Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23#include <asm-generic/sections.h>
  24#include <linux/io.h>
  25
  26#include "internal.h"
  27
  28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  32#endif
  33
  34struct memblock memblock __initdata_memblock = {
  35	.memory.regions		= memblock_memory_init_regions,
  36	.memory.cnt		= 1,	/* empty dummy entry */
  37	.memory.max		= INIT_MEMBLOCK_REGIONS,
  38
  39	.reserved.regions	= memblock_reserved_init_regions,
  40	.reserved.cnt		= 1,	/* empty dummy entry */
  41	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  42
  43#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  44	.physmem.regions	= memblock_physmem_init_regions,
  45	.physmem.cnt		= 1,	/* empty dummy entry */
  46	.physmem.max		= INIT_PHYSMEM_REGIONS,
  47#endif
  48
  49	.bottom_up		= false,
  50	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  51};
  52
  53int memblock_debug __initdata_memblock;
  54#ifdef CONFIG_MOVABLE_NODE
  55bool movable_node_enabled __initdata_memblock = false;
  56#endif
  57static bool system_has_some_mirror __initdata_memblock = false;
  58static int memblock_can_resize __initdata_memblock;
  59static int memblock_memory_in_slab __initdata_memblock = 0;
  60static int memblock_reserved_in_slab __initdata_memblock = 0;
  61
  62ulong __init_memblock choose_memblock_flags(void)
  63{
  64	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  65}
  66
  67/* inline so we don't get a warning when pr_debug is compiled out */
  68static __init_memblock const char *
  69memblock_type_name(struct memblock_type *type)
  70{
  71	if (type == &memblock.memory)
  72		return "memory";
  73	else if (type == &memblock.reserved)
  74		return "reserved";
  75	else
  76		return "unknown";
  77}
  78
  79/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  80static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  81{
  82	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  83}
  84
  85/*
  86 * Address comparison utilities
  87 */
  88static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  89				       phys_addr_t base2, phys_addr_t size2)
  90{
  91	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  92}
  93
  94bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  95					phys_addr_t base, phys_addr_t size)
  96{
  97	unsigned long i;
  98
  99	for (i = 0; i < type->cnt; i++)
 100		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 101					   type->regions[i].size))
 
 102			break;
 103	return i < type->cnt;
 
 
 104}
 105
 106/*
 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 108 * @start: start of candidate range
 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 110 * @size: size of free area to find
 111 * @align: alignment of free area to find
 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 113 * @flags: pick from blocks based on memory attributes
 114 *
 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 116 *
 117 * RETURNS:
 118 * Found address on success, 0 on failure.
 119 */
 120static phys_addr_t __init_memblock
 121__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 122				phys_addr_t size, phys_addr_t align, int nid,
 123				ulong flags)
 124{
 125	phys_addr_t this_start, this_end, cand;
 126	u64 i;
 127
 128	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 129		this_start = clamp(this_start, start, end);
 130		this_end = clamp(this_end, start, end);
 131
 132		cand = round_up(this_start, align);
 133		if (cand < this_end && this_end - cand >= size)
 134			return cand;
 135	}
 136
 137	return 0;
 138}
 139
 140/**
 141 * __memblock_find_range_top_down - find free area utility, in top-down
 142 * @start: start of candidate range
 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 144 * @size: size of free area to find
 145 * @align: alignment of free area to find
 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 147 * @flags: pick from blocks based on memory attributes
 148 *
 149 * Utility called from memblock_find_in_range_node(), find free area top-down.
 150 *
 151 * RETURNS:
 152 * Found address on success, 0 on failure.
 153 */
 154static phys_addr_t __init_memblock
 155__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 156			       phys_addr_t size, phys_addr_t align, int nid,
 157			       ulong flags)
 158{
 159	phys_addr_t this_start, this_end, cand;
 160	u64 i;
 161
 162	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 163					NULL) {
 164		this_start = clamp(this_start, start, end);
 165		this_end = clamp(this_end, start, end);
 166
 167		if (this_end < size)
 168			continue;
 169
 170		cand = round_down(this_end - size, align);
 171		if (cand >= this_start)
 172			return cand;
 173	}
 174
 175	return 0;
 176}
 177
 178/**
 179 * memblock_find_in_range_node - find free area in given range and node
 180 * @size: size of free area to find
 181 * @align: alignment of free area to find
 182 * @start: start of candidate range
 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 185 * @flags: pick from blocks based on memory attributes
 186 *
 187 * Find @size free area aligned to @align in the specified range and node.
 188 *
 189 * When allocation direction is bottom-up, the @start should be greater
 190 * than the end of the kernel image. Otherwise, it will be trimmed. The
 191 * reason is that we want the bottom-up allocation just near the kernel
 192 * image so it is highly likely that the allocated memory and the kernel
 193 * will reside in the same node.
 194 *
 195 * If bottom-up allocation failed, will try to allocate memory top-down.
 196 *
 197 * RETURNS:
 198 * Found address on success, 0 on failure.
 199 */
 200phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 201					phys_addr_t align, phys_addr_t start,
 202					phys_addr_t end, int nid, ulong flags)
 203{
 204	phys_addr_t kernel_end, ret;
 
 205
 206	/* pump up @end */
 207	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 208		end = memblock.current_limit;
 209
 210	/* avoid allocating the first page */
 211	start = max_t(phys_addr_t, start, PAGE_SIZE);
 212	end = max(start, end);
 213	kernel_end = __pa_symbol(_end);
 214
 215	/*
 216	 * try bottom-up allocation only when bottom-up mode
 217	 * is set and @end is above the kernel image.
 218	 */
 219	if (memblock_bottom_up() && end > kernel_end) {
 220		phys_addr_t bottom_up_start;
 221
 222		/* make sure we will allocate above the kernel */
 223		bottom_up_start = max(start, kernel_end);
 224
 225		/* ok, try bottom-up allocation first */
 226		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 227						      size, align, nid, flags);
 228		if (ret)
 229			return ret;
 230
 231		/*
 232		 * we always limit bottom-up allocation above the kernel,
 233		 * but top-down allocation doesn't have the limit, so
 234		 * retrying top-down allocation may succeed when bottom-up
 235		 * allocation failed.
 236		 *
 237		 * bottom-up allocation is expected to be fail very rarely,
 238		 * so we use WARN_ONCE() here to see the stack trace if
 239		 * fail happens.
 240		 */
 241		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 
 242	}
 243
 244	return __memblock_find_range_top_down(start, end, size, align, nid,
 245					      flags);
 246}
 247
 248/**
 249 * memblock_find_in_range - find free area in given range
 250 * @start: start of candidate range
 251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 252 * @size: size of free area to find
 253 * @align: alignment of free area to find
 254 *
 255 * Find @size free area aligned to @align in the specified range.
 256 *
 257 * RETURNS:
 258 * Found address on success, 0 on failure.
 259 */
 260phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 261					phys_addr_t end, phys_addr_t size,
 262					phys_addr_t align)
 263{
 264	phys_addr_t ret;
 265	ulong flags = choose_memblock_flags();
 266
 267again:
 268	ret = memblock_find_in_range_node(size, align, start, end,
 269					    NUMA_NO_NODE, flags);
 270
 271	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 272		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 273			&size);
 274		flags &= ~MEMBLOCK_MIRROR;
 275		goto again;
 276	}
 277
 278	return ret;
 279}
 280
 281static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 282{
 283	type->total_size -= type->regions[r].size;
 284	memmove(&type->regions[r], &type->regions[r + 1],
 285		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 286	type->cnt--;
 287
 288	/* Special case for empty arrays */
 289	if (type->cnt == 0) {
 290		WARN_ON(type->total_size != 0);
 291		type->cnt = 1;
 292		type->regions[0].base = 0;
 293		type->regions[0].size = 0;
 294		type->regions[0].flags = 0;
 295		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 296	}
 297}
 298
 299#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 300
 301phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 302					phys_addr_t *addr)
 303{
 304	if (memblock.reserved.regions == memblock_reserved_init_regions)
 305		return 0;
 306
 307	*addr = __pa(memblock.reserved.regions);
 308
 309	return PAGE_ALIGN(sizeof(struct memblock_region) *
 310			  memblock.reserved.max);
 311}
 312
 313phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 314					phys_addr_t *addr)
 315{
 316	if (memblock.memory.regions == memblock_memory_init_regions)
 317		return 0;
 318
 319	*addr = __pa(memblock.memory.regions);
 320
 321	return PAGE_ALIGN(sizeof(struct memblock_region) *
 322			  memblock.memory.max);
 323}
 324
 325#endif
 326
 327/**
 328 * memblock_double_array - double the size of the memblock regions array
 329 * @type: memblock type of the regions array being doubled
 330 * @new_area_start: starting address of memory range to avoid overlap with
 331 * @new_area_size: size of memory range to avoid overlap with
 332 *
 333 * Double the size of the @type regions array. If memblock is being used to
 334 * allocate memory for a new reserved regions array and there is a previously
 335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 336 * waiting to be reserved, ensure the memory used by the new array does
 337 * not overlap.
 338 *
 339 * RETURNS:
 340 * 0 on success, -1 on failure.
 341 */
 342static int __init_memblock memblock_double_array(struct memblock_type *type,
 343						phys_addr_t new_area_start,
 344						phys_addr_t new_area_size)
 345{
 346	struct memblock_region *new_array, *old_array;
 347	phys_addr_t old_alloc_size, new_alloc_size;
 348	phys_addr_t old_size, new_size, addr;
 349	int use_slab = slab_is_available();
 350	int *in_slab;
 351
 352	/* We don't allow resizing until we know about the reserved regions
 353	 * of memory that aren't suitable for allocation
 354	 */
 355	if (!memblock_can_resize)
 356		return -1;
 357
 358	/* Calculate new doubled size */
 359	old_size = type->max * sizeof(struct memblock_region);
 360	new_size = old_size << 1;
 361	/*
 362	 * We need to allocated new one align to PAGE_SIZE,
 363	 *   so we can free them completely later.
 364	 */
 365	old_alloc_size = PAGE_ALIGN(old_size);
 366	new_alloc_size = PAGE_ALIGN(new_size);
 367
 368	/* Retrieve the slab flag */
 369	if (type == &memblock.memory)
 370		in_slab = &memblock_memory_in_slab;
 371	else
 372		in_slab = &memblock_reserved_in_slab;
 373
 374	/* Try to find some space for it.
 375	 *
 376	 * WARNING: We assume that either slab_is_available() and we use it or
 377	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 378	 * use when bootmem is currently active (unless bootmem itself is
 379	 * implemented on top of MEMBLOCK which isn't the case yet)
 380	 *
 381	 * This should however not be an issue for now, as we currently only
 382	 * call into MEMBLOCK while it's still active, or much later when slab
 383	 * is active for memory hotplug operations
 384	 */
 385	if (use_slab) {
 386		new_array = kmalloc(new_size, GFP_KERNEL);
 387		addr = new_array ? __pa(new_array) : 0;
 388	} else {
 389		/* only exclude range when trying to double reserved.regions */
 390		if (type != &memblock.reserved)
 391			new_area_start = new_area_size = 0;
 392
 393		addr = memblock_find_in_range(new_area_start + new_area_size,
 394						memblock.current_limit,
 395						new_alloc_size, PAGE_SIZE);
 396		if (!addr && new_area_size)
 397			addr = memblock_find_in_range(0,
 398				min(new_area_start, memblock.current_limit),
 399				new_alloc_size, PAGE_SIZE);
 400
 401		new_array = addr ? __va(addr) : NULL;
 402	}
 403	if (!addr) {
 404		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 405		       memblock_type_name(type), type->max, type->max * 2);
 406		return -1;
 407	}
 408
 409	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 410			memblock_type_name(type), type->max * 2, (u64)addr,
 411			(u64)addr + new_size - 1);
 412
 413	/*
 414	 * Found space, we now need to move the array over before we add the
 415	 * reserved region since it may be our reserved array itself that is
 416	 * full.
 417	 */
 418	memcpy(new_array, type->regions, old_size);
 419	memset(new_array + type->max, 0, old_size);
 420	old_array = type->regions;
 421	type->regions = new_array;
 422	type->max <<= 1;
 423
 424	/* Free old array. We needn't free it if the array is the static one */
 425	if (*in_slab)
 426		kfree(old_array);
 427	else if (old_array != memblock_memory_init_regions &&
 428		 old_array != memblock_reserved_init_regions)
 429		memblock_free(__pa(old_array), old_alloc_size);
 430
 431	/*
 432	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 433	 * needn't do it
 434	 */
 435	if (!use_slab)
 436		BUG_ON(memblock_reserve(addr, new_alloc_size));
 437
 438	/* Update slab flag */
 439	*in_slab = use_slab;
 440
 441	return 0;
 442}
 443
 444/**
 445 * memblock_merge_regions - merge neighboring compatible regions
 446 * @type: memblock type to scan
 447 *
 448 * Scan @type and merge neighboring compatible regions.
 449 */
 450static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 451{
 452	int i = 0;
 453
 454	/* cnt never goes below 1 */
 455	while (i < type->cnt - 1) {
 456		struct memblock_region *this = &type->regions[i];
 457		struct memblock_region *next = &type->regions[i + 1];
 458
 459		if (this->base + this->size != next->base ||
 460		    memblock_get_region_node(this) !=
 461		    memblock_get_region_node(next) ||
 462		    this->flags != next->flags) {
 463			BUG_ON(this->base + this->size > next->base);
 464			i++;
 465			continue;
 466		}
 467
 468		this->size += next->size;
 469		/* move forward from next + 1, index of which is i + 2 */
 470		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 471		type->cnt--;
 472	}
 473}
 474
 475/**
 476 * memblock_insert_region - insert new memblock region
 477 * @type:	memblock type to insert into
 478 * @idx:	index for the insertion point
 479 * @base:	base address of the new region
 480 * @size:	size of the new region
 481 * @nid:	node id of the new region
 482 * @flags:	flags of the new region
 483 *
 484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 485 * @type must already have extra room to accomodate the new region.
 486 */
 487static void __init_memblock memblock_insert_region(struct memblock_type *type,
 488						   int idx, phys_addr_t base,
 489						   phys_addr_t size,
 490						   int nid, unsigned long flags)
 491{
 492	struct memblock_region *rgn = &type->regions[idx];
 493
 494	BUG_ON(type->cnt >= type->max);
 495	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 496	rgn->base = base;
 497	rgn->size = size;
 498	rgn->flags = flags;
 499	memblock_set_region_node(rgn, nid);
 500	type->cnt++;
 501	type->total_size += size;
 502}
 503
 504/**
 505 * memblock_add_range - add new memblock region
 506 * @type: memblock type to add new region into
 507 * @base: base address of the new region
 508 * @size: size of the new region
 509 * @nid: nid of the new region
 510 * @flags: flags of the new region
 511 *
 512 * Add new memblock region [@base,@base+@size) into @type.  The new region
 513 * is allowed to overlap with existing ones - overlaps don't affect already
 514 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 515 * compatible regions are merged) after the addition.
 516 *
 517 * RETURNS:
 518 * 0 on success, -errno on failure.
 519 */
 520int __init_memblock memblock_add_range(struct memblock_type *type,
 521				phys_addr_t base, phys_addr_t size,
 522				int nid, unsigned long flags)
 523{
 524	bool insert = false;
 525	phys_addr_t obase = base;
 526	phys_addr_t end = base + memblock_cap_size(base, &size);
 527	int idx, nr_new;
 528	struct memblock_region *rgn;
 529
 530	if (!size)
 531		return 0;
 532
 533	/* special case for empty array */
 534	if (type->regions[0].size == 0) {
 535		WARN_ON(type->cnt != 1 || type->total_size);
 536		type->regions[0].base = base;
 537		type->regions[0].size = size;
 538		type->regions[0].flags = flags;
 539		memblock_set_region_node(&type->regions[0], nid);
 540		type->total_size = size;
 541		return 0;
 542	}
 543repeat:
 544	/*
 545	 * The following is executed twice.  Once with %false @insert and
 546	 * then with %true.  The first counts the number of regions needed
 547	 * to accomodate the new area.  The second actually inserts them.
 548	 */
 549	base = obase;
 550	nr_new = 0;
 551
 552	for_each_memblock_type(type, rgn) {
 
 553		phys_addr_t rbase = rgn->base;
 554		phys_addr_t rend = rbase + rgn->size;
 555
 556		if (rbase >= end)
 557			break;
 558		if (rend <= base)
 559			continue;
 560		/*
 561		 * @rgn overlaps.  If it separates the lower part of new
 562		 * area, insert that portion.
 563		 */
 564		if (rbase > base) {
 565#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 566			WARN_ON(nid != memblock_get_region_node(rgn));
 567#endif
 568			WARN_ON(flags != rgn->flags);
 569			nr_new++;
 570			if (insert)
 571				memblock_insert_region(type, idx++, base,
 572						       rbase - base, nid,
 573						       flags);
 574		}
 575		/* area below @rend is dealt with, forget about it */
 576		base = min(rend, end);
 577	}
 578
 579	/* insert the remaining portion */
 580	if (base < end) {
 581		nr_new++;
 582		if (insert)
 583			memblock_insert_region(type, idx, base, end - base,
 584					       nid, flags);
 585	}
 586
 587	/*
 588	 * If this was the first round, resize array and repeat for actual
 589	 * insertions; otherwise, merge and return.
 590	 */
 591	if (!insert) {
 592		while (type->cnt + nr_new > type->max)
 593			if (memblock_double_array(type, obase, size) < 0)
 594				return -ENOMEM;
 595		insert = true;
 596		goto repeat;
 597	} else {
 598		memblock_merge_regions(type);
 599		return 0;
 600	}
 601}
 602
 603int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 604				       int nid)
 605{
 606	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 607}
 608
 609static int __init_memblock memblock_add_region(phys_addr_t base,
 610						phys_addr_t size,
 611						int nid,
 612						unsigned long flags)
 613{
 614	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
 615		     (unsigned long long)base,
 616		     (unsigned long long)base + size - 1,
 617		     flags, (void *)_RET_IP_);
 618
 619	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 620}
 621
 622int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 623{
 624	return memblock_add_region(base, size, MAX_NUMNODES, 0);
 
 625}
 626
 627/**
 628 * memblock_isolate_range - isolate given range into disjoint memblocks
 629 * @type: memblock type to isolate range for
 630 * @base: base of range to isolate
 631 * @size: size of range to isolate
 632 * @start_rgn: out parameter for the start of isolated region
 633 * @end_rgn: out parameter for the end of isolated region
 634 *
 635 * Walk @type and ensure that regions don't cross the boundaries defined by
 636 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 637 * which may create at most two more regions.  The index of the first
 638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 639 *
 640 * RETURNS:
 641 * 0 on success, -errno on failure.
 642 */
 643static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 644					phys_addr_t base, phys_addr_t size,
 645					int *start_rgn, int *end_rgn)
 646{
 647	phys_addr_t end = base + memblock_cap_size(base, &size);
 648	int idx;
 649	struct memblock_region *rgn;
 650
 651	*start_rgn = *end_rgn = 0;
 652
 653	if (!size)
 654		return 0;
 655
 656	/* we'll create at most two more regions */
 657	while (type->cnt + 2 > type->max)
 658		if (memblock_double_array(type, base, size) < 0)
 659			return -ENOMEM;
 660
 661	for_each_memblock_type(type, rgn) {
 
 662		phys_addr_t rbase = rgn->base;
 663		phys_addr_t rend = rbase + rgn->size;
 664
 665		if (rbase >= end)
 666			break;
 667		if (rend <= base)
 668			continue;
 669
 670		if (rbase < base) {
 671			/*
 672			 * @rgn intersects from below.  Split and continue
 673			 * to process the next region - the new top half.
 674			 */
 675			rgn->base = base;
 676			rgn->size -= base - rbase;
 677			type->total_size -= base - rbase;
 678			memblock_insert_region(type, idx, rbase, base - rbase,
 679					       memblock_get_region_node(rgn),
 680					       rgn->flags);
 681		} else if (rend > end) {
 682			/*
 683			 * @rgn intersects from above.  Split and redo the
 684			 * current region - the new bottom half.
 685			 */
 686			rgn->base = end;
 687			rgn->size -= end - rbase;
 688			type->total_size -= end - rbase;
 689			memblock_insert_region(type, idx--, rbase, end - rbase,
 690					       memblock_get_region_node(rgn),
 691					       rgn->flags);
 692		} else {
 693			/* @rgn is fully contained, record it */
 694			if (!*end_rgn)
 695				*start_rgn = idx;
 696			*end_rgn = idx + 1;
 697		}
 698	}
 699
 700	return 0;
 701}
 702
 703static int __init_memblock memblock_remove_range(struct memblock_type *type,
 704					  phys_addr_t base, phys_addr_t size)
 705{
 706	int start_rgn, end_rgn;
 707	int i, ret;
 708
 709	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 710	if (ret)
 711		return ret;
 712
 713	for (i = end_rgn - 1; i >= start_rgn; i--)
 714		memblock_remove_region(type, i);
 715	return 0;
 716}
 717
 718int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 719{
 720	return memblock_remove_range(&memblock.memory, base, size);
 721}
 722
 723
 724int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 725{
 726	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 727		     (unsigned long long)base,
 728		     (unsigned long long)base + size - 1,
 729		     (void *)_RET_IP_);
 730
 731	kmemleak_free_part(__va(base), size);
 732	return memblock_remove_range(&memblock.reserved, base, size);
 733}
 734
 735static int __init_memblock memblock_reserve_region(phys_addr_t base,
 736						   phys_addr_t size,
 737						   int nid,
 738						   unsigned long flags)
 739{
 
 
 740	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 741		     (unsigned long long)base,
 742		     (unsigned long long)base + size - 1,
 743		     flags, (void *)_RET_IP_);
 744
 745	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
 746}
 747
 748int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 749{
 750	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 751}
 752
 753/**
 
 
 
 754 *
 755 * This function isolates region [@base, @base + @size), and sets/clears flag
 
 756 *
 757 * Return 0 on success, -errno on failure.
 758 */
 759static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 760				phys_addr_t size, int set, int flag)
 761{
 762	struct memblock_type *type = &memblock.memory;
 763	int i, ret, start_rgn, end_rgn;
 764
 765	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 766	if (ret)
 767		return ret;
 768
 769	for (i = start_rgn; i < end_rgn; i++)
 770		if (set)
 771			memblock_set_region_flags(&type->regions[i], flag);
 772		else
 773			memblock_clear_region_flags(&type->regions[i], flag);
 774
 775	memblock_merge_regions(type);
 776	return 0;
 777}
 778
 779/**
 780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 781 * @base: the base phys addr of the region
 782 * @size: the size of the region
 783 *
 784 * Return 0 on success, -errno on failure.
 785 */
 786int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 787{
 788	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 789}
 790
 791/**
 792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 793 * @base: the base phys addr of the region
 794 * @size: the size of the region
 795 *
 796 * Return 0 on success, -errno on failure.
 797 */
 798int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 799{
 800	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 801}
 802
 803/**
 804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 805 * @base: the base phys addr of the region
 806 * @size: the size of the region
 807 *
 808 * Return 0 on success, -errno on failure.
 809 */
 810int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 811{
 812	system_has_some_mirror = true;
 813
 814	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 815}
 816
 817/**
 818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 819 * @base: the base phys addr of the region
 820 * @size: the size of the region
 821 *
 822 * Return 0 on success, -errno on failure.
 823 */
 824int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 825{
 826	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 827}
 828
 829/**
 830 * __next_reserved_mem_region - next function for for_each_reserved_region()
 831 * @idx: pointer to u64 loop variable
 832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 834 *
 835 * Iterate over all reserved memory regions.
 836 */
 837void __init_memblock __next_reserved_mem_region(u64 *idx,
 838					   phys_addr_t *out_start,
 839					   phys_addr_t *out_end)
 840{
 841	struct memblock_type *type = &memblock.reserved;
 842
 843	if (*idx >= 0 && *idx < type->cnt) {
 844		struct memblock_region *r = &type->regions[*idx];
 845		phys_addr_t base = r->base;
 846		phys_addr_t size = r->size;
 847
 848		if (out_start)
 849			*out_start = base;
 850		if (out_end)
 851			*out_end = base + size - 1;
 852
 853		*idx += 1;
 854		return;
 855	}
 856
 857	/* signal end of iteration */
 858	*idx = ULLONG_MAX;
 859}
 860
 861/**
 862 * __next__mem_range - next function for for_each_free_mem_range() etc.
 863 * @idx: pointer to u64 loop variable
 864 * @nid: node selector, %NUMA_NO_NODE for all nodes
 865 * @flags: pick from blocks based on memory attributes
 866 * @type_a: pointer to memblock_type from where the range is taken
 867 * @type_b: pointer to memblock_type which excludes memory from being taken
 868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 870 * @out_nid: ptr to int for nid of the range, can be %NULL
 871 *
 872 * Find the first area from *@idx which matches @nid, fill the out
 873 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 874 * *@idx contains index into type_a and the upper 32bit indexes the
 875 * areas before each region in type_b.	For example, if type_b regions
 876 * look like the following,
 877 *
 878 *	0:[0-16), 1:[32-48), 2:[128-130)
 879 *
 880 * The upper 32bit indexes the following regions.
 881 *
 882 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 883 *
 884 * As both region arrays are sorted, the function advances the two indices
 885 * in lockstep and returns each intersection.
 886 */
 887void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 888				      struct memblock_type *type_a,
 889				      struct memblock_type *type_b,
 890				      phys_addr_t *out_start,
 891				      phys_addr_t *out_end, int *out_nid)
 892{
 893	int idx_a = *idx & 0xffffffff;
 894	int idx_b = *idx >> 32;
 
 
 895
 896	if (WARN_ONCE(nid == MAX_NUMNODES,
 897	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 898		nid = NUMA_NO_NODE;
 899
 900	for (; idx_a < type_a->cnt; idx_a++) {
 901		struct memblock_region *m = &type_a->regions[idx_a];
 902
 903		phys_addr_t m_start = m->base;
 904		phys_addr_t m_end = m->base + m->size;
 905		int	    m_nid = memblock_get_region_node(m);
 906
 907		/* only memory regions are associated with nodes, check it */
 908		if (nid != NUMA_NO_NODE && nid != m_nid)
 909			continue;
 910
 911		/* skip hotpluggable memory regions if needed */
 912		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 913			continue;
 914
 915		/* if we want mirror memory skip non-mirror memory regions */
 916		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 917			continue;
 918
 919		/* skip nomap memory unless we were asked for it explicitly */
 920		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 921			continue;
 922
 923		if (!type_b) {
 924			if (out_start)
 925				*out_start = m_start;
 926			if (out_end)
 927				*out_end = m_end;
 928			if (out_nid)
 929				*out_nid = m_nid;
 930			idx_a++;
 931			*idx = (u32)idx_a | (u64)idx_b << 32;
 932			return;
 933		}
 934
 935		/* scan areas before each reservation */
 936		for (; idx_b < type_b->cnt + 1; idx_b++) {
 937			struct memblock_region *r;
 938			phys_addr_t r_start;
 939			phys_addr_t r_end;
 940
 941			r = &type_b->regions[idx_b];
 942			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 943			r_end = idx_b < type_b->cnt ?
 944				r->base : ULLONG_MAX;
 945
 946			/*
 947			 * if idx_b advanced past idx_a,
 948			 * break out to advance idx_a
 949			 */
 950			if (r_start >= m_end)
 951				break;
 952			/* if the two regions intersect, we're done */
 953			if (m_start < r_end) {
 954				if (out_start)
 955					*out_start =
 956						max(m_start, r_start);
 957				if (out_end)
 958					*out_end = min(m_end, r_end);
 959				if (out_nid)
 960					*out_nid = m_nid;
 961				/*
 962				 * The region which ends first is
 963				 * advanced for the next iteration.
 964				 */
 965				if (m_end <= r_end)
 966					idx_a++;
 967				else
 968					idx_b++;
 969				*idx = (u32)idx_a | (u64)idx_b << 32;
 970				return;
 971			}
 972		}
 973	}
 974
 975	/* signal end of iteration */
 976	*idx = ULLONG_MAX;
 977}
 978
 979/**
 980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 981 *
 982 * Finds the next range from type_a which is not marked as unsuitable
 983 * in type_b.
 984 *
 985 * @idx: pointer to u64 loop variable
 986 * @nid: node selector, %NUMA_NO_NODE for all nodes
 987 * @flags: pick from blocks based on memory attributes
 988 * @type_a: pointer to memblock_type from where the range is taken
 989 * @type_b: pointer to memblock_type which excludes memory from being taken
 990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 992 * @out_nid: ptr to int for nid of the range, can be %NULL
 993 *
 994 * Reverse of __next_mem_range().
 
 
 
 
 
 995 */
 996void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 997					  struct memblock_type *type_a,
 998					  struct memblock_type *type_b,
 999					  phys_addr_t *out_start,
1000					  phys_addr_t *out_end, int *out_nid)
1001{
1002	int idx_a = *idx & 0xffffffff;
1003	int idx_b = *idx >> 32;
 
 
1004
1005	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006		nid = NUMA_NO_NODE;
1007
1008	if (*idx == (u64)ULLONG_MAX) {
1009		idx_a = type_a->cnt - 1;
1010		idx_b = type_b->cnt;
1011	}
1012
1013	for (; idx_a >= 0; idx_a--) {
1014		struct memblock_region *m = &type_a->regions[idx_a];
1015
1016		phys_addr_t m_start = m->base;
1017		phys_addr_t m_end = m->base + m->size;
1018		int m_nid = memblock_get_region_node(m);
1019
1020		/* only memory regions are associated with nodes, check it */
1021		if (nid != NUMA_NO_NODE && nid != m_nid)
1022			continue;
1023
1024		/* skip hotpluggable memory regions if needed */
1025		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1026			continue;
1027
1028		/* if we want mirror memory skip non-mirror memory regions */
1029		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1030			continue;
1031
1032		/* skip nomap memory unless we were asked for it explicitly */
1033		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1034			continue;
1035
1036		if (!type_b) {
1037			if (out_start)
1038				*out_start = m_start;
1039			if (out_end)
1040				*out_end = m_end;
1041			if (out_nid)
1042				*out_nid = m_nid;
1043			idx_a++;
1044			*idx = (u32)idx_a | (u64)idx_b << 32;
1045			return;
1046		}
1047
1048		/* scan areas before each reservation */
1049		for (; idx_b >= 0; idx_b--) {
1050			struct memblock_region *r;
1051			phys_addr_t r_start;
1052			phys_addr_t r_end;
1053
1054			r = &type_b->regions[idx_b];
1055			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1056			r_end = idx_b < type_b->cnt ?
1057				r->base : ULLONG_MAX;
1058			/*
1059			 * if idx_b advanced past idx_a,
1060			 * break out to advance idx_a
1061			 */
1062
 
1063			if (r_end <= m_start)
1064				break;
1065			/* if the two regions intersect, we're done */
1066			if (m_end > r_start) {
1067				if (out_start)
1068					*out_start = max(m_start, r_start);
1069				if (out_end)
1070					*out_end = min(m_end, r_end);
1071				if (out_nid)
1072					*out_nid = m_nid;
 
1073				if (m_start >= r_start)
1074					idx_a--;
1075				else
1076					idx_b--;
1077				*idx = (u32)idx_a | (u64)idx_b << 32;
1078				return;
1079			}
1080		}
1081	}
1082	/* signal end of iteration */
1083	*idx = ULLONG_MAX;
1084}
1085
1086#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1087/*
1088 * Common iterator interface used to define for_each_mem_range().
1089 */
1090void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1091				unsigned long *out_start_pfn,
1092				unsigned long *out_end_pfn, int *out_nid)
1093{
1094	struct memblock_type *type = &memblock.memory;
1095	struct memblock_region *r;
1096
1097	while (++*idx < type->cnt) {
1098		r = &type->regions[*idx];
1099
1100		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1101			continue;
1102		if (nid == MAX_NUMNODES || nid == r->nid)
1103			break;
1104	}
1105	if (*idx >= type->cnt) {
1106		*idx = -1;
1107		return;
1108	}
1109
1110	if (out_start_pfn)
1111		*out_start_pfn = PFN_UP(r->base);
1112	if (out_end_pfn)
1113		*out_end_pfn = PFN_DOWN(r->base + r->size);
1114	if (out_nid)
1115		*out_nid = r->nid;
1116}
1117
1118/**
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
1122 * @type: memblock type to set node ID for
1123 * @nid: node ID to set
1124 *
1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1126 * Regions which cross the area boundaries are split as necessary.
1127 *
1128 * RETURNS:
1129 * 0 on success, -errno on failure.
1130 */
1131int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1132				      struct memblock_type *type, int nid)
1133{
1134	int start_rgn, end_rgn;
1135	int i, ret;
1136
1137	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1138	if (ret)
1139		return ret;
1140
1141	for (i = start_rgn; i < end_rgn; i++)
1142		memblock_set_region_node(&type->regions[i], nid);
1143
1144	memblock_merge_regions(type);
1145	return 0;
1146}
1147#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1148
1149static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1150					phys_addr_t align, phys_addr_t start,
1151					phys_addr_t end, int nid, ulong flags)
1152{
1153	phys_addr_t found;
1154
1155	if (!align)
1156		align = SMP_CACHE_BYTES;
1157
1158	found = memblock_find_in_range_node(size, align, start, end, nid,
1159					    flags);
1160	if (found && !memblock_reserve(found, size)) {
1161		/*
1162		 * The min_count is set to 0 so that memblock allocations are
1163		 * never reported as leaks.
1164		 */
1165		kmemleak_alloc(__va(found), size, 0, 0);
1166		return found;
1167	}
1168	return 0;
1169}
1170
1171phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1172					phys_addr_t start, phys_addr_t end,
1173					ulong flags)
1174{
1175	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1176					flags);
1177}
1178
1179static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1180					phys_addr_t align, phys_addr_t max_addr,
1181					int nid, ulong flags)
1182{
1183	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1184}
1185
1186phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1187{
1188	ulong flags = choose_memblock_flags();
1189	phys_addr_t ret;
1190
1191again:
1192	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1193				      nid, flags);
1194
1195	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1196		flags &= ~MEMBLOCK_MIRROR;
1197		goto again;
1198	}
1199	return ret;
1200}
1201
1202phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1203{
1204	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1205				       MEMBLOCK_NONE);
1206}
1207
1208phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1209{
1210	phys_addr_t alloc;
1211
1212	alloc = __memblock_alloc_base(size, align, max_addr);
1213
1214	if (alloc == 0)
1215		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216		      (unsigned long long) size, (unsigned long long) max_addr);
1217
1218	return alloc;
1219}
1220
1221phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1222{
1223	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1224}
1225
1226phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1227{
1228	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1229
1230	if (res)
1231		return res;
1232	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1233}
1234
1235/**
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1242 *
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1247 *
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1250 *
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1252 *
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1255 *
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
1258 *
1259 * RETURNS:
1260 * Virtual address of allocated memory block on success, NULL on failure.
1261 */
1262static void * __init memblock_virt_alloc_internal(
1263				phys_addr_t size, phys_addr_t align,
1264				phys_addr_t min_addr, phys_addr_t max_addr,
1265				int nid)
1266{
1267	phys_addr_t alloc;
1268	void *ptr;
1269	ulong flags = choose_memblock_flags();
1270
1271	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1272		nid = NUMA_NO_NODE;
1273
1274	/*
1275	 * Detect any accidental use of these APIs after slab is ready, as at
1276	 * this moment memblock may be deinitialized already and its
1277	 * internal data may be destroyed (after execution of free_all_bootmem)
1278	 */
1279	if (WARN_ON_ONCE(slab_is_available()))
1280		return kzalloc_node(size, GFP_NOWAIT, nid);
1281
1282	if (!align)
1283		align = SMP_CACHE_BYTES;
1284
1285	if (max_addr > memblock.current_limit)
1286		max_addr = memblock.current_limit;
1287
1288again:
1289	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1290					    nid, flags);
1291	if (alloc)
1292		goto done;
1293
1294	if (nid != NUMA_NO_NODE) {
1295		alloc = memblock_find_in_range_node(size, align, min_addr,
1296						    max_addr, NUMA_NO_NODE,
1297						    flags);
1298		if (alloc)
1299			goto done;
1300	}
1301
1302	if (min_addr) {
1303		min_addr = 0;
1304		goto again;
 
 
1305	}
1306
1307	if (flags & MEMBLOCK_MIRROR) {
1308		flags &= ~MEMBLOCK_MIRROR;
1309		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310			&size);
1311		goto again;
1312	}
1313
1314	return NULL;
1315done:
1316	memblock_reserve(alloc, size);
1317	ptr = phys_to_virt(alloc);
1318	memset(ptr, 0, size);
1319
1320	/*
1321	 * The min_count is set to 0 so that bootmem allocated blocks
1322	 * are never reported as leaks. This is because many of these blocks
1323	 * are only referred via the physical address which is not
1324	 * looked up by kmemleak.
1325	 */
1326	kmemleak_alloc(ptr, size, 0, 0);
1327
1328	return ptr;
 
 
 
1329}
1330
1331/**
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 *	  is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 *	      allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 *
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
1344 *
1345 * RETURNS:
1346 * Virtual address of allocated memory block on success, NULL on failure.
1347 */
1348void * __init memblock_virt_alloc_try_nid_nopanic(
1349				phys_addr_t size, phys_addr_t align,
1350				phys_addr_t min_addr, phys_addr_t max_addr,
1351				int nid)
1352{
1353	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1355		     (u64)max_addr, (void *)_RET_IP_);
1356	return memblock_virt_alloc_internal(size, align, min_addr,
1357					     max_addr, nid);
1358}
1359
1360/**
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 *	  is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 *	      allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370 *
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1374 *
1375 * RETURNS:
1376 * Virtual address of allocated memory block on success, NULL on failure.
1377 */
1378void * __init memblock_virt_alloc_try_nid(
1379			phys_addr_t size, phys_addr_t align,
1380			phys_addr_t min_addr, phys_addr_t max_addr,
1381			int nid)
1382{
1383	void *ptr;
1384
1385	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1387		     (u64)max_addr, (void *)_RET_IP_);
1388	ptr = memblock_virt_alloc_internal(size, align,
1389					   min_addr, max_addr, nid);
1390	if (ptr)
1391		return ptr;
1392
1393	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1395	      (u64)max_addr);
1396	return NULL;
1397}
1398
1399/**
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the  boot memory block
1402 * @size: size of the boot memory block in bytes
1403 *
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1406 */
1407void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1408{
1409	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410		     __func__, (u64)base, (u64)base + size - 1,
1411		     (void *)_RET_IP_);
1412	kmemleak_free_part(__va(base), size);
1413	memblock_remove_range(&memblock.reserved, base, size);
1414}
1415
1416/*
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the  boot memory block
1419 * @size: size of the boot memory block in bytes
1420 *
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system.  Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1424 */
1425void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1426{
1427	u64 cursor, end;
1428
1429	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430		     __func__, (u64)base, (u64)base + size - 1,
1431		     (void *)_RET_IP_);
1432	kmemleak_free_part(__va(base), size);
1433	cursor = PFN_UP(base);
1434	end = PFN_DOWN(base + size);
1435
1436	for (; cursor < end; cursor++) {
1437		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1438		totalram_pages++;
1439	}
1440}
1441
1442/*
1443 * Remaining API functions
1444 */
1445
1446phys_addr_t __init_memblock memblock_phys_mem_size(void)
1447{
1448	return memblock.memory.total_size;
1449}
1450
1451phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1452{
1453	unsigned long pages = 0;
1454	struct memblock_region *r;
1455	unsigned long start_pfn, end_pfn;
1456
1457	for_each_memblock(memory, r) {
1458		start_pfn = memblock_region_memory_base_pfn(r);
1459		end_pfn = memblock_region_memory_end_pfn(r);
1460		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1461		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1462		pages += end_pfn - start_pfn;
1463	}
1464
1465	return PFN_PHYS(pages);
1466}
1467
1468/* lowest address */
1469phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1470{
1471	return memblock.memory.regions[0].base;
1472}
1473
1474phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1475{
1476	int idx = memblock.memory.cnt - 1;
1477
1478	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1479}
1480
1481void __init memblock_enforce_memory_limit(phys_addr_t limit)
1482{
1483	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1484	struct memblock_region *r;
1485
1486	if (!limit)
1487		return;
1488
1489	/* find out max address */
1490	for_each_memblock(memory, r) {
1491		if (limit <= r->size) {
1492			max_addr = r->base + limit;
1493			break;
1494		}
1495		limit -= r->size;
1496	}
1497
1498	/* truncate both memory and reserved regions */
1499	memblock_remove_range(&memblock.memory, max_addr,
1500			      (phys_addr_t)ULLONG_MAX);
1501	memblock_remove_range(&memblock.reserved, max_addr,
1502			      (phys_addr_t)ULLONG_MAX);
1503}
1504
1505static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1506{
1507	unsigned int left = 0, right = type->cnt;
1508
1509	do {
1510		unsigned int mid = (right + left) / 2;
1511
1512		if (addr < type->regions[mid].base)
1513			right = mid;
1514		else if (addr >= (type->regions[mid].base +
1515				  type->regions[mid].size))
1516			left = mid + 1;
1517		else
1518			return mid;
1519	} while (left < right);
1520	return -1;
1521}
1522
1523bool __init memblock_is_reserved(phys_addr_t addr)
1524{
1525	return memblock_search(&memblock.reserved, addr) != -1;
1526}
1527
1528bool __init_memblock memblock_is_memory(phys_addr_t addr)
1529{
1530	return memblock_search(&memblock.memory, addr) != -1;
1531}
1532
1533int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1534{
1535	int i = memblock_search(&memblock.memory, addr);
1536
1537	if (i == -1)
1538		return false;
1539	return !memblock_is_nomap(&memblock.memory.regions[i]);
1540}
1541
1542#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1544			 unsigned long *start_pfn, unsigned long *end_pfn)
1545{
1546	struct memblock_type *type = &memblock.memory;
1547	int mid = memblock_search(type, PFN_PHYS(pfn));
1548
1549	if (mid == -1)
1550		return -1;
1551
1552	*start_pfn = PFN_DOWN(type->regions[mid].base);
1553	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
 
1554
1555	return type->regions[mid].nid;
1556}
1557#endif
1558
1559/**
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1563 *
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1565 *
1566 * RETURNS:
1567 * 0 if false, non-zero if true
1568 */
1569int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1570{
1571	int idx = memblock_search(&memblock.memory, base);
1572	phys_addr_t end = base + memblock_cap_size(base, &size);
1573
1574	if (idx == -1)
1575		return 0;
1576	return memblock.memory.regions[idx].base <= base &&
1577		(memblock.memory.regions[idx].base +
1578		 memblock.memory.regions[idx].size) >= end;
1579}
1580
1581/**
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1585 *
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1587 *
1588 * RETURNS:
1589 * True if they intersect, false if not.
1590 */
1591bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1592{
1593	memblock_cap_size(base, &size);
1594	return memblock_overlaps_region(&memblock.reserved, base, size);
1595}
1596
1597void __init_memblock memblock_trim_memory(phys_addr_t align)
1598{
1599	phys_addr_t start, end, orig_start, orig_end;
1600	struct memblock_region *r;
1601
1602	for_each_memblock(memory, r) {
1603		orig_start = r->base;
1604		orig_end = r->base + r->size;
1605		start = round_up(orig_start, align);
1606		end = round_down(orig_end, align);
1607
1608		if (start == orig_start && end == orig_end)
1609			continue;
1610
1611		if (start < end) {
1612			r->base = start;
1613			r->size = end - start;
1614		} else {
1615			memblock_remove_region(&memblock.memory,
1616					       r - memblock.memory.regions);
1617			r--;
1618		}
1619	}
1620}
1621
1622void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1623{
1624	memblock.current_limit = limit;
1625}
1626
1627phys_addr_t __init_memblock memblock_get_current_limit(void)
1628{
1629	return memblock.current_limit;
1630}
1631
1632static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1633{
1634	unsigned long long base, size;
1635	unsigned long flags;
1636	int idx;
1637	struct memblock_region *rgn;
1638
1639	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1640
1641	for_each_memblock_type(type, rgn) {
 
1642		char nid_buf[32] = "";
1643
1644		base = rgn->base;
1645		size = rgn->size;
1646		flags = rgn->flags;
1647#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1649			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1650				 memblock_get_region_node(rgn));
1651#endif
1652		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1653			name, idx, base, base + size - 1, size, nid_buf, flags);
1654	}
1655}
1656
1657void __init_memblock __memblock_dump_all(void)
1658{
1659	pr_info("MEMBLOCK configuration:\n");
1660	pr_info(" memory size = %#llx reserved size = %#llx\n",
1661		(unsigned long long)memblock.memory.total_size,
1662		(unsigned long long)memblock.reserved.total_size);
1663
1664	memblock_dump(&memblock.memory, "memory");
1665	memblock_dump(&memblock.reserved, "reserved");
1666}
1667
1668void __init memblock_allow_resize(void)
1669{
1670	memblock_can_resize = 1;
1671}
1672
1673static int __init early_memblock(char *p)
1674{
1675	if (p && strstr(p, "debug"))
1676		memblock_debug = 1;
1677	return 0;
1678}
1679early_param("memblock", early_memblock);
1680
1681#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1682
1683static int memblock_debug_show(struct seq_file *m, void *private)
1684{
1685	struct memblock_type *type = m->private;
1686	struct memblock_region *reg;
1687	int i;
1688
1689	for (i = 0; i < type->cnt; i++) {
1690		reg = &type->regions[i];
1691		seq_printf(m, "%4d: ", i);
1692		if (sizeof(phys_addr_t) == 4)
1693			seq_printf(m, "0x%08lx..0x%08lx\n",
1694				   (unsigned long)reg->base,
1695				   (unsigned long)(reg->base + reg->size - 1));
1696		else
1697			seq_printf(m, "0x%016llx..0x%016llx\n",
1698				   (unsigned long long)reg->base,
1699				   (unsigned long long)(reg->base + reg->size - 1));
1700
1701	}
1702	return 0;
1703}
1704
1705static int memblock_debug_open(struct inode *inode, struct file *file)
1706{
1707	return single_open(file, memblock_debug_show, inode->i_private);
1708}
1709
1710static const struct file_operations memblock_debug_fops = {
1711	.open = memblock_debug_open,
1712	.read = seq_read,
1713	.llseek = seq_lseek,
1714	.release = single_release,
1715};
1716
1717static int __init memblock_init_debugfs(void)
1718{
1719	struct dentry *root = debugfs_create_dir("memblock", NULL);
1720	if (!root)
1721		return -ENXIO;
1722	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1723	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1724#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1726#endif
1727
1728	return 0;
1729}
1730__initcall(memblock_init_debugfs);
1731
1732#endif /* CONFIG_DEBUG_FS */
v3.15
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23#include <asm-generic/sections.h>
  24#include <linux/io.h>
  25
  26#include "internal.h"
  27
  28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 
 
 
  30
  31struct memblock memblock __initdata_memblock = {
  32	.memory.regions		= memblock_memory_init_regions,
  33	.memory.cnt		= 1,	/* empty dummy entry */
  34	.memory.max		= INIT_MEMBLOCK_REGIONS,
  35
  36	.reserved.regions	= memblock_reserved_init_regions,
  37	.reserved.cnt		= 1,	/* empty dummy entry */
  38	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  39
 
 
 
 
 
 
  40	.bottom_up		= false,
  41	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  42};
  43
  44int memblock_debug __initdata_memblock;
  45#ifdef CONFIG_MOVABLE_NODE
  46bool movable_node_enabled __initdata_memblock = false;
  47#endif
 
  48static int memblock_can_resize __initdata_memblock;
  49static int memblock_memory_in_slab __initdata_memblock = 0;
  50static int memblock_reserved_in_slab __initdata_memblock = 0;
  51
 
 
 
 
 
  52/* inline so we don't get a warning when pr_debug is compiled out */
  53static __init_memblock const char *
  54memblock_type_name(struct memblock_type *type)
  55{
  56	if (type == &memblock.memory)
  57		return "memory";
  58	else if (type == &memblock.reserved)
  59		return "reserved";
  60	else
  61		return "unknown";
  62}
  63
  64/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  65static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  66{
  67	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  68}
  69
  70/*
  71 * Address comparison utilities
  72 */
  73static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  74				       phys_addr_t base2, phys_addr_t size2)
  75{
  76	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  77}
  78
  79static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
  80					phys_addr_t base, phys_addr_t size)
  81{
  82	unsigned long i;
  83
  84	for (i = 0; i < type->cnt; i++) {
  85		phys_addr_t rgnbase = type->regions[i].base;
  86		phys_addr_t rgnsize = type->regions[i].size;
  87		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  88			break;
  89	}
  90
  91	return (i < type->cnt) ? i : -1;
  92}
  93
  94/*
  95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
  96 * @start: start of candidate range
  97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
  98 * @size: size of free area to find
  99 * @align: alignment of free area to find
 100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
 101 *
 102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 103 *
 104 * RETURNS:
 105 * Found address on success, 0 on failure.
 106 */
 107static phys_addr_t __init_memblock
 108__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 109				phys_addr_t size, phys_addr_t align, int nid)
 
 110{
 111	phys_addr_t this_start, this_end, cand;
 112	u64 i;
 113
 114	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
 115		this_start = clamp(this_start, start, end);
 116		this_end = clamp(this_end, start, end);
 117
 118		cand = round_up(this_start, align);
 119		if (cand < this_end && this_end - cand >= size)
 120			return cand;
 121	}
 122
 123	return 0;
 124}
 125
 126/**
 127 * __memblock_find_range_top_down - find free area utility, in top-down
 128 * @start: start of candidate range
 129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 130 * @size: size of free area to find
 131 * @align: alignment of free area to find
 132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
 133 *
 134 * Utility called from memblock_find_in_range_node(), find free area top-down.
 135 *
 136 * RETURNS:
 137 * Found address on success, 0 on failure.
 138 */
 139static phys_addr_t __init_memblock
 140__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 141			       phys_addr_t size, phys_addr_t align, int nid)
 
 142{
 143	phys_addr_t this_start, this_end, cand;
 144	u64 i;
 145
 146	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
 
 147		this_start = clamp(this_start, start, end);
 148		this_end = clamp(this_end, start, end);
 149
 150		if (this_end < size)
 151			continue;
 152
 153		cand = round_down(this_end - size, align);
 154		if (cand >= this_start)
 155			return cand;
 156	}
 157
 158	return 0;
 159}
 160
 161/**
 162 * memblock_find_in_range_node - find free area in given range and node
 163 * @size: size of free area to find
 164 * @align: alignment of free area to find
 165 * @start: start of candidate range
 166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
 168 *
 169 * Find @size free area aligned to @align in the specified range and node.
 170 *
 171 * When allocation direction is bottom-up, the @start should be greater
 172 * than the end of the kernel image. Otherwise, it will be trimmed. The
 173 * reason is that we want the bottom-up allocation just near the kernel
 174 * image so it is highly likely that the allocated memory and the kernel
 175 * will reside in the same node.
 176 *
 177 * If bottom-up allocation failed, will try to allocate memory top-down.
 178 *
 179 * RETURNS:
 180 * Found address on success, 0 on failure.
 181 */
 182phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 183					phys_addr_t align, phys_addr_t start,
 184					phys_addr_t end, int nid)
 185{
 186	int ret;
 187	phys_addr_t kernel_end;
 188
 189	/* pump up @end */
 190	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 191		end = memblock.current_limit;
 192
 193	/* avoid allocating the first page */
 194	start = max_t(phys_addr_t, start, PAGE_SIZE);
 195	end = max(start, end);
 196	kernel_end = __pa_symbol(_end);
 197
 198	/*
 199	 * try bottom-up allocation only when bottom-up mode
 200	 * is set and @end is above the kernel image.
 201	 */
 202	if (memblock_bottom_up() && end > kernel_end) {
 203		phys_addr_t bottom_up_start;
 204
 205		/* make sure we will allocate above the kernel */
 206		bottom_up_start = max(start, kernel_end);
 207
 208		/* ok, try bottom-up allocation first */
 209		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 210						      size, align, nid);
 211		if (ret)
 212			return ret;
 213
 214		/*
 215		 * we always limit bottom-up allocation above the kernel,
 216		 * but top-down allocation doesn't have the limit, so
 217		 * retrying top-down allocation may succeed when bottom-up
 218		 * allocation failed.
 219		 *
 220		 * bottom-up allocation is expected to be fail very rarely,
 221		 * so we use WARN_ONCE() here to see the stack trace if
 222		 * fail happens.
 223		 */
 224		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
 225			     "memory hotunplug may be affected\n");
 226	}
 227
 228	return __memblock_find_range_top_down(start, end, size, align, nid);
 
 229}
 230
 231/**
 232 * memblock_find_in_range - find free area in given range
 233 * @start: start of candidate range
 234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 235 * @size: size of free area to find
 236 * @align: alignment of free area to find
 237 *
 238 * Find @size free area aligned to @align in the specified range.
 239 *
 240 * RETURNS:
 241 * Found address on success, 0 on failure.
 242 */
 243phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 244					phys_addr_t end, phys_addr_t size,
 245					phys_addr_t align)
 246{
 247	return memblock_find_in_range_node(size, align, start, end,
 248					    NUMA_NO_NODE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 249}
 250
 251static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 252{
 253	type->total_size -= type->regions[r].size;
 254	memmove(&type->regions[r], &type->regions[r + 1],
 255		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 256	type->cnt--;
 257
 258	/* Special case for empty arrays */
 259	if (type->cnt == 0) {
 260		WARN_ON(type->total_size != 0);
 261		type->cnt = 1;
 262		type->regions[0].base = 0;
 263		type->regions[0].size = 0;
 264		type->regions[0].flags = 0;
 265		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 266	}
 267}
 268
 269#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 270
 271phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 272					phys_addr_t *addr)
 273{
 274	if (memblock.reserved.regions == memblock_reserved_init_regions)
 275		return 0;
 276
 277	*addr = __pa(memblock.reserved.regions);
 278
 279	return PAGE_ALIGN(sizeof(struct memblock_region) *
 280			  memblock.reserved.max);
 281}
 282
 283phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 284					phys_addr_t *addr)
 285{
 286	if (memblock.memory.regions == memblock_memory_init_regions)
 287		return 0;
 288
 289	*addr = __pa(memblock.memory.regions);
 290
 291	return PAGE_ALIGN(sizeof(struct memblock_region) *
 292			  memblock.memory.max);
 293}
 294
 295#endif
 296
 297/**
 298 * memblock_double_array - double the size of the memblock regions array
 299 * @type: memblock type of the regions array being doubled
 300 * @new_area_start: starting address of memory range to avoid overlap with
 301 * @new_area_size: size of memory range to avoid overlap with
 302 *
 303 * Double the size of the @type regions array. If memblock is being used to
 304 * allocate memory for a new reserved regions array and there is a previously
 305 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 306 * waiting to be reserved, ensure the memory used by the new array does
 307 * not overlap.
 308 *
 309 * RETURNS:
 310 * 0 on success, -1 on failure.
 311 */
 312static int __init_memblock memblock_double_array(struct memblock_type *type,
 313						phys_addr_t new_area_start,
 314						phys_addr_t new_area_size)
 315{
 316	struct memblock_region *new_array, *old_array;
 317	phys_addr_t old_alloc_size, new_alloc_size;
 318	phys_addr_t old_size, new_size, addr;
 319	int use_slab = slab_is_available();
 320	int *in_slab;
 321
 322	/* We don't allow resizing until we know about the reserved regions
 323	 * of memory that aren't suitable for allocation
 324	 */
 325	if (!memblock_can_resize)
 326		return -1;
 327
 328	/* Calculate new doubled size */
 329	old_size = type->max * sizeof(struct memblock_region);
 330	new_size = old_size << 1;
 331	/*
 332	 * We need to allocated new one align to PAGE_SIZE,
 333	 *   so we can free them completely later.
 334	 */
 335	old_alloc_size = PAGE_ALIGN(old_size);
 336	new_alloc_size = PAGE_ALIGN(new_size);
 337
 338	/* Retrieve the slab flag */
 339	if (type == &memblock.memory)
 340		in_slab = &memblock_memory_in_slab;
 341	else
 342		in_slab = &memblock_reserved_in_slab;
 343
 344	/* Try to find some space for it.
 345	 *
 346	 * WARNING: We assume that either slab_is_available() and we use it or
 347	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 348	 * use when bootmem is currently active (unless bootmem itself is
 349	 * implemented on top of MEMBLOCK which isn't the case yet)
 350	 *
 351	 * This should however not be an issue for now, as we currently only
 352	 * call into MEMBLOCK while it's still active, or much later when slab
 353	 * is active for memory hotplug operations
 354	 */
 355	if (use_slab) {
 356		new_array = kmalloc(new_size, GFP_KERNEL);
 357		addr = new_array ? __pa(new_array) : 0;
 358	} else {
 359		/* only exclude range when trying to double reserved.regions */
 360		if (type != &memblock.reserved)
 361			new_area_start = new_area_size = 0;
 362
 363		addr = memblock_find_in_range(new_area_start + new_area_size,
 364						memblock.current_limit,
 365						new_alloc_size, PAGE_SIZE);
 366		if (!addr && new_area_size)
 367			addr = memblock_find_in_range(0,
 368				min(new_area_start, memblock.current_limit),
 369				new_alloc_size, PAGE_SIZE);
 370
 371		new_array = addr ? __va(addr) : NULL;
 372	}
 373	if (!addr) {
 374		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 375		       memblock_type_name(type), type->max, type->max * 2);
 376		return -1;
 377	}
 378
 379	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 380			memblock_type_name(type), type->max * 2, (u64)addr,
 381			(u64)addr + new_size - 1);
 382
 383	/*
 384	 * Found space, we now need to move the array over before we add the
 385	 * reserved region since it may be our reserved array itself that is
 386	 * full.
 387	 */
 388	memcpy(new_array, type->regions, old_size);
 389	memset(new_array + type->max, 0, old_size);
 390	old_array = type->regions;
 391	type->regions = new_array;
 392	type->max <<= 1;
 393
 394	/* Free old array. We needn't free it if the array is the static one */
 395	if (*in_slab)
 396		kfree(old_array);
 397	else if (old_array != memblock_memory_init_regions &&
 398		 old_array != memblock_reserved_init_regions)
 399		memblock_free(__pa(old_array), old_alloc_size);
 400
 401	/*
 402	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 403	 * needn't do it
 404	 */
 405	if (!use_slab)
 406		BUG_ON(memblock_reserve(addr, new_alloc_size));
 407
 408	/* Update slab flag */
 409	*in_slab = use_slab;
 410
 411	return 0;
 412}
 413
 414/**
 415 * memblock_merge_regions - merge neighboring compatible regions
 416 * @type: memblock type to scan
 417 *
 418 * Scan @type and merge neighboring compatible regions.
 419 */
 420static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 421{
 422	int i = 0;
 423
 424	/* cnt never goes below 1 */
 425	while (i < type->cnt - 1) {
 426		struct memblock_region *this = &type->regions[i];
 427		struct memblock_region *next = &type->regions[i + 1];
 428
 429		if (this->base + this->size != next->base ||
 430		    memblock_get_region_node(this) !=
 431		    memblock_get_region_node(next) ||
 432		    this->flags != next->flags) {
 433			BUG_ON(this->base + this->size > next->base);
 434			i++;
 435			continue;
 436		}
 437
 438		this->size += next->size;
 439		/* move forward from next + 1, index of which is i + 2 */
 440		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 441		type->cnt--;
 442	}
 443}
 444
 445/**
 446 * memblock_insert_region - insert new memblock region
 447 * @type:	memblock type to insert into
 448 * @idx:	index for the insertion point
 449 * @base:	base address of the new region
 450 * @size:	size of the new region
 451 * @nid:	node id of the new region
 452 * @flags:	flags of the new region
 453 *
 454 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 455 * @type must already have extra room to accomodate the new region.
 456 */
 457static void __init_memblock memblock_insert_region(struct memblock_type *type,
 458						   int idx, phys_addr_t base,
 459						   phys_addr_t size,
 460						   int nid, unsigned long flags)
 461{
 462	struct memblock_region *rgn = &type->regions[idx];
 463
 464	BUG_ON(type->cnt >= type->max);
 465	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 466	rgn->base = base;
 467	rgn->size = size;
 468	rgn->flags = flags;
 469	memblock_set_region_node(rgn, nid);
 470	type->cnt++;
 471	type->total_size += size;
 472}
 473
 474/**
 475 * memblock_add_region - add new memblock region
 476 * @type: memblock type to add new region into
 477 * @base: base address of the new region
 478 * @size: size of the new region
 479 * @nid: nid of the new region
 480 * @flags: flags of the new region
 481 *
 482 * Add new memblock region [@base,@base+@size) into @type.  The new region
 483 * is allowed to overlap with existing ones - overlaps don't affect already
 484 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 485 * compatible regions are merged) after the addition.
 486 *
 487 * RETURNS:
 488 * 0 on success, -errno on failure.
 489 */
 490static int __init_memblock memblock_add_region(struct memblock_type *type,
 491				phys_addr_t base, phys_addr_t size,
 492				int nid, unsigned long flags)
 493{
 494	bool insert = false;
 495	phys_addr_t obase = base;
 496	phys_addr_t end = base + memblock_cap_size(base, &size);
 497	int i, nr_new;
 
 498
 499	if (!size)
 500		return 0;
 501
 502	/* special case for empty array */
 503	if (type->regions[0].size == 0) {
 504		WARN_ON(type->cnt != 1 || type->total_size);
 505		type->regions[0].base = base;
 506		type->regions[0].size = size;
 507		type->regions[0].flags = flags;
 508		memblock_set_region_node(&type->regions[0], nid);
 509		type->total_size = size;
 510		return 0;
 511	}
 512repeat:
 513	/*
 514	 * The following is executed twice.  Once with %false @insert and
 515	 * then with %true.  The first counts the number of regions needed
 516	 * to accomodate the new area.  The second actually inserts them.
 517	 */
 518	base = obase;
 519	nr_new = 0;
 520
 521	for (i = 0; i < type->cnt; i++) {
 522		struct memblock_region *rgn = &type->regions[i];
 523		phys_addr_t rbase = rgn->base;
 524		phys_addr_t rend = rbase + rgn->size;
 525
 526		if (rbase >= end)
 527			break;
 528		if (rend <= base)
 529			continue;
 530		/*
 531		 * @rgn overlaps.  If it separates the lower part of new
 532		 * area, insert that portion.
 533		 */
 534		if (rbase > base) {
 
 
 
 
 535			nr_new++;
 536			if (insert)
 537				memblock_insert_region(type, i++, base,
 538						       rbase - base, nid,
 539						       flags);
 540		}
 541		/* area below @rend is dealt with, forget about it */
 542		base = min(rend, end);
 543	}
 544
 545	/* insert the remaining portion */
 546	if (base < end) {
 547		nr_new++;
 548		if (insert)
 549			memblock_insert_region(type, i, base, end - base,
 550					       nid, flags);
 551	}
 552
 553	/*
 554	 * If this was the first round, resize array and repeat for actual
 555	 * insertions; otherwise, merge and return.
 556	 */
 557	if (!insert) {
 558		while (type->cnt + nr_new > type->max)
 559			if (memblock_double_array(type, obase, size) < 0)
 560				return -ENOMEM;
 561		insert = true;
 562		goto repeat;
 563	} else {
 564		memblock_merge_regions(type);
 565		return 0;
 566	}
 567}
 568
 569int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 570				       int nid)
 571{
 572	return memblock_add_region(&memblock.memory, base, size, nid, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 573}
 574
 575int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 576{
 577	return memblock_add_region(&memblock.memory, base, size,
 578				   MAX_NUMNODES, 0);
 579}
 580
 581/**
 582 * memblock_isolate_range - isolate given range into disjoint memblocks
 583 * @type: memblock type to isolate range for
 584 * @base: base of range to isolate
 585 * @size: size of range to isolate
 586 * @start_rgn: out parameter for the start of isolated region
 587 * @end_rgn: out parameter for the end of isolated region
 588 *
 589 * Walk @type and ensure that regions don't cross the boundaries defined by
 590 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 591 * which may create at most two more regions.  The index of the first
 592 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 593 *
 594 * RETURNS:
 595 * 0 on success, -errno on failure.
 596 */
 597static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 598					phys_addr_t base, phys_addr_t size,
 599					int *start_rgn, int *end_rgn)
 600{
 601	phys_addr_t end = base + memblock_cap_size(base, &size);
 602	int i;
 
 603
 604	*start_rgn = *end_rgn = 0;
 605
 606	if (!size)
 607		return 0;
 608
 609	/* we'll create at most two more regions */
 610	while (type->cnt + 2 > type->max)
 611		if (memblock_double_array(type, base, size) < 0)
 612			return -ENOMEM;
 613
 614	for (i = 0; i < type->cnt; i++) {
 615		struct memblock_region *rgn = &type->regions[i];
 616		phys_addr_t rbase = rgn->base;
 617		phys_addr_t rend = rbase + rgn->size;
 618
 619		if (rbase >= end)
 620			break;
 621		if (rend <= base)
 622			continue;
 623
 624		if (rbase < base) {
 625			/*
 626			 * @rgn intersects from below.  Split and continue
 627			 * to process the next region - the new top half.
 628			 */
 629			rgn->base = base;
 630			rgn->size -= base - rbase;
 631			type->total_size -= base - rbase;
 632			memblock_insert_region(type, i, rbase, base - rbase,
 633					       memblock_get_region_node(rgn),
 634					       rgn->flags);
 635		} else if (rend > end) {
 636			/*
 637			 * @rgn intersects from above.  Split and redo the
 638			 * current region - the new bottom half.
 639			 */
 640			rgn->base = end;
 641			rgn->size -= end - rbase;
 642			type->total_size -= end - rbase;
 643			memblock_insert_region(type, i--, rbase, end - rbase,
 644					       memblock_get_region_node(rgn),
 645					       rgn->flags);
 646		} else {
 647			/* @rgn is fully contained, record it */
 648			if (!*end_rgn)
 649				*start_rgn = i;
 650			*end_rgn = i + 1;
 651		}
 652	}
 653
 654	return 0;
 655}
 656
 657static int __init_memblock __memblock_remove(struct memblock_type *type,
 658					     phys_addr_t base, phys_addr_t size)
 659{
 660	int start_rgn, end_rgn;
 661	int i, ret;
 662
 663	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 664	if (ret)
 665		return ret;
 666
 667	for (i = end_rgn - 1; i >= start_rgn; i--)
 668		memblock_remove_region(type, i);
 669	return 0;
 670}
 671
 672int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 673{
 674	return __memblock_remove(&memblock.memory, base, size);
 675}
 676
 
 677int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 678{
 679	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 680		     (unsigned long long)base,
 681		     (unsigned long long)base + size - 1,
 682		     (void *)_RET_IP_);
 683
 684	return __memblock_remove(&memblock.reserved, base, size);
 
 685}
 686
 687static int __init_memblock memblock_reserve_region(phys_addr_t base,
 688						   phys_addr_t size,
 689						   int nid,
 690						   unsigned long flags)
 691{
 692	struct memblock_type *_rgn = &memblock.reserved;
 693
 694	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 695		     (unsigned long long)base,
 696		     (unsigned long long)base + size - 1,
 697		     flags, (void *)_RET_IP_);
 698
 699	return memblock_add_region(_rgn, base, size, nid, flags);
 700}
 701
 702int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 703{
 704	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 705}
 706
 707/**
 708 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 709 * @base: the base phys addr of the region
 710 * @size: the size of the region
 711 *
 712 * This function isolates region [@base, @base + @size), and mark it with flag
 713 * MEMBLOCK_HOTPLUG.
 714 *
 715 * Return 0 on succees, -errno on failure.
 716 */
 717int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 
 718{
 719	struct memblock_type *type = &memblock.memory;
 720	int i, ret, start_rgn, end_rgn;
 721
 722	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 723	if (ret)
 724		return ret;
 725
 726	for (i = start_rgn; i < end_rgn; i++)
 727		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
 
 
 
 728
 729	memblock_merge_regions(type);
 730	return 0;
 731}
 732
 733/**
 
 
 
 
 
 
 
 
 
 
 
 
 734 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 735 * @base: the base phys addr of the region
 736 * @size: the size of the region
 737 *
 738 * This function isolates region [@base, @base + @size), and clear flag
 739 * MEMBLOCK_HOTPLUG for the isolated regions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740 *
 741 * Return 0 on succees, -errno on failure.
 742 */
 743int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 
 
 744{
 745	struct memblock_type *type = &memblock.memory;
 746	int i, ret, start_rgn, end_rgn;
 
 
 
 
 747
 748	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 749	if (ret)
 750		return ret;
 
 751
 752	for (i = start_rgn; i < end_rgn; i++)
 753		memblock_clear_region_flags(&type->regions[i],
 754					    MEMBLOCK_HOTPLUG);
 755
 756	memblock_merge_regions(type);
 757	return 0;
 758}
 759
 760/**
 761 * __next_free_mem_range - next function for for_each_free_mem_range()
 762 * @idx: pointer to u64 loop variable
 763 * @nid: node selector, %NUMA_NO_NODE for all nodes
 
 
 
 764 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 765 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 766 * @out_nid: ptr to int for nid of the range, can be %NULL
 767 *
 768 * Find the first free area from *@idx which matches @nid, fill the out
 769 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 770 * *@idx contains index into memory region and the upper 32bit indexes the
 771 * areas before each reserved region.  For example, if reserved regions
 772 * look like the following,
 773 *
 774 *	0:[0-16), 1:[32-48), 2:[128-130)
 775 *
 776 * The upper 32bit indexes the following regions.
 777 *
 778 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 779 *
 780 * As both region arrays are sorted, the function advances the two indices
 781 * in lockstep and returns each intersection.
 782 */
 783void __init_memblock __next_free_mem_range(u64 *idx, int nid,
 784					   phys_addr_t *out_start,
 785					   phys_addr_t *out_end, int *out_nid)
 
 
 786{
 787	struct memblock_type *mem = &memblock.memory;
 788	struct memblock_type *rsv = &memblock.reserved;
 789	int mi = *idx & 0xffffffff;
 790	int ri = *idx >> 32;
 791
 792	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 
 793		nid = NUMA_NO_NODE;
 794
 795	for ( ; mi < mem->cnt; mi++) {
 796		struct memblock_region *m = &mem->regions[mi];
 
 797		phys_addr_t m_start = m->base;
 798		phys_addr_t m_end = m->base + m->size;
 
 799
 800		/* only memory regions are associated with nodes, check it */
 801		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
 
 
 
 
 
 
 
 
 
 
 
 
 802			continue;
 803
 804		/* scan areas before each reservation for intersection */
 805		for ( ; ri < rsv->cnt + 1; ri++) {
 806			struct memblock_region *r = &rsv->regions[ri];
 807			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
 808			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809
 810			/* if ri advanced past mi, break out to advance mi */
 
 
 
 811			if (r_start >= m_end)
 812				break;
 813			/* if the two regions intersect, we're done */
 814			if (m_start < r_end) {
 815				if (out_start)
 816					*out_start = max(m_start, r_start);
 
 817				if (out_end)
 818					*out_end = min(m_end, r_end);
 819				if (out_nid)
 820					*out_nid = memblock_get_region_node(m);
 821				/*
 822				 * The region which ends first is advanced
 823				 * for the next iteration.
 824				 */
 825				if (m_end <= r_end)
 826					mi++;
 827				else
 828					ri++;
 829				*idx = (u32)mi | (u64)ri << 32;
 830				return;
 831			}
 832		}
 833	}
 834
 835	/* signal end of iteration */
 836	*idx = ULLONG_MAX;
 837}
 838
 839/**
 840 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
 
 
 
 
 841 * @idx: pointer to u64 loop variable
 842 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
 
 
 
 843 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 844 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 845 * @out_nid: ptr to int for nid of the range, can be %NULL
 846 *
 847 * Reverse of __next_free_mem_range().
 848 *
 849 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
 850 * be able to hot-remove hotpluggable memory used by the kernel. So this
 851 * function skip hotpluggable regions if needed when allocating memory for the
 852 * kernel.
 853 */
 854void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
 855					   phys_addr_t *out_start,
 856					   phys_addr_t *out_end, int *out_nid)
 
 
 857{
 858	struct memblock_type *mem = &memblock.memory;
 859	struct memblock_type *rsv = &memblock.reserved;
 860	int mi = *idx & 0xffffffff;
 861	int ri = *idx >> 32;
 862
 863	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 864		nid = NUMA_NO_NODE;
 865
 866	if (*idx == (u64)ULLONG_MAX) {
 867		mi = mem->cnt - 1;
 868		ri = rsv->cnt;
 869	}
 870
 871	for ( ; mi >= 0; mi--) {
 872		struct memblock_region *m = &mem->regions[mi];
 
 873		phys_addr_t m_start = m->base;
 874		phys_addr_t m_end = m->base + m->size;
 
 875
 876		/* only memory regions are associated with nodes, check it */
 877		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
 878			continue;
 879
 880		/* skip hotpluggable memory regions if needed */
 881		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 882			continue;
 883
 884		/* scan areas before each reservation for intersection */
 885		for ( ; ri >= 0; ri--) {
 886			struct memblock_region *r = &rsv->regions[ri];
 887			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
 888			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889
 890			/* if ri advanced past mi, break out to advance mi */
 891			if (r_end <= m_start)
 892				break;
 893			/* if the two regions intersect, we're done */
 894			if (m_end > r_start) {
 895				if (out_start)
 896					*out_start = max(m_start, r_start);
 897				if (out_end)
 898					*out_end = min(m_end, r_end);
 899				if (out_nid)
 900					*out_nid = memblock_get_region_node(m);
 901
 902				if (m_start >= r_start)
 903					mi--;
 904				else
 905					ri--;
 906				*idx = (u32)mi | (u64)ri << 32;
 907				return;
 908			}
 909		}
 910	}
 911
 912	*idx = ULLONG_MAX;
 913}
 914
 915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 916/*
 917 * Common iterator interface used to define for_each_mem_range().
 918 */
 919void __init_memblock __next_mem_pfn_range(int *idx, int nid,
 920				unsigned long *out_start_pfn,
 921				unsigned long *out_end_pfn, int *out_nid)
 922{
 923	struct memblock_type *type = &memblock.memory;
 924	struct memblock_region *r;
 925
 926	while (++*idx < type->cnt) {
 927		r = &type->regions[*idx];
 928
 929		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
 930			continue;
 931		if (nid == MAX_NUMNODES || nid == r->nid)
 932			break;
 933	}
 934	if (*idx >= type->cnt) {
 935		*idx = -1;
 936		return;
 937	}
 938
 939	if (out_start_pfn)
 940		*out_start_pfn = PFN_UP(r->base);
 941	if (out_end_pfn)
 942		*out_end_pfn = PFN_DOWN(r->base + r->size);
 943	if (out_nid)
 944		*out_nid = r->nid;
 945}
 946
 947/**
 948 * memblock_set_node - set node ID on memblock regions
 949 * @base: base of area to set node ID for
 950 * @size: size of area to set node ID for
 951 * @type: memblock type to set node ID for
 952 * @nid: node ID to set
 953 *
 954 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
 955 * Regions which cross the area boundaries are split as necessary.
 956 *
 957 * RETURNS:
 958 * 0 on success, -errno on failure.
 959 */
 960int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
 961				      struct memblock_type *type, int nid)
 962{
 963	int start_rgn, end_rgn;
 964	int i, ret;
 965
 966	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 967	if (ret)
 968		return ret;
 969
 970	for (i = start_rgn; i < end_rgn; i++)
 971		memblock_set_region_node(&type->regions[i], nid);
 972
 973	memblock_merge_regions(type);
 974	return 0;
 975}
 976#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 977
 978static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
 979					phys_addr_t align, phys_addr_t max_addr,
 980					int nid)
 981{
 982	phys_addr_t found;
 983
 984	if (!align)
 985		align = SMP_CACHE_BYTES;
 986
 987	found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
 988	if (found && !memblock_reserve(found, size))
 
 
 
 
 
 
 989		return found;
 
 
 
 990
 991	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 992}
 993
 994phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 995{
 996	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 
 
 
 
 
 
 
 
 
 
 
 997}
 998
 999phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1000{
1001	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
 
1002}
1003
1004phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1005{
1006	phys_addr_t alloc;
1007
1008	alloc = __memblock_alloc_base(size, align, max_addr);
1009
1010	if (alloc == 0)
1011		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1012		      (unsigned long long) size, (unsigned long long) max_addr);
1013
1014	return alloc;
1015}
1016
1017phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1018{
1019	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1020}
1021
1022phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1023{
1024	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1025
1026	if (res)
1027		return res;
1028	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1029}
1030
1031/**
1032 * memblock_virt_alloc_internal - allocate boot memory block
1033 * @size: size of memory block to be allocated in bytes
1034 * @align: alignment of the region and block's size
1035 * @min_addr: the lower bound of the memory region to allocate (phys address)
1036 * @max_addr: the upper bound of the memory region to allocate (phys address)
1037 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038 *
1039 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1040 * will fall back to memory below @min_addr. Also, allocation may fall back
1041 * to any node in the system if the specified node can not
1042 * hold the requested memory.
1043 *
1044 * The allocation is performed from memory region limited by
1045 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046 *
1047 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048 *
1049 * The phys address of allocated boot memory block is converted to virtual and
1050 * allocated memory is reset to 0.
1051 *
1052 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1053 * allocated boot memory block, so that it is never reported as leaks.
1054 *
1055 * RETURNS:
1056 * Virtual address of allocated memory block on success, NULL on failure.
1057 */
1058static void * __init memblock_virt_alloc_internal(
1059				phys_addr_t size, phys_addr_t align,
1060				phys_addr_t min_addr, phys_addr_t max_addr,
1061				int nid)
1062{
1063	phys_addr_t alloc;
1064	void *ptr;
 
1065
1066	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1067		nid = NUMA_NO_NODE;
1068
1069	/*
1070	 * Detect any accidental use of these APIs after slab is ready, as at
1071	 * this moment memblock may be deinitialized already and its
1072	 * internal data may be destroyed (after execution of free_all_bootmem)
1073	 */
1074	if (WARN_ON_ONCE(slab_is_available()))
1075		return kzalloc_node(size, GFP_NOWAIT, nid);
1076
1077	if (!align)
1078		align = SMP_CACHE_BYTES;
1079
1080	if (max_addr > memblock.current_limit)
1081		max_addr = memblock.current_limit;
1082
1083again:
1084	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1085					    nid);
1086	if (alloc)
1087		goto done;
1088
1089	if (nid != NUMA_NO_NODE) {
1090		alloc = memblock_find_in_range_node(size, align, min_addr,
1091						    max_addr,  NUMA_NO_NODE);
 
1092		if (alloc)
1093			goto done;
1094	}
1095
1096	if (min_addr) {
1097		min_addr = 0;
1098		goto again;
1099	} else {
1100		goto error;
1101	}
1102
 
 
 
 
 
 
 
 
1103done:
1104	memblock_reserve(alloc, size);
1105	ptr = phys_to_virt(alloc);
1106	memset(ptr, 0, size);
1107
1108	/*
1109	 * The min_count is set to 0 so that bootmem allocated blocks
1110	 * are never reported as leaks. This is because many of these blocks
1111	 * are only referred via the physical address which is not
1112	 * looked up by kmemleak.
1113	 */
1114	kmemleak_alloc(ptr, size, 0, 0);
1115
1116	return ptr;
1117
1118error:
1119	return NULL;
1120}
1121
1122/**
1123 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region from where the allocation
1127 *	  is preferred (phys address)
1128 * @max_addr: the upper bound of the memory region from where the allocation
1129 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1130 *	      allocate only from memory limited by memblock.current_limit value
1131 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132 *
1133 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1134 * additional debug information (including caller info), if enabled.
1135 *
1136 * RETURNS:
1137 * Virtual address of allocated memory block on success, NULL on failure.
1138 */
1139void * __init memblock_virt_alloc_try_nid_nopanic(
1140				phys_addr_t size, phys_addr_t align,
1141				phys_addr_t min_addr, phys_addr_t max_addr,
1142				int nid)
1143{
1144	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1145		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1146		     (u64)max_addr, (void *)_RET_IP_);
1147	return memblock_virt_alloc_internal(size, align, min_addr,
1148					     max_addr, nid);
1149}
1150
1151/**
1152 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1153 * @size: size of memory block to be allocated in bytes
1154 * @align: alignment of the region and block's size
1155 * @min_addr: the lower bound of the memory region from where the allocation
1156 *	  is preferred (phys address)
1157 * @max_addr: the upper bound of the memory region from where the allocation
1158 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1159 *	      allocate only from memory limited by memblock.current_limit value
1160 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161 *
1162 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1163 * which provides debug information (including caller info), if enabled,
1164 * and panics if the request can not be satisfied.
1165 *
1166 * RETURNS:
1167 * Virtual address of allocated memory block on success, NULL on failure.
1168 */
1169void * __init memblock_virt_alloc_try_nid(
1170			phys_addr_t size, phys_addr_t align,
1171			phys_addr_t min_addr, phys_addr_t max_addr,
1172			int nid)
1173{
1174	void *ptr;
1175
1176	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1177		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1178		     (u64)max_addr, (void *)_RET_IP_);
1179	ptr = memblock_virt_alloc_internal(size, align,
1180					   min_addr, max_addr, nid);
1181	if (ptr)
1182		return ptr;
1183
1184	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1185	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1186	      (u64)max_addr);
1187	return NULL;
1188}
1189
1190/**
1191 * __memblock_free_early - free boot memory block
1192 * @base: phys starting address of the  boot memory block
1193 * @size: size of the boot memory block in bytes
1194 *
1195 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1196 * The freeing memory will not be released to the buddy allocator.
1197 */
1198void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1199{
1200	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1201		     __func__, (u64)base, (u64)base + size - 1,
1202		     (void *)_RET_IP_);
1203	kmemleak_free_part(__va(base), size);
1204	__memblock_remove(&memblock.reserved, base, size);
1205}
1206
1207/*
1208 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1209 * @addr: phys starting address of the  boot memory block
1210 * @size: size of the boot memory block in bytes
1211 *
1212 * This is only useful when the bootmem allocator has already been torn
1213 * down, but we are still initializing the system.  Pages are released directly
1214 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215 */
1216void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1217{
1218	u64 cursor, end;
1219
1220	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1221		     __func__, (u64)base, (u64)base + size - 1,
1222		     (void *)_RET_IP_);
1223	kmemleak_free_part(__va(base), size);
1224	cursor = PFN_UP(base);
1225	end = PFN_DOWN(base + size);
1226
1227	for (; cursor < end; cursor++) {
1228		__free_pages_bootmem(pfn_to_page(cursor), 0);
1229		totalram_pages++;
1230	}
1231}
1232
1233/*
1234 * Remaining API functions
1235 */
1236
1237phys_addr_t __init memblock_phys_mem_size(void)
1238{
1239	return memblock.memory.total_size;
1240}
1241
1242phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1243{
1244	unsigned long pages = 0;
1245	struct memblock_region *r;
1246	unsigned long start_pfn, end_pfn;
1247
1248	for_each_memblock(memory, r) {
1249		start_pfn = memblock_region_memory_base_pfn(r);
1250		end_pfn = memblock_region_memory_end_pfn(r);
1251		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1252		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1253		pages += end_pfn - start_pfn;
1254	}
1255
1256	return PFN_PHYS(pages);
1257}
1258
1259/* lowest address */
1260phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1261{
1262	return memblock.memory.regions[0].base;
1263}
1264
1265phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1266{
1267	int idx = memblock.memory.cnt - 1;
1268
1269	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1270}
1271
1272void __init memblock_enforce_memory_limit(phys_addr_t limit)
1273{
1274	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1275	struct memblock_region *r;
1276
1277	if (!limit)
1278		return;
1279
1280	/* find out max address */
1281	for_each_memblock(memory, r) {
1282		if (limit <= r->size) {
1283			max_addr = r->base + limit;
1284			break;
1285		}
1286		limit -= r->size;
1287	}
1288
1289	/* truncate both memory and reserved regions */
1290	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1291	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
 
 
1292}
1293
1294static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1295{
1296	unsigned int left = 0, right = type->cnt;
1297
1298	do {
1299		unsigned int mid = (right + left) / 2;
1300
1301		if (addr < type->regions[mid].base)
1302			right = mid;
1303		else if (addr >= (type->regions[mid].base +
1304				  type->regions[mid].size))
1305			left = mid + 1;
1306		else
1307			return mid;
1308	} while (left < right);
1309	return -1;
1310}
1311
1312int __init memblock_is_reserved(phys_addr_t addr)
1313{
1314	return memblock_search(&memblock.reserved, addr) != -1;
1315}
1316
1317int __init_memblock memblock_is_memory(phys_addr_t addr)
1318{
1319	return memblock_search(&memblock.memory, addr) != -1;
1320}
1321
 
 
 
 
 
 
 
 
 
1322#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1323int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1324			 unsigned long *start_pfn, unsigned long *end_pfn)
1325{
1326	struct memblock_type *type = &memblock.memory;
1327	int mid = memblock_search(type, PFN_PHYS(pfn));
1328
1329	if (mid == -1)
1330		return -1;
1331
1332	*start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1333	*end_pfn = (type->regions[mid].base + type->regions[mid].size)
1334			>> PAGE_SHIFT;
1335
1336	return type->regions[mid].nid;
1337}
1338#endif
1339
1340/**
1341 * memblock_is_region_memory - check if a region is a subset of memory
1342 * @base: base of region to check
1343 * @size: size of region to check
1344 *
1345 * Check if the region [@base, @base+@size) is a subset of a memory block.
1346 *
1347 * RETURNS:
1348 * 0 if false, non-zero if true
1349 */
1350int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1351{
1352	int idx = memblock_search(&memblock.memory, base);
1353	phys_addr_t end = base + memblock_cap_size(base, &size);
1354
1355	if (idx == -1)
1356		return 0;
1357	return memblock.memory.regions[idx].base <= base &&
1358		(memblock.memory.regions[idx].base +
1359		 memblock.memory.regions[idx].size) >= end;
1360}
1361
1362/**
1363 * memblock_is_region_reserved - check if a region intersects reserved memory
1364 * @base: base of region to check
1365 * @size: size of region to check
1366 *
1367 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1368 *
1369 * RETURNS:
1370 * 0 if false, non-zero if true
1371 */
1372int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1373{
1374	memblock_cap_size(base, &size);
1375	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1376}
1377
1378void __init_memblock memblock_trim_memory(phys_addr_t align)
1379{
1380	phys_addr_t start, end, orig_start, orig_end;
1381	struct memblock_region *r;
1382
1383	for_each_memblock(memory, r) {
1384		orig_start = r->base;
1385		orig_end = r->base + r->size;
1386		start = round_up(orig_start, align);
1387		end = round_down(orig_end, align);
1388
1389		if (start == orig_start && end == orig_end)
1390			continue;
1391
1392		if (start < end) {
1393			r->base = start;
1394			r->size = end - start;
1395		} else {
1396			memblock_remove_region(&memblock.memory,
1397					       r - memblock.memory.regions);
1398			r--;
1399		}
1400	}
1401}
1402
1403void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1404{
1405	memblock.current_limit = limit;
1406}
1407
1408phys_addr_t __init_memblock memblock_get_current_limit(void)
1409{
1410	return memblock.current_limit;
1411}
1412
1413static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1414{
1415	unsigned long long base, size;
1416	unsigned long flags;
1417	int i;
 
1418
1419	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1420
1421	for (i = 0; i < type->cnt; i++) {
1422		struct memblock_region *rgn = &type->regions[i];
1423		char nid_buf[32] = "";
1424
1425		base = rgn->base;
1426		size = rgn->size;
1427		flags = rgn->flags;
1428#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1429		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1430			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1431				 memblock_get_region_node(rgn));
1432#endif
1433		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1434			name, i, base, base + size - 1, size, nid_buf, flags);
1435	}
1436}
1437
1438void __init_memblock __memblock_dump_all(void)
1439{
1440	pr_info("MEMBLOCK configuration:\n");
1441	pr_info(" memory size = %#llx reserved size = %#llx\n",
1442		(unsigned long long)memblock.memory.total_size,
1443		(unsigned long long)memblock.reserved.total_size);
1444
1445	memblock_dump(&memblock.memory, "memory");
1446	memblock_dump(&memblock.reserved, "reserved");
1447}
1448
1449void __init memblock_allow_resize(void)
1450{
1451	memblock_can_resize = 1;
1452}
1453
1454static int __init early_memblock(char *p)
1455{
1456	if (p && strstr(p, "debug"))
1457		memblock_debug = 1;
1458	return 0;
1459}
1460early_param("memblock", early_memblock);
1461
1462#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1463
1464static int memblock_debug_show(struct seq_file *m, void *private)
1465{
1466	struct memblock_type *type = m->private;
1467	struct memblock_region *reg;
1468	int i;
1469
1470	for (i = 0; i < type->cnt; i++) {
1471		reg = &type->regions[i];
1472		seq_printf(m, "%4d: ", i);
1473		if (sizeof(phys_addr_t) == 4)
1474			seq_printf(m, "0x%08lx..0x%08lx\n",
1475				   (unsigned long)reg->base,
1476				   (unsigned long)(reg->base + reg->size - 1));
1477		else
1478			seq_printf(m, "0x%016llx..0x%016llx\n",
1479				   (unsigned long long)reg->base,
1480				   (unsigned long long)(reg->base + reg->size - 1));
1481
1482	}
1483	return 0;
1484}
1485
1486static int memblock_debug_open(struct inode *inode, struct file *file)
1487{
1488	return single_open(file, memblock_debug_show, inode->i_private);
1489}
1490
1491static const struct file_operations memblock_debug_fops = {
1492	.open = memblock_debug_open,
1493	.read = seq_read,
1494	.llseek = seq_lseek,
1495	.release = single_release,
1496};
1497
1498static int __init memblock_init_debugfs(void)
1499{
1500	struct dentry *root = debugfs_create_dir("memblock", NULL);
1501	if (!root)
1502		return -ENXIO;
1503	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1504	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 
 
 
1505
1506	return 0;
1507}
1508__initcall(memblock_init_debugfs);
1509
1510#endif /* CONFIG_DEBUG_FS */