Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15#include <linux/debugfs.h>
 16
 
 
 
 17/*
 18 *	Smarter SMP flushing macros.
 19 *		c/o Linus Torvalds.
 20 *
 21 *	These mean you can really definitely utterly forget about
 22 *	writing to user space from interrupts. (Its not allowed anyway).
 23 *
 24 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 25 *
 26 *	More scalable flush, from Andi Kleen
 27 *
 28 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 29 */
 30
 31struct flush_tlb_info {
 32	struct mm_struct *flush_mm;
 33	unsigned long flush_start;
 34	unsigned long flush_end;
 35};
 36
 37/*
 38 * We cannot call mmdrop() because we are in interrupt context,
 39 * instead update mm->cpu_vm_mask.
 40 */
 41void leave_mm(int cpu)
 42{
 43	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 44	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 45		BUG();
 46	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
 47		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
 48		load_cr3(swapper_pg_dir);
 49		/*
 50		 * This gets called in the idle path where RCU
 51		 * functions differently.  Tracing normally
 52		 * uses RCU, so we have to call the tracepoint
 53		 * specially here.
 54		 */
 55		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 56	}
 57}
 58EXPORT_SYMBOL_GPL(leave_mm);
 59
 60/*
 61 * The flush IPI assumes that a thread switch happens in this order:
 62 * [cpu0: the cpu that switches]
 63 * 1) switch_mm() either 1a) or 1b)
 64 * 1a) thread switch to a different mm
 65 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 66 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 67 *	if cpu0 was in lazy tlb mode.
 68 * 1a2) update cpu active_mm
 69 *	Now cpu0 accepts tlb flushes for the new mm.
 70 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
 71 *	Now the other cpus will send tlb flush ipis.
 72 * 1a4) change cr3.
 73 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 74 *	Stop ipi delivery for the old mm. This is not synchronized with
 75 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 76 *	mm, and in the worst case we perform a superfluous tlb flush.
 77 * 1b) thread switch without mm change
 78 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 79 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 80 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 81 *	Atomically set the bit [other cpus will start sending flush ipis],
 82 *	and test the bit.
 83 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 84 * 2) switch %%esp, ie current
 85 *
 86 * The interrupt must handle 2 special cases:
 87 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 88 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 89 *   runs in kernel space, the cpu could load tlb entries for user space
 90 *   pages.
 91 *
 92 * The good news is that cpu_tlbstate is local to each cpu, no
 93 * write/read ordering problems.
 94 */
 95
 96/*
 97 * TLB flush funcation:
 98 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 99 * 2) Leave the mm if we are in the lazy tlb mode.
100 */
101static void flush_tlb_func(void *info)
102{
103	struct flush_tlb_info *f = info;
104
105	inc_irq_stat(irq_tlb_count);
106
107	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
108		return;
109
110	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
111	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
112		if (f->flush_end == TLB_FLUSH_ALL) {
113			local_flush_tlb();
114			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
115		} else {
 
116			unsigned long addr;
117			unsigned long nr_pages =
118				(f->flush_end - f->flush_start) / PAGE_SIZE;
119			addr = f->flush_start;
120			while (addr < f->flush_end) {
121				__flush_tlb_single(addr);
122				addr += PAGE_SIZE;
123			}
124			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
125		}
126	} else
127		leave_mm(smp_processor_id());
128
129}
130
131void native_flush_tlb_others(const struct cpumask *cpumask,
132				 struct mm_struct *mm, unsigned long start,
133				 unsigned long end)
134{
135	struct flush_tlb_info info;
136
137	if (end == 0)
138		end = start + PAGE_SIZE;
139	info.flush_mm = mm;
140	info.flush_start = start;
141	info.flush_end = end;
142
143	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
144	if (end == TLB_FLUSH_ALL)
145		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
146	else
147		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
148				(end - start) >> PAGE_SHIFT);
149
150	if (is_uv_system()) {
151		unsigned int cpu;
152
153		cpu = smp_processor_id();
154		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
155		if (cpumask)
156			smp_call_function_many(cpumask, flush_tlb_func,
157								&info, 1);
158		return;
159	}
160	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
161}
162
163void flush_tlb_current_task(void)
164{
165	struct mm_struct *mm = current->mm;
166
167	preempt_disable();
168
169	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
170
171	/* This is an implicit full barrier that synchronizes with switch_mm. */
172	local_flush_tlb();
173
174	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
175	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
176		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
177	preempt_enable();
178}
179
180/*
181 * See Documentation/x86/tlb.txt for details.  We choose 33
182 * because it is large enough to cover the vast majority (at
183 * least 95%) of allocations, and is small enough that we are
184 * confident it will not cause too much overhead.  Each single
185 * flush is about 100 ns, so this caps the maximum overhead at
186 * _about_ 3,000 ns.
187 *
188 * This is in units of pages.
189 */
190static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
191
192void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
193				unsigned long end, unsigned long vmflag)
194{
195	unsigned long addr;
196	/* do a global flush by default */
197	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
198
199	preempt_disable();
200	if (current->active_mm != mm) {
201		/* Synchronize with switch_mm. */
202		smp_mb();
203
204		goto out;
205	}
206
207	if (!current->mm) {
208		leave_mm(smp_processor_id());
 
 
209
210		/* Synchronize with switch_mm. */
211		smp_mb();
212
213		goto out;
214	}
215
216	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
217		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
218
219	/*
220	 * Both branches below are implicit full barriers (MOV to CR or
221	 * INVLPG) that synchronize with switch_mm.
222	 */
223	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
224		base_pages_to_flush = TLB_FLUSH_ALL;
225		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
226		local_flush_tlb();
227	} else {
228		/* flush range by one by one 'invlpg' */
229		for (addr = start; addr < end;	addr += PAGE_SIZE) {
230			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
231			__flush_tlb_single(addr);
232		}
 
 
 
 
 
 
233	}
234	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
235out:
236	if (base_pages_to_flush == TLB_FLUSH_ALL) {
237		start = 0UL;
238		end = TLB_FLUSH_ALL;
239	}
240	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
241		flush_tlb_others(mm_cpumask(mm), mm, start, end);
242	preempt_enable();
243}
244
245void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
246{
247	struct mm_struct *mm = vma->vm_mm;
248
249	preempt_disable();
250
251	if (current->active_mm == mm) {
252		if (current->mm) {
253			/*
254			 * Implicit full barrier (INVLPG) that synchronizes
255			 * with switch_mm.
256			 */
257			__flush_tlb_one(start);
258		} else {
259			leave_mm(smp_processor_id());
260
261			/* Synchronize with switch_mm. */
262			smp_mb();
263		}
264	}
265
266	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
267		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
268
269	preempt_enable();
270}
271
272static void do_flush_tlb_all(void *info)
273{
274	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
275	__flush_tlb_all();
276	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
277		leave_mm(smp_processor_id());
278}
279
280void flush_tlb_all(void)
281{
282	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
283	on_each_cpu(do_flush_tlb_all, NULL, 1);
284}
285
286static void do_kernel_range_flush(void *info)
287{
288	struct flush_tlb_info *f = info;
289	unsigned long addr;
290
291	/* flush range by one by one 'invlpg' */
292	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
293		__flush_tlb_single(addr);
294}
295
296void flush_tlb_kernel_range(unsigned long start, unsigned long end)
297{
 
 
 
 
 
298
299	/* Balance as user space task's flush, a bit conservative */
300	if (end == TLB_FLUSH_ALL ||
301	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
 
302		on_each_cpu(do_flush_tlb_all, NULL, 1);
303	} else {
304		struct flush_tlb_info info;
305		info.flush_start = start;
306		info.flush_end = end;
307		on_each_cpu(do_kernel_range_flush, &info, 1);
308	}
309}
310
 
311static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
312			     size_t count, loff_t *ppos)
313{
314	char buf[32];
315	unsigned int len;
316
317	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
318	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
319}
320
321static ssize_t tlbflush_write_file(struct file *file,
322		 const char __user *user_buf, size_t count, loff_t *ppos)
323{
324	char buf[32];
325	ssize_t len;
326	int ceiling;
327
328	len = min(count, sizeof(buf) - 1);
329	if (copy_from_user(buf, user_buf, len))
330		return -EFAULT;
331
332	buf[len] = '\0';
333	if (kstrtoint(buf, 0, &ceiling))
334		return -EINVAL;
335
336	if (ceiling < 0)
337		return -EINVAL;
338
339	tlb_single_page_flush_ceiling = ceiling;
340	return count;
341}
342
343static const struct file_operations fops_tlbflush = {
344	.read = tlbflush_read_file,
345	.write = tlbflush_write_file,
346	.llseek = default_llseek,
347};
348
349static int __init create_tlb_single_page_flush_ceiling(void)
350{
351	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
352			    arch_debugfs_dir, NULL, &fops_tlbflush);
353	return 0;
354}
355late_initcall(create_tlb_single_page_flush_ceiling);
 
v3.15
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15#include <linux/debugfs.h>
 16
 17DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
 18			= { &init_mm, 0, };
 19
 20/*
 21 *	Smarter SMP flushing macros.
 22 *		c/o Linus Torvalds.
 23 *
 24 *	These mean you can really definitely utterly forget about
 25 *	writing to user space from interrupts. (Its not allowed anyway).
 26 *
 27 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 28 *
 29 *	More scalable flush, from Andi Kleen
 30 *
 31 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 32 */
 33
 34struct flush_tlb_info {
 35	struct mm_struct *flush_mm;
 36	unsigned long flush_start;
 37	unsigned long flush_end;
 38};
 39
 40/*
 41 * We cannot call mmdrop() because we are in interrupt context,
 42 * instead update mm->cpu_vm_mask.
 43 */
 44void leave_mm(int cpu)
 45{
 46	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 47	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 48		BUG();
 49	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
 50		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
 51		load_cr3(swapper_pg_dir);
 
 
 
 
 
 
 
 52	}
 53}
 54EXPORT_SYMBOL_GPL(leave_mm);
 55
 56/*
 57 * The flush IPI assumes that a thread switch happens in this order:
 58 * [cpu0: the cpu that switches]
 59 * 1) switch_mm() either 1a) or 1b)
 60 * 1a) thread switch to a different mm
 61 * 1a1) set cpu_tlbstate to TLBSTATE_OK
 62 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
 63 *	if cpu0 was in lazy tlb mode.
 64 * 1a2) update cpu active_mm
 65 *	Now cpu0 accepts tlb flushes for the new mm.
 66 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
 67 *	Now the other cpus will send tlb flush ipis.
 68 * 1a4) change cr3.
 69 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
 70 *	Stop ipi delivery for the old mm. This is not synchronized with
 71 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
 72 *	mm, and in the worst case we perform a superfluous tlb flush.
 73 * 1b) thread switch without mm change
 74 *	cpu active_mm is correct, cpu0 already handles flush ipis.
 75 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 76 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 77 *	Atomically set the bit [other cpus will start sending flush ipis],
 78 *	and test the bit.
 79 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 80 * 2) switch %%esp, ie current
 81 *
 82 * The interrupt must handle 2 special cases:
 83 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
 84 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
 85 *   runs in kernel space, the cpu could load tlb entries for user space
 86 *   pages.
 87 *
 88 * The good news is that cpu_tlbstate is local to each cpu, no
 89 * write/read ordering problems.
 90 */
 91
 92/*
 93 * TLB flush funcation:
 94 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
 95 * 2) Leave the mm if we are in the lazy tlb mode.
 96 */
 97static void flush_tlb_func(void *info)
 98{
 99	struct flush_tlb_info *f = info;
100
101	inc_irq_stat(irq_tlb_count);
102
103	if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
104		return;
105
106	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
107	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
108		if (f->flush_end == TLB_FLUSH_ALL)
109			local_flush_tlb();
110		else if (!f->flush_end)
111			__flush_tlb_single(f->flush_start);
112		else {
113			unsigned long addr;
 
 
114			addr = f->flush_start;
115			while (addr < f->flush_end) {
116				__flush_tlb_single(addr);
117				addr += PAGE_SIZE;
118			}
 
119		}
120	} else
121		leave_mm(smp_processor_id());
122
123}
124
125void native_flush_tlb_others(const struct cpumask *cpumask,
126				 struct mm_struct *mm, unsigned long start,
127				 unsigned long end)
128{
129	struct flush_tlb_info info;
 
 
 
130	info.flush_mm = mm;
131	info.flush_start = start;
132	info.flush_end = end;
133
134	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 
 
 
 
 
 
135	if (is_uv_system()) {
136		unsigned int cpu;
137
138		cpu = smp_processor_id();
139		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
140		if (cpumask)
141			smp_call_function_many(cpumask, flush_tlb_func,
142								&info, 1);
143		return;
144	}
145	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
146}
147
148void flush_tlb_current_task(void)
149{
150	struct mm_struct *mm = current->mm;
151
152	preempt_disable();
153
154	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 
 
155	local_flush_tlb();
 
 
156	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
157		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
158	preempt_enable();
159}
160
 
 
 
 
 
 
 
 
 
 
 
 
161void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
162				unsigned long end, unsigned long vmflag)
163{
164	unsigned long addr;
165	unsigned act_entries, tlb_entries = 0;
166	unsigned long nr_base_pages;
167
168	preempt_disable();
169	if (current->active_mm != mm)
170		goto flush_all;
 
 
 
 
171
172	if (!current->mm) {
173		leave_mm(smp_processor_id());
174		goto flush_all;
175	}
176
177	if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1
178					|| vmflag & VM_HUGETLB) {
179		local_flush_tlb();
180		goto flush_all;
181	}
182
183	/* In modern CPU, last level tlb used for both data/ins */
184	if (vmflag & VM_EXEC)
185		tlb_entries = tlb_lli_4k[ENTRIES];
186	else
187		tlb_entries = tlb_lld_4k[ENTRIES];
188
189	/* Assume all of TLB entries was occupied by this task */
190	act_entries = tlb_entries >> tlb_flushall_shift;
191	act_entries = mm->total_vm > act_entries ? act_entries : mm->total_vm;
192	nr_base_pages = (end - start) >> PAGE_SHIFT;
193
194	/* tlb_flushall_shift is on balance point, details in commit log */
195	if (nr_base_pages > act_entries) {
 
 
 
 
196		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
197		local_flush_tlb();
198	} else {
199		/* flush range by one by one 'invlpg' */
200		for (addr = start; addr < end;	addr += PAGE_SIZE) {
201			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
202			__flush_tlb_single(addr);
203		}
204
205		if (cpumask_any_but(mm_cpumask(mm),
206				smp_processor_id()) < nr_cpu_ids)
207			flush_tlb_others(mm_cpumask(mm), mm, start, end);
208		preempt_enable();
209		return;
210	}
211
212flush_all:
 
 
 
 
213	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
214		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
215	preempt_enable();
216}
217
218void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
219{
220	struct mm_struct *mm = vma->vm_mm;
221
222	preempt_disable();
223
224	if (current->active_mm == mm) {
225		if (current->mm)
 
 
 
 
226			__flush_tlb_one(start);
227		else
228			leave_mm(smp_processor_id());
 
 
 
 
229	}
230
231	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
232		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
233
234	preempt_enable();
235}
236
237static void do_flush_tlb_all(void *info)
238{
239	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240	__flush_tlb_all();
241	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
242		leave_mm(smp_processor_id());
243}
244
245void flush_tlb_all(void)
246{
247	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
248	on_each_cpu(do_flush_tlb_all, NULL, 1);
249}
250
251static void do_kernel_range_flush(void *info)
252{
253	struct flush_tlb_info *f = info;
254	unsigned long addr;
255
256	/* flush range by one by one 'invlpg' */
257	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
258		__flush_tlb_single(addr);
259}
260
261void flush_tlb_kernel_range(unsigned long start, unsigned long end)
262{
263	unsigned act_entries;
264	struct flush_tlb_info info;
265
266	/* In modern CPU, last level tlb used for both data/ins */
267	act_entries = tlb_lld_4k[ENTRIES];
268
269	/* Balance as user space task's flush, a bit conservative */
270	if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 ||
271		(end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
272
273		on_each_cpu(do_flush_tlb_all, NULL, 1);
274	else {
 
275		info.flush_start = start;
276		info.flush_end = end;
277		on_each_cpu(do_kernel_range_flush, &info, 1);
278	}
279}
280
281#ifdef CONFIG_DEBUG_TLBFLUSH
282static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
283			     size_t count, loff_t *ppos)
284{
285	char buf[32];
286	unsigned int len;
287
288	len = sprintf(buf, "%hd\n", tlb_flushall_shift);
289	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
290}
291
292static ssize_t tlbflush_write_file(struct file *file,
293		 const char __user *user_buf, size_t count, loff_t *ppos)
294{
295	char buf[32];
296	ssize_t len;
297	s8 shift;
298
299	len = min(count, sizeof(buf) - 1);
300	if (copy_from_user(buf, user_buf, len))
301		return -EFAULT;
302
303	buf[len] = '\0';
304	if (kstrtos8(buf, 0, &shift))
305		return -EINVAL;
306
307	if (shift < -1 || shift >= BITS_PER_LONG)
308		return -EINVAL;
309
310	tlb_flushall_shift = shift;
311	return count;
312}
313
314static const struct file_operations fops_tlbflush = {
315	.read = tlbflush_read_file,
316	.write = tlbflush_write_file,
317	.llseek = default_llseek,
318};
319
320static int __init create_tlb_flushall_shift(void)
321{
322	debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR,
323			    arch_debugfs_dir, NULL, &fops_tlbflush);
324	return 0;
325}
326late_initcall(create_tlb_flushall_shift);
327#endif