Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15#include <linux/debugfs.h>
 
 
 16
 17/*
 18 *	Smarter SMP flushing macros.
 19 *		c/o Linus Torvalds.
 20 *
 21 *	These mean you can really definitely utterly forget about
 22 *	writing to user space from interrupts. (Its not allowed anyway).
 23 *
 24 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 25 *
 26 *	More scalable flush, from Andi Kleen
 27 *
 28 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 
 
 
 
 
 
 
 
 29 */
 30
 31struct flush_tlb_info {
 32	struct mm_struct *flush_mm;
 33	unsigned long flush_start;
 34	unsigned long flush_end;
 35};
 
 
 
 
 
 
 
 
 
 
 
 36
 37/*
 38 * We cannot call mmdrop() because we are in interrupt context,
 39 * instead update mm->cpu_vm_mask.
 40 */
 41void leave_mm(int cpu)
 42{
 43	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 44	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 45		BUG();
 46	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
 47		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
 48		load_cr3(swapper_pg_dir);
 49		/*
 50		 * This gets called in the idle path where RCU
 51		 * functions differently.  Tracing normally
 52		 * uses RCU, so we have to call the tracepoint
 53		 * specially here.
 54		 */
 55		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 56	}
 57}
 58EXPORT_SYMBOL_GPL(leave_mm);
 59
 60/*
 
 61 * The flush IPI assumes that a thread switch happens in this order:
 62 * [cpu0: the cpu that switches]
 63 * 1) switch_mm() either 1a) or 1b)
 64 * 1a) thread switch to a different mm
 65 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 66 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 67 *	if cpu0 was in lazy tlb mode.
 68 * 1a2) update cpu active_mm
 
 
 
 
 
 69 *	Now cpu0 accepts tlb flushes for the new mm.
 70 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
 71 *	Now the other cpus will send tlb flush ipis.
 72 * 1a4) change cr3.
 73 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 74 *	Stop ipi delivery for the old mm. This is not synchronized with
 75 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 76 *	mm, and in the worst case we perform a superfluous tlb flush.
 77 * 1b) thread switch without mm change
 78 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 79 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 
 80 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 81 *	Atomically set the bit [other cpus will start sending flush ipis],
 82 *	and test the bit.
 83 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 84 * 2) switch %%esp, ie current
 85 *
 86 * The interrupt must handle 2 special cases:
 87 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 88 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 89 *   runs in kernel space, the cpu could load tlb entries for user space
 90 *   pages.
 91 *
 92 * The good news is that cpu_tlbstate is local to each cpu, no
 93 * write/read ordering problems.
 94 */
 95
 96/*
 97 * TLB flush funcation:
 
 98 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 99 * 2) Leave the mm if we are in the lazy tlb mode.
 
 
100 */
101static void flush_tlb_func(void *info)
102{
103	struct flush_tlb_info *f = info;
104
105	inc_irq_stat(irq_tlb_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
107	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
108		return;
 
 
 
 
 
109
110	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
111	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
112		if (f->flush_end == TLB_FLUSH_ALL) {
113			local_flush_tlb();
114			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
115		} else {
116			unsigned long addr;
117			unsigned long nr_pages =
118				(f->flush_end - f->flush_start) / PAGE_SIZE;
119			addr = f->flush_start;
120			while (addr < f->flush_end) {
121				__flush_tlb_single(addr);
122				addr += PAGE_SIZE;
123			}
124			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
125		}
126	} else
127		leave_mm(smp_processor_id());
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129}
130
131void native_flush_tlb_others(const struct cpumask *cpumask,
132				 struct mm_struct *mm, unsigned long start,
133				 unsigned long end)
134{
135	struct flush_tlb_info info;
 
136
137	if (end == 0)
138		end = start + PAGE_SIZE;
139	info.flush_mm = mm;
140	info.flush_start = start;
141	info.flush_end = end;
142
143	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
144	if (end == TLB_FLUSH_ALL)
145		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
146	else
147		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
148				(end - start) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
 
 
150	if (is_uv_system()) {
151		unsigned int cpu;
152
153		cpu = smp_processor_id();
154		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
155		if (cpumask)
156			smp_call_function_many(cpumask, flush_tlb_func,
157								&info, 1);
158		return;
159	}
160	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161}
 
162
163void flush_tlb_current_task(void)
164{
165	struct mm_struct *mm = current->mm;
166
167	preempt_disable();
168
169	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
170
171	/* This is an implicit full barrier that synchronizes with switch_mm. */
172	local_flush_tlb();
173
174	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
175	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
176		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
177	preempt_enable();
178}
179
180/*
181 * See Documentation/x86/tlb.txt for details.  We choose 33
182 * because it is large enough to cover the vast majority (at
183 * least 95%) of allocations, and is small enough that we are
184 * confident it will not cause too much overhead.  Each single
185 * flush is about 100 ns, so this caps the maximum overhead at
186 * _about_ 3,000 ns.
187 *
188 * This is in units of pages.
189 */
190static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
191
192void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
193				unsigned long end, unsigned long vmflag)
194{
195	unsigned long addr;
196	/* do a global flush by default */
197	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
198
199	preempt_disable();
200	if (current->active_mm != mm) {
201		/* Synchronize with switch_mm. */
202		smp_mb();
203
204		goto out;
205	}
206
207	if (!current->mm) {
208		leave_mm(smp_processor_id());
209
210		/* Synchronize with switch_mm. */
211		smp_mb();
212
213		goto out;
214	}
215
216	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
217		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
218
219	/*
220	 * Both branches below are implicit full barriers (MOV to CR or
221	 * INVLPG) that synchronize with switch_mm.
222	 */
223	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
224		base_pages_to_flush = TLB_FLUSH_ALL;
225		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
226		local_flush_tlb();
227	} else {
228		/* flush range by one by one 'invlpg' */
229		for (addr = start; addr < end;	addr += PAGE_SIZE) {
230			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
231			__flush_tlb_single(addr);
232		}
233	}
234	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
235out:
236	if (base_pages_to_flush == TLB_FLUSH_ALL) {
237		start = 0UL;
238		end = TLB_FLUSH_ALL;
239	}
240	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
241		flush_tlb_others(mm_cpumask(mm), mm, start, end);
 
242	preempt_enable();
243}
244
245void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
246{
247	struct mm_struct *mm = vma->vm_mm;
248
249	preempt_disable();
250
251	if (current->active_mm == mm) {
252		if (current->mm) {
253			/*
254			 * Implicit full barrier (INVLPG) that synchronizes
255			 * with switch_mm.
256			 */
257			__flush_tlb_one(start);
258		} else {
259			leave_mm(smp_processor_id());
260
261			/* Synchronize with switch_mm. */
262			smp_mb();
263		}
264	}
265
266	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
267		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
268
269	preempt_enable();
270}
271
272static void do_flush_tlb_all(void *info)
273{
274	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
275	__flush_tlb_all();
276	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
277		leave_mm(smp_processor_id());
278}
279
280void flush_tlb_all(void)
281{
282	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
283	on_each_cpu(do_flush_tlb_all, NULL, 1);
284}
285
286static void do_kernel_range_flush(void *info)
287{
288	struct flush_tlb_info *f = info;
289	unsigned long addr;
290
291	/* flush range by one by one 'invlpg' */
292	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
293		__flush_tlb_single(addr);
294}
295
296void flush_tlb_kernel_range(unsigned long start, unsigned long end)
297{
298
299	/* Balance as user space task's flush, a bit conservative */
300	if (end == TLB_FLUSH_ALL ||
301	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
302		on_each_cpu(do_flush_tlb_all, NULL, 1);
303	} else {
304		struct flush_tlb_info info;
305		info.flush_start = start;
306		info.flush_end = end;
307		on_each_cpu(do_kernel_range_flush, &info, 1);
308	}
309}
310
311static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
312			     size_t count, loff_t *ppos)
313{
314	char buf[32];
315	unsigned int len;
316
317	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
318	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
319}
320
321static ssize_t tlbflush_write_file(struct file *file,
322		 const char __user *user_buf, size_t count, loff_t *ppos)
323{
324	char buf[32];
325	ssize_t len;
326	int ceiling;
327
328	len = min(count, sizeof(buf) - 1);
329	if (copy_from_user(buf, user_buf, len))
330		return -EFAULT;
331
332	buf[len] = '\0';
333	if (kstrtoint(buf, 0, &ceiling))
334		return -EINVAL;
335
336	if (ceiling < 0)
337		return -EINVAL;
338
339	tlb_single_page_flush_ceiling = ceiling;
340	return count;
341}
342
343static const struct file_operations fops_tlbflush = {
344	.read = tlbflush_read_file,
345	.write = tlbflush_write_file,
346	.llseek = default_llseek,
347};
348
349static int __init create_tlb_single_page_flush_ceiling(void)
350{
351	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
352			    arch_debugfs_dir, NULL, &fops_tlbflush);
353	return 0;
354}
355late_initcall(create_tlb_single_page_flush_ceiling);
v3.1
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15
 16DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
 17			= { &init_mm, 0, };
 18
 19/*
 20 *	Smarter SMP flushing macros.
 21 *		c/o Linus Torvalds.
 22 *
 23 *	These mean you can really definitely utterly forget about
 24 *	writing to user space from interrupts. (Its not allowed anyway).
 25 *
 26 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 27 *
 28 *	More scalable flush, from Andi Kleen
 29 *
 30 *	To avoid global state use 8 different call vectors.
 31 *	Each CPU uses a specific vector to trigger flushes on other
 32 *	CPUs. Depending on the received vector the target CPUs look into
 33 *	the right array slot for the flush data.
 34 *
 35 *	With more than 8 CPUs they are hashed to the 8 available
 36 *	vectors. The limited global vector space forces us to this right now.
 37 *	In future when interrupts are split into per CPU domains this could be
 38 *	fixed, at the cost of triggering multiple IPIs in some cases.
 39 */
 40
 41union smp_flush_state {
 42	struct {
 43		struct mm_struct *flush_mm;
 44		unsigned long flush_va;
 45		raw_spinlock_t tlbstate_lock;
 46		DECLARE_BITMAP(flush_cpumask, NR_CPUS);
 47	};
 48	char pad[INTERNODE_CACHE_BYTES];
 49} ____cacheline_internodealigned_in_smp;
 50
 51/* State is put into the per CPU data section, but padded
 52   to a full cache line because other CPUs can access it and we don't
 53   want false sharing in the per cpu data segment. */
 54static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
 55
 56static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset);
 57
 58/*
 59 * We cannot call mmdrop() because we are in interrupt context,
 60 * instead update mm->cpu_vm_mask.
 61 */
 62void leave_mm(int cpu)
 63{
 64	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 
 65		BUG();
 66	cpumask_clear_cpu(cpu,
 67			  mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
 68	load_cr3(swapper_pg_dir);
 
 
 
 
 
 
 
 
 69}
 70EXPORT_SYMBOL_GPL(leave_mm);
 71
 72/*
 73 *
 74 * The flush IPI assumes that a thread switch happens in this order:
 75 * [cpu0: the cpu that switches]
 76 * 1) switch_mm() either 1a) or 1b)
 77 * 1a) thread switch to a different mm
 78 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
 79 *	Stop ipi delivery for the old mm. This is not synchronized with
 80 *	the other cpus, but smp_invalidate_interrupt ignore flush ipis
 81 *	for the wrong mm, and in the worst case we perform a superfluous
 82 *	tlb flush.
 83 * 1a2) set cpu mmu_state to TLBSTATE_OK
 84 *	Now the smp_invalidate_interrupt won't call leave_mm if cpu0
 85 *	was in lazy tlb mode.
 86 * 1a3) update cpu active_mm
 87 *	Now cpu0 accepts tlb flushes for the new mm.
 88 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
 89 *	Now the other cpus will send tlb flush ipis.
 90 * 1a4) change cr3.
 
 
 
 
 91 * 1b) thread switch without mm change
 92 *	cpu active_mm is correct, cpu0 already handles
 93 *	flush ipis.
 94 * 1b1) set cpu mmu_state to TLBSTATE_OK
 95 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 96 *	Atomically set the bit [other cpus will start sending flush ipis],
 97 *	and test the bit.
 98 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 99 * 2) switch %%esp, ie current
100 *
101 * The interrupt must handle 2 special cases:
102 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
103 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
104 *   runs in kernel space, the cpu could load tlb entries for user space
105 *   pages.
106 *
107 * The good news is that cpu mmu_state is local to each cpu, no
108 * write/read ordering problems.
109 */
110
111/*
112 * TLB flush IPI:
113 *
114 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
115 * 2) Leave the mm if we are in the lazy tlb mode.
116 *
117 * Interrupts are disabled.
118 */
 
 
 
119
120/*
121 * FIXME: use of asmlinkage is not consistent.  On x86_64 it's noop
122 * but still used for documentation purpose but the usage is slightly
123 * inconsistent.  On x86_32, asmlinkage is regparm(0) but interrupt
124 * entry calls in with the first parameter in %eax.  Maybe define
125 * intrlinkage?
126 */
127#ifdef CONFIG_X86_64
128asmlinkage
129#endif
130void smp_invalidate_interrupt(struct pt_regs *regs)
131{
132	unsigned int cpu;
133	unsigned int sender;
134	union smp_flush_state *f;
135
136	cpu = smp_processor_id();
137	/*
138	 * orig_rax contains the negated interrupt vector.
139	 * Use that to determine where the sender put the data.
140	 */
141	sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
142	f = &flush_state[sender];
143
144	if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
145		goto out;
146		/*
147		 * This was a BUG() but until someone can quote me the
148		 * line from the intel manual that guarantees an IPI to
149		 * multiple CPUs is retried _only_ on the erroring CPUs
150		 * its staying as a return
151		 *
152		 * BUG();
153		 */
 
 
 
 
 
 
 
 
154
155	if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
156		if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
157			if (f->flush_va == TLB_FLUSH_ALL)
158				local_flush_tlb();
159			else
160				__flush_tlb_one(f->flush_va);
161		} else
162			leave_mm(cpu);
163	}
164out:
165	ack_APIC_irq();
166	smp_mb__before_clear_bit();
167	cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
168	smp_mb__after_clear_bit();
169	inc_irq_stat(irq_tlb_count);
170}
171
172static void flush_tlb_others_ipi(const struct cpumask *cpumask,
173				 struct mm_struct *mm, unsigned long va)
 
174{
175	unsigned int sender;
176	union smp_flush_state *f;
177
178	/* Caller has disabled preemption */
179	sender = this_cpu_read(tlb_vector_offset);
180	f = &flush_state[sender];
181
182	if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
183		raw_spin_lock(&f->tlbstate_lock);
184
185	f->flush_mm = mm;
186	f->flush_va = va;
187	if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
188		/*
189		 * We have to send the IPI only to
190		 * CPUs affected.
191		 */
192		apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
193			      INVALIDATE_TLB_VECTOR_START + sender);
194
195		while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
196			cpu_relax();
197	}
198
199	f->flush_mm = NULL;
200	f->flush_va = 0;
201	if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
202		raw_spin_unlock(&f->tlbstate_lock);
203}
204
205void native_flush_tlb_others(const struct cpumask *cpumask,
206			     struct mm_struct *mm, unsigned long va)
207{
208	if (is_uv_system()) {
209		unsigned int cpu;
210
211		cpu = smp_processor_id();
212		cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
213		if (cpumask)
214			flush_tlb_others_ipi(cpumask, mm, va);
 
215		return;
216	}
217	flush_tlb_others_ipi(cpumask, mm, va);
218}
219
220static void __cpuinit calculate_tlb_offset(void)
221{
222	int cpu, node, nr_node_vecs, idx = 0;
223	/*
224	 * we are changing tlb_vector_offset for each CPU in runtime, but this
225	 * will not cause inconsistency, as the write is atomic under X86. we
226	 * might see more lock contentions in a short time, but after all CPU's
227	 * tlb_vector_offset are changed, everything should go normal
228	 *
229	 * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might
230	 * waste some vectors.
231	 **/
232	if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS)
233		nr_node_vecs = 1;
234	else
235		nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes;
236
237	for_each_online_node(node) {
238		int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) *
239			nr_node_vecs;
240		int cpu_offset = 0;
241		for_each_cpu(cpu, cpumask_of_node(node)) {
242			per_cpu(tlb_vector_offset, cpu) = node_offset +
243				cpu_offset;
244			cpu_offset++;
245			cpu_offset = cpu_offset % nr_node_vecs;
246		}
247		idx++;
248	}
249}
250
251static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n,
252		unsigned long action, void *hcpu)
253{
254	switch (action & 0xf) {
255	case CPU_ONLINE:
256	case CPU_DEAD:
257		calculate_tlb_offset();
258	}
259	return NOTIFY_OK;
260}
261
262static int __cpuinit init_smp_flush(void)
263{
264	int i;
265
266	for (i = 0; i < ARRAY_SIZE(flush_state); i++)
267		raw_spin_lock_init(&flush_state[i].tlbstate_lock);
268
269	calculate_tlb_offset();
270	hotcpu_notifier(tlb_cpuhp_notify, 0);
271	return 0;
272}
273core_initcall(init_smp_flush);
274
275void flush_tlb_current_task(void)
276{
277	struct mm_struct *mm = current->mm;
278
279	preempt_disable();
280
 
 
 
281	local_flush_tlb();
 
 
282	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
283		flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
284	preempt_enable();
285}
286
287void flush_tlb_mm(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
288{
 
 
 
 
289	preempt_disable();
 
 
 
 
 
 
 
 
 
 
 
 
290
291	if (current->active_mm == mm) {
292		if (current->mm)
293			local_flush_tlb();
294		else
295			leave_mm(smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296	}
297	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
298		flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
299
300	preempt_enable();
301}
302
303void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
304{
305	struct mm_struct *mm = vma->vm_mm;
306
307	preempt_disable();
308
309	if (current->active_mm == mm) {
310		if (current->mm)
311			__flush_tlb_one(va);
312		else
 
 
 
 
313			leave_mm(smp_processor_id());
 
 
 
 
314	}
315
316	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
317		flush_tlb_others(mm_cpumask(mm), mm, va);
318
319	preempt_enable();
320}
321
322static void do_flush_tlb_all(void *info)
323{
 
324	__flush_tlb_all();
325	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
326		leave_mm(smp_processor_id());
327}
328
329void flush_tlb_all(void)
330{
 
331	on_each_cpu(do_flush_tlb_all, NULL, 1);
332}