Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include "xfs_reflink.h"
35#include <linux/gfp.h>
36#include <linux/mpage.h>
37#include <linux/pagevec.h>
38#include <linux/writeback.h>
39
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
51void
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
70struct block_device *
71xfs_find_bdev_for_inode(
72 struct inode *inode)
73{
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
83struct dax_device *
84xfs_find_daxdev_for_inode(
85 struct inode *inode)
86{
87 struct xfs_inode *ip = XFS_I(inode);
88 struct xfs_mount *mp = ip->i_mount;
89
90 if (XFS_IS_REALTIME_INODE(ip))
91 return mp->m_rtdev_targp->bt_daxdev;
92 else
93 return mp->m_ddev_targp->bt_daxdev;
94}
95
96/*
97 * We're now finished for good with this page. Update the page state via the
98 * associated buffer_heads, paying attention to the start and end offsets that
99 * we need to process on the page.
100 *
101 * Note that we open code the action in end_buffer_async_write here so that we
102 * only have to iterate over the buffers attached to the page once. This is not
103 * only more efficient, but also ensures that we only calls end_page_writeback
104 * at the end of the iteration, and thus avoids the pitfall of having the page
105 * and buffers potentially freed after every call to end_buffer_async_write.
106 */
107static void
108xfs_finish_page_writeback(
109 struct inode *inode,
110 struct bio_vec *bvec,
111 int error)
112{
113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
114 bool busy = false;
115 unsigned int off = 0;
116 unsigned long flags;
117
118 ASSERT(bvec->bv_offset < PAGE_SIZE);
119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122
123 local_irq_save(flags);
124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 do {
126 if (off >= bvec->bv_offset &&
127 off < bvec->bv_offset + bvec->bv_len) {
128 ASSERT(buffer_async_write(bh));
129 ASSERT(bh->b_end_io == NULL);
130
131 if (error) {
132 mark_buffer_write_io_error(bh);
133 clear_buffer_uptodate(bh);
134 SetPageError(bvec->bv_page);
135 } else {
136 set_buffer_uptodate(bh);
137 }
138 clear_buffer_async_write(bh);
139 unlock_buffer(bh);
140 } else if (buffer_async_write(bh)) {
141 ASSERT(buffer_locked(bh));
142 busy = true;
143 }
144 off += bh->b_size;
145 } while ((bh = bh->b_this_page) != head);
146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 local_irq_restore(flags);
148
149 if (!busy)
150 end_page_writeback(bvec->bv_page);
151}
152
153/*
154 * We're now finished for good with this ioend structure. Update the page
155 * state, release holds on bios, and finally free up memory. Do not use the
156 * ioend after this.
157 */
158STATIC void
159xfs_destroy_ioend(
160 struct xfs_ioend *ioend,
161 int error)
162{
163 struct inode *inode = ioend->io_inode;
164 struct bio *bio = &ioend->io_inline_bio;
165 struct bio *last = ioend->io_bio, *next;
166 u64 start = bio->bi_iter.bi_sector;
167 bool quiet = bio_flagged(bio, BIO_QUIET);
168
169 for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 struct bio_vec *bvec;
171 int i;
172
173 /*
174 * For the last bio, bi_private points to the ioend, so we
175 * need to explicitly end the iteration here.
176 */
177 if (bio == last)
178 next = NULL;
179 else
180 next = bio->bi_private;
181
182 /* walk each page on bio, ending page IO on them */
183 bio_for_each_segment_all(bvec, bio, i)
184 xfs_finish_page_writeback(inode, bvec, error);
185
186 bio_put(bio);
187 }
188
189 if (unlikely(error && !quiet)) {
190 xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 "writeback error on sector %llu", start);
192 }
193}
194
195/*
196 * Fast and loose check if this write could update the on-disk inode size.
197 */
198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199{
200 return ioend->io_offset + ioend->io_size >
201 XFS_I(ioend->io_inode)->i_d.di_size;
202}
203
204STATIC int
205xfs_setfilesize_trans_alloc(
206 struct xfs_ioend *ioend)
207{
208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
209 struct xfs_trans *tp;
210 int error;
211
212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
213 XFS_TRANS_NOFS, &tp);
214 if (error)
215 return error;
216
217 ioend->io_append_trans = tp;
218
219 /*
220 * We may pass freeze protection with a transaction. So tell lockdep
221 * we released it.
222 */
223 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
224 /*
225 * We hand off the transaction to the completion thread now, so
226 * clear the flag here.
227 */
228 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
229 return 0;
230}
231
232/*
233 * Update on-disk file size now that data has been written to disk.
234 */
235STATIC int
236__xfs_setfilesize(
237 struct xfs_inode *ip,
238 struct xfs_trans *tp,
239 xfs_off_t offset,
240 size_t size)
241{
242 xfs_fsize_t isize;
243
244 xfs_ilock(ip, XFS_ILOCK_EXCL);
245 isize = xfs_new_eof(ip, offset + size);
246 if (!isize) {
247 xfs_iunlock(ip, XFS_ILOCK_EXCL);
248 xfs_trans_cancel(tp);
249 return 0;
250 }
251
252 trace_xfs_setfilesize(ip, offset, size);
253
254 ip->i_d.di_size = isize;
255 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
256 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257
258 return xfs_trans_commit(tp);
259}
260
261int
262xfs_setfilesize(
263 struct xfs_inode *ip,
264 xfs_off_t offset,
265 size_t size)
266{
267 struct xfs_mount *mp = ip->i_mount;
268 struct xfs_trans *tp;
269 int error;
270
271 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
272 if (error)
273 return error;
274
275 return __xfs_setfilesize(ip, tp, offset, size);
276}
277
278STATIC int
279xfs_setfilesize_ioend(
280 struct xfs_ioend *ioend,
281 int error)
282{
283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
284 struct xfs_trans *tp = ioend->io_append_trans;
285
286 /*
287 * The transaction may have been allocated in the I/O submission thread,
288 * thus we need to mark ourselves as being in a transaction manually.
289 * Similarly for freeze protection.
290 */
291 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
292 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
293
294 /* we abort the update if there was an IO error */
295 if (error) {
296 xfs_trans_cancel(tp);
297 return error;
298 }
299
300 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
301}
302
303/*
304 * IO write completion.
305 */
306STATIC void
307xfs_end_io(
308 struct work_struct *work)
309{
310 struct xfs_ioend *ioend =
311 container_of(work, struct xfs_ioend, io_work);
312 struct xfs_inode *ip = XFS_I(ioend->io_inode);
313 xfs_off_t offset = ioend->io_offset;
314 size_t size = ioend->io_size;
315 int error;
316
317 /*
318 * Just clean up the in-memory strutures if the fs has been shut down.
319 */
320 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
321 error = -EIO;
322 goto done;
323 }
324
325 /*
326 * Clean up any COW blocks on an I/O error.
327 */
328 error = blk_status_to_errno(ioend->io_bio->bi_status);
329 if (unlikely(error)) {
330 switch (ioend->io_type) {
331 case XFS_IO_COW:
332 xfs_reflink_cancel_cow_range(ip, offset, size, true);
333 break;
334 }
335
336 goto done;
337 }
338
339 /*
340 * Success: commit the COW or unwritten blocks if needed.
341 */
342 switch (ioend->io_type) {
343 case XFS_IO_COW:
344 error = xfs_reflink_end_cow(ip, offset, size);
345 break;
346 case XFS_IO_UNWRITTEN:
347 /* writeback should never update isize */
348 error = xfs_iomap_write_unwritten(ip, offset, size, false);
349 break;
350 default:
351 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
352 break;
353 }
354
355done:
356 if (ioend->io_append_trans)
357 error = xfs_setfilesize_ioend(ioend, error);
358 xfs_destroy_ioend(ioend, error);
359}
360
361STATIC void
362xfs_end_bio(
363 struct bio *bio)
364{
365 struct xfs_ioend *ioend = bio->bi_private;
366 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
367
368 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
369 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
370 else if (ioend->io_append_trans)
371 queue_work(mp->m_data_workqueue, &ioend->io_work);
372 else
373 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
374}
375
376STATIC int
377xfs_map_blocks(
378 struct inode *inode,
379 loff_t offset,
380 struct xfs_bmbt_irec *imap,
381 int type)
382{
383 struct xfs_inode *ip = XFS_I(inode);
384 struct xfs_mount *mp = ip->i_mount;
385 ssize_t count = i_blocksize(inode);
386 xfs_fileoff_t offset_fsb, end_fsb;
387 int error = 0;
388 int bmapi_flags = XFS_BMAPI_ENTIRE;
389 int nimaps = 1;
390
391 if (XFS_FORCED_SHUTDOWN(mp))
392 return -EIO;
393
394 /*
395 * Truncate can race with writeback since writeback doesn't take the
396 * iolock and truncate decreases the file size before it starts
397 * truncating the pages between new_size and old_size. Therefore, we
398 * can end up in the situation where writeback gets a CoW fork mapping
399 * but the truncate makes the mapping invalid and we end up in here
400 * trying to get a new mapping. Bail out here so that we simply never
401 * get a valid mapping and so we drop the write altogether. The page
402 * truncation will kill the contents anyway.
403 */
404 if (type == XFS_IO_COW && offset > i_size_read(inode))
405 return 0;
406
407 ASSERT(type != XFS_IO_COW);
408 if (type == XFS_IO_UNWRITTEN)
409 bmapi_flags |= XFS_BMAPI_IGSTATE;
410
411 xfs_ilock(ip, XFS_ILOCK_SHARED);
412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 (ip->i_df.if_flags & XFS_IFEXTENTS));
414 ASSERT(offset <= mp->m_super->s_maxbytes);
415
416 if (offset > mp->m_super->s_maxbytes - count)
417 count = mp->m_super->s_maxbytes - offset;
418 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
419 offset_fsb = XFS_B_TO_FSBT(mp, offset);
420 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
421 imap, &nimaps, bmapi_flags);
422 /*
423 * Truncate an overwrite extent if there's a pending CoW
424 * reservation before the end of this extent. This forces us
425 * to come back to writepage to take care of the CoW.
426 */
427 if (nimaps && type == XFS_IO_OVERWRITE)
428 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
429 xfs_iunlock(ip, XFS_ILOCK_SHARED);
430
431 if (error)
432 return error;
433
434 if (type == XFS_IO_DELALLOC &&
435 (!nimaps || isnullstartblock(imap->br_startblock))) {
436 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
437 imap);
438 if (!error)
439 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
440 return error;
441 }
442
443#ifdef DEBUG
444 if (type == XFS_IO_UNWRITTEN) {
445 ASSERT(nimaps);
446 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
447 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 }
449#endif
450 if (nimaps)
451 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
452 return 0;
453}
454
455STATIC bool
456xfs_imap_valid(
457 struct inode *inode,
458 struct xfs_bmbt_irec *imap,
459 xfs_off_t offset)
460{
461 offset >>= inode->i_blkbits;
462
463 /*
464 * We have to make sure the cached mapping is within EOF to protect
465 * against eofblocks trimming on file release leaving us with a stale
466 * mapping. Otherwise, a page for a subsequent file extending buffered
467 * write could get picked up by this writeback cycle and written to the
468 * wrong blocks.
469 *
470 * Note that what we really want here is a generic mapping invalidation
471 * mechanism to protect us from arbitrary extent modifying contexts, not
472 * just eofblocks.
473 */
474 xfs_trim_extent_eof(imap, XFS_I(inode));
475
476 return offset >= imap->br_startoff &&
477 offset < imap->br_startoff + imap->br_blockcount;
478}
479
480STATIC void
481xfs_start_buffer_writeback(
482 struct buffer_head *bh)
483{
484 ASSERT(buffer_mapped(bh));
485 ASSERT(buffer_locked(bh));
486 ASSERT(!buffer_delay(bh));
487 ASSERT(!buffer_unwritten(bh));
488
489 bh->b_end_io = NULL;
490 set_buffer_async_write(bh);
491 set_buffer_uptodate(bh);
492 clear_buffer_dirty(bh);
493}
494
495STATIC void
496xfs_start_page_writeback(
497 struct page *page,
498 int clear_dirty)
499{
500 ASSERT(PageLocked(page));
501 ASSERT(!PageWriteback(page));
502
503 /*
504 * if the page was not fully cleaned, we need to ensure that the higher
505 * layers come back to it correctly. That means we need to keep the page
506 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
507 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
508 * write this page in this writeback sweep will be made.
509 */
510 if (clear_dirty) {
511 clear_page_dirty_for_io(page);
512 set_page_writeback(page);
513 } else
514 set_page_writeback_keepwrite(page);
515
516 unlock_page(page);
517}
518
519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
520{
521 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
522}
523
524/*
525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
526 * it, and we submit that bio. The ioend may be used for multiple bio
527 * submissions, so we only want to allocate an append transaction for the ioend
528 * once. In the case of multiple bio submission, each bio will take an IO
529 * reference to the ioend to ensure that the ioend completion is only done once
530 * all bios have been submitted and the ioend is really done.
531 *
532 * If @fail is non-zero, it means that we have a situation where some part of
533 * the submission process has failed after we have marked paged for writeback
534 * and unlocked them. In this situation, we need to fail the bio and ioend
535 * rather than submit it to IO. This typically only happens on a filesystem
536 * shutdown.
537 */
538STATIC int
539xfs_submit_ioend(
540 struct writeback_control *wbc,
541 struct xfs_ioend *ioend,
542 int status)
543{
544 /* Convert CoW extents to regular */
545 if (!status && ioend->io_type == XFS_IO_COW) {
546 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
547 ioend->io_offset, ioend->io_size);
548 }
549
550 /* Reserve log space if we might write beyond the on-disk inode size. */
551 if (!status &&
552 ioend->io_type != XFS_IO_UNWRITTEN &&
553 xfs_ioend_is_append(ioend) &&
554 !ioend->io_append_trans)
555 status = xfs_setfilesize_trans_alloc(ioend);
556
557 ioend->io_bio->bi_private = ioend;
558 ioend->io_bio->bi_end_io = xfs_end_bio;
559 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
560
561 /*
562 * If we are failing the IO now, just mark the ioend with an
563 * error and finish it. This will run IO completion immediately
564 * as there is only one reference to the ioend at this point in
565 * time.
566 */
567 if (status) {
568 ioend->io_bio->bi_status = errno_to_blk_status(status);
569 bio_endio(ioend->io_bio);
570 return status;
571 }
572
573 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
574 submit_bio(ioend->io_bio);
575 return 0;
576}
577
578static void
579xfs_init_bio_from_bh(
580 struct bio *bio,
581 struct buffer_head *bh)
582{
583 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
584 bio_set_dev(bio, bh->b_bdev);
585}
586
587static struct xfs_ioend *
588xfs_alloc_ioend(
589 struct inode *inode,
590 unsigned int type,
591 xfs_off_t offset,
592 struct buffer_head *bh)
593{
594 struct xfs_ioend *ioend;
595 struct bio *bio;
596
597 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
598 xfs_init_bio_from_bh(bio, bh);
599
600 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
601 INIT_LIST_HEAD(&ioend->io_list);
602 ioend->io_type = type;
603 ioend->io_inode = inode;
604 ioend->io_size = 0;
605 ioend->io_offset = offset;
606 INIT_WORK(&ioend->io_work, xfs_end_io);
607 ioend->io_append_trans = NULL;
608 ioend->io_bio = bio;
609 return ioend;
610}
611
612/*
613 * Allocate a new bio, and chain the old bio to the new one.
614 *
615 * Note that we have to do perform the chaining in this unintuitive order
616 * so that the bi_private linkage is set up in the right direction for the
617 * traversal in xfs_destroy_ioend().
618 */
619static void
620xfs_chain_bio(
621 struct xfs_ioend *ioend,
622 struct writeback_control *wbc,
623 struct buffer_head *bh)
624{
625 struct bio *new;
626
627 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
628 xfs_init_bio_from_bh(new, bh);
629
630 bio_chain(ioend->io_bio, new);
631 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
632 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
633 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
634 submit_bio(ioend->io_bio);
635 ioend->io_bio = new;
636}
637
638/*
639 * Test to see if we've been building up a completion structure for
640 * earlier buffers -- if so, we try to append to this ioend if we
641 * can, otherwise we finish off any current ioend and start another.
642 * Return the ioend we finished off so that the caller can submit it
643 * once it has finished processing the dirty page.
644 */
645STATIC void
646xfs_add_to_ioend(
647 struct inode *inode,
648 struct buffer_head *bh,
649 xfs_off_t offset,
650 struct xfs_writepage_ctx *wpc,
651 struct writeback_control *wbc,
652 struct list_head *iolist)
653{
654 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
655 bh->b_blocknr != wpc->last_block + 1 ||
656 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
657 if (wpc->ioend)
658 list_add(&wpc->ioend->io_list, iolist);
659 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
660 }
661
662 /*
663 * If the buffer doesn't fit into the bio we need to allocate a new
664 * one. This shouldn't happen more than once for a given buffer.
665 */
666 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
667 xfs_chain_bio(wpc->ioend, wbc, bh);
668
669 wpc->ioend->io_size += bh->b_size;
670 wpc->last_block = bh->b_blocknr;
671 xfs_start_buffer_writeback(bh);
672}
673
674STATIC void
675xfs_map_buffer(
676 struct inode *inode,
677 struct buffer_head *bh,
678 struct xfs_bmbt_irec *imap,
679 xfs_off_t offset)
680{
681 sector_t bn;
682 struct xfs_mount *m = XFS_I(inode)->i_mount;
683 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
684 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
685
686 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
687 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
688
689 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
690 ((offset - iomap_offset) >> inode->i_blkbits);
691
692 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
693
694 bh->b_blocknr = bn;
695 set_buffer_mapped(bh);
696}
697
698STATIC void
699xfs_map_at_offset(
700 struct inode *inode,
701 struct buffer_head *bh,
702 struct xfs_bmbt_irec *imap,
703 xfs_off_t offset)
704{
705 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
706 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
707
708 xfs_map_buffer(inode, bh, imap, offset);
709 set_buffer_mapped(bh);
710 clear_buffer_delay(bh);
711 clear_buffer_unwritten(bh);
712}
713
714/*
715 * Test if a given page contains at least one buffer of a given @type.
716 * If @check_all_buffers is true, then we walk all the buffers in the page to
717 * try to find one of the type passed in. If it is not set, then the caller only
718 * needs to check the first buffer on the page for a match.
719 */
720STATIC bool
721xfs_check_page_type(
722 struct page *page,
723 unsigned int type,
724 bool check_all_buffers)
725{
726 struct buffer_head *bh;
727 struct buffer_head *head;
728
729 if (PageWriteback(page))
730 return false;
731 if (!page->mapping)
732 return false;
733 if (!page_has_buffers(page))
734 return false;
735
736 bh = head = page_buffers(page);
737 do {
738 if (buffer_unwritten(bh)) {
739 if (type == XFS_IO_UNWRITTEN)
740 return true;
741 } else if (buffer_delay(bh)) {
742 if (type == XFS_IO_DELALLOC)
743 return true;
744 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
745 if (type == XFS_IO_OVERWRITE)
746 return true;
747 }
748
749 /* If we are only checking the first buffer, we are done now. */
750 if (!check_all_buffers)
751 break;
752 } while ((bh = bh->b_this_page) != head);
753
754 return false;
755}
756
757STATIC void
758xfs_vm_invalidatepage(
759 struct page *page,
760 unsigned int offset,
761 unsigned int length)
762{
763 trace_xfs_invalidatepage(page->mapping->host, page, offset,
764 length);
765
766 /*
767 * If we are invalidating the entire page, clear the dirty state from it
768 * so that we can check for attempts to release dirty cached pages in
769 * xfs_vm_releasepage().
770 */
771 if (offset == 0 && length >= PAGE_SIZE)
772 cancel_dirty_page(page);
773 block_invalidatepage(page, offset, length);
774}
775
776/*
777 * If the page has delalloc buffers on it, we need to punch them out before we
778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
780 * is done on that same region - the delalloc extent is returned when none is
781 * supposed to be there.
782 *
783 * We prevent this by truncating away the delalloc regions on the page before
784 * invalidating it. Because they are delalloc, we can do this without needing a
785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
786 * truncation without a transaction as there is no space left for block
787 * reservation (typically why we see a ENOSPC in writeback).
788 *
789 * This is not a performance critical path, so for now just do the punching a
790 * buffer head at a time.
791 */
792STATIC void
793xfs_aops_discard_page(
794 struct page *page)
795{
796 struct inode *inode = page->mapping->host;
797 struct xfs_inode *ip = XFS_I(inode);
798 struct buffer_head *bh, *head;
799 loff_t offset = page_offset(page);
800
801 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
802 goto out_invalidate;
803
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 goto out_invalidate;
806
807 xfs_alert(ip->i_mount,
808 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
809 page, ip->i_ino, offset);
810
811 xfs_ilock(ip, XFS_ILOCK_EXCL);
812 bh = head = page_buffers(page);
813 do {
814 int error;
815 xfs_fileoff_t start_fsb;
816
817 if (!buffer_delay(bh))
818 goto next_buffer;
819
820 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
821 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
822 if (error) {
823 /* something screwed, just bail */
824 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 xfs_alert(ip->i_mount,
826 "page discard unable to remove delalloc mapping.");
827 }
828 break;
829 }
830next_buffer:
831 offset += i_blocksize(inode);
832
833 } while ((bh = bh->b_this_page) != head);
834
835 xfs_iunlock(ip, XFS_ILOCK_EXCL);
836out_invalidate:
837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
838 return;
839}
840
841static int
842xfs_map_cow(
843 struct xfs_writepage_ctx *wpc,
844 struct inode *inode,
845 loff_t offset,
846 unsigned int *new_type)
847{
848 struct xfs_inode *ip = XFS_I(inode);
849 struct xfs_bmbt_irec imap;
850 bool is_cow = false;
851 int error;
852
853 /*
854 * If we already have a valid COW mapping keep using it.
855 */
856 if (wpc->io_type == XFS_IO_COW) {
857 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
858 if (wpc->imap_valid) {
859 *new_type = XFS_IO_COW;
860 return 0;
861 }
862 }
863
864 /*
865 * Else we need to check if there is a COW mapping at this offset.
866 */
867 xfs_ilock(ip, XFS_ILOCK_SHARED);
868 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
869 xfs_iunlock(ip, XFS_ILOCK_SHARED);
870
871 if (!is_cow)
872 return 0;
873
874 /*
875 * And if the COW mapping has a delayed extent here we need to
876 * allocate real space for it now.
877 */
878 if (isnullstartblock(imap.br_startblock)) {
879 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
880 &imap);
881 if (error)
882 return error;
883 }
884
885 wpc->io_type = *new_type = XFS_IO_COW;
886 wpc->imap_valid = true;
887 wpc->imap = imap;
888 return 0;
889}
890
891/*
892 * We implement an immediate ioend submission policy here to avoid needing to
893 * chain multiple ioends and hence nest mempool allocations which can violate
894 * forward progress guarantees we need to provide. The current ioend we are
895 * adding buffers to is cached on the writepage context, and if the new buffer
896 * does not append to the cached ioend it will create a new ioend and cache that
897 * instead.
898 *
899 * If a new ioend is created and cached, the old ioend is returned and queued
900 * locally for submission once the entire page is processed or an error has been
901 * detected. While ioends are submitted immediately after they are completed,
902 * batching optimisations are provided by higher level block plugging.
903 *
904 * At the end of a writeback pass, there will be a cached ioend remaining on the
905 * writepage context that the caller will need to submit.
906 */
907static int
908xfs_writepage_map(
909 struct xfs_writepage_ctx *wpc,
910 struct writeback_control *wbc,
911 struct inode *inode,
912 struct page *page,
913 uint64_t end_offset)
914{
915 LIST_HEAD(submit_list);
916 struct xfs_ioend *ioend, *next;
917 struct buffer_head *bh, *head;
918 ssize_t len = i_blocksize(inode);
919 uint64_t offset;
920 int error = 0;
921 int count = 0;
922 int uptodate = 1;
923 unsigned int new_type;
924
925 bh = head = page_buffers(page);
926 offset = page_offset(page);
927 do {
928 if (offset >= end_offset)
929 break;
930 if (!buffer_uptodate(bh))
931 uptodate = 0;
932
933 /*
934 * set_page_dirty dirties all buffers in a page, independent
935 * of their state. The dirty state however is entirely
936 * meaningless for holes (!mapped && uptodate), so skip
937 * buffers covering holes here.
938 */
939 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
940 wpc->imap_valid = false;
941 continue;
942 }
943
944 if (buffer_unwritten(bh))
945 new_type = XFS_IO_UNWRITTEN;
946 else if (buffer_delay(bh))
947 new_type = XFS_IO_DELALLOC;
948 else if (buffer_uptodate(bh))
949 new_type = XFS_IO_OVERWRITE;
950 else {
951 if (PageUptodate(page))
952 ASSERT(buffer_mapped(bh));
953 /*
954 * This buffer is not uptodate and will not be
955 * written to disk. Ensure that we will put any
956 * subsequent writeable buffers into a new
957 * ioend.
958 */
959 wpc->imap_valid = false;
960 continue;
961 }
962
963 if (xfs_is_reflink_inode(XFS_I(inode))) {
964 error = xfs_map_cow(wpc, inode, offset, &new_type);
965 if (error)
966 goto out;
967 }
968
969 if (wpc->io_type != new_type) {
970 wpc->io_type = new_type;
971 wpc->imap_valid = false;
972 }
973
974 if (wpc->imap_valid)
975 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
976 offset);
977 if (!wpc->imap_valid) {
978 error = xfs_map_blocks(inode, offset, &wpc->imap,
979 wpc->io_type);
980 if (error)
981 goto out;
982 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
983 offset);
984 }
985 if (wpc->imap_valid) {
986 lock_buffer(bh);
987 if (wpc->io_type != XFS_IO_OVERWRITE)
988 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
989 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
990 count++;
991 }
992
993 } while (offset += len, ((bh = bh->b_this_page) != head));
994
995 if (uptodate && bh == head)
996 SetPageUptodate(page);
997
998 ASSERT(wpc->ioend || list_empty(&submit_list));
999
1000out:
1001 /*
1002 * On error, we have to fail the ioend here because we have locked
1003 * buffers in the ioend. If we don't do this, we'll deadlock
1004 * invalidating the page as that tries to lock the buffers on the page.
1005 * Also, because we may have set pages under writeback, we have to make
1006 * sure we run IO completion to mark the error state of the IO
1007 * appropriately, so we can't cancel the ioend directly here. That means
1008 * we have to mark this page as under writeback if we included any
1009 * buffers from it in the ioend chain so that completion treats it
1010 * correctly.
1011 *
1012 * If we didn't include the page in the ioend, the on error we can
1013 * simply discard and unlock it as there are no other users of the page
1014 * or it's buffers right now. The caller will still need to trigger
1015 * submission of outstanding ioends on the writepage context so they are
1016 * treated correctly on error.
1017 */
1018 if (count) {
1019 xfs_start_page_writeback(page, !error);
1020
1021 /*
1022 * Preserve the original error if there was one, otherwise catch
1023 * submission errors here and propagate into subsequent ioend
1024 * submissions.
1025 */
1026 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027 int error2;
1028
1029 list_del_init(&ioend->io_list);
1030 error2 = xfs_submit_ioend(wbc, ioend, error);
1031 if (error2 && !error)
1032 error = error2;
1033 }
1034 } else if (error) {
1035 xfs_aops_discard_page(page);
1036 ClearPageUptodate(page);
1037 unlock_page(page);
1038 } else {
1039 /*
1040 * We can end up here with no error and nothing to write if we
1041 * race with a partial page truncate on a sub-page block sized
1042 * filesystem. In that case we need to mark the page clean.
1043 */
1044 xfs_start_page_writeback(page, 1);
1045 end_page_writeback(page);
1046 }
1047
1048 mapping_set_error(page->mapping, error);
1049 return error;
1050}
1051
1052/*
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
1058 * For any other dirty buffer heads on the page we should flush them.
1059 */
1060STATIC int
1061xfs_do_writepage(
1062 struct page *page,
1063 struct writeback_control *wbc,
1064 void *data)
1065{
1066 struct xfs_writepage_ctx *wpc = data;
1067 struct inode *inode = page->mapping->host;
1068 loff_t offset;
1069 uint64_t end_offset;
1070 pgoff_t end_index;
1071
1072 trace_xfs_writepage(inode, page, 0, 0);
1073
1074 ASSERT(page_has_buffers(page));
1075
1076 /*
1077 * Refuse to write the page out if we are called from reclaim context.
1078 *
1079 * This avoids stack overflows when called from deeply used stacks in
1080 * random callers for direct reclaim or memcg reclaim. We explicitly
1081 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 *
1083 * This should never happen except in the case of a VM regression so
1084 * warn about it.
1085 */
1086 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087 PF_MEMALLOC))
1088 goto redirty;
1089
1090 /*
1091 * Given that we do not allow direct reclaim to call us, we should
1092 * never be called while in a filesystem transaction.
1093 */
1094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095 goto redirty;
1096
1097 /*
1098 * Is this page beyond the end of the file?
1099 *
1100 * The page index is less than the end_index, adjust the end_offset
1101 * to the highest offset that this page should represent.
1102 * -----------------------------------------------------
1103 * | file mapping | <EOF> |
1104 * -----------------------------------------------------
1105 * | Page ... | Page N-2 | Page N-1 | Page N | |
1106 * ^--------------------------------^----------|--------
1107 * | desired writeback range | see else |
1108 * ---------------------------------^------------------|
1109 */
1110 offset = i_size_read(inode);
1111 end_index = offset >> PAGE_SHIFT;
1112 if (page->index < end_index)
1113 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114 else {
1115 /*
1116 * Check whether the page to write out is beyond or straddles
1117 * i_size or not.
1118 * -------------------------------------------------------
1119 * | file mapping | <EOF> |
1120 * -------------------------------------------------------
1121 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1122 * ^--------------------------------^-----------|---------
1123 * | | Straddles |
1124 * ---------------------------------^-----------|--------|
1125 */
1126 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127
1128 /*
1129 * Skip the page if it is fully outside i_size, e.g. due to a
1130 * truncate operation that is in progress. We must redirty the
1131 * page so that reclaim stops reclaiming it. Otherwise
1132 * xfs_vm_releasepage() is called on it and gets confused.
1133 *
1134 * Note that the end_index is unsigned long, it would overflow
1135 * if the given offset is greater than 16TB on 32-bit system
1136 * and if we do check the page is fully outside i_size or not
1137 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138 * will be evaluated to 0. Hence this page will be redirtied
1139 * and be written out repeatedly which would result in an
1140 * infinite loop, the user program that perform this operation
1141 * will hang. Instead, we can verify this situation by checking
1142 * if the page to write is totally beyond the i_size or if it's
1143 * offset is just equal to the EOF.
1144 */
1145 if (page->index > end_index ||
1146 (page->index == end_index && offset_into_page == 0))
1147 goto redirty;
1148
1149 /*
1150 * The page straddles i_size. It must be zeroed out on each
1151 * and every writepage invocation because it may be mmapped.
1152 * "A file is mapped in multiples of the page size. For a file
1153 * that is not a multiple of the page size, the remaining
1154 * memory is zeroed when mapped, and writes to that region are
1155 * not written out to the file."
1156 */
1157 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158
1159 /* Adjust the end_offset to the end of file */
1160 end_offset = offset;
1161 }
1162
1163 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164
1165redirty:
1166 redirty_page_for_writepage(wbc, page);
1167 unlock_page(page);
1168 return 0;
1169}
1170
1171STATIC int
1172xfs_vm_writepage(
1173 struct page *page,
1174 struct writeback_control *wbc)
1175{
1176 struct xfs_writepage_ctx wpc = {
1177 .io_type = XFS_IO_INVALID,
1178 };
1179 int ret;
1180
1181 ret = xfs_do_writepage(page, wbc, &wpc);
1182 if (wpc.ioend)
1183 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184 return ret;
1185}
1186
1187STATIC int
1188xfs_vm_writepages(
1189 struct address_space *mapping,
1190 struct writeback_control *wbc)
1191{
1192 struct xfs_writepage_ctx wpc = {
1193 .io_type = XFS_IO_INVALID,
1194 };
1195 int ret;
1196
1197 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199 if (wpc.ioend)
1200 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201 return ret;
1202}
1203
1204STATIC int
1205xfs_dax_writepages(
1206 struct address_space *mapping,
1207 struct writeback_control *wbc)
1208{
1209 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210 return dax_writeback_mapping_range(mapping,
1211 xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
1214/*
1215 * Called to move a page into cleanable state - and from there
1216 * to be released. The page should already be clean. We always
1217 * have buffer heads in this call.
1218 *
1219 * Returns 1 if the page is ok to release, 0 otherwise.
1220 */
1221STATIC int
1222xfs_vm_releasepage(
1223 struct page *page,
1224 gfp_t gfp_mask)
1225{
1226 int delalloc, unwritten;
1227
1228 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229
1230 /*
1231 * mm accommodates an old ext3 case where clean pages might not have had
1232 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233 * ->releasepage() via shrink_active_list(). Conversely,
1234 * block_invalidatepage() can send pages that are still marked dirty but
1235 * otherwise have invalidated buffers.
1236 *
1237 * We want to release the latter to avoid unnecessary buildup of the
1238 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239 * that are entirely invalidated and need to be released. Hence the
1240 * only time we should get dirty pages here is through
1241 * shrink_active_list() and so we can simply skip those now.
1242 *
1243 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244 * or invalidated pages we are about to release.
1245 */
1246 if (PageDirty(page))
1247 return 0;
1248
1249 xfs_count_page_state(page, &delalloc, &unwritten);
1250
1251 if (WARN_ON_ONCE(delalloc))
1252 return 0;
1253 if (WARN_ON_ONCE(unwritten))
1254 return 0;
1255
1256 return try_to_free_buffers(page);
1257}
1258
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272 struct inode *inode,
1273 sector_t iblock,
1274 struct buffer_head *bh_result,
1275 struct xfs_bmbt_irec *imap,
1276 xfs_off_t offset,
1277 ssize_t size)
1278{
1279 xfs_off_t mapping_size;
1280
1281 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282 mapping_size <<= inode->i_blkbits;
1283
1284 ASSERT(mapping_size > 0);
1285 if (mapping_size > size)
1286 mapping_size = size;
1287 if (offset < i_size_read(inode) &&
1288 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289 /* limit mapping to block that spans EOF */
1290 mapping_size = roundup_64(i_size_read(inode) - offset,
1291 i_blocksize(inode));
1292 }
1293 if (mapping_size > LONG_MAX)
1294 mapping_size = LONG_MAX;
1295
1296 bh_result->b_size = mapping_size;
1297}
1298
1299static int
1300xfs_get_blocks(
1301 struct inode *inode,
1302 sector_t iblock,
1303 struct buffer_head *bh_result,
1304 int create)
1305{
1306 struct xfs_inode *ip = XFS_I(inode);
1307 struct xfs_mount *mp = ip->i_mount;
1308 xfs_fileoff_t offset_fsb, end_fsb;
1309 int error = 0;
1310 int lockmode = 0;
1311 struct xfs_bmbt_irec imap;
1312 int nimaps = 1;
1313 xfs_off_t offset;
1314 ssize_t size;
1315
1316 BUG_ON(create);
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
1319 return -EIO;
1320
1321 offset = (xfs_off_t)iblock << inode->i_blkbits;
1322 ASSERT(bh_result->b_size >= i_blocksize(inode));
1323 size = bh_result->b_size;
1324
1325 if (offset >= i_size_read(inode))
1326 return 0;
1327
1328 /*
1329 * Direct I/O is usually done on preallocated files, so try getting
1330 * a block mapping without an exclusive lock first.
1331 */
1332 lockmode = xfs_ilock_data_map_shared(ip);
1333
1334 ASSERT(offset <= mp->m_super->s_maxbytes);
1335 if (offset > mp->m_super->s_maxbytes - size)
1336 size = mp->m_super->s_maxbytes - offset;
1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341 &nimaps, 0);
1342 if (error)
1343 goto out_unlock;
1344 if (!nimaps) {
1345 trace_xfs_get_blocks_notfound(ip, offset, size);
1346 goto out_unlock;
1347 }
1348
1349 trace_xfs_get_blocks_found(ip, offset, size,
1350 imap.br_state == XFS_EXT_UNWRITTEN ?
1351 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352 xfs_iunlock(ip, lockmode);
1353
1354 /* trim mapping down to size requested */
1355 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356
1357 /*
1358 * For unwritten extents do not report a disk address in the buffered
1359 * read case (treat as if we're reading into a hole).
1360 */
1361 if (xfs_bmap_is_real_extent(&imap))
1362 xfs_map_buffer(inode, bh_result, &imap, offset);
1363
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
1368 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1369 return 0;
1370
1371out_unlock:
1372 xfs_iunlock(ip, lockmode);
1373 return error;
1374}
1375
1376STATIC sector_t
1377xfs_vm_bmap(
1378 struct address_space *mapping,
1379 sector_t block)
1380{
1381 struct inode *inode = (struct inode *)mapping->host;
1382 struct xfs_inode *ip = XFS_I(inode);
1383
1384 trace_xfs_vm_bmap(XFS_I(inode));
1385
1386 /*
1387 * The swap code (ab-)uses ->bmap to get a block mapping and then
1388 * bypasses the file system for actual I/O. We really can't allow
1389 * that on reflinks inodes, so we have to skip out here. And yes,
1390 * 0 is the magic code for a bmap error.
1391 *
1392 * Since we don't pass back blockdev info, we can't return bmap
1393 * information for rt files either.
1394 */
1395 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1396 return 0;
1397
1398 filemap_write_and_wait(mapping);
1399 return generic_block_bmap(mapping, block, xfs_get_blocks);
1400}
1401
1402STATIC int
1403xfs_vm_readpage(
1404 struct file *unused,
1405 struct page *page)
1406{
1407 trace_xfs_vm_readpage(page->mapping->host, 1);
1408 return mpage_readpage(page, xfs_get_blocks);
1409}
1410
1411STATIC int
1412xfs_vm_readpages(
1413 struct file *unused,
1414 struct address_space *mapping,
1415 struct list_head *pages,
1416 unsigned nr_pages)
1417{
1418 trace_xfs_vm_readpages(mapping->host, nr_pages);
1419 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1420}
1421
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436 struct page *page)
1437{
1438 struct address_space *mapping = page->mapping;
1439 struct inode *inode = mapping->host;
1440 loff_t end_offset;
1441 loff_t offset;
1442 int newly_dirty;
1443
1444 if (unlikely(!mapping))
1445 return !TestSetPageDirty(page);
1446
1447 end_offset = i_size_read(inode);
1448 offset = page_offset(page);
1449
1450 spin_lock(&mapping->private_lock);
1451 if (page_has_buffers(page)) {
1452 struct buffer_head *head = page_buffers(page);
1453 struct buffer_head *bh = head;
1454
1455 do {
1456 if (offset < end_offset)
1457 set_buffer_dirty(bh);
1458 bh = bh->b_this_page;
1459 offset += i_blocksize(inode);
1460 } while (bh != head);
1461 }
1462 /*
1463 * Lock out page->mem_cgroup migration to keep PageDirty
1464 * synchronized with per-memcg dirty page counters.
1465 */
1466 lock_page_memcg(page);
1467 newly_dirty = !TestSetPageDirty(page);
1468 spin_unlock(&mapping->private_lock);
1469
1470 if (newly_dirty)
1471 __set_page_dirty(page, mapping, 1);
1472 unlock_page_memcg(page);
1473 if (newly_dirty)
1474 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1475 return newly_dirty;
1476}
1477
1478const struct address_space_operations xfs_address_space_operations = {
1479 .readpage = xfs_vm_readpage,
1480 .readpages = xfs_vm_readpages,
1481 .writepage = xfs_vm_writepage,
1482 .writepages = xfs_vm_writepages,
1483 .set_page_dirty = xfs_vm_set_page_dirty,
1484 .releasepage = xfs_vm_releasepage,
1485 .invalidatepage = xfs_vm_invalidatepage,
1486 .bmap = xfs_vm_bmap,
1487 .direct_IO = noop_direct_IO,
1488 .migratepage = buffer_migrate_page,
1489 .is_partially_uptodate = block_is_partially_uptodate,
1490 .error_remove_page = generic_error_remove_page,
1491};
1492
1493const struct address_space_operations xfs_dax_aops = {
1494 .writepages = xfs_dax_writepages,
1495 .direct_IO = noop_direct_IO,
1496 .set_page_dirty = noop_set_page_dirty,
1497 .invalidatepage = noop_invalidatepage,
1498};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_iomap.h"
16#include "xfs_trace.h"
17#include "xfs_bmap.h"
18#include "xfs_bmap_util.h"
19#include "xfs_reflink.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22
23struct xfs_writepage_ctx {
24 struct iomap_writepage_ctx ctx;
25 unsigned int data_seq;
26 unsigned int cow_seq;
27};
28
29static inline struct xfs_writepage_ctx *
30XFS_WPC(struct iomap_writepage_ctx *ctx)
31{
32 return container_of(ctx, struct xfs_writepage_ctx, ctx);
33}
34
35/*
36 * Fast and loose check if this write could update the on-disk inode size.
37 */
38static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
39{
40 return ioend->io_offset + ioend->io_size >
41 XFS_I(ioend->io_inode)->i_disk_size;
42}
43
44/*
45 * Update on-disk file size now that data has been written to disk.
46 */
47int
48xfs_setfilesize(
49 struct xfs_inode *ip,
50 xfs_off_t offset,
51 size_t size)
52{
53 struct xfs_mount *mp = ip->i_mount;
54 struct xfs_trans *tp;
55 xfs_fsize_t isize;
56 int error;
57
58 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
59 if (error)
60 return error;
61
62 xfs_ilock(ip, XFS_ILOCK_EXCL);
63 isize = xfs_new_eof(ip, offset + size);
64 if (!isize) {
65 xfs_iunlock(ip, XFS_ILOCK_EXCL);
66 xfs_trans_cancel(tp);
67 return 0;
68 }
69
70 trace_xfs_setfilesize(ip, offset, size);
71
72 ip->i_disk_size = isize;
73 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
74 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
75
76 return xfs_trans_commit(tp);
77}
78
79/*
80 * IO write completion.
81 */
82STATIC void
83xfs_end_ioend(
84 struct iomap_ioend *ioend)
85{
86 struct xfs_inode *ip = XFS_I(ioend->io_inode);
87 struct xfs_mount *mp = ip->i_mount;
88 xfs_off_t offset = ioend->io_offset;
89 size_t size = ioend->io_size;
90 unsigned int nofs_flag;
91 int error;
92
93 /*
94 * We can allocate memory here while doing writeback on behalf of
95 * memory reclaim. To avoid memory allocation deadlocks set the
96 * task-wide nofs context for the following operations.
97 */
98 nofs_flag = memalloc_nofs_save();
99
100 /*
101 * Just clean up the in-memory structures if the fs has been shut down.
102 */
103 if (xfs_is_shutdown(mp)) {
104 error = -EIO;
105 goto done;
106 }
107
108 /*
109 * Clean up all COW blocks and underlying data fork delalloc blocks on
110 * I/O error. The delalloc punch is required because this ioend was
111 * mapped to blocks in the COW fork and the associated pages are no
112 * longer dirty. If we don't remove delalloc blocks here, they become
113 * stale and can corrupt free space accounting on unmount.
114 */
115 error = blk_status_to_errno(ioend->io_bio.bi_status);
116 if (unlikely(error)) {
117 if (ioend->io_flags & IOMAP_F_SHARED) {
118 xfs_reflink_cancel_cow_range(ip, offset, size, true);
119 xfs_bmap_punch_delalloc_range(ip, offset,
120 offset + size);
121 }
122 goto done;
123 }
124
125 /*
126 * Success: commit the COW or unwritten blocks if needed.
127 */
128 if (ioend->io_flags & IOMAP_F_SHARED)
129 error = xfs_reflink_end_cow(ip, offset, size);
130 else if (ioend->io_type == IOMAP_UNWRITTEN)
131 error = xfs_iomap_write_unwritten(ip, offset, size, false);
132
133 if (!error && xfs_ioend_is_append(ioend))
134 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135done:
136 iomap_finish_ioends(ioend, error);
137 memalloc_nofs_restore(nofs_flag);
138}
139
140/*
141 * Finish all pending IO completions that require transactional modifications.
142 *
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
148 *
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
152 * long in this loop.
153 */
154void
155xfs_end_io(
156 struct work_struct *work)
157{
158 struct xfs_inode *ip =
159 container_of(work, struct xfs_inode, i_ioend_work);
160 struct iomap_ioend *ioend;
161 struct list_head tmp;
162 unsigned long flags;
163
164 spin_lock_irqsave(&ip->i_ioend_lock, flags);
165 list_replace_init(&ip->i_ioend_list, &tmp);
166 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167
168 iomap_sort_ioends(&tmp);
169 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170 io_list))) {
171 list_del_init(&ioend->io_list);
172 iomap_ioend_try_merge(ioend, &tmp);
173 xfs_end_ioend(ioend);
174 cond_resched();
175 }
176}
177
178STATIC void
179xfs_end_bio(
180 struct bio *bio)
181{
182 struct iomap_ioend *ioend = iomap_ioend_from_bio(bio);
183 struct xfs_inode *ip = XFS_I(ioend->io_inode);
184 unsigned long flags;
185
186 spin_lock_irqsave(&ip->i_ioend_lock, flags);
187 if (list_empty(&ip->i_ioend_list))
188 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189 &ip->i_ioend_work));
190 list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192}
193
194/*
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
197 */
198static bool
199xfs_imap_valid(
200 struct iomap_writepage_ctx *wpc,
201 struct xfs_inode *ip,
202 loff_t offset)
203{
204 if (offset < wpc->iomap.offset ||
205 offset >= wpc->iomap.offset + wpc->iomap.length)
206 return false;
207 /*
208 * If this is a COW mapping, it is sufficient to check that the mapping
209 * covers the offset. Be careful to check this first because the caller
210 * can revalidate a COW mapping without updating the data seqno.
211 */
212 if (wpc->iomap.flags & IOMAP_F_SHARED)
213 return true;
214
215 /*
216 * This is not a COW mapping. Check the sequence number of the data fork
217 * because concurrent changes could have invalidated the extent. Check
218 * the COW fork because concurrent changes since the last time we
219 * checked (and found nothing at this offset) could have added
220 * overlapping blocks.
221 */
222 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225 return false;
226 }
227 if (xfs_inode_has_cow_data(ip) &&
228 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231 return false;
232 }
233 return true;
234}
235
236/*
237 * Pass in a dellalloc extent and convert it to real extents, return the real
238 * extent that maps offset_fsb in wpc->iomap.
239 *
240 * The current page is held locked so nothing could have removed the block
241 * backing offset_fsb, although it could have moved from the COW to the data
242 * fork by another thread.
243 */
244static int
245xfs_convert_blocks(
246 struct iomap_writepage_ctx *wpc,
247 struct xfs_inode *ip,
248 int whichfork,
249 loff_t offset)
250{
251 int error;
252 unsigned *seq;
253
254 if (whichfork == XFS_COW_FORK)
255 seq = &XFS_WPC(wpc)->cow_seq;
256 else
257 seq = &XFS_WPC(wpc)->data_seq;
258
259 /*
260 * Attempt to allocate whatever delalloc extent currently backs offset
261 * and put the result into wpc->iomap. Allocate in a loop because it
262 * may take several attempts to allocate real blocks for a contiguous
263 * delalloc extent if free space is sufficiently fragmented.
264 */
265 do {
266 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
267 &wpc->iomap, seq);
268 if (error)
269 return error;
270 } while (wpc->iomap.offset + wpc->iomap.length <= offset);
271
272 return 0;
273}
274
275static int
276xfs_map_blocks(
277 struct iomap_writepage_ctx *wpc,
278 struct inode *inode,
279 loff_t offset,
280 unsigned int len)
281{
282 struct xfs_inode *ip = XFS_I(inode);
283 struct xfs_mount *mp = ip->i_mount;
284 ssize_t count = i_blocksize(inode);
285 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
286 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
287 xfs_fileoff_t cow_fsb;
288 int whichfork;
289 struct xfs_bmbt_irec imap;
290 struct xfs_iext_cursor icur;
291 int retries = 0;
292 int error = 0;
293
294 if (xfs_is_shutdown(mp))
295 return -EIO;
296
297 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
298
299 /*
300 * COW fork blocks can overlap data fork blocks even if the blocks
301 * aren't shared. COW I/O always takes precedent, so we must always
302 * check for overlap on reflink inodes unless the mapping is already a
303 * COW one, or the COW fork hasn't changed from the last time we looked
304 * at it.
305 *
306 * It's safe to check the COW fork if_seq here without the ILOCK because
307 * we've indirectly protected against concurrent updates: writeback has
308 * the page locked, which prevents concurrent invalidations by reflink
309 * and directio and prevents concurrent buffered writes to the same
310 * page. Changes to if_seq always happen under i_lock, which protects
311 * against concurrent updates and provides a memory barrier on the way
312 * out that ensures that we always see the current value.
313 */
314 if (xfs_imap_valid(wpc, ip, offset))
315 return 0;
316
317 /*
318 * If we don't have a valid map, now it's time to get a new one for this
319 * offset. This will convert delayed allocations (including COW ones)
320 * into real extents. If we return without a valid map, it means we
321 * landed in a hole and we skip the block.
322 */
323retry:
324 cow_fsb = NULLFILEOFF;
325 whichfork = XFS_DATA_FORK;
326 xfs_ilock(ip, XFS_ILOCK_SHARED);
327 ASSERT(!xfs_need_iread_extents(&ip->i_df));
328
329 /*
330 * Check if this is offset is covered by a COW extents, and if yes use
331 * it directly instead of looking up anything in the data fork.
332 */
333 if (xfs_inode_has_cow_data(ip) &&
334 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
335 cow_fsb = imap.br_startoff;
336 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
337 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
338 xfs_iunlock(ip, XFS_ILOCK_SHARED);
339
340 whichfork = XFS_COW_FORK;
341 goto allocate_blocks;
342 }
343
344 /*
345 * No COW extent overlap. Revalidate now that we may have updated
346 * ->cow_seq. If the data mapping is still valid, we're done.
347 */
348 if (xfs_imap_valid(wpc, ip, offset)) {
349 xfs_iunlock(ip, XFS_ILOCK_SHARED);
350 return 0;
351 }
352
353 /*
354 * If we don't have a valid map, now it's time to get a new one for this
355 * offset. This will convert delayed allocations (including COW ones)
356 * into real extents.
357 */
358 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
359 imap.br_startoff = end_fsb; /* fake a hole past EOF */
360 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
361 xfs_iunlock(ip, XFS_ILOCK_SHARED);
362
363 /* landed in a hole or beyond EOF? */
364 if (imap.br_startoff > offset_fsb) {
365 imap.br_blockcount = imap.br_startoff - offset_fsb;
366 imap.br_startoff = offset_fsb;
367 imap.br_startblock = HOLESTARTBLOCK;
368 imap.br_state = XFS_EXT_NORM;
369 }
370
371 /*
372 * Truncate to the next COW extent if there is one. This is the only
373 * opportunity to do this because we can skip COW fork lookups for the
374 * subsequent blocks in the mapping; however, the requirement to treat
375 * the COW range separately remains.
376 */
377 if (cow_fsb != NULLFILEOFF &&
378 cow_fsb < imap.br_startoff + imap.br_blockcount)
379 imap.br_blockcount = cow_fsb - imap.br_startoff;
380
381 /* got a delalloc extent? */
382 if (imap.br_startblock != HOLESTARTBLOCK &&
383 isnullstartblock(imap.br_startblock))
384 goto allocate_blocks;
385
386 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
387 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
388 return 0;
389allocate_blocks:
390 error = xfs_convert_blocks(wpc, ip, whichfork, offset);
391 if (error) {
392 /*
393 * If we failed to find the extent in the COW fork we might have
394 * raced with a COW to data fork conversion or truncate.
395 * Restart the lookup to catch the extent in the data fork for
396 * the former case, but prevent additional retries to avoid
397 * looping forever for the latter case.
398 */
399 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
400 goto retry;
401 ASSERT(error != -EAGAIN);
402 return error;
403 }
404
405 /*
406 * Due to merging the return real extent might be larger than the
407 * original delalloc one. Trim the return extent to the next COW
408 * boundary again to force a re-lookup.
409 */
410 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
411 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
412
413 if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
414 wpc->iomap.length = cow_offset - wpc->iomap.offset;
415 }
416
417 ASSERT(wpc->iomap.offset <= offset);
418 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
419 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
420 return 0;
421}
422
423static int
424xfs_prepare_ioend(
425 struct iomap_ioend *ioend,
426 int status)
427{
428 unsigned int nofs_flag;
429
430 /*
431 * We can allocate memory here while doing writeback on behalf of
432 * memory reclaim. To avoid memory allocation deadlocks set the
433 * task-wide nofs context for the following operations.
434 */
435 nofs_flag = memalloc_nofs_save();
436
437 /* Convert CoW extents to regular */
438 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
439 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
440 ioend->io_offset, ioend->io_size);
441 }
442
443 memalloc_nofs_restore(nofs_flag);
444
445 /* send ioends that might require a transaction to the completion wq */
446 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
447 (ioend->io_flags & IOMAP_F_SHARED))
448 ioend->io_bio.bi_end_io = xfs_end_bio;
449 return status;
450}
451
452/*
453 * If the folio has delalloc blocks on it, the caller is asking us to punch them
454 * out. If we don't, we can leave a stale delalloc mapping covered by a clean
455 * page that needs to be dirtied again before the delalloc mapping can be
456 * converted. This stale delalloc mapping can trip up a later direct I/O read
457 * operation on the same region.
458 *
459 * We prevent this by truncating away the delalloc regions on the folio. Because
460 * they are delalloc, we can do this without needing a transaction. Indeed - if
461 * we get ENOSPC errors, we have to be able to do this truncation without a
462 * transaction as there is no space left for block reservation (typically why
463 * we see a ENOSPC in writeback).
464 */
465static void
466xfs_discard_folio(
467 struct folio *folio,
468 loff_t pos)
469{
470 struct xfs_inode *ip = XFS_I(folio->mapping->host);
471 struct xfs_mount *mp = ip->i_mount;
472 int error;
473
474 if (xfs_is_shutdown(mp))
475 return;
476
477 xfs_alert_ratelimited(mp,
478 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
479 folio, ip->i_ino, pos);
480
481 /*
482 * The end of the punch range is always the offset of the first
483 * byte of the next folio. Hence the end offset is only dependent on the
484 * folio itself and not the start offset that is passed in.
485 */
486 error = xfs_bmap_punch_delalloc_range(ip, pos,
487 folio_pos(folio) + folio_size(folio));
488
489 if (error && !xfs_is_shutdown(mp))
490 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
491}
492
493static const struct iomap_writeback_ops xfs_writeback_ops = {
494 .map_blocks = xfs_map_blocks,
495 .prepare_ioend = xfs_prepare_ioend,
496 .discard_folio = xfs_discard_folio,
497};
498
499STATIC int
500xfs_vm_writepages(
501 struct address_space *mapping,
502 struct writeback_control *wbc)
503{
504 struct xfs_writepage_ctx wpc = { };
505
506 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
507 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
508}
509
510STATIC int
511xfs_dax_writepages(
512 struct address_space *mapping,
513 struct writeback_control *wbc)
514{
515 struct xfs_inode *ip = XFS_I(mapping->host);
516
517 xfs_iflags_clear(ip, XFS_ITRUNCATED);
518 return dax_writeback_mapping_range(mapping,
519 xfs_inode_buftarg(ip)->bt_daxdev, wbc);
520}
521
522STATIC sector_t
523xfs_vm_bmap(
524 struct address_space *mapping,
525 sector_t block)
526{
527 struct xfs_inode *ip = XFS_I(mapping->host);
528
529 trace_xfs_vm_bmap(ip);
530
531 /*
532 * The swap code (ab-)uses ->bmap to get a block mapping and then
533 * bypasses the file system for actual I/O. We really can't allow
534 * that on reflinks inodes, so we have to skip out here. And yes,
535 * 0 is the magic code for a bmap error.
536 *
537 * Since we don't pass back blockdev info, we can't return bmap
538 * information for rt files either.
539 */
540 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
541 return 0;
542 return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
543}
544
545STATIC int
546xfs_vm_read_folio(
547 struct file *unused,
548 struct folio *folio)
549{
550 return iomap_read_folio(folio, &xfs_read_iomap_ops);
551}
552
553STATIC void
554xfs_vm_readahead(
555 struct readahead_control *rac)
556{
557 iomap_readahead(rac, &xfs_read_iomap_ops);
558}
559
560static int
561xfs_iomap_swapfile_activate(
562 struct swap_info_struct *sis,
563 struct file *swap_file,
564 sector_t *span)
565{
566 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
567 return iomap_swapfile_activate(sis, swap_file, span,
568 &xfs_read_iomap_ops);
569}
570
571const struct address_space_operations xfs_address_space_operations = {
572 .read_folio = xfs_vm_read_folio,
573 .readahead = xfs_vm_readahead,
574 .writepages = xfs_vm_writepages,
575 .dirty_folio = iomap_dirty_folio,
576 .release_folio = iomap_release_folio,
577 .invalidate_folio = iomap_invalidate_folio,
578 .bmap = xfs_vm_bmap,
579 .migrate_folio = filemap_migrate_folio,
580 .is_partially_uptodate = iomap_is_partially_uptodate,
581 .error_remove_folio = generic_error_remove_folio,
582 .swap_activate = xfs_iomap_swapfile_activate,
583};
584
585const struct address_space_operations xfs_dax_aops = {
586 .writepages = xfs_dax_writepages,
587 .dirty_folio = noop_dirty_folio,
588 .swap_activate = xfs_iomap_swapfile_activate,
589};