Loading...
1#include <linux/init.h>
2
3#include <linux/mm.h>
4#include <linux/spinlock.h>
5#include <linux/smp.h>
6#include <linux/interrupt.h>
7#include <linux/module.h>
8#include <linux/cpu.h>
9
10#include <asm/tlbflush.h>
11#include <asm/mmu_context.h>
12#include <asm/cache.h>
13#include <asm/apic.h>
14#include <asm/uv/uv.h>
15#include <linux/debugfs.h>
16
17/*
18 * Smarter SMP flushing macros.
19 * c/o Linus Torvalds.
20 *
21 * These mean you can really definitely utterly forget about
22 * writing to user space from interrupts. (Its not allowed anyway).
23 *
24 * Optimizations Manfred Spraul <manfred@colorfullife.com>
25 *
26 * More scalable flush, from Andi Kleen
27 *
28 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29 */
30
31struct flush_tlb_info {
32 struct mm_struct *flush_mm;
33 unsigned long flush_start;
34 unsigned long flush_end;
35};
36
37/*
38 * We cannot call mmdrop() because we are in interrupt context,
39 * instead update mm->cpu_vm_mask.
40 */
41void leave_mm(int cpu)
42{
43 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
44 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
45 BUG();
46 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
47 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
48 load_cr3(swapper_pg_dir);
49 /*
50 * This gets called in the idle path where RCU
51 * functions differently. Tracing normally
52 * uses RCU, so we have to call the tracepoint
53 * specially here.
54 */
55 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
56 }
57}
58EXPORT_SYMBOL_GPL(leave_mm);
59
60/*
61 * The flush IPI assumes that a thread switch happens in this order:
62 * [cpu0: the cpu that switches]
63 * 1) switch_mm() either 1a) or 1b)
64 * 1a) thread switch to a different mm
65 * 1a1) set cpu_tlbstate to TLBSTATE_OK
66 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
67 * if cpu0 was in lazy tlb mode.
68 * 1a2) update cpu active_mm
69 * Now cpu0 accepts tlb flushes for the new mm.
70 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
71 * Now the other cpus will send tlb flush ipis.
72 * 1a4) change cr3.
73 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
74 * Stop ipi delivery for the old mm. This is not synchronized with
75 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
76 * mm, and in the worst case we perform a superfluous tlb flush.
77 * 1b) thread switch without mm change
78 * cpu active_mm is correct, cpu0 already handles flush ipis.
79 * 1b1) set cpu_tlbstate to TLBSTATE_OK
80 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
81 * Atomically set the bit [other cpus will start sending flush ipis],
82 * and test the bit.
83 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
84 * 2) switch %%esp, ie current
85 *
86 * The interrupt must handle 2 special cases:
87 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
88 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
89 * runs in kernel space, the cpu could load tlb entries for user space
90 * pages.
91 *
92 * The good news is that cpu_tlbstate is local to each cpu, no
93 * write/read ordering problems.
94 */
95
96/*
97 * TLB flush funcation:
98 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
99 * 2) Leave the mm if we are in the lazy tlb mode.
100 */
101static void flush_tlb_func(void *info)
102{
103 struct flush_tlb_info *f = info;
104
105 inc_irq_stat(irq_tlb_count);
106
107 if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
108 return;
109
110 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
111 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
112 if (f->flush_end == TLB_FLUSH_ALL) {
113 local_flush_tlb();
114 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
115 } else {
116 unsigned long addr;
117 unsigned long nr_pages =
118 (f->flush_end - f->flush_start) / PAGE_SIZE;
119 addr = f->flush_start;
120 while (addr < f->flush_end) {
121 __flush_tlb_single(addr);
122 addr += PAGE_SIZE;
123 }
124 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
125 }
126 } else
127 leave_mm(smp_processor_id());
128
129}
130
131void native_flush_tlb_others(const struct cpumask *cpumask,
132 struct mm_struct *mm, unsigned long start,
133 unsigned long end)
134{
135 struct flush_tlb_info info;
136
137 if (end == 0)
138 end = start + PAGE_SIZE;
139 info.flush_mm = mm;
140 info.flush_start = start;
141 info.flush_end = end;
142
143 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
144 if (end == TLB_FLUSH_ALL)
145 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
146 else
147 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
148 (end - start) >> PAGE_SHIFT);
149
150 if (is_uv_system()) {
151 unsigned int cpu;
152
153 cpu = smp_processor_id();
154 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
155 if (cpumask)
156 smp_call_function_many(cpumask, flush_tlb_func,
157 &info, 1);
158 return;
159 }
160 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
161}
162
163void flush_tlb_current_task(void)
164{
165 struct mm_struct *mm = current->mm;
166
167 preempt_disable();
168
169 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
170
171 /* This is an implicit full barrier that synchronizes with switch_mm. */
172 local_flush_tlb();
173
174 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
175 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
176 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
177 preempt_enable();
178}
179
180/*
181 * See Documentation/x86/tlb.txt for details. We choose 33
182 * because it is large enough to cover the vast majority (at
183 * least 95%) of allocations, and is small enough that we are
184 * confident it will not cause too much overhead. Each single
185 * flush is about 100 ns, so this caps the maximum overhead at
186 * _about_ 3,000 ns.
187 *
188 * This is in units of pages.
189 */
190static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
191
192void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
193 unsigned long end, unsigned long vmflag)
194{
195 unsigned long addr;
196 /* do a global flush by default */
197 unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
198
199 preempt_disable();
200 if (current->active_mm != mm) {
201 /* Synchronize with switch_mm. */
202 smp_mb();
203
204 goto out;
205 }
206
207 if (!current->mm) {
208 leave_mm(smp_processor_id());
209
210 /* Synchronize with switch_mm. */
211 smp_mb();
212
213 goto out;
214 }
215
216 if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
217 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
218
219 /*
220 * Both branches below are implicit full barriers (MOV to CR or
221 * INVLPG) that synchronize with switch_mm.
222 */
223 if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
224 base_pages_to_flush = TLB_FLUSH_ALL;
225 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
226 local_flush_tlb();
227 } else {
228 /* flush range by one by one 'invlpg' */
229 for (addr = start; addr < end; addr += PAGE_SIZE) {
230 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
231 __flush_tlb_single(addr);
232 }
233 }
234 trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
235out:
236 if (base_pages_to_flush == TLB_FLUSH_ALL) {
237 start = 0UL;
238 end = TLB_FLUSH_ALL;
239 }
240 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
241 flush_tlb_others(mm_cpumask(mm), mm, start, end);
242 preempt_enable();
243}
244
245void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
246{
247 struct mm_struct *mm = vma->vm_mm;
248
249 preempt_disable();
250
251 if (current->active_mm == mm) {
252 if (current->mm) {
253 /*
254 * Implicit full barrier (INVLPG) that synchronizes
255 * with switch_mm.
256 */
257 __flush_tlb_one(start);
258 } else {
259 leave_mm(smp_processor_id());
260
261 /* Synchronize with switch_mm. */
262 smp_mb();
263 }
264 }
265
266 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
267 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
268
269 preempt_enable();
270}
271
272static void do_flush_tlb_all(void *info)
273{
274 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
275 __flush_tlb_all();
276 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
277 leave_mm(smp_processor_id());
278}
279
280void flush_tlb_all(void)
281{
282 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
283 on_each_cpu(do_flush_tlb_all, NULL, 1);
284}
285
286static void do_kernel_range_flush(void *info)
287{
288 struct flush_tlb_info *f = info;
289 unsigned long addr;
290
291 /* flush range by one by one 'invlpg' */
292 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
293 __flush_tlb_single(addr);
294}
295
296void flush_tlb_kernel_range(unsigned long start, unsigned long end)
297{
298
299 /* Balance as user space task's flush, a bit conservative */
300 if (end == TLB_FLUSH_ALL ||
301 (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
302 on_each_cpu(do_flush_tlb_all, NULL, 1);
303 } else {
304 struct flush_tlb_info info;
305 info.flush_start = start;
306 info.flush_end = end;
307 on_each_cpu(do_kernel_range_flush, &info, 1);
308 }
309}
310
311static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
312 size_t count, loff_t *ppos)
313{
314 char buf[32];
315 unsigned int len;
316
317 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
318 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
319}
320
321static ssize_t tlbflush_write_file(struct file *file,
322 const char __user *user_buf, size_t count, loff_t *ppos)
323{
324 char buf[32];
325 ssize_t len;
326 int ceiling;
327
328 len = min(count, sizeof(buf) - 1);
329 if (copy_from_user(buf, user_buf, len))
330 return -EFAULT;
331
332 buf[len] = '\0';
333 if (kstrtoint(buf, 0, &ceiling))
334 return -EINVAL;
335
336 if (ceiling < 0)
337 return -EINVAL;
338
339 tlb_single_page_flush_ceiling = ceiling;
340 return count;
341}
342
343static const struct file_operations fops_tlbflush = {
344 .read = tlbflush_read_file,
345 .write = tlbflush_write_file,
346 .llseek = default_llseek,
347};
348
349static int __init create_tlb_single_page_flush_ceiling(void)
350{
351 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
352 arch_debugfs_dir, NULL, &fops_tlbflush);
353 return 0;
354}
355late_initcall(create_tlb_single_page_flush_ceiling);
1#include <linux/init.h>
2
3#include <linux/mm.h>
4#include <linux/spinlock.h>
5#include <linux/smp.h>
6#include <linux/interrupt.h>
7#include <linux/module.h>
8#include <linux/cpu.h>
9
10#include <asm/tlbflush.h>
11#include <asm/mmu_context.h>
12#include <asm/cache.h>
13#include <asm/apic.h>
14#include <asm/uv/uv.h>
15#include <linux/debugfs.h>
16
17DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
18 = { &init_mm, 0, };
19
20/*
21 * Smarter SMP flushing macros.
22 * c/o Linus Torvalds.
23 *
24 * These mean you can really definitely utterly forget about
25 * writing to user space from interrupts. (Its not allowed anyway).
26 *
27 * Optimizations Manfred Spraul <manfred@colorfullife.com>
28 *
29 * More scalable flush, from Andi Kleen
30 *
31 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
32 */
33
34struct flush_tlb_info {
35 struct mm_struct *flush_mm;
36 unsigned long flush_start;
37 unsigned long flush_end;
38};
39
40/*
41 * We cannot call mmdrop() because we are in interrupt context,
42 * instead update mm->cpu_vm_mask.
43 */
44void leave_mm(int cpu)
45{
46 struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
47 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
48 BUG();
49 if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
50 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
51 load_cr3(swapper_pg_dir);
52 }
53}
54EXPORT_SYMBOL_GPL(leave_mm);
55
56/*
57 * The flush IPI assumes that a thread switch happens in this order:
58 * [cpu0: the cpu that switches]
59 * 1) switch_mm() either 1a) or 1b)
60 * 1a) thread switch to a different mm
61 * 1a1) set cpu_tlbstate to TLBSTATE_OK
62 * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
63 * if cpu0 was in lazy tlb mode.
64 * 1a2) update cpu active_mm
65 * Now cpu0 accepts tlb flushes for the new mm.
66 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
67 * Now the other cpus will send tlb flush ipis.
68 * 1a4) change cr3.
69 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
70 * Stop ipi delivery for the old mm. This is not synchronized with
71 * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
72 * mm, and in the worst case we perform a superfluous tlb flush.
73 * 1b) thread switch without mm change
74 * cpu active_mm is correct, cpu0 already handles flush ipis.
75 * 1b1) set cpu_tlbstate to TLBSTATE_OK
76 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
77 * Atomically set the bit [other cpus will start sending flush ipis],
78 * and test the bit.
79 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
80 * 2) switch %%esp, ie current
81 *
82 * The interrupt must handle 2 special cases:
83 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
84 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
85 * runs in kernel space, the cpu could load tlb entries for user space
86 * pages.
87 *
88 * The good news is that cpu_tlbstate is local to each cpu, no
89 * write/read ordering problems.
90 */
91
92/*
93 * TLB flush funcation:
94 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
95 * 2) Leave the mm if we are in the lazy tlb mode.
96 */
97static void flush_tlb_func(void *info)
98{
99 struct flush_tlb_info *f = info;
100
101 inc_irq_stat(irq_tlb_count);
102
103 if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
104 return;
105
106 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
107 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
108 if (f->flush_end == TLB_FLUSH_ALL)
109 local_flush_tlb();
110 else if (!f->flush_end)
111 __flush_tlb_single(f->flush_start);
112 else {
113 unsigned long addr;
114 addr = f->flush_start;
115 while (addr < f->flush_end) {
116 __flush_tlb_single(addr);
117 addr += PAGE_SIZE;
118 }
119 }
120 } else
121 leave_mm(smp_processor_id());
122
123}
124
125void native_flush_tlb_others(const struct cpumask *cpumask,
126 struct mm_struct *mm, unsigned long start,
127 unsigned long end)
128{
129 struct flush_tlb_info info;
130 info.flush_mm = mm;
131 info.flush_start = start;
132 info.flush_end = end;
133
134 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
135 if (is_uv_system()) {
136 unsigned int cpu;
137
138 cpu = smp_processor_id();
139 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
140 if (cpumask)
141 smp_call_function_many(cpumask, flush_tlb_func,
142 &info, 1);
143 return;
144 }
145 smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
146}
147
148void flush_tlb_current_task(void)
149{
150 struct mm_struct *mm = current->mm;
151
152 preempt_disable();
153
154 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
155 local_flush_tlb();
156 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
157 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
158 preempt_enable();
159}
160
161void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
162 unsigned long end, unsigned long vmflag)
163{
164 unsigned long addr;
165 unsigned act_entries, tlb_entries = 0;
166 unsigned long nr_base_pages;
167
168 preempt_disable();
169 if (current->active_mm != mm)
170 goto flush_all;
171
172 if (!current->mm) {
173 leave_mm(smp_processor_id());
174 goto flush_all;
175 }
176
177 if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1
178 || vmflag & VM_HUGETLB) {
179 local_flush_tlb();
180 goto flush_all;
181 }
182
183 /* In modern CPU, last level tlb used for both data/ins */
184 if (vmflag & VM_EXEC)
185 tlb_entries = tlb_lli_4k[ENTRIES];
186 else
187 tlb_entries = tlb_lld_4k[ENTRIES];
188
189 /* Assume all of TLB entries was occupied by this task */
190 act_entries = tlb_entries >> tlb_flushall_shift;
191 act_entries = mm->total_vm > act_entries ? act_entries : mm->total_vm;
192 nr_base_pages = (end - start) >> PAGE_SHIFT;
193
194 /* tlb_flushall_shift is on balance point, details in commit log */
195 if (nr_base_pages > act_entries) {
196 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
197 local_flush_tlb();
198 } else {
199 /* flush range by one by one 'invlpg' */
200 for (addr = start; addr < end; addr += PAGE_SIZE) {
201 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
202 __flush_tlb_single(addr);
203 }
204
205 if (cpumask_any_but(mm_cpumask(mm),
206 smp_processor_id()) < nr_cpu_ids)
207 flush_tlb_others(mm_cpumask(mm), mm, start, end);
208 preempt_enable();
209 return;
210 }
211
212flush_all:
213 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
214 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
215 preempt_enable();
216}
217
218void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
219{
220 struct mm_struct *mm = vma->vm_mm;
221
222 preempt_disable();
223
224 if (current->active_mm == mm) {
225 if (current->mm)
226 __flush_tlb_one(start);
227 else
228 leave_mm(smp_processor_id());
229 }
230
231 if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
232 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
233
234 preempt_enable();
235}
236
237static void do_flush_tlb_all(void *info)
238{
239 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240 __flush_tlb_all();
241 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
242 leave_mm(smp_processor_id());
243}
244
245void flush_tlb_all(void)
246{
247 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
248 on_each_cpu(do_flush_tlb_all, NULL, 1);
249}
250
251static void do_kernel_range_flush(void *info)
252{
253 struct flush_tlb_info *f = info;
254 unsigned long addr;
255
256 /* flush range by one by one 'invlpg' */
257 for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
258 __flush_tlb_single(addr);
259}
260
261void flush_tlb_kernel_range(unsigned long start, unsigned long end)
262{
263 unsigned act_entries;
264 struct flush_tlb_info info;
265
266 /* In modern CPU, last level tlb used for both data/ins */
267 act_entries = tlb_lld_4k[ENTRIES];
268
269 /* Balance as user space task's flush, a bit conservative */
270 if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 ||
271 (end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
272
273 on_each_cpu(do_flush_tlb_all, NULL, 1);
274 else {
275 info.flush_start = start;
276 info.flush_end = end;
277 on_each_cpu(do_kernel_range_flush, &info, 1);
278 }
279}
280
281#ifdef CONFIG_DEBUG_TLBFLUSH
282static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
283 size_t count, loff_t *ppos)
284{
285 char buf[32];
286 unsigned int len;
287
288 len = sprintf(buf, "%hd\n", tlb_flushall_shift);
289 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
290}
291
292static ssize_t tlbflush_write_file(struct file *file,
293 const char __user *user_buf, size_t count, loff_t *ppos)
294{
295 char buf[32];
296 ssize_t len;
297 s8 shift;
298
299 len = min(count, sizeof(buf) - 1);
300 if (copy_from_user(buf, user_buf, len))
301 return -EFAULT;
302
303 buf[len] = '\0';
304 if (kstrtos8(buf, 0, &shift))
305 return -EINVAL;
306
307 if (shift < -1 || shift >= BITS_PER_LONG)
308 return -EINVAL;
309
310 tlb_flushall_shift = shift;
311 return count;
312}
313
314static const struct file_operations fops_tlbflush = {
315 .read = tlbflush_read_file,
316 .write = tlbflush_write_file,
317 .llseek = default_llseek,
318};
319
320static int __init create_tlb_flushall_shift(void)
321{
322 debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR,
323 arch_debugfs_dir, NULL, &fops_tlbflush);
324 return 0;
325}
326late_initcall(create_tlb_flushall_shift);
327#endif