Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
 
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15#include <linux/debugfs.h>
 16
 17/*
 18 *	Smarter SMP flushing macros.
 19 *		c/o Linus Torvalds.
 20 *
 21 *	These mean you can really definitely utterly forget about
 22 *	writing to user space from interrupts. (Its not allowed anyway).
 23 *
 24 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 25 *
 26 *	More scalable flush, from Andi Kleen
 27 *
 28 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 29 */
 30
 31struct flush_tlb_info {
 32	struct mm_struct *flush_mm;
 33	unsigned long flush_start;
 34	unsigned long flush_end;
 35};
 36
 37/*
 38 * We cannot call mmdrop() because we are in interrupt context,
 39 * instead update mm->cpu_vm_mask.
 
 
 40 */
 41void leave_mm(int cpu)
 42{
 43	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 44	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 45		BUG();
 46	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
 47		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
 48		load_cr3(swapper_pg_dir);
 49		/*
 50		 * This gets called in the idle path where RCU
 51		 * functions differently.  Tracing normally
 52		 * uses RCU, so we have to call the tracepoint
 53		 * specially here.
 
 
 
 
 
 
 
 54		 */
 55		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 56	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57}
 58EXPORT_SYMBOL_GPL(leave_mm);
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60/*
 61 * The flush IPI assumes that a thread switch happens in this order:
 62 * [cpu0: the cpu that switches]
 63 * 1) switch_mm() either 1a) or 1b)
 64 * 1a) thread switch to a different mm
 65 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 66 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 67 *	if cpu0 was in lazy tlb mode.
 68 * 1a2) update cpu active_mm
 69 *	Now cpu0 accepts tlb flushes for the new mm.
 70 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
 71 *	Now the other cpus will send tlb flush ipis.
 72 * 1a4) change cr3.
 73 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 74 *	Stop ipi delivery for the old mm. This is not synchronized with
 75 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 76 *	mm, and in the worst case we perform a superfluous tlb flush.
 77 * 1b) thread switch without mm change
 78 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 79 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 80 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 81 *	Atomically set the bit [other cpus will start sending flush ipis],
 82 *	and test the bit.
 83 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 84 * 2) switch %%esp, ie current
 85 *
 86 * The interrupt must handle 2 special cases:
 87 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 88 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 89 *   runs in kernel space, the cpu could load tlb entries for user space
 90 *   pages.
 91 *
 92 * The good news is that cpu_tlbstate is local to each cpu, no
 93 * write/read ordering problems.
 
 94 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95
 96/*
 97 * TLB flush funcation:
 98 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 99 * 2) Leave the mm if we are in the lazy tlb mode.
 
 
 
 
 
 
 
 
100 */
101static void flush_tlb_func(void *info)
102{
103	struct flush_tlb_info *f = info;
 
 
 
104
105	inc_irq_stat(irq_tlb_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
107	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
108		return;
109
110	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
111	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
112		if (f->flush_end == TLB_FLUSH_ALL) {
113			local_flush_tlb();
114			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
115		} else {
116			unsigned long addr;
117			unsigned long nr_pages =
118				(f->flush_end - f->flush_start) / PAGE_SIZE;
119			addr = f->flush_start;
120			while (addr < f->flush_end) {
121				__flush_tlb_single(addr);
122				addr += PAGE_SIZE;
123			}
124			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125		}
126	} else
127		leave_mm(smp_processor_id());
 
 
 
 
 
 
 
 
128
 
 
129}
130
131void native_flush_tlb_others(const struct cpumask *cpumask,
132				 struct mm_struct *mm, unsigned long start,
133				 unsigned long end)
134{
135	struct flush_tlb_info info;
136
137	if (end == 0)
138		end = start + PAGE_SIZE;
139	info.flush_mm = mm;
140	info.flush_start = start;
141	info.flush_end = end;
 
 
 
 
 
 
142
 
 
 
 
 
 
 
143	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
144	if (end == TLB_FLUSH_ALL)
145		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
146	else
147		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
148				(end - start) >> PAGE_SHIFT);
149
150	if (is_uv_system()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151		unsigned int cpu;
152
153		cpu = smp_processor_id();
154		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
155		if (cpumask)
156			smp_call_function_many(cpumask, flush_tlb_func,
157								&info, 1);
158		return;
159	}
160	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
161}
162
163void flush_tlb_current_task(void)
164{
165	struct mm_struct *mm = current->mm;
166
167	preempt_disable();
168
169	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
170
171	/* This is an implicit full barrier that synchronizes with switch_mm. */
172	local_flush_tlb();
173
174	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
175	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
176		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
177	preempt_enable();
178}
179
180/*
181 * See Documentation/x86/tlb.txt for details.  We choose 33
182 * because it is large enough to cover the vast majority (at
183 * least 95%) of allocations, and is small enough that we are
184 * confident it will not cause too much overhead.  Each single
185 * flush is about 100 ns, so this caps the maximum overhead at
186 * _about_ 3,000 ns.
187 *
188 * This is in units of pages.
189 */
190static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
191
192void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
193				unsigned long end, unsigned long vmflag)
194{
195	unsigned long addr;
196	/* do a global flush by default */
197	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
198
199	preempt_disable();
200	if (current->active_mm != mm) {
201		/* Synchronize with switch_mm. */
202		smp_mb();
203
204		goto out;
205	}
206
207	if (!current->mm) {
208		leave_mm(smp_processor_id());
209
210		/* Synchronize with switch_mm. */
211		smp_mb();
212
213		goto out;
214	}
215
216	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
217		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
218
219	/*
220	 * Both branches below are implicit full barriers (MOV to CR or
221	 * INVLPG) that synchronize with switch_mm.
222	 */
223	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
224		base_pages_to_flush = TLB_FLUSH_ALL;
225		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
226		local_flush_tlb();
227	} else {
228		/* flush range by one by one 'invlpg' */
229		for (addr = start; addr < end;	addr += PAGE_SIZE) {
230			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
231			__flush_tlb_single(addr);
232		}
233	}
234	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
235out:
236	if (base_pages_to_flush == TLB_FLUSH_ALL) {
237		start = 0UL;
238		end = TLB_FLUSH_ALL;
239	}
240	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
241		flush_tlb_others(mm_cpumask(mm), mm, start, end);
242	preempt_enable();
243}
244
245void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
246{
247	struct mm_struct *mm = vma->vm_mm;
248
249	preempt_disable();
250
251	if (current->active_mm == mm) {
252		if (current->mm) {
253			/*
254			 * Implicit full barrier (INVLPG) that synchronizes
255			 * with switch_mm.
256			 */
257			__flush_tlb_one(start);
258		} else {
259			leave_mm(smp_processor_id());
260
261			/* Synchronize with switch_mm. */
262			smp_mb();
263		}
264	}
265
266	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
267		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
268
269	preempt_enable();
270}
271
 
272static void do_flush_tlb_all(void *info)
273{
274	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
275	__flush_tlb_all();
276	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
277		leave_mm(smp_processor_id());
278}
279
280void flush_tlb_all(void)
281{
282	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
283	on_each_cpu(do_flush_tlb_all, NULL, 1);
284}
285
286static void do_kernel_range_flush(void *info)
287{
288	struct flush_tlb_info *f = info;
289	unsigned long addr;
290
291	/* flush range by one by one 'invlpg' */
292	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
293		__flush_tlb_single(addr);
294}
295
296void flush_tlb_kernel_range(unsigned long start, unsigned long end)
297{
298
299	/* Balance as user space task's flush, a bit conservative */
300	if (end == TLB_FLUSH_ALL ||
301	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
302		on_each_cpu(do_flush_tlb_all, NULL, 1);
303	} else {
304		struct flush_tlb_info info;
305		info.flush_start = start;
306		info.flush_end = end;
307		on_each_cpu(do_kernel_range_flush, &info, 1);
308	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309}
310
311static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
312			     size_t count, loff_t *ppos)
313{
314	char buf[32];
315	unsigned int len;
316
317	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
318	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
319}
320
321static ssize_t tlbflush_write_file(struct file *file,
322		 const char __user *user_buf, size_t count, loff_t *ppos)
323{
324	char buf[32];
325	ssize_t len;
326	int ceiling;
327
328	len = min(count, sizeof(buf) - 1);
329	if (copy_from_user(buf, user_buf, len))
330		return -EFAULT;
331
332	buf[len] = '\0';
333	if (kstrtoint(buf, 0, &ceiling))
334		return -EINVAL;
335
336	if (ceiling < 0)
337		return -EINVAL;
338
339	tlb_single_page_flush_ceiling = ceiling;
340	return count;
341}
342
343static const struct file_operations fops_tlbflush = {
344	.read = tlbflush_read_file,
345	.write = tlbflush_write_file,
346	.llseek = default_llseek,
347};
348
349static int __init create_tlb_single_page_flush_ceiling(void)
350{
351	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
352			    arch_debugfs_dir, NULL, &fops_tlbflush);
353	return 0;
354}
355late_initcall(create_tlb_single_page_flush_ceiling);
v4.17
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/export.h>
  8#include <linux/cpu.h>
  9#include <linux/debugfs.h>
 10
 11#include <asm/tlbflush.h>
 12#include <asm/mmu_context.h>
 13#include <asm/nospec-branch.h>
 14#include <asm/cache.h>
 15#include <asm/apic.h>
 16#include <asm/uv/uv.h>
 
 17
 18/*
 19 *	TLB flushing, formerly SMP-only
 20 *		c/o Linus Torvalds.
 21 *
 22 *	These mean you can really definitely utterly forget about
 23 *	writing to user space from interrupts. (Its not allowed anyway).
 24 *
 25 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 26 *
 27 *	More scalable flush, from Andi Kleen
 28 *
 29 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 30 */
 31
 
 
 
 
 
 
 32/*
 33 * We get here when we do something requiring a TLB invalidation
 34 * but could not go invalidate all of the contexts.  We do the
 35 * necessary invalidation by clearing out the 'ctx_id' which
 36 * forces a TLB flush when the context is loaded.
 37 */
 38void clear_asid_other(void)
 39{
 40	u16 asid;
 41
 42	/*
 43	 * This is only expected to be set if we have disabled
 44	 * kernel _PAGE_GLOBAL pages.
 45	 */
 46	if (!static_cpu_has(X86_FEATURE_PTI)) {
 47		WARN_ON_ONCE(1);
 48		return;
 49	}
 50
 51	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 52		/* Do not need to flush the current asid */
 53		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 54			continue;
 55		/*
 56		 * Make sure the next time we go to switch to
 57		 * this asid, we do a flush:
 58		 */
 59		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 60	}
 61	this_cpu_write(cpu_tlbstate.invalidate_other, false);
 62}
 63
 64atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 65
 66
 67static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 68			    u16 *new_asid, bool *need_flush)
 69{
 70	u16 asid;
 71
 72	if (!static_cpu_has(X86_FEATURE_PCID)) {
 73		*new_asid = 0;
 74		*need_flush = true;
 75		return;
 76	}
 77
 78	if (this_cpu_read(cpu_tlbstate.invalidate_other))
 79		clear_asid_other();
 80
 81	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 82		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 83		    next->context.ctx_id)
 84			continue;
 85
 86		*new_asid = asid;
 87		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 88			       next_tlb_gen);
 89		return;
 90	}
 91
 92	/*
 93	 * We don't currently own an ASID slot on this CPU.
 94	 * Allocate a slot.
 95	 */
 96	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 97	if (*new_asid >= TLB_NR_DYN_ASIDS) {
 98		*new_asid = 0;
 99		this_cpu_write(cpu_tlbstate.next_asid, 1);
100	}
101	*need_flush = true;
102}
103
104static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
105{
106	unsigned long new_mm_cr3;
107
108	if (need_flush) {
109		invalidate_user_asid(new_asid);
110		new_mm_cr3 = build_cr3(pgdir, new_asid);
111	} else {
112		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
113	}
114
115	/*
116	 * Caution: many callers of this function expect
117	 * that load_cr3() is serializing and orders TLB
118	 * fills with respect to the mm_cpumask writes.
119	 */
120	write_cr3(new_mm_cr3);
121}
122
123void leave_mm(int cpu)
124{
125	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
126
127	/*
128	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
129	 * If so, our callers still expect us to flush the TLB, but there
130	 * aren't any user TLB entries in init_mm to worry about.
131	 *
132	 * This needs to happen before any other sanity checks due to
133	 * intel_idle's shenanigans.
134	 */
135	if (loaded_mm == &init_mm)
136		return;
137
138	/* Warn if we're not lazy. */
139	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
140
141	switch_mm(NULL, &init_mm, NULL);
142}
143EXPORT_SYMBOL_GPL(leave_mm);
144
145void switch_mm(struct mm_struct *prev, struct mm_struct *next,
146	       struct task_struct *tsk)
147{
148	unsigned long flags;
149
150	local_irq_save(flags);
151	switch_mm_irqs_off(prev, next, tsk);
152	local_irq_restore(flags);
153}
154
155static void sync_current_stack_to_mm(struct mm_struct *mm)
156{
157	unsigned long sp = current_stack_pointer;
158	pgd_t *pgd = pgd_offset(mm, sp);
159
160	if (pgtable_l5_enabled) {
161		if (unlikely(pgd_none(*pgd))) {
162			pgd_t *pgd_ref = pgd_offset_k(sp);
163
164			set_pgd(pgd, *pgd_ref);
165		}
166	} else {
167		/*
168		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
169		 * the p4d.  This compiles to approximately the same code as
170		 * the 5-level case.
171		 */
172		p4d_t *p4d = p4d_offset(pgd, sp);
173
174		if (unlikely(p4d_none(*p4d))) {
175			pgd_t *pgd_ref = pgd_offset_k(sp);
176			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
177
178			set_p4d(p4d, *p4d_ref);
179		}
180	}
181}
182
183void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
184			struct task_struct *tsk)
185{
186	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
187	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
188	unsigned cpu = smp_processor_id();
189	u64 next_tlb_gen;
190
191	/*
192	 * NB: The scheduler will call us with prev == next when switching
193	 * from lazy TLB mode to normal mode if active_mm isn't changing.
194	 * When this happens, we don't assume that CR3 (and hence
195	 * cpu_tlbstate.loaded_mm) matches next.
196	 *
197	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
198	 */
199
200	/* We don't want flush_tlb_func_* to run concurrently with us. */
201	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
202		WARN_ON_ONCE(!irqs_disabled());
203
204	/*
205	 * Verify that CR3 is what we think it is.  This will catch
206	 * hypothetical buggy code that directly switches to swapper_pg_dir
207	 * without going through leave_mm() / switch_mm_irqs_off() or that
208	 * does something like write_cr3(read_cr3_pa()).
209	 *
210	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
211	 * isn't free.
212	 */
213#ifdef CONFIG_DEBUG_VM
214	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
215		/*
216		 * If we were to BUG here, we'd be very likely to kill
217		 * the system so hard that we don't see the call trace.
218		 * Try to recover instead by ignoring the error and doing
219		 * a global flush to minimize the chance of corruption.
220		 *
221		 * (This is far from being a fully correct recovery.
222		 *  Architecturally, the CPU could prefetch something
223		 *  back into an incorrect ASID slot and leave it there
224		 *  to cause trouble down the road.  It's better than
225		 *  nothing, though.)
226		 */
227		__flush_tlb_all();
228	}
229#endif
230	this_cpu_write(cpu_tlbstate.is_lazy, false);
231
232	/*
233	 * The membarrier system call requires a full memory barrier and
234	 * core serialization before returning to user-space, after
235	 * storing to rq->curr. Writing to CR3 provides that full
236	 * memory barrier and core serializing instruction.
237	 */
238	if (real_prev == next) {
239		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
240			   next->context.ctx_id);
241
242		/*
243		 * We don't currently support having a real mm loaded without
244		 * our cpu set in mm_cpumask().  We have all the bookkeeping
245		 * in place to figure out whether we would need to flush
246		 * if our cpu were cleared in mm_cpumask(), but we don't
247		 * currently use it.
248		 */
249		if (WARN_ON_ONCE(real_prev != &init_mm &&
250				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
251			cpumask_set_cpu(cpu, mm_cpumask(next));
252
253		return;
254	} else {
255		u16 new_asid;
256		bool need_flush;
257		u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
258
259		/*
260		 * Avoid user/user BTB poisoning by flushing the branch
261		 * predictor when switching between processes. This stops
262		 * one process from doing Spectre-v2 attacks on another.
263		 *
264		 * As an optimization, flush indirect branches only when
265		 * switching into processes that disable dumping. This
266		 * protects high value processes like gpg, without having
267		 * too high performance overhead. IBPB is *expensive*!
268		 *
269		 * This will not flush branches when switching into kernel
270		 * threads. It will also not flush if we switch to idle
271		 * thread and back to the same process. It will flush if we
272		 * switch to a different non-dumpable process.
273		 */
274		if (tsk && tsk->mm &&
275		    tsk->mm->context.ctx_id != last_ctx_id &&
276		    get_dumpable(tsk->mm) != SUID_DUMP_USER)
277			indirect_branch_prediction_barrier();
278
279		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
280			/*
281			 * If our current stack is in vmalloc space and isn't
282			 * mapped in the new pgd, we'll double-fault.  Forcibly
283			 * map it.
284			 */
285			sync_current_stack_to_mm(next);
286		}
287
288		/* Stop remote flushes for the previous mm */
289		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
290				real_prev != &init_mm);
291		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
292
293		/*
294		 * Start remote flushes and then read tlb_gen.
295		 */
296		cpumask_set_cpu(cpu, mm_cpumask(next));
297		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
298
299		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
300
301		if (need_flush) {
302			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
303			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
304			load_new_mm_cr3(next->pgd, new_asid, true);
305
306			/*
307			 * NB: This gets called via leave_mm() in the idle path
308			 * where RCU functions differently.  Tracing normally
309			 * uses RCU, so we need to use the _rcuidle variant.
310			 *
311			 * (There is no good reason for this.  The idle code should
312			 *  be rearranged to call this before rcu_idle_enter().)
313			 */
314			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
315		} else {
316			/* The new ASID is already up to date. */
317			load_new_mm_cr3(next->pgd, new_asid, false);
318
319			/* See above wrt _rcuidle. */
320			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
321		}
322
323		/*
324		 * Record last user mm's context id, so we can avoid
325		 * flushing branch buffer with IBPB if we switch back
326		 * to the same user.
327		 */
328		if (next != &init_mm)
329			this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
330
331		this_cpu_write(cpu_tlbstate.loaded_mm, next);
332		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
333	}
334
335	load_mm_cr4(next);
336	switch_ldt(real_prev, next);
337}
338
339/*
340 * Please ignore the name of this function.  It should be called
341 * switch_to_kernel_thread().
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342 *
343 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
344 * kernel thread or other context without an mm.  Acceptable implementations
345 * include doing nothing whatsoever, switching to init_mm, or various clever
346 * lazy tricks to try to minimize TLB flushes.
 
347 *
348 * The scheduler reserves the right to call enter_lazy_tlb() several times
349 * in a row.  It will notify us that we're going back to a real mm by
350 * calling switch_mm_irqs_off().
351 */
352void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
353{
354	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
355		return;
356
357	if (tlb_defer_switch_to_init_mm()) {
358		/*
359		 * There's a significant optimization that may be possible
360		 * here.  We have accurate enough TLB flush tracking that we
361		 * don't need to maintain coherence of TLB per se when we're
362		 * lazy.  We do, however, need to maintain coherence of
363		 * paging-structure caches.  We could, in principle, leave our
364		 * old mm loaded and only switch to init_mm when
365		 * tlb_remove_page() happens.
366		 */
367		this_cpu_write(cpu_tlbstate.is_lazy, true);
368	} else {
369		switch_mm(NULL, &init_mm, NULL);
370	}
371}
372
373/*
374 * Call this when reinitializing a CPU.  It fixes the following potential
375 * problems:
376 *
377 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
378 *   because the CPU was taken down and came back up with CR3's PCID
379 *   bits clear.  CPU hotplug can do this.
380 *
381 * - The TLB contains junk in slots corresponding to inactive ASIDs.
382 *
383 * - The CPU went so far out to lunch that it may have missed a TLB
384 *   flush.
385 */
386void initialize_tlbstate_and_flush(void)
387{
388	int i;
389	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
390	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
391	unsigned long cr3 = __read_cr3();
392
393	/* Assert that CR3 already references the right mm. */
394	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
395
396	/*
397	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
398	 * doesn't work like other CR4 bits because it can only be set from
399	 * long mode.)
400	 */
401	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
402		!(cr4_read_shadow() & X86_CR4_PCIDE));
403
404	/* Force ASID 0 and force a TLB flush. */
405	write_cr3(build_cr3(mm->pgd, 0));
406
407	/* Reinitialize tlbstate. */
408	this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
409	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
410	this_cpu_write(cpu_tlbstate.next_asid, 1);
411	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
412	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
413
414	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
415		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
416}
417
418/*
419 * flush_tlb_func_common()'s memory ordering requirement is that any
420 * TLB fills that happen after we flush the TLB are ordered after we
421 * read active_mm's tlb_gen.  We don't need any explicit barriers
422 * because all x86 flush operations are serializing and the
423 * atomic64_read operation won't be reordered by the compiler.
424 */
425static void flush_tlb_func_common(const struct flush_tlb_info *f,
426				  bool local, enum tlb_flush_reason reason)
427{
428	/*
429	 * We have three different tlb_gen values in here.  They are:
430	 *
431	 * - mm_tlb_gen:     the latest generation.
432	 * - local_tlb_gen:  the generation that this CPU has already caught
433	 *                   up to.
434	 * - f->new_tlb_gen: the generation that the requester of the flush
435	 *                   wants us to catch up to.
436	 */
437	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
438	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
439	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
440	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
441
442	/* This code cannot presently handle being reentered. */
443	VM_WARN_ON(!irqs_disabled());
444
445	if (unlikely(loaded_mm == &init_mm))
446		return;
447
448	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
449		   loaded_mm->context.ctx_id);
450
451	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
452		/*
453		 * We're in lazy mode.  We need to at least flush our
454		 * paging-structure cache to avoid speculatively reading
455		 * garbage into our TLB.  Since switching to init_mm is barely
456		 * slower than a minimal flush, just switch to init_mm.
457		 */
458		switch_mm_irqs_off(NULL, &init_mm, NULL);
459		return;
460	}
461
462	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
463		/*
464		 * There's nothing to do: we're already up to date.  This can
465		 * happen if two concurrent flushes happen -- the first flush to
466		 * be handled can catch us all the way up, leaving no work for
467		 * the second flush.
468		 */
469		trace_tlb_flush(reason, 0);
470		return;
471	}
472
473	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
474	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
475
476	/*
477	 * If we get to this point, we know that our TLB is out of date.
478	 * This does not strictly imply that we need to flush (it's
479	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
480	 * going to need to flush in the very near future, so we might
481	 * as well get it over with.
482	 *
483	 * The only question is whether to do a full or partial flush.
484	 *
485	 * We do a partial flush if requested and two extra conditions
486	 * are met:
487	 *
488	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
489	 *    we've always done all needed flushes to catch up to
490	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
491	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
492	 *    us up to date for tlb_gen 3 is the partial flush we're
493	 *    processing.
494	 *
495	 *    As an example of why this check is needed, suppose that there
496	 *    are two concurrent flushes.  The first is a full flush that
497	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
498	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
499	 *    processed on this CPU in reverse order, we'll see
500	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
501	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
502	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
503	 *    1 without the full flush that's needed for tlb_gen 2.
504	 *
505	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
506	 *    Partial TLB flushes are not all that much cheaper than full TLB
507	 *    flushes, so it seems unlikely that it would be a performance win
508	 *    to do a partial flush if that won't bring our TLB fully up to
509	 *    date.  By doing a full flush instead, we can increase
510	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
511	 *    avoid another flush in the very near future.
512	 */
513	if (f->end != TLB_FLUSH_ALL &&
514	    f->new_tlb_gen == local_tlb_gen + 1 &&
515	    f->new_tlb_gen == mm_tlb_gen) {
516		/* Partial flush */
517		unsigned long addr;
518		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
519
520		addr = f->start;
521		while (addr < f->end) {
522			__flush_tlb_one_user(addr);
523			addr += PAGE_SIZE;
524		}
525		if (local)
526			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
527		trace_tlb_flush(reason, nr_pages);
528	} else {
529		/* Full flush. */
530		local_flush_tlb();
531		if (local)
532			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
533		trace_tlb_flush(reason, TLB_FLUSH_ALL);
534	}
535
536	/* Both paths above update our state to mm_tlb_gen. */
537	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
538}
539
540static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
 
 
541{
542	const struct flush_tlb_info *f = info;
543
544	flush_tlb_func_common(f, true, reason);
545}
546
547static void flush_tlb_func_remote(void *info)
548{
549	const struct flush_tlb_info *f = info;
550
551	inc_irq_stat(irq_tlb_count);
552
553	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
554		return;
555
556	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
557	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
558}
559
560void native_flush_tlb_others(const struct cpumask *cpumask,
561			     const struct flush_tlb_info *info)
562{
563	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
564	if (info->end == TLB_FLUSH_ALL)
565		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
566	else
567		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
568				(info->end - info->start) >> PAGE_SHIFT);
569
570	if (is_uv_system()) {
571		/*
572		 * This whole special case is confused.  UV has a "Broadcast
573		 * Assist Unit", which seems to be a fancy way to send IPIs.
574		 * Back when x86 used an explicit TLB flush IPI, UV was
575		 * optimized to use its own mechanism.  These days, x86 uses
576		 * smp_call_function_many(), but UV still uses a manual IPI,
577		 * and that IPI's action is out of date -- it does a manual
578		 * flush instead of calling flush_tlb_func_remote().  This
579		 * means that the percpu tlb_gen variables won't be updated
580		 * and we'll do pointless flushes on future context switches.
581		 *
582		 * Rather than hooking native_flush_tlb_others() here, I think
583		 * that UV should be updated so that smp_call_function_many(),
584		 * etc, are optimal on UV.
585		 */
586		unsigned int cpu;
587
588		cpu = smp_processor_id();
589		cpumask = uv_flush_tlb_others(cpumask, info);
590		if (cpumask)
591			smp_call_function_many(cpumask, flush_tlb_func_remote,
592					       (void *)info, 1);
593		return;
594	}
595	smp_call_function_many(cpumask, flush_tlb_func_remote,
596			       (void *)info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597}
598
599/*
600 * See Documentation/x86/tlb.txt for details.  We choose 33
601 * because it is large enough to cover the vast majority (at
602 * least 95%) of allocations, and is small enough that we are
603 * confident it will not cause too much overhead.  Each single
604 * flush is about 100 ns, so this caps the maximum overhead at
605 * _about_ 3,000 ns.
606 *
607 * This is in units of pages.
608 */
609static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
610
611void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
612				unsigned long end, unsigned long vmflag)
613{
614	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
615
616	struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
617		.mm = mm,
618	};
619
620	cpu = get_cpu();
621
622	/* This is also a barrier that synchronizes with switch_mm(). */
623	info.new_tlb_gen = inc_mm_tlb_gen(mm);
624
625	/* Should we flush just the requested range? */
626	if ((end != TLB_FLUSH_ALL) &&
627	    !(vmflag & VM_HUGETLB) &&
628	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
629		info.start = start;
630		info.end = end;
 
 
631	} else {
632		info.start = 0UL;
633		info.end = TLB_FLUSH_ALL;
 
 
 
 
 
 
 
 
 
634	}
 
 
 
 
 
 
 
 
 
 
635
636	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
637		VM_WARN_ON(irqs_disabled());
638		local_irq_disable();
639		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
640		local_irq_enable();
 
 
 
 
 
 
 
 
641	}
642
643	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
644		flush_tlb_others(mm_cpumask(mm), &info);
645
646	put_cpu();
647}
648
649
650static void do_flush_tlb_all(void *info)
651{
652	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
653	__flush_tlb_all();
 
 
654}
655
656void flush_tlb_all(void)
657{
658	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
659	on_each_cpu(do_flush_tlb_all, NULL, 1);
660}
661
662static void do_kernel_range_flush(void *info)
663{
664	struct flush_tlb_info *f = info;
665	unsigned long addr;
666
667	/* flush range by one by one 'invlpg' */
668	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
669		__flush_tlb_one_kernel(addr);
670}
671
672void flush_tlb_kernel_range(unsigned long start, unsigned long end)
673{
674
675	/* Balance as user space task's flush, a bit conservative */
676	if (end == TLB_FLUSH_ALL ||
677	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
678		on_each_cpu(do_flush_tlb_all, NULL, 1);
679	} else {
680		struct flush_tlb_info info;
681		info.start = start;
682		info.end = end;
683		on_each_cpu(do_kernel_range_flush, &info, 1);
684	}
685}
686
687void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
688{
689	struct flush_tlb_info info = {
690		.mm = NULL,
691		.start = 0UL,
692		.end = TLB_FLUSH_ALL,
693	};
694
695	int cpu = get_cpu();
696
697	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
698		VM_WARN_ON(irqs_disabled());
699		local_irq_disable();
700		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
701		local_irq_enable();
702	}
703
704	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
705		flush_tlb_others(&batch->cpumask, &info);
706
707	cpumask_clear(&batch->cpumask);
708
709	put_cpu();
710}
711
712static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
713			     size_t count, loff_t *ppos)
714{
715	char buf[32];
716	unsigned int len;
717
718	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
719	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
720}
721
722static ssize_t tlbflush_write_file(struct file *file,
723		 const char __user *user_buf, size_t count, loff_t *ppos)
724{
725	char buf[32];
726	ssize_t len;
727	int ceiling;
728
729	len = min(count, sizeof(buf) - 1);
730	if (copy_from_user(buf, user_buf, len))
731		return -EFAULT;
732
733	buf[len] = '\0';
734	if (kstrtoint(buf, 0, &ceiling))
735		return -EINVAL;
736
737	if (ceiling < 0)
738		return -EINVAL;
739
740	tlb_single_page_flush_ceiling = ceiling;
741	return count;
742}
743
744static const struct file_operations fops_tlbflush = {
745	.read = tlbflush_read_file,
746	.write = tlbflush_write_file,
747	.llseek = default_llseek,
748};
749
750static int __init create_tlb_single_page_flush_ceiling(void)
751{
752	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
753			    arch_debugfs_dir, NULL, &fops_tlbflush);
754	return 0;
755}
756late_initcall(create_tlb_single_page_flush_ceiling);