Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
 
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23#include <asm-generic/sections.h>
  24#include <linux/io.h>
  25
  26#include "internal.h"
  27
  28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  32#endif
  33
  34struct memblock memblock __initdata_memblock = {
  35	.memory.regions		= memblock_memory_init_regions,
  36	.memory.cnt		= 1,	/* empty dummy entry */
  37	.memory.max		= INIT_MEMBLOCK_REGIONS,
 
  38
  39	.reserved.regions	= memblock_reserved_init_regions,
  40	.reserved.cnt		= 1,	/* empty dummy entry */
  41	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  42
  43#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  44	.physmem.regions	= memblock_physmem_init_regions,
  45	.physmem.cnt		= 1,	/* empty dummy entry */
  46	.physmem.max		= INIT_PHYSMEM_REGIONS,
  47#endif
  48
  49	.bottom_up		= false,
  50	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  51};
  52
  53int memblock_debug __initdata_memblock;
  54#ifdef CONFIG_MOVABLE_NODE
  55bool movable_node_enabled __initdata_memblock = false;
 
 
 
 
  56#endif
  57static bool system_has_some_mirror __initdata_memblock = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58static int memblock_can_resize __initdata_memblock;
  59static int memblock_memory_in_slab __initdata_memblock = 0;
  60static int memblock_reserved_in_slab __initdata_memblock = 0;
  61
  62ulong __init_memblock choose_memblock_flags(void)
  63{
  64	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  65}
  66
  67/* inline so we don't get a warning when pr_debug is compiled out */
  68static __init_memblock const char *
  69memblock_type_name(struct memblock_type *type)
  70{
  71	if (type == &memblock.memory)
  72		return "memory";
  73	else if (type == &memblock.reserved)
  74		return "reserved";
  75	else
  76		return "unknown";
  77}
  78
  79/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  80static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  81{
  82	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  83}
  84
  85/*
  86 * Address comparison utilities
  87 */
  88static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  89				       phys_addr_t base2, phys_addr_t size2)
 
  90{
  91	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  92}
  93
  94bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  95					phys_addr_t base, phys_addr_t size)
  96{
  97	unsigned long i;
  98
 
 
  99	for (i = 0; i < type->cnt; i++)
 100		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 101					   type->regions[i].size))
 102			break;
 103	return i < type->cnt;
 104}
 105
 106/*
 107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 108 * @start: start of candidate range
 109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 110 * @size: size of free area to find
 111 * @align: alignment of free area to find
 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 113 * @flags: pick from blocks based on memory attributes
 114 *
 115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 116 *
 117 * RETURNS:
 118 * Found address on success, 0 on failure.
 119 */
 120static phys_addr_t __init_memblock
 121__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 122				phys_addr_t size, phys_addr_t align, int nid,
 123				ulong flags)
 124{
 125	phys_addr_t this_start, this_end, cand;
 126	u64 i;
 127
 128	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 129		this_start = clamp(this_start, start, end);
 130		this_end = clamp(this_end, start, end);
 131
 132		cand = round_up(this_start, align);
 133		if (cand < this_end && this_end - cand >= size)
 134			return cand;
 135	}
 136
 137	return 0;
 138}
 139
 140/**
 141 * __memblock_find_range_top_down - find free area utility, in top-down
 142 * @start: start of candidate range
 143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 144 * @size: size of free area to find
 145 * @align: alignment of free area to find
 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 147 * @flags: pick from blocks based on memory attributes
 148 *
 149 * Utility called from memblock_find_in_range_node(), find free area top-down.
 150 *
 151 * RETURNS:
 152 * Found address on success, 0 on failure.
 153 */
 154static phys_addr_t __init_memblock
 155__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 156			       phys_addr_t size, phys_addr_t align, int nid,
 157			       ulong flags)
 158{
 159	phys_addr_t this_start, this_end, cand;
 160	u64 i;
 161
 162	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 163					NULL) {
 164		this_start = clamp(this_start, start, end);
 165		this_end = clamp(this_end, start, end);
 166
 167		if (this_end < size)
 168			continue;
 169
 170		cand = round_down(this_end - size, align);
 171		if (cand >= this_start)
 172			return cand;
 173	}
 174
 175	return 0;
 176}
 177
 178/**
 179 * memblock_find_in_range_node - find free area in given range and node
 180 * @size: size of free area to find
 181 * @align: alignment of free area to find
 182 * @start: start of candidate range
 183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 185 * @flags: pick from blocks based on memory attributes
 186 *
 187 * Find @size free area aligned to @align in the specified range and node.
 188 *
 189 * When allocation direction is bottom-up, the @start should be greater
 190 * than the end of the kernel image. Otherwise, it will be trimmed. The
 191 * reason is that we want the bottom-up allocation just near the kernel
 192 * image so it is highly likely that the allocated memory and the kernel
 193 * will reside in the same node.
 194 *
 195 * If bottom-up allocation failed, will try to allocate memory top-down.
 196 *
 197 * RETURNS:
 198 * Found address on success, 0 on failure.
 199 */
 200phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 201					phys_addr_t align, phys_addr_t start,
 202					phys_addr_t end, int nid, ulong flags)
 
 203{
 204	phys_addr_t kernel_end, ret;
 205
 206	/* pump up @end */
 207	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 
 208		end = memblock.current_limit;
 209
 210	/* avoid allocating the first page */
 211	start = max_t(phys_addr_t, start, PAGE_SIZE);
 212	end = max(start, end);
 213	kernel_end = __pa_symbol(_end);
 214
 215	/*
 216	 * try bottom-up allocation only when bottom-up mode
 217	 * is set and @end is above the kernel image.
 218	 */
 219	if (memblock_bottom_up() && end > kernel_end) {
 220		phys_addr_t bottom_up_start;
 221
 222		/* make sure we will allocate above the kernel */
 223		bottom_up_start = max(start, kernel_end);
 224
 225		/* ok, try bottom-up allocation first */
 226		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 227						      size, align, nid, flags);
 228		if (ret)
 229			return ret;
 230
 231		/*
 232		 * we always limit bottom-up allocation above the kernel,
 233		 * but top-down allocation doesn't have the limit, so
 234		 * retrying top-down allocation may succeed when bottom-up
 235		 * allocation failed.
 236		 *
 237		 * bottom-up allocation is expected to be fail very rarely,
 238		 * so we use WARN_ONCE() here to see the stack trace if
 239		 * fail happens.
 240		 */
 241		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 242	}
 243
 244	return __memblock_find_range_top_down(start, end, size, align, nid,
 245					      flags);
 
 
 
 
 246}
 247
 248/**
 249 * memblock_find_in_range - find free area in given range
 250 * @start: start of candidate range
 251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 
 252 * @size: size of free area to find
 253 * @align: alignment of free area to find
 254 *
 255 * Find @size free area aligned to @align in the specified range.
 256 *
 257 * RETURNS:
 258 * Found address on success, 0 on failure.
 259 */
 260phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 261					phys_addr_t end, phys_addr_t size,
 262					phys_addr_t align)
 263{
 264	phys_addr_t ret;
 265	ulong flags = choose_memblock_flags();
 266
 267again:
 268	ret = memblock_find_in_range_node(size, align, start, end,
 269					    NUMA_NO_NODE, flags);
 270
 271	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 272		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 273			&size);
 274		flags &= ~MEMBLOCK_MIRROR;
 275		goto again;
 276	}
 277
 278	return ret;
 279}
 280
 281static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 282{
 283	type->total_size -= type->regions[r].size;
 284	memmove(&type->regions[r], &type->regions[r + 1],
 285		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 286	type->cnt--;
 287
 288	/* Special case for empty arrays */
 289	if (type->cnt == 0) {
 290		WARN_ON(type->total_size != 0);
 291		type->cnt = 1;
 292		type->regions[0].base = 0;
 293		type->regions[0].size = 0;
 294		type->regions[0].flags = 0;
 295		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 296	}
 297}
 298
 299#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 300
 301phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 302					phys_addr_t *addr)
 
 303{
 304	if (memblock.reserved.regions == memblock_reserved_init_regions)
 305		return 0;
 306
 307	*addr = __pa(memblock.reserved.regions);
 308
 309	return PAGE_ALIGN(sizeof(struct memblock_region) *
 310			  memblock.reserved.max);
 311}
 312
 313phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 314					phys_addr_t *addr)
 315{
 316	if (memblock.memory.regions == memblock_memory_init_regions)
 317		return 0;
 
 
 
 
 318
 319	*addr = __pa(memblock.memory.regions);
 
 
 
 
 
 
 
 
 320
 321	return PAGE_ALIGN(sizeof(struct memblock_region) *
 322			  memblock.memory.max);
 323}
 324
 325#endif
 326
 327/**
 328 * memblock_double_array - double the size of the memblock regions array
 329 * @type: memblock type of the regions array being doubled
 330 * @new_area_start: starting address of memory range to avoid overlap with
 331 * @new_area_size: size of memory range to avoid overlap with
 332 *
 333 * Double the size of the @type regions array. If memblock is being used to
 334 * allocate memory for a new reserved regions array and there is a previously
 335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 336 * waiting to be reserved, ensure the memory used by the new array does
 337 * not overlap.
 338 *
 339 * RETURNS:
 340 * 0 on success, -1 on failure.
 341 */
 342static int __init_memblock memblock_double_array(struct memblock_type *type,
 343						phys_addr_t new_area_start,
 344						phys_addr_t new_area_size)
 345{
 346	struct memblock_region *new_array, *old_array;
 347	phys_addr_t old_alloc_size, new_alloc_size;
 348	phys_addr_t old_size, new_size, addr;
 349	int use_slab = slab_is_available();
 350	int *in_slab;
 351
 352	/* We don't allow resizing until we know about the reserved regions
 353	 * of memory that aren't suitable for allocation
 354	 */
 355	if (!memblock_can_resize)
 356		return -1;
 357
 358	/* Calculate new doubled size */
 359	old_size = type->max * sizeof(struct memblock_region);
 360	new_size = old_size << 1;
 361	/*
 362	 * We need to allocated new one align to PAGE_SIZE,
 363	 *   so we can free them completely later.
 364	 */
 365	old_alloc_size = PAGE_ALIGN(old_size);
 366	new_alloc_size = PAGE_ALIGN(new_size);
 367
 368	/* Retrieve the slab flag */
 369	if (type == &memblock.memory)
 370		in_slab = &memblock_memory_in_slab;
 371	else
 372		in_slab = &memblock_reserved_in_slab;
 373
 374	/* Try to find some space for it.
 375	 *
 376	 * WARNING: We assume that either slab_is_available() and we use it or
 377	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 378	 * use when bootmem is currently active (unless bootmem itself is
 379	 * implemented on top of MEMBLOCK which isn't the case yet)
 380	 *
 381	 * This should however not be an issue for now, as we currently only
 382	 * call into MEMBLOCK while it's still active, or much later when slab
 383	 * is active for memory hotplug operations
 384	 */
 385	if (use_slab) {
 386		new_array = kmalloc(new_size, GFP_KERNEL);
 387		addr = new_array ? __pa(new_array) : 0;
 388	} else {
 389		/* only exclude range when trying to double reserved.regions */
 390		if (type != &memblock.reserved)
 391			new_area_start = new_area_size = 0;
 392
 393		addr = memblock_find_in_range(new_area_start + new_area_size,
 394						memblock.current_limit,
 395						new_alloc_size, PAGE_SIZE);
 396		if (!addr && new_area_size)
 397			addr = memblock_find_in_range(0,
 398				min(new_area_start, memblock.current_limit),
 399				new_alloc_size, PAGE_SIZE);
 400
 401		new_array = addr ? __va(addr) : NULL;
 402	}
 403	if (!addr) {
 404		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 405		       memblock_type_name(type), type->max, type->max * 2);
 406		return -1;
 407	}
 408
 409	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 410			memblock_type_name(type), type->max * 2, (u64)addr,
 411			(u64)addr + new_size - 1);
 412
 413	/*
 414	 * Found space, we now need to move the array over before we add the
 415	 * reserved region since it may be our reserved array itself that is
 416	 * full.
 417	 */
 418	memcpy(new_array, type->regions, old_size);
 419	memset(new_array + type->max, 0, old_size);
 420	old_array = type->regions;
 421	type->regions = new_array;
 422	type->max <<= 1;
 423
 424	/* Free old array. We needn't free it if the array is the static one */
 425	if (*in_slab)
 426		kfree(old_array);
 427	else if (old_array != memblock_memory_init_regions &&
 428		 old_array != memblock_reserved_init_regions)
 429		memblock_free(__pa(old_array), old_alloc_size);
 430
 431	/*
 432	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 433	 * needn't do it
 434	 */
 435	if (!use_slab)
 436		BUG_ON(memblock_reserve(addr, new_alloc_size));
 437
 438	/* Update slab flag */
 439	*in_slab = use_slab;
 440
 441	return 0;
 442}
 443
 444/**
 445 * memblock_merge_regions - merge neighboring compatible regions
 446 * @type: memblock type to scan
 447 *
 448 * Scan @type and merge neighboring compatible regions.
 449 */
 450static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 
 
 
 451{
 452	int i = 0;
 453
 454	/* cnt never goes below 1 */
 455	while (i < type->cnt - 1) {
 
 456		struct memblock_region *this = &type->regions[i];
 457		struct memblock_region *next = &type->regions[i + 1];
 458
 459		if (this->base + this->size != next->base ||
 460		    memblock_get_region_node(this) !=
 461		    memblock_get_region_node(next) ||
 462		    this->flags != next->flags) {
 463			BUG_ON(this->base + this->size > next->base);
 464			i++;
 465			continue;
 466		}
 467
 468		this->size += next->size;
 469		/* move forward from next + 1, index of which is i + 2 */
 470		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 471		type->cnt--;
 
 472	}
 473}
 474
 475/**
 476 * memblock_insert_region - insert new memblock region
 477 * @type:	memblock type to insert into
 478 * @idx:	index for the insertion point
 479 * @base:	base address of the new region
 480 * @size:	size of the new region
 481 * @nid:	node id of the new region
 482 * @flags:	flags of the new region
 483 *
 484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 485 * @type must already have extra room to accomodate the new region.
 486 */
 487static void __init_memblock memblock_insert_region(struct memblock_type *type,
 488						   int idx, phys_addr_t base,
 489						   phys_addr_t size,
 490						   int nid, unsigned long flags)
 
 491{
 492	struct memblock_region *rgn = &type->regions[idx];
 493
 494	BUG_ON(type->cnt >= type->max);
 495	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 496	rgn->base = base;
 497	rgn->size = size;
 498	rgn->flags = flags;
 499	memblock_set_region_node(rgn, nid);
 500	type->cnt++;
 501	type->total_size += size;
 502}
 503
 504/**
 505 * memblock_add_range - add new memblock region
 506 * @type: memblock type to add new region into
 507 * @base: base address of the new region
 508 * @size: size of the new region
 509 * @nid: nid of the new region
 510 * @flags: flags of the new region
 511 *
 512 * Add new memblock region [@base,@base+@size) into @type.  The new region
 513 * is allowed to overlap with existing ones - overlaps don't affect already
 514 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 515 * compatible regions are merged) after the addition.
 516 *
 517 * RETURNS:
 518 * 0 on success, -errno on failure.
 519 */
 520int __init_memblock memblock_add_range(struct memblock_type *type,
 521				phys_addr_t base, phys_addr_t size,
 522				int nid, unsigned long flags)
 523{
 524	bool insert = false;
 525	phys_addr_t obase = base;
 526	phys_addr_t end = base + memblock_cap_size(base, &size);
 527	int idx, nr_new;
 528	struct memblock_region *rgn;
 529
 530	if (!size)
 531		return 0;
 532
 533	/* special case for empty array */
 534	if (type->regions[0].size == 0) {
 535		WARN_ON(type->cnt != 1 || type->total_size);
 536		type->regions[0].base = base;
 537		type->regions[0].size = size;
 538		type->regions[0].flags = flags;
 539		memblock_set_region_node(&type->regions[0], nid);
 540		type->total_size = size;
 541		return 0;
 542	}
 
 
 
 
 
 
 
 
 
 
 
 543repeat:
 544	/*
 545	 * The following is executed twice.  Once with %false @insert and
 546	 * then with %true.  The first counts the number of regions needed
 547	 * to accomodate the new area.  The second actually inserts them.
 548	 */
 549	base = obase;
 550	nr_new = 0;
 551
 552	for_each_memblock_type(type, rgn) {
 553		phys_addr_t rbase = rgn->base;
 554		phys_addr_t rend = rbase + rgn->size;
 555
 556		if (rbase >= end)
 557			break;
 558		if (rend <= base)
 559			continue;
 560		/*
 561		 * @rgn overlaps.  If it separates the lower part of new
 562		 * area, insert that portion.
 563		 */
 564		if (rbase > base) {
 565#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 566			WARN_ON(nid != memblock_get_region_node(rgn));
 567#endif
 568			WARN_ON(flags != rgn->flags);
 569			nr_new++;
 570			if (insert)
 
 
 
 571				memblock_insert_region(type, idx++, base,
 572						       rbase - base, nid,
 573						       flags);
 
 574		}
 575		/* area below @rend is dealt with, forget about it */
 576		base = min(rend, end);
 577	}
 578
 579	/* insert the remaining portion */
 580	if (base < end) {
 581		nr_new++;
 582		if (insert)
 
 
 
 583			memblock_insert_region(type, idx, base, end - base,
 584					       nid, flags);
 
 585	}
 586
 
 
 
 587	/*
 588	 * If this was the first round, resize array and repeat for actual
 589	 * insertions; otherwise, merge and return.
 590	 */
 591	if (!insert) {
 592		while (type->cnt + nr_new > type->max)
 593			if (memblock_double_array(type, obase, size) < 0)
 594				return -ENOMEM;
 595		insert = true;
 596		goto repeat;
 597	} else {
 598		memblock_merge_regions(type);
 599		return 0;
 600	}
 601}
 602
 
 
 
 
 
 
 
 
 
 
 
 
 
 603int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 604				       int nid)
 605{
 606	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 607}
 608
 609static int __init_memblock memblock_add_region(phys_addr_t base,
 610						phys_addr_t size,
 611						int nid,
 612						unsigned long flags)
 613{
 614	memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
 615		     (unsigned long long)base,
 616		     (unsigned long long)base + size - 1,
 617		     flags, (void *)_RET_IP_);
 618
 619	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 620}
 621
 
 
 
 
 
 
 
 
 
 
 
 622int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 623{
 624	return memblock_add_region(base, size, MAX_NUMNODES, 0);
 
 
 
 
 
 625}
 626
 627/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628 * memblock_isolate_range - isolate given range into disjoint memblocks
 629 * @type: memblock type to isolate range for
 630 * @base: base of range to isolate
 631 * @size: size of range to isolate
 632 * @start_rgn: out parameter for the start of isolated region
 633 * @end_rgn: out parameter for the end of isolated region
 634 *
 635 * Walk @type and ensure that regions don't cross the boundaries defined by
 636 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 637 * which may create at most two more regions.  The index of the first
 638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 639 *
 640 * RETURNS:
 641 * 0 on success, -errno on failure.
 642 */
 643static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 644					phys_addr_t base, phys_addr_t size,
 645					int *start_rgn, int *end_rgn)
 646{
 647	phys_addr_t end = base + memblock_cap_size(base, &size);
 648	int idx;
 649	struct memblock_region *rgn;
 650
 651	*start_rgn = *end_rgn = 0;
 652
 653	if (!size)
 654		return 0;
 655
 656	/* we'll create at most two more regions */
 657	while (type->cnt + 2 > type->max)
 658		if (memblock_double_array(type, base, size) < 0)
 659			return -ENOMEM;
 660
 661	for_each_memblock_type(type, rgn) {
 662		phys_addr_t rbase = rgn->base;
 663		phys_addr_t rend = rbase + rgn->size;
 664
 665		if (rbase >= end)
 666			break;
 667		if (rend <= base)
 668			continue;
 669
 670		if (rbase < base) {
 671			/*
 672			 * @rgn intersects from below.  Split and continue
 673			 * to process the next region - the new top half.
 674			 */
 675			rgn->base = base;
 676			rgn->size -= base - rbase;
 677			type->total_size -= base - rbase;
 678			memblock_insert_region(type, idx, rbase, base - rbase,
 679					       memblock_get_region_node(rgn),
 680					       rgn->flags);
 681		} else if (rend > end) {
 682			/*
 683			 * @rgn intersects from above.  Split and redo the
 684			 * current region - the new bottom half.
 685			 */
 686			rgn->base = end;
 687			rgn->size -= end - rbase;
 688			type->total_size -= end - rbase;
 689			memblock_insert_region(type, idx--, rbase, end - rbase,
 690					       memblock_get_region_node(rgn),
 691					       rgn->flags);
 692		} else {
 693			/* @rgn is fully contained, record it */
 694			if (!*end_rgn)
 695				*start_rgn = idx;
 696			*end_rgn = idx + 1;
 697		}
 698	}
 699
 700	return 0;
 701}
 702
 703static int __init_memblock memblock_remove_range(struct memblock_type *type,
 704					  phys_addr_t base, phys_addr_t size)
 705{
 706	int start_rgn, end_rgn;
 707	int i, ret;
 708
 709	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 710	if (ret)
 711		return ret;
 712
 713	for (i = end_rgn - 1; i >= start_rgn; i--)
 714		memblock_remove_region(type, i);
 715	return 0;
 716}
 717
 718int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 719{
 
 
 
 
 
 720	return memblock_remove_range(&memblock.memory, base, size);
 721}
 722
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 725{
 726	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 727		     (unsigned long long)base,
 728		     (unsigned long long)base + size - 1,
 729		     (void *)_RET_IP_);
 730
 731	kmemleak_free_part(__va(base), size);
 732	return memblock_remove_range(&memblock.reserved, base, size);
 733}
 734
 735static int __init_memblock memblock_reserve_region(phys_addr_t base,
 736						   phys_addr_t size,
 737						   int nid,
 738						   unsigned long flags)
 739{
 740	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 741		     (unsigned long long)base,
 742		     (unsigned long long)base + size - 1,
 743		     flags, (void *)_RET_IP_);
 744
 745	return memblock_add_range(&memblock.reserved, base, size, nid, flags);
 
 
 
 746}
 747
 748int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 
 749{
 750	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 
 
 
 
 
 751}
 
 752
 753/**
 
 
 
 
 
 
 754 *
 755 * This function isolates region [@base, @base + @size), and sets/clears flag
 756 *
 757 * Return 0 on success, -errno on failure.
 758 */
 759static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 760				phys_addr_t size, int set, int flag)
 761{
 762	struct memblock_type *type = &memblock.memory;
 763	int i, ret, start_rgn, end_rgn;
 764
 765	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 766	if (ret)
 767		return ret;
 768
 769	for (i = start_rgn; i < end_rgn; i++)
 
 
 770		if (set)
 771			memblock_set_region_flags(&type->regions[i], flag);
 772		else
 773			memblock_clear_region_flags(&type->regions[i], flag);
 
 774
 775	memblock_merge_regions(type);
 776	return 0;
 777}
 778
 779/**
 780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 781 * @base: the base phys addr of the region
 782 * @size: the size of the region
 783 *
 784 * Return 0 on success, -errno on failure.
 785 */
 786int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 787{
 788	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 789}
 790
 791/**
 792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 793 * @base: the base phys addr of the region
 794 * @size: the size of the region
 795 *
 796 * Return 0 on success, -errno on failure.
 797 */
 798int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 799{
 800	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 801}
 802
 803/**
 804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 805 * @base: the base phys addr of the region
 806 * @size: the size of the region
 807 *
 808 * Return 0 on success, -errno on failure.
 809 */
 810int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 811{
 
 
 
 812	system_has_some_mirror = true;
 813
 814	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 815}
 816
 817/**
 818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 819 * @base: the base phys addr of the region
 820 * @size: the size of the region
 821 *
 822 * Return 0 on success, -errno on failure.
 
 
 
 
 
 
 
 
 823 */
 824int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 825{
 826	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 827}
 828
 829/**
 830 * __next_reserved_mem_region - next function for for_each_reserved_region()
 831 * @idx: pointer to u64 loop variable
 832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 834 *
 835 * Iterate over all reserved memory regions.
 836 */
 837void __init_memblock __next_reserved_mem_region(u64 *idx,
 838					   phys_addr_t *out_start,
 839					   phys_addr_t *out_end)
 840{
 841	struct memblock_type *type = &memblock.reserved;
 
 842
 843	if (*idx >= 0 && *idx < type->cnt) {
 844		struct memblock_region *r = &type->regions[*idx];
 845		phys_addr_t base = r->base;
 846		phys_addr_t size = r->size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 847
 848		if (out_start)
 849			*out_start = base;
 850		if (out_end)
 851			*out_end = base + size - 1;
 
 852
 853		*idx += 1;
 854		return;
 855	}
 856
 857	/* signal end of iteration */
 858	*idx = ULLONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859}
 860
 861/**
 862 * __next__mem_range - next function for for_each_free_mem_range() etc.
 863 * @idx: pointer to u64 loop variable
 864 * @nid: node selector, %NUMA_NO_NODE for all nodes
 865 * @flags: pick from blocks based on memory attributes
 866 * @type_a: pointer to memblock_type from where the range is taken
 867 * @type_b: pointer to memblock_type which excludes memory from being taken
 868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 870 * @out_nid: ptr to int for nid of the range, can be %NULL
 871 *
 872 * Find the first area from *@idx which matches @nid, fill the out
 873 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 874 * *@idx contains index into type_a and the upper 32bit indexes the
 875 * areas before each region in type_b.	For example, if type_b regions
 876 * look like the following,
 877 *
 878 *	0:[0-16), 1:[32-48), 2:[128-130)
 879 *
 880 * The upper 32bit indexes the following regions.
 881 *
 882 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 883 *
 884 * As both region arrays are sorted, the function advances the two indices
 885 * in lockstep and returns each intersection.
 886 */
 887void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 888				      struct memblock_type *type_a,
 889				      struct memblock_type *type_b,
 890				      phys_addr_t *out_start,
 891				      phys_addr_t *out_end, int *out_nid)
 892{
 893	int idx_a = *idx & 0xffffffff;
 894	int idx_b = *idx >> 32;
 895
 896	if (WARN_ONCE(nid == MAX_NUMNODES,
 897	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 898		nid = NUMA_NO_NODE;
 899
 900	for (; idx_a < type_a->cnt; idx_a++) {
 901		struct memblock_region *m = &type_a->regions[idx_a];
 902
 903		phys_addr_t m_start = m->base;
 904		phys_addr_t m_end = m->base + m->size;
 905		int	    m_nid = memblock_get_region_node(m);
 906
 907		/* only memory regions are associated with nodes, check it */
 908		if (nid != NUMA_NO_NODE && nid != m_nid)
 909			continue;
 910
 911		/* skip hotpluggable memory regions if needed */
 912		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 913			continue;
 914
 915		/* if we want mirror memory skip non-mirror memory regions */
 916		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 917			continue;
 918
 919		/* skip nomap memory unless we were asked for it explicitly */
 920		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 921			continue;
 922
 923		if (!type_b) {
 924			if (out_start)
 925				*out_start = m_start;
 926			if (out_end)
 927				*out_end = m_end;
 928			if (out_nid)
 929				*out_nid = m_nid;
 930			idx_a++;
 931			*idx = (u32)idx_a | (u64)idx_b << 32;
 932			return;
 933		}
 934
 935		/* scan areas before each reservation */
 936		for (; idx_b < type_b->cnt + 1; idx_b++) {
 937			struct memblock_region *r;
 938			phys_addr_t r_start;
 939			phys_addr_t r_end;
 940
 941			r = &type_b->regions[idx_b];
 942			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 943			r_end = idx_b < type_b->cnt ?
 944				r->base : ULLONG_MAX;
 945
 946			/*
 947			 * if idx_b advanced past idx_a,
 948			 * break out to advance idx_a
 949			 */
 950			if (r_start >= m_end)
 951				break;
 952			/* if the two regions intersect, we're done */
 953			if (m_start < r_end) {
 954				if (out_start)
 955					*out_start =
 956						max(m_start, r_start);
 957				if (out_end)
 958					*out_end = min(m_end, r_end);
 959				if (out_nid)
 960					*out_nid = m_nid;
 961				/*
 962				 * The region which ends first is
 963				 * advanced for the next iteration.
 964				 */
 965				if (m_end <= r_end)
 966					idx_a++;
 967				else
 968					idx_b++;
 969				*idx = (u32)idx_a | (u64)idx_b << 32;
 970				return;
 971			}
 972		}
 973	}
 974
 975	/* signal end of iteration */
 976	*idx = ULLONG_MAX;
 977}
 978
 979/**
 980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 981 *
 982 * Finds the next range from type_a which is not marked as unsuitable
 983 * in type_b.
 984 *
 985 * @idx: pointer to u64 loop variable
 986 * @nid: node selector, %NUMA_NO_NODE for all nodes
 987 * @flags: pick from blocks based on memory attributes
 988 * @type_a: pointer to memblock_type from where the range is taken
 989 * @type_b: pointer to memblock_type which excludes memory from being taken
 990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 992 * @out_nid: ptr to int for nid of the range, can be %NULL
 993 *
 
 
 
 994 * Reverse of __next_mem_range().
 995 */
 996void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 
 997					  struct memblock_type *type_a,
 998					  struct memblock_type *type_b,
 999					  phys_addr_t *out_start,
1000					  phys_addr_t *out_end, int *out_nid)
1001{
1002	int idx_a = *idx & 0xffffffff;
1003	int idx_b = *idx >> 32;
1004
1005	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006		nid = NUMA_NO_NODE;
1007
1008	if (*idx == (u64)ULLONG_MAX) {
1009		idx_a = type_a->cnt - 1;
1010		idx_b = type_b->cnt;
 
 
 
1011	}
1012
1013	for (; idx_a >= 0; idx_a--) {
1014		struct memblock_region *m = &type_a->regions[idx_a];
1015
1016		phys_addr_t m_start = m->base;
1017		phys_addr_t m_end = m->base + m->size;
1018		int m_nid = memblock_get_region_node(m);
1019
1020		/* only memory regions are associated with nodes, check it */
1021		if (nid != NUMA_NO_NODE && nid != m_nid)
1022			continue;
1023
1024		/* skip hotpluggable memory regions if needed */
1025		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1026			continue;
1027
1028		/* if we want mirror memory skip non-mirror memory regions */
1029		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1030			continue;
1031
1032		/* skip nomap memory unless we were asked for it explicitly */
1033		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1034			continue;
1035
1036		if (!type_b) {
1037			if (out_start)
1038				*out_start = m_start;
1039			if (out_end)
1040				*out_end = m_end;
1041			if (out_nid)
1042				*out_nid = m_nid;
1043			idx_a++;
1044			*idx = (u32)idx_a | (u64)idx_b << 32;
1045			return;
1046		}
1047
1048		/* scan areas before each reservation */
1049		for (; idx_b >= 0; idx_b--) {
1050			struct memblock_region *r;
1051			phys_addr_t r_start;
1052			phys_addr_t r_end;
1053
1054			r = &type_b->regions[idx_b];
1055			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1056			r_end = idx_b < type_b->cnt ?
1057				r->base : ULLONG_MAX;
1058			/*
1059			 * if idx_b advanced past idx_a,
1060			 * break out to advance idx_a
1061			 */
1062
1063			if (r_end <= m_start)
1064				break;
1065			/* if the two regions intersect, we're done */
1066			if (m_end > r_start) {
1067				if (out_start)
1068					*out_start = max(m_start, r_start);
1069				if (out_end)
1070					*out_end = min(m_end, r_end);
1071				if (out_nid)
1072					*out_nid = m_nid;
1073				if (m_start >= r_start)
1074					idx_a--;
1075				else
1076					idx_b--;
1077				*idx = (u32)idx_a | (u64)idx_b << 32;
1078				return;
1079			}
1080		}
1081	}
1082	/* signal end of iteration */
1083	*idx = ULLONG_MAX;
1084}
1085
1086#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1087/*
1088 * Common iterator interface used to define for_each_mem_range().
1089 */
1090void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1091				unsigned long *out_start_pfn,
1092				unsigned long *out_end_pfn, int *out_nid)
1093{
1094	struct memblock_type *type = &memblock.memory;
1095	struct memblock_region *r;
 
1096
1097	while (++*idx < type->cnt) {
1098		r = &type->regions[*idx];
 
1099
1100		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1101			continue;
1102		if (nid == MAX_NUMNODES || nid == r->nid)
1103			break;
1104	}
1105	if (*idx >= type->cnt) {
1106		*idx = -1;
1107		return;
1108	}
1109
1110	if (out_start_pfn)
1111		*out_start_pfn = PFN_UP(r->base);
1112	if (out_end_pfn)
1113		*out_end_pfn = PFN_DOWN(r->base + r->size);
1114	if (out_nid)
1115		*out_nid = r->nid;
1116}
1117
1118/**
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
1122 * @type: memblock type to set node ID for
1123 * @nid: node ID to set
1124 *
1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1126 * Regions which cross the area boundaries are split as necessary.
1127 *
1128 * RETURNS:
1129 * 0 on success, -errno on failure.
1130 */
1131int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1132				      struct memblock_type *type, int nid)
1133{
 
1134	int start_rgn, end_rgn;
1135	int i, ret;
1136
1137	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1138	if (ret)
1139		return ret;
1140
1141	for (i = start_rgn; i < end_rgn; i++)
1142		memblock_set_region_node(&type->regions[i], nid);
1143
1144	memblock_merge_regions(type);
 
1145	return 0;
1146}
1147#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1148
1149static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1150					phys_addr_t align, phys_addr_t start,
1151					phys_addr_t end, int nid, ulong flags)
1152{
1153	phys_addr_t found;
1154
1155	if (!align)
1156		align = SMP_CACHE_BYTES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
1158	found = memblock_find_in_range_node(size, align, start, end, nid,
1159					    flags);
1160	if (found && !memblock_reserve(found, size)) {
1161		/*
1162		 * The min_count is set to 0 so that memblock allocations are
1163		 * never reported as leaks.
1164		 */
1165		kmemleak_alloc(__va(found), size, 0, 0);
1166		return found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	}
1168	return 0;
1169}
1170
1171phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1172					phys_addr_t start, phys_addr_t end,
1173					ulong flags)
1174{
1175	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1176					flags);
1177}
1178
1179static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1180					phys_addr_t align, phys_addr_t max_addr,
1181					int nid, ulong flags)
1182{
1183	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1184}
1185
1186phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187{
1188	ulong flags = choose_memblock_flags();
1189	phys_addr_t ret;
 
 
 
 
 
 
 
 
 
1190
1191again:
1192	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1193				      nid, flags);
 
 
1194
1195	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 
 
 
 
 
 
 
 
1196		flags &= ~MEMBLOCK_MIRROR;
 
 
1197		goto again;
1198	}
1199	return ret;
1200}
1201
1202phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1203{
1204	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1205				       MEMBLOCK_NONE);
1206}
1207
1208phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1209{
1210	phys_addr_t alloc;
1211
1212	alloc = __memblock_alloc_base(size, align, max_addr);
 
 
 
 
 
 
 
 
 
 
 
 
1213
1214	if (alloc == 0)
1215		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216		      (unsigned long long) size, (unsigned long long) max_addr);
 
 
 
 
 
1217
1218	return alloc;
1219}
1220
1221phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222{
1223	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
 
 
 
 
1224}
1225
1226phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
1227{
1228	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1229
1230	if (res)
1231		return res;
1232	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1233}
1234
1235/**
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
1242 *
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1247 *
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1250 *
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1252 *
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1255 *
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
 
 
1258 *
1259 * RETURNS:
1260 * Virtual address of allocated memory block on success, NULL on failure.
1261 */
1262static void * __init memblock_virt_alloc_internal(
1263				phys_addr_t size, phys_addr_t align,
1264				phys_addr_t min_addr, phys_addr_t max_addr,
1265				int nid)
1266{
1267	phys_addr_t alloc;
1268	void *ptr;
1269	ulong flags = choose_memblock_flags();
1270
1271	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1272		nid = NUMA_NO_NODE;
1273
1274	/*
1275	 * Detect any accidental use of these APIs after slab is ready, as at
1276	 * this moment memblock may be deinitialized already and its
1277	 * internal data may be destroyed (after execution of free_all_bootmem)
1278	 */
1279	if (WARN_ON_ONCE(slab_is_available()))
1280		return kzalloc_node(size, GFP_NOWAIT, nid);
1281
1282	if (!align)
1283		align = SMP_CACHE_BYTES;
1284
1285	if (max_addr > memblock.current_limit)
1286		max_addr = memblock.current_limit;
1287
1288again:
1289	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1290					    nid, flags);
1291	if (alloc)
1292		goto done;
1293
1294	if (nid != NUMA_NO_NODE) {
1295		alloc = memblock_find_in_range_node(size, align, min_addr,
1296						    max_addr, NUMA_NO_NODE,
1297						    flags);
1298		if (alloc)
1299			goto done;
1300	}
1301
1302	if (min_addr) {
1303		min_addr = 0;
1304		goto again;
1305	}
1306
1307	if (flags & MEMBLOCK_MIRROR) {
1308		flags &= ~MEMBLOCK_MIRROR;
1309		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310			&size);
1311		goto again;
1312	}
1313
1314	return NULL;
1315done:
1316	memblock_reserve(alloc, size);
1317	ptr = phys_to_virt(alloc);
1318	memset(ptr, 0, size);
1319
1320	/*
1321	 * The min_count is set to 0 so that bootmem allocated blocks
1322	 * are never reported as leaks. This is because many of these blocks
1323	 * are only referred via the physical address which is not
1324	 * looked up by kmemleak.
1325	 */
1326	kmemleak_alloc(ptr, size, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327
1328	return ptr;
 
1329}
1330
1331/**
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
 
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 *	  is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 *	      allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 *
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
 
1344 *
1345 * RETURNS:
1346 * Virtual address of allocated memory block on success, NULL on failure.
1347 */
1348void * __init memblock_virt_alloc_try_nid_nopanic(
1349				phys_addr_t size, phys_addr_t align,
1350				phys_addr_t min_addr, phys_addr_t max_addr,
1351				int nid)
1352{
1353	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1355		     (u64)max_addr, (void *)_RET_IP_);
1356	return memblock_virt_alloc_internal(size, align, min_addr,
1357					     max_addr, nid);
 
1358}
1359
1360/**
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 *	  is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 *	      allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370 *
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1374 *
1375 * RETURNS:
1376 * Virtual address of allocated memory block on success, NULL on failure.
1377 */
1378void * __init memblock_virt_alloc_try_nid(
1379			phys_addr_t size, phys_addr_t align,
1380			phys_addr_t min_addr, phys_addr_t max_addr,
1381			int nid)
1382{
1383	void *ptr;
1384
1385	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1387		     (u64)max_addr, (void *)_RET_IP_);
1388	ptr = memblock_virt_alloc_internal(size, align,
1389					   min_addr, max_addr, nid);
1390	if (ptr)
1391		return ptr;
1392
1393	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1395	      (u64)max_addr);
1396	return NULL;
1397}
1398
1399/**
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the  boot memory block
1402 * @size: size of the boot memory block in bytes
1403 *
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1406 */
1407void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1408{
1409	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410		     __func__, (u64)base, (u64)base + size - 1,
1411		     (void *)_RET_IP_);
1412	kmemleak_free_part(__va(base), size);
1413	memblock_remove_range(&memblock.reserved, base, size);
1414}
1415
1416/*
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the  boot memory block
1419 * @size: size of the boot memory block in bytes
1420 *
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system.  Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1424 */
1425void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1426{
1427	u64 cursor, end;
1428
1429	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430		     __func__, (u64)base, (u64)base + size - 1,
1431		     (void *)_RET_IP_);
1432	kmemleak_free_part(__va(base), size);
1433	cursor = PFN_UP(base);
1434	end = PFN_DOWN(base + size);
1435
1436	for (; cursor < end; cursor++) {
1437		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1438		totalram_pages++;
1439	}
1440}
1441
1442/*
1443 * Remaining API functions
1444 */
1445
1446phys_addr_t __init_memblock memblock_phys_mem_size(void)
1447{
1448	return memblock.memory.total_size;
1449}
1450
1451phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1452{
1453	unsigned long pages = 0;
1454	struct memblock_region *r;
1455	unsigned long start_pfn, end_pfn;
1456
1457	for_each_memblock(memory, r) {
1458		start_pfn = memblock_region_memory_base_pfn(r);
1459		end_pfn = memblock_region_memory_end_pfn(r);
1460		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1461		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1462		pages += end_pfn - start_pfn;
1463	}
1464
1465	return PFN_PHYS(pages);
1466}
1467
1468/* lowest address */
1469phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1470{
1471	return memblock.memory.regions[0].base;
1472}
1473
1474phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1475{
1476	int idx = memblock.memory.cnt - 1;
1477
1478	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1479}
1480
1481void __init memblock_enforce_memory_limit(phys_addr_t limit)
1482{
1483	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1484	struct memblock_region *r;
1485
1486	if (!limit)
1487		return;
1488
1489	/* find out max address */
1490	for_each_memblock(memory, r) {
 
1491		if (limit <= r->size) {
1492			max_addr = r->base + limit;
1493			break;
1494		}
1495		limit -= r->size;
1496	}
1497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1498	/* truncate both memory and reserved regions */
1499	memblock_remove_range(&memblock.memory, max_addr,
1500			      (phys_addr_t)ULLONG_MAX);
1501	memblock_remove_range(&memblock.reserved, max_addr,
1502			      (phys_addr_t)ULLONG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503}
1504
1505static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1506{
1507	unsigned int left = 0, right = type->cnt;
1508
1509	do {
1510		unsigned int mid = (right + left) / 2;
1511
1512		if (addr < type->regions[mid].base)
1513			right = mid;
1514		else if (addr >= (type->regions[mid].base +
1515				  type->regions[mid].size))
1516			left = mid + 1;
1517		else
1518			return mid;
1519	} while (left < right);
1520	return -1;
1521}
1522
1523bool __init memblock_is_reserved(phys_addr_t addr)
1524{
1525	return memblock_search(&memblock.reserved, addr) != -1;
1526}
1527
1528bool __init_memblock memblock_is_memory(phys_addr_t addr)
1529{
1530	return memblock_search(&memblock.memory, addr) != -1;
1531}
1532
1533int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1534{
1535	int i = memblock_search(&memblock.memory, addr);
1536
1537	if (i == -1)
1538		return false;
1539	return !memblock_is_nomap(&memblock.memory.regions[i]);
1540}
1541
1542#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1544			 unsigned long *start_pfn, unsigned long *end_pfn)
1545{
1546	struct memblock_type *type = &memblock.memory;
1547	int mid = memblock_search(type, PFN_PHYS(pfn));
1548
1549	if (mid == -1)
1550		return -1;
1551
1552	*start_pfn = PFN_DOWN(type->regions[mid].base);
1553	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1554
1555	return type->regions[mid].nid;
1556}
1557#endif
1558
1559/**
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1563 *
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1565 *
1566 * RETURNS:
1567 * 0 if false, non-zero if true
1568 */
1569int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1570{
1571	int idx = memblock_search(&memblock.memory, base);
1572	phys_addr_t end = base + memblock_cap_size(base, &size);
1573
1574	if (idx == -1)
1575		return 0;
1576	return memblock.memory.regions[idx].base <= base &&
1577		(memblock.memory.regions[idx].base +
1578		 memblock.memory.regions[idx].size) >= end;
1579}
1580
1581/**
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1585 *
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
 
1587 *
1588 * RETURNS:
1589 * True if they intersect, false if not.
1590 */
1591bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1592{
1593	memblock_cap_size(base, &size);
1594	return memblock_overlaps_region(&memblock.reserved, base, size);
1595}
1596
1597void __init_memblock memblock_trim_memory(phys_addr_t align)
1598{
1599	phys_addr_t start, end, orig_start, orig_end;
1600	struct memblock_region *r;
1601
1602	for_each_memblock(memory, r) {
1603		orig_start = r->base;
1604		orig_end = r->base + r->size;
1605		start = round_up(orig_start, align);
1606		end = round_down(orig_end, align);
1607
1608		if (start == orig_start && end == orig_end)
1609			continue;
1610
1611		if (start < end) {
1612			r->base = start;
1613			r->size = end - start;
1614		} else {
1615			memblock_remove_region(&memblock.memory,
1616					       r - memblock.memory.regions);
1617			r--;
1618		}
1619	}
1620}
1621
1622void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1623{
1624	memblock.current_limit = limit;
1625}
1626
1627phys_addr_t __init_memblock memblock_get_current_limit(void)
1628{
1629	return memblock.current_limit;
1630}
1631
1632static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1633{
1634	unsigned long long base, size;
1635	unsigned long flags;
1636	int idx;
1637	struct memblock_region *rgn;
1638
1639	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1640
1641	for_each_memblock_type(type, rgn) {
1642		char nid_buf[32] = "";
1643
1644		base = rgn->base;
1645		size = rgn->size;
 
1646		flags = rgn->flags;
1647#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1649			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1650				 memblock_get_region_node(rgn));
1651#endif
1652		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1653			name, idx, base, base + size - 1, size, nid_buf, flags);
1654	}
1655}
1656
1657void __init_memblock __memblock_dump_all(void)
1658{
1659	pr_info("MEMBLOCK configuration:\n");
1660	pr_info(" memory size = %#llx reserved size = %#llx\n",
1661		(unsigned long long)memblock.memory.total_size,
1662		(unsigned long long)memblock.reserved.total_size);
 
 
 
 
 
 
 
1663
1664	memblock_dump(&memblock.memory, "memory");
1665	memblock_dump(&memblock.reserved, "reserved");
 
 
1666}
1667
1668void __init memblock_allow_resize(void)
1669{
1670	memblock_can_resize = 1;
1671}
1672
1673static int __init early_memblock(char *p)
1674{
1675	if (p && strstr(p, "debug"))
1676		memblock_debug = 1;
1677	return 0;
1678}
1679early_param("memblock", early_memblock);
1680
1681#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
 
 
 
 
 
 
 
 
 
1682
1683static int memblock_debug_show(struct seq_file *m, void *private)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684{
1685	struct memblock_type *type = m->private;
1686	struct memblock_region *reg;
1687	int i;
1688
1689	for (i = 0; i < type->cnt; i++) {
1690		reg = &type->regions[i];
1691		seq_printf(m, "%4d: ", i);
1692		if (sizeof(phys_addr_t) == 4)
1693			seq_printf(m, "0x%08lx..0x%08lx\n",
1694				   (unsigned long)reg->base,
1695				   (unsigned long)(reg->base + reg->size - 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696		else
1697			seq_printf(m, "0x%016llx..0x%016llx\n",
1698				   (unsigned long long)reg->base,
1699				   (unsigned long long)(reg->base + reg->size - 1));
1700
 
 
 
 
 
 
1701	}
1702	return 0;
1703}
1704
1705static int memblock_debug_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706{
1707	return single_open(file, memblock_debug_show, inode->i_private);
 
 
 
1708}
1709
1710static const struct file_operations memblock_debug_fops = {
1711	.open = memblock_debug_open,
1712	.read = seq_read,
1713	.llseek = seq_lseek,
1714	.release = single_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715};
1716
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717static int __init memblock_init_debugfs(void)
1718{
1719	struct dentry *root = debugfs_create_dir("memblock", NULL);
1720	if (!root)
1721		return -ENXIO;
1722	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1723	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 
1724#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
 
1726#endif
1727
1728	return 0;
1729}
1730__initcall(memblock_init_debugfs);
1731
1732#endif /* CONFIG_DEBUG_FS */
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
 
 
 
 
 
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.cnt		= 1,	/* empty dummy entry */
 118	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 119	.memory.name		= "memory",
 120
 121	.reserved.regions	= memblock_reserved_init_regions,
 122	.reserved.cnt		= 1,	/* empty dummy entry */
 123	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 124	.reserved.name		= "reserved",
 
 
 
 
 
 125
 126	.bottom_up		= false,
 127	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 128};
 129
 130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 131struct memblock_type physmem = {
 132	.regions		= memblock_physmem_init_regions,
 133	.cnt			= 1,	/* empty dummy entry */
 134	.max			= INIT_PHYSMEM_REGIONS,
 135	.name			= "physmem",
 136};
 137#endif
 138
 139/*
 140 * keep a pointer to &memblock.memory in the text section to use it in
 141 * __next_mem_range() and its helpers.
 142 *  For architectures that do not keep memblock data after init, this
 143 * pointer will be reset to NULL at memblock_discard()
 144 */
 145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 146
 147#define for_each_memblock_type(i, memblock_type, rgn)			\
 148	for (i = 0, rgn = &memblock_type->regions[0];			\
 149	     i < memblock_type->cnt;					\
 150	     i++, rgn = &memblock_type->regions[i])
 151
 152#define memblock_dbg(fmt, ...)						\
 153	do {								\
 154		if (memblock_debug)					\
 155			pr_info(fmt, ##__VA_ARGS__);			\
 156	} while (0)
 157
 158static int memblock_debug __initdata_memblock;
 159static bool system_has_some_mirror __initdata_memblock;
 160static int memblock_can_resize __initdata_memblock;
 161static int memblock_memory_in_slab __initdata_memblock;
 162static int memblock_reserved_in_slab __initdata_memblock;
 163
 164bool __init_memblock memblock_has_mirror(void)
 165{
 166	return system_has_some_mirror;
 167}
 168
 169static enum memblock_flags __init_memblock choose_memblock_flags(void)
 
 
 170{
 171	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 
 
 
 
 
 172}
 173
 174/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 175static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 176{
 177	return *size = min(*size, PHYS_ADDR_MAX - base);
 178}
 179
 180/*
 181 * Address comparison utilities
 182 */
 183unsigned long __init_memblock
 184memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2,
 185		       phys_addr_t size2)
 186{
 187	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 188}
 189
 190bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 191					phys_addr_t base, phys_addr_t size)
 192{
 193	unsigned long i;
 194
 195	memblock_cap_size(base, &size);
 196
 197	for (i = 0; i < type->cnt; i++)
 198		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 199					   type->regions[i].size))
 200			break;
 201	return i < type->cnt;
 202}
 203
 204/**
 205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 206 * @start: start of candidate range
 207 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 208 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 209 * @size: size of free area to find
 210 * @align: alignment of free area to find
 211 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 212 * @flags: pick from blocks based on memory attributes
 213 *
 214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 215 *
 216 * Return:
 217 * Found address on success, 0 on failure.
 218 */
 219static phys_addr_t __init_memblock
 220__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 221				phys_addr_t size, phys_addr_t align, int nid,
 222				enum memblock_flags flags)
 223{
 224	phys_addr_t this_start, this_end, cand;
 225	u64 i;
 226
 227	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 228		this_start = clamp(this_start, start, end);
 229		this_end = clamp(this_end, start, end);
 230
 231		cand = round_up(this_start, align);
 232		if (cand < this_end && this_end - cand >= size)
 233			return cand;
 234	}
 235
 236	return 0;
 237}
 238
 239/**
 240 * __memblock_find_range_top_down - find free area utility, in top-down
 241 * @start: start of candidate range
 242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 243 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 244 * @size: size of free area to find
 245 * @align: alignment of free area to find
 246 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 247 * @flags: pick from blocks based on memory attributes
 248 *
 249 * Utility called from memblock_find_in_range_node(), find free area top-down.
 250 *
 251 * Return:
 252 * Found address on success, 0 on failure.
 253 */
 254static phys_addr_t __init_memblock
 255__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 256			       phys_addr_t size, phys_addr_t align, int nid,
 257			       enum memblock_flags flags)
 258{
 259	phys_addr_t this_start, this_end, cand;
 260	u64 i;
 261
 262	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 263					NULL) {
 264		this_start = clamp(this_start, start, end);
 265		this_end = clamp(this_end, start, end);
 266
 267		if (this_end < size)
 268			continue;
 269
 270		cand = round_down(this_end - size, align);
 271		if (cand >= this_start)
 272			return cand;
 273	}
 274
 275	return 0;
 276}
 277
 278/**
 279 * memblock_find_in_range_node - find free area in given range and node
 280 * @size: size of free area to find
 281 * @align: alignment of free area to find
 282 * @start: start of candidate range
 283 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 284 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 285 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 286 * @flags: pick from blocks based on memory attributes
 287 *
 288 * Find @size free area aligned to @align in the specified range and node.
 289 *
 290 * Return:
 
 
 
 
 
 
 
 
 291 * Found address on success, 0 on failure.
 292 */
 293static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 294					phys_addr_t align, phys_addr_t start,
 295					phys_addr_t end, int nid,
 296					enum memblock_flags flags)
 297{
 
 
 298	/* pump up @end */
 299	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 300	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 301		end = memblock.current_limit;
 302
 303	/* avoid allocating the first page */
 304	start = max_t(phys_addr_t, start, PAGE_SIZE);
 305	end = max(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306
 307	if (memblock_bottom_up())
 308		return __memblock_find_range_bottom_up(start, end, size, align,
 309						       nid, flags);
 310	else
 311		return __memblock_find_range_top_down(start, end, size, align,
 312						      nid, flags);
 313}
 314
 315/**
 316 * memblock_find_in_range - find free area in given range
 317 * @start: start of candidate range
 318 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 319 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 320 * @size: size of free area to find
 321 * @align: alignment of free area to find
 322 *
 323 * Find @size free area aligned to @align in the specified range.
 324 *
 325 * Return:
 326 * Found address on success, 0 on failure.
 327 */
 328static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 329					phys_addr_t end, phys_addr_t size,
 330					phys_addr_t align)
 331{
 332	phys_addr_t ret;
 333	enum memblock_flags flags = choose_memblock_flags();
 334
 335again:
 336	ret = memblock_find_in_range_node(size, align, start, end,
 337					    NUMA_NO_NODE, flags);
 338
 339	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 340		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 341			&size);
 342		flags &= ~MEMBLOCK_MIRROR;
 343		goto again;
 344	}
 345
 346	return ret;
 347}
 348
 349static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 350{
 351	type->total_size -= type->regions[r].size;
 352	memmove(&type->regions[r], &type->regions[r + 1],
 353		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 354	type->cnt--;
 355
 356	/* Special case for empty arrays */
 357	if (type->cnt == 0) {
 358		WARN_ON(type->total_size != 0);
 359		type->cnt = 1;
 360		type->regions[0].base = 0;
 361		type->regions[0].size = 0;
 362		type->regions[0].flags = 0;
 363		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 364	}
 365}
 366
 367#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 368/**
 369 * memblock_discard - discard memory and reserved arrays if they were allocated
 370 */
 371void __init memblock_discard(void)
 372{
 373	phys_addr_t addr, size;
 
 
 
 
 
 
 
 374
 375	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 376		addr = __pa(memblock.reserved.regions);
 377		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 378				  memblock.reserved.max);
 379		if (memblock_reserved_in_slab)
 380			kfree(memblock.reserved.regions);
 381		else
 382			memblock_free_late(addr, size);
 383	}
 384
 385	if (memblock.memory.regions != memblock_memory_init_regions) {
 386		addr = __pa(memblock.memory.regions);
 387		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 388				  memblock.memory.max);
 389		if (memblock_memory_in_slab)
 390			kfree(memblock.memory.regions);
 391		else
 392			memblock_free_late(addr, size);
 393	}
 394
 395	memblock_memory = NULL;
 
 396}
 
 397#endif
 398
 399/**
 400 * memblock_double_array - double the size of the memblock regions array
 401 * @type: memblock type of the regions array being doubled
 402 * @new_area_start: starting address of memory range to avoid overlap with
 403 * @new_area_size: size of memory range to avoid overlap with
 404 *
 405 * Double the size of the @type regions array. If memblock is being used to
 406 * allocate memory for a new reserved regions array and there is a previously
 407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 408 * waiting to be reserved, ensure the memory used by the new array does
 409 * not overlap.
 410 *
 411 * Return:
 412 * 0 on success, -1 on failure.
 413 */
 414static int __init_memblock memblock_double_array(struct memblock_type *type,
 415						phys_addr_t new_area_start,
 416						phys_addr_t new_area_size)
 417{
 418	struct memblock_region *new_array, *old_array;
 419	phys_addr_t old_alloc_size, new_alloc_size;
 420	phys_addr_t old_size, new_size, addr, new_end;
 421	int use_slab = slab_is_available();
 422	int *in_slab;
 423
 424	/* We don't allow resizing until we know about the reserved regions
 425	 * of memory that aren't suitable for allocation
 426	 */
 427	if (!memblock_can_resize)
 428		panic("memblock: cannot resize %s array\n", type->name);
 429
 430	/* Calculate new doubled size */
 431	old_size = type->max * sizeof(struct memblock_region);
 432	new_size = old_size << 1;
 433	/*
 434	 * We need to allocated new one align to PAGE_SIZE,
 435	 *   so we can free them completely later.
 436	 */
 437	old_alloc_size = PAGE_ALIGN(old_size);
 438	new_alloc_size = PAGE_ALIGN(new_size);
 439
 440	/* Retrieve the slab flag */
 441	if (type == &memblock.memory)
 442		in_slab = &memblock_memory_in_slab;
 443	else
 444		in_slab = &memblock_reserved_in_slab;
 445
 446	/* Try to find some space for it */
 
 
 
 
 
 
 
 
 
 
 447	if (use_slab) {
 448		new_array = kmalloc(new_size, GFP_KERNEL);
 449		addr = new_array ? __pa(new_array) : 0;
 450	} else {
 451		/* only exclude range when trying to double reserved.regions */
 452		if (type != &memblock.reserved)
 453			new_area_start = new_area_size = 0;
 454
 455		addr = memblock_find_in_range(new_area_start + new_area_size,
 456						memblock.current_limit,
 457						new_alloc_size, PAGE_SIZE);
 458		if (!addr && new_area_size)
 459			addr = memblock_find_in_range(0,
 460				min(new_area_start, memblock.current_limit),
 461				new_alloc_size, PAGE_SIZE);
 462
 463		new_array = addr ? __va(addr) : NULL;
 464	}
 465	if (!addr) {
 466		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 467		       type->name, type->max, type->max * 2);
 468		return -1;
 469	}
 470
 471	new_end = addr + new_size - 1;
 472	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 473			type->name, type->max * 2, &addr, &new_end);
 474
 475	/*
 476	 * Found space, we now need to move the array over before we add the
 477	 * reserved region since it may be our reserved array itself that is
 478	 * full.
 479	 */
 480	memcpy(new_array, type->regions, old_size);
 481	memset(new_array + type->max, 0, old_size);
 482	old_array = type->regions;
 483	type->regions = new_array;
 484	type->max <<= 1;
 485
 486	/* Free old array. We needn't free it if the array is the static one */
 487	if (*in_slab)
 488		kfree(old_array);
 489	else if (old_array != memblock_memory_init_regions &&
 490		 old_array != memblock_reserved_init_regions)
 491		memblock_free(old_array, old_alloc_size);
 492
 493	/*
 494	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 495	 * needn't do it
 496	 */
 497	if (!use_slab)
 498		BUG_ON(memblock_reserve(addr, new_alloc_size));
 499
 500	/* Update slab flag */
 501	*in_slab = use_slab;
 502
 503	return 0;
 504}
 505
 506/**
 507 * memblock_merge_regions - merge neighboring compatible regions
 508 * @type: memblock type to scan
 509 * @start_rgn: start scanning from (@start_rgn - 1)
 510 * @end_rgn: end scanning at (@end_rgn - 1)
 511 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
 512 */
 513static void __init_memblock memblock_merge_regions(struct memblock_type *type,
 514						   unsigned long start_rgn,
 515						   unsigned long end_rgn)
 516{
 517	int i = 0;
 518	if (start_rgn)
 519		i = start_rgn - 1;
 520	end_rgn = min(end_rgn, type->cnt - 1);
 521	while (i < end_rgn) {
 522		struct memblock_region *this = &type->regions[i];
 523		struct memblock_region *next = &type->regions[i + 1];
 524
 525		if (this->base + this->size != next->base ||
 526		    memblock_get_region_node(this) !=
 527		    memblock_get_region_node(next) ||
 528		    this->flags != next->flags) {
 529			BUG_ON(this->base + this->size > next->base);
 530			i++;
 531			continue;
 532		}
 533
 534		this->size += next->size;
 535		/* move forward from next + 1, index of which is i + 2 */
 536		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 537		type->cnt--;
 538		end_rgn--;
 539	}
 540}
 541
 542/**
 543 * memblock_insert_region - insert new memblock region
 544 * @type:	memblock type to insert into
 545 * @idx:	index for the insertion point
 546 * @base:	base address of the new region
 547 * @size:	size of the new region
 548 * @nid:	node id of the new region
 549 * @flags:	flags of the new region
 550 *
 551 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 552 * @type must already have extra room to accommodate the new region.
 553 */
 554static void __init_memblock memblock_insert_region(struct memblock_type *type,
 555						   int idx, phys_addr_t base,
 556						   phys_addr_t size,
 557						   int nid,
 558						   enum memblock_flags flags)
 559{
 560	struct memblock_region *rgn = &type->regions[idx];
 561
 562	BUG_ON(type->cnt >= type->max);
 563	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 564	rgn->base = base;
 565	rgn->size = size;
 566	rgn->flags = flags;
 567	memblock_set_region_node(rgn, nid);
 568	type->cnt++;
 569	type->total_size += size;
 570}
 571
 572/**
 573 * memblock_add_range - add new memblock region
 574 * @type: memblock type to add new region into
 575 * @base: base address of the new region
 576 * @size: size of the new region
 577 * @nid: nid of the new region
 578 * @flags: flags of the new region
 579 *
 580 * Add new memblock region [@base, @base + @size) into @type.  The new region
 581 * is allowed to overlap with existing ones - overlaps don't affect already
 582 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 583 * compatible regions are merged) after the addition.
 584 *
 585 * Return:
 586 * 0 on success, -errno on failure.
 587 */
 588static int __init_memblock memblock_add_range(struct memblock_type *type,
 589				phys_addr_t base, phys_addr_t size,
 590				int nid, enum memblock_flags flags)
 591{
 592	bool insert = false;
 593	phys_addr_t obase = base;
 594	phys_addr_t end = base + memblock_cap_size(base, &size);
 595	int idx, nr_new, start_rgn = -1, end_rgn;
 596	struct memblock_region *rgn;
 597
 598	if (!size)
 599		return 0;
 600
 601	/* special case for empty array */
 602	if (type->regions[0].size == 0) {
 603		WARN_ON(type->cnt != 1 || type->total_size);
 604		type->regions[0].base = base;
 605		type->regions[0].size = size;
 606		type->regions[0].flags = flags;
 607		memblock_set_region_node(&type->regions[0], nid);
 608		type->total_size = size;
 609		return 0;
 610	}
 611
 612	/*
 613	 * The worst case is when new range overlaps all existing regions,
 614	 * then we'll need type->cnt + 1 empty regions in @type. So if
 615	 * type->cnt * 2 + 1 is less than or equal to type->max, we know
 616	 * that there is enough empty regions in @type, and we can insert
 617	 * regions directly.
 618	 */
 619	if (type->cnt * 2 + 1 <= type->max)
 620		insert = true;
 621
 622repeat:
 623	/*
 624	 * The following is executed twice.  Once with %false @insert and
 625	 * then with %true.  The first counts the number of regions needed
 626	 * to accommodate the new area.  The second actually inserts them.
 627	 */
 628	base = obase;
 629	nr_new = 0;
 630
 631	for_each_memblock_type(idx, type, rgn) {
 632		phys_addr_t rbase = rgn->base;
 633		phys_addr_t rend = rbase + rgn->size;
 634
 635		if (rbase >= end)
 636			break;
 637		if (rend <= base)
 638			continue;
 639		/*
 640		 * @rgn overlaps.  If it separates the lower part of new
 641		 * area, insert that portion.
 642		 */
 643		if (rbase > base) {
 644#ifdef CONFIG_NUMA
 645			WARN_ON(nid != memblock_get_region_node(rgn));
 646#endif
 647			WARN_ON(flags != rgn->flags);
 648			nr_new++;
 649			if (insert) {
 650				if (start_rgn == -1)
 651					start_rgn = idx;
 652				end_rgn = idx + 1;
 653				memblock_insert_region(type, idx++, base,
 654						       rbase - base, nid,
 655						       flags);
 656			}
 657		}
 658		/* area below @rend is dealt with, forget about it */
 659		base = min(rend, end);
 660	}
 661
 662	/* insert the remaining portion */
 663	if (base < end) {
 664		nr_new++;
 665		if (insert) {
 666			if (start_rgn == -1)
 667				start_rgn = idx;
 668			end_rgn = idx + 1;
 669			memblock_insert_region(type, idx, base, end - base,
 670					       nid, flags);
 671		}
 672	}
 673
 674	if (!nr_new)
 675		return 0;
 676
 677	/*
 678	 * If this was the first round, resize array and repeat for actual
 679	 * insertions; otherwise, merge and return.
 680	 */
 681	if (!insert) {
 682		while (type->cnt + nr_new > type->max)
 683			if (memblock_double_array(type, obase, size) < 0)
 684				return -ENOMEM;
 685		insert = true;
 686		goto repeat;
 687	} else {
 688		memblock_merge_regions(type, start_rgn, end_rgn);
 689		return 0;
 690	}
 691}
 692
 693/**
 694 * memblock_add_node - add new memblock region within a NUMA node
 695 * @base: base address of the new region
 696 * @size: size of the new region
 697 * @nid: nid of the new region
 698 * @flags: flags of the new region
 699 *
 700 * Add new memblock region [@base, @base + @size) to the "memory"
 701 * type. See memblock_add_range() description for mode details
 702 *
 703 * Return:
 704 * 0 on success, -errno on failure.
 705 */
 706int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 707				      int nid, enum memblock_flags flags)
 708{
 709	phys_addr_t end = base + size - 1;
 
 710
 711	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 712		     &base, &end, nid, flags, (void *)_RET_IP_);
 
 
 
 
 
 
 
 713
 714	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 715}
 716
 717/**
 718 * memblock_add - add new memblock region
 719 * @base: base address of the new region
 720 * @size: size of the new region
 721 *
 722 * Add new memblock region [@base, @base + @size) to the "memory"
 723 * type. See memblock_add_range() description for mode details
 724 *
 725 * Return:
 726 * 0 on success, -errno on failure.
 727 */
 728int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 729{
 730	phys_addr_t end = base + size - 1;
 731
 732	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 733		     &base, &end, (void *)_RET_IP_);
 734
 735	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 736}
 737
 738/**
 739 * memblock_validate_numa_coverage - check if amount of memory with
 740 * no node ID assigned is less than a threshold
 741 * @threshold_bytes: maximal number of pages that can have unassigned node
 742 * ID (in bytes).
 743 *
 744 * A buggy firmware may report memory that does not belong to any node.
 745 * Check if amount of such memory is below @threshold_bytes.
 746 *
 747 * Return: true on success, false on failure.
 748 */
 749bool __init_memblock memblock_validate_numa_coverage(unsigned long threshold_bytes)
 750{
 751	unsigned long nr_pages = 0;
 752	unsigned long start_pfn, end_pfn, mem_size_mb;
 753	int nid, i;
 754
 755	/* calculate lose page */
 756	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
 757		if (nid == NUMA_NO_NODE)
 758			nr_pages += end_pfn - start_pfn;
 759	}
 760
 761	if ((nr_pages << PAGE_SHIFT) >= threshold_bytes) {
 762		mem_size_mb = memblock_phys_mem_size() >> 20;
 763		pr_err("NUMA: no nodes coverage for %luMB of %luMB RAM\n",
 764		       (nr_pages << PAGE_SHIFT) >> 20, mem_size_mb);
 765		return false;
 766	}
 767
 768	return true;
 769}
 770
 771
 772/**
 773 * memblock_isolate_range - isolate given range into disjoint memblocks
 774 * @type: memblock type to isolate range for
 775 * @base: base of range to isolate
 776 * @size: size of range to isolate
 777 * @start_rgn: out parameter for the start of isolated region
 778 * @end_rgn: out parameter for the end of isolated region
 779 *
 780 * Walk @type and ensure that regions don't cross the boundaries defined by
 781 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 782 * which may create at most two more regions.  The index of the first
 783 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 784 *
 785 * Return:
 786 * 0 on success, -errno on failure.
 787 */
 788static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 789					phys_addr_t base, phys_addr_t size,
 790					int *start_rgn, int *end_rgn)
 791{
 792	phys_addr_t end = base + memblock_cap_size(base, &size);
 793	int idx;
 794	struct memblock_region *rgn;
 795
 796	*start_rgn = *end_rgn = 0;
 797
 798	if (!size)
 799		return 0;
 800
 801	/* we'll create at most two more regions */
 802	while (type->cnt + 2 > type->max)
 803		if (memblock_double_array(type, base, size) < 0)
 804			return -ENOMEM;
 805
 806	for_each_memblock_type(idx, type, rgn) {
 807		phys_addr_t rbase = rgn->base;
 808		phys_addr_t rend = rbase + rgn->size;
 809
 810		if (rbase >= end)
 811			break;
 812		if (rend <= base)
 813			continue;
 814
 815		if (rbase < base) {
 816			/*
 817			 * @rgn intersects from below.  Split and continue
 818			 * to process the next region - the new top half.
 819			 */
 820			rgn->base = base;
 821			rgn->size -= base - rbase;
 822			type->total_size -= base - rbase;
 823			memblock_insert_region(type, idx, rbase, base - rbase,
 824					       memblock_get_region_node(rgn),
 825					       rgn->flags);
 826		} else if (rend > end) {
 827			/*
 828			 * @rgn intersects from above.  Split and redo the
 829			 * current region - the new bottom half.
 830			 */
 831			rgn->base = end;
 832			rgn->size -= end - rbase;
 833			type->total_size -= end - rbase;
 834			memblock_insert_region(type, idx--, rbase, end - rbase,
 835					       memblock_get_region_node(rgn),
 836					       rgn->flags);
 837		} else {
 838			/* @rgn is fully contained, record it */
 839			if (!*end_rgn)
 840				*start_rgn = idx;
 841			*end_rgn = idx + 1;
 842		}
 843	}
 844
 845	return 0;
 846}
 847
 848static int __init_memblock memblock_remove_range(struct memblock_type *type,
 849					  phys_addr_t base, phys_addr_t size)
 850{
 851	int start_rgn, end_rgn;
 852	int i, ret;
 853
 854	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 855	if (ret)
 856		return ret;
 857
 858	for (i = end_rgn - 1; i >= start_rgn; i--)
 859		memblock_remove_region(type, i);
 860	return 0;
 861}
 862
 863int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 864{
 865	phys_addr_t end = base + size - 1;
 866
 867	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 868		     &base, &end, (void *)_RET_IP_);
 869
 870	return memblock_remove_range(&memblock.memory, base, size);
 871}
 872
 873/**
 874 * memblock_free - free boot memory allocation
 875 * @ptr: starting address of the  boot memory allocation
 876 * @size: size of the boot memory block in bytes
 877 *
 878 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 879 * The freeing memory will not be released to the buddy allocator.
 880 */
 881void __init_memblock memblock_free(void *ptr, size_t size)
 882{
 883	if (ptr)
 884		memblock_phys_free(__pa(ptr), size);
 885}
 886
 887/**
 888 * memblock_phys_free - free boot memory block
 889 * @base: phys starting address of the  boot memory block
 890 * @size: size of the boot memory block in bytes
 891 *
 892 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 893 * The freeing memory will not be released to the buddy allocator.
 894 */
 895int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 896{
 897	phys_addr_t end = base + size - 1;
 898
 899	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 900		     &base, &end, (void *)_RET_IP_);
 901
 902	kmemleak_free_part_phys(base, size);
 903	return memblock_remove_range(&memblock.reserved, base, size);
 904}
 905
 906int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 
 
 
 907{
 908	phys_addr_t end = base + size - 1;
 
 
 
 909
 910	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 911		     &base, &end, (void *)_RET_IP_);
 912
 913	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 914}
 915
 916#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 917int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 918{
 919	phys_addr_t end = base + size - 1;
 920
 921	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 922		     &base, &end, (void *)_RET_IP_);
 923
 924	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 925}
 926#endif
 927
 928/**
 929 * memblock_setclr_flag - set or clear flag for a memory region
 930 * @type: memblock type to set/clear flag for
 931 * @base: base address of the region
 932 * @size: size of the region
 933 * @set: set or clear the flag
 934 * @flag: the flag to update
 935 *
 936 * This function isolates region [@base, @base + @size), and sets/clears flag
 937 *
 938 * Return: 0 on success, -errno on failure.
 939 */
 940static int __init_memblock memblock_setclr_flag(struct memblock_type *type,
 941				phys_addr_t base, phys_addr_t size, int set, int flag)
 942{
 
 943	int i, ret, start_rgn, end_rgn;
 944
 945	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 946	if (ret)
 947		return ret;
 948
 949	for (i = start_rgn; i < end_rgn; i++) {
 950		struct memblock_region *r = &type->regions[i];
 951
 952		if (set)
 953			r->flags |= flag;
 954		else
 955			r->flags &= ~flag;
 956	}
 957
 958	memblock_merge_regions(type, start_rgn, end_rgn);
 959	return 0;
 960}
 961
 962/**
 963 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 964 * @base: the base phys addr of the region
 965 * @size: the size of the region
 966 *
 967 * Return: 0 on success, -errno on failure.
 968 */
 969int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 970{
 971	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_HOTPLUG);
 972}
 973
 974/**
 975 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 976 * @base: the base phys addr of the region
 977 * @size: the size of the region
 978 *
 979 * Return: 0 on success, -errno on failure.
 980 */
 981int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 982{
 983	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_HOTPLUG);
 984}
 985
 986/**
 987 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 988 * @base: the base phys addr of the region
 989 * @size: the size of the region
 990 *
 991 * Return: 0 on success, -errno on failure.
 992 */
 993int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 994{
 995	if (!mirrored_kernelcore)
 996		return 0;
 997
 998	system_has_some_mirror = true;
 999
1000	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_MIRROR);
1001}
1002
1003/**
1004 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1005 * @base: the base phys addr of the region
1006 * @size: the size of the region
1007 *
1008 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1009 * direct mapping of the physical memory. These regions will still be
1010 * covered by the memory map. The struct page representing NOMAP memory
1011 * frames in the memory map will be PageReserved()
1012 *
1013 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1014 * memblock, the caller must inform kmemleak to ignore that memory
1015 *
1016 * Return: 0 on success, -errno on failure.
1017 */
1018int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
1019{
1020	return memblock_setclr_flag(&memblock.memory, base, size, 1, MEMBLOCK_NOMAP);
1021}
1022
1023/**
1024 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1025 * @base: the base phys addr of the region
1026 * @size: the size of the region
 
1027 *
1028 * Return: 0 on success, -errno on failure.
1029 */
1030int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 
 
1031{
1032	return memblock_setclr_flag(&memblock.memory, base, size, 0, MEMBLOCK_NOMAP);
1033}
1034
1035/**
1036 * memblock_reserved_mark_noinit - Mark a reserved memory region with flag
1037 * MEMBLOCK_RSRV_NOINIT which results in the struct pages not being initialized
1038 * for this region.
1039 * @base: the base phys addr of the region
1040 * @size: the size of the region
1041 *
1042 * struct pages will not be initialized for reserved memory regions marked with
1043 * %MEMBLOCK_RSRV_NOINIT.
1044 *
1045 * Return: 0 on success, -errno on failure.
1046 */
1047int __init_memblock memblock_reserved_mark_noinit(phys_addr_t base, phys_addr_t size)
1048{
1049	return memblock_setclr_flag(&memblock.reserved, base, size, 1,
1050				    MEMBLOCK_RSRV_NOINIT);
1051}
1052
1053static bool should_skip_region(struct memblock_type *type,
1054			       struct memblock_region *m,
1055			       int nid, int flags)
1056{
1057	int m_nid = memblock_get_region_node(m);
1058
1059	/* we never skip regions when iterating memblock.reserved or physmem */
1060	if (type != memblock_memory)
1061		return false;
1062
1063	/* only memory regions are associated with nodes, check it */
1064	if (nid != NUMA_NO_NODE && nid != m_nid)
1065		return true;
1066
1067	/* skip hotpluggable memory regions if needed */
1068	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
1069	    !(flags & MEMBLOCK_HOTPLUG))
1070		return true;
1071
1072	/* if we want mirror memory skip non-mirror memory regions */
1073	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1074		return true;
1075
1076	/* skip nomap memory unless we were asked for it explicitly */
1077	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1078		return true;
1079
1080	/* skip driver-managed memory unless we were asked for it explicitly */
1081	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1082		return true;
1083
1084	return false;
1085}
1086
1087/**
1088 * __next_mem_range - next function for for_each_free_mem_range() etc.
1089 * @idx: pointer to u64 loop variable
1090 * @nid: node selector, %NUMA_NO_NODE for all nodes
1091 * @flags: pick from blocks based on memory attributes
1092 * @type_a: pointer to memblock_type from where the range is taken
1093 * @type_b: pointer to memblock_type which excludes memory from being taken
1094 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1095 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1096 * @out_nid: ptr to int for nid of the range, can be %NULL
1097 *
1098 * Find the first area from *@idx which matches @nid, fill the out
1099 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1100 * *@idx contains index into type_a and the upper 32bit indexes the
1101 * areas before each region in type_b.	For example, if type_b regions
1102 * look like the following,
1103 *
1104 *	0:[0-16), 1:[32-48), 2:[128-130)
1105 *
1106 * The upper 32bit indexes the following regions.
1107 *
1108 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1109 *
1110 * As both region arrays are sorted, the function advances the two indices
1111 * in lockstep and returns each intersection.
1112 */
1113void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1114		      struct memblock_type *type_a,
1115		      struct memblock_type *type_b, phys_addr_t *out_start,
1116		      phys_addr_t *out_end, int *out_nid)
 
1117{
1118	int idx_a = *idx & 0xffffffff;
1119	int idx_b = *idx >> 32;
1120
1121	if (WARN_ONCE(nid == MAX_NUMNODES,
1122	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1123		nid = NUMA_NO_NODE;
1124
1125	for (; idx_a < type_a->cnt; idx_a++) {
1126		struct memblock_region *m = &type_a->regions[idx_a];
1127
1128		phys_addr_t m_start = m->base;
1129		phys_addr_t m_end = m->base + m->size;
1130		int	    m_nid = memblock_get_region_node(m);
1131
1132		if (should_skip_region(type_a, m, nid, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
1133			continue;
1134
1135		if (!type_b) {
1136			if (out_start)
1137				*out_start = m_start;
1138			if (out_end)
1139				*out_end = m_end;
1140			if (out_nid)
1141				*out_nid = m_nid;
1142			idx_a++;
1143			*idx = (u32)idx_a | (u64)idx_b << 32;
1144			return;
1145		}
1146
1147		/* scan areas before each reservation */
1148		for (; idx_b < type_b->cnt + 1; idx_b++) {
1149			struct memblock_region *r;
1150			phys_addr_t r_start;
1151			phys_addr_t r_end;
1152
1153			r = &type_b->regions[idx_b];
1154			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1155			r_end = idx_b < type_b->cnt ?
1156				r->base : PHYS_ADDR_MAX;
1157
1158			/*
1159			 * if idx_b advanced past idx_a,
1160			 * break out to advance idx_a
1161			 */
1162			if (r_start >= m_end)
1163				break;
1164			/* if the two regions intersect, we're done */
1165			if (m_start < r_end) {
1166				if (out_start)
1167					*out_start =
1168						max(m_start, r_start);
1169				if (out_end)
1170					*out_end = min(m_end, r_end);
1171				if (out_nid)
1172					*out_nid = m_nid;
1173				/*
1174				 * The region which ends first is
1175				 * advanced for the next iteration.
1176				 */
1177				if (m_end <= r_end)
1178					idx_a++;
1179				else
1180					idx_b++;
1181				*idx = (u32)idx_a | (u64)idx_b << 32;
1182				return;
1183			}
1184		}
1185	}
1186
1187	/* signal end of iteration */
1188	*idx = ULLONG_MAX;
1189}
1190
1191/**
1192 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1193 *
 
 
 
1194 * @idx: pointer to u64 loop variable
1195 * @nid: node selector, %NUMA_NO_NODE for all nodes
1196 * @flags: pick from blocks based on memory attributes
1197 * @type_a: pointer to memblock_type from where the range is taken
1198 * @type_b: pointer to memblock_type which excludes memory from being taken
1199 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1200 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1201 * @out_nid: ptr to int for nid of the range, can be %NULL
1202 *
1203 * Finds the next range from type_a which is not marked as unsuitable
1204 * in type_b.
1205 *
1206 * Reverse of __next_mem_range().
1207 */
1208void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1209					  enum memblock_flags flags,
1210					  struct memblock_type *type_a,
1211					  struct memblock_type *type_b,
1212					  phys_addr_t *out_start,
1213					  phys_addr_t *out_end, int *out_nid)
1214{
1215	int idx_a = *idx & 0xffffffff;
1216	int idx_b = *idx >> 32;
1217
1218	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1219		nid = NUMA_NO_NODE;
1220
1221	if (*idx == (u64)ULLONG_MAX) {
1222		idx_a = type_a->cnt - 1;
1223		if (type_b != NULL)
1224			idx_b = type_b->cnt;
1225		else
1226			idx_b = 0;
1227	}
1228
1229	for (; idx_a >= 0; idx_a--) {
1230		struct memblock_region *m = &type_a->regions[idx_a];
1231
1232		phys_addr_t m_start = m->base;
1233		phys_addr_t m_end = m->base + m->size;
1234		int m_nid = memblock_get_region_node(m);
1235
1236		if (should_skip_region(type_a, m, nid, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
1237			continue;
1238
1239		if (!type_b) {
1240			if (out_start)
1241				*out_start = m_start;
1242			if (out_end)
1243				*out_end = m_end;
1244			if (out_nid)
1245				*out_nid = m_nid;
1246			idx_a--;
1247			*idx = (u32)idx_a | (u64)idx_b << 32;
1248			return;
1249		}
1250
1251		/* scan areas before each reservation */
1252		for (; idx_b >= 0; idx_b--) {
1253			struct memblock_region *r;
1254			phys_addr_t r_start;
1255			phys_addr_t r_end;
1256
1257			r = &type_b->regions[idx_b];
1258			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1259			r_end = idx_b < type_b->cnt ?
1260				r->base : PHYS_ADDR_MAX;
1261			/*
1262			 * if idx_b advanced past idx_a,
1263			 * break out to advance idx_a
1264			 */
1265
1266			if (r_end <= m_start)
1267				break;
1268			/* if the two regions intersect, we're done */
1269			if (m_end > r_start) {
1270				if (out_start)
1271					*out_start = max(m_start, r_start);
1272				if (out_end)
1273					*out_end = min(m_end, r_end);
1274				if (out_nid)
1275					*out_nid = m_nid;
1276				if (m_start >= r_start)
1277					idx_a--;
1278				else
1279					idx_b--;
1280				*idx = (u32)idx_a | (u64)idx_b << 32;
1281				return;
1282			}
1283		}
1284	}
1285	/* signal end of iteration */
1286	*idx = ULLONG_MAX;
1287}
1288
 
1289/*
1290 * Common iterator interface used to define for_each_mem_pfn_range().
1291 */
1292void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1293				unsigned long *out_start_pfn,
1294				unsigned long *out_end_pfn, int *out_nid)
1295{
1296	struct memblock_type *type = &memblock.memory;
1297	struct memblock_region *r;
1298	int r_nid;
1299
1300	while (++*idx < type->cnt) {
1301		r = &type->regions[*idx];
1302		r_nid = memblock_get_region_node(r);
1303
1304		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1305			continue;
1306		if (nid == MAX_NUMNODES || nid == r_nid)
1307			break;
1308	}
1309	if (*idx >= type->cnt) {
1310		*idx = -1;
1311		return;
1312	}
1313
1314	if (out_start_pfn)
1315		*out_start_pfn = PFN_UP(r->base);
1316	if (out_end_pfn)
1317		*out_end_pfn = PFN_DOWN(r->base + r->size);
1318	if (out_nid)
1319		*out_nid = r_nid;
1320}
1321
1322/**
1323 * memblock_set_node - set node ID on memblock regions
1324 * @base: base of area to set node ID for
1325 * @size: size of area to set node ID for
1326 * @type: memblock type to set node ID for
1327 * @nid: node ID to set
1328 *
1329 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1330 * Regions which cross the area boundaries are split as necessary.
1331 *
1332 * Return:
1333 * 0 on success, -errno on failure.
1334 */
1335int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1336				      struct memblock_type *type, int nid)
1337{
1338#ifdef CONFIG_NUMA
1339	int start_rgn, end_rgn;
1340	int i, ret;
1341
1342	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1343	if (ret)
1344		return ret;
1345
1346	for (i = start_rgn; i < end_rgn; i++)
1347		memblock_set_region_node(&type->regions[i], nid);
1348
1349	memblock_merge_regions(type, start_rgn, end_rgn);
1350#endif
1351	return 0;
1352}
 
 
 
 
 
 
 
1353
1354#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1355/**
1356 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1357 *
1358 * @idx: pointer to u64 loop variable
1359 * @zone: zone in which all of the memory blocks reside
1360 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1361 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1362 *
1363 * This function is meant to be a zone/pfn specific wrapper for the
1364 * for_each_mem_range type iterators. Specifically they are used in the
1365 * deferred memory init routines and as such we were duplicating much of
1366 * this logic throughout the code. So instead of having it in multiple
1367 * locations it seemed like it would make more sense to centralize this to
1368 * one new iterator that does everything they need.
1369 */
1370void __init_memblock
1371__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1372			     unsigned long *out_spfn, unsigned long *out_epfn)
1373{
1374	int zone_nid = zone_to_nid(zone);
1375	phys_addr_t spa, epa;
1376
1377	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1378			 &memblock.memory, &memblock.reserved,
1379			 &spa, &epa, NULL);
1380
1381	while (*idx != U64_MAX) {
1382		unsigned long epfn = PFN_DOWN(epa);
1383		unsigned long spfn = PFN_UP(spa);
1384
 
 
 
1385		/*
1386		 * Verify the end is at least past the start of the zone and
1387		 * that we have at least one PFN to initialize.
1388		 */
1389		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1390			/* if we went too far just stop searching */
1391			if (zone_end_pfn(zone) <= spfn) {
1392				*idx = U64_MAX;
1393				break;
1394			}
1395
1396			if (out_spfn)
1397				*out_spfn = max(zone->zone_start_pfn, spfn);
1398			if (out_epfn)
1399				*out_epfn = min(zone_end_pfn(zone), epfn);
1400
1401			return;
1402		}
1403
1404		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1405				 &memblock.memory, &memblock.reserved,
1406				 &spa, &epa, NULL);
1407	}
 
 
1408
1409	/* signal end of iteration */
1410	if (out_spfn)
1411		*out_spfn = ULONG_MAX;
1412	if (out_epfn)
1413		*out_epfn = 0;
 
1414}
1415
1416#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 
 
 
 
 
1417
1418/**
1419 * memblock_alloc_range_nid - allocate boot memory block
1420 * @size: size of memory block to be allocated in bytes
1421 * @align: alignment of the region and block's size
1422 * @start: the lower bound of the memory region to allocate (phys address)
1423 * @end: the upper bound of the memory region to allocate (phys address)
1424 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1425 * @exact_nid: control the allocation fall back to other nodes
1426 *
1427 * The allocation is performed from memory region limited by
1428 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1429 *
1430 * If the specified node can not hold the requested memory and @exact_nid
1431 * is false, the allocation falls back to any node in the system.
1432 *
1433 * For systems with memory mirroring, the allocation is attempted first
1434 * from the regions with mirroring enabled and then retried from any
1435 * memory region.
1436 *
1437 * In addition, function using kmemleak_alloc_phys for allocated boot
1438 * memory block, it is never reported as leaks.
1439 *
1440 * Return:
1441 * Physical address of allocated memory block on success, %0 on failure.
1442 */
1443phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1444					phys_addr_t align, phys_addr_t start,
1445					phys_addr_t end, int nid,
1446					bool exact_nid)
1447{
1448	enum memblock_flags flags = choose_memblock_flags();
1449	phys_addr_t found;
1450
1451	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1452		nid = NUMA_NO_NODE;
1453
1454	if (!align) {
1455		/* Can't use WARNs this early in boot on powerpc */
1456		dump_stack();
1457		align = SMP_CACHE_BYTES;
1458	}
1459
1460again:
1461	found = memblock_find_in_range_node(size, align, start, end, nid,
1462					    flags);
1463	if (found && !memblock_reserve(found, size))
1464		goto done;
1465
1466	if (nid != NUMA_NO_NODE && !exact_nid) {
1467		found = memblock_find_in_range_node(size, align, start,
1468						    end, NUMA_NO_NODE,
1469						    flags);
1470		if (found && !memblock_reserve(found, size))
1471			goto done;
1472	}
1473
1474	if (flags & MEMBLOCK_MIRROR) {
1475		flags &= ~MEMBLOCK_MIRROR;
1476		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1477			&size);
1478		goto again;
1479	}
 
 
 
 
 
 
 
 
1480
1481	return 0;
 
 
1482
1483done:
1484	/*
1485	 * Skip kmemleak for those places like kasan_init() and
1486	 * early_pgtable_alloc() due to high volume.
1487	 */
1488	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1489		/*
1490		 * Memblock allocated blocks are never reported as
1491		 * leaks. This is because many of these blocks are
1492		 * only referred via the physical address which is
1493		 * not looked up by kmemleak.
1494		 */
1495		kmemleak_alloc_phys(found, size, 0);
1496
1497	/*
1498	 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP,
1499	 * require memory to be accepted before it can be used by the
1500	 * guest.
1501	 *
1502	 * Accept the memory of the allocated buffer.
1503	 */
1504	accept_memory(found, found + size);
1505
1506	return found;
1507}
1508
1509/**
1510 * memblock_phys_alloc_range - allocate a memory block inside specified range
1511 * @size: size of memory block to be allocated in bytes
1512 * @align: alignment of the region and block's size
1513 * @start: the lower bound of the memory region to allocate (physical address)
1514 * @end: the upper bound of the memory region to allocate (physical address)
1515 *
1516 * Allocate @size bytes in the between @start and @end.
1517 *
1518 * Return: physical address of the allocated memory block on success,
1519 * %0 on failure.
1520 */
1521phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1522					     phys_addr_t align,
1523					     phys_addr_t start,
1524					     phys_addr_t end)
1525{
1526	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1527		     __func__, (u64)size, (u64)align, &start, &end,
1528		     (void *)_RET_IP_);
1529	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1530					false);
1531}
1532
1533/**
1534 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1535 * @size: size of memory block to be allocated in bytes
1536 * @align: alignment of the region and block's size
1537 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1538 *
1539 * Allocates memory block from the specified NUMA node. If the node
1540 * has no available memory, attempts to allocated from any node in the
1541 * system.
1542 *
1543 * Return: physical address of the allocated memory block on success,
1544 * %0 on failure.
1545 */
1546phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1547{
1548	return memblock_alloc_range_nid(size, align, 0,
1549					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
 
 
 
1550}
1551
1552/**
1553 * memblock_alloc_internal - allocate boot memory block
1554 * @size: size of memory block to be allocated in bytes
1555 * @align: alignment of the region and block's size
1556 * @min_addr: the lower bound of the memory region to allocate (phys address)
1557 * @max_addr: the upper bound of the memory region to allocate (phys address)
1558 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1559 * @exact_nid: control the allocation fall back to other nodes
1560 *
1561 * Allocates memory block using memblock_alloc_range_nid() and
1562 * converts the returned physical address to virtual.
 
 
 
 
 
 
 
 
 
 
1563 *
1564 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1565 * will fall back to memory below @min_addr. Other constraints, such
1566 * as node and mirrored memory will be handled again in
1567 * memblock_alloc_range_nid().
1568 *
1569 * Return:
1570 * Virtual address of allocated memory block on success, NULL on failure.
1571 */
1572static void * __init memblock_alloc_internal(
1573				phys_addr_t size, phys_addr_t align,
1574				phys_addr_t min_addr, phys_addr_t max_addr,
1575				int nid, bool exact_nid)
1576{
1577	phys_addr_t alloc;
 
 
 
 
 
1578
1579	/*
1580	 * Detect any accidental use of these APIs after slab is ready, as at
1581	 * this moment memblock may be deinitialized already and its
1582	 * internal data may be destroyed (after execution of memblock_free_all)
1583	 */
1584	if (WARN_ON_ONCE(slab_is_available()))
1585		return kzalloc_node(size, GFP_NOWAIT, nid);
1586
 
 
 
1587	if (max_addr > memblock.current_limit)
1588		max_addr = memblock.current_limit;
1589
1590	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1591					exact_nid);
 
 
 
 
 
 
 
 
 
 
 
1592
1593	/* retry allocation without lower limit */
1594	if (!alloc && min_addr)
1595		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1596						exact_nid);
1597
1598	if (!alloc)
1599		return NULL;
 
 
 
 
1600
1601	return phys_to_virt(alloc);
1602}
 
 
 
1603
1604/**
1605 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1606 * without zeroing memory
1607 * @size: size of memory block to be allocated in bytes
1608 * @align: alignment of the region and block's size
1609 * @min_addr: the lower bound of the memory region from where the allocation
1610 *	  is preferred (phys address)
1611 * @max_addr: the upper bound of the memory region from where the allocation
1612 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1613 *	      allocate only from memory limited by memblock.current_limit value
1614 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1615 *
1616 * Public function, provides additional debug information (including caller
1617 * info), if enabled. Does not zero allocated memory.
1618 *
1619 * Return:
1620 * Virtual address of allocated memory block on success, NULL on failure.
1621 */
1622void * __init memblock_alloc_exact_nid_raw(
1623			phys_addr_t size, phys_addr_t align,
1624			phys_addr_t min_addr, phys_addr_t max_addr,
1625			int nid)
1626{
1627	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1628		     __func__, (u64)size, (u64)align, nid, &min_addr,
1629		     &max_addr, (void *)_RET_IP_);
1630
1631	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1632				       true);
1633}
1634
1635/**
1636 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1637 * memory and without panicking
1638 * @size: size of memory block to be allocated in bytes
1639 * @align: alignment of the region and block's size
1640 * @min_addr: the lower bound of the memory region from where the allocation
1641 *	  is preferred (phys address)
1642 * @max_addr: the upper bound of the memory region from where the allocation
1643 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1644 *	      allocate only from memory limited by memblock.current_limit value
1645 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1646 *
1647 * Public function, provides additional debug information (including caller
1648 * info), if enabled. Does not zero allocated memory, does not panic if request
1649 * cannot be satisfied.
1650 *
1651 * Return:
1652 * Virtual address of allocated memory block on success, NULL on failure.
1653 */
1654void * __init memblock_alloc_try_nid_raw(
1655			phys_addr_t size, phys_addr_t align,
1656			phys_addr_t min_addr, phys_addr_t max_addr,
1657			int nid)
1658{
1659	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1660		     __func__, (u64)size, (u64)align, nid, &min_addr,
1661		     &max_addr, (void *)_RET_IP_);
1662
1663	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1664				       false);
1665}
1666
1667/**
1668 * memblock_alloc_try_nid - allocate boot memory block
1669 * @size: size of memory block to be allocated in bytes
1670 * @align: alignment of the region and block's size
1671 * @min_addr: the lower bound of the memory region from where the allocation
1672 *	  is preferred (phys address)
1673 * @max_addr: the upper bound of the memory region from where the allocation
1674 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1675 *	      allocate only from memory limited by memblock.current_limit value
1676 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1677 *
1678 * Public function, provides additional debug information (including caller
1679 * info), if enabled. This function zeroes the allocated memory.
 
1680 *
1681 * Return:
1682 * Virtual address of allocated memory block on success, NULL on failure.
1683 */
1684void * __init memblock_alloc_try_nid(
1685			phys_addr_t size, phys_addr_t align,
1686			phys_addr_t min_addr, phys_addr_t max_addr,
1687			int nid)
1688{
1689	void *ptr;
1690
1691	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1692		     __func__, (u64)size, (u64)align, nid, &min_addr,
1693		     &max_addr, (void *)_RET_IP_);
1694	ptr = memblock_alloc_internal(size, align,
1695					   min_addr, max_addr, nid, false);
1696	if (ptr)
1697		memset(ptr, 0, size);
1698
1699	return ptr;
 
 
 
1700}
1701
1702/**
1703 * memblock_free_late - free pages directly to buddy allocator
1704 * @base: phys starting address of the  boot memory block
1705 * @size: size of the boot memory block in bytes
1706 *
1707 * This is only useful when the memblock allocator has already been torn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708 * down, but we are still initializing the system.  Pages are released directly
1709 * to the buddy allocator.
1710 */
1711void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1712{
1713	phys_addr_t cursor, end;
1714
1715	end = base + size - 1;
1716	memblock_dbg("%s: [%pa-%pa] %pS\n",
1717		     __func__, &base, &end, (void *)_RET_IP_);
1718	kmemleak_free_part_phys(base, size);
1719	cursor = PFN_UP(base);
1720	end = PFN_DOWN(base + size);
1721
1722	for (; cursor < end; cursor++) {
1723		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1724		totalram_pages_inc();
1725	}
1726}
1727
1728/*
1729 * Remaining API functions
1730 */
1731
1732phys_addr_t __init_memblock memblock_phys_mem_size(void)
1733{
1734	return memblock.memory.total_size;
1735}
1736
1737phys_addr_t __init_memblock memblock_reserved_size(void)
1738{
1739	return memblock.reserved.total_size;
 
 
 
 
 
 
 
 
 
 
 
 
1740}
1741
1742/* lowest address */
1743phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1744{
1745	return memblock.memory.regions[0].base;
1746}
1747
1748phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1749{
1750	int idx = memblock.memory.cnt - 1;
1751
1752	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1753}
1754
1755static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1756{
1757	phys_addr_t max_addr = PHYS_ADDR_MAX;
1758	struct memblock_region *r;
1759
1760	/*
1761	 * translate the memory @limit size into the max address within one of
1762	 * the memory memblock regions, if the @limit exceeds the total size
1763	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1764	 */
1765	for_each_mem_region(r) {
1766		if (limit <= r->size) {
1767			max_addr = r->base + limit;
1768			break;
1769		}
1770		limit -= r->size;
1771	}
1772
1773	return max_addr;
1774}
1775
1776void __init memblock_enforce_memory_limit(phys_addr_t limit)
1777{
1778	phys_addr_t max_addr;
1779
1780	if (!limit)
1781		return;
1782
1783	max_addr = __find_max_addr(limit);
1784
1785	/* @limit exceeds the total size of the memory, do nothing */
1786	if (max_addr == PHYS_ADDR_MAX)
1787		return;
1788
1789	/* truncate both memory and reserved regions */
1790	memblock_remove_range(&memblock.memory, max_addr,
1791			      PHYS_ADDR_MAX);
1792	memblock_remove_range(&memblock.reserved, max_addr,
1793			      PHYS_ADDR_MAX);
1794}
1795
1796void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1797{
1798	int start_rgn, end_rgn;
1799	int i, ret;
1800
1801	if (!size)
1802		return;
1803
1804	if (!memblock_memory->total_size) {
1805		pr_warn("%s: No memory registered yet\n", __func__);
1806		return;
1807	}
1808
1809	ret = memblock_isolate_range(&memblock.memory, base, size,
1810						&start_rgn, &end_rgn);
1811	if (ret)
1812		return;
1813
1814	/* remove all the MAP regions */
1815	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1816		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1817			memblock_remove_region(&memblock.memory, i);
1818
1819	for (i = start_rgn - 1; i >= 0; i--)
1820		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1821			memblock_remove_region(&memblock.memory, i);
1822
1823	/* truncate the reserved regions */
1824	memblock_remove_range(&memblock.reserved, 0, base);
1825	memblock_remove_range(&memblock.reserved,
1826			base + size, PHYS_ADDR_MAX);
1827}
1828
1829void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1830{
1831	phys_addr_t max_addr;
1832
1833	if (!limit)
1834		return;
1835
1836	max_addr = __find_max_addr(limit);
1837
1838	/* @limit exceeds the total size of the memory, do nothing */
1839	if (max_addr == PHYS_ADDR_MAX)
1840		return;
1841
1842	memblock_cap_memory_range(0, max_addr);
1843}
1844
1845static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1846{
1847	unsigned int left = 0, right = type->cnt;
1848
1849	do {
1850		unsigned int mid = (right + left) / 2;
1851
1852		if (addr < type->regions[mid].base)
1853			right = mid;
1854		else if (addr >= (type->regions[mid].base +
1855				  type->regions[mid].size))
1856			left = mid + 1;
1857		else
1858			return mid;
1859	} while (left < right);
1860	return -1;
1861}
1862
1863bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1864{
1865	return memblock_search(&memblock.reserved, addr) != -1;
1866}
1867
1868bool __init_memblock memblock_is_memory(phys_addr_t addr)
1869{
1870	return memblock_search(&memblock.memory, addr) != -1;
1871}
1872
1873bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1874{
1875	int i = memblock_search(&memblock.memory, addr);
1876
1877	if (i == -1)
1878		return false;
1879	return !memblock_is_nomap(&memblock.memory.regions[i]);
1880}
1881
 
1882int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1883			 unsigned long *start_pfn, unsigned long *end_pfn)
1884{
1885	struct memblock_type *type = &memblock.memory;
1886	int mid = memblock_search(type, PFN_PHYS(pfn));
1887
1888	if (mid == -1)
1889		return NUMA_NO_NODE;
1890
1891	*start_pfn = PFN_DOWN(type->regions[mid].base);
1892	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1893
1894	return memblock_get_region_node(&type->regions[mid]);
1895}
 
1896
1897/**
1898 * memblock_is_region_memory - check if a region is a subset of memory
1899 * @base: base of region to check
1900 * @size: size of region to check
1901 *
1902 * Check if the region [@base, @base + @size) is a subset of a memory block.
1903 *
1904 * Return:
1905 * 0 if false, non-zero if true
1906 */
1907bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1908{
1909	int idx = memblock_search(&memblock.memory, base);
1910	phys_addr_t end = base + memblock_cap_size(base, &size);
1911
1912	if (idx == -1)
1913		return false;
1914	return (memblock.memory.regions[idx].base +
 
1915		 memblock.memory.regions[idx].size) >= end;
1916}
1917
1918/**
1919 * memblock_is_region_reserved - check if a region intersects reserved memory
1920 * @base: base of region to check
1921 * @size: size of region to check
1922 *
1923 * Check if the region [@base, @base + @size) intersects a reserved
1924 * memory block.
1925 *
1926 * Return:
1927 * True if they intersect, false if not.
1928 */
1929bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1930{
 
1931	return memblock_overlaps_region(&memblock.reserved, base, size);
1932}
1933
1934void __init_memblock memblock_trim_memory(phys_addr_t align)
1935{
1936	phys_addr_t start, end, orig_start, orig_end;
1937	struct memblock_region *r;
1938
1939	for_each_mem_region(r) {
1940		orig_start = r->base;
1941		orig_end = r->base + r->size;
1942		start = round_up(orig_start, align);
1943		end = round_down(orig_end, align);
1944
1945		if (start == orig_start && end == orig_end)
1946			continue;
1947
1948		if (start < end) {
1949			r->base = start;
1950			r->size = end - start;
1951		} else {
1952			memblock_remove_region(&memblock.memory,
1953					       r - memblock.memory.regions);
1954			r--;
1955		}
1956	}
1957}
1958
1959void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1960{
1961	memblock.current_limit = limit;
1962}
1963
1964phys_addr_t __init_memblock memblock_get_current_limit(void)
1965{
1966	return memblock.current_limit;
1967}
1968
1969static void __init_memblock memblock_dump(struct memblock_type *type)
1970{
1971	phys_addr_t base, end, size;
1972	enum memblock_flags flags;
1973	int idx;
1974	struct memblock_region *rgn;
1975
1976	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1977
1978	for_each_memblock_type(idx, type, rgn) {
1979		char nid_buf[32] = "";
1980
1981		base = rgn->base;
1982		size = rgn->size;
1983		end = base + size - 1;
1984		flags = rgn->flags;
1985#ifdef CONFIG_NUMA
1986		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1987			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1988				 memblock_get_region_node(rgn));
1989#endif
1990		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1991			type->name, idx, &base, &end, &size, nid_buf, flags);
1992	}
1993}
1994
1995static void __init_memblock __memblock_dump_all(void)
1996{
1997	pr_info("MEMBLOCK configuration:\n");
1998	pr_info(" memory size = %pa reserved size = %pa\n",
1999		&memblock.memory.total_size,
2000		&memblock.reserved.total_size);
2001
2002	memblock_dump(&memblock.memory);
2003	memblock_dump(&memblock.reserved);
2004#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2005	memblock_dump(&physmem);
2006#endif
2007}
2008
2009void __init_memblock memblock_dump_all(void)
2010{
2011	if (memblock_debug)
2012		__memblock_dump_all();
2013}
2014
2015void __init memblock_allow_resize(void)
2016{
2017	memblock_can_resize = 1;
2018}
2019
2020static int __init early_memblock(char *p)
2021{
2022	if (p && strstr(p, "debug"))
2023		memblock_debug = 1;
2024	return 0;
2025}
2026early_param("memblock", early_memblock);
2027
2028static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
2029{
2030	struct page *start_pg, *end_pg;
2031	phys_addr_t pg, pgend;
2032
2033	/*
2034	 * Convert start_pfn/end_pfn to a struct page pointer.
2035	 */
2036	start_pg = pfn_to_page(start_pfn - 1) + 1;
2037	end_pg = pfn_to_page(end_pfn - 1) + 1;
2038
2039	/*
2040	 * Convert to physical addresses, and round start upwards and end
2041	 * downwards.
2042	 */
2043	pg = PAGE_ALIGN(__pa(start_pg));
2044	pgend = __pa(end_pg) & PAGE_MASK;
2045
2046	/*
2047	 * If there are free pages between these, free the section of the
2048	 * memmap array.
2049	 */
2050	if (pg < pgend)
2051		memblock_phys_free(pg, pgend - pg);
2052}
2053
2054/*
2055 * The mem_map array can get very big.  Free the unused area of the memory map.
2056 */
2057static void __init free_unused_memmap(void)
2058{
2059	unsigned long start, end, prev_end = 0;
 
2060	int i;
2061
2062	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
2063	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
2064		return;
2065
2066	/*
2067	 * This relies on each bank being in address order.
2068	 * The banks are sorted previously in bootmem_init().
2069	 */
2070	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
2071#ifdef CONFIG_SPARSEMEM
2072		/*
2073		 * Take care not to free memmap entries that don't exist
2074		 * due to SPARSEMEM sections which aren't present.
2075		 */
2076		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
2077#endif
2078		/*
2079		 * Align down here since many operations in VM subsystem
2080		 * presume that there are no holes in the memory map inside
2081		 * a pageblock
2082		 */
2083		start = pageblock_start_pfn(start);
2084
2085		/*
2086		 * If we had a previous bank, and there is a space
2087		 * between the current bank and the previous, free it.
2088		 */
2089		if (prev_end && prev_end < start)
2090			free_memmap(prev_end, start);
2091
2092		/*
2093		 * Align up here since many operations in VM subsystem
2094		 * presume that there are no holes in the memory map inside
2095		 * a pageblock
2096		 */
2097		prev_end = pageblock_align(end);
2098	}
2099
2100#ifdef CONFIG_SPARSEMEM
2101	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2102		prev_end = pageblock_align(end);
2103		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2104	}
2105#endif
2106}
2107
2108static void __init __free_pages_memory(unsigned long start, unsigned long end)
2109{
2110	int order;
2111
2112	while (start < end) {
2113		/*
2114		 * Free the pages in the largest chunks alignment allows.
2115		 *
2116		 * __ffs() behaviour is undefined for 0. start == 0 is
2117		 * MAX_PAGE_ORDER-aligned, set order to MAX_PAGE_ORDER for
2118		 * the case.
2119		 */
2120		if (start)
2121			order = min_t(int, MAX_PAGE_ORDER, __ffs(start));
2122		else
2123			order = MAX_PAGE_ORDER;
 
 
2124
2125		while (start + (1UL << order) > end)
2126			order--;
2127
2128		memblock_free_pages(pfn_to_page(start), start, order);
2129
2130		start += (1UL << order);
2131	}
 
2132}
2133
2134static unsigned long __init __free_memory_core(phys_addr_t start,
2135				 phys_addr_t end)
2136{
2137	unsigned long start_pfn = PFN_UP(start);
2138	unsigned long end_pfn = min_t(unsigned long,
2139				      PFN_DOWN(end), max_low_pfn);
2140
2141	if (start_pfn >= end_pfn)
2142		return 0;
2143
2144	__free_pages_memory(start_pfn, end_pfn);
2145
2146	return end_pfn - start_pfn;
2147}
2148
2149static void __init memmap_init_reserved_pages(void)
2150{
2151	struct memblock_region *region;
2152	phys_addr_t start, end;
2153	int nid;
2154
2155	/*
2156	 * set nid on all reserved pages and also treat struct
2157	 * pages for the NOMAP regions as PageReserved
2158	 */
2159	for_each_mem_region(region) {
2160		nid = memblock_get_region_node(region);
2161		start = region->base;
2162		end = start + region->size;
2163
2164		if (memblock_is_nomap(region))
2165			reserve_bootmem_region(start, end, nid);
2166
2167		memblock_set_node(start, end, &memblock.reserved, nid);
2168	}
2169
2170	/*
2171	 * initialize struct pages for reserved regions that don't have
2172	 * the MEMBLOCK_RSRV_NOINIT flag set
2173	 */
2174	for_each_reserved_mem_region(region) {
2175		if (!memblock_is_reserved_noinit(region)) {
2176			nid = memblock_get_region_node(region);
2177			start = region->base;
2178			end = start + region->size;
2179
2180			if (nid == NUMA_NO_NODE || nid >= MAX_NUMNODES)
2181				nid = early_pfn_to_nid(PFN_DOWN(start));
2182
2183			reserve_bootmem_region(start, end, nid);
2184		}
2185	}
2186}
2187
2188static unsigned long __init free_low_memory_core_early(void)
2189{
2190	unsigned long count = 0;
2191	phys_addr_t start, end;
2192	u64 i;
2193
2194	memblock_clear_hotplug(0, -1);
2195
2196	memmap_init_reserved_pages();
2197
2198	/*
2199	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2200	 *  because in some case like Node0 doesn't have RAM installed
2201	 *  low ram will be on Node1
2202	 */
2203	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2204				NULL)
2205		count += __free_memory_core(start, end);
2206
2207	return count;
2208}
2209
2210static int reset_managed_pages_done __initdata;
2211
2212static void __init reset_node_managed_pages(pg_data_t *pgdat)
2213{
2214	struct zone *z;
2215
2216	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2217		atomic_long_set(&z->managed_pages, 0);
2218}
2219
2220void __init reset_all_zones_managed_pages(void)
2221{
2222	struct pglist_data *pgdat;
2223
2224	if (reset_managed_pages_done)
2225		return;
2226
2227	for_each_online_pgdat(pgdat)
2228		reset_node_managed_pages(pgdat);
2229
2230	reset_managed_pages_done = 1;
2231}
2232
2233/**
2234 * memblock_free_all - release free pages to the buddy allocator
2235 */
2236void __init memblock_free_all(void)
2237{
2238	unsigned long pages;
2239
2240	free_unused_memmap();
2241	reset_all_zones_managed_pages();
2242
2243	pages = free_low_memory_core_early();
2244	totalram_pages_add(pages);
2245}
2246
2247#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2248static const char * const flagname[] = {
2249	[ilog2(MEMBLOCK_HOTPLUG)] = "HOTPLUG",
2250	[ilog2(MEMBLOCK_MIRROR)] = "MIRROR",
2251	[ilog2(MEMBLOCK_NOMAP)] = "NOMAP",
2252	[ilog2(MEMBLOCK_DRIVER_MANAGED)] = "DRV_MNG",
2253	[ilog2(MEMBLOCK_RSRV_NOINIT)] = "RSV_NIT",
2254};
2255
2256static int memblock_debug_show(struct seq_file *m, void *private)
2257{
2258	struct memblock_type *type = m->private;
2259	struct memblock_region *reg;
2260	int i, j, nid;
2261	unsigned int count = ARRAY_SIZE(flagname);
2262	phys_addr_t end;
2263
2264	for (i = 0; i < type->cnt; i++) {
2265		reg = &type->regions[i];
2266		end = reg->base + reg->size - 1;
2267		nid = memblock_get_region_node(reg);
2268
2269		seq_printf(m, "%4d: ", i);
2270		seq_printf(m, "%pa..%pa ", &reg->base, &end);
2271		if (nid != MAX_NUMNODES)
2272			seq_printf(m, "%4d ", nid);
2273		else
2274			seq_printf(m, "%4c ", 'x');
2275		if (reg->flags) {
2276			for (j = 0; j < count; j++) {
2277				if (reg->flags & (1U << j)) {
2278					seq_printf(m, "%s\n", flagname[j]);
2279					break;
2280				}
2281			}
2282			if (j == count)
2283				seq_printf(m, "%s\n", "UNKNOWN");
2284		} else {
2285			seq_printf(m, "%s\n", "NONE");
2286		}
2287	}
2288	return 0;
2289}
2290DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2291
2292static int __init memblock_init_debugfs(void)
2293{
2294	struct dentry *root = debugfs_create_dir("memblock", NULL);
2295
2296	debugfs_create_file("memory", 0444, root,
2297			    &memblock.memory, &memblock_debug_fops);
2298	debugfs_create_file("reserved", 0444, root,
2299			    &memblock.reserved, &memblock_debug_fops);
2300#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2301	debugfs_create_file("physmem", 0444, root, &physmem,
2302			    &memblock_debug_fops);
2303#endif
2304
2305	return 0;
2306}
2307__initcall(memblock_init_debugfs);
2308
2309#endif /* CONFIG_DEBUG_FS */