Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23#include <asm-generic/sections.h>
  24#include <linux/io.h>
  25
  26#include "internal.h"
  27
  28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  32#endif
  33
  34struct memblock memblock __initdata_memblock = {
  35	.memory.regions		= memblock_memory_init_regions,
  36	.memory.cnt		= 1,	/* empty dummy entry */
  37	.memory.max		= INIT_MEMBLOCK_REGIONS,
  38
  39	.reserved.regions	= memblock_reserved_init_regions,
  40	.reserved.cnt		= 1,	/* empty dummy entry */
  41	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  42
  43#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  44	.physmem.regions	= memblock_physmem_init_regions,
  45	.physmem.cnt		= 1,	/* empty dummy entry */
  46	.physmem.max		= INIT_PHYSMEM_REGIONS,
  47#endif
  48
  49	.bottom_up		= false,
  50	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  51};
  52
  53int memblock_debug __initdata_memblock;
  54#ifdef CONFIG_MOVABLE_NODE
  55bool movable_node_enabled __initdata_memblock = false;
  56#endif
  57static bool system_has_some_mirror __initdata_memblock = false;
  58static int memblock_can_resize __initdata_memblock;
  59static int memblock_memory_in_slab __initdata_memblock = 0;
  60static int memblock_reserved_in_slab __initdata_memblock = 0;
  61
  62ulong __init_memblock choose_memblock_flags(void)
  63{
  64	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  65}
  66
  67/* inline so we don't get a warning when pr_debug is compiled out */
  68static __init_memblock const char *
  69memblock_type_name(struct memblock_type *type)
  70{
  71	if (type == &memblock.memory)
  72		return "memory";
  73	else if (type == &memblock.reserved)
  74		return "reserved";
  75	else
  76		return "unknown";
  77}
  78
  79/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  80static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  81{
  82	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  83}
  84
  85/*
  86 * Address comparison utilities
  87 */
 
 
 
 
 
 
 
 
 
 
 
  88static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  89				       phys_addr_t base2, phys_addr_t size2)
  90{
  91	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  92}
  93
  94bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  95					phys_addr_t base, phys_addr_t size)
  96{
  97	unsigned long i;
  98
  99	for (i = 0; i < type->cnt; i++)
 100		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 101					   type->regions[i].size))
 
 102			break;
 103	return i < type->cnt;
 
 
 104}
 105
 106/*
 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 108 * @start: start of candidate range
 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 110 * @size: size of free area to find
 111 * @align: alignment of free area to find
 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 113 * @flags: pick from blocks based on memory attributes
 114 *
 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 116 *
 117 * RETURNS:
 118 * Found address on success, 0 on failure.
 119 */
 120static phys_addr_t __init_memblock
 121__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 122				phys_addr_t size, phys_addr_t align, int nid,
 123				ulong flags)
 124{
 125	phys_addr_t this_start, this_end, cand;
 126	u64 i;
 127
 128	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 129		this_start = clamp(this_start, start, end);
 130		this_end = clamp(this_end, start, end);
 131
 132		cand = round_up(this_start, align);
 133		if (cand < this_end && this_end - cand >= size)
 134			return cand;
 135	}
 136
 137	return 0;
 138}
 
 
 
 139
 140/**
 141 * __memblock_find_range_top_down - find free area utility, in top-down
 142 * @start: start of candidate range
 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 144 * @size: size of free area to find
 145 * @align: alignment of free area to find
 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 147 * @flags: pick from blocks based on memory attributes
 148 *
 149 * Utility called from memblock_find_in_range_node(), find free area top-down.
 150 *
 151 * RETURNS:
 152 * Found address on success, 0 on failure.
 153 */
 154static phys_addr_t __init_memblock
 155__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 156			       phys_addr_t size, phys_addr_t align, int nid,
 157			       ulong flags)
 158{
 159	phys_addr_t this_start, this_end, cand;
 160	u64 i;
 161
 162	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 163					NULL) {
 164		this_start = clamp(this_start, start, end);
 165		this_end = clamp(this_end, start, end);
 166
 167		if (this_end < size)
 168			continue;
 
 
 
 
 
 169
 170		cand = round_down(this_end - size, align);
 171		if (cand >= this_start)
 172			return cand;
 
 
 
 
 
 173	}
 174
 175	return 0;
 176}
 177
 178/**
 179 * memblock_find_in_range_node - find free area in given range and node
 180 * @size: size of free area to find
 181 * @align: alignment of free area to find
 182 * @start: start of candidate range
 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 185 * @flags: pick from blocks based on memory attributes
 186 *
 187 * Find @size free area aligned to @align in the specified range and node.
 188 *
 189 * When allocation direction is bottom-up, the @start should be greater
 190 * than the end of the kernel image. Otherwise, it will be trimmed. The
 191 * reason is that we want the bottom-up allocation just near the kernel
 192 * image so it is highly likely that the allocated memory and the kernel
 193 * will reside in the same node.
 194 *
 195 * If bottom-up allocation failed, will try to allocate memory top-down.
 196 *
 197 * RETURNS:
 198 * Found address on success, 0 on failure.
 199 */
 200phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 201					phys_addr_t align, phys_addr_t start,
 202					phys_addr_t end, int nid, ulong flags)
 203{
 204	phys_addr_t kernel_end, ret;
 
 
 205
 206	/* pump up @end */
 207	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 208		end = memblock.current_limit;
 209
 210	/* avoid allocating the first page */
 211	start = max_t(phys_addr_t, start, PAGE_SIZE);
 212	end = max(start, end);
 213	kernel_end = __pa_symbol(_end);
 214
 215	/*
 216	 * try bottom-up allocation only when bottom-up mode
 217	 * is set and @end is above the kernel image.
 218	 */
 219	if (memblock_bottom_up() && end > kernel_end) {
 220		phys_addr_t bottom_up_start;
 221
 222		/* make sure we will allocate above the kernel */
 223		bottom_up_start = max(start, kernel_end);
 224
 225		/* ok, try bottom-up allocation first */
 226		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 227						      size, align, nid, flags);
 228		if (ret)
 229			return ret;
 230
 231		/*
 232		 * we always limit bottom-up allocation above the kernel,
 233		 * but top-down allocation doesn't have the limit, so
 234		 * retrying top-down allocation may succeed when bottom-up
 235		 * allocation failed.
 236		 *
 237		 * bottom-up allocation is expected to be fail very rarely,
 238		 * so we use WARN_ONCE() here to see the stack trace if
 239		 * fail happens.
 240		 */
 241		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 242	}
 243
 244	return __memblock_find_range_top_down(start, end, size, align, nid,
 245					      flags);
 246}
 247
 248/**
 249 * memblock_find_in_range - find free area in given range
 250 * @start: start of candidate range
 251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 252 * @size: size of free area to find
 253 * @align: alignment of free area to find
 254 *
 255 * Find @size free area aligned to @align in the specified range.
 256 *
 257 * RETURNS:
 258 * Found address on success, 0 on failure.
 259 */
 260phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 261					phys_addr_t end, phys_addr_t size,
 262					phys_addr_t align)
 263{
 264	phys_addr_t ret;
 265	ulong flags = choose_memblock_flags();
 266
 267again:
 268	ret = memblock_find_in_range_node(size, align, start, end,
 269					    NUMA_NO_NODE, flags);
 270
 271	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 272		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 273			&size);
 274		flags &= ~MEMBLOCK_MIRROR;
 275		goto again;
 276	}
 277
 278	return ret;
 279}
 280
 281static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 
 
 
 282{
 283	type->total_size -= type->regions[r].size;
 284	memmove(&type->regions[r], &type->regions[r + 1],
 285		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 286	type->cnt--;
 287
 288	/* Special case for empty arrays */
 289	if (type->cnt == 0) {
 290		WARN_ON(type->total_size != 0);
 291		type->cnt = 1;
 292		type->regions[0].base = 0;
 293		type->regions[0].size = 0;
 294		type->regions[0].flags = 0;
 295		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 296	}
 297}
 298
 299#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 300
 301phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 302					phys_addr_t *addr)
 303{
 304	if (memblock.reserved.regions == memblock_reserved_init_regions)
 305		return 0;
 306
 307	*addr = __pa(memblock.reserved.regions);
 308
 309	return PAGE_ALIGN(sizeof(struct memblock_region) *
 310			  memblock.reserved.max);
 311}
 312
 313phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 314					phys_addr_t *addr)
 315{
 316	if (memblock.memory.regions == memblock_memory_init_regions)
 317		return 0;
 318
 319	*addr = __pa(memblock.memory.regions);
 
 
 
 
 320
 321	return PAGE_ALIGN(sizeof(struct memblock_region) *
 322			  memblock.memory.max);
 
 
 
 
 323}
 324
 325#endif
 
 326
 327/**
 328 * memblock_double_array - double the size of the memblock regions array
 329 * @type: memblock type of the regions array being doubled
 330 * @new_area_start: starting address of memory range to avoid overlap with
 331 * @new_area_size: size of memory range to avoid overlap with
 332 *
 333 * Double the size of the @type regions array. If memblock is being used to
 334 * allocate memory for a new reserved regions array and there is a previously
 335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 336 * waiting to be reserved, ensure the memory used by the new array does
 337 * not overlap.
 338 *
 339 * RETURNS:
 340 * 0 on success, -1 on failure.
 341 */
 342static int __init_memblock memblock_double_array(struct memblock_type *type,
 343						phys_addr_t new_area_start,
 344						phys_addr_t new_area_size)
 345{
 346	struct memblock_region *new_array, *old_array;
 347	phys_addr_t old_alloc_size, new_alloc_size;
 348	phys_addr_t old_size, new_size, addr;
 349	int use_slab = slab_is_available();
 350	int *in_slab;
 351
 352	/* We don't allow resizing until we know about the reserved regions
 353	 * of memory that aren't suitable for allocation
 354	 */
 355	if (!memblock_can_resize)
 356		return -1;
 357
 358	/* Calculate new doubled size */
 359	old_size = type->max * sizeof(struct memblock_region);
 360	new_size = old_size << 1;
 361	/*
 362	 * We need to allocated new one align to PAGE_SIZE,
 363	 *   so we can free them completely later.
 364	 */
 365	old_alloc_size = PAGE_ALIGN(old_size);
 366	new_alloc_size = PAGE_ALIGN(new_size);
 367
 368	/* Retrieve the slab flag */
 369	if (type == &memblock.memory)
 370		in_slab = &memblock_memory_in_slab;
 371	else
 372		in_slab = &memblock_reserved_in_slab;
 373
 374	/* Try to find some space for it.
 375	 *
 376	 * WARNING: We assume that either slab_is_available() and we use it or
 377	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 378	 * use when bootmem is currently active (unless bootmem itself is
 379	 * implemented on top of MEMBLOCK which isn't the case yet)
 380	 *
 381	 * This should however not be an issue for now, as we currently only
 382	 * call into MEMBLOCK while it's still active, or much later when slab
 383	 * is active for memory hotplug operations
 384	 */
 385	if (use_slab) {
 386		new_array = kmalloc(new_size, GFP_KERNEL);
 387		addr = new_array ? __pa(new_array) : 0;
 388	} else {
 389		/* only exclude range when trying to double reserved.regions */
 390		if (type != &memblock.reserved)
 391			new_area_start = new_area_size = 0;
 392
 393		addr = memblock_find_in_range(new_area_start + new_area_size,
 394						memblock.current_limit,
 395						new_alloc_size, PAGE_SIZE);
 396		if (!addr && new_area_size)
 397			addr = memblock_find_in_range(0,
 398				min(new_area_start, memblock.current_limit),
 399				new_alloc_size, PAGE_SIZE);
 400
 401		new_array = addr ? __va(addr) : NULL;
 402	}
 403	if (!addr) {
 404		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 405		       memblock_type_name(type), type->max, type->max * 2);
 406		return -1;
 407	}
 
 408
 409	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 410			memblock_type_name(type), type->max * 2, (u64)addr,
 411			(u64)addr + new_size - 1);
 412
 413	/*
 414	 * Found space, we now need to move the array over before we add the
 415	 * reserved region since it may be our reserved array itself that is
 416	 * full.
 417	 */
 418	memcpy(new_array, type->regions, old_size);
 419	memset(new_array + type->max, 0, old_size);
 420	old_array = type->regions;
 421	type->regions = new_array;
 422	type->max <<= 1;
 423
 424	/* Free old array. We needn't free it if the array is the static one */
 425	if (*in_slab)
 426		kfree(old_array);
 427	else if (old_array != memblock_memory_init_regions &&
 428		 old_array != memblock_reserved_init_regions)
 429		memblock_free(__pa(old_array), old_alloc_size);
 430
 431	/*
 432	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 433	 * needn't do it
 434	 */
 435	if (!use_slab)
 436		BUG_ON(memblock_reserve(addr, new_alloc_size));
 437
 438	/* Update slab flag */
 439	*in_slab = use_slab;
 
 
 
 
 
 
 440
 441	return 0;
 442}
 443
 444/**
 445 * memblock_merge_regions - merge neighboring compatible regions
 446 * @type: memblock type to scan
 447 *
 448 * Scan @type and merge neighboring compatible regions.
 449 */
 450static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 451{
 452	int i = 0;
 
 453
 454	/* cnt never goes below 1 */
 455	while (i < type->cnt - 1) {
 456		struct memblock_region *this = &type->regions[i];
 457		struct memblock_region *next = &type->regions[i + 1];
 458
 459		if (this->base + this->size != next->base ||
 460		    memblock_get_region_node(this) !=
 461		    memblock_get_region_node(next) ||
 462		    this->flags != next->flags) {
 463			BUG_ON(this->base + this->size > next->base);
 464			i++;
 465			continue;
 466		}
 467
 468		this->size += next->size;
 469		/* move forward from next + 1, index of which is i + 2 */
 470		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 471		type->cnt--;
 472	}
 473}
 474
 475/**
 476 * memblock_insert_region - insert new memblock region
 477 * @type:	memblock type to insert into
 478 * @idx:	index for the insertion point
 479 * @base:	base address of the new region
 480 * @size:	size of the new region
 481 * @nid:	node id of the new region
 482 * @flags:	flags of the new region
 483 *
 484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 485 * @type must already have extra room to accomodate the new region.
 486 */
 487static void __init_memblock memblock_insert_region(struct memblock_type *type,
 488						   int idx, phys_addr_t base,
 489						   phys_addr_t size,
 490						   int nid, unsigned long flags)
 491{
 492	struct memblock_region *rgn = &type->regions[idx];
 493
 494	BUG_ON(type->cnt >= type->max);
 495	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 496	rgn->base = base;
 497	rgn->size = size;
 498	rgn->flags = flags;
 499	memblock_set_region_node(rgn, nid);
 500	type->cnt++;
 501	type->total_size += size;
 502}
 503
 504/**
 505 * memblock_add_range - add new memblock region
 506 * @type: memblock type to add new region into
 507 * @base: base address of the new region
 508 * @size: size of the new region
 509 * @nid: nid of the new region
 510 * @flags: flags of the new region
 511 *
 512 * Add new memblock region [@base,@base+@size) into @type.  The new region
 513 * is allowed to overlap with existing ones - overlaps don't affect already
 514 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 515 * compatible regions are merged) after the addition.
 516 *
 517 * RETURNS:
 518 * 0 on success, -errno on failure.
 519 */
 520int __init_memblock memblock_add_range(struct memblock_type *type,
 521				phys_addr_t base, phys_addr_t size,
 522				int nid, unsigned long flags)
 523{
 524	bool insert = false;
 525	phys_addr_t obase = base;
 526	phys_addr_t end = base + memblock_cap_size(base, &size);
 527	int idx, nr_new;
 528	struct memblock_region *rgn;
 529
 530	if (!size)
 531		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533	/* special case for empty array */
 534	if (type->regions[0].size == 0) {
 535		WARN_ON(type->cnt != 1 || type->total_size);
 536		type->regions[0].base = base;
 537		type->regions[0].size = size;
 538		type->regions[0].flags = flags;
 539		memblock_set_region_node(&type->regions[0], nid);
 540		type->total_size = size;
 541		return 0;
 542	}
 543repeat:
 544	/*
 545	 * The following is executed twice.  Once with %false @insert and
 546	 * then with %true.  The first counts the number of regions needed
 547	 * to accomodate the new area.  The second actually inserts them.
 548	 */
 549	base = obase;
 550	nr_new = 0;
 551
 552	for_each_memblock_type(type, rgn) {
 553		phys_addr_t rbase = rgn->base;
 554		phys_addr_t rend = rbase + rgn->size;
 
 
 
 555
 556		if (rbase >= end)
 557			break;
 558		if (rend <= base)
 559			continue;
 560		/*
 561		 * @rgn overlaps.  If it separates the lower part of new
 562		 * area, insert that portion.
 563		 */
 564		if (rbase > base) {
 565#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 566			WARN_ON(nid != memblock_get_region_node(rgn));
 567#endif
 568			WARN_ON(flags != rgn->flags);
 569			nr_new++;
 570			if (insert)
 571				memblock_insert_region(type, idx++, base,
 572						       rbase - base, nid,
 573						       flags);
 
 
 
 
 
 
 
 
 
 
 
 
 574		}
 575		/* area below @rend is dealt with, forget about it */
 576		base = min(rend, end);
 577	}
 578
 579	/* insert the remaining portion */
 580	if (base < end) {
 581		nr_new++;
 582		if (insert)
 583			memblock_insert_region(type, idx, base, end - base,
 584					       nid, flags);
 585	}
 586
 587	/*
 588	 * If this was the first round, resize array and repeat for actual
 589	 * insertions; otherwise, merge and return.
 590	 */
 591	if (!insert) {
 592		while (type->cnt + nr_new > type->max)
 593			if (memblock_double_array(type, obase, size) < 0)
 594				return -ENOMEM;
 595		insert = true;
 596		goto repeat;
 597	} else {
 598		memblock_merge_regions(type);
 599		return 0;
 600	}
 601}
 602
 603int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 604				       int nid)
 605{
 606	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 607}
 608
 609static int __init_memblock memblock_add_region(phys_addr_t base,
 610						phys_addr_t size,
 611						int nid,
 612						unsigned long flags)
 613{
 614	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
 615		     (unsigned long long)base,
 616		     (unsigned long long)base + size - 1,
 617		     flags, (void *)_RET_IP_);
 618
 619	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 620}
 621
 622int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 623{
 624	return memblock_add_region(base, size, MAX_NUMNODES, 0);
 625}
 626
 627/**
 628 * memblock_isolate_range - isolate given range into disjoint memblocks
 629 * @type: memblock type to isolate range for
 630 * @base: base of range to isolate
 631 * @size: size of range to isolate
 632 * @start_rgn: out parameter for the start of isolated region
 633 * @end_rgn: out parameter for the end of isolated region
 634 *
 635 * Walk @type and ensure that regions don't cross the boundaries defined by
 636 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 637 * which may create at most two more regions.  The index of the first
 638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 639 *
 640 * RETURNS:
 641 * 0 on success, -errno on failure.
 642 */
 643static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 644					phys_addr_t base, phys_addr_t size,
 645					int *start_rgn, int *end_rgn)
 646{
 647	phys_addr_t end = base + memblock_cap_size(base, &size);
 648	int idx;
 649	struct memblock_region *rgn;
 650
 651	*start_rgn = *end_rgn = 0;
 652
 653	if (!size)
 654		return 0;
 655
 656	/* we'll create at most two more regions */
 657	while (type->cnt + 2 > type->max)
 658		if (memblock_double_array(type, base, size) < 0)
 659			return -ENOMEM;
 660
 661	for_each_memblock_type(type, rgn) {
 662		phys_addr_t rbase = rgn->base;
 663		phys_addr_t rend = rbase + rgn->size;
 664
 665		if (rbase >= end)
 666			break;
 667		if (rend <= base)
 668			continue;
 669
 670		if (rbase < base) {
 671			/*
 672			 * @rgn intersects from below.  Split and continue
 673			 * to process the next region - the new top half.
 674			 */
 675			rgn->base = base;
 676			rgn->size -= base - rbase;
 677			type->total_size -= base - rbase;
 678			memblock_insert_region(type, idx, rbase, base - rbase,
 679					       memblock_get_region_node(rgn),
 680					       rgn->flags);
 681		} else if (rend > end) {
 682			/*
 683			 * @rgn intersects from above.  Split and redo the
 684			 * current region - the new bottom half.
 685			 */
 686			rgn->base = end;
 687			rgn->size -= end - rbase;
 688			type->total_size -= end - rbase;
 689			memblock_insert_region(type, idx--, rbase, end - rbase,
 690					       memblock_get_region_node(rgn),
 691					       rgn->flags);
 692		} else {
 693			/* @rgn is fully contained, record it */
 694			if (!*end_rgn)
 695				*start_rgn = idx;
 696			*end_rgn = idx + 1;
 697		}
 698	}
 
 
 
 
 
 
 699
 700	return 0;
 701}
 702
 703static int __init_memblock memblock_remove_range(struct memblock_type *type,
 704					  phys_addr_t base, phys_addr_t size)
 705{
 706	int start_rgn, end_rgn;
 707	int i, ret;
 708
 709	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 710	if (ret)
 711		return ret;
 712
 713	for (i = end_rgn - 1; i >= start_rgn; i--)
 714		memblock_remove_region(type, i);
 715	return 0;
 716}
 717
 718int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 719{
 720	return memblock_remove_range(&memblock.memory, base, size);
 721}
 722
 723
 724int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 725{
 726	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 727		     (unsigned long long)base,
 728		     (unsigned long long)base + size - 1,
 729		     (void *)_RET_IP_);
 730
 731	kmemleak_free_part(__va(base), size);
 732	return memblock_remove_range(&memblock.reserved, base, size);
 733}
 734
 735static int __init_memblock memblock_reserve_region(phys_addr_t base,
 736						   phys_addr_t size,
 737						   int nid,
 738						   unsigned long flags)
 739{
 740	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 741		     (unsigned long long)base,
 742		     (unsigned long long)base + size - 1,
 743		     flags, (void *)_RET_IP_);
 744
 745	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
 746}
 747
 748int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 749{
 750	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 751}
 752
 753/**
 754 *
 755 * This function isolates region [@base, @base + @size), and sets/clears flag
 756 *
 757 * Return 0 on success, -errno on failure.
 758 */
 759static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 760				phys_addr_t size, int set, int flag)
 761{
 762	struct memblock_type *type = &memblock.memory;
 763	int i, ret, start_rgn, end_rgn;
 764
 765	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 766	if (ret)
 767		return ret;
 768
 769	for (i = start_rgn; i < end_rgn; i++)
 770		if (set)
 771			memblock_set_region_flags(&type->regions[i], flag);
 772		else
 773			memblock_clear_region_flags(&type->regions[i], flag);
 774
 775	memblock_merge_regions(type);
 776	return 0;
 777}
 778
 779/**
 780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 781 * @base: the base phys addr of the region
 782 * @size: the size of the region
 783 *
 784 * Return 0 on success, -errno on failure.
 785 */
 786int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 787{
 788	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 789}
 790
 791/**
 792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 793 * @base: the base phys addr of the region
 794 * @size: the size of the region
 795 *
 796 * Return 0 on success, -errno on failure.
 797 */
 798int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 799{
 800	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 801}
 802
 803/**
 804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 805 * @base: the base phys addr of the region
 806 * @size: the size of the region
 807 *
 808 * Return 0 on success, -errno on failure.
 809 */
 810int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 811{
 812	system_has_some_mirror = true;
 813
 814	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 815}
 816
 817/**
 818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 819 * @base: the base phys addr of the region
 820 * @size: the size of the region
 821 *
 822 * Return 0 on success, -errno on failure.
 823 */
 824int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 825{
 826	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 827}
 828
 829/**
 830 * __next_reserved_mem_region - next function for for_each_reserved_region()
 831 * @idx: pointer to u64 loop variable
 832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 834 *
 835 * Iterate over all reserved memory regions.
 836 */
 837void __init_memblock __next_reserved_mem_region(u64 *idx,
 838					   phys_addr_t *out_start,
 839					   phys_addr_t *out_end)
 840{
 841	struct memblock_type *type = &memblock.reserved;
 842
 843	if (*idx >= 0 && *idx < type->cnt) {
 844		struct memblock_region *r = &type->regions[*idx];
 845		phys_addr_t base = r->base;
 846		phys_addr_t size = r->size;
 847
 848		if (out_start)
 849			*out_start = base;
 850		if (out_end)
 851			*out_end = base + size - 1;
 852
 853		*idx += 1;
 854		return;
 855	}
 856
 857	/* signal end of iteration */
 858	*idx = ULLONG_MAX;
 859}
 860
 861/**
 862 * __next__mem_range - next function for for_each_free_mem_range() etc.
 863 * @idx: pointer to u64 loop variable
 864 * @nid: node selector, %NUMA_NO_NODE for all nodes
 865 * @flags: pick from blocks based on memory attributes
 866 * @type_a: pointer to memblock_type from where the range is taken
 867 * @type_b: pointer to memblock_type which excludes memory from being taken
 868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 870 * @out_nid: ptr to int for nid of the range, can be %NULL
 871 *
 872 * Find the first area from *@idx which matches @nid, fill the out
 873 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 874 * *@idx contains index into type_a and the upper 32bit indexes the
 875 * areas before each region in type_b.	For example, if type_b regions
 876 * look like the following,
 877 *
 878 *	0:[0-16), 1:[32-48), 2:[128-130)
 879 *
 880 * The upper 32bit indexes the following regions.
 881 *
 882 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 883 *
 884 * As both region arrays are sorted, the function advances the two indices
 885 * in lockstep and returns each intersection.
 886 */
 887void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 888				      struct memblock_type *type_a,
 889				      struct memblock_type *type_b,
 890				      phys_addr_t *out_start,
 891				      phys_addr_t *out_end, int *out_nid)
 892{
 893	int idx_a = *idx & 0xffffffff;
 894	int idx_b = *idx >> 32;
 895
 896	if (WARN_ONCE(nid == MAX_NUMNODES,
 897	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 898		nid = NUMA_NO_NODE;
 899
 900	for (; idx_a < type_a->cnt; idx_a++) {
 901		struct memblock_region *m = &type_a->regions[idx_a];
 902
 903		phys_addr_t m_start = m->base;
 904		phys_addr_t m_end = m->base + m->size;
 905		int	    m_nid = memblock_get_region_node(m);
 906
 907		/* only memory regions are associated with nodes, check it */
 908		if (nid != NUMA_NO_NODE && nid != m_nid)
 909			continue;
 910
 911		/* skip hotpluggable memory regions if needed */
 912		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 913			continue;
 
 914
 915		/* if we want mirror memory skip non-mirror memory regions */
 916		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 917			continue;
 918
 919		/* skip nomap memory unless we were asked for it explicitly */
 920		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 
 921			continue;
 922
 923		if (!type_b) {
 924			if (out_start)
 925				*out_start = m_start;
 926			if (out_end)
 927				*out_end = m_end;
 928			if (out_nid)
 929				*out_nid = m_nid;
 930			idx_a++;
 931			*idx = (u32)idx_a | (u64)idx_b << 32;
 932			return;
 933		}
 934
 935		/* scan areas before each reservation */
 936		for (; idx_b < type_b->cnt + 1; idx_b++) {
 937			struct memblock_region *r;
 938			phys_addr_t r_start;
 939			phys_addr_t r_end;
 940
 941			r = &type_b->regions[idx_b];
 942			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 943			r_end = idx_b < type_b->cnt ?
 944				r->base : ULLONG_MAX;
 945
 946			/*
 947			 * if idx_b advanced past idx_a,
 948			 * break out to advance idx_a
 949			 */
 950			if (r_start >= m_end)
 951				break;
 952			/* if the two regions intersect, we're done */
 953			if (m_start < r_end) {
 954				if (out_start)
 955					*out_start =
 956						max(m_start, r_start);
 957				if (out_end)
 958					*out_end = min(m_end, r_end);
 959				if (out_nid)
 960					*out_nid = m_nid;
 961				/*
 962				 * The region which ends first is
 963				 * advanced for the next iteration.
 964				 */
 965				if (m_end <= r_end)
 966					idx_a++;
 967				else
 968					idx_b++;
 969				*idx = (u32)idx_a | (u64)idx_b << 32;
 970				return;
 971			}
 972		}
 973	}
 974
 975	/* signal end of iteration */
 976	*idx = ULLONG_MAX;
 977}
 978
 979/**
 980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 981 *
 982 * Finds the next range from type_a which is not marked as unsuitable
 983 * in type_b.
 984 *
 985 * @idx: pointer to u64 loop variable
 986 * @nid: node selector, %NUMA_NO_NODE for all nodes
 987 * @flags: pick from blocks based on memory attributes
 988 * @type_a: pointer to memblock_type from where the range is taken
 989 * @type_b: pointer to memblock_type which excludes memory from being taken
 990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 992 * @out_nid: ptr to int for nid of the range, can be %NULL
 993 *
 994 * Reverse of __next_mem_range().
 995 */
 996void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 997					  struct memblock_type *type_a,
 998					  struct memblock_type *type_b,
 999					  phys_addr_t *out_start,
1000					  phys_addr_t *out_end, int *out_nid)
1001{
1002	int idx_a = *idx & 0xffffffff;
1003	int idx_b = *idx >> 32;
1004
1005	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006		nid = NUMA_NO_NODE;
1007
1008	if (*idx == (u64)ULLONG_MAX) {
1009		idx_a = type_a->cnt - 1;
1010		idx_b = type_b->cnt;
1011	}
1012
1013	for (; idx_a >= 0; idx_a--) {
1014		struct memblock_region *m = &type_a->regions[idx_a];
1015
1016		phys_addr_t m_start = m->base;
1017		phys_addr_t m_end = m->base + m->size;
1018		int m_nid = memblock_get_region_node(m);
1019
1020		/* only memory regions are associated with nodes, check it */
1021		if (nid != NUMA_NO_NODE && nid != m_nid)
1022			continue;
1023
1024		/* skip hotpluggable memory regions if needed */
1025		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1026			continue;
1027
1028		/* if we want mirror memory skip non-mirror memory regions */
1029		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1030			continue;
1031
1032		/* skip nomap memory unless we were asked for it explicitly */
1033		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1034			continue;
1035
1036		if (!type_b) {
1037			if (out_start)
1038				*out_start = m_start;
1039			if (out_end)
1040				*out_end = m_end;
1041			if (out_nid)
1042				*out_nid = m_nid;
1043			idx_a++;
1044			*idx = (u32)idx_a | (u64)idx_b << 32;
1045			return;
1046		}
1047
1048		/* scan areas before each reservation */
1049		for (; idx_b >= 0; idx_b--) {
1050			struct memblock_region *r;
1051			phys_addr_t r_start;
1052			phys_addr_t r_end;
1053
1054			r = &type_b->regions[idx_b];
1055			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1056			r_end = idx_b < type_b->cnt ?
1057				r->base : ULLONG_MAX;
1058			/*
1059			 * if idx_b advanced past idx_a,
1060			 * break out to advance idx_a
1061			 */
1062
1063			if (r_end <= m_start)
1064				break;
1065			/* if the two regions intersect, we're done */
1066			if (m_end > r_start) {
1067				if (out_start)
1068					*out_start = max(m_start, r_start);
1069				if (out_end)
1070					*out_end = min(m_end, r_end);
1071				if (out_nid)
1072					*out_nid = m_nid;
1073				if (m_start >= r_start)
1074					idx_a--;
1075				else
1076					idx_b--;
1077				*idx = (u32)idx_a | (u64)idx_b << 32;
1078				return;
1079			}
1080		}
1081	}
1082	/* signal end of iteration */
1083	*idx = ULLONG_MAX;
1084}
1085
1086#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1087/*
1088 * Common iterator interface used to define for_each_mem_range().
1089 */
1090void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1091				unsigned long *out_start_pfn,
1092				unsigned long *out_end_pfn, int *out_nid)
1093{
1094	struct memblock_type *type = &memblock.memory;
1095	struct memblock_region *r;
1096
1097	while (++*idx < type->cnt) {
1098		r = &type->regions[*idx];
1099
1100		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1101			continue;
1102		if (nid == MAX_NUMNODES || nid == r->nid)
1103			break;
1104	}
1105	if (*idx >= type->cnt) {
1106		*idx = -1;
1107		return;
1108	}
1109
1110	if (out_start_pfn)
1111		*out_start_pfn = PFN_UP(r->base);
1112	if (out_end_pfn)
1113		*out_end_pfn = PFN_DOWN(r->base + r->size);
1114	if (out_nid)
1115		*out_nid = r->nid;
1116}
1117
1118/**
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
1122 * @type: memblock type to set node ID for
1123 * @nid: node ID to set
1124 *
1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1126 * Regions which cross the area boundaries are split as necessary.
1127 *
1128 * RETURNS:
1129 * 0 on success, -errno on failure.
1130 */
1131int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1132				      struct memblock_type *type, int nid)
1133{
1134	int start_rgn, end_rgn;
1135	int i, ret;
1136
1137	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1138	if (ret)
1139		return ret;
1140
1141	for (i = start_rgn; i < end_rgn; i++)
1142		memblock_set_region_node(&type->regions[i], nid);
1143
1144	memblock_merge_regions(type);
1145	return 0;
1146}
1147#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1148
1149static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1150					phys_addr_t align, phys_addr_t start,
1151					phys_addr_t end, int nid, ulong flags)
1152{
1153	phys_addr_t found;
1154
1155	if (!align)
1156		align = SMP_CACHE_BYTES;
1157
1158	found = memblock_find_in_range_node(size, align, start, end, nid,
1159					    flags);
1160	if (found && !memblock_reserve(found, size)) {
1161		/*
1162		 * The min_count is set to 0 so that memblock allocations are
1163		 * never reported as leaks.
1164		 */
1165		kmemleak_alloc(__va(found), size, 0, 0);
1166		return found;
1167	}
1168	return 0;
1169}
1170
1171phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1172					phys_addr_t start, phys_addr_t end,
1173					ulong flags)
1174{
1175	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1176					flags);
1177}
1178
1179static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1180					phys_addr_t align, phys_addr_t max_addr,
1181					int nid, ulong flags)
1182{
1183	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1184}
1185
1186phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1187{
1188	ulong flags = choose_memblock_flags();
1189	phys_addr_t ret;
1190
1191again:
1192	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1193				      nid, flags);
1194
1195	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1196		flags &= ~MEMBLOCK_MIRROR;
1197		goto again;
1198	}
1199	return ret;
1200}
1201
1202phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1203{
1204	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1205				       MEMBLOCK_NONE);
1206}
1207
1208phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1209{
1210	phys_addr_t alloc;
1211
1212	alloc = __memblock_alloc_base(size, align, max_addr);
1213
1214	if (alloc == 0)
1215		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216		      (unsigned long long) size, (unsigned long long) max_addr);
1217
1218	return alloc;
1219}
1220
1221phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1222{
1223	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1224}
1225
1226phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1227{
1228	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1229
1230	if (res)
1231		return res;
1232	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1233}
1234
1235/**
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1242 *
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1247 *
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1250 *
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1252 *
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1255 *
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
1258 *
1259 * RETURNS:
1260 * Virtual address of allocated memory block on success, NULL on failure.
 
1261 */
1262static void * __init memblock_virt_alloc_internal(
1263				phys_addr_t size, phys_addr_t align,
1264				phys_addr_t min_addr, phys_addr_t max_addr,
1265				int nid)
1266{
1267	phys_addr_t alloc;
1268	void *ptr;
1269	ulong flags = choose_memblock_flags();
1270
1271	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1272		nid = NUMA_NO_NODE;
1273
 
 
 
1274	/*
1275	 * Detect any accidental use of these APIs after slab is ready, as at
1276	 * this moment memblock may be deinitialized already and its
1277	 * internal data may be destroyed (after execution of free_all_bootmem)
 
 
 
 
1278	 */
1279	if (WARN_ON_ONCE(slab_is_available()))
1280		return kzalloc_node(size, GFP_NOWAIT, nid);
1281
1282	if (!align)
1283		align = SMP_CACHE_BYTES;
 
 
 
 
 
 
 
1284
1285	if (max_addr > memblock.current_limit)
1286		max_addr = memblock.current_limit;
1287
1288again:
1289	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1290					    nid, flags);
1291	if (alloc)
1292		goto done;
1293
1294	if (nid != NUMA_NO_NODE) {
1295		alloc = memblock_find_in_range_node(size, align, min_addr,
1296						    max_addr, NUMA_NO_NODE,
1297						    flags);
1298		if (alloc)
1299			goto done;
1300	}
1301
1302	if (min_addr) {
1303		min_addr = 0;
1304		goto again;
1305	}
 
 
 
1306
1307	if (flags & MEMBLOCK_MIRROR) {
1308		flags &= ~MEMBLOCK_MIRROR;
1309		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310			&size);
1311		goto again;
 
 
 
1312	}
1313
1314	return NULL;
1315done:
1316	memblock_reserve(alloc, size);
1317	ptr = phys_to_virt(alloc);
1318	memset(ptr, 0, size);
1319
1320	/*
1321	 * The min_count is set to 0 so that bootmem allocated blocks
1322	 * are never reported as leaks. This is because many of these blocks
1323	 * are only referred via the physical address which is not
1324	 * looked up by kmemleak.
 
 
 
 
1325	 */
1326	kmemleak_alloc(ptr, size, 0, 0);
1327
1328	return ptr;
1329}
 
 
 
 
 
 
 
 
1330
1331/**
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 *	  is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 *	      allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 *
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
1344 *
1345 * RETURNS:
1346 * Virtual address of allocated memory block on success, NULL on failure.
1347 */
1348void * __init memblock_virt_alloc_try_nid_nopanic(
1349				phys_addr_t size, phys_addr_t align,
1350				phys_addr_t min_addr, phys_addr_t max_addr,
1351				int nid)
1352{
1353	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1355		     (u64)max_addr, (void *)_RET_IP_);
1356	return memblock_virt_alloc_internal(size, align, min_addr,
1357					     max_addr, nid);
1358}
1359
1360/**
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 *	  is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 *	      allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370 *
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1374 *
1375 * RETURNS:
1376 * Virtual address of allocated memory block on success, NULL on failure.
1377 */
1378void * __init memblock_virt_alloc_try_nid(
1379			phys_addr_t size, phys_addr_t align,
1380			phys_addr_t min_addr, phys_addr_t max_addr,
1381			int nid)
1382{
1383	void *ptr;
1384
1385	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1387		     (u64)max_addr, (void *)_RET_IP_);
1388	ptr = memblock_virt_alloc_internal(size, align,
1389					   min_addr, max_addr, nid);
1390	if (ptr)
1391		return ptr;
1392
1393	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1395	      (u64)max_addr);
1396	return NULL;
1397}
1398
1399/**
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the  boot memory block
1402 * @size: size of the boot memory block in bytes
1403 *
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1406 */
1407void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1408{
1409	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410		     __func__, (u64)base, (u64)base + size - 1,
1411		     (void *)_RET_IP_);
1412	kmemleak_free_part(__va(base), size);
1413	memblock_remove_range(&memblock.reserved, base, size);
1414}
1415
1416/*
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the  boot memory block
1419 * @size: size of the boot memory block in bytes
1420 *
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system.  Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1424 */
1425void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1426{
1427	u64 cursor, end;
1428
1429	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430		     __func__, (u64)base, (u64)base + size - 1,
1431		     (void *)_RET_IP_);
1432	kmemleak_free_part(__va(base), size);
1433	cursor = PFN_UP(base);
1434	end = PFN_DOWN(base + size);
1435
1436	for (; cursor < end; cursor++) {
1437		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1438		totalram_pages++;
1439	}
1440}
1441
 
1442/*
1443 * Remaining API functions
1444 */
1445
1446phys_addr_t __init_memblock memblock_phys_mem_size(void)
1447{
1448	return memblock.memory.total_size;
1449}
1450
1451phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1452{
1453	unsigned long pages = 0;
1454	struct memblock_region *r;
1455	unsigned long start_pfn, end_pfn;
1456
1457	for_each_memblock(memory, r) {
1458		start_pfn = memblock_region_memory_base_pfn(r);
1459		end_pfn = memblock_region_memory_end_pfn(r);
1460		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1461		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1462		pages += end_pfn - start_pfn;
1463	}
1464
1465	return PFN_PHYS(pages);
1466}
1467
1468/* lowest address */
1469phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1470{
1471	return memblock.memory.regions[0].base;
1472}
1473
1474phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1475{
1476	int idx = memblock.memory.cnt - 1;
1477
1478	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1479}
1480
1481void __init memblock_enforce_memory_limit(phys_addr_t limit)
 
1482{
1483	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1484	struct memblock_region *r;
 
1485
1486	if (!limit)
1487		return;
1488
1489	/* find out max address */
1490	for_each_memblock(memory, r) {
1491		if (limit <= r->size) {
1492			max_addr = r->base + limit;
1493			break;
 
1494		}
1495		limit -= r->size;
 
 
 
1496	}
1497
1498	/* truncate both memory and reserved regions */
1499	memblock_remove_range(&memblock.memory, max_addr,
1500			      (phys_addr_t)ULLONG_MAX);
1501	memblock_remove_range(&memblock.reserved, max_addr,
1502			      (phys_addr_t)ULLONG_MAX);
 
 
 
 
 
 
 
 
 
 
 
1503}
1504
1505static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1506{
1507	unsigned int left = 0, right = type->cnt;
1508
1509	do {
1510		unsigned int mid = (right + left) / 2;
1511
1512		if (addr < type->regions[mid].base)
1513			right = mid;
1514		else if (addr >= (type->regions[mid].base +
1515				  type->regions[mid].size))
1516			left = mid + 1;
1517		else
1518			return mid;
1519	} while (left < right);
1520	return -1;
1521}
1522
1523bool __init memblock_is_reserved(phys_addr_t addr)
1524{
1525	return memblock_search(&memblock.reserved, addr) != -1;
1526}
1527
1528bool __init_memblock memblock_is_memory(phys_addr_t addr)
1529{
1530	return memblock_search(&memblock.memory, addr) != -1;
1531}
1532
1533int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1534{
1535	int i = memblock_search(&memblock.memory, addr);
1536
1537	if (i == -1)
1538		return false;
1539	return !memblock_is_nomap(&memblock.memory.regions[i]);
1540}
1541
1542#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1544			 unsigned long *start_pfn, unsigned long *end_pfn)
1545{
1546	struct memblock_type *type = &memblock.memory;
1547	int mid = memblock_search(type, PFN_PHYS(pfn));
1548
1549	if (mid == -1)
1550		return -1;
1551
1552	*start_pfn = PFN_DOWN(type->regions[mid].base);
1553	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1554
1555	return type->regions[mid].nid;
1556}
1557#endif
1558
1559/**
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1563 *
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1565 *
1566 * RETURNS:
1567 * 0 if false, non-zero if true
1568 */
1569int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1570{
1571	int idx = memblock_search(&memblock.memory, base);
1572	phys_addr_t end = base + memblock_cap_size(base, &size);
1573
1574	if (idx == -1)
1575		return 0;
1576	return memblock.memory.regions[idx].base <= base &&
1577		(memblock.memory.regions[idx].base +
1578		 memblock.memory.regions[idx].size) >= end;
1579}
1580
1581/**
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1585 *
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1587 *
1588 * RETURNS:
1589 * True if they intersect, false if not.
1590 */
1591bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1592{
1593	memblock_cap_size(base, &size);
1594	return memblock_overlaps_region(&memblock.reserved, base, size);
1595}
1596
1597void __init_memblock memblock_trim_memory(phys_addr_t align)
1598{
1599	phys_addr_t start, end, orig_start, orig_end;
1600	struct memblock_region *r;
1601
1602	for_each_memblock(memory, r) {
1603		orig_start = r->base;
1604		orig_end = r->base + r->size;
1605		start = round_up(orig_start, align);
1606		end = round_down(orig_end, align);
1607
1608		if (start == orig_start && end == orig_end)
1609			continue;
1610
1611		if (start < end) {
1612			r->base = start;
1613			r->size = end - start;
1614		} else {
1615			memblock_remove_region(&memblock.memory,
1616					       r - memblock.memory.regions);
1617			r--;
1618		}
1619	}
1620}
1621
1622void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1623{
1624	memblock.current_limit = limit;
1625}
1626
1627phys_addr_t __init_memblock memblock_get_current_limit(void)
1628{
1629	return memblock.current_limit;
1630}
1631
1632static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1633{
1634	unsigned long long base, size;
1635	unsigned long flags;
1636	int idx;
1637	struct memblock_region *rgn;
1638
1639	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1640
1641	for_each_memblock_type(type, rgn) {
1642		char nid_buf[32] = "";
1643
1644		base = rgn->base;
1645		size = rgn->size;
1646		flags = rgn->flags;
1647#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1649			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1650				 memblock_get_region_node(rgn));
1651#endif
1652		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1653			name, idx, base, base + size - 1, size, nid_buf, flags);
1654	}
1655}
1656
1657void __init_memblock __memblock_dump_all(void)
1658{
 
 
 
1659	pr_info("MEMBLOCK configuration:\n");
1660	pr_info(" memory size = %#llx reserved size = %#llx\n",
1661		(unsigned long long)memblock.memory.total_size,
1662		(unsigned long long)memblock.reserved.total_size);
1663
1664	memblock_dump(&memblock.memory, "memory");
1665	memblock_dump(&memblock.reserved, "reserved");
1666}
1667
1668void __init memblock_allow_resize(void)
1669{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670	memblock_can_resize = 1;
1671}
1672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673static int __init early_memblock(char *p)
1674{
1675	if (p && strstr(p, "debug"))
1676		memblock_debug = 1;
1677	return 0;
1678}
1679early_param("memblock", early_memblock);
1680
1681#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1682
1683static int memblock_debug_show(struct seq_file *m, void *private)
1684{
1685	struct memblock_type *type = m->private;
1686	struct memblock_region *reg;
1687	int i;
1688
1689	for (i = 0; i < type->cnt; i++) {
1690		reg = &type->regions[i];
1691		seq_printf(m, "%4d: ", i);
1692		if (sizeof(phys_addr_t) == 4)
1693			seq_printf(m, "0x%08lx..0x%08lx\n",
1694				   (unsigned long)reg->base,
1695				   (unsigned long)(reg->base + reg->size - 1));
1696		else
1697			seq_printf(m, "0x%016llx..0x%016llx\n",
1698				   (unsigned long long)reg->base,
1699				   (unsigned long long)(reg->base + reg->size - 1));
1700
1701	}
1702	return 0;
1703}
1704
1705static int memblock_debug_open(struct inode *inode, struct file *file)
1706{
1707	return single_open(file, memblock_debug_show, inode->i_private);
1708}
1709
1710static const struct file_operations memblock_debug_fops = {
1711	.open = memblock_debug_open,
1712	.read = seq_read,
1713	.llseek = seq_lseek,
1714	.release = single_release,
1715};
1716
1717static int __init memblock_init_debugfs(void)
1718{
1719	struct dentry *root = debugfs_create_dir("memblock", NULL);
1720	if (!root)
1721		return -ENXIO;
1722	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1723	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1724#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1726#endif
1727
1728	return 0;
1729}
1730__initcall(memblock_init_debugfs);
1731
1732#endif /* CONFIG_DEBUG_FS */
v3.1
  1/*
  2 * Procedures for maintaining information about logical memory blocks.
  3 *
  4 * Peter Bergner, IBM Corp.	June 2001.
  5 * Copyright (C) 2001 Peter Bergner.
  6 *
  7 *      This program is free software; you can redistribute it and/or
  8 *      modify it under the terms of the GNU General Public License
  9 *      as published by the Free Software Foundation; either version
 10 *      2 of the License, or (at your option) any later version.
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/slab.h>
 15#include <linux/init.h>
 16#include <linux/bitops.h>
 17#include <linux/poison.h>
 18#include <linux/pfn.h>
 19#include <linux/debugfs.h>
 20#include <linux/seq_file.h>
 21#include <linux/memblock.h>
 22
 23struct memblock memblock __initdata_memblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25int memblock_debug __initdata_memblock;
 26int memblock_can_resize __initdata_memblock;
 27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 
 
 
 
 
 
 
 
 
 29
 30/* inline so we don't get a warning when pr_debug is compiled out */
 31static inline const char *memblock_type_name(struct memblock_type *type)
 
 32{
 33	if (type == &memblock.memory)
 34		return "memory";
 35	else if (type == &memblock.reserved)
 36		return "reserved";
 37	else
 38		return "unknown";
 39}
 40
 
 
 
 
 
 
 41/*
 42 * Address comparison utilities
 43 */
 44
 45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
 46{
 47	return addr & ~(size - 1);
 48}
 49
 50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
 51{
 52	return (addr + (size - 1)) & ~(size - 1);
 53}
 54
 55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 56				       phys_addr_t base2, phys_addr_t size2)
 57{
 58	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 59}
 60
 61long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
 
 62{
 63	unsigned long i;
 64
 65	for (i = 0; i < type->cnt; i++) {
 66		phys_addr_t rgnbase = type->regions[i].base;
 67		phys_addr_t rgnsize = type->regions[i].size;
 68		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
 69			break;
 70	}
 71
 72	return (i < type->cnt) ? i : -1;
 73}
 74
 75/*
 76 * Find, allocate, deallocate or reserve unreserved regions. All allocations
 77 * are top-down.
 
 
 
 
 
 
 
 
 
 
 78 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79
 80static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
 81					  phys_addr_t size, phys_addr_t align)
 82{
 83	phys_addr_t base, res_base;
 84	long j;
 85
 86	/* In case, huge size is requested */
 87	if (end < size)
 88		return MEMBLOCK_ERROR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89
 90	base = memblock_align_down((end - size), align);
 91
 92	/* Prevent allocations returning 0 as it's also used to
 93	 * indicate an allocation failure
 94	 */
 95	if (start == 0)
 96		start = PAGE_SIZE;
 97
 98	while (start <= base) {
 99		j = memblock_overlaps_region(&memblock.reserved, base, size);
100		if (j < 0)
101			return base;
102		res_base = memblock.reserved.regions[j].base;
103		if (res_base < size)
104			break;
105		base = memblock_align_down(res_base - size, align);
106	}
107
108	return MEMBLOCK_ERROR;
109}
110
111static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
112			phys_addr_t align, phys_addr_t start, phys_addr_t end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113{
114	long i;
115
116	BUG_ON(0 == size);
117
118	/* Pump up max_addr */
119	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
120		end = memblock.current_limit;
121
122	/* We do a top-down search, this tends to limit memory
123	 * fragmentation by keeping early boot allocs near the
124	 * top of memory
 
 
 
 
 
125	 */
126	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
127		phys_addr_t memblockbase = memblock.memory.regions[i].base;
128		phys_addr_t memblocksize = memblock.memory.regions[i].size;
129		phys_addr_t bottom, top, found;
 
 
 
 
 
 
 
130
131		if (memblocksize < size)
132			continue;
133		if ((memblockbase + memblocksize) <= start)
134			break;
135		bottom = max(memblockbase, start);
136		top = min(memblockbase + memblocksize, end);
137		if (bottom >= top)
138			continue;
139		found = memblock_find_region(bottom, top, size, align);
140		if (found != MEMBLOCK_ERROR)
141			return found;
142	}
143	return MEMBLOCK_ERROR;
 
 
144}
145
146/*
147 * Find a free area with specified alignment in a specific range.
 
 
 
 
 
 
 
 
 
148 */
149u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
150{
151	return memblock_find_base(size, align, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152}
153
154/*
155 * Free memblock.reserved.regions
156 */
157int __init_memblock memblock_free_reserved_regions(void)
158{
159	if (memblock.reserved.regions == memblock_reserved_init_regions)
160		return 0;
 
 
161
162	return memblock_free(__pa(memblock.reserved.regions),
163		 sizeof(struct memblock_region) * memblock.reserved.max);
 
 
 
 
 
 
 
164}
165
166/*
167 * Reserve memblock.reserved.regions
168 */
169int __init_memblock memblock_reserve_reserved_regions(void)
170{
171	if (memblock.reserved.regions == memblock_reserved_init_regions)
172		return 0;
173
174	return memblock_reserve(__pa(memblock.reserved.regions),
175		 sizeof(struct memblock_region) * memblock.reserved.max);
 
 
176}
177
178static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 
179{
180	unsigned long i;
 
181
182	for (i = r; i < type->cnt - 1; i++) {
183		type->regions[i].base = type->regions[i + 1].base;
184		type->regions[i].size = type->regions[i + 1].size;
185	}
186	type->cnt--;
187
188	/* Special case for empty arrays */
189	if (type->cnt == 0) {
190		type->cnt = 1;
191		type->regions[0].base = 0;
192		type->regions[0].size = 0;
193	}
194}
195
196/* Defined below but needed now */
197static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
198
199static int __init_memblock memblock_double_array(struct memblock_type *type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200{
201	struct memblock_region *new_array, *old_array;
 
202	phys_addr_t old_size, new_size, addr;
203	int use_slab = slab_is_available();
 
204
205	/* We don't allow resizing until we know about the reserved regions
206	 * of memory that aren't suitable for allocation
207	 */
208	if (!memblock_can_resize)
209		return -1;
210
211	/* Calculate new doubled size */
212	old_size = type->max * sizeof(struct memblock_region);
213	new_size = old_size << 1;
 
 
 
 
 
 
 
 
 
 
 
 
214
215	/* Try to find some space for it.
216	 *
217	 * WARNING: We assume that either slab_is_available() and we use it or
218	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
219	 * when bootmem is currently active (unless bootmem itself is implemented
220	 * on top of MEMBLOCK which isn't the case yet)
221	 *
222	 * This should however not be an issue for now, as we currently only
223	 * call into MEMBLOCK while it's still active, or much later when slab is
224	 * active for memory hotplug operations
225	 */
226	if (use_slab) {
227		new_array = kmalloc(new_size, GFP_KERNEL);
228		addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
229	} else
230		addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
231	if (addr == MEMBLOCK_ERROR) {
 
 
 
 
 
 
 
 
 
 
 
 
 
232		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
233		       memblock_type_name(type), type->max, type->max * 2);
234		return -1;
235	}
236	new_array = __va(addr);
237
238	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
239		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 
240
241	/* Found space, we now need to move the array over before
242	 * we add the reserved region since it may be our reserved
243	 * array itself that is full.
 
244	 */
245	memcpy(new_array, type->regions, old_size);
246	memset(new_array + type->max, 0, old_size);
247	old_array = type->regions;
248	type->regions = new_array;
249	type->max <<= 1;
250
251	/* If we use SLAB that's it, we are done */
252	if (use_slab)
253		return 0;
 
 
 
254
255	/* Add the new reserved region now. Should not fail ! */
256	BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
 
 
 
 
257
258	/* If the array wasn't our static init one, then free it. We only do
259	 * that before SLAB is available as later on, we don't know whether
260	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
261	 * anyways
262	 */
263	if (old_array != memblock_memory_init_regions &&
264	    old_array != memblock_reserved_init_regions)
265		memblock_free(__pa(old_array), old_size);
266
267	return 0;
268}
269
270extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
271					  phys_addr_t addr2, phys_addr_t size2)
 
 
 
 
 
272{
273	return 1;
274}
275
276static long __init_memblock memblock_add_region(struct memblock_type *type,
277						phys_addr_t base, phys_addr_t size)
278{
279	phys_addr_t end = base + size;
280	int i, slot = -1;
 
 
 
 
 
 
 
 
281
282	/* First try and coalesce this MEMBLOCK with others */
283	for (i = 0; i < type->cnt; i++) {
284		struct memblock_region *rgn = &type->regions[i];
285		phys_addr_t rend = rgn->base + rgn->size;
 
 
286
287		/* Exit if there's no possible hits */
288		if (rgn->base > end || rgn->size == 0)
289			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290
291		/* Check if we are fully enclosed within an existing
292		 * block
293		 */
294		if (rgn->base <= base && rend >= end)
295			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
297		/* Check if we overlap or are adjacent with the bottom
298		 * of a block.
299		 */
300		if (base < rgn->base && end >= rgn->base) {
301			/* If we can't coalesce, create a new block */
302			if (!memblock_memory_can_coalesce(base, size,
303							  rgn->base,
304							  rgn->size)) {
305				/* Overlap & can't coalesce are mutually
306				 * exclusive, if you do that, be prepared
307				 * for trouble
308				 */
309				WARN_ON(end != rgn->base);
310				goto new_block;
311			}
312			/* We extend the bottom of the block down to our
313			 * base
314			 */
315			rgn->base = base;
316			rgn->size = rend - base;
317
318			/* Return if we have nothing else to allocate
319			 * (fully coalesced)
320			 */
321			if (rend >= end)
322				return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
323
324			/* We continue processing from the end of the
325			 * coalesced block.
326			 */
327			base = rend;
328			size = end - base;
329		}
330
331		/* Now check if we overlap or are adjacent with the
332		 * top of a block
 
 
 
 
 
333		 */
334		if (base <= rend && end >= rend) {
335			/* If we can't coalesce, create a new block */
336			if (!memblock_memory_can_coalesce(rgn->base,
337							  rgn->size,
338							  base, size)) {
339				/* Overlap & can't coalesce are mutually
340				 * exclusive, if you do that, be prepared
341				 * for trouble
342				 */
343				WARN_ON(rend != base);
344				goto new_block;
345			}
346			/* We adjust our base down to enclose the
347			 * original block and destroy it. It will be
348			 * part of our new allocation. Since we've
349			 * freed an entry, we know we won't fail
350			 * to allocate one later, so we won't risk
351			 * losing the original block allocation.
352			 */
353			size += (base - rgn->base);
354			base = rgn->base;
355			memblock_remove_region(type, i--);
356		}
 
 
 
 
 
 
 
 
 
 
357	}
358
359	/* If the array is empty, special case, replace the fake
360	 * filler region and return
 
361	 */
362	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
363		type->regions[0].base = base;
364		type->regions[0].size = size;
 
 
 
 
 
365		return 0;
366	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
368 new_block:
369	/* If we are out of space, we fail. It's too late to resize the array
370	 * but then this shouldn't have happened in the first place.
371	 */
372	if (WARN_ON(type->cnt >= type->max))
373		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374
375	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
376	for (i = type->cnt - 1; i >= 0; i--) {
377		if (base < type->regions[i].base) {
378			type->regions[i+1].base = type->regions[i].base;
379			type->regions[i+1].size = type->regions[i].size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380		} else {
381			type->regions[i+1].base = base;
382			type->regions[i+1].size = size;
383			slot = i + 1;
384			break;
385		}
386	}
387	if (base < type->regions[0].base) {
388		type->regions[0].base = base;
389		type->regions[0].size = size;
390		slot = 0;
391	}
392	type->cnt++;
393
394	/* The array is full ? Try to resize it. If that fails, we undo
395	 * our allocation and return an error
396	 */
397	if (type->cnt == type->max && memblock_double_array(type)) {
398		BUG_ON(slot < 0);
399		memblock_remove_region(type, slot);
400		return -1;
401	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402
 
403	return 0;
404}
405
406long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407{
408	return memblock_add_region(&memblock.memory, base, size);
409
 
410}
411
412static long __init_memblock __memblock_remove(struct memblock_type *type,
413					      phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
414{
415	phys_addr_t end = base + size;
416	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
418	/* Walk through the array for collisions */
419	for (i = 0; i < type->cnt; i++) {
420		struct memblock_region *rgn = &type->regions[i];
421		phys_addr_t rend = rgn->base + rgn->size;
422
423		/* Nothing more to do, exit */
424		if (rgn->base > end || rgn->size == 0)
425			break;
426
427		/* If we fully enclose the block, drop it */
428		if (base <= rgn->base && end >= rend) {
429			memblock_remove_region(type, i--);
430			continue;
 
 
 
 
 
 
 
 
 
 
 
431		}
432
433		/* If we are fully enclosed within a block
434		 * then we need to split it and we are done
435		 */
436		if (base > rgn->base && end < rend) {
437			rgn->size = base - rgn->base;
438			if (!memblock_add_region(type, end, rend - end))
439				return 0;
440			/* Failure to split is bad, we at least
441			 * restore the block before erroring
 
 
 
 
 
442			 */
443			rgn->size = rend - rgn->base;
444			WARN_ON(1);
445			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
447
448		/* Check if we need to trim the bottom of a block */
449		if (rgn->base < end && rend > end) {
450			rgn->size -= end - rgn->base;
451			rgn->base = end;
452			break;
 
 
 
 
 
453		}
454
455		/* And check if we need to trim the top of a block */
456		if (base < rend)
457			rgn->size -= rend - base;
 
 
 
 
 
 
 
 
 
 
 
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459	}
460	return 0;
 
461}
462
463long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
464{
465	return __memblock_remove(&memblock.memory, base, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466}
467
468long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469{
470	return __memblock_remove(&memblock.reserved, base, size);
 
 
 
 
 
 
 
 
 
 
 
471}
 
472
473long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 
 
474{
475	struct memblock_type *_rgn = &memblock.reserved;
 
 
 
476
477	BUG_ON(0 == size);
 
 
 
 
 
 
 
 
 
 
 
478
479	return memblock_add_region(_rgn, base, size);
 
 
 
 
 
480}
481
482phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 
 
483{
484	phys_addr_t found;
 
485
486	/* We align the size to limit fragmentation. Without this, a lot of
487	 * small allocs quickly eat up the whole reserve array on sparc
488	 */
489	size = memblock_align_up(size, align);
490
491	found = memblock_find_base(size, align, 0, max_addr);
492	if (found != MEMBLOCK_ERROR &&
493	    !memblock_add_region(&memblock.reserved, found, size))
494		return found;
 
 
 
 
 
 
495
496	return 0;
 
 
 
497}
498
499phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
500{
501	phys_addr_t alloc;
502
503	alloc = __memblock_alloc_base(size, align, max_addr);
504
505	if (alloc == 0)
506		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
507		      (unsigned long long) size, (unsigned long long) max_addr);
508
509	return alloc;
510}
511
512phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
513{
514	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
515}
516
 
 
 
 
 
 
 
 
517
518/*
519 * Additional node-local allocators. Search for node memory is bottom up
520 * and walks memblock regions within that node bottom-up as well, but allocation
521 * within an memblock region is top-down. XXX I plan to fix that at some stage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522 *
523 * WARNING: Only available after early_node_map[] has been populated,
524 * on some architectures, that is after all the calls to add_active_range()
525 * have been done to populate it.
526 */
 
 
 
 
 
 
 
 
 
 
 
527
528phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
529{
530#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
531	/*
532	 * This code originates from sparc which really wants use to walk by addresses
533	 * and returns the nid. This is not very convenient for early_pfn_map[] users
534	 * as the map isn't sorted yet, and it really wants to be walked by nid.
535	 *
536	 * For now, I implement the inefficient method below which walks the early
537	 * map multiple times. Eventually we may want to use an ARCH config option
538	 * to implement a completely different method for both case.
539	 */
540	unsigned long start_pfn, end_pfn;
541	int i;
542
543	for (i = 0; i < MAX_NUMNODES; i++) {
544		get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
545		if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
546			continue;
547		*nid = i;
548		return min(end, PFN_PHYS(end_pfn));
549	}
550#endif
551	*nid = 0;
552
553	return end;
554}
555
556static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
557					       phys_addr_t size,
558					       phys_addr_t align, int nid)
559{
560	phys_addr_t start, end;
 
 
 
 
 
 
 
 
561
562	start = mp->base;
563	end = start + mp->size;
564
565	start = memblock_align_up(start, align);
566	while (start < end) {
567		phys_addr_t this_end;
568		int this_nid;
569
570		this_end = memblock_nid_range(start, end, &this_nid);
571		if (this_nid == nid) {
572			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
573			if (ret != MEMBLOCK_ERROR &&
574			    !memblock_add_region(&memblock.reserved, ret, size))
575				return ret;
576		}
577		start = this_end;
578	}
579
580	return MEMBLOCK_ERROR;
581}
 
 
 
582
583phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
584{
585	struct memblock_type *mem = &memblock.memory;
586	int i;
587
588	BUG_ON(0 == size);
589
590	/* We align the size to limit fragmentation. Without this, a lot of
591	 * small allocs quickly eat up the whole reserve array on sparc
592	 */
593	size = memblock_align_up(size, align);
594
595	/* We do a bottom-up search for a region with the right
596	 * nid since that's easier considering how memblock_nid_range()
597	 * works
598	 */
599	for (i = 0; i < mem->cnt; i++) {
600		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
601					       size, align, nid);
602		if (ret != MEMBLOCK_ERROR)
603			return ret;
604	}
605
606	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607}
608
609phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
610{
611	phys_addr_t res = memblock_alloc_nid(size, align, nid);
612
613	if (res)
614		return res;
615	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
 
 
 
 
 
 
 
 
616}
617
618
619/*
620 * Remaining API functions
621 */
622
623/* You must call memblock_analyze() before this. */
624phys_addr_t __init memblock_phys_mem_size(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625{
626	return memblock.memory_size;
627}
628
629phys_addr_t __init_memblock memblock_end_of_DRAM(void)
630{
631	int idx = memblock.memory.cnt - 1;
632
633	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
634}
635
636/* You must call memblock_analyze() after this. */
637void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
638{
639	unsigned long i;
640	phys_addr_t limit;
641	struct memblock_region *p;
642
643	if (!memory_limit)
644		return;
645
646	/* Truncate the memblock regions to satisfy the memory limit. */
647	limit = memory_limit;
648	for (i = 0; i < memblock.memory.cnt; i++) {
649		if (limit > memblock.memory.regions[i].size) {
650			limit -= memblock.memory.regions[i].size;
651			continue;
652		}
653
654		memblock.memory.regions[i].size = limit;
655		memblock.memory.cnt = i + 1;
656		break;
657	}
658
659	memory_limit = memblock_end_of_DRAM();
660
661	/* And truncate any reserves above the limit also. */
662	for (i = 0; i < memblock.reserved.cnt; i++) {
663		p = &memblock.reserved.regions[i];
664
665		if (p->base > memory_limit)
666			p->size = 0;
667		else if ((p->base + p->size) > memory_limit)
668			p->size = memory_limit - p->base;
669
670		if (p->size == 0) {
671			memblock_remove_region(&memblock.reserved, i);
672			i--;
673		}
674	}
675}
676
677static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
678{
679	unsigned int left = 0, right = type->cnt;
680
681	do {
682		unsigned int mid = (right + left) / 2;
683
684		if (addr < type->regions[mid].base)
685			right = mid;
686		else if (addr >= (type->regions[mid].base +
687				  type->regions[mid].size))
688			left = mid + 1;
689		else
690			return mid;
691	} while (left < right);
692	return -1;
693}
694
695int __init memblock_is_reserved(phys_addr_t addr)
696{
697	return memblock_search(&memblock.reserved, addr) != -1;
698}
699
700int __init_memblock memblock_is_memory(phys_addr_t addr)
701{
702	return memblock_search(&memblock.memory, addr) != -1;
703}
704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
706{
707	int idx = memblock_search(&memblock.memory, base);
 
708
709	if (idx == -1)
710		return 0;
711	return memblock.memory.regions[idx].base <= base &&
712		(memblock.memory.regions[idx].base +
713		 memblock.memory.regions[idx].size) >= (base + size);
714}
715
716int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
717{
718	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 
719}
720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721
722void __init_memblock memblock_set_current_limit(phys_addr_t limit)
723{
724	memblock.current_limit = limit;
725}
726
727static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
 
 
 
 
 
728{
729	unsigned long long base, size;
730	int i;
731
732	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
733
734	for (i = 0; i < region->cnt; i++) {
735		base = region->regions[i].base;
736		size = region->regions[i].size;
737
738		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
739		    name, i, base, base + size - 1, size);
 
 
 
 
 
 
 
 
 
740	}
741}
742
743void __init_memblock memblock_dump_all(void)
744{
745	if (!memblock_debug)
746		return;
747
748	pr_info("MEMBLOCK configuration:\n");
749	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
 
 
750
751	memblock_dump(&memblock.memory, "memory");
752	memblock_dump(&memblock.reserved, "reserved");
753}
754
755void __init memblock_analyze(void)
756{
757	int i;
758
759	/* Check marker in the unused last array entry */
760	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
761		!= MEMBLOCK_INACTIVE);
762	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
763		!= MEMBLOCK_INACTIVE);
764
765	memblock.memory_size = 0;
766
767	for (i = 0; i < memblock.memory.cnt; i++)
768		memblock.memory_size += memblock.memory.regions[i].size;
769
770	/* We allow resizing from there */
771	memblock_can_resize = 1;
772}
773
774void __init memblock_init(void)
775{
776	static int init_done __initdata = 0;
777
778	if (init_done)
779		return;
780	init_done = 1;
781
782	/* Hookup the initial arrays */
783	memblock.memory.regions	= memblock_memory_init_regions;
784	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
785	memblock.reserved.regions	= memblock_reserved_init_regions;
786	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
787
788	/* Write a marker in the unused last array entry */
789	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
790	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
791
792	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
793	 * This simplifies the memblock_add() code below...
794	 */
795	memblock.memory.regions[0].base = 0;
796	memblock.memory.regions[0].size = 0;
797	memblock.memory.cnt = 1;
798
799	/* Ditto. */
800	memblock.reserved.regions[0].base = 0;
801	memblock.reserved.regions[0].size = 0;
802	memblock.reserved.cnt = 1;
803
804	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
805}
806
807static int __init early_memblock(char *p)
808{
809	if (p && strstr(p, "debug"))
810		memblock_debug = 1;
811	return 0;
812}
813early_param("memblock", early_memblock);
814
815#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
816
817static int memblock_debug_show(struct seq_file *m, void *private)
818{
819	struct memblock_type *type = m->private;
820	struct memblock_region *reg;
821	int i;
822
823	for (i = 0; i < type->cnt; i++) {
824		reg = &type->regions[i];
825		seq_printf(m, "%4d: ", i);
826		if (sizeof(phys_addr_t) == 4)
827			seq_printf(m, "0x%08lx..0x%08lx\n",
828				   (unsigned long)reg->base,
829				   (unsigned long)(reg->base + reg->size - 1));
830		else
831			seq_printf(m, "0x%016llx..0x%016llx\n",
832				   (unsigned long long)reg->base,
833				   (unsigned long long)(reg->base + reg->size - 1));
834
835	}
836	return 0;
837}
838
839static int memblock_debug_open(struct inode *inode, struct file *file)
840{
841	return single_open(file, memblock_debug_show, inode->i_private);
842}
843
844static const struct file_operations memblock_debug_fops = {
845	.open = memblock_debug_open,
846	.read = seq_read,
847	.llseek = seq_lseek,
848	.release = single_release,
849};
850
851static int __init memblock_init_debugfs(void)
852{
853	struct dentry *root = debugfs_create_dir("memblock", NULL);
854	if (!root)
855		return -ENXIO;
856	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
857	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 
 
 
858
859	return 0;
860}
861__initcall(memblock_init_debugfs);
862
863#endif /* CONFIG_DEBUG_FS */