Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
 
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23#include <asm-generic/sections.h>
  24#include <linux/io.h>
  25
  26#include "internal.h"
  27
  28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  32#endif
  33
  34struct memblock memblock __initdata_memblock = {
  35	.memory.regions		= memblock_memory_init_regions,
  36	.memory.cnt		= 1,	/* empty dummy entry */
  37	.memory.max		= INIT_MEMBLOCK_REGIONS,
 
  38
  39	.reserved.regions	= memblock_reserved_init_regions,
  40	.reserved.cnt		= 1,	/* empty dummy entry */
  41	.reserved.max		= INIT_MEMBLOCK_REGIONS,
 
  42
  43#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  44	.physmem.regions	= memblock_physmem_init_regions,
  45	.physmem.cnt		= 1,	/* empty dummy entry */
  46	.physmem.max		= INIT_PHYSMEM_REGIONS,
 
  47#endif
  48
  49	.bottom_up		= false,
  50	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  51};
  52
  53int memblock_debug __initdata_memblock;
  54#ifdef CONFIG_MOVABLE_NODE
  55bool movable_node_enabled __initdata_memblock = false;
  56#endif
  57static bool system_has_some_mirror __initdata_memblock = false;
  58static int memblock_can_resize __initdata_memblock;
  59static int memblock_memory_in_slab __initdata_memblock = 0;
  60static int memblock_reserved_in_slab __initdata_memblock = 0;
  61
  62ulong __init_memblock choose_memblock_flags(void)
  63{
  64	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  65}
  66
  67/* inline so we don't get a warning when pr_debug is compiled out */
  68static __init_memblock const char *
  69memblock_type_name(struct memblock_type *type)
  70{
  71	if (type == &memblock.memory)
  72		return "memory";
  73	else if (type == &memblock.reserved)
  74		return "reserved";
  75	else
  76		return "unknown";
  77}
  78
  79/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  80static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  81{
  82	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  83}
  84
  85/*
  86 * Address comparison utilities
  87 */
  88static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  89				       phys_addr_t base2, phys_addr_t size2)
  90{
  91	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  92}
  93
  94bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  95					phys_addr_t base, phys_addr_t size)
  96{
  97	unsigned long i;
  98
  99	for (i = 0; i < type->cnt; i++)
 100		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 101					   type->regions[i].size))
 102			break;
 103	return i < type->cnt;
 104}
 105
 106/*
 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 108 * @start: start of candidate range
 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 110 * @size: size of free area to find
 111 * @align: alignment of free area to find
 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 113 * @flags: pick from blocks based on memory attributes
 114 *
 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 116 *
 117 * RETURNS:
 118 * Found address on success, 0 on failure.
 119 */
 120static phys_addr_t __init_memblock
 121__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 122				phys_addr_t size, phys_addr_t align, int nid,
 123				ulong flags)
 124{
 125	phys_addr_t this_start, this_end, cand;
 126	u64 i;
 127
 128	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 129		this_start = clamp(this_start, start, end);
 130		this_end = clamp(this_end, start, end);
 131
 132		cand = round_up(this_start, align);
 133		if (cand < this_end && this_end - cand >= size)
 134			return cand;
 135	}
 136
 137	return 0;
 138}
 139
 140/**
 141 * __memblock_find_range_top_down - find free area utility, in top-down
 142 * @start: start of candidate range
 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 144 * @size: size of free area to find
 145 * @align: alignment of free area to find
 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 147 * @flags: pick from blocks based on memory attributes
 148 *
 149 * Utility called from memblock_find_in_range_node(), find free area top-down.
 150 *
 151 * RETURNS:
 152 * Found address on success, 0 on failure.
 153 */
 154static phys_addr_t __init_memblock
 155__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 156			       phys_addr_t size, phys_addr_t align, int nid,
 157			       ulong flags)
 158{
 159	phys_addr_t this_start, this_end, cand;
 160	u64 i;
 161
 162	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 163					NULL) {
 164		this_start = clamp(this_start, start, end);
 165		this_end = clamp(this_end, start, end);
 166
 167		if (this_end < size)
 168			continue;
 169
 170		cand = round_down(this_end - size, align);
 171		if (cand >= this_start)
 172			return cand;
 173	}
 174
 175	return 0;
 176}
 177
 178/**
 179 * memblock_find_in_range_node - find free area in given range and node
 180 * @size: size of free area to find
 181 * @align: alignment of free area to find
 182 * @start: start of candidate range
 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 185 * @flags: pick from blocks based on memory attributes
 186 *
 187 * Find @size free area aligned to @align in the specified range and node.
 188 *
 189 * When allocation direction is bottom-up, the @start should be greater
 190 * than the end of the kernel image. Otherwise, it will be trimmed. The
 191 * reason is that we want the bottom-up allocation just near the kernel
 192 * image so it is highly likely that the allocated memory and the kernel
 193 * will reside in the same node.
 194 *
 195 * If bottom-up allocation failed, will try to allocate memory top-down.
 196 *
 197 * RETURNS:
 198 * Found address on success, 0 on failure.
 199 */
 200phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 201					phys_addr_t align, phys_addr_t start,
 202					phys_addr_t end, int nid, ulong flags)
 203{
 204	phys_addr_t kernel_end, ret;
 205
 206	/* pump up @end */
 207	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 208		end = memblock.current_limit;
 209
 210	/* avoid allocating the first page */
 211	start = max_t(phys_addr_t, start, PAGE_SIZE);
 212	end = max(start, end);
 213	kernel_end = __pa_symbol(_end);
 214
 215	/*
 216	 * try bottom-up allocation only when bottom-up mode
 217	 * is set and @end is above the kernel image.
 218	 */
 219	if (memblock_bottom_up() && end > kernel_end) {
 220		phys_addr_t bottom_up_start;
 221
 222		/* make sure we will allocate above the kernel */
 223		bottom_up_start = max(start, kernel_end);
 224
 225		/* ok, try bottom-up allocation first */
 226		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 227						      size, align, nid, flags);
 228		if (ret)
 229			return ret;
 230
 231		/*
 232		 * we always limit bottom-up allocation above the kernel,
 233		 * but top-down allocation doesn't have the limit, so
 234		 * retrying top-down allocation may succeed when bottom-up
 235		 * allocation failed.
 236		 *
 237		 * bottom-up allocation is expected to be fail very rarely,
 238		 * so we use WARN_ONCE() here to see the stack trace if
 239		 * fail happens.
 240		 */
 241		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 242	}
 243
 244	return __memblock_find_range_top_down(start, end, size, align, nid,
 245					      flags);
 246}
 247
 248/**
 249 * memblock_find_in_range - find free area in given range
 250 * @start: start of candidate range
 251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 252 * @size: size of free area to find
 253 * @align: alignment of free area to find
 254 *
 255 * Find @size free area aligned to @align in the specified range.
 256 *
 257 * RETURNS:
 258 * Found address on success, 0 on failure.
 259 */
 260phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 261					phys_addr_t end, phys_addr_t size,
 262					phys_addr_t align)
 263{
 264	phys_addr_t ret;
 265	ulong flags = choose_memblock_flags();
 266
 267again:
 268	ret = memblock_find_in_range_node(size, align, start, end,
 269					    NUMA_NO_NODE, flags);
 270
 271	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 272		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 273			&size);
 274		flags &= ~MEMBLOCK_MIRROR;
 275		goto again;
 276	}
 277
 278	return ret;
 279}
 280
 281static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 282{
 283	type->total_size -= type->regions[r].size;
 284	memmove(&type->regions[r], &type->regions[r + 1],
 285		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 286	type->cnt--;
 287
 288	/* Special case for empty arrays */
 289	if (type->cnt == 0) {
 290		WARN_ON(type->total_size != 0);
 291		type->cnt = 1;
 292		type->regions[0].base = 0;
 293		type->regions[0].size = 0;
 294		type->regions[0].flags = 0;
 295		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 296	}
 297}
 298
 299#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 300
 301phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 302					phys_addr_t *addr)
 303{
 304	if (memblock.reserved.regions == memblock_reserved_init_regions)
 305		return 0;
 306
 307	*addr = __pa(memblock.reserved.regions);
 308
 309	return PAGE_ALIGN(sizeof(struct memblock_region) *
 310			  memblock.reserved.max);
 311}
 312
 313phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 314					phys_addr_t *addr)
 315{
 316	if (memblock.memory.regions == memblock_memory_init_regions)
 317		return 0;
 318
 319	*addr = __pa(memblock.memory.regions);
 
 
 
 
 
 320
 321	return PAGE_ALIGN(sizeof(struct memblock_region) *
 322			  memblock.memory.max);
 
 
 
 
 323}
 324
 325#endif
 326
 327/**
 328 * memblock_double_array - double the size of the memblock regions array
 329 * @type: memblock type of the regions array being doubled
 330 * @new_area_start: starting address of memory range to avoid overlap with
 331 * @new_area_size: size of memory range to avoid overlap with
 332 *
 333 * Double the size of the @type regions array. If memblock is being used to
 334 * allocate memory for a new reserved regions array and there is a previously
 335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 336 * waiting to be reserved, ensure the memory used by the new array does
 337 * not overlap.
 338 *
 339 * RETURNS:
 340 * 0 on success, -1 on failure.
 341 */
 342static int __init_memblock memblock_double_array(struct memblock_type *type,
 343						phys_addr_t new_area_start,
 344						phys_addr_t new_area_size)
 345{
 346	struct memblock_region *new_array, *old_array;
 347	phys_addr_t old_alloc_size, new_alloc_size;
 348	phys_addr_t old_size, new_size, addr;
 349	int use_slab = slab_is_available();
 350	int *in_slab;
 351
 352	/* We don't allow resizing until we know about the reserved regions
 353	 * of memory that aren't suitable for allocation
 354	 */
 355	if (!memblock_can_resize)
 356		return -1;
 357
 358	/* Calculate new doubled size */
 359	old_size = type->max * sizeof(struct memblock_region);
 360	new_size = old_size << 1;
 361	/*
 362	 * We need to allocated new one align to PAGE_SIZE,
 363	 *   so we can free them completely later.
 364	 */
 365	old_alloc_size = PAGE_ALIGN(old_size);
 366	new_alloc_size = PAGE_ALIGN(new_size);
 367
 368	/* Retrieve the slab flag */
 369	if (type == &memblock.memory)
 370		in_slab = &memblock_memory_in_slab;
 371	else
 372		in_slab = &memblock_reserved_in_slab;
 373
 374	/* Try to find some space for it.
 375	 *
 376	 * WARNING: We assume that either slab_is_available() and we use it or
 377	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 378	 * use when bootmem is currently active (unless bootmem itself is
 379	 * implemented on top of MEMBLOCK which isn't the case yet)
 380	 *
 381	 * This should however not be an issue for now, as we currently only
 382	 * call into MEMBLOCK while it's still active, or much later when slab
 383	 * is active for memory hotplug operations
 384	 */
 385	if (use_slab) {
 386		new_array = kmalloc(new_size, GFP_KERNEL);
 387		addr = new_array ? __pa(new_array) : 0;
 388	} else {
 389		/* only exclude range when trying to double reserved.regions */
 390		if (type != &memblock.reserved)
 391			new_area_start = new_area_size = 0;
 392
 393		addr = memblock_find_in_range(new_area_start + new_area_size,
 394						memblock.current_limit,
 395						new_alloc_size, PAGE_SIZE);
 396		if (!addr && new_area_size)
 397			addr = memblock_find_in_range(0,
 398				min(new_area_start, memblock.current_limit),
 399				new_alloc_size, PAGE_SIZE);
 400
 401		new_array = addr ? __va(addr) : NULL;
 402	}
 403	if (!addr) {
 404		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 405		       memblock_type_name(type), type->max, type->max * 2);
 406		return -1;
 407	}
 408
 409	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 410			memblock_type_name(type), type->max * 2, (u64)addr,
 411			(u64)addr + new_size - 1);
 412
 413	/*
 414	 * Found space, we now need to move the array over before we add the
 415	 * reserved region since it may be our reserved array itself that is
 416	 * full.
 417	 */
 418	memcpy(new_array, type->regions, old_size);
 419	memset(new_array + type->max, 0, old_size);
 420	old_array = type->regions;
 421	type->regions = new_array;
 422	type->max <<= 1;
 423
 424	/* Free old array. We needn't free it if the array is the static one */
 425	if (*in_slab)
 426		kfree(old_array);
 427	else if (old_array != memblock_memory_init_regions &&
 428		 old_array != memblock_reserved_init_regions)
 429		memblock_free(__pa(old_array), old_alloc_size);
 430
 431	/*
 432	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 433	 * needn't do it
 434	 */
 435	if (!use_slab)
 436		BUG_ON(memblock_reserve(addr, new_alloc_size));
 437
 438	/* Update slab flag */
 439	*in_slab = use_slab;
 440
 441	return 0;
 442}
 443
 444/**
 445 * memblock_merge_regions - merge neighboring compatible regions
 446 * @type: memblock type to scan
 447 *
 448 * Scan @type and merge neighboring compatible regions.
 449 */
 450static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 451{
 452	int i = 0;
 453
 454	/* cnt never goes below 1 */
 455	while (i < type->cnt - 1) {
 456		struct memblock_region *this = &type->regions[i];
 457		struct memblock_region *next = &type->regions[i + 1];
 458
 459		if (this->base + this->size != next->base ||
 460		    memblock_get_region_node(this) !=
 461		    memblock_get_region_node(next) ||
 462		    this->flags != next->flags) {
 463			BUG_ON(this->base + this->size > next->base);
 464			i++;
 465			continue;
 466		}
 467
 468		this->size += next->size;
 469		/* move forward from next + 1, index of which is i + 2 */
 470		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 471		type->cnt--;
 472	}
 473}
 474
 475/**
 476 * memblock_insert_region - insert new memblock region
 477 * @type:	memblock type to insert into
 478 * @idx:	index for the insertion point
 479 * @base:	base address of the new region
 480 * @size:	size of the new region
 481 * @nid:	node id of the new region
 482 * @flags:	flags of the new region
 483 *
 484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 485 * @type must already have extra room to accomodate the new region.
 486 */
 487static void __init_memblock memblock_insert_region(struct memblock_type *type,
 488						   int idx, phys_addr_t base,
 489						   phys_addr_t size,
 490						   int nid, unsigned long flags)
 491{
 492	struct memblock_region *rgn = &type->regions[idx];
 493
 494	BUG_ON(type->cnt >= type->max);
 495	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 496	rgn->base = base;
 497	rgn->size = size;
 498	rgn->flags = flags;
 499	memblock_set_region_node(rgn, nid);
 500	type->cnt++;
 501	type->total_size += size;
 502}
 503
 504/**
 505 * memblock_add_range - add new memblock region
 506 * @type: memblock type to add new region into
 507 * @base: base address of the new region
 508 * @size: size of the new region
 509 * @nid: nid of the new region
 510 * @flags: flags of the new region
 511 *
 512 * Add new memblock region [@base,@base+@size) into @type.  The new region
 513 * is allowed to overlap with existing ones - overlaps don't affect already
 514 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 515 * compatible regions are merged) after the addition.
 516 *
 517 * RETURNS:
 518 * 0 on success, -errno on failure.
 519 */
 520int __init_memblock memblock_add_range(struct memblock_type *type,
 521				phys_addr_t base, phys_addr_t size,
 522				int nid, unsigned long flags)
 523{
 524	bool insert = false;
 525	phys_addr_t obase = base;
 526	phys_addr_t end = base + memblock_cap_size(base, &size);
 527	int idx, nr_new;
 528	struct memblock_region *rgn;
 529
 530	if (!size)
 531		return 0;
 532
 533	/* special case for empty array */
 534	if (type->regions[0].size == 0) {
 535		WARN_ON(type->cnt != 1 || type->total_size);
 536		type->regions[0].base = base;
 537		type->regions[0].size = size;
 538		type->regions[0].flags = flags;
 539		memblock_set_region_node(&type->regions[0], nid);
 540		type->total_size = size;
 541		return 0;
 542	}
 543repeat:
 544	/*
 545	 * The following is executed twice.  Once with %false @insert and
 546	 * then with %true.  The first counts the number of regions needed
 547	 * to accomodate the new area.  The second actually inserts them.
 548	 */
 549	base = obase;
 550	nr_new = 0;
 551
 552	for_each_memblock_type(type, rgn) {
 553		phys_addr_t rbase = rgn->base;
 554		phys_addr_t rend = rbase + rgn->size;
 555
 556		if (rbase >= end)
 557			break;
 558		if (rend <= base)
 559			continue;
 560		/*
 561		 * @rgn overlaps.  If it separates the lower part of new
 562		 * area, insert that portion.
 563		 */
 564		if (rbase > base) {
 565#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 566			WARN_ON(nid != memblock_get_region_node(rgn));
 567#endif
 568			WARN_ON(flags != rgn->flags);
 569			nr_new++;
 570			if (insert)
 571				memblock_insert_region(type, idx++, base,
 572						       rbase - base, nid,
 573						       flags);
 574		}
 575		/* area below @rend is dealt with, forget about it */
 576		base = min(rend, end);
 577	}
 578
 579	/* insert the remaining portion */
 580	if (base < end) {
 581		nr_new++;
 582		if (insert)
 583			memblock_insert_region(type, idx, base, end - base,
 584					       nid, flags);
 585	}
 586
 
 
 
 587	/*
 588	 * If this was the first round, resize array and repeat for actual
 589	 * insertions; otherwise, merge and return.
 590	 */
 591	if (!insert) {
 592		while (type->cnt + nr_new > type->max)
 593			if (memblock_double_array(type, obase, size) < 0)
 594				return -ENOMEM;
 595		insert = true;
 596		goto repeat;
 597	} else {
 598		memblock_merge_regions(type);
 599		return 0;
 600	}
 601}
 602
 603int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 604				       int nid)
 605{
 606	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 607}
 608
 609static int __init_memblock memblock_add_region(phys_addr_t base,
 610						phys_addr_t size,
 611						int nid,
 612						unsigned long flags)
 613{
 614	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
 615		     (unsigned long long)base,
 616		     (unsigned long long)base + size - 1,
 617		     flags, (void *)_RET_IP_);
 618
 619	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 620}
 621
 622int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 623{
 624	return memblock_add_region(base, size, MAX_NUMNODES, 0);
 
 
 
 
 
 625}
 626
 627/**
 628 * memblock_isolate_range - isolate given range into disjoint memblocks
 629 * @type: memblock type to isolate range for
 630 * @base: base of range to isolate
 631 * @size: size of range to isolate
 632 * @start_rgn: out parameter for the start of isolated region
 633 * @end_rgn: out parameter for the end of isolated region
 634 *
 635 * Walk @type and ensure that regions don't cross the boundaries defined by
 636 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 637 * which may create at most two more regions.  The index of the first
 638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 639 *
 640 * RETURNS:
 641 * 0 on success, -errno on failure.
 642 */
 643static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 644					phys_addr_t base, phys_addr_t size,
 645					int *start_rgn, int *end_rgn)
 646{
 647	phys_addr_t end = base + memblock_cap_size(base, &size);
 648	int idx;
 649	struct memblock_region *rgn;
 650
 651	*start_rgn = *end_rgn = 0;
 652
 653	if (!size)
 654		return 0;
 655
 656	/* we'll create at most two more regions */
 657	while (type->cnt + 2 > type->max)
 658		if (memblock_double_array(type, base, size) < 0)
 659			return -ENOMEM;
 660
 661	for_each_memblock_type(type, rgn) {
 662		phys_addr_t rbase = rgn->base;
 663		phys_addr_t rend = rbase + rgn->size;
 664
 665		if (rbase >= end)
 666			break;
 667		if (rend <= base)
 668			continue;
 669
 670		if (rbase < base) {
 671			/*
 672			 * @rgn intersects from below.  Split and continue
 673			 * to process the next region - the new top half.
 674			 */
 675			rgn->base = base;
 676			rgn->size -= base - rbase;
 677			type->total_size -= base - rbase;
 678			memblock_insert_region(type, idx, rbase, base - rbase,
 679					       memblock_get_region_node(rgn),
 680					       rgn->flags);
 681		} else if (rend > end) {
 682			/*
 683			 * @rgn intersects from above.  Split and redo the
 684			 * current region - the new bottom half.
 685			 */
 686			rgn->base = end;
 687			rgn->size -= end - rbase;
 688			type->total_size -= end - rbase;
 689			memblock_insert_region(type, idx--, rbase, end - rbase,
 690					       memblock_get_region_node(rgn),
 691					       rgn->flags);
 692		} else {
 693			/* @rgn is fully contained, record it */
 694			if (!*end_rgn)
 695				*start_rgn = idx;
 696			*end_rgn = idx + 1;
 697		}
 698	}
 699
 700	return 0;
 701}
 702
 703static int __init_memblock memblock_remove_range(struct memblock_type *type,
 704					  phys_addr_t base, phys_addr_t size)
 705{
 706	int start_rgn, end_rgn;
 707	int i, ret;
 708
 709	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 710	if (ret)
 711		return ret;
 712
 713	for (i = end_rgn - 1; i >= start_rgn; i--)
 714		memblock_remove_region(type, i);
 715	return 0;
 716}
 717
 718int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 719{
 720	return memblock_remove_range(&memblock.memory, base, size);
 721}
 722
 723
 724int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 725{
 726	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 727		     (unsigned long long)base,
 728		     (unsigned long long)base + size - 1,
 729		     (void *)_RET_IP_);
 730
 731	kmemleak_free_part(__va(base), size);
 
 
 
 732	return memblock_remove_range(&memblock.reserved, base, size);
 733}
 734
 735static int __init_memblock memblock_reserve_region(phys_addr_t base,
 736						   phys_addr_t size,
 737						   int nid,
 738						   unsigned long flags)
 739{
 740	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 741		     (unsigned long long)base,
 742		     (unsigned long long)base + size - 1,
 743		     flags, (void *)_RET_IP_);
 744
 745	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
 746}
 747
 748int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 749{
 750	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 751}
 752
 753/**
 754 *
 755 * This function isolates region [@base, @base + @size), and sets/clears flag
 756 *
 757 * Return 0 on success, -errno on failure.
 758 */
 759static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 760				phys_addr_t size, int set, int flag)
 761{
 762	struct memblock_type *type = &memblock.memory;
 763	int i, ret, start_rgn, end_rgn;
 764
 765	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 766	if (ret)
 767		return ret;
 768
 769	for (i = start_rgn; i < end_rgn; i++)
 770		if (set)
 771			memblock_set_region_flags(&type->regions[i], flag);
 772		else
 773			memblock_clear_region_flags(&type->regions[i], flag);
 774
 775	memblock_merge_regions(type);
 776	return 0;
 777}
 778
 779/**
 780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 781 * @base: the base phys addr of the region
 782 * @size: the size of the region
 783 *
 784 * Return 0 on success, -errno on failure.
 785 */
 786int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 787{
 788	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 789}
 790
 791/**
 792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 793 * @base: the base phys addr of the region
 794 * @size: the size of the region
 795 *
 796 * Return 0 on success, -errno on failure.
 797 */
 798int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 799{
 800	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 801}
 802
 803/**
 804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 805 * @base: the base phys addr of the region
 806 * @size: the size of the region
 807 *
 808 * Return 0 on success, -errno on failure.
 809 */
 810int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 811{
 812	system_has_some_mirror = true;
 813
 814	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 815}
 816
 817/**
 818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 819 * @base: the base phys addr of the region
 820 * @size: the size of the region
 821 *
 822 * Return 0 on success, -errno on failure.
 823 */
 824int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 825{
 826	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 827}
 828
 829/**
 
 
 
 
 
 
 
 
 
 
 
 
 830 * __next_reserved_mem_region - next function for for_each_reserved_region()
 831 * @idx: pointer to u64 loop variable
 832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 834 *
 835 * Iterate over all reserved memory regions.
 836 */
 837void __init_memblock __next_reserved_mem_region(u64 *idx,
 838					   phys_addr_t *out_start,
 839					   phys_addr_t *out_end)
 840{
 841	struct memblock_type *type = &memblock.reserved;
 842
 843	if (*idx >= 0 && *idx < type->cnt) {
 844		struct memblock_region *r = &type->regions[*idx];
 845		phys_addr_t base = r->base;
 846		phys_addr_t size = r->size;
 847
 848		if (out_start)
 849			*out_start = base;
 850		if (out_end)
 851			*out_end = base + size - 1;
 852
 853		*idx += 1;
 854		return;
 855	}
 856
 857	/* signal end of iteration */
 858	*idx = ULLONG_MAX;
 859}
 860
 861/**
 862 * __next__mem_range - next function for for_each_free_mem_range() etc.
 863 * @idx: pointer to u64 loop variable
 864 * @nid: node selector, %NUMA_NO_NODE for all nodes
 865 * @flags: pick from blocks based on memory attributes
 866 * @type_a: pointer to memblock_type from where the range is taken
 867 * @type_b: pointer to memblock_type which excludes memory from being taken
 868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 870 * @out_nid: ptr to int for nid of the range, can be %NULL
 871 *
 872 * Find the first area from *@idx which matches @nid, fill the out
 873 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 874 * *@idx contains index into type_a and the upper 32bit indexes the
 875 * areas before each region in type_b.	For example, if type_b regions
 876 * look like the following,
 877 *
 878 *	0:[0-16), 1:[32-48), 2:[128-130)
 879 *
 880 * The upper 32bit indexes the following regions.
 881 *
 882 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 883 *
 884 * As both region arrays are sorted, the function advances the two indices
 885 * in lockstep and returns each intersection.
 886 */
 887void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 888				      struct memblock_type *type_a,
 889				      struct memblock_type *type_b,
 890				      phys_addr_t *out_start,
 891				      phys_addr_t *out_end, int *out_nid)
 892{
 893	int idx_a = *idx & 0xffffffff;
 894	int idx_b = *idx >> 32;
 895
 896	if (WARN_ONCE(nid == MAX_NUMNODES,
 897	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 898		nid = NUMA_NO_NODE;
 899
 900	for (; idx_a < type_a->cnt; idx_a++) {
 901		struct memblock_region *m = &type_a->regions[idx_a];
 902
 903		phys_addr_t m_start = m->base;
 904		phys_addr_t m_end = m->base + m->size;
 905		int	    m_nid = memblock_get_region_node(m);
 906
 907		/* only memory regions are associated with nodes, check it */
 908		if (nid != NUMA_NO_NODE && nid != m_nid)
 909			continue;
 910
 911		/* skip hotpluggable memory regions if needed */
 912		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 913			continue;
 914
 915		/* if we want mirror memory skip non-mirror memory regions */
 916		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 917			continue;
 918
 919		/* skip nomap memory unless we were asked for it explicitly */
 920		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 921			continue;
 922
 923		if (!type_b) {
 924			if (out_start)
 925				*out_start = m_start;
 926			if (out_end)
 927				*out_end = m_end;
 928			if (out_nid)
 929				*out_nid = m_nid;
 930			idx_a++;
 931			*idx = (u32)idx_a | (u64)idx_b << 32;
 932			return;
 933		}
 934
 935		/* scan areas before each reservation */
 936		for (; idx_b < type_b->cnt + 1; idx_b++) {
 937			struct memblock_region *r;
 938			phys_addr_t r_start;
 939			phys_addr_t r_end;
 940
 941			r = &type_b->regions[idx_b];
 942			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 943			r_end = idx_b < type_b->cnt ?
 944				r->base : ULLONG_MAX;
 945
 946			/*
 947			 * if idx_b advanced past idx_a,
 948			 * break out to advance idx_a
 949			 */
 950			if (r_start >= m_end)
 951				break;
 952			/* if the two regions intersect, we're done */
 953			if (m_start < r_end) {
 954				if (out_start)
 955					*out_start =
 956						max(m_start, r_start);
 957				if (out_end)
 958					*out_end = min(m_end, r_end);
 959				if (out_nid)
 960					*out_nid = m_nid;
 961				/*
 962				 * The region which ends first is
 963				 * advanced for the next iteration.
 964				 */
 965				if (m_end <= r_end)
 966					idx_a++;
 967				else
 968					idx_b++;
 969				*idx = (u32)idx_a | (u64)idx_b << 32;
 970				return;
 971			}
 972		}
 973	}
 974
 975	/* signal end of iteration */
 976	*idx = ULLONG_MAX;
 977}
 978
 979/**
 980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 981 *
 982 * Finds the next range from type_a which is not marked as unsuitable
 983 * in type_b.
 984 *
 985 * @idx: pointer to u64 loop variable
 986 * @nid: node selector, %NUMA_NO_NODE for all nodes
 987 * @flags: pick from blocks based on memory attributes
 988 * @type_a: pointer to memblock_type from where the range is taken
 989 * @type_b: pointer to memblock_type which excludes memory from being taken
 990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 992 * @out_nid: ptr to int for nid of the range, can be %NULL
 993 *
 994 * Reverse of __next_mem_range().
 995 */
 996void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 997					  struct memblock_type *type_a,
 998					  struct memblock_type *type_b,
 999					  phys_addr_t *out_start,
1000					  phys_addr_t *out_end, int *out_nid)
1001{
1002	int idx_a = *idx & 0xffffffff;
1003	int idx_b = *idx >> 32;
1004
1005	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006		nid = NUMA_NO_NODE;
1007
1008	if (*idx == (u64)ULLONG_MAX) {
1009		idx_a = type_a->cnt - 1;
1010		idx_b = type_b->cnt;
 
 
 
1011	}
1012
1013	for (; idx_a >= 0; idx_a--) {
1014		struct memblock_region *m = &type_a->regions[idx_a];
1015
1016		phys_addr_t m_start = m->base;
1017		phys_addr_t m_end = m->base + m->size;
1018		int m_nid = memblock_get_region_node(m);
1019
1020		/* only memory regions are associated with nodes, check it */
1021		if (nid != NUMA_NO_NODE && nid != m_nid)
1022			continue;
1023
1024		/* skip hotpluggable memory regions if needed */
1025		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1026			continue;
1027
1028		/* if we want mirror memory skip non-mirror memory regions */
1029		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1030			continue;
1031
1032		/* skip nomap memory unless we were asked for it explicitly */
1033		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1034			continue;
1035
1036		if (!type_b) {
1037			if (out_start)
1038				*out_start = m_start;
1039			if (out_end)
1040				*out_end = m_end;
1041			if (out_nid)
1042				*out_nid = m_nid;
1043			idx_a++;
1044			*idx = (u32)idx_a | (u64)idx_b << 32;
1045			return;
1046		}
1047
1048		/* scan areas before each reservation */
1049		for (; idx_b >= 0; idx_b--) {
1050			struct memblock_region *r;
1051			phys_addr_t r_start;
1052			phys_addr_t r_end;
1053
1054			r = &type_b->regions[idx_b];
1055			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1056			r_end = idx_b < type_b->cnt ?
1057				r->base : ULLONG_MAX;
1058			/*
1059			 * if idx_b advanced past idx_a,
1060			 * break out to advance idx_a
1061			 */
1062
1063			if (r_end <= m_start)
1064				break;
1065			/* if the two regions intersect, we're done */
1066			if (m_end > r_start) {
1067				if (out_start)
1068					*out_start = max(m_start, r_start);
1069				if (out_end)
1070					*out_end = min(m_end, r_end);
1071				if (out_nid)
1072					*out_nid = m_nid;
1073				if (m_start >= r_start)
1074					idx_a--;
1075				else
1076					idx_b--;
1077				*idx = (u32)idx_a | (u64)idx_b << 32;
1078				return;
1079			}
1080		}
1081	}
1082	/* signal end of iteration */
1083	*idx = ULLONG_MAX;
1084}
1085
1086#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1087/*
1088 * Common iterator interface used to define for_each_mem_range().
1089 */
1090void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1091				unsigned long *out_start_pfn,
1092				unsigned long *out_end_pfn, int *out_nid)
1093{
1094	struct memblock_type *type = &memblock.memory;
1095	struct memblock_region *r;
1096
1097	while (++*idx < type->cnt) {
1098		r = &type->regions[*idx];
1099
1100		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1101			continue;
1102		if (nid == MAX_NUMNODES || nid == r->nid)
1103			break;
1104	}
1105	if (*idx >= type->cnt) {
1106		*idx = -1;
1107		return;
1108	}
1109
1110	if (out_start_pfn)
1111		*out_start_pfn = PFN_UP(r->base);
1112	if (out_end_pfn)
1113		*out_end_pfn = PFN_DOWN(r->base + r->size);
1114	if (out_nid)
1115		*out_nid = r->nid;
1116}
1117
1118/**
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
1122 * @type: memblock type to set node ID for
1123 * @nid: node ID to set
1124 *
1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1126 * Regions which cross the area boundaries are split as necessary.
1127 *
1128 * RETURNS:
1129 * 0 on success, -errno on failure.
1130 */
1131int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1132				      struct memblock_type *type, int nid)
1133{
1134	int start_rgn, end_rgn;
1135	int i, ret;
1136
1137	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1138	if (ret)
1139		return ret;
1140
1141	for (i = start_rgn; i < end_rgn; i++)
1142		memblock_set_region_node(&type->regions[i], nid);
1143
1144	memblock_merge_regions(type);
1145	return 0;
1146}
1147#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1148
1149static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1150					phys_addr_t align, phys_addr_t start,
1151					phys_addr_t end, int nid, ulong flags)
1152{
1153	phys_addr_t found;
1154
1155	if (!align)
1156		align = SMP_CACHE_BYTES;
1157
1158	found = memblock_find_in_range_node(size, align, start, end, nid,
1159					    flags);
1160	if (found && !memblock_reserve(found, size)) {
1161		/*
1162		 * The min_count is set to 0 so that memblock allocations are
1163		 * never reported as leaks.
1164		 */
1165		kmemleak_alloc(__va(found), size, 0, 0);
1166		return found;
1167	}
1168	return 0;
1169}
1170
1171phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1172					phys_addr_t start, phys_addr_t end,
1173					ulong flags)
1174{
1175	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1176					flags);
1177}
1178
1179static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1180					phys_addr_t align, phys_addr_t max_addr,
1181					int nid, ulong flags)
1182{
1183	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1184}
1185
1186phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1187{
1188	ulong flags = choose_memblock_flags();
1189	phys_addr_t ret;
1190
1191again:
1192	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1193				      nid, flags);
1194
1195	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1196		flags &= ~MEMBLOCK_MIRROR;
1197		goto again;
1198	}
1199	return ret;
1200}
1201
1202phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1203{
1204	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1205				       MEMBLOCK_NONE);
1206}
1207
1208phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1209{
1210	phys_addr_t alloc;
1211
1212	alloc = __memblock_alloc_base(size, align, max_addr);
1213
1214	if (alloc == 0)
1215		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216		      (unsigned long long) size, (unsigned long long) max_addr);
1217
1218	return alloc;
1219}
1220
1221phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1222{
1223	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1224}
1225
1226phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1227{
1228	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1229
1230	if (res)
1231		return res;
1232	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1233}
1234
1235/**
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1242 *
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1247 *
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1250 *
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1252 *
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1255 *
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
1258 *
1259 * RETURNS:
1260 * Virtual address of allocated memory block on success, NULL on failure.
1261 */
1262static void * __init memblock_virt_alloc_internal(
1263				phys_addr_t size, phys_addr_t align,
1264				phys_addr_t min_addr, phys_addr_t max_addr,
1265				int nid)
1266{
1267	phys_addr_t alloc;
1268	void *ptr;
1269	ulong flags = choose_memblock_flags();
1270
1271	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1272		nid = NUMA_NO_NODE;
1273
1274	/*
1275	 * Detect any accidental use of these APIs after slab is ready, as at
1276	 * this moment memblock may be deinitialized already and its
1277	 * internal data may be destroyed (after execution of free_all_bootmem)
1278	 */
1279	if (WARN_ON_ONCE(slab_is_available()))
1280		return kzalloc_node(size, GFP_NOWAIT, nid);
1281
1282	if (!align)
1283		align = SMP_CACHE_BYTES;
1284
1285	if (max_addr > memblock.current_limit)
1286		max_addr = memblock.current_limit;
1287
1288again:
1289	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1290					    nid, flags);
1291	if (alloc)
1292		goto done;
1293
1294	if (nid != NUMA_NO_NODE) {
1295		alloc = memblock_find_in_range_node(size, align, min_addr,
1296						    max_addr, NUMA_NO_NODE,
1297						    flags);
1298		if (alloc)
1299			goto done;
1300	}
1301
1302	if (min_addr) {
1303		min_addr = 0;
1304		goto again;
1305	}
1306
1307	if (flags & MEMBLOCK_MIRROR) {
1308		flags &= ~MEMBLOCK_MIRROR;
1309		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310			&size);
1311		goto again;
1312	}
1313
1314	return NULL;
1315done:
1316	memblock_reserve(alloc, size);
1317	ptr = phys_to_virt(alloc);
1318	memset(ptr, 0, size);
1319
1320	/*
1321	 * The min_count is set to 0 so that bootmem allocated blocks
1322	 * are never reported as leaks. This is because many of these blocks
1323	 * are only referred via the physical address which is not
1324	 * looked up by kmemleak.
1325	 */
1326	kmemleak_alloc(ptr, size, 0, 0);
1327
1328	return ptr;
1329}
1330
1331/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 *	  is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 *	      allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 *
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
1344 *
1345 * RETURNS:
1346 * Virtual address of allocated memory block on success, NULL on failure.
1347 */
1348void * __init memblock_virt_alloc_try_nid_nopanic(
1349				phys_addr_t size, phys_addr_t align,
1350				phys_addr_t min_addr, phys_addr_t max_addr,
1351				int nid)
1352{
 
 
1353	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1355		     (u64)max_addr, (void *)_RET_IP_);
1356	return memblock_virt_alloc_internal(size, align, min_addr,
1357					     max_addr, nid);
 
 
 
 
1358}
1359
1360/**
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 *	  is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 *	      allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370 *
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1374 *
1375 * RETURNS:
1376 * Virtual address of allocated memory block on success, NULL on failure.
1377 */
1378void * __init memblock_virt_alloc_try_nid(
1379			phys_addr_t size, phys_addr_t align,
1380			phys_addr_t min_addr, phys_addr_t max_addr,
1381			int nid)
1382{
1383	void *ptr;
1384
1385	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1387		     (u64)max_addr, (void *)_RET_IP_);
1388	ptr = memblock_virt_alloc_internal(size, align,
1389					   min_addr, max_addr, nid);
1390	if (ptr)
 
1391		return ptr;
 
1392
1393	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1395	      (u64)max_addr);
1396	return NULL;
1397}
1398
1399/**
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the  boot memory block
1402 * @size: size of the boot memory block in bytes
1403 *
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1406 */
1407void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1408{
1409	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410		     __func__, (u64)base, (u64)base + size - 1,
1411		     (void *)_RET_IP_);
1412	kmemleak_free_part(__va(base), size);
1413	memblock_remove_range(&memblock.reserved, base, size);
1414}
1415
1416/*
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the  boot memory block
1419 * @size: size of the boot memory block in bytes
1420 *
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system.  Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1424 */
1425void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1426{
1427	u64 cursor, end;
1428
1429	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430		     __func__, (u64)base, (u64)base + size - 1,
1431		     (void *)_RET_IP_);
1432	kmemleak_free_part(__va(base), size);
1433	cursor = PFN_UP(base);
1434	end = PFN_DOWN(base + size);
1435
1436	for (; cursor < end; cursor++) {
1437		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1438		totalram_pages++;
1439	}
1440}
1441
1442/*
1443 * Remaining API functions
1444 */
1445
1446phys_addr_t __init_memblock memblock_phys_mem_size(void)
1447{
1448	return memblock.memory.total_size;
1449}
1450
 
 
 
 
 
1451phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1452{
1453	unsigned long pages = 0;
1454	struct memblock_region *r;
1455	unsigned long start_pfn, end_pfn;
1456
1457	for_each_memblock(memory, r) {
1458		start_pfn = memblock_region_memory_base_pfn(r);
1459		end_pfn = memblock_region_memory_end_pfn(r);
1460		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1461		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1462		pages += end_pfn - start_pfn;
1463	}
1464
1465	return PFN_PHYS(pages);
1466}
1467
1468/* lowest address */
1469phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1470{
1471	return memblock.memory.regions[0].base;
1472}
1473
1474phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1475{
1476	int idx = memblock.memory.cnt - 1;
1477
1478	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1479}
1480
1481void __init memblock_enforce_memory_limit(phys_addr_t limit)
1482{
1483	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1484	struct memblock_region *r;
1485
1486	if (!limit)
1487		return;
1488
1489	/* find out max address */
 
1490	for_each_memblock(memory, r) {
1491		if (limit <= r->size) {
1492			max_addr = r->base + limit;
1493			break;
1494		}
1495		limit -= r->size;
1496	}
1497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498	/* truncate both memory and reserved regions */
1499	memblock_remove_range(&memblock.memory, max_addr,
1500			      (phys_addr_t)ULLONG_MAX);
1501	memblock_remove_range(&memblock.reserved, max_addr,
1502			      (phys_addr_t)ULLONG_MAX);
1503}
1504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1505static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1506{
1507	unsigned int left = 0, right = type->cnt;
1508
1509	do {
1510		unsigned int mid = (right + left) / 2;
1511
1512		if (addr < type->regions[mid].base)
1513			right = mid;
1514		else if (addr >= (type->regions[mid].base +
1515				  type->regions[mid].size))
1516			left = mid + 1;
1517		else
1518			return mid;
1519	} while (left < right);
1520	return -1;
1521}
1522
1523bool __init memblock_is_reserved(phys_addr_t addr)
1524{
1525	return memblock_search(&memblock.reserved, addr) != -1;
1526}
1527
1528bool __init_memblock memblock_is_memory(phys_addr_t addr)
1529{
1530	return memblock_search(&memblock.memory, addr) != -1;
1531}
1532
1533int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1534{
1535	int i = memblock_search(&memblock.memory, addr);
1536
1537	if (i == -1)
1538		return false;
1539	return !memblock_is_nomap(&memblock.memory.regions[i]);
1540}
1541
1542#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1544			 unsigned long *start_pfn, unsigned long *end_pfn)
1545{
1546	struct memblock_type *type = &memblock.memory;
1547	int mid = memblock_search(type, PFN_PHYS(pfn));
1548
1549	if (mid == -1)
1550		return -1;
1551
1552	*start_pfn = PFN_DOWN(type->regions[mid].base);
1553	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1554
1555	return type->regions[mid].nid;
1556}
1557#endif
1558
1559/**
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1563 *
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1565 *
1566 * RETURNS:
1567 * 0 if false, non-zero if true
1568 */
1569int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1570{
1571	int idx = memblock_search(&memblock.memory, base);
1572	phys_addr_t end = base + memblock_cap_size(base, &size);
1573
1574	if (idx == -1)
1575		return 0;
1576	return memblock.memory.regions[idx].base <= base &&
1577		(memblock.memory.regions[idx].base +
1578		 memblock.memory.regions[idx].size) >= end;
1579}
1580
1581/**
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1585 *
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1587 *
1588 * RETURNS:
1589 * True if they intersect, false if not.
1590 */
1591bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1592{
1593	memblock_cap_size(base, &size);
1594	return memblock_overlaps_region(&memblock.reserved, base, size);
1595}
1596
1597void __init_memblock memblock_trim_memory(phys_addr_t align)
1598{
1599	phys_addr_t start, end, orig_start, orig_end;
1600	struct memblock_region *r;
1601
1602	for_each_memblock(memory, r) {
1603		orig_start = r->base;
1604		orig_end = r->base + r->size;
1605		start = round_up(orig_start, align);
1606		end = round_down(orig_end, align);
1607
1608		if (start == orig_start && end == orig_end)
1609			continue;
1610
1611		if (start < end) {
1612			r->base = start;
1613			r->size = end - start;
1614		} else {
1615			memblock_remove_region(&memblock.memory,
1616					       r - memblock.memory.regions);
1617			r--;
1618		}
1619	}
1620}
1621
1622void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1623{
1624	memblock.current_limit = limit;
1625}
1626
1627phys_addr_t __init_memblock memblock_get_current_limit(void)
1628{
1629	return memblock.current_limit;
1630}
1631
1632static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1633{
1634	unsigned long long base, size;
1635	unsigned long flags;
1636	int idx;
1637	struct memblock_region *rgn;
1638
1639	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1640
1641	for_each_memblock_type(type, rgn) {
1642		char nid_buf[32] = "";
1643
1644		base = rgn->base;
1645		size = rgn->size;
 
1646		flags = rgn->flags;
1647#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1649			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1650				 memblock_get_region_node(rgn));
1651#endif
1652		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1653			name, idx, base, base + size - 1, size, nid_buf, flags);
1654	}
1655}
1656
1657void __init_memblock __memblock_dump_all(void)
1658{
1659	pr_info("MEMBLOCK configuration:\n");
1660	pr_info(" memory size = %#llx reserved size = %#llx\n",
1661		(unsigned long long)memblock.memory.total_size,
1662		(unsigned long long)memblock.reserved.total_size);
1663
1664	memblock_dump(&memblock.memory, "memory");
1665	memblock_dump(&memblock.reserved, "reserved");
 
 
 
1666}
1667
1668void __init memblock_allow_resize(void)
1669{
1670	memblock_can_resize = 1;
1671}
1672
1673static int __init early_memblock(char *p)
1674{
1675	if (p && strstr(p, "debug"))
1676		memblock_debug = 1;
1677	return 0;
1678}
1679early_param("memblock", early_memblock);
1680
1681#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1682
1683static int memblock_debug_show(struct seq_file *m, void *private)
1684{
1685	struct memblock_type *type = m->private;
1686	struct memblock_region *reg;
1687	int i;
 
1688
1689	for (i = 0; i < type->cnt; i++) {
1690		reg = &type->regions[i];
1691		seq_printf(m, "%4d: ", i);
1692		if (sizeof(phys_addr_t) == 4)
1693			seq_printf(m, "0x%08lx..0x%08lx\n",
1694				   (unsigned long)reg->base,
1695				   (unsigned long)(reg->base + reg->size - 1));
1696		else
1697			seq_printf(m, "0x%016llx..0x%016llx\n",
1698				   (unsigned long long)reg->base,
1699				   (unsigned long long)(reg->base + reg->size - 1));
1700
 
 
1701	}
1702	return 0;
1703}
1704
1705static int memblock_debug_open(struct inode *inode, struct file *file)
1706{
1707	return single_open(file, memblock_debug_show, inode->i_private);
1708}
1709
1710static const struct file_operations memblock_debug_fops = {
1711	.open = memblock_debug_open,
1712	.read = seq_read,
1713	.llseek = seq_lseek,
1714	.release = single_release,
1715};
1716
1717static int __init memblock_init_debugfs(void)
1718{
1719	struct dentry *root = debugfs_create_dir("memblock", NULL);
1720	if (!root)
1721		return -ENXIO;
1722	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1723	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1724#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1726#endif
1727
1728	return 0;
1729}
1730__initcall(memblock_init_debugfs);
1731
1732#endif /* CONFIG_DEBUG_FS */
v4.17
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/kmemleak.h>
  21#include <linux/seq_file.h>
  22#include <linux/memblock.h>
  23
  24#include <asm/sections.h>
  25#include <linux/io.h>
  26
  27#include "internal.h"
  28
  29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  33#endif
  34
  35struct memblock memblock __initdata_memblock = {
  36	.memory.regions		= memblock_memory_init_regions,
  37	.memory.cnt		= 1,	/* empty dummy entry */
  38	.memory.max		= INIT_MEMBLOCK_REGIONS,
  39	.memory.name		= "memory",
  40
  41	.reserved.regions	= memblock_reserved_init_regions,
  42	.reserved.cnt		= 1,	/* empty dummy entry */
  43	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  44	.reserved.name		= "reserved",
  45
  46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  47	.physmem.regions	= memblock_physmem_init_regions,
  48	.physmem.cnt		= 1,	/* empty dummy entry */
  49	.physmem.max		= INIT_PHYSMEM_REGIONS,
  50	.physmem.name		= "physmem",
  51#endif
  52
  53	.bottom_up		= false,
  54	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  55};
  56
  57int memblock_debug __initdata_memblock;
 
 
 
  58static bool system_has_some_mirror __initdata_memblock = false;
  59static int memblock_can_resize __initdata_memblock;
  60static int memblock_memory_in_slab __initdata_memblock = 0;
  61static int memblock_reserved_in_slab __initdata_memblock = 0;
  62
  63ulong __init_memblock choose_memblock_flags(void)
  64{
  65	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  66}
  67
 
 
 
 
 
 
 
 
 
 
 
 
  68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  70{
  71	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  72}
  73
  74/*
  75 * Address comparison utilities
  76 */
  77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  78				       phys_addr_t base2, phys_addr_t size2)
  79{
  80	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  81}
  82
  83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  84					phys_addr_t base, phys_addr_t size)
  85{
  86	unsigned long i;
  87
  88	for (i = 0; i < type->cnt; i++)
  89		if (memblock_addrs_overlap(base, size, type->regions[i].base,
  90					   type->regions[i].size))
  91			break;
  92	return i < type->cnt;
  93}
  94
  95/*
  96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
  97 * @start: start of candidate range
  98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
  99 * @size: size of free area to find
 100 * @align: alignment of free area to find
 101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 102 * @flags: pick from blocks based on memory attributes
 103 *
 104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 105 *
 106 * RETURNS:
 107 * Found address on success, 0 on failure.
 108 */
 109static phys_addr_t __init_memblock
 110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 111				phys_addr_t size, phys_addr_t align, int nid,
 112				ulong flags)
 113{
 114	phys_addr_t this_start, this_end, cand;
 115	u64 i;
 116
 117	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 118		this_start = clamp(this_start, start, end);
 119		this_end = clamp(this_end, start, end);
 120
 121		cand = round_up(this_start, align);
 122		if (cand < this_end && this_end - cand >= size)
 123			return cand;
 124	}
 125
 126	return 0;
 127}
 128
 129/**
 130 * __memblock_find_range_top_down - find free area utility, in top-down
 131 * @start: start of candidate range
 132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 133 * @size: size of free area to find
 134 * @align: alignment of free area to find
 135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 136 * @flags: pick from blocks based on memory attributes
 137 *
 138 * Utility called from memblock_find_in_range_node(), find free area top-down.
 139 *
 140 * RETURNS:
 141 * Found address on success, 0 on failure.
 142 */
 143static phys_addr_t __init_memblock
 144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 145			       phys_addr_t size, phys_addr_t align, int nid,
 146			       ulong flags)
 147{
 148	phys_addr_t this_start, this_end, cand;
 149	u64 i;
 150
 151	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 152					NULL) {
 153		this_start = clamp(this_start, start, end);
 154		this_end = clamp(this_end, start, end);
 155
 156		if (this_end < size)
 157			continue;
 158
 159		cand = round_down(this_end - size, align);
 160		if (cand >= this_start)
 161			return cand;
 162	}
 163
 164	return 0;
 165}
 166
 167/**
 168 * memblock_find_in_range_node - find free area in given range and node
 169 * @size: size of free area to find
 170 * @align: alignment of free area to find
 171 * @start: start of candidate range
 172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 174 * @flags: pick from blocks based on memory attributes
 175 *
 176 * Find @size free area aligned to @align in the specified range and node.
 177 *
 178 * When allocation direction is bottom-up, the @start should be greater
 179 * than the end of the kernel image. Otherwise, it will be trimmed. The
 180 * reason is that we want the bottom-up allocation just near the kernel
 181 * image so it is highly likely that the allocated memory and the kernel
 182 * will reside in the same node.
 183 *
 184 * If bottom-up allocation failed, will try to allocate memory top-down.
 185 *
 186 * RETURNS:
 187 * Found address on success, 0 on failure.
 188 */
 189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 190					phys_addr_t align, phys_addr_t start,
 191					phys_addr_t end, int nid, ulong flags)
 192{
 193	phys_addr_t kernel_end, ret;
 194
 195	/* pump up @end */
 196	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 197		end = memblock.current_limit;
 198
 199	/* avoid allocating the first page */
 200	start = max_t(phys_addr_t, start, PAGE_SIZE);
 201	end = max(start, end);
 202	kernel_end = __pa_symbol(_end);
 203
 204	/*
 205	 * try bottom-up allocation only when bottom-up mode
 206	 * is set and @end is above the kernel image.
 207	 */
 208	if (memblock_bottom_up() && end > kernel_end) {
 209		phys_addr_t bottom_up_start;
 210
 211		/* make sure we will allocate above the kernel */
 212		bottom_up_start = max(start, kernel_end);
 213
 214		/* ok, try bottom-up allocation first */
 215		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 216						      size, align, nid, flags);
 217		if (ret)
 218			return ret;
 219
 220		/*
 221		 * we always limit bottom-up allocation above the kernel,
 222		 * but top-down allocation doesn't have the limit, so
 223		 * retrying top-down allocation may succeed when bottom-up
 224		 * allocation failed.
 225		 *
 226		 * bottom-up allocation is expected to be fail very rarely,
 227		 * so we use WARN_ONCE() here to see the stack trace if
 228		 * fail happens.
 229		 */
 230		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 231	}
 232
 233	return __memblock_find_range_top_down(start, end, size, align, nid,
 234					      flags);
 235}
 236
 237/**
 238 * memblock_find_in_range - find free area in given range
 239 * @start: start of candidate range
 240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 *
 244 * Find @size free area aligned to @align in the specified range.
 245 *
 246 * RETURNS:
 247 * Found address on success, 0 on failure.
 248 */
 249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 250					phys_addr_t end, phys_addr_t size,
 251					phys_addr_t align)
 252{
 253	phys_addr_t ret;
 254	ulong flags = choose_memblock_flags();
 255
 256again:
 257	ret = memblock_find_in_range_node(size, align, start, end,
 258					    NUMA_NO_NODE, flags);
 259
 260	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 261		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 262			&size);
 263		flags &= ~MEMBLOCK_MIRROR;
 264		goto again;
 265	}
 266
 267	return ret;
 268}
 269
 270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 271{
 272	type->total_size -= type->regions[r].size;
 273	memmove(&type->regions[r], &type->regions[r + 1],
 274		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 275	type->cnt--;
 276
 277	/* Special case for empty arrays */
 278	if (type->cnt == 0) {
 279		WARN_ON(type->total_size != 0);
 280		type->cnt = 1;
 281		type->regions[0].base = 0;
 282		type->regions[0].size = 0;
 283		type->regions[0].flags = 0;
 284		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 285	}
 286}
 287
 288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 289/**
 290 * Discard memory and reserved arrays if they were allocated
 291 */
 292void __init memblock_discard(void)
 
 
 
 
 
 
 
 
 
 
 
 293{
 294	phys_addr_t addr, size;
 
 295
 296	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 297		addr = __pa(memblock.reserved.regions);
 298		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 299				  memblock.reserved.max);
 300		__memblock_free_late(addr, size);
 301	}
 302
 303	if (memblock.memory.regions != memblock_memory_init_regions) {
 304		addr = __pa(memblock.memory.regions);
 305		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 306				  memblock.memory.max);
 307		__memblock_free_late(addr, size);
 308	}
 309}
 
 310#endif
 311
 312/**
 313 * memblock_double_array - double the size of the memblock regions array
 314 * @type: memblock type of the regions array being doubled
 315 * @new_area_start: starting address of memory range to avoid overlap with
 316 * @new_area_size: size of memory range to avoid overlap with
 317 *
 318 * Double the size of the @type regions array. If memblock is being used to
 319 * allocate memory for a new reserved regions array and there is a previously
 320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 321 * waiting to be reserved, ensure the memory used by the new array does
 322 * not overlap.
 323 *
 324 * RETURNS:
 325 * 0 on success, -1 on failure.
 326 */
 327static int __init_memblock memblock_double_array(struct memblock_type *type,
 328						phys_addr_t new_area_start,
 329						phys_addr_t new_area_size)
 330{
 331	struct memblock_region *new_array, *old_array;
 332	phys_addr_t old_alloc_size, new_alloc_size;
 333	phys_addr_t old_size, new_size, addr;
 334	int use_slab = slab_is_available();
 335	int *in_slab;
 336
 337	/* We don't allow resizing until we know about the reserved regions
 338	 * of memory that aren't suitable for allocation
 339	 */
 340	if (!memblock_can_resize)
 341		return -1;
 342
 343	/* Calculate new doubled size */
 344	old_size = type->max * sizeof(struct memblock_region);
 345	new_size = old_size << 1;
 346	/*
 347	 * We need to allocated new one align to PAGE_SIZE,
 348	 *   so we can free them completely later.
 349	 */
 350	old_alloc_size = PAGE_ALIGN(old_size);
 351	new_alloc_size = PAGE_ALIGN(new_size);
 352
 353	/* Retrieve the slab flag */
 354	if (type == &memblock.memory)
 355		in_slab = &memblock_memory_in_slab;
 356	else
 357		in_slab = &memblock_reserved_in_slab;
 358
 359	/* Try to find some space for it.
 360	 *
 361	 * WARNING: We assume that either slab_is_available() and we use it or
 362	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 363	 * use when bootmem is currently active (unless bootmem itself is
 364	 * implemented on top of MEMBLOCK which isn't the case yet)
 365	 *
 366	 * This should however not be an issue for now, as we currently only
 367	 * call into MEMBLOCK while it's still active, or much later when slab
 368	 * is active for memory hotplug operations
 369	 */
 370	if (use_slab) {
 371		new_array = kmalloc(new_size, GFP_KERNEL);
 372		addr = new_array ? __pa(new_array) : 0;
 373	} else {
 374		/* only exclude range when trying to double reserved.regions */
 375		if (type != &memblock.reserved)
 376			new_area_start = new_area_size = 0;
 377
 378		addr = memblock_find_in_range(new_area_start + new_area_size,
 379						memblock.current_limit,
 380						new_alloc_size, PAGE_SIZE);
 381		if (!addr && new_area_size)
 382			addr = memblock_find_in_range(0,
 383				min(new_area_start, memblock.current_limit),
 384				new_alloc_size, PAGE_SIZE);
 385
 386		new_array = addr ? __va(addr) : NULL;
 387	}
 388	if (!addr) {
 389		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 390		       type->name, type->max, type->max * 2);
 391		return -1;
 392	}
 393
 394	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 395			type->name, type->max * 2, (u64)addr,
 396			(u64)addr + new_size - 1);
 397
 398	/*
 399	 * Found space, we now need to move the array over before we add the
 400	 * reserved region since it may be our reserved array itself that is
 401	 * full.
 402	 */
 403	memcpy(new_array, type->regions, old_size);
 404	memset(new_array + type->max, 0, old_size);
 405	old_array = type->regions;
 406	type->regions = new_array;
 407	type->max <<= 1;
 408
 409	/* Free old array. We needn't free it if the array is the static one */
 410	if (*in_slab)
 411		kfree(old_array);
 412	else if (old_array != memblock_memory_init_regions &&
 413		 old_array != memblock_reserved_init_regions)
 414		memblock_free(__pa(old_array), old_alloc_size);
 415
 416	/*
 417	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 418	 * needn't do it
 419	 */
 420	if (!use_slab)
 421		BUG_ON(memblock_reserve(addr, new_alloc_size));
 422
 423	/* Update slab flag */
 424	*in_slab = use_slab;
 425
 426	return 0;
 427}
 428
 429/**
 430 * memblock_merge_regions - merge neighboring compatible regions
 431 * @type: memblock type to scan
 432 *
 433 * Scan @type and merge neighboring compatible regions.
 434 */
 435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 436{
 437	int i = 0;
 438
 439	/* cnt never goes below 1 */
 440	while (i < type->cnt - 1) {
 441		struct memblock_region *this = &type->regions[i];
 442		struct memblock_region *next = &type->regions[i + 1];
 443
 444		if (this->base + this->size != next->base ||
 445		    memblock_get_region_node(this) !=
 446		    memblock_get_region_node(next) ||
 447		    this->flags != next->flags) {
 448			BUG_ON(this->base + this->size > next->base);
 449			i++;
 450			continue;
 451		}
 452
 453		this->size += next->size;
 454		/* move forward from next + 1, index of which is i + 2 */
 455		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 456		type->cnt--;
 457	}
 458}
 459
 460/**
 461 * memblock_insert_region - insert new memblock region
 462 * @type:	memblock type to insert into
 463 * @idx:	index for the insertion point
 464 * @base:	base address of the new region
 465 * @size:	size of the new region
 466 * @nid:	node id of the new region
 467 * @flags:	flags of the new region
 468 *
 469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 470 * @type must already have extra room to accommodate the new region.
 471 */
 472static void __init_memblock memblock_insert_region(struct memblock_type *type,
 473						   int idx, phys_addr_t base,
 474						   phys_addr_t size,
 475						   int nid, unsigned long flags)
 476{
 477	struct memblock_region *rgn = &type->regions[idx];
 478
 479	BUG_ON(type->cnt >= type->max);
 480	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 481	rgn->base = base;
 482	rgn->size = size;
 483	rgn->flags = flags;
 484	memblock_set_region_node(rgn, nid);
 485	type->cnt++;
 486	type->total_size += size;
 487}
 488
 489/**
 490 * memblock_add_range - add new memblock region
 491 * @type: memblock type to add new region into
 492 * @base: base address of the new region
 493 * @size: size of the new region
 494 * @nid: nid of the new region
 495 * @flags: flags of the new region
 496 *
 497 * Add new memblock region [@base,@base+@size) into @type.  The new region
 498 * is allowed to overlap with existing ones - overlaps don't affect already
 499 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 500 * compatible regions are merged) after the addition.
 501 *
 502 * RETURNS:
 503 * 0 on success, -errno on failure.
 504 */
 505int __init_memblock memblock_add_range(struct memblock_type *type,
 506				phys_addr_t base, phys_addr_t size,
 507				int nid, unsigned long flags)
 508{
 509	bool insert = false;
 510	phys_addr_t obase = base;
 511	phys_addr_t end = base + memblock_cap_size(base, &size);
 512	int idx, nr_new;
 513	struct memblock_region *rgn;
 514
 515	if (!size)
 516		return 0;
 517
 518	/* special case for empty array */
 519	if (type->regions[0].size == 0) {
 520		WARN_ON(type->cnt != 1 || type->total_size);
 521		type->regions[0].base = base;
 522		type->regions[0].size = size;
 523		type->regions[0].flags = flags;
 524		memblock_set_region_node(&type->regions[0], nid);
 525		type->total_size = size;
 526		return 0;
 527	}
 528repeat:
 529	/*
 530	 * The following is executed twice.  Once with %false @insert and
 531	 * then with %true.  The first counts the number of regions needed
 532	 * to accommodate the new area.  The second actually inserts them.
 533	 */
 534	base = obase;
 535	nr_new = 0;
 536
 537	for_each_memblock_type(idx, type, rgn) {
 538		phys_addr_t rbase = rgn->base;
 539		phys_addr_t rend = rbase + rgn->size;
 540
 541		if (rbase >= end)
 542			break;
 543		if (rend <= base)
 544			continue;
 545		/*
 546		 * @rgn overlaps.  If it separates the lower part of new
 547		 * area, insert that portion.
 548		 */
 549		if (rbase > base) {
 550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 551			WARN_ON(nid != memblock_get_region_node(rgn));
 552#endif
 553			WARN_ON(flags != rgn->flags);
 554			nr_new++;
 555			if (insert)
 556				memblock_insert_region(type, idx++, base,
 557						       rbase - base, nid,
 558						       flags);
 559		}
 560		/* area below @rend is dealt with, forget about it */
 561		base = min(rend, end);
 562	}
 563
 564	/* insert the remaining portion */
 565	if (base < end) {
 566		nr_new++;
 567		if (insert)
 568			memblock_insert_region(type, idx, base, end - base,
 569					       nid, flags);
 570	}
 571
 572	if (!nr_new)
 573		return 0;
 574
 575	/*
 576	 * If this was the first round, resize array and repeat for actual
 577	 * insertions; otherwise, merge and return.
 578	 */
 579	if (!insert) {
 580		while (type->cnt + nr_new > type->max)
 581			if (memblock_double_array(type, obase, size) < 0)
 582				return -ENOMEM;
 583		insert = true;
 584		goto repeat;
 585	} else {
 586		memblock_merge_regions(type);
 587		return 0;
 588	}
 589}
 590
 591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 592				       int nid)
 593{
 594	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 
 
 597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 598{
 599	phys_addr_t end = base + size - 1;
 600
 601	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
 602		     &base, &end, (void *)_RET_IP_);
 603
 604	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 605}
 606
 607/**
 608 * memblock_isolate_range - isolate given range into disjoint memblocks
 609 * @type: memblock type to isolate range for
 610 * @base: base of range to isolate
 611 * @size: size of range to isolate
 612 * @start_rgn: out parameter for the start of isolated region
 613 * @end_rgn: out parameter for the end of isolated region
 614 *
 615 * Walk @type and ensure that regions don't cross the boundaries defined by
 616 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 617 * which may create at most two more regions.  The index of the first
 618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 619 *
 620 * RETURNS:
 621 * 0 on success, -errno on failure.
 622 */
 623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 624					phys_addr_t base, phys_addr_t size,
 625					int *start_rgn, int *end_rgn)
 626{
 627	phys_addr_t end = base + memblock_cap_size(base, &size);
 628	int idx;
 629	struct memblock_region *rgn;
 630
 631	*start_rgn = *end_rgn = 0;
 632
 633	if (!size)
 634		return 0;
 635
 636	/* we'll create at most two more regions */
 637	while (type->cnt + 2 > type->max)
 638		if (memblock_double_array(type, base, size) < 0)
 639			return -ENOMEM;
 640
 641	for_each_memblock_type(idx, type, rgn) {
 642		phys_addr_t rbase = rgn->base;
 643		phys_addr_t rend = rbase + rgn->size;
 644
 645		if (rbase >= end)
 646			break;
 647		if (rend <= base)
 648			continue;
 649
 650		if (rbase < base) {
 651			/*
 652			 * @rgn intersects from below.  Split and continue
 653			 * to process the next region - the new top half.
 654			 */
 655			rgn->base = base;
 656			rgn->size -= base - rbase;
 657			type->total_size -= base - rbase;
 658			memblock_insert_region(type, idx, rbase, base - rbase,
 659					       memblock_get_region_node(rgn),
 660					       rgn->flags);
 661		} else if (rend > end) {
 662			/*
 663			 * @rgn intersects from above.  Split and redo the
 664			 * current region - the new bottom half.
 665			 */
 666			rgn->base = end;
 667			rgn->size -= end - rbase;
 668			type->total_size -= end - rbase;
 669			memblock_insert_region(type, idx--, rbase, end - rbase,
 670					       memblock_get_region_node(rgn),
 671					       rgn->flags);
 672		} else {
 673			/* @rgn is fully contained, record it */
 674			if (!*end_rgn)
 675				*start_rgn = idx;
 676			*end_rgn = idx + 1;
 677		}
 678	}
 679
 680	return 0;
 681}
 682
 683static int __init_memblock memblock_remove_range(struct memblock_type *type,
 684					  phys_addr_t base, phys_addr_t size)
 685{
 686	int start_rgn, end_rgn;
 687	int i, ret;
 688
 689	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 690	if (ret)
 691		return ret;
 692
 693	for (i = end_rgn - 1; i >= start_rgn; i--)
 694		memblock_remove_region(type, i);
 695	return 0;
 696}
 697
 698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 699{
 700	return memblock_remove_range(&memblock.memory, base, size);
 701}
 702
 703
 704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 705{
 706	phys_addr_t end = base + size - 1;
 
 
 
 707
 708	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
 709		     &base, &end, (void *)_RET_IP_);
 710
 711	kmemleak_free_part_phys(base, size);
 712	return memblock_remove_range(&memblock.reserved, base, size);
 713}
 714
 715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 
 
 
 716{
 717	phys_addr_t end = base + size - 1;
 
 
 
 718
 719	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
 720		     &base, &end, (void *)_RET_IP_);
 721
 722	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 
 
 723}
 724
 725/**
 726 *
 727 * This function isolates region [@base, @base + @size), and sets/clears flag
 728 *
 729 * Return 0 on success, -errno on failure.
 730 */
 731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 732				phys_addr_t size, int set, int flag)
 733{
 734	struct memblock_type *type = &memblock.memory;
 735	int i, ret, start_rgn, end_rgn;
 736
 737	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 738	if (ret)
 739		return ret;
 740
 741	for (i = start_rgn; i < end_rgn; i++)
 742		if (set)
 743			memblock_set_region_flags(&type->regions[i], flag);
 744		else
 745			memblock_clear_region_flags(&type->regions[i], flag);
 746
 747	memblock_merge_regions(type);
 748	return 0;
 749}
 750
 751/**
 752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 753 * @base: the base phys addr of the region
 754 * @size: the size of the region
 755 *
 756 * Return 0 on success, -errno on failure.
 757 */
 758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 759{
 760	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 761}
 762
 763/**
 764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 765 * @base: the base phys addr of the region
 766 * @size: the size of the region
 767 *
 768 * Return 0 on success, -errno on failure.
 769 */
 770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 771{
 772	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 773}
 774
 775/**
 776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 777 * @base: the base phys addr of the region
 778 * @size: the size of the region
 779 *
 780 * Return 0 on success, -errno on failure.
 781 */
 782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 783{
 784	system_has_some_mirror = true;
 785
 786	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 787}
 788
 789/**
 790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 791 * @base: the base phys addr of the region
 792 * @size: the size of the region
 793 *
 794 * Return 0 on success, -errno on failure.
 795 */
 796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 797{
 798	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 799}
 800
 801/**
 802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 803 * @base: the base phys addr of the region
 804 * @size: the size of the region
 805 *
 806 * Return 0 on success, -errno on failure.
 807 */
 808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 809{
 810	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 811}
 812
 813/**
 814 * __next_reserved_mem_region - next function for for_each_reserved_region()
 815 * @idx: pointer to u64 loop variable
 816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 818 *
 819 * Iterate over all reserved memory regions.
 820 */
 821void __init_memblock __next_reserved_mem_region(u64 *idx,
 822					   phys_addr_t *out_start,
 823					   phys_addr_t *out_end)
 824{
 825	struct memblock_type *type = &memblock.reserved;
 826
 827	if (*idx < type->cnt) {
 828		struct memblock_region *r = &type->regions[*idx];
 829		phys_addr_t base = r->base;
 830		phys_addr_t size = r->size;
 831
 832		if (out_start)
 833			*out_start = base;
 834		if (out_end)
 835			*out_end = base + size - 1;
 836
 837		*idx += 1;
 838		return;
 839	}
 840
 841	/* signal end of iteration */
 842	*idx = ULLONG_MAX;
 843}
 844
 845/**
 846 * __next__mem_range - next function for for_each_free_mem_range() etc.
 847 * @idx: pointer to u64 loop variable
 848 * @nid: node selector, %NUMA_NO_NODE for all nodes
 849 * @flags: pick from blocks based on memory attributes
 850 * @type_a: pointer to memblock_type from where the range is taken
 851 * @type_b: pointer to memblock_type which excludes memory from being taken
 852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 854 * @out_nid: ptr to int for nid of the range, can be %NULL
 855 *
 856 * Find the first area from *@idx which matches @nid, fill the out
 857 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 858 * *@idx contains index into type_a and the upper 32bit indexes the
 859 * areas before each region in type_b.	For example, if type_b regions
 860 * look like the following,
 861 *
 862 *	0:[0-16), 1:[32-48), 2:[128-130)
 863 *
 864 * The upper 32bit indexes the following regions.
 865 *
 866 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 867 *
 868 * As both region arrays are sorted, the function advances the two indices
 869 * in lockstep and returns each intersection.
 870 */
 871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 872				      struct memblock_type *type_a,
 873				      struct memblock_type *type_b,
 874				      phys_addr_t *out_start,
 875				      phys_addr_t *out_end, int *out_nid)
 876{
 877	int idx_a = *idx & 0xffffffff;
 878	int idx_b = *idx >> 32;
 879
 880	if (WARN_ONCE(nid == MAX_NUMNODES,
 881	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 882		nid = NUMA_NO_NODE;
 883
 884	for (; idx_a < type_a->cnt; idx_a++) {
 885		struct memblock_region *m = &type_a->regions[idx_a];
 886
 887		phys_addr_t m_start = m->base;
 888		phys_addr_t m_end = m->base + m->size;
 889		int	    m_nid = memblock_get_region_node(m);
 890
 891		/* only memory regions are associated with nodes, check it */
 892		if (nid != NUMA_NO_NODE && nid != m_nid)
 893			continue;
 894
 895		/* skip hotpluggable memory regions if needed */
 896		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 897			continue;
 898
 899		/* if we want mirror memory skip non-mirror memory regions */
 900		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 901			continue;
 902
 903		/* skip nomap memory unless we were asked for it explicitly */
 904		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 905			continue;
 906
 907		if (!type_b) {
 908			if (out_start)
 909				*out_start = m_start;
 910			if (out_end)
 911				*out_end = m_end;
 912			if (out_nid)
 913				*out_nid = m_nid;
 914			idx_a++;
 915			*idx = (u32)idx_a | (u64)idx_b << 32;
 916			return;
 917		}
 918
 919		/* scan areas before each reservation */
 920		for (; idx_b < type_b->cnt + 1; idx_b++) {
 921			struct memblock_region *r;
 922			phys_addr_t r_start;
 923			phys_addr_t r_end;
 924
 925			r = &type_b->regions[idx_b];
 926			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 927			r_end = idx_b < type_b->cnt ?
 928				r->base : (phys_addr_t)ULLONG_MAX;
 929
 930			/*
 931			 * if idx_b advanced past idx_a,
 932			 * break out to advance idx_a
 933			 */
 934			if (r_start >= m_end)
 935				break;
 936			/* if the two regions intersect, we're done */
 937			if (m_start < r_end) {
 938				if (out_start)
 939					*out_start =
 940						max(m_start, r_start);
 941				if (out_end)
 942					*out_end = min(m_end, r_end);
 943				if (out_nid)
 944					*out_nid = m_nid;
 945				/*
 946				 * The region which ends first is
 947				 * advanced for the next iteration.
 948				 */
 949				if (m_end <= r_end)
 950					idx_a++;
 951				else
 952					idx_b++;
 953				*idx = (u32)idx_a | (u64)idx_b << 32;
 954				return;
 955			}
 956		}
 957	}
 958
 959	/* signal end of iteration */
 960	*idx = ULLONG_MAX;
 961}
 962
 963/**
 964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 965 *
 966 * Finds the next range from type_a which is not marked as unsuitable
 967 * in type_b.
 968 *
 969 * @idx: pointer to u64 loop variable
 970 * @nid: node selector, %NUMA_NO_NODE for all nodes
 971 * @flags: pick from blocks based on memory attributes
 972 * @type_a: pointer to memblock_type from where the range is taken
 973 * @type_b: pointer to memblock_type which excludes memory from being taken
 974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 976 * @out_nid: ptr to int for nid of the range, can be %NULL
 977 *
 978 * Reverse of __next_mem_range().
 979 */
 980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 981					  struct memblock_type *type_a,
 982					  struct memblock_type *type_b,
 983					  phys_addr_t *out_start,
 984					  phys_addr_t *out_end, int *out_nid)
 985{
 986	int idx_a = *idx & 0xffffffff;
 987	int idx_b = *idx >> 32;
 988
 989	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 990		nid = NUMA_NO_NODE;
 991
 992	if (*idx == (u64)ULLONG_MAX) {
 993		idx_a = type_a->cnt - 1;
 994		if (type_b != NULL)
 995			idx_b = type_b->cnt;
 996		else
 997			idx_b = 0;
 998	}
 999
1000	for (; idx_a >= 0; idx_a--) {
1001		struct memblock_region *m = &type_a->regions[idx_a];
1002
1003		phys_addr_t m_start = m->base;
1004		phys_addr_t m_end = m->base + m->size;
1005		int m_nid = memblock_get_region_node(m);
1006
1007		/* only memory regions are associated with nodes, check it */
1008		if (nid != NUMA_NO_NODE && nid != m_nid)
1009			continue;
1010
1011		/* skip hotpluggable memory regions if needed */
1012		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013			continue;
1014
1015		/* if we want mirror memory skip non-mirror memory regions */
1016		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017			continue;
1018
1019		/* skip nomap memory unless we were asked for it explicitly */
1020		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021			continue;
1022
1023		if (!type_b) {
1024			if (out_start)
1025				*out_start = m_start;
1026			if (out_end)
1027				*out_end = m_end;
1028			if (out_nid)
1029				*out_nid = m_nid;
1030			idx_a--;
1031			*idx = (u32)idx_a | (u64)idx_b << 32;
1032			return;
1033		}
1034
1035		/* scan areas before each reservation */
1036		for (; idx_b >= 0; idx_b--) {
1037			struct memblock_region *r;
1038			phys_addr_t r_start;
1039			phys_addr_t r_end;
1040
1041			r = &type_b->regions[idx_b];
1042			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043			r_end = idx_b < type_b->cnt ?
1044				r->base : (phys_addr_t)ULLONG_MAX;
1045			/*
1046			 * if idx_b advanced past idx_a,
1047			 * break out to advance idx_a
1048			 */
1049
1050			if (r_end <= m_start)
1051				break;
1052			/* if the two regions intersect, we're done */
1053			if (m_end > r_start) {
1054				if (out_start)
1055					*out_start = max(m_start, r_start);
1056				if (out_end)
1057					*out_end = min(m_end, r_end);
1058				if (out_nid)
1059					*out_nid = m_nid;
1060				if (m_start >= r_start)
1061					idx_a--;
1062				else
1063					idx_b--;
1064				*idx = (u32)idx_a | (u64)idx_b << 32;
1065				return;
1066			}
1067		}
1068	}
1069	/* signal end of iteration */
1070	*idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078				unsigned long *out_start_pfn,
1079				unsigned long *out_end_pfn, int *out_nid)
1080{
1081	struct memblock_type *type = &memblock.memory;
1082	struct memblock_region *r;
1083
1084	while (++*idx < type->cnt) {
1085		r = &type->regions[*idx];
1086
1087		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088			continue;
1089		if (nid == MAX_NUMNODES || nid == r->nid)
1090			break;
1091	}
1092	if (*idx >= type->cnt) {
1093		*idx = -1;
1094		return;
1095	}
1096
1097	if (out_start_pfn)
1098		*out_start_pfn = PFN_UP(r->base);
1099	if (out_end_pfn)
1100		*out_end_pfn = PFN_DOWN(r->base + r->size);
1101	if (out_nid)
1102		*out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119				      struct memblock_type *type, int nid)
1120{
1121	int start_rgn, end_rgn;
1122	int i, ret;
1123
1124	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125	if (ret)
1126		return ret;
1127
1128	for (i = start_rgn; i < end_rgn; i++)
1129		memblock_set_region_node(&type->regions[i], nid);
1130
1131	memblock_merge_regions(type);
1132	return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137					phys_addr_t align, phys_addr_t start,
1138					phys_addr_t end, int nid, ulong flags)
1139{
1140	phys_addr_t found;
1141
1142	if (!align)
1143		align = SMP_CACHE_BYTES;
1144
1145	found = memblock_find_in_range_node(size, align, start, end, nid,
1146					    flags);
1147	if (found && !memblock_reserve(found, size)) {
1148		/*
1149		 * The min_count is set to 0 so that memblock allocations are
1150		 * never reported as leaks.
1151		 */
1152		kmemleak_alloc_phys(found, size, 0, 0);
1153		return found;
1154	}
1155	return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159					phys_addr_t start, phys_addr_t end,
1160					ulong flags)
1161{
1162	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163					flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167					phys_addr_t align, phys_addr_t max_addr,
1168					int nid, ulong flags)
1169{
1170	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175	ulong flags = choose_memblock_flags();
1176	phys_addr_t ret;
1177
1178again:
1179	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180				      nid, flags);
1181
1182	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183		flags &= ~MEMBLOCK_MIRROR;
1184		goto again;
1185	}
1186	return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192				       MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197	phys_addr_t alloc;
1198
1199	alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201	if (alloc == 0)
1202		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203		      &size, &max_addr);
1204
1205	return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217	if (res)
1218		return res;
1219	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250				phys_addr_t size, phys_addr_t align,
1251				phys_addr_t min_addr, phys_addr_t max_addr,
1252				int nid)
1253{
1254	phys_addr_t alloc;
1255	void *ptr;
1256	ulong flags = choose_memblock_flags();
1257
1258	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259		nid = NUMA_NO_NODE;
1260
1261	/*
1262	 * Detect any accidental use of these APIs after slab is ready, as at
1263	 * this moment memblock may be deinitialized already and its
1264	 * internal data may be destroyed (after execution of free_all_bootmem)
1265	 */
1266	if (WARN_ON_ONCE(slab_is_available()))
1267		return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269	if (!align)
1270		align = SMP_CACHE_BYTES;
1271
1272	if (max_addr > memblock.current_limit)
1273		max_addr = memblock.current_limit;
 
1274again:
1275	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276					    nid, flags);
1277	if (alloc && !memblock_reserve(alloc, size))
1278		goto done;
1279
1280	if (nid != NUMA_NO_NODE) {
1281		alloc = memblock_find_in_range_node(size, align, min_addr,
1282						    max_addr, NUMA_NO_NODE,
1283						    flags);
1284		if (alloc && !memblock_reserve(alloc, size))
1285			goto done;
1286	}
1287
1288	if (min_addr) {
1289		min_addr = 0;
1290		goto again;
1291	}
1292
1293	if (flags & MEMBLOCK_MIRROR) {
1294		flags &= ~MEMBLOCK_MIRROR;
1295		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296			&size);
1297		goto again;
1298	}
1299
1300	return NULL;
1301done:
 
1302	ptr = phys_to_virt(alloc);
 
1303
1304	/*
1305	 * The min_count is set to 0 so that bootmem allocated blocks
1306	 * are never reported as leaks. This is because many of these blocks
1307	 * are only referred via the physical address which is not
1308	 * looked up by kmemleak.
1309	 */
1310	kmemleak_alloc(ptr, size, 0, 0);
1311
1312	return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 *	  is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 *	      allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335			phys_addr_t size, phys_addr_t align,
1336			phys_addr_t min_addr, phys_addr_t max_addr,
1337			int nid)
1338{
1339	void *ptr;
1340
1341	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343		     (u64)max_addr, (void *)_RET_IP_);
1344
1345	ptr = memblock_virt_alloc_internal(size, align,
1346					   min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348	if (ptr && size > 0)
1349		memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351	return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 *	  is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 *	      allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372				phys_addr_t size, phys_addr_t align,
1373				phys_addr_t min_addr, phys_addr_t max_addr,
1374				int nid)
1375{
1376	void *ptr;
1377
1378	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380		     (u64)max_addr, (void *)_RET_IP_);
1381
1382	ptr = memblock_virt_alloc_internal(size, align,
1383					   min_addr, max_addr, nid);
1384	if (ptr)
1385		memset(ptr, 0, size);
1386	return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 *	  is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 *	      allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408			phys_addr_t size, phys_addr_t align,
1409			phys_addr_t min_addr, phys_addr_t max_addr,
1410			int nid)
1411{
1412	void *ptr;
1413
1414	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416		     (u64)max_addr, (void *)_RET_IP_);
1417	ptr = memblock_virt_alloc_internal(size, align,
1418					   min_addr, max_addr, nid);
1419	if (ptr) {
1420		memset(ptr, 0, size);
1421		return ptr;
1422	}
1423
1424	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426	      (u64)max_addr);
1427	return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the  boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441		     __func__, (u64)base, (u64)base + size - 1,
1442		     (void *)_RET_IP_);
1443	kmemleak_free_part_phys(base, size);
1444	memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the  boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system.  Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458	u64 cursor, end;
1459
1460	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461		     __func__, (u64)base, (u64)base + size - 1,
1462		     (void *)_RET_IP_);
1463	kmemleak_free_part_phys(base, size);
1464	cursor = PFN_UP(base);
1465	end = PFN_DOWN(base + size);
1466
1467	for (; cursor < end; cursor++) {
1468		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469		totalram_pages++;
1470	}
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479	return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484	return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489	unsigned long pages = 0;
1490	struct memblock_region *r;
1491	unsigned long start_pfn, end_pfn;
1492
1493	for_each_memblock(memory, r) {
1494		start_pfn = memblock_region_memory_base_pfn(r);
1495		end_pfn = memblock_region_memory_end_pfn(r);
1496		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498		pages += end_pfn - start_pfn;
1499	}
1500
1501	return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507	return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512	int idx = memblock.memory.cnt - 1;
1513
1514	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520	struct memblock_region *r;
1521
1522	/*
1523	 * translate the memory @limit size into the max address within one of
1524	 * the memory memblock regions, if the @limit exceeds the total size
1525	 * of those regions, max_addr will keep original value ULLONG_MAX
1526	 */
1527	for_each_memblock(memory, r) {
1528		if (limit <= r->size) {
1529			max_addr = r->base + limit;
1530			break;
1531		}
1532		limit -= r->size;
1533	}
1534
1535	return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542	if (!limit)
1543		return;
1544
1545	max_addr = __find_max_addr(limit);
1546
1547	/* @limit exceeds the total size of the memory, do nothing */
1548	if (max_addr == (phys_addr_t)ULLONG_MAX)
1549		return;
1550
1551	/* truncate both memory and reserved regions */
1552	memblock_remove_range(&memblock.memory, max_addr,
1553			      (phys_addr_t)ULLONG_MAX);
1554	memblock_remove_range(&memblock.reserved, max_addr,
1555			      (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560	int start_rgn, end_rgn;
1561	int i, ret;
1562
1563	if (!size)
1564		return;
1565
1566	ret = memblock_isolate_range(&memblock.memory, base, size,
1567						&start_rgn, &end_rgn);
1568	if (ret)
1569		return;
1570
1571	/* remove all the MAP regions */
1572	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574			memblock_remove_region(&memblock.memory, i);
1575
1576	for (i = start_rgn - 1; i >= 0; i--)
1577		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578			memblock_remove_region(&memblock.memory, i);
1579
1580	/* truncate the reserved regions */
1581	memblock_remove_range(&memblock.reserved, 0, base);
1582	memblock_remove_range(&memblock.reserved,
1583			base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588	phys_addr_t max_addr;
1589
1590	if (!limit)
1591		return;
1592
1593	max_addr = __find_max_addr(limit);
1594
1595	/* @limit exceeds the total size of the memory, do nothing */
1596	if (max_addr == (phys_addr_t)ULLONG_MAX)
1597		return;
1598
1599	memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604	unsigned int left = 0, right = type->cnt;
1605
1606	do {
1607		unsigned int mid = (right + left) / 2;
1608
1609		if (addr < type->regions[mid].base)
1610			right = mid;
1611		else if (addr >= (type->regions[mid].base +
1612				  type->regions[mid].size))
1613			left = mid + 1;
1614		else
1615			return mid;
1616	} while (left < right);
1617	return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622	return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627	return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632	int i = memblock_search(&memblock.memory, addr);
1633
1634	if (i == -1)
1635		return false;
1636	return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641			 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643	struct memblock_type *type = &memblock.memory;
1644	int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646	if (mid == -1)
1647		return -1;
1648
1649	*start_pfn = PFN_DOWN(type->regions[mid].base);
1650	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652	return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668	int idx = memblock_search(&memblock.memory, base);
1669	phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671	if (idx == -1)
1672		return false;
1673	return (memblock.memory.regions[idx].base +
 
1674		 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689	memblock_cap_size(base, &size);
1690	return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695	phys_addr_t start, end, orig_start, orig_end;
1696	struct memblock_region *r;
1697
1698	for_each_memblock(memory, r) {
1699		orig_start = r->base;
1700		orig_end = r->base + r->size;
1701		start = round_up(orig_start, align);
1702		end = round_down(orig_end, align);
1703
1704		if (start == orig_start && end == orig_end)
1705			continue;
1706
1707		if (start < end) {
1708			r->base = start;
1709			r->size = end - start;
1710		} else {
1711			memblock_remove_region(&memblock.memory,
1712					       r - memblock.memory.regions);
1713			r--;
1714		}
1715	}
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720	memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725	return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730	phys_addr_t base, end, size;
1731	unsigned long flags;
1732	int idx;
1733	struct memblock_region *rgn;
1734
1735	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1736
1737	for_each_memblock_type(idx, type, rgn) {
1738		char nid_buf[32] = "";
1739
1740		base = rgn->base;
1741		size = rgn->size;
1742		end = base + size - 1;
1743		flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747				 memblock_get_region_node(rgn));
1748#endif
1749		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750			type->name, idx, &base, &end, &size, nid_buf, flags);
1751	}
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756	pr_info("MEMBLOCK configuration:\n");
1757	pr_info(" memory size = %pa reserved size = %pa\n",
1758		&memblock.memory.total_size,
1759		&memblock.reserved.total_size);
1760
1761	memblock_dump(&memblock.memory);
1762	memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764	memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770	memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775	if (p && strstr(p, "debug"))
1776		memblock_debug = 1;
1777	return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785	struct memblock_type *type = m->private;
1786	struct memblock_region *reg;
1787	int i;
1788	phys_addr_t end;
1789
1790	for (i = 0; i < type->cnt; i++) {
1791		reg = &type->regions[i];
1792		end = reg->base + reg->size - 1;
 
 
 
 
 
 
 
 
1793
1794		seq_printf(m, "%4d: ", i);
1795		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1796	}
1797	return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
 
 
 
 
 
 
 
 
 
 
 
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803	struct dentry *root = debugfs_create_dir("memblock", NULL);
1804	if (!root)
1805		return -ENXIO;
1806	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812	return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */