec)
 362{
 363	if (addrc)
 364		*addrc = 2;
 365	if (sizec)
 366		*sizec = 1;
 367}
 368
 369static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 370		int pna)
 371{
 372	u64 cp, s, da;
 373
 374	/* Check address type match */
 375	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 376		return OF_BAD_ADDR;
 377
 378	/* Read address values, skipping high cell */
 379	cp = of_read_number(range + 1, na - 1);
 380	s  = of_read_number(range + na + pna, ns);
 381	da = of_read_number(addr + 1, na - 1);
 382
 383	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
 384		 (unsigned long long)cp, (unsigned long long)s,
 385		 (unsigned long long)da);
 386
 387	if (da < cp || da >= (cp + s))
 388		return OF_BAD_ADDR;
 389	return da - cp;
 390}
 391
 392static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 393{
 394	return of_bus_default_translate(addr + 1, offset, na - 1);
 395}
 396
 397static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 398{
 399	unsigned int flags = 0;
 400	u32 w = be32_to_cpup(addr);
 401
 402	if (w & 1)
 403		flags |= IORESOURCE_IO;
 404	else
 405		flags |= IORESOURCE_MEM;
 406	return flags;
 407}
 408
 409/*
 410 * Array of bus specific translators
 411 */
 412
 413static struct of_bus of_busses[] = {
 414#ifdef CONFIG_OF_ADDRESS_PCI
 415	/* PCI */
 416	{
 417		.name = "pci",
 418		.addresses = "assigned-addresses",
 419		.match = of_bus_pci_match,
 420		.count_cells = of_bus_pci_count_cells,
 421		.map = of_bus_pci_map,
 422		.translate = of_bus_pci_translate,
 423		.get_flags = of_bus_pci_get_flags,
 424	},
 425#endif /* CONFIG_OF_ADDRESS_PCI */
 426	/* ISA */
 427	{
 428		.name = "isa",
 429		.addresses = "reg",
 430		.match = of_bus_isa_match,
 431		.count_cells = of_bus_isa_count_cells,
 432		.map = of_bus_isa_map,
 433		.translate = of_bus_isa_translate,
 434		.get_flags = of_bus_isa_get_flags,
 435	},
 436	/* Default */
 437	{
 438		.name = "default",
 439		.addresses = "reg",
 440		.match = NULL,
 441		.count_cells = of_bus_default_count_cells,
 442		.map = of_bus_default_map,
 443		.translate = of_bus_default_translate,
 444		.get_flags = of_bus_default_get_flags,
 445	},
 446};
 447
 448static struct of_bus *of_match_bus(struct device_node *np)
 449{
 450	int i;
 451
 452	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 453		if (!of_busses[i].match || of_busses[i].match(np))
 454			return &of_busses[i];
 455	BUG();
 456	return NULL;
 457}
 458
 459static int of_empty_ranges_quirk(struct device_node *np)
 460{
 461	if (IS_ENABLED(CONFIG_PPC)) {
 462		/* To save cycles, we cache the result for global "Mac" setting */
 463		static int quirk_state = -1;
 464
 465		/* PA-SEMI sdc DT bug */
 466		if (of_device_is_compatible(np, "1682m-sdc"))
 467			return true;
 468
 469		/* Make quirk cached */
 470		if (quirk_state < 0)
 471			quirk_state =
 472				of_machine_is_compatible("Power Macintosh") ||
 473				of_machine_is_compatible("MacRISC");
 474		return quirk_state;
 475	}
 476	return false;
 477}
 478
 479static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 480			    struct of_bus *pbus, __be32 *addr,
 481			    int na, int ns, int pna, const char *rprop)
 482{
 483	const __be32 *ranges;
 484	unsigned int rlen;
 485	int rone;
 486	u64 offset = OF_BAD_ADDR;
 487
 488	/*
 489	 * Normally, an absence of a "ranges" property means we are
 490	 * crossing a non-translatable boundary, and thus the addresses
 491	 * below the current cannot be converted to CPU physical ones.
 492	 * Unfortunately, while this is very clear in the spec, it's not
 493	 * what Apple understood, and they do have things like /uni-n or
 494	 * /ht nodes with no "ranges" property and a lot of perfectly
 495	 * useable mapped devices below them. Thus we treat the absence of
 496	 * "ranges" as equivalent to an empty "ranges" property which means
 497	 * a 1:1 translation at that level. It's up to the caller not to try
 498	 * to translate addresses that aren't supposed to be translated in
 499	 * the first place. --BenH.
 500	 *
 501	 * As far as we know, this damage only exists on Apple machines, so
 502	 * This code is only enabled on powerpc. --gcl
 503	 */
 504	ranges = of_get_property(parent, rprop, &rlen);
 505	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 506		pr_debug("OF: no ranges; cannot translate\n");
 507		return 1;
 508	}
 509	if (ranges == NULL || rlen == 0) {
 510		offset = of_read_number(addr, na);
 511		memset(addr, 0, pna * 4);
 512		pr_debug("OF: empty ranges; 1:1 translation\n");
 513		goto finish;
 514	}
 515
 516	pr_debug("OF: walking ranges...\n");
 517
 518	/* Now walk through the ranges */
 519	rlen /= 4;
 520	rone = na + pna + ns;
 521	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 522		offset = bus->map(addr, ranges, na, ns, pna);
 523		if (offset != OF_BAD_ADDR)
 524			break;
 525	}
 526	if (offset == OF_BAD_ADDR) {
 527		pr_debug("OF: not found !\n");
 528		return 1;
 529	}
 530	memcpy(addr, ranges + na, 4 * pna);
 531
 532 finish:
 533	of_dump_addr("OF: parent translation for:", addr, pna);
 534	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
 535
 536	/* Translate it into parent bus space */
 537	return pbus->translate(addr, offset, pna);
 538}
 539
 540/*
 541 * Translate an address from the device-tree into a CPU physical address,
 542 * this walks up the tree and applies the various bus mappings on the
 543 * way.
 544 *
 545 * Note: We consider that crossing any level with #size-cells == 0 to mean
 546 * that translation is impossible (that is we are not dealing with a value
 547 * that can be mapped to a cpu physical address). This is not really specified
 548 * that way, but this is traditionally the way IBM at least do things
 
 
 
 
 549 */
 550static u64 __of_translate_address(struct device_node *dev,
 551				  const __be32 *in_addr, const char *rprop)
 
 
 552{
 553	struct device_node *parent = NULL;
 554	struct of_bus *bus, *pbus;
 555	__be32 addr[OF_MAX_ADDR_CELLS];
 556	int na, ns, pna, pns;
 557	u64 result = OF_BAD_ADDR;
 558
 559	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
 560
 561	/* Increase refcount at current level */
 562	of_node_get(dev);
 563
 
 564	/* Get parent & match bus type */
 565	parent = of_get_parent(dev);
 566	if (parent == NULL)
 567		goto bail;
 568	bus = of_match_bus(parent);
 569
 570	/* Count address cells & copy address locally */
 571	bus->count_cells(dev, &na, &ns);
 572	if (!OF_CHECK_COUNTS(na, ns)) {
 573		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
 574		goto bail;
 575	}
 576	memcpy(addr, in_addr, na * 4);
 577
 578	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
 579	    bus->name, na, ns, of_node_full_name(parent));
 580	of_dump_addr("OF: translating address:", addr, na);
 581
 582	/* Translate */
 583	for (;;) {
 
 
 584		/* Switch to parent bus */
 585		of_node_put(dev);
 586		dev = parent;
 587		parent = of_get_parent(dev);
 588
 589		/* If root, we have finished */
 590		if (parent == NULL) {
 591			pr_debug("OF: reached root node\n");
 592			result = of_read_number(addr, na);
 593			break;
 594		}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 596		/* Get new parent bus and counts */
 597		pbus = of_match_bus(parent);
 598		pbus->count_cells(dev, &pna, &pns);
 599		if (!OF_CHECK_COUNTS(pna, pns)) {
 600			pr_err("prom_parse: Bad cell count for %s\n",
 601			       of_node_full_name(dev));
 602			break;
 603		}
 604
 605		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
 606		    pbus->name, pna, pns, of_node_full_name(parent));
 607
 608		/* Apply bus translation */
 609		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 610			break;
 611
 612		/* Complete the move up one level */
 613		na = pna;
 614		ns = pns;
 615		bus = pbus;
 616
 617		of_dump_addr("OF: one level translation:", addr, na);
 618	}
 619 bail:
 620	of_node_put(parent);
 621	of_node_put(dev);
 622
 623	return result;
 624}
 625
 626u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 627{
 628	return __of_translate_address(dev, in_addr, "ranges");
 
 
 
 
 
 
 
 
 
 
 629}
 630EXPORT_SYMBOL(of_translate_address);
 631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 633{
 634	return __of_translate_address(dev, in_addr, "dma-ranges");
 
 
 
 
 
 
 
 
 
 
 
 635}
 636EXPORT_SYMBOL(of_translate_dma_address);
 637
 638const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 639		    unsigned int *flags)
 640{
 641	const __be32 *prop;
 642	unsigned int psize;
 643	struct device_node *parent;
 644	struct of_bus *bus;
 645	int onesize, i, na, ns;
 646
 647	/* Get parent & match bus type */
 648	parent = of_get_parent(dev);
 649	if (parent == NULL)
 650		return NULL;
 651	bus = of_match_bus(parent);
 652	bus->count_cells(dev, &na, &ns);
 653	of_node_put(parent);
 654	if (!OF_CHECK_ADDR_COUNT(na))
 655		return NULL;
 656
 657	/* Get "reg" or "assigned-addresses" property */
 658	prop = of_get_property(dev, bus->addresses, &psize);
 659	if (prop == NULL)
 660		return NULL;
 661	psize /= 4;
 662
 663	onesize = na + ns;
 664	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 665		if (i == index) {
 666			if (size)
 667				*size = of_read_number(prop + na, ns);
 668			if (flags)
 669				*flags = bus->get_flags(prop);
 670			return prop;
 671		}
 672	return NULL;
 673}
 674EXPORT_SYMBOL(of_get_address);
 675
 676#ifdef PCI_IOBASE
 677struct io_range {
 678	struct list_head list;
 679	phys_addr_t start;
 680	resource_size_t size;
 681};
 682
 683static LIST_HEAD(io_range_list);
 684static DEFINE_SPINLOCK(io_range_lock);
 685#endif
 686
 687/*
 688 * Record the PCI IO range (expressed as CPU physical address + size).
 689 * Return a negative value if an error has occured, zero otherwise
 690 */
 691int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
 692{
 693	int err = 0;
 694
 695#ifdef PCI_IOBASE
 696	struct io_range *range;
 697	resource_size_t allocated_size = 0;
 698
 699	/* check if the range hasn't been previously recorded */
 700	spin_lock(&io_range_lock);
 701	list_for_each_entry(range, &io_range_list, list) {
 702		if (addr >= range->start && addr + size <= range->start + size) {
 703			/* range already registered, bail out */
 704			goto end_register;
 705		}
 706		allocated_size += range->size;
 707	}
 708
 709	/* range not registed yet, check for available space */
 710	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
 711		/* if it's too big check if 64K space can be reserved */
 712		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
 713			err = -E2BIG;
 714			goto end_register;
 715		}
 716
 717		size = SZ_64K;
 718		pr_warn("Requested IO range too big, new size set to 64K\n");
 719	}
 720
 721	/* add the range to the list */
 722	range = kzalloc(sizeof(*range), GFP_ATOMIC);
 723	if (!range) {
 724		err = -ENOMEM;
 725		goto end_register;
 726	}
 727
 728	range->start = addr;
 729	range->size = size;
 730
 731	list_add_tail(&range->list, &io_range_list);
 732
 733end_register:
 734	spin_unlock(&io_range_lock);
 735#endif
 736
 737	return err;
 738}
 739
 740phys_addr_t pci_pio_to_address(unsigned long pio)
 741{
 742	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
 743
 744#ifdef PCI_IOBASE
 745	struct io_range *range;
 746	resource_size_t allocated_size = 0;
 747
 748	if (pio > IO_SPACE_LIMIT)
 749		return address;
 750
 751	spin_lock(&io_range_lock);
 752	list_for_each_entry(range, &io_range_list, list) {
 753		if (pio >= allocated_size && pio < allocated_size + range->size) {
 754			address = range->start + pio - allocated_size;
 755			break;
 756		}
 757		allocated_size += range->size;
 758	}
 759	spin_unlock(&io_range_lock);
 760#endif
 761
 762	return address;
 763}
 764
 765unsigned long __weak pci_address_to_pio(phys_addr_t address)
 766{
 767#ifdef PCI_IOBASE
 768	struct io_range *res;
 769	resource_size_t offset = 0;
 770	unsigned long addr = -1;
 771
 772	spin_lock(&io_range_lock);
 773	list_for_each_entry(res, &io_range_list, list) {
 774		if (address >= res->start && address < res->start + res->size) {
 775			addr = address - res->start + offset;
 776			break;
 777		}
 778		offset += res->size;
 
 
 779	}
 780	spin_unlock(&io_range_lock);
 781
 782	return addr;
 783#else
 784	if (address > IO_SPACE_LIMIT)
 785		return (unsigned long)-1;
 786
 787	return (unsigned long) address;
 788#endif
 789}
 790
 791static int __of_address_to_resource(struct device_node *dev,
 792		const __be32 *addrp, u64 size, unsigned int flags,
 793		const char *name, struct resource *r)
 794{
 795	u64 taddr;
 796
 797	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
 
 
 
 
 798		return -EINVAL;
 799	taddr = of_translate_address(dev, addrp);
 800	if (taddr == OF_BAD_ADDR)
 801		return -EINVAL;
 802	memset(r, 0, sizeof(struct resource));
 803	if (flags & IORESOURCE_IO) {
 804		unsigned long port;
 805		port = pci_address_to_pio(taddr);
 806		if (port == (unsigned long)-1)
 807			return -EINVAL;
 808		r->start = port;
 809		r->end = port + size - 1;
 810	} else {
 811		r->start = taddr;
 812		r->end = taddr + size - 1;
 813	}
 814	r->flags = flags;
 815	r->name = name ? name : dev->full_name;
 816
 817	return 0;
 818}
 819
 820/**
 821 * of_address_to_resource - Translate device tree address and return as resource
 822 *
 823 * Note that if your address is a PIO address, the conversion will fail if
 824 * the physical address can't be internally converted to an IO token with
 825 * pci_address_to_pio(), that is because it's either called to early or it
 826 * can't be matched to any host bridge IO space
 827 */
 828int of_address_to_resource(struct device_node *dev, int index,
 829			   struct resource *r)
 830{
 831	const __be32	*addrp;
 832	u64		size;
 833	unsigned int	flags;
 834	const char	*name = NULL;
 835
 836	addrp = of_get_address(dev, index, &size, &flags);
 837	if (addrp == NULL)
 838		return -EINVAL;
 839
 840	/* Get optional "reg-names" property to add a name to a resource */
 841	of_property_read_string_index(dev, "reg-names",	index, &name);
 842
 843	return __of_address_to_resource(dev, addrp, size, flags, name, r);
 844}
 845EXPORT_SYMBOL_GPL(of_address_to_resource);
 846
 847struct device_node *of_find_matching_node_by_address(struct device_node *from,
 848					const struct of_device_id *matches,
 849					u64 base_address)
 850{
 851	struct device_node *dn = of_find_matching_node(from, matches);
 852	struct resource res;
 853
 854	while (dn) {
 855		if (!of_address_to_resource(dn, 0, &res) &&
 856		    res.start == base_address)
 857			return dn;
 858
 859		dn = of_find_matching_node(dn, matches);
 860	}
 861
 862	return NULL;
 863}
 864
 865
 866/**
 867 * of_iomap - Maps the memory mapped IO for a given device_node
 868 * @device:	the device whose io range will be mapped
 869 * @index:	index of the io range
 870 *
 871 * Returns a pointer to the mapped memory
 872 */
 873void __iomem *of_iomap(struct device_node *np, int index)
 874{
 875	struct resource res;
 876
 877	if (of_address_to_resource(np, index, &res))
 878		return NULL;
 879
 880	return ioremap(res.start, resource_size(&res));
 881}
 882EXPORT_SYMBOL(of_iomap);
 883
 884/*
 885 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 886 *			   for a given device_node
 887 * @device:	the device whose io range will be mapped
 888 * @index:	index of the io range
 889 * @name:	name of the resource
 890 *
 891 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 892 * error code on failure. Usage example:
 893 *
 894 *	base = of_io_request_and_map(node, 0, "foo");
 895 *	if (IS_ERR(base))
 896 *		return PTR_ERR(base);
 897 */
 898void __iomem *of_io_request_and_map(struct device_node *np, int index,
 899					const char *name)
 900{
 901	struct resource res;
 902	void __iomem *mem;
 903
 904	if (of_address_to_resource(np, index, &res))
 905		return IOMEM_ERR_PTR(-EINVAL);
 906
 
 
 907	if (!request_mem_region(res.start, resource_size(&res), name))
 908		return IOMEM_ERR_PTR(-EBUSY);
 909
 910	mem = ioremap(res.start, resource_size(&res));
 911	if (!mem) {
 912		release_mem_region(res.start, resource_size(&res));
 913		return IOMEM_ERR_PTR(-ENOMEM);
 914	}
 915
 916	return mem;
 917}
 918EXPORT_SYMBOL(of_io_request_and_map);
 919
 920/**
 921 * of_dma_get_range - Get DMA range info
 922 * @np:		device node to get DMA range info
 923 * @dma_addr:	pointer to store initial DMA address of DMA range
 924 * @paddr:	pointer to store initial CPU address of DMA range
 925 * @size:	pointer to store size of DMA range
 926 *
 927 * Look in bottom up direction for the first "dma-ranges" property
 928 * and parse it.
 929 *  dma-ranges format:
 930 *	DMA addr (dma_addr)	: naddr cells
 931 *	CPU addr (phys_addr_t)	: pna cells
 932 *	size			: nsize cells
 933 *
 934 * It returns -ENODEV if "dma-ranges" property was not found
 935 * for this device in DT.
 936 */
 937int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 938{
 939	struct device_node *node = of_node_get(np);
 940	const __be32 *ranges = NULL;
 941	int len, naddr, nsize, pna;
 942	int ret = 0;
 943	u64 dmaaddr;
 944
 945	if (!node)
 946		return -EINVAL;
 947
 948	while (1) {
 
 
 949		naddr = of_n_addr_cells(node);
 950		nsize = of_n_size_cells(node);
 951		node = of_get_next_parent(node);
 
 
 
 
 952		if (!node)
 953			break;
 954
 955		ranges = of_get_property(node, "dma-ranges", &len);
 956
 957		/* Ignore empty ranges, they imply no translation required */
 958		if (ranges && len > 0)
 959			break;
 960
 961		/*
 962		 * At least empty ranges has to be defined for parent node if
 963		 * DMA is supported
 964		 */
 965		if (!ranges)
 966			break;
 967	}
 968
 969	if (!ranges) {
 970		pr_debug("%s: no dma-ranges found for node(%s)\n",
 971			 __func__, np->full_name);
 972		ret = -ENODEV;
 973		goto out;
 974	}
 975
 976	len /= sizeof(u32);
 977
 978	pna = of_n_addr_cells(node);
 979
 980	/* dma-ranges format:
 981	 * DMA addr	: naddr cells
 982	 * CPU addr	: pna cells
 983	 * size		: nsize cells
 984	 */
 985	dmaaddr = of_read_number(ranges, naddr);
 986	*paddr = of_translate_dma_address(np, ranges);
 987	if (*paddr == OF_BAD_ADDR) {
 988		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
 989		       __func__, dma_addr, np->full_name);
 990		ret = -EINVAL;
 991		goto out;
 992	}
 993	*dma_addr = dmaaddr;
 994
 995	*size = of_read_number(ranges + naddr + pna, nsize);
 996
 997	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 998		 *dma_addr, *paddr, *size);
 999
1000out:
1001	of_node_put(node);
1002
1003	return ret;
1004}
1005EXPORT_SYMBOL_GPL(of_dma_get_range);
1006
1007/**
1008 * of_dma_is_coherent - Check if device is coherent
1009 * @np:	device node
1010 *
1011 * It returns true if "dma-coherent" property was found
1012 * for this device in DT.
1013 */
1014bool of_dma_is_coherent(struct device_node *np)
1015{
1016	struct device_node *node = of_node_get(np);
1017
1018	while (node) {
1019		if (of_property_read_bool(node, "dma-coherent")) {
1020			of_node_put(node);
1021			return true;
1022		}
1023		node = of_get_next_parent(node);
1024	}
1025	of_node_put(node);
1026	return false;
1027}
1028EXPORT_SYMBOL_GPL(of_dma_is_coherent);
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#define pr_fmt(fmt)	"OF: " fmt
   3
   4#include <linux/device.h>
   5#include <linux/fwnode.h>
   6#include <linux/io.h>
   7#include <linux/ioport.h>
   8#include <linux/logic_pio.h>
   9#include <linux/module.h>
  10#include <linux/of_address.h>
  11#include <linux/pci.h>
  12#include <linux/pci_regs.h>
  13#include <linux/sizes.h>
  14#include <linux/slab.h>
  15#include <linux/string.h>
  16
  17/* Max address size we deal with */
  18#define OF_MAX_ADDR_CELLS	4
  19#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
  20#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
  21
  22static struct of_bus *of_match_bus(struct device_node *np);
  23static int __of_address_to_resource(struct device_node *dev,
  24		const __be32 *addrp, u64 size, unsigned int flags,
  25		const char *name, struct resource *r);
  26
  27/* Debug utility */
  28#ifdef DEBUG
  29static void of_dump_addr(const char *s, const __be32 *addr, int na)
  30{
  31	pr_debug("%s", s);
  32	while (na--)
  33		pr_cont(" %08x", be32_to_cpu(*(addr++)));
  34	pr_cont("\n");
  35}
  36#else
  37static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
  38#endif
  39
  40/* Callbacks for bus specific translators */
  41struct of_bus {
  42	const char	*name;
  43	const char	*addresses;
  44	int		(*match)(struct device_node *parent);
  45	void		(*count_cells)(struct device_node *child,
  46				       int *addrc, int *sizec);
  47	u64		(*map)(__be32 *addr, const __be32 *range,
  48				int na, int ns, int pna);
  49	int		(*translate)(__be32 *addr, u64 offset, int na);
  50	unsigned int	(*get_flags)(const __be32 *addr);
  51};
  52
  53/*
  54 * Default translator (generic bus)
  55 */
  56
  57static void of_bus_default_count_cells(struct device_node *dev,
  58				       int *addrc, int *sizec)
  59{
  60	if (addrc)
  61		*addrc = of_n_addr_cells(dev);
  62	if (sizec)
  63		*sizec = of_n_size_cells(dev);
  64}
  65
  66static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
  67		int na, int ns, int pna)
  68{
  69	u64 cp, s, da;
  70
  71	cp = of_read_number(range, na);
  72	s  = of_read_number(range + na + pna, ns);
  73	da = of_read_number(addr, na);
  74
  75	pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
  76		 (unsigned long long)cp, (unsigned long long)s,
  77		 (unsigned long long)da);
  78
  79	if (da < cp || da >= (cp + s))
  80		return OF_BAD_ADDR;
  81	return da - cp;
  82}
  83
  84static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
  85{
  86	u64 a = of_read_number(addr, na);
  87	memset(addr, 0, na * 4);
  88	a += offset;
  89	if (na > 1)
  90		addr[na - 2] = cpu_to_be32(a >> 32);
  91	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
  92
  93	return 0;
  94}
  95
  96static unsigned int of_bus_default_get_flags(const __be32 *addr)
  97{
  98	return IORESOURCE_MEM;
  99}
 100
 101#ifdef CONFIG_PCI
 102/*
 103 * PCI bus specific translator
 104 */
 105
 106static int of_bus_pci_match(struct device_node *np)
 107{
 108	/*
 109 	 * "pciex" is PCI Express
 110	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
 111	 * "ht" is hypertransport
 112	 */
 113	return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
 114		of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
 115}
 116
 117static void of_bus_pci_count_cells(struct device_node *np,
 118				   int *addrc, int *sizec)
 119{
 120	if (addrc)
 121		*addrc = 3;
 122	if (sizec)
 123		*sizec = 2;
 124}
 125
 126static unsigned int of_bus_pci_get_flags(const __be32 *addr)
 127{
 128	unsigned int flags = 0;
 129	u32 w = be32_to_cpup(addr);
 130
 131	switch((w >> 24) & 0x03) {
 132	case 0x01:
 133		flags |= IORESOURCE_IO;
 134		break;
 135	case 0x02: /* 32 bits */
 136	case 0x03: /* 64 bits */
 137		flags |= IORESOURCE_MEM;
 138		break;
 139	}
 140	if (w & 0x40000000)
 141		flags |= IORESOURCE_PREFETCH;
 142	return flags;
 143}
 144
 145static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
 146		int pna)
 147{
 148	u64 cp, s, da;
 149	unsigned int af, rf;
 150
 151	af = of_bus_pci_get_flags(addr);
 152	rf = of_bus_pci_get_flags(range);
 153
 154	/* Check address type match */
 155	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
 156		return OF_BAD_ADDR;
 157
 158	/* Read address values, skipping high cell */
 159	cp = of_read_number(range + 1, na - 1);
 160	s  = of_read_number(range + na + pna, ns);
 161	da = of_read_number(addr + 1, na - 1);
 162
 163	pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
 164		 (unsigned long long)cp, (unsigned long long)s,
 165		 (unsigned long long)da);
 166
 167	if (da < cp || da >= (cp + s))
 168		return OF_BAD_ADDR;
 169	return da - cp;
 170}
 171
 172static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
 173{
 174	return of_bus_default_translate(addr + 1, offset, na - 1);
 175}
 
 176
 
 177const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
 178			unsigned int *flags)
 179{
 180	const __be32 *prop;
 181	unsigned int psize;
 182	struct device_node *parent;
 183	struct of_bus *bus;
 184	int onesize, i, na, ns;
 185
 186	/* Get parent & match bus type */
 187	parent = of_get_parent(dev);
 188	if (parent == NULL)
 189		return NULL;
 190	bus = of_match_bus(parent);
 191	if (strcmp(bus->name, "pci")) {
 192		of_node_put(parent);
 193		return NULL;
 194	}
 195	bus->count_cells(dev, &na, &ns);
 196	of_node_put(parent);
 197	if (!OF_CHECK_ADDR_COUNT(na))
 198		return NULL;
 199
 200	/* Get "reg" or "assigned-addresses" property */
 201	prop = of_get_property(dev, bus->addresses, &psize);
 202	if (prop == NULL)
 203		return NULL;
 204	psize /= 4;
 205
 206	onesize = na + ns;
 207	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
 208		u32 val = be32_to_cpu(prop[0]);
 209		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
 210			if (size)
 211				*size = of_read_number(prop + na, ns);
 212			if (flags)
 213				*flags = bus->get_flags(prop);
 214			return prop;
 215		}
 216	}
 217	return NULL;
 218}
 219EXPORT_SYMBOL(of_get_pci_address);
 220
 221int of_pci_address_to_resource(struct device_node *dev, int bar,
 222			       struct resource *r)
 223{
 224	const __be32	*addrp;
 225	u64		size;
 226	unsigned int	flags;
 227
 228	addrp = of_get_pci_address(dev, bar, &size, &flags);
 229	if (addrp == NULL)
 230		return -EINVAL;
 231	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
 232}
 233EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
 234
 235static int parser_init(struct of_pci_range_parser *parser,
 236			struct device_node *node, const char *name)
 237{
 238	const int na = 3, ns = 2;
 239	int rlen;
 240
 241	parser->node = node;
 242	parser->pna = of_n_addr_cells(node);
 243	parser->np = parser->pna + na + ns;
 244
 245	parser->range = of_get_property(node, name, &rlen);
 246	if (parser->range == NULL)
 247		return -ENOENT;
 248
 249	parser->end = parser->range + rlen / sizeof(__be32);
 250
 251	return 0;
 252}
 253
 254int of_pci_range_parser_init(struct of_pci_range_parser *parser,
 255				struct device_node *node)
 256{
 257	return parser_init(parser, node, "ranges");
 258}
 259EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
 260
 261int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
 262				struct device_node *node)
 263{
 264	return parser_init(parser, node, "dma-ranges");
 265}
 266EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
 267
 268struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
 269						struct of_pci_range *range)
 270{
 271	const int na = 3, ns = 2;
 272
 273	if (!range)
 274		return NULL;
 275
 276	if (!parser->range || parser->range + parser->np > parser->end)
 277		return NULL;
 278
 279	range->pci_space = be32_to_cpup(parser->range);
 280	range->flags = of_bus_pci_get_flags(parser->range);
 281	range->pci_addr = of_read_number(parser->range + 1, ns);
 282	range->cpu_addr = of_translate_address(parser->node,
 283				parser->range + na);
 284	range->size = of_read_number(parser->range + parser->pna + na, ns);
 285
 286	parser->range += parser->np;
 287
 288	/* Now consume following elements while they are contiguous */
 289	while (parser->range + parser->np <= parser->end) {
 290		u32 flags;
 291		u64 pci_addr, cpu_addr, size;
 292
 
 293		flags = of_bus_pci_get_flags(parser->range);
 294		pci_addr = of_read_number(parser->range + 1, ns);
 295		cpu_addr = of_translate_address(parser->node,
 296				parser->range + na);
 297		size = of_read_number(parser->range + parser->pna + na, ns);
 298
 299		if (flags != range->flags)
 300			break;
 301		if (pci_addr != range->pci_addr + range->size ||
 302		    cpu_addr != range->cpu_addr + range->size)
 303			break;
 304
 305		range->size += size;
 306		parser->range += parser->np;
 307	}
 308
 309	return range;
 310}
 311EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
 312
 313/*
 314 * of_pci_range_to_resource - Create a resource from an of_pci_range
 315 * @range:	the PCI range that describes the resource
 316 * @np:		device node where the range belongs to
 317 * @res:	pointer to a valid resource that will be updated to
 318 *              reflect the values contained in the range.
 319 *
 320 * Returns EINVAL if the range cannot be converted to resource.
 321 *
 322 * Note that if the range is an IO range, the resource will be converted
 323 * using pci_address_to_pio() which can fail if it is called too early or
 324 * if the range cannot be matched to any host bridge IO space (our case here).
 325 * To guard against that we try to register the IO range first.
 326 * If that fails we know that pci_address_to_pio() will do too.
 327 */
 328int of_pci_range_to_resource(struct of_pci_range *range,
 329			     struct device_node *np, struct resource *res)
 330{
 331	int err;
 332	res->flags = range->flags;
 333	res->parent = res->child = res->sibling = NULL;
 334	res->name = np->full_name;
 335
 336	if (res->flags & IORESOURCE_IO) {
 337		unsigned long port;
 338		err = pci_register_io_range(&np->fwnode, range->cpu_addr,
 339				range->size);
 340		if (err)
 341			goto invalid_range;
 342		port = pci_address_to_pio(range->cpu_addr);
 343		if (port == (unsigned long)-1) {
 344			err = -EINVAL;
 345			goto invalid_range;
 346		}
 347		res->start = port;
 348	} else {
 349		if ((sizeof(resource_size_t) < 8) &&
 350		    upper_32_bits(range->cpu_addr)) {
 351			err = -EINVAL;
 352			goto invalid_range;
 353		}
 354
 355		res->start = range->cpu_addr;
 356	}
 357	res->end = res->start + range->size - 1;
 358	return 0;
 359
 360invalid_range:
 361	res->start = (resource_size_t)OF_BAD_ADDR;
 362	res->end = (resource_size_t)OF_BAD_ADDR;
 363	return err;
 364}
 365EXPORT_SYMBOL(of_pci_range_to_resource);
 366#endif /* CONFIG_PCI */
 367
 368/*
 369 * ISA bus specific translator
 370 */
 371
 372static int of_bus_isa_match(struct device_node *np)
 373{
 374	return of_node_name_eq(np, "isa");
 375}
 376
 377static void of_bus_isa_count_cells(struct device_node *child,
 378				   int *addrc, int *sizec)
 379{
 380	if (addrc)
 381		*addrc = 2;
 382	if (sizec)
 383		*sizec = 1;
 384}
 385
 386static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
 387		int pna)
 388{
 389	u64 cp, s, da;
 390
 391	/* Check address type match */
 392	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
 393		return OF_BAD_ADDR;
 394
 395	/* Read address values, skipping high cell */
 396	cp = of_read_number(range + 1, na - 1);
 397	s  = of_read_number(range + na + pna, ns);
 398	da = of_read_number(addr + 1, na - 1);
 399
 400	pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
 401		 (unsigned long long)cp, (unsigned long long)s,
 402		 (unsigned long long)da);
 403
 404	if (da < cp || da >= (cp + s))
 405		return OF_BAD_ADDR;
 406	return da - cp;
 407}
 408
 409static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
 410{
 411	return of_bus_default_translate(addr + 1, offset, na - 1);
 412}
 413
 414static unsigned int of_bus_isa_get_flags(const __be32 *addr)
 415{
 416	unsigned int flags = 0;
 417	u32 w = be32_to_cpup(addr);
 418
 419	if (w & 1)
 420		flags |= IORESOURCE_IO;
 421	else
 422		flags |= IORESOURCE_MEM;
 423	return flags;
 424}
 425
 426/*
 427 * Array of bus specific translators
 428 */
 429
 430static struct of_bus of_busses[] = {
 431#ifdef CONFIG_PCI
 432	/* PCI */
 433	{
 434		.name = "pci",
 435		.addresses = "assigned-addresses",
 436		.match = of_bus_pci_match,
 437		.count_cells = of_bus_pci_count_cells,
 438		.map = of_bus_pci_map,
 439		.translate = of_bus_pci_translate,
 440		.get_flags = of_bus_pci_get_flags,
 441	},
 442#endif /* CONFIG_PCI */
 443	/* ISA */
 444	{
 445		.name = "isa",
 446		.addresses = "reg",
 447		.match = of_bus_isa_match,
 448		.count_cells = of_bus_isa_count_cells,
 449		.map = of_bus_isa_map,
 450		.translate = of_bus_isa_translate,
 451		.get_flags = of_bus_isa_get_flags,
 452	},
 453	/* Default */
 454	{
 455		.name = "default",
 456		.addresses = "reg",
 457		.match = NULL,
 458		.count_cells = of_bus_default_count_cells,
 459		.map = of_bus_default_map,
 460		.translate = of_bus_default_translate,
 461		.get_flags = of_bus_default_get_flags,
 462	},
 463};
 464
 465static struct of_bus *of_match_bus(struct device_node *np)
 466{
 467	int i;
 468
 469	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
 470		if (!of_busses[i].match || of_busses[i].match(np))
 471			return &of_busses[i];
 472	BUG();
 473	return NULL;
 474}
 475
 476static int of_empty_ranges_quirk(struct device_node *np)
 477{
 478	if (IS_ENABLED(CONFIG_PPC)) {
 479		/* To save cycles, we cache the result for global "Mac" setting */
 480		static int quirk_state = -1;
 481
 482		/* PA-SEMI sdc DT bug */
 483		if (of_device_is_compatible(np, "1682m-sdc"))
 484			return true;
 485
 486		/* Make quirk cached */
 487		if (quirk_state < 0)
 488			quirk_state =
 489				of_machine_is_compatible("Power Macintosh") ||
 490				of_machine_is_compatible("MacRISC");
 491		return quirk_state;
 492	}
 493	return false;
 494}
 495
 496static int of_translate_one(struct device_node *parent, struct of_bus *bus,
 497			    struct of_bus *pbus, __be32 *addr,
 498			    int na, int ns, int pna, const char *rprop)
 499{
 500	const __be32 *ranges;
 501	unsigned int rlen;
 502	int rone;
 503	u64 offset = OF_BAD_ADDR;
 504
 505	/*
 506	 * Normally, an absence of a "ranges" property means we are
 507	 * crossing a non-translatable boundary, and thus the addresses
 508	 * below the current cannot be converted to CPU physical ones.
 509	 * Unfortunately, while this is very clear in the spec, it's not
 510	 * what Apple understood, and they do have things like /uni-n or
 511	 * /ht nodes with no "ranges" property and a lot of perfectly
 512	 * useable mapped devices below them. Thus we treat the absence of
 513	 * "ranges" as equivalent to an empty "ranges" property which means
 514	 * a 1:1 translation at that level. It's up to the caller not to try
 515	 * to translate addresses that aren't supposed to be translated in
 516	 * the first place. --BenH.
 517	 *
 518	 * As far as we know, this damage only exists on Apple machines, so
 519	 * This code is only enabled on powerpc. --gcl
 520	 */
 521	ranges = of_get_property(parent, rprop, &rlen);
 522	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
 523		pr_debug("no ranges; cannot translate\n");
 524		return 1;
 525	}
 526	if (ranges == NULL || rlen == 0) {
 527		offset = of_read_number(addr, na);
 528		memset(addr, 0, pna * 4);
 529		pr_debug("empty ranges; 1:1 translation\n");
 530		goto finish;
 531	}
 532
 533	pr_debug("walking ranges...\n");
 534
 535	/* Now walk through the ranges */
 536	rlen /= 4;
 537	rone = na + pna + ns;
 538	for (; rlen >= rone; rlen -= rone, ranges += rone) {
 539		offset = bus->map(addr, ranges, na, ns, pna);
 540		if (offset != OF_BAD_ADDR)
 541			break;
 542	}
 543	if (offset == OF_BAD_ADDR) {
 544		pr_debug("not found !\n");
 545		return 1;
 546	}
 547	memcpy(addr, ranges + na, 4 * pna);
 548
 549 finish:
 550	of_dump_addr("parent translation for:", addr, pna);
 551	pr_debug("with offset: %llx\n", (unsigned long long)offset);
 552
 553	/* Translate it into parent bus space */
 554	return pbus->translate(addr, offset, pna);
 555}
 556
 557/*
 558 * Translate an address from the device-tree into a CPU physical address,
 559 * this walks up the tree and applies the various bus mappings on the
 560 * way.
 561 *
 562 * Note: We consider that crossing any level with #size-cells == 0 to mean
 563 * that translation is impossible (that is we are not dealing with a value
 564 * that can be mapped to a cpu physical address). This is not really specified
 565 * that way, but this is traditionally the way IBM at least do things
 566 *
 567 * Whenever the translation fails, the *host pointer will be set to the
 568 * device that had registered logical PIO mapping, and the return code is
 569 * relative to that node.
 570 */
 571static u64 __of_translate_address(struct device_node *dev,
 572				  struct device_node *(*get_parent)(const struct device_node *),
 573				  const __be32 *in_addr, const char *rprop,
 574				  struct device_node **host)
 575{
 576	struct device_node *parent = NULL;
 577	struct of_bus *bus, *pbus;
 578	__be32 addr[OF_MAX_ADDR_CELLS];
 579	int na, ns, pna, pns;
 580	u64 result = OF_BAD_ADDR;
 581
 582	pr_debug("** translation for device %pOF **\n", dev);
 583
 584	/* Increase refcount at current level */
 585	of_node_get(dev);
 586
 587	*host = NULL;
 588	/* Get parent & match bus type */
 589	parent = get_parent(dev);
 590	if (parent == NULL)
 591		goto bail;
 592	bus = of_match_bus(parent);
 593
 594	/* Count address cells & copy address locally */
 595	bus->count_cells(dev, &na, &ns);
 596	if (!OF_CHECK_COUNTS(na, ns)) {
 597		pr_debug("Bad cell count for %pOF\n", dev);
 598		goto bail;
 599	}
 600	memcpy(addr, in_addr, na * 4);
 601
 602	pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
 603	    bus->name, na, ns, parent);
 604	of_dump_addr("translating address:", addr, na);
 605
 606	/* Translate */
 607	for (;;) {
 608		struct logic_pio_hwaddr *iorange;
 609
 610		/* Switch to parent bus */
 611		of_node_put(dev);
 612		dev = parent;
 613		parent = get_parent(dev);
 614
 615		/* If root, we have finished */
 616		if (parent == NULL) {
 617			pr_debug("reached root node\n");
 618			result = of_read_number(addr, na);
 619			break;
 620		}
 621
 622		/*
 623		 * For indirectIO device which has no ranges property, get
 624		 * the address from reg directly.
 625		 */
 626		iorange = find_io_range_by_fwnode(&dev->fwnode);
 627		if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
 628			result = of_read_number(addr + 1, na - 1);
 629			pr_debug("indirectIO matched(%pOF) 0x%llx\n",
 630				 dev, result);
 631			*host = of_node_get(dev);
 632			break;
 633		}
 634
 635		/* Get new parent bus and counts */
 636		pbus = of_match_bus(parent);
 637		pbus->count_cells(dev, &pna, &pns);
 638		if (!OF_CHECK_COUNTS(pna, pns)) {
 639			pr_err("Bad cell count for %pOF\n", dev);
 
 640			break;
 641		}
 642
 643		pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
 644		    pbus->name, pna, pns, parent);
 645
 646		/* Apply bus translation */
 647		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
 648			break;
 649
 650		/* Complete the move up one level */
 651		na = pna;
 652		ns = pns;
 653		bus = pbus;
 654
 655		of_dump_addr("one level translation:", addr, na);
 656	}
 657 bail:
 658	of_node_put(parent);
 659	of_node_put(dev);
 660
 661	return result;
 662}
 663
 664u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
 665{
 666	struct device_node *host;
 667	u64 ret;
 668
 669	ret = __of_translate_address(dev, of_get_parent,
 670				     in_addr, "ranges", &host);
 671	if (host) {
 672		of_node_put(host);
 673		return OF_BAD_ADDR;
 674	}
 675
 676	return ret;
 677}
 678EXPORT_SYMBOL(of_translate_address);
 679
 680static struct device_node *__of_get_dma_parent(const struct device_node *np)
 681{
 682	struct of_phandle_args args;
 683	int ret, index;
 684
 685	index = of_property_match_string(np, "interconnect-names", "dma-mem");
 686	if (index < 0)
 687		return of_get_parent(np);
 688
 689	ret = of_parse_phandle_with_args(np, "interconnects",
 690					 "#interconnect-cells",
 691					 index, &args);
 692	if (ret < 0)
 693		return of_get_parent(np);
 694
 695	return of_node_get(args.np);
 696}
 697
 698u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
 699{
 700	struct device_node *host;
 701	u64 ret;
 702
 703	ret = __of_translate_address(dev, __of_get_dma_parent,
 704				     in_addr, "dma-ranges", &host);
 705
 706	if (host) {
 707		of_node_put(host);
 708		return OF_BAD_ADDR;
 709	}
 710
 711	return ret;
 712}
 713EXPORT_SYMBOL(of_translate_dma_address);
 714
 715const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
 716		    unsigned int *flags)
 717{
 718	const __be32 *prop;
 719	unsigned int psize;
 720	struct device_node *parent;
 721	struct of_bus *bus;
 722	int onesize, i, na, ns;
 723
 724	/* Get parent & match bus type */
 725	parent = of_get_parent(dev);
 726	if (parent == NULL)
 727		return NULL;
 728	bus = of_match_bus(parent);
 729	bus->count_cells(dev, &na, &ns);
 730	of_node_put(parent);
 731	if (!OF_CHECK_ADDR_COUNT(na))
 732		return NULL;
 733
 734	/* Get "reg" or "assigned-addresses" property */
 735	prop = of_get_property(dev, bus->addresses, &psize);
 736	if (prop == NULL)
 737		return NULL;
 738	psize /= 4;
 739
 740	onesize = na + ns;
 741	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
 742		if (i == index) {
 743			if (size)
 744				*size = of_read_number(prop + na, ns);
 745			if (flags)
 746				*flags = bus->get_flags(prop);
 747			return prop;
 748		}
 749	return NULL;
 750}
 751EXPORT_SYMBOL(of_get_address);
 752
 753static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
 754			u64 size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755{
 756	u64 taddr;
 757	unsigned long port;
 758	struct device_node *host;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760	taddr = __of_translate_address(dev, of_get_parent,
 761				       in_addr, "ranges", &host);
 762	if (host) {
 763		/* host-specific port access */
 764		port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
 765		of_node_put(host);
 766	} else {
 767		/* memory-mapped I/O range */
 768		port = pci_address_to_pio(taddr);
 769	}
 
 770
 771	if (port == (unsigned long)-1)
 772		return OF_BAD_ADDR;
 
 
 773
 774	return port;
 
 775}
 776
 777static int __of_address_to_resource(struct device_node *dev,
 778		const __be32 *addrp, u64 size, unsigned int flags,
 779		const char *name, struct resource *r)
 780{
 781	u64 taddr;
 782
 783	if (flags & IORESOURCE_MEM)
 784		taddr = of_translate_address(dev, addrp);
 785	else if (flags & IORESOURCE_IO)
 786		taddr = of_translate_ioport(dev, addrp, size);
 787	else
 788		return -EINVAL;
 789
 790	if (taddr == OF_BAD_ADDR)
 791		return -EINVAL;
 792	memset(r, 0, sizeof(struct resource));
 793
 794	r->start = taddr;
 795	r->end = taddr + size - 1;
 
 
 
 
 
 
 
 
 796	r->flags = flags;
 797	r->name = name ? name : dev->full_name;
 798
 799	return 0;
 800}
 801
 802/**
 803 * of_address_to_resource - Translate device tree address and return as resource
 804 *
 805 * Note that if your address is a PIO address, the conversion will fail if
 806 * the physical address can't be internally converted to an IO token with
 807 * pci_address_to_pio(), that is because it's either called too early or it
 808 * can't be matched to any host bridge IO space
 809 */
 810int of_address_to_resource(struct device_node *dev, int index,
 811			   struct resource *r)
 812{
 813	const __be32	*addrp;
 814	u64		size;
 815	unsigned int	flags;
 816	const char	*name = NULL;
 817
 818	addrp = of_get_address(dev, index, &size, &flags);
 819	if (addrp == NULL)
 820		return -EINVAL;
 821
 822	/* Get optional "reg-names" property to add a name to a resource */
 823	of_property_read_string_index(dev, "reg-names",	index, &name);
 824
 825	return __of_address_to_resource(dev, addrp, size, flags, name, r);
 826}
 827EXPORT_SYMBOL_GPL(of_address_to_resource);
 828
 829struct device_node *of_find_matching_node_by_address(struct device_node *from,
 830					const struct of_device_id *matches,
 831					u64 base_address)
 832{
 833	struct device_node *dn = of_find_matching_node(from, matches);
 834	struct resource res;
 835
 836	while (dn) {
 837		if (!of_address_to_resource(dn, 0, &res) &&
 838		    res.start == base_address)
 839			return dn;
 840
 841		dn = of_find_matching_node(dn, matches);
 842	}
 843
 844	return NULL;
 845}
 846
 847
 848/**
 849 * of_iomap - Maps the memory mapped IO for a given device_node
 850 * @device:	the device whose io range will be mapped
 851 * @index:	index of the io range
 852 *
 853 * Returns a pointer to the mapped memory
 854 */
 855void __iomem *of_iomap(struct device_node *np, int index)
 856{
 857	struct resource res;
 858
 859	if (of_address_to_resource(np, index, &res))
 860		return NULL;
 861
 862	return ioremap(res.start, resource_size(&res));
 863}
 864EXPORT_SYMBOL(of_iomap);
 865
 866/*
 867 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
 868 *			   for a given device_node
 869 * @device:	the device whose io range will be mapped
 870 * @index:	index of the io range
 871 * @name:	name "override" for the memory region request or NULL
 872 *
 873 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
 874 * error code on failure. Usage example:
 875 *
 876 *	base = of_io_request_and_map(node, 0, "foo");
 877 *	if (IS_ERR(base))
 878 *		return PTR_ERR(base);
 879 */
 880void __iomem *of_io_request_and_map(struct device_node *np, int index,
 881				    const char *name)
 882{
 883	struct resource res;
 884	void __iomem *mem;
 885
 886	if (of_address_to_resource(np, index, &res))
 887		return IOMEM_ERR_PTR(-EINVAL);
 888
 889	if (!name)
 890		name = res.name;
 891	if (!request_mem_region(res.start, resource_size(&res), name))
 892		return IOMEM_ERR_PTR(-EBUSY);
 893
 894	mem = ioremap(res.start, resource_size(&res));
 895	if (!mem) {
 896		release_mem_region(res.start, resource_size(&res));
 897		return IOMEM_ERR_PTR(-ENOMEM);
 898	}
 899
 900	return mem;
 901}
 902EXPORT_SYMBOL(of_io_request_and_map);
 903
 904/**
 905 * of_dma_get_range - Get DMA range info
 906 * @np:		device node to get DMA range info
 907 * @dma_addr:	pointer to store initial DMA address of DMA range
 908 * @paddr:	pointer to store initial CPU address of DMA range
 909 * @size:	pointer to store size of DMA range
 910 *
 911 * Look in bottom up direction for the first "dma-ranges" property
 912 * and parse it.
 913 *  dma-ranges format:
 914 *	DMA addr (dma_addr)	: naddr cells
 915 *	CPU addr (phys_addr_t)	: pna cells
 916 *	size			: nsize cells
 917 *
 918 * It returns -ENODEV if "dma-ranges" property was not found
 919 * for this device in DT.
 920 */
 921int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
 922{
 923	struct device_node *node = of_node_get(np);
 924	const __be32 *ranges = NULL;
 925	int len, naddr, nsize, pna;
 926	int ret = 0;
 927	u64 dmaaddr;
 928
 929	if (!node)
 930		return -EINVAL;
 931
 932	while (1) {
 933		struct device_node *parent;
 934
 935		naddr = of_n_addr_cells(node);
 936		nsize = of_n_size_cells(node);
 937
 938		parent = __of_get_dma_parent(node);
 939		of_node_put(node);
 940
 941		node = parent;
 942		if (!node)
 943			break;
 944
 945		ranges = of_get_property(node, "dma-ranges", &len);
 946
 947		/* Ignore empty ranges, they imply no translation required */
 948		if (ranges && len > 0)
 949			break;
 950
 951		/*
 952		 * At least empty ranges has to be defined for parent node if
 953		 * DMA is supported
 954		 */
 955		if (!ranges)
 956			break;
 957	}
 958
 959	if (!ranges) {
 960		pr_debug("no dma-ranges found for node(%pOF)\n", np);
 
 961		ret = -ENODEV;
 962		goto out;
 963	}
 964
 965	len /= sizeof(u32);
 966
 967	pna = of_n_addr_cells(node);
 968
 969	/* dma-ranges format:
 970	 * DMA addr	: naddr cells
 971	 * CPU addr	: pna cells
 972	 * size		: nsize cells
 973	 */
 974	dmaaddr = of_read_number(ranges, naddr);
 975	*paddr = of_translate_dma_address(np, ranges);
 976	if (*paddr == OF_BAD_ADDR) {
 977		pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
 978		       dma_addr, np);
 979		ret = -EINVAL;
 980		goto out;
 981	}
 982	*dma_addr = dmaaddr;
 983
 984	*size = of_read_number(ranges + naddr + pna, nsize);
 985
 986	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
 987		 *dma_addr, *paddr, *size);
 988
 989out:
 990	of_node_put(node);
 991
 992	return ret;
 993}
 994EXPORT_SYMBOL_GPL(of_dma_get_range);
 995
 996/**
 997 * of_dma_is_coherent - Check if device is coherent
 998 * @np:	device node
 999 *
1000 * It returns true if "dma-coherent" property was found
1001 * for this device in DT.
1002 */
1003bool of_dma_is_coherent(struct device_node *np)
1004{
1005	struct device_node *node = of_node_get(np);
1006
1007	while (node) {
1008		if (of_property_read_bool(node, "dma-coherent")) {
1009			of_node_put(node);
1010			return true;
1011		}
1012		node = of_get_next_parent(node);
1013	}
1014	of_node_put(node);
1015	return false;
1016}
1017EXPORT_SYMBOL_GPL(of_dma_is_coherent);