Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include "xfs_reflink.h"
35#include <linux/gfp.h>
36#include <linux/mpage.h>
37#include <linux/pagevec.h>
38#include <linux/writeback.h>
39
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
51void
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
70struct block_device *
71xfs_find_bdev_for_inode(
72 struct inode *inode)
73{
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
83struct dax_device *
84xfs_find_daxdev_for_inode(
85 struct inode *inode)
86{
87 struct xfs_inode *ip = XFS_I(inode);
88 struct xfs_mount *mp = ip->i_mount;
89
90 if (XFS_IS_REALTIME_INODE(ip))
91 return mp->m_rtdev_targp->bt_daxdev;
92 else
93 return mp->m_ddev_targp->bt_daxdev;
94}
95
96/*
97 * We're now finished for good with this page. Update the page state via the
98 * associated buffer_heads, paying attention to the start and end offsets that
99 * we need to process on the page.
100 *
101 * Note that we open code the action in end_buffer_async_write here so that we
102 * only have to iterate over the buffers attached to the page once. This is not
103 * only more efficient, but also ensures that we only calls end_page_writeback
104 * at the end of the iteration, and thus avoids the pitfall of having the page
105 * and buffers potentially freed after every call to end_buffer_async_write.
106 */
107static void
108xfs_finish_page_writeback(
109 struct inode *inode,
110 struct bio_vec *bvec,
111 int error)
112{
113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
114 bool busy = false;
115 unsigned int off = 0;
116 unsigned long flags;
117
118 ASSERT(bvec->bv_offset < PAGE_SIZE);
119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122
123 local_irq_save(flags);
124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 do {
126 if (off >= bvec->bv_offset &&
127 off < bvec->bv_offset + bvec->bv_len) {
128 ASSERT(buffer_async_write(bh));
129 ASSERT(bh->b_end_io == NULL);
130
131 if (error) {
132 mark_buffer_write_io_error(bh);
133 clear_buffer_uptodate(bh);
134 SetPageError(bvec->bv_page);
135 } else {
136 set_buffer_uptodate(bh);
137 }
138 clear_buffer_async_write(bh);
139 unlock_buffer(bh);
140 } else if (buffer_async_write(bh)) {
141 ASSERT(buffer_locked(bh));
142 busy = true;
143 }
144 off += bh->b_size;
145 } while ((bh = bh->b_this_page) != head);
146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 local_irq_restore(flags);
148
149 if (!busy)
150 end_page_writeback(bvec->bv_page);
151}
152
153/*
154 * We're now finished for good with this ioend structure. Update the page
155 * state, release holds on bios, and finally free up memory. Do not use the
156 * ioend after this.
157 */
158STATIC void
159xfs_destroy_ioend(
160 struct xfs_ioend *ioend,
161 int error)
162{
163 struct inode *inode = ioend->io_inode;
164 struct bio *bio = &ioend->io_inline_bio;
165 struct bio *last = ioend->io_bio, *next;
166 u64 start = bio->bi_iter.bi_sector;
167 bool quiet = bio_flagged(bio, BIO_QUIET);
168
169 for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 struct bio_vec *bvec;
171 int i;
172
173 /*
174 * For the last bio, bi_private points to the ioend, so we
175 * need to explicitly end the iteration here.
176 */
177 if (bio == last)
178 next = NULL;
179 else
180 next = bio->bi_private;
181
182 /* walk each page on bio, ending page IO on them */
183 bio_for_each_segment_all(bvec, bio, i)
184 xfs_finish_page_writeback(inode, bvec, error);
185
186 bio_put(bio);
187 }
188
189 if (unlikely(error && !quiet)) {
190 xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 "writeback error on sector %llu", start);
192 }
193}
194
195/*
196 * Fast and loose check if this write could update the on-disk inode size.
197 */
198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199{
200 return ioend->io_offset + ioend->io_size >
201 XFS_I(ioend->io_inode)->i_d.di_size;
202}
203
204STATIC int
205xfs_setfilesize_trans_alloc(
206 struct xfs_ioend *ioend)
207{
208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
209 struct xfs_trans *tp;
210 int error;
211
212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
213 XFS_TRANS_NOFS, &tp);
214 if (error)
215 return error;
216
217 ioend->io_append_trans = tp;
218
219 /*
220 * We may pass freeze protection with a transaction. So tell lockdep
221 * we released it.
222 */
223 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
224 /*
225 * We hand off the transaction to the completion thread now, so
226 * clear the flag here.
227 */
228 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
229 return 0;
230}
231
232/*
233 * Update on-disk file size now that data has been written to disk.
234 */
235STATIC int
236__xfs_setfilesize(
237 struct xfs_inode *ip,
238 struct xfs_trans *tp,
239 xfs_off_t offset,
240 size_t size)
241{
242 xfs_fsize_t isize;
243
244 xfs_ilock(ip, XFS_ILOCK_EXCL);
245 isize = xfs_new_eof(ip, offset + size);
246 if (!isize) {
247 xfs_iunlock(ip, XFS_ILOCK_EXCL);
248 xfs_trans_cancel(tp);
249 return 0;
250 }
251
252 trace_xfs_setfilesize(ip, offset, size);
253
254 ip->i_d.di_size = isize;
255 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
256 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257
258 return xfs_trans_commit(tp);
259}
260
261int
262xfs_setfilesize(
263 struct xfs_inode *ip,
264 xfs_off_t offset,
265 size_t size)
266{
267 struct xfs_mount *mp = ip->i_mount;
268 struct xfs_trans *tp;
269 int error;
270
271 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
272 if (error)
273 return error;
274
275 return __xfs_setfilesize(ip, tp, offset, size);
276}
277
278STATIC int
279xfs_setfilesize_ioend(
280 struct xfs_ioend *ioend,
281 int error)
282{
283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
284 struct xfs_trans *tp = ioend->io_append_trans;
285
286 /*
287 * The transaction may have been allocated in the I/O submission thread,
288 * thus we need to mark ourselves as being in a transaction manually.
289 * Similarly for freeze protection.
290 */
291 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
292 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
293
294 /* we abort the update if there was an IO error */
295 if (error) {
296 xfs_trans_cancel(tp);
297 return error;
298 }
299
300 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
301}
302
303/*
304 * IO write completion.
305 */
306STATIC void
307xfs_end_io(
308 struct work_struct *work)
309{
310 struct xfs_ioend *ioend =
311 container_of(work, struct xfs_ioend, io_work);
312 struct xfs_inode *ip = XFS_I(ioend->io_inode);
313 xfs_off_t offset = ioend->io_offset;
314 size_t size = ioend->io_size;
315 int error;
316
317 /*
318 * Just clean up the in-memory strutures if the fs has been shut down.
319 */
320 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
321 error = -EIO;
322 goto done;
323 }
324
325 /*
326 * Clean up any COW blocks on an I/O error.
327 */
328 error = blk_status_to_errno(ioend->io_bio->bi_status);
329 if (unlikely(error)) {
330 switch (ioend->io_type) {
331 case XFS_IO_COW:
332 xfs_reflink_cancel_cow_range(ip, offset, size, true);
333 break;
334 }
335
336 goto done;
337 }
338
339 /*
340 * Success: commit the COW or unwritten blocks if needed.
341 */
342 switch (ioend->io_type) {
343 case XFS_IO_COW:
344 error = xfs_reflink_end_cow(ip, offset, size);
345 break;
346 case XFS_IO_UNWRITTEN:
347 /* writeback should never update isize */
348 error = xfs_iomap_write_unwritten(ip, offset, size, false);
349 break;
350 default:
351 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
352 break;
353 }
354
355done:
356 if (ioend->io_append_trans)
357 error = xfs_setfilesize_ioend(ioend, error);
358 xfs_destroy_ioend(ioend, error);
359}
360
361STATIC void
362xfs_end_bio(
363 struct bio *bio)
364{
365 struct xfs_ioend *ioend = bio->bi_private;
366 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
367
368 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
369 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
370 else if (ioend->io_append_trans)
371 queue_work(mp->m_data_workqueue, &ioend->io_work);
372 else
373 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
374}
375
376STATIC int
377xfs_map_blocks(
378 struct inode *inode,
379 loff_t offset,
380 struct xfs_bmbt_irec *imap,
381 int type)
382{
383 struct xfs_inode *ip = XFS_I(inode);
384 struct xfs_mount *mp = ip->i_mount;
385 ssize_t count = i_blocksize(inode);
386 xfs_fileoff_t offset_fsb, end_fsb;
387 int error = 0;
388 int bmapi_flags = XFS_BMAPI_ENTIRE;
389 int nimaps = 1;
390
391 if (XFS_FORCED_SHUTDOWN(mp))
392 return -EIO;
393
394 /*
395 * Truncate can race with writeback since writeback doesn't take the
396 * iolock and truncate decreases the file size before it starts
397 * truncating the pages between new_size and old_size. Therefore, we
398 * can end up in the situation where writeback gets a CoW fork mapping
399 * but the truncate makes the mapping invalid and we end up in here
400 * trying to get a new mapping. Bail out here so that we simply never
401 * get a valid mapping and so we drop the write altogether. The page
402 * truncation will kill the contents anyway.
403 */
404 if (type == XFS_IO_COW && offset > i_size_read(inode))
405 return 0;
406
407 ASSERT(type != XFS_IO_COW);
408 if (type == XFS_IO_UNWRITTEN)
409 bmapi_flags |= XFS_BMAPI_IGSTATE;
410
411 xfs_ilock(ip, XFS_ILOCK_SHARED);
412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 (ip->i_df.if_flags & XFS_IFEXTENTS));
414 ASSERT(offset <= mp->m_super->s_maxbytes);
415
416 if (offset > mp->m_super->s_maxbytes - count)
417 count = mp->m_super->s_maxbytes - offset;
418 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
419 offset_fsb = XFS_B_TO_FSBT(mp, offset);
420 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
421 imap, &nimaps, bmapi_flags);
422 /*
423 * Truncate an overwrite extent if there's a pending CoW
424 * reservation before the end of this extent. This forces us
425 * to come back to writepage to take care of the CoW.
426 */
427 if (nimaps && type == XFS_IO_OVERWRITE)
428 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
429 xfs_iunlock(ip, XFS_ILOCK_SHARED);
430
431 if (error)
432 return error;
433
434 if (type == XFS_IO_DELALLOC &&
435 (!nimaps || isnullstartblock(imap->br_startblock))) {
436 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
437 imap);
438 if (!error)
439 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
440 return error;
441 }
442
443#ifdef DEBUG
444 if (type == XFS_IO_UNWRITTEN) {
445 ASSERT(nimaps);
446 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
447 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 }
449#endif
450 if (nimaps)
451 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
452 return 0;
453}
454
455STATIC bool
456xfs_imap_valid(
457 struct inode *inode,
458 struct xfs_bmbt_irec *imap,
459 xfs_off_t offset)
460{
461 offset >>= inode->i_blkbits;
462
463 /*
464 * We have to make sure the cached mapping is within EOF to protect
465 * against eofblocks trimming on file release leaving us with a stale
466 * mapping. Otherwise, a page for a subsequent file extending buffered
467 * write could get picked up by this writeback cycle and written to the
468 * wrong blocks.
469 *
470 * Note that what we really want here is a generic mapping invalidation
471 * mechanism to protect us from arbitrary extent modifying contexts, not
472 * just eofblocks.
473 */
474 xfs_trim_extent_eof(imap, XFS_I(inode));
475
476 return offset >= imap->br_startoff &&
477 offset < imap->br_startoff + imap->br_blockcount;
478}
479
480STATIC void
481xfs_start_buffer_writeback(
482 struct buffer_head *bh)
483{
484 ASSERT(buffer_mapped(bh));
485 ASSERT(buffer_locked(bh));
486 ASSERT(!buffer_delay(bh));
487 ASSERT(!buffer_unwritten(bh));
488
489 bh->b_end_io = NULL;
490 set_buffer_async_write(bh);
491 set_buffer_uptodate(bh);
492 clear_buffer_dirty(bh);
493}
494
495STATIC void
496xfs_start_page_writeback(
497 struct page *page,
498 int clear_dirty)
499{
500 ASSERT(PageLocked(page));
501 ASSERT(!PageWriteback(page));
502
503 /*
504 * if the page was not fully cleaned, we need to ensure that the higher
505 * layers come back to it correctly. That means we need to keep the page
506 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
507 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
508 * write this page in this writeback sweep will be made.
509 */
510 if (clear_dirty) {
511 clear_page_dirty_for_io(page);
512 set_page_writeback(page);
513 } else
514 set_page_writeback_keepwrite(page);
515
516 unlock_page(page);
517}
518
519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
520{
521 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
522}
523
524/*
525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
526 * it, and we submit that bio. The ioend may be used for multiple bio
527 * submissions, so we only want to allocate an append transaction for the ioend
528 * once. In the case of multiple bio submission, each bio will take an IO
529 * reference to the ioend to ensure that the ioend completion is only done once
530 * all bios have been submitted and the ioend is really done.
531 *
532 * If @fail is non-zero, it means that we have a situation where some part of
533 * the submission process has failed after we have marked paged for writeback
534 * and unlocked them. In this situation, we need to fail the bio and ioend
535 * rather than submit it to IO. This typically only happens on a filesystem
536 * shutdown.
537 */
538STATIC int
539xfs_submit_ioend(
540 struct writeback_control *wbc,
541 struct xfs_ioend *ioend,
542 int status)
543{
544 /* Convert CoW extents to regular */
545 if (!status && ioend->io_type == XFS_IO_COW) {
546 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
547 ioend->io_offset, ioend->io_size);
548 }
549
550 /* Reserve log space if we might write beyond the on-disk inode size. */
551 if (!status &&
552 ioend->io_type != XFS_IO_UNWRITTEN &&
553 xfs_ioend_is_append(ioend) &&
554 !ioend->io_append_trans)
555 status = xfs_setfilesize_trans_alloc(ioend);
556
557 ioend->io_bio->bi_private = ioend;
558 ioend->io_bio->bi_end_io = xfs_end_bio;
559 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
560
561 /*
562 * If we are failing the IO now, just mark the ioend with an
563 * error and finish it. This will run IO completion immediately
564 * as there is only one reference to the ioend at this point in
565 * time.
566 */
567 if (status) {
568 ioend->io_bio->bi_status = errno_to_blk_status(status);
569 bio_endio(ioend->io_bio);
570 return status;
571 }
572
573 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
574 submit_bio(ioend->io_bio);
575 return 0;
576}
577
578static void
579xfs_init_bio_from_bh(
580 struct bio *bio,
581 struct buffer_head *bh)
582{
583 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
584 bio_set_dev(bio, bh->b_bdev);
585}
586
587static struct xfs_ioend *
588xfs_alloc_ioend(
589 struct inode *inode,
590 unsigned int type,
591 xfs_off_t offset,
592 struct buffer_head *bh)
593{
594 struct xfs_ioend *ioend;
595 struct bio *bio;
596
597 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
598 xfs_init_bio_from_bh(bio, bh);
599
600 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
601 INIT_LIST_HEAD(&ioend->io_list);
602 ioend->io_type = type;
603 ioend->io_inode = inode;
604 ioend->io_size = 0;
605 ioend->io_offset = offset;
606 INIT_WORK(&ioend->io_work, xfs_end_io);
607 ioend->io_append_trans = NULL;
608 ioend->io_bio = bio;
609 return ioend;
610}
611
612/*
613 * Allocate a new bio, and chain the old bio to the new one.
614 *
615 * Note that we have to do perform the chaining in this unintuitive order
616 * so that the bi_private linkage is set up in the right direction for the
617 * traversal in xfs_destroy_ioend().
618 */
619static void
620xfs_chain_bio(
621 struct xfs_ioend *ioend,
622 struct writeback_control *wbc,
623 struct buffer_head *bh)
624{
625 struct bio *new;
626
627 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
628 xfs_init_bio_from_bh(new, bh);
629
630 bio_chain(ioend->io_bio, new);
631 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
632 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
633 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
634 submit_bio(ioend->io_bio);
635 ioend->io_bio = new;
636}
637
638/*
639 * Test to see if we've been building up a completion structure for
640 * earlier buffers -- if so, we try to append to this ioend if we
641 * can, otherwise we finish off any current ioend and start another.
642 * Return the ioend we finished off so that the caller can submit it
643 * once it has finished processing the dirty page.
644 */
645STATIC void
646xfs_add_to_ioend(
647 struct inode *inode,
648 struct buffer_head *bh,
649 xfs_off_t offset,
650 struct xfs_writepage_ctx *wpc,
651 struct writeback_control *wbc,
652 struct list_head *iolist)
653{
654 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
655 bh->b_blocknr != wpc->last_block + 1 ||
656 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
657 if (wpc->ioend)
658 list_add(&wpc->ioend->io_list, iolist);
659 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
660 }
661
662 /*
663 * If the buffer doesn't fit into the bio we need to allocate a new
664 * one. This shouldn't happen more than once for a given buffer.
665 */
666 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
667 xfs_chain_bio(wpc->ioend, wbc, bh);
668
669 wpc->ioend->io_size += bh->b_size;
670 wpc->last_block = bh->b_blocknr;
671 xfs_start_buffer_writeback(bh);
672}
673
674STATIC void
675xfs_map_buffer(
676 struct inode *inode,
677 struct buffer_head *bh,
678 struct xfs_bmbt_irec *imap,
679 xfs_off_t offset)
680{
681 sector_t bn;
682 struct xfs_mount *m = XFS_I(inode)->i_mount;
683 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
684 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
685
686 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
687 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
688
689 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
690 ((offset - iomap_offset) >> inode->i_blkbits);
691
692 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
693
694 bh->b_blocknr = bn;
695 set_buffer_mapped(bh);
696}
697
698STATIC void
699xfs_map_at_offset(
700 struct inode *inode,
701 struct buffer_head *bh,
702 struct xfs_bmbt_irec *imap,
703 xfs_off_t offset)
704{
705 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
706 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
707
708 xfs_map_buffer(inode, bh, imap, offset);
709 set_buffer_mapped(bh);
710 clear_buffer_delay(bh);
711 clear_buffer_unwritten(bh);
712}
713
714/*
715 * Test if a given page contains at least one buffer of a given @type.
716 * If @check_all_buffers is true, then we walk all the buffers in the page to
717 * try to find one of the type passed in. If it is not set, then the caller only
718 * needs to check the first buffer on the page for a match.
719 */
720STATIC bool
721xfs_check_page_type(
722 struct page *page,
723 unsigned int type,
724 bool check_all_buffers)
725{
726 struct buffer_head *bh;
727 struct buffer_head *head;
728
729 if (PageWriteback(page))
730 return false;
731 if (!page->mapping)
732 return false;
733 if (!page_has_buffers(page))
734 return false;
735
736 bh = head = page_buffers(page);
737 do {
738 if (buffer_unwritten(bh)) {
739 if (type == XFS_IO_UNWRITTEN)
740 return true;
741 } else if (buffer_delay(bh)) {
742 if (type == XFS_IO_DELALLOC)
743 return true;
744 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
745 if (type == XFS_IO_OVERWRITE)
746 return true;
747 }
748
749 /* If we are only checking the first buffer, we are done now. */
750 if (!check_all_buffers)
751 break;
752 } while ((bh = bh->b_this_page) != head);
753
754 return false;
755}
756
757STATIC void
758xfs_vm_invalidatepage(
759 struct page *page,
760 unsigned int offset,
761 unsigned int length)
762{
763 trace_xfs_invalidatepage(page->mapping->host, page, offset,
764 length);
765
766 /*
767 * If we are invalidating the entire page, clear the dirty state from it
768 * so that we can check for attempts to release dirty cached pages in
769 * xfs_vm_releasepage().
770 */
771 if (offset == 0 && length >= PAGE_SIZE)
772 cancel_dirty_page(page);
773 block_invalidatepage(page, offset, length);
774}
775
776/*
777 * If the page has delalloc buffers on it, we need to punch them out before we
778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
780 * is done on that same region - the delalloc extent is returned when none is
781 * supposed to be there.
782 *
783 * We prevent this by truncating away the delalloc regions on the page before
784 * invalidating it. Because they are delalloc, we can do this without needing a
785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
786 * truncation without a transaction as there is no space left for block
787 * reservation (typically why we see a ENOSPC in writeback).
788 *
789 * This is not a performance critical path, so for now just do the punching a
790 * buffer head at a time.
791 */
792STATIC void
793xfs_aops_discard_page(
794 struct page *page)
795{
796 struct inode *inode = page->mapping->host;
797 struct xfs_inode *ip = XFS_I(inode);
798 struct buffer_head *bh, *head;
799 loff_t offset = page_offset(page);
800
801 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
802 goto out_invalidate;
803
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 goto out_invalidate;
806
807 xfs_alert(ip->i_mount,
808 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
809 page, ip->i_ino, offset);
810
811 xfs_ilock(ip, XFS_ILOCK_EXCL);
812 bh = head = page_buffers(page);
813 do {
814 int error;
815 xfs_fileoff_t start_fsb;
816
817 if (!buffer_delay(bh))
818 goto next_buffer;
819
820 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
821 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
822 if (error) {
823 /* something screwed, just bail */
824 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 xfs_alert(ip->i_mount,
826 "page discard unable to remove delalloc mapping.");
827 }
828 break;
829 }
830next_buffer:
831 offset += i_blocksize(inode);
832
833 } while ((bh = bh->b_this_page) != head);
834
835 xfs_iunlock(ip, XFS_ILOCK_EXCL);
836out_invalidate:
837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
838 return;
839}
840
841static int
842xfs_map_cow(
843 struct xfs_writepage_ctx *wpc,
844 struct inode *inode,
845 loff_t offset,
846 unsigned int *new_type)
847{
848 struct xfs_inode *ip = XFS_I(inode);
849 struct xfs_bmbt_irec imap;
850 bool is_cow = false;
851 int error;
852
853 /*
854 * If we already have a valid COW mapping keep using it.
855 */
856 if (wpc->io_type == XFS_IO_COW) {
857 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
858 if (wpc->imap_valid) {
859 *new_type = XFS_IO_COW;
860 return 0;
861 }
862 }
863
864 /*
865 * Else we need to check if there is a COW mapping at this offset.
866 */
867 xfs_ilock(ip, XFS_ILOCK_SHARED);
868 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
869 xfs_iunlock(ip, XFS_ILOCK_SHARED);
870
871 if (!is_cow)
872 return 0;
873
874 /*
875 * And if the COW mapping has a delayed extent here we need to
876 * allocate real space for it now.
877 */
878 if (isnullstartblock(imap.br_startblock)) {
879 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
880 &imap);
881 if (error)
882 return error;
883 }
884
885 wpc->io_type = *new_type = XFS_IO_COW;
886 wpc->imap_valid = true;
887 wpc->imap = imap;
888 return 0;
889}
890
891/*
892 * We implement an immediate ioend submission policy here to avoid needing to
893 * chain multiple ioends and hence nest mempool allocations which can violate
894 * forward progress guarantees we need to provide. The current ioend we are
895 * adding buffers to is cached on the writepage context, and if the new buffer
896 * does not append to the cached ioend it will create a new ioend and cache that
897 * instead.
898 *
899 * If a new ioend is created and cached, the old ioend is returned and queued
900 * locally for submission once the entire page is processed or an error has been
901 * detected. While ioends are submitted immediately after they are completed,
902 * batching optimisations are provided by higher level block plugging.
903 *
904 * At the end of a writeback pass, there will be a cached ioend remaining on the
905 * writepage context that the caller will need to submit.
906 */
907static int
908xfs_writepage_map(
909 struct xfs_writepage_ctx *wpc,
910 struct writeback_control *wbc,
911 struct inode *inode,
912 struct page *page,
913 uint64_t end_offset)
914{
915 LIST_HEAD(submit_list);
916 struct xfs_ioend *ioend, *next;
917 struct buffer_head *bh, *head;
918 ssize_t len = i_blocksize(inode);
919 uint64_t offset;
920 int error = 0;
921 int count = 0;
922 int uptodate = 1;
923 unsigned int new_type;
924
925 bh = head = page_buffers(page);
926 offset = page_offset(page);
927 do {
928 if (offset >= end_offset)
929 break;
930 if (!buffer_uptodate(bh))
931 uptodate = 0;
932
933 /*
934 * set_page_dirty dirties all buffers in a page, independent
935 * of their state. The dirty state however is entirely
936 * meaningless for holes (!mapped && uptodate), so skip
937 * buffers covering holes here.
938 */
939 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
940 wpc->imap_valid = false;
941 continue;
942 }
943
944 if (buffer_unwritten(bh))
945 new_type = XFS_IO_UNWRITTEN;
946 else if (buffer_delay(bh))
947 new_type = XFS_IO_DELALLOC;
948 else if (buffer_uptodate(bh))
949 new_type = XFS_IO_OVERWRITE;
950 else {
951 if (PageUptodate(page))
952 ASSERT(buffer_mapped(bh));
953 /*
954 * This buffer is not uptodate and will not be
955 * written to disk. Ensure that we will put any
956 * subsequent writeable buffers into a new
957 * ioend.
958 */
959 wpc->imap_valid = false;
960 continue;
961 }
962
963 if (xfs_is_reflink_inode(XFS_I(inode))) {
964 error = xfs_map_cow(wpc, inode, offset, &new_type);
965 if (error)
966 goto out;
967 }
968
969 if (wpc->io_type != new_type) {
970 wpc->io_type = new_type;
971 wpc->imap_valid = false;
972 }
973
974 if (wpc->imap_valid)
975 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
976 offset);
977 if (!wpc->imap_valid) {
978 error = xfs_map_blocks(inode, offset, &wpc->imap,
979 wpc->io_type);
980 if (error)
981 goto out;
982 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
983 offset);
984 }
985 if (wpc->imap_valid) {
986 lock_buffer(bh);
987 if (wpc->io_type != XFS_IO_OVERWRITE)
988 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
989 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
990 count++;
991 }
992
993 } while (offset += len, ((bh = bh->b_this_page) != head));
994
995 if (uptodate && bh == head)
996 SetPageUptodate(page);
997
998 ASSERT(wpc->ioend || list_empty(&submit_list));
999
1000out:
1001 /*
1002 * On error, we have to fail the ioend here because we have locked
1003 * buffers in the ioend. If we don't do this, we'll deadlock
1004 * invalidating the page as that tries to lock the buffers on the page.
1005 * Also, because we may have set pages under writeback, we have to make
1006 * sure we run IO completion to mark the error state of the IO
1007 * appropriately, so we can't cancel the ioend directly here. That means
1008 * we have to mark this page as under writeback if we included any
1009 * buffers from it in the ioend chain so that completion treats it
1010 * correctly.
1011 *
1012 * If we didn't include the page in the ioend, the on error we can
1013 * simply discard and unlock it as there are no other users of the page
1014 * or it's buffers right now. The caller will still need to trigger
1015 * submission of outstanding ioends on the writepage context so they are
1016 * treated correctly on error.
1017 */
1018 if (count) {
1019 xfs_start_page_writeback(page, !error);
1020
1021 /*
1022 * Preserve the original error if there was one, otherwise catch
1023 * submission errors here and propagate into subsequent ioend
1024 * submissions.
1025 */
1026 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027 int error2;
1028
1029 list_del_init(&ioend->io_list);
1030 error2 = xfs_submit_ioend(wbc, ioend, error);
1031 if (error2 && !error)
1032 error = error2;
1033 }
1034 } else if (error) {
1035 xfs_aops_discard_page(page);
1036 ClearPageUptodate(page);
1037 unlock_page(page);
1038 } else {
1039 /*
1040 * We can end up here with no error and nothing to write if we
1041 * race with a partial page truncate on a sub-page block sized
1042 * filesystem. In that case we need to mark the page clean.
1043 */
1044 xfs_start_page_writeback(page, 1);
1045 end_page_writeback(page);
1046 }
1047
1048 mapping_set_error(page->mapping, error);
1049 return error;
1050}
1051
1052/*
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
1058 * For any other dirty buffer heads on the page we should flush them.
1059 */
1060STATIC int
1061xfs_do_writepage(
1062 struct page *page,
1063 struct writeback_control *wbc,
1064 void *data)
1065{
1066 struct xfs_writepage_ctx *wpc = data;
1067 struct inode *inode = page->mapping->host;
1068 loff_t offset;
1069 uint64_t end_offset;
1070 pgoff_t end_index;
1071
1072 trace_xfs_writepage(inode, page, 0, 0);
1073
1074 ASSERT(page_has_buffers(page));
1075
1076 /*
1077 * Refuse to write the page out if we are called from reclaim context.
1078 *
1079 * This avoids stack overflows when called from deeply used stacks in
1080 * random callers for direct reclaim or memcg reclaim. We explicitly
1081 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 *
1083 * This should never happen except in the case of a VM regression so
1084 * warn about it.
1085 */
1086 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087 PF_MEMALLOC))
1088 goto redirty;
1089
1090 /*
1091 * Given that we do not allow direct reclaim to call us, we should
1092 * never be called while in a filesystem transaction.
1093 */
1094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095 goto redirty;
1096
1097 /*
1098 * Is this page beyond the end of the file?
1099 *
1100 * The page index is less than the end_index, adjust the end_offset
1101 * to the highest offset that this page should represent.
1102 * -----------------------------------------------------
1103 * | file mapping | <EOF> |
1104 * -----------------------------------------------------
1105 * | Page ... | Page N-2 | Page N-1 | Page N | |
1106 * ^--------------------------------^----------|--------
1107 * | desired writeback range | see else |
1108 * ---------------------------------^------------------|
1109 */
1110 offset = i_size_read(inode);
1111 end_index = offset >> PAGE_SHIFT;
1112 if (page->index < end_index)
1113 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114 else {
1115 /*
1116 * Check whether the page to write out is beyond or straddles
1117 * i_size or not.
1118 * -------------------------------------------------------
1119 * | file mapping | <EOF> |
1120 * -------------------------------------------------------
1121 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1122 * ^--------------------------------^-----------|---------
1123 * | | Straddles |
1124 * ---------------------------------^-----------|--------|
1125 */
1126 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127
1128 /*
1129 * Skip the page if it is fully outside i_size, e.g. due to a
1130 * truncate operation that is in progress. We must redirty the
1131 * page so that reclaim stops reclaiming it. Otherwise
1132 * xfs_vm_releasepage() is called on it and gets confused.
1133 *
1134 * Note that the end_index is unsigned long, it would overflow
1135 * if the given offset is greater than 16TB on 32-bit system
1136 * and if we do check the page is fully outside i_size or not
1137 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138 * will be evaluated to 0. Hence this page will be redirtied
1139 * and be written out repeatedly which would result in an
1140 * infinite loop, the user program that perform this operation
1141 * will hang. Instead, we can verify this situation by checking
1142 * if the page to write is totally beyond the i_size or if it's
1143 * offset is just equal to the EOF.
1144 */
1145 if (page->index > end_index ||
1146 (page->index == end_index && offset_into_page == 0))
1147 goto redirty;
1148
1149 /*
1150 * The page straddles i_size. It must be zeroed out on each
1151 * and every writepage invocation because it may be mmapped.
1152 * "A file is mapped in multiples of the page size. For a file
1153 * that is not a multiple of the page size, the remaining
1154 * memory is zeroed when mapped, and writes to that region are
1155 * not written out to the file."
1156 */
1157 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158
1159 /* Adjust the end_offset to the end of file */
1160 end_offset = offset;
1161 }
1162
1163 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164
1165redirty:
1166 redirty_page_for_writepage(wbc, page);
1167 unlock_page(page);
1168 return 0;
1169}
1170
1171STATIC int
1172xfs_vm_writepage(
1173 struct page *page,
1174 struct writeback_control *wbc)
1175{
1176 struct xfs_writepage_ctx wpc = {
1177 .io_type = XFS_IO_INVALID,
1178 };
1179 int ret;
1180
1181 ret = xfs_do_writepage(page, wbc, &wpc);
1182 if (wpc.ioend)
1183 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184 return ret;
1185}
1186
1187STATIC int
1188xfs_vm_writepages(
1189 struct address_space *mapping,
1190 struct writeback_control *wbc)
1191{
1192 struct xfs_writepage_ctx wpc = {
1193 .io_type = XFS_IO_INVALID,
1194 };
1195 int ret;
1196
1197 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199 if (wpc.ioend)
1200 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201 return ret;
1202}
1203
1204STATIC int
1205xfs_dax_writepages(
1206 struct address_space *mapping,
1207 struct writeback_control *wbc)
1208{
1209 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210 return dax_writeback_mapping_range(mapping,
1211 xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
1214/*
1215 * Called to move a page into cleanable state - and from there
1216 * to be released. The page should already be clean. We always
1217 * have buffer heads in this call.
1218 *
1219 * Returns 1 if the page is ok to release, 0 otherwise.
1220 */
1221STATIC int
1222xfs_vm_releasepage(
1223 struct page *page,
1224 gfp_t gfp_mask)
1225{
1226 int delalloc, unwritten;
1227
1228 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229
1230 /*
1231 * mm accommodates an old ext3 case where clean pages might not have had
1232 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233 * ->releasepage() via shrink_active_list(). Conversely,
1234 * block_invalidatepage() can send pages that are still marked dirty but
1235 * otherwise have invalidated buffers.
1236 *
1237 * We want to release the latter to avoid unnecessary buildup of the
1238 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239 * that are entirely invalidated and need to be released. Hence the
1240 * only time we should get dirty pages here is through
1241 * shrink_active_list() and so we can simply skip those now.
1242 *
1243 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244 * or invalidated pages we are about to release.
1245 */
1246 if (PageDirty(page))
1247 return 0;
1248
1249 xfs_count_page_state(page, &delalloc, &unwritten);
1250
1251 if (WARN_ON_ONCE(delalloc))
1252 return 0;
1253 if (WARN_ON_ONCE(unwritten))
1254 return 0;
1255
1256 return try_to_free_buffers(page);
1257}
1258
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272 struct inode *inode,
1273 sector_t iblock,
1274 struct buffer_head *bh_result,
1275 struct xfs_bmbt_irec *imap,
1276 xfs_off_t offset,
1277 ssize_t size)
1278{
1279 xfs_off_t mapping_size;
1280
1281 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282 mapping_size <<= inode->i_blkbits;
1283
1284 ASSERT(mapping_size > 0);
1285 if (mapping_size > size)
1286 mapping_size = size;
1287 if (offset < i_size_read(inode) &&
1288 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289 /* limit mapping to block that spans EOF */
1290 mapping_size = roundup_64(i_size_read(inode) - offset,
1291 i_blocksize(inode));
1292 }
1293 if (mapping_size > LONG_MAX)
1294 mapping_size = LONG_MAX;
1295
1296 bh_result->b_size = mapping_size;
1297}
1298
1299static int
1300xfs_get_blocks(
1301 struct inode *inode,
1302 sector_t iblock,
1303 struct buffer_head *bh_result,
1304 int create)
1305{
1306 struct xfs_inode *ip = XFS_I(inode);
1307 struct xfs_mount *mp = ip->i_mount;
1308 xfs_fileoff_t offset_fsb, end_fsb;
1309 int error = 0;
1310 int lockmode = 0;
1311 struct xfs_bmbt_irec imap;
1312 int nimaps = 1;
1313 xfs_off_t offset;
1314 ssize_t size;
1315
1316 BUG_ON(create);
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
1319 return -EIO;
1320
1321 offset = (xfs_off_t)iblock << inode->i_blkbits;
1322 ASSERT(bh_result->b_size >= i_blocksize(inode));
1323 size = bh_result->b_size;
1324
1325 if (offset >= i_size_read(inode))
1326 return 0;
1327
1328 /*
1329 * Direct I/O is usually done on preallocated files, so try getting
1330 * a block mapping without an exclusive lock first.
1331 */
1332 lockmode = xfs_ilock_data_map_shared(ip);
1333
1334 ASSERT(offset <= mp->m_super->s_maxbytes);
1335 if (offset > mp->m_super->s_maxbytes - size)
1336 size = mp->m_super->s_maxbytes - offset;
1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341 &nimaps, 0);
1342 if (error)
1343 goto out_unlock;
1344 if (!nimaps) {
1345 trace_xfs_get_blocks_notfound(ip, offset, size);
1346 goto out_unlock;
1347 }
1348
1349 trace_xfs_get_blocks_found(ip, offset, size,
1350 imap.br_state == XFS_EXT_UNWRITTEN ?
1351 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352 xfs_iunlock(ip, lockmode);
1353
1354 /* trim mapping down to size requested */
1355 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356
1357 /*
1358 * For unwritten extents do not report a disk address in the buffered
1359 * read case (treat as if we're reading into a hole).
1360 */
1361 if (xfs_bmap_is_real_extent(&imap))
1362 xfs_map_buffer(inode, bh_result, &imap, offset);
1363
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
1368 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1369 return 0;
1370
1371out_unlock:
1372 xfs_iunlock(ip, lockmode);
1373 return error;
1374}
1375
1376STATIC sector_t
1377xfs_vm_bmap(
1378 struct address_space *mapping,
1379 sector_t block)
1380{
1381 struct inode *inode = (struct inode *)mapping->host;
1382 struct xfs_inode *ip = XFS_I(inode);
1383
1384 trace_xfs_vm_bmap(XFS_I(inode));
1385
1386 /*
1387 * The swap code (ab-)uses ->bmap to get a block mapping and then
1388 * bypasses the file system for actual I/O. We really can't allow
1389 * that on reflinks inodes, so we have to skip out here. And yes,
1390 * 0 is the magic code for a bmap error.
1391 *
1392 * Since we don't pass back blockdev info, we can't return bmap
1393 * information for rt files either.
1394 */
1395 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1396 return 0;
1397
1398 filemap_write_and_wait(mapping);
1399 return generic_block_bmap(mapping, block, xfs_get_blocks);
1400}
1401
1402STATIC int
1403xfs_vm_readpage(
1404 struct file *unused,
1405 struct page *page)
1406{
1407 trace_xfs_vm_readpage(page->mapping->host, 1);
1408 return mpage_readpage(page, xfs_get_blocks);
1409}
1410
1411STATIC int
1412xfs_vm_readpages(
1413 struct file *unused,
1414 struct address_space *mapping,
1415 struct list_head *pages,
1416 unsigned nr_pages)
1417{
1418 trace_xfs_vm_readpages(mapping->host, nr_pages);
1419 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1420}
1421
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436 struct page *page)
1437{
1438 struct address_space *mapping = page->mapping;
1439 struct inode *inode = mapping->host;
1440 loff_t end_offset;
1441 loff_t offset;
1442 int newly_dirty;
1443
1444 if (unlikely(!mapping))
1445 return !TestSetPageDirty(page);
1446
1447 end_offset = i_size_read(inode);
1448 offset = page_offset(page);
1449
1450 spin_lock(&mapping->private_lock);
1451 if (page_has_buffers(page)) {
1452 struct buffer_head *head = page_buffers(page);
1453 struct buffer_head *bh = head;
1454
1455 do {
1456 if (offset < end_offset)
1457 set_buffer_dirty(bh);
1458 bh = bh->b_this_page;
1459 offset += i_blocksize(inode);
1460 } while (bh != head);
1461 }
1462 /*
1463 * Lock out page->mem_cgroup migration to keep PageDirty
1464 * synchronized with per-memcg dirty page counters.
1465 */
1466 lock_page_memcg(page);
1467 newly_dirty = !TestSetPageDirty(page);
1468 spin_unlock(&mapping->private_lock);
1469
1470 if (newly_dirty)
1471 __set_page_dirty(page, mapping, 1);
1472 unlock_page_memcg(page);
1473 if (newly_dirty)
1474 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1475 return newly_dirty;
1476}
1477
1478const struct address_space_operations xfs_address_space_operations = {
1479 .readpage = xfs_vm_readpage,
1480 .readpages = xfs_vm_readpages,
1481 .writepage = xfs_vm_writepage,
1482 .writepages = xfs_vm_writepages,
1483 .set_page_dirty = xfs_vm_set_page_dirty,
1484 .releasepage = xfs_vm_releasepage,
1485 .invalidatepage = xfs_vm_invalidatepage,
1486 .bmap = xfs_vm_bmap,
1487 .direct_IO = noop_direct_IO,
1488 .migratepage = buffer_migrate_page,
1489 .is_partially_uptodate = block_is_partially_uptodate,
1490 .error_remove_page = generic_error_remove_page,
1491};
1492
1493const struct address_space_operations xfs_dax_aops = {
1494 .writepages = xfs_dax_writepages,
1495 .direct_IO = noop_direct_IO,
1496 .set_page_dirty = noop_set_page_dirty,
1497 .invalidatepage = noop_invalidatepage,
1498};
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include <linux/gfp.h>
35#include <linux/mpage.h>
36#include <linux/pagevec.h>
37#include <linux/writeback.h>
38
39/* flags for direct write completions */
40#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41#define XFS_DIO_FLAG_APPEND (1 << 1)
42
43/*
44 * structure owned by writepages passed to individual writepage calls
45 */
46struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
50 struct xfs_ioend *ioend;
51 sector_t last_block;
52};
53
54void
55xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
58 int *unwritten)
59{
60 struct buffer_head *bh, *head;
61
62 *delalloc = *unwritten = 0;
63
64 bh = head = page_buffers(page);
65 do {
66 if (buffer_unwritten(bh))
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
71}
72
73struct block_device *
74xfs_find_bdev_for_inode(
75 struct inode *inode)
76{
77 struct xfs_inode *ip = XFS_I(inode);
78 struct xfs_mount *mp = ip->i_mount;
79
80 if (XFS_IS_REALTIME_INODE(ip))
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
84}
85
86/*
87 * We're now finished for good with this ioend structure.
88 * Update the page state via the associated buffer_heads,
89 * release holds on the inode and bio, and finally free
90 * up memory. Do not use the ioend after this.
91 */
92STATIC void
93xfs_destroy_ioend(
94 xfs_ioend_t *ioend)
95{
96 struct buffer_head *bh, *next;
97
98 for (bh = ioend->io_buffer_head; bh; bh = next) {
99 next = bh->b_private;
100 bh->b_end_io(bh, !ioend->io_error);
101 }
102
103 mempool_free(ioend, xfs_ioend_pool);
104}
105
106/*
107 * Fast and loose check if this write could update the on-disk inode size.
108 */
109static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
110{
111 return ioend->io_offset + ioend->io_size >
112 XFS_I(ioend->io_inode)->i_d.di_size;
113}
114
115STATIC int
116xfs_setfilesize_trans_alloc(
117 struct xfs_ioend *ioend)
118{
119 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
120 struct xfs_trans *tp;
121 int error;
122
123 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
124
125 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
126 if (error) {
127 xfs_trans_cancel(tp);
128 return error;
129 }
130
131 ioend->io_append_trans = tp;
132
133 /*
134 * We may pass freeze protection with a transaction. So tell lockdep
135 * we released it.
136 */
137 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
138 /*
139 * We hand off the transaction to the completion thread now, so
140 * clear the flag here.
141 */
142 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
143 return 0;
144}
145
146/*
147 * Update on-disk file size now that data has been written to disk.
148 */
149STATIC int
150xfs_setfilesize(
151 struct xfs_inode *ip,
152 struct xfs_trans *tp,
153 xfs_off_t offset,
154 size_t size)
155{
156 xfs_fsize_t isize;
157
158 xfs_ilock(ip, XFS_ILOCK_EXCL);
159 isize = xfs_new_eof(ip, offset + size);
160 if (!isize) {
161 xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 xfs_trans_cancel(tp);
163 return 0;
164 }
165
166 trace_xfs_setfilesize(ip, offset, size);
167
168 ip->i_d.di_size = isize;
169 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171
172 return xfs_trans_commit(tp);
173}
174
175STATIC int
176xfs_setfilesize_ioend(
177 struct xfs_ioend *ioend)
178{
179 struct xfs_inode *ip = XFS_I(ioend->io_inode);
180 struct xfs_trans *tp = ioend->io_append_trans;
181
182 /*
183 * The transaction may have been allocated in the I/O submission thread,
184 * thus we need to mark ourselves as being in a transaction manually.
185 * Similarly for freeze protection.
186 */
187 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
188 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
189
190 /* we abort the update if there was an IO error */
191 if (ioend->io_error) {
192 xfs_trans_cancel(tp);
193 return ioend->io_error;
194 }
195
196 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
197}
198
199/*
200 * Schedule IO completion handling on the final put of an ioend.
201 *
202 * If there is no work to do we might as well call it a day and free the
203 * ioend right now.
204 */
205STATIC void
206xfs_finish_ioend(
207 struct xfs_ioend *ioend)
208{
209 if (atomic_dec_and_test(&ioend->io_remaining)) {
210 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
211
212 if (ioend->io_type == XFS_IO_UNWRITTEN)
213 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
214 else if (ioend->io_append_trans)
215 queue_work(mp->m_data_workqueue, &ioend->io_work);
216 else
217 xfs_destroy_ioend(ioend);
218 }
219}
220
221/*
222 * IO write completion.
223 */
224STATIC void
225xfs_end_io(
226 struct work_struct *work)
227{
228 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
229 struct xfs_inode *ip = XFS_I(ioend->io_inode);
230 int error = 0;
231
232 /*
233 * Set an error if the mount has shut down and proceed with end I/O
234 * processing so it can perform whatever cleanups are necessary.
235 */
236 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
237 ioend->io_error = -EIO;
238
239 /*
240 * For unwritten extents we need to issue transactions to convert a
241 * range to normal written extens after the data I/O has finished.
242 * Detecting and handling completion IO errors is done individually
243 * for each case as different cleanup operations need to be performed
244 * on error.
245 */
246 if (ioend->io_type == XFS_IO_UNWRITTEN) {
247 if (ioend->io_error)
248 goto done;
249 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
250 ioend->io_size);
251 } else if (ioend->io_append_trans) {
252 error = xfs_setfilesize_ioend(ioend);
253 } else {
254 ASSERT(!xfs_ioend_is_append(ioend));
255 }
256
257done:
258 if (error)
259 ioend->io_error = error;
260 xfs_destroy_ioend(ioend);
261}
262
263/*
264 * Allocate and initialise an IO completion structure.
265 * We need to track unwritten extent write completion here initially.
266 * We'll need to extend this for updating the ondisk inode size later
267 * (vs. incore size).
268 */
269STATIC xfs_ioend_t *
270xfs_alloc_ioend(
271 struct inode *inode,
272 unsigned int type)
273{
274 xfs_ioend_t *ioend;
275
276 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
277
278 /*
279 * Set the count to 1 initially, which will prevent an I/O
280 * completion callback from happening before we have started
281 * all the I/O from calling the completion routine too early.
282 */
283 atomic_set(&ioend->io_remaining, 1);
284 ioend->io_error = 0;
285 INIT_LIST_HEAD(&ioend->io_list);
286 ioend->io_type = type;
287 ioend->io_inode = inode;
288 ioend->io_buffer_head = NULL;
289 ioend->io_buffer_tail = NULL;
290 ioend->io_offset = 0;
291 ioend->io_size = 0;
292 ioend->io_append_trans = NULL;
293
294 INIT_WORK(&ioend->io_work, xfs_end_io);
295 return ioend;
296}
297
298STATIC int
299xfs_map_blocks(
300 struct inode *inode,
301 loff_t offset,
302 struct xfs_bmbt_irec *imap,
303 int type)
304{
305 struct xfs_inode *ip = XFS_I(inode);
306 struct xfs_mount *mp = ip->i_mount;
307 ssize_t count = 1 << inode->i_blkbits;
308 xfs_fileoff_t offset_fsb, end_fsb;
309 int error = 0;
310 int bmapi_flags = XFS_BMAPI_ENTIRE;
311 int nimaps = 1;
312
313 if (XFS_FORCED_SHUTDOWN(mp))
314 return -EIO;
315
316 if (type == XFS_IO_UNWRITTEN)
317 bmapi_flags |= XFS_BMAPI_IGSTATE;
318
319 xfs_ilock(ip, XFS_ILOCK_SHARED);
320 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
321 (ip->i_df.if_flags & XFS_IFEXTENTS));
322 ASSERT(offset <= mp->m_super->s_maxbytes);
323
324 if (offset + count > mp->m_super->s_maxbytes)
325 count = mp->m_super->s_maxbytes - offset;
326 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
327 offset_fsb = XFS_B_TO_FSBT(mp, offset);
328 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
329 imap, &nimaps, bmapi_flags);
330 xfs_iunlock(ip, XFS_ILOCK_SHARED);
331
332 if (error)
333 return error;
334
335 if (type == XFS_IO_DELALLOC &&
336 (!nimaps || isnullstartblock(imap->br_startblock))) {
337 error = xfs_iomap_write_allocate(ip, offset, imap);
338 if (!error)
339 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
340 return error;
341 }
342
343#ifdef DEBUG
344 if (type == XFS_IO_UNWRITTEN) {
345 ASSERT(nimaps);
346 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
347 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
348 }
349#endif
350 if (nimaps)
351 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
352 return 0;
353}
354
355STATIC bool
356xfs_imap_valid(
357 struct inode *inode,
358 struct xfs_bmbt_irec *imap,
359 xfs_off_t offset)
360{
361 offset >>= inode->i_blkbits;
362
363 return offset >= imap->br_startoff &&
364 offset < imap->br_startoff + imap->br_blockcount;
365}
366
367/*
368 * BIO completion handler for buffered IO.
369 */
370STATIC void
371xfs_end_bio(
372 struct bio *bio)
373{
374 xfs_ioend_t *ioend = bio->bi_private;
375
376 if (!ioend->io_error)
377 ioend->io_error = bio->bi_error;
378
379 /* Toss bio and pass work off to an xfsdatad thread */
380 bio->bi_private = NULL;
381 bio->bi_end_io = NULL;
382 bio_put(bio);
383
384 xfs_finish_ioend(ioend);
385}
386
387STATIC void
388xfs_submit_ioend_bio(
389 struct writeback_control *wbc,
390 xfs_ioend_t *ioend,
391 struct bio *bio)
392{
393 atomic_inc(&ioend->io_remaining);
394 bio->bi_private = ioend;
395 bio->bi_end_io = xfs_end_bio;
396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
397}
398
399STATIC struct bio *
400xfs_alloc_ioend_bio(
401 struct buffer_head *bh)
402{
403 struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
404
405 ASSERT(bio->bi_private == NULL);
406 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 bio->bi_bdev = bh->b_bdev;
408 return bio;
409}
410
411STATIC void
412xfs_start_buffer_writeback(
413 struct buffer_head *bh)
414{
415 ASSERT(buffer_mapped(bh));
416 ASSERT(buffer_locked(bh));
417 ASSERT(!buffer_delay(bh));
418 ASSERT(!buffer_unwritten(bh));
419
420 mark_buffer_async_write(bh);
421 set_buffer_uptodate(bh);
422 clear_buffer_dirty(bh);
423}
424
425STATIC void
426xfs_start_page_writeback(
427 struct page *page,
428 int clear_dirty)
429{
430 ASSERT(PageLocked(page));
431 ASSERT(!PageWriteback(page));
432
433 /*
434 * if the page was not fully cleaned, we need to ensure that the higher
435 * layers come back to it correctly. That means we need to keep the page
436 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
437 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
438 * write this page in this writeback sweep will be made.
439 */
440 if (clear_dirty) {
441 clear_page_dirty_for_io(page);
442 set_page_writeback(page);
443 } else
444 set_page_writeback_keepwrite(page);
445
446 unlock_page(page);
447}
448
449static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
450{
451 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
452}
453
454/*
455 * Submit all of the bios for an ioend. We are only passed a single ioend at a
456 * time; the caller is responsible for chaining prior to submission.
457 *
458 * If @fail is non-zero, it means that we have a situation where some part of
459 * the submission process has failed after we have marked paged for writeback
460 * and unlocked them. In this situation, we need to fail the ioend chain rather
461 * than submit it to IO. This typically only happens on a filesystem shutdown.
462 */
463STATIC int
464xfs_submit_ioend(
465 struct writeback_control *wbc,
466 xfs_ioend_t *ioend,
467 int status)
468{
469 struct buffer_head *bh;
470 struct bio *bio;
471 sector_t lastblock = 0;
472
473 /* Reserve log space if we might write beyond the on-disk inode size. */
474 if (!status &&
475 ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
476 status = xfs_setfilesize_trans_alloc(ioend);
477 /*
478 * If we are failing the IO now, just mark the ioend with an
479 * error and finish it. This will run IO completion immediately
480 * as there is only one reference to the ioend at this point in
481 * time.
482 */
483 if (status) {
484 ioend->io_error = status;
485 xfs_finish_ioend(ioend);
486 return status;
487 }
488
489 bio = NULL;
490 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
491
492 if (!bio) {
493retry:
494 bio = xfs_alloc_ioend_bio(bh);
495 } else if (bh->b_blocknr != lastblock + 1) {
496 xfs_submit_ioend_bio(wbc, ioend, bio);
497 goto retry;
498 }
499
500 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
501 xfs_submit_ioend_bio(wbc, ioend, bio);
502 goto retry;
503 }
504
505 lastblock = bh->b_blocknr;
506 }
507 if (bio)
508 xfs_submit_ioend_bio(wbc, ioend, bio);
509 xfs_finish_ioend(ioend);
510 return 0;
511}
512
513/*
514 * Test to see if we've been building up a completion structure for
515 * earlier buffers -- if so, we try to append to this ioend if we
516 * can, otherwise we finish off any current ioend and start another.
517 * Return the ioend we finished off so that the caller can submit it
518 * once it has finished processing the dirty page.
519 */
520STATIC void
521xfs_add_to_ioend(
522 struct inode *inode,
523 struct buffer_head *bh,
524 xfs_off_t offset,
525 struct xfs_writepage_ctx *wpc,
526 struct list_head *iolist)
527{
528 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
529 bh->b_blocknr != wpc->last_block + 1 ||
530 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
531 struct xfs_ioend *new;
532
533 if (wpc->ioend)
534 list_add(&wpc->ioend->io_list, iolist);
535
536 new = xfs_alloc_ioend(inode, wpc->io_type);
537 new->io_offset = offset;
538 new->io_buffer_head = bh;
539 new->io_buffer_tail = bh;
540 wpc->ioend = new;
541 } else {
542 wpc->ioend->io_buffer_tail->b_private = bh;
543 wpc->ioend->io_buffer_tail = bh;
544 }
545
546 bh->b_private = NULL;
547 wpc->ioend->io_size += bh->b_size;
548 wpc->last_block = bh->b_blocknr;
549 xfs_start_buffer_writeback(bh);
550}
551
552STATIC void
553xfs_map_buffer(
554 struct inode *inode,
555 struct buffer_head *bh,
556 struct xfs_bmbt_irec *imap,
557 xfs_off_t offset)
558{
559 sector_t bn;
560 struct xfs_mount *m = XFS_I(inode)->i_mount;
561 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
562 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
563
564 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
565 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
566
567 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
568 ((offset - iomap_offset) >> inode->i_blkbits);
569
570 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
571
572 bh->b_blocknr = bn;
573 set_buffer_mapped(bh);
574}
575
576STATIC void
577xfs_map_at_offset(
578 struct inode *inode,
579 struct buffer_head *bh,
580 struct xfs_bmbt_irec *imap,
581 xfs_off_t offset)
582{
583 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
584 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
585
586 xfs_map_buffer(inode, bh, imap, offset);
587 set_buffer_mapped(bh);
588 clear_buffer_delay(bh);
589 clear_buffer_unwritten(bh);
590}
591
592/*
593 * Test if a given page contains at least one buffer of a given @type.
594 * If @check_all_buffers is true, then we walk all the buffers in the page to
595 * try to find one of the type passed in. If it is not set, then the caller only
596 * needs to check the first buffer on the page for a match.
597 */
598STATIC bool
599xfs_check_page_type(
600 struct page *page,
601 unsigned int type,
602 bool check_all_buffers)
603{
604 struct buffer_head *bh;
605 struct buffer_head *head;
606
607 if (PageWriteback(page))
608 return false;
609 if (!page->mapping)
610 return false;
611 if (!page_has_buffers(page))
612 return false;
613
614 bh = head = page_buffers(page);
615 do {
616 if (buffer_unwritten(bh)) {
617 if (type == XFS_IO_UNWRITTEN)
618 return true;
619 } else if (buffer_delay(bh)) {
620 if (type == XFS_IO_DELALLOC)
621 return true;
622 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
623 if (type == XFS_IO_OVERWRITE)
624 return true;
625 }
626
627 /* If we are only checking the first buffer, we are done now. */
628 if (!check_all_buffers)
629 break;
630 } while ((bh = bh->b_this_page) != head);
631
632 return false;
633}
634
635STATIC void
636xfs_vm_invalidatepage(
637 struct page *page,
638 unsigned int offset,
639 unsigned int length)
640{
641 trace_xfs_invalidatepage(page->mapping->host, page, offset,
642 length);
643 block_invalidatepage(page, offset, length);
644}
645
646/*
647 * If the page has delalloc buffers on it, we need to punch them out before we
648 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
649 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
650 * is done on that same region - the delalloc extent is returned when none is
651 * supposed to be there.
652 *
653 * We prevent this by truncating away the delalloc regions on the page before
654 * invalidating it. Because they are delalloc, we can do this without needing a
655 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
656 * truncation without a transaction as there is no space left for block
657 * reservation (typically why we see a ENOSPC in writeback).
658 *
659 * This is not a performance critical path, so for now just do the punching a
660 * buffer head at a time.
661 */
662STATIC void
663xfs_aops_discard_page(
664 struct page *page)
665{
666 struct inode *inode = page->mapping->host;
667 struct xfs_inode *ip = XFS_I(inode);
668 struct buffer_head *bh, *head;
669 loff_t offset = page_offset(page);
670
671 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
672 goto out_invalidate;
673
674 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
675 goto out_invalidate;
676
677 xfs_alert(ip->i_mount,
678 "page discard on page %p, inode 0x%llx, offset %llu.",
679 page, ip->i_ino, offset);
680
681 xfs_ilock(ip, XFS_ILOCK_EXCL);
682 bh = head = page_buffers(page);
683 do {
684 int error;
685 xfs_fileoff_t start_fsb;
686
687 if (!buffer_delay(bh))
688 goto next_buffer;
689
690 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
691 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
692 if (error) {
693 /* something screwed, just bail */
694 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
695 xfs_alert(ip->i_mount,
696 "page discard unable to remove delalloc mapping.");
697 }
698 break;
699 }
700next_buffer:
701 offset += 1 << inode->i_blkbits;
702
703 } while ((bh = bh->b_this_page) != head);
704
705 xfs_iunlock(ip, XFS_ILOCK_EXCL);
706out_invalidate:
707 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
708 return;
709}
710
711/*
712 * We implement an immediate ioend submission policy here to avoid needing to
713 * chain multiple ioends and hence nest mempool allocations which can violate
714 * forward progress guarantees we need to provide. The current ioend we are
715 * adding buffers to is cached on the writepage context, and if the new buffer
716 * does not append to the cached ioend it will create a new ioend and cache that
717 * instead.
718 *
719 * If a new ioend is created and cached, the old ioend is returned and queued
720 * locally for submission once the entire page is processed or an error has been
721 * detected. While ioends are submitted immediately after they are completed,
722 * batching optimisations are provided by higher level block plugging.
723 *
724 * At the end of a writeback pass, there will be a cached ioend remaining on the
725 * writepage context that the caller will need to submit.
726 */
727static int
728xfs_writepage_map(
729 struct xfs_writepage_ctx *wpc,
730 struct writeback_control *wbc,
731 struct inode *inode,
732 struct page *page,
733 loff_t offset,
734 __uint64_t end_offset)
735{
736 LIST_HEAD(submit_list);
737 struct xfs_ioend *ioend, *next;
738 struct buffer_head *bh, *head;
739 ssize_t len = 1 << inode->i_blkbits;
740 int error = 0;
741 int count = 0;
742 int uptodate = 1;
743
744 bh = head = page_buffers(page);
745 offset = page_offset(page);
746 do {
747 if (offset >= end_offset)
748 break;
749 if (!buffer_uptodate(bh))
750 uptodate = 0;
751
752 /*
753 * set_page_dirty dirties all buffers in a page, independent
754 * of their state. The dirty state however is entirely
755 * meaningless for holes (!mapped && uptodate), so skip
756 * buffers covering holes here.
757 */
758 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
759 wpc->imap_valid = false;
760 continue;
761 }
762
763 if (buffer_unwritten(bh)) {
764 if (wpc->io_type != XFS_IO_UNWRITTEN) {
765 wpc->io_type = XFS_IO_UNWRITTEN;
766 wpc->imap_valid = false;
767 }
768 } else if (buffer_delay(bh)) {
769 if (wpc->io_type != XFS_IO_DELALLOC) {
770 wpc->io_type = XFS_IO_DELALLOC;
771 wpc->imap_valid = false;
772 }
773 } else if (buffer_uptodate(bh)) {
774 if (wpc->io_type != XFS_IO_OVERWRITE) {
775 wpc->io_type = XFS_IO_OVERWRITE;
776 wpc->imap_valid = false;
777 }
778 } else {
779 if (PageUptodate(page))
780 ASSERT(buffer_mapped(bh));
781 /*
782 * This buffer is not uptodate and will not be
783 * written to disk. Ensure that we will put any
784 * subsequent writeable buffers into a new
785 * ioend.
786 */
787 wpc->imap_valid = false;
788 continue;
789 }
790
791 if (wpc->imap_valid)
792 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
793 offset);
794 if (!wpc->imap_valid) {
795 error = xfs_map_blocks(inode, offset, &wpc->imap,
796 wpc->io_type);
797 if (error)
798 goto out;
799 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
800 offset);
801 }
802 if (wpc->imap_valid) {
803 lock_buffer(bh);
804 if (wpc->io_type != XFS_IO_OVERWRITE)
805 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
806 xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
807 count++;
808 }
809
810 } while (offset += len, ((bh = bh->b_this_page) != head));
811
812 if (uptodate && bh == head)
813 SetPageUptodate(page);
814
815 ASSERT(wpc->ioend || list_empty(&submit_list));
816
817out:
818 /*
819 * On error, we have to fail the ioend here because we have locked
820 * buffers in the ioend. If we don't do this, we'll deadlock
821 * invalidating the page as that tries to lock the buffers on the page.
822 * Also, because we may have set pages under writeback, we have to make
823 * sure we run IO completion to mark the error state of the IO
824 * appropriately, so we can't cancel the ioend directly here. That means
825 * we have to mark this page as under writeback if we included any
826 * buffers from it in the ioend chain so that completion treats it
827 * correctly.
828 *
829 * If we didn't include the page in the ioend, the on error we can
830 * simply discard and unlock it as there are no other users of the page
831 * or it's buffers right now. The caller will still need to trigger
832 * submission of outstanding ioends on the writepage context so they are
833 * treated correctly on error.
834 */
835 if (count) {
836 xfs_start_page_writeback(page, !error);
837
838 /*
839 * Preserve the original error if there was one, otherwise catch
840 * submission errors here and propagate into subsequent ioend
841 * submissions.
842 */
843 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
844 int error2;
845
846 list_del_init(&ioend->io_list);
847 error2 = xfs_submit_ioend(wbc, ioend, error);
848 if (error2 && !error)
849 error = error2;
850 }
851 } else if (error) {
852 xfs_aops_discard_page(page);
853 ClearPageUptodate(page);
854 unlock_page(page);
855 } else {
856 /*
857 * We can end up here with no error and nothing to write if we
858 * race with a partial page truncate on a sub-page block sized
859 * filesystem. In that case we need to mark the page clean.
860 */
861 xfs_start_page_writeback(page, 1);
862 end_page_writeback(page);
863 }
864
865 mapping_set_error(page->mapping, error);
866 return error;
867}
868
869/*
870 * Write out a dirty page.
871 *
872 * For delalloc space on the page we need to allocate space and flush it.
873 * For unwritten space on the page we need to start the conversion to
874 * regular allocated space.
875 * For any other dirty buffer heads on the page we should flush them.
876 */
877STATIC int
878xfs_do_writepage(
879 struct page *page,
880 struct writeback_control *wbc,
881 void *data)
882{
883 struct xfs_writepage_ctx *wpc = data;
884 struct inode *inode = page->mapping->host;
885 loff_t offset;
886 __uint64_t end_offset;
887 pgoff_t end_index;
888
889 trace_xfs_writepage(inode, page, 0, 0);
890
891 ASSERT(page_has_buffers(page));
892
893 /*
894 * Refuse to write the page out if we are called from reclaim context.
895 *
896 * This avoids stack overflows when called from deeply used stacks in
897 * random callers for direct reclaim or memcg reclaim. We explicitly
898 * allow reclaim from kswapd as the stack usage there is relatively low.
899 *
900 * This should never happen except in the case of a VM regression so
901 * warn about it.
902 */
903 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
904 PF_MEMALLOC))
905 goto redirty;
906
907 /*
908 * Given that we do not allow direct reclaim to call us, we should
909 * never be called while in a filesystem transaction.
910 */
911 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
912 goto redirty;
913
914 /*
915 * Is this page beyond the end of the file?
916 *
917 * The page index is less than the end_index, adjust the end_offset
918 * to the highest offset that this page should represent.
919 * -----------------------------------------------------
920 * | file mapping | <EOF> |
921 * -----------------------------------------------------
922 * | Page ... | Page N-2 | Page N-1 | Page N | |
923 * ^--------------------------------^----------|--------
924 * | desired writeback range | see else |
925 * ---------------------------------^------------------|
926 */
927 offset = i_size_read(inode);
928 end_index = offset >> PAGE_SHIFT;
929 if (page->index < end_index)
930 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
931 else {
932 /*
933 * Check whether the page to write out is beyond or straddles
934 * i_size or not.
935 * -------------------------------------------------------
936 * | file mapping | <EOF> |
937 * -------------------------------------------------------
938 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
939 * ^--------------------------------^-----------|---------
940 * | | Straddles |
941 * ---------------------------------^-----------|--------|
942 */
943 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
944
945 /*
946 * Skip the page if it is fully outside i_size, e.g. due to a
947 * truncate operation that is in progress. We must redirty the
948 * page so that reclaim stops reclaiming it. Otherwise
949 * xfs_vm_releasepage() is called on it and gets confused.
950 *
951 * Note that the end_index is unsigned long, it would overflow
952 * if the given offset is greater than 16TB on 32-bit system
953 * and if we do check the page is fully outside i_size or not
954 * via "if (page->index >= end_index + 1)" as "end_index + 1"
955 * will be evaluated to 0. Hence this page will be redirtied
956 * and be written out repeatedly which would result in an
957 * infinite loop, the user program that perform this operation
958 * will hang. Instead, we can verify this situation by checking
959 * if the page to write is totally beyond the i_size or if it's
960 * offset is just equal to the EOF.
961 */
962 if (page->index > end_index ||
963 (page->index == end_index && offset_into_page == 0))
964 goto redirty;
965
966 /*
967 * The page straddles i_size. It must be zeroed out on each
968 * and every writepage invocation because it may be mmapped.
969 * "A file is mapped in multiples of the page size. For a file
970 * that is not a multiple of the page size, the remaining
971 * memory is zeroed when mapped, and writes to that region are
972 * not written out to the file."
973 */
974 zero_user_segment(page, offset_into_page, PAGE_SIZE);
975
976 /* Adjust the end_offset to the end of file */
977 end_offset = offset;
978 }
979
980 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
981
982redirty:
983 redirty_page_for_writepage(wbc, page);
984 unlock_page(page);
985 return 0;
986}
987
988STATIC int
989xfs_vm_writepage(
990 struct page *page,
991 struct writeback_control *wbc)
992{
993 struct xfs_writepage_ctx wpc = {
994 .io_type = XFS_IO_INVALID,
995 };
996 int ret;
997
998 ret = xfs_do_writepage(page, wbc, &wpc);
999 if (wpc.ioend)
1000 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1001 return ret;
1002}
1003
1004STATIC int
1005xfs_vm_writepages(
1006 struct address_space *mapping,
1007 struct writeback_control *wbc)
1008{
1009 struct xfs_writepage_ctx wpc = {
1010 .io_type = XFS_IO_INVALID,
1011 };
1012 int ret;
1013
1014 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1015 if (dax_mapping(mapping))
1016 return dax_writeback_mapping_range(mapping,
1017 xfs_find_bdev_for_inode(mapping->host), wbc);
1018
1019 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1020 if (wpc.ioend)
1021 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1022 return ret;
1023}
1024
1025/*
1026 * Called to move a page into cleanable state - and from there
1027 * to be released. The page should already be clean. We always
1028 * have buffer heads in this call.
1029 *
1030 * Returns 1 if the page is ok to release, 0 otherwise.
1031 */
1032STATIC int
1033xfs_vm_releasepage(
1034 struct page *page,
1035 gfp_t gfp_mask)
1036{
1037 int delalloc, unwritten;
1038
1039 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1040
1041 xfs_count_page_state(page, &delalloc, &unwritten);
1042
1043 if (WARN_ON_ONCE(delalloc))
1044 return 0;
1045 if (WARN_ON_ONCE(unwritten))
1046 return 0;
1047
1048 return try_to_free_buffers(page);
1049}
1050
1051/*
1052 * When we map a DIO buffer, we may need to pass flags to
1053 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1054 *
1055 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058 * extending the file size. We won't know for sure until IO completion is run
1059 * and the actual max write offset is communicated to the IO completion
1060 * routine.
1061 */
1062static void
1063xfs_map_direct(
1064 struct inode *inode,
1065 struct buffer_head *bh_result,
1066 struct xfs_bmbt_irec *imap,
1067 xfs_off_t offset)
1068{
1069 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1070 xfs_off_t size = bh_result->b_size;
1071
1072 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1073 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1074
1075 if (ISUNWRITTEN(imap)) {
1076 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1077 set_buffer_defer_completion(bh_result);
1078 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1079 *flags |= XFS_DIO_FLAG_APPEND;
1080 set_buffer_defer_completion(bh_result);
1081 }
1082}
1083
1084/*
1085 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086 * is, so that we can avoid repeated get_blocks calls.
1087 *
1088 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089 * for blocks beyond EOF must be marked new so that sub block regions can be
1090 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091 * was just allocated or is unwritten, otherwise the callers would overwrite
1092 * existing data with zeros. Hence we have to split the mapping into a range up
1093 * to and including EOF, and a second mapping for beyond EOF.
1094 */
1095static void
1096xfs_map_trim_size(
1097 struct inode *inode,
1098 sector_t iblock,
1099 struct buffer_head *bh_result,
1100 struct xfs_bmbt_irec *imap,
1101 xfs_off_t offset,
1102 ssize_t size)
1103{
1104 xfs_off_t mapping_size;
1105
1106 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1107 mapping_size <<= inode->i_blkbits;
1108
1109 ASSERT(mapping_size > 0);
1110 if (mapping_size > size)
1111 mapping_size = size;
1112 if (offset < i_size_read(inode) &&
1113 offset + mapping_size >= i_size_read(inode)) {
1114 /* limit mapping to block that spans EOF */
1115 mapping_size = roundup_64(i_size_read(inode) - offset,
1116 1 << inode->i_blkbits);
1117 }
1118 if (mapping_size > LONG_MAX)
1119 mapping_size = LONG_MAX;
1120
1121 bh_result->b_size = mapping_size;
1122}
1123
1124STATIC int
1125__xfs_get_blocks(
1126 struct inode *inode,
1127 sector_t iblock,
1128 struct buffer_head *bh_result,
1129 int create,
1130 bool direct,
1131 bool dax_fault)
1132{
1133 struct xfs_inode *ip = XFS_I(inode);
1134 struct xfs_mount *mp = ip->i_mount;
1135 xfs_fileoff_t offset_fsb, end_fsb;
1136 int error = 0;
1137 int lockmode = 0;
1138 struct xfs_bmbt_irec imap;
1139 int nimaps = 1;
1140 xfs_off_t offset;
1141 ssize_t size;
1142 int new = 0;
1143
1144 if (XFS_FORCED_SHUTDOWN(mp))
1145 return -EIO;
1146
1147 offset = (xfs_off_t)iblock << inode->i_blkbits;
1148 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1149 size = bh_result->b_size;
1150
1151 if (!create && direct && offset >= i_size_read(inode))
1152 return 0;
1153
1154 /*
1155 * Direct I/O is usually done on preallocated files, so try getting
1156 * a block mapping without an exclusive lock first. For buffered
1157 * writes we already have the exclusive iolock anyway, so avoiding
1158 * a lock roundtrip here by taking the ilock exclusive from the
1159 * beginning is a useful micro optimization.
1160 */
1161 if (create && !direct) {
1162 lockmode = XFS_ILOCK_EXCL;
1163 xfs_ilock(ip, lockmode);
1164 } else {
1165 lockmode = xfs_ilock_data_map_shared(ip);
1166 }
1167
1168 ASSERT(offset <= mp->m_super->s_maxbytes);
1169 if (offset + size > mp->m_super->s_maxbytes)
1170 size = mp->m_super->s_maxbytes - offset;
1171 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173
1174 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1175 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1176 if (error)
1177 goto out_unlock;
1178
1179 /* for DAX, we convert unwritten extents directly */
1180 if (create &&
1181 (!nimaps ||
1182 (imap.br_startblock == HOLESTARTBLOCK ||
1183 imap.br_startblock == DELAYSTARTBLOCK) ||
1184 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1185 if (direct || xfs_get_extsz_hint(ip)) {
1186 /*
1187 * xfs_iomap_write_direct() expects the shared lock. It
1188 * is unlocked on return.
1189 */
1190 if (lockmode == XFS_ILOCK_EXCL)
1191 xfs_ilock_demote(ip, lockmode);
1192
1193 error = xfs_iomap_write_direct(ip, offset, size,
1194 &imap, nimaps);
1195 if (error)
1196 return error;
1197 new = 1;
1198
1199 } else {
1200 /*
1201 * Delalloc reservations do not require a transaction,
1202 * we can go on without dropping the lock here. If we
1203 * are allocating a new delalloc block, make sure that
1204 * we set the new flag so that we mark the buffer new so
1205 * that we know that it is newly allocated if the write
1206 * fails.
1207 */
1208 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1209 new = 1;
1210 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1211 if (error)
1212 goto out_unlock;
1213
1214 xfs_iunlock(ip, lockmode);
1215 }
1216 trace_xfs_get_blocks_alloc(ip, offset, size,
1217 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218 : XFS_IO_DELALLOC, &imap);
1219 } else if (nimaps) {
1220 trace_xfs_get_blocks_found(ip, offset, size,
1221 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1222 : XFS_IO_OVERWRITE, &imap);
1223 xfs_iunlock(ip, lockmode);
1224 } else {
1225 trace_xfs_get_blocks_notfound(ip, offset, size);
1226 goto out_unlock;
1227 }
1228
1229 if (IS_DAX(inode) && create) {
1230 ASSERT(!ISUNWRITTEN(&imap));
1231 /* zeroing is not needed at a higher layer */
1232 new = 0;
1233 }
1234
1235 /* trim mapping down to size requested */
1236 if (direct || size > (1 << inode->i_blkbits))
1237 xfs_map_trim_size(inode, iblock, bh_result,
1238 &imap, offset, size);
1239
1240 /*
1241 * For unwritten extents do not report a disk address in the buffered
1242 * read case (treat as if we're reading into a hole).
1243 */
1244 if (imap.br_startblock != HOLESTARTBLOCK &&
1245 imap.br_startblock != DELAYSTARTBLOCK &&
1246 (create || !ISUNWRITTEN(&imap))) {
1247 xfs_map_buffer(inode, bh_result, &imap, offset);
1248 if (ISUNWRITTEN(&imap))
1249 set_buffer_unwritten(bh_result);
1250 /* direct IO needs special help */
1251 if (create && direct) {
1252 if (dax_fault)
1253 ASSERT(!ISUNWRITTEN(&imap));
1254 else
1255 xfs_map_direct(inode, bh_result, &imap, offset);
1256 }
1257 }
1258
1259 /*
1260 * If this is a realtime file, data may be on a different device.
1261 * to that pointed to from the buffer_head b_bdev currently.
1262 */
1263 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1264
1265 /*
1266 * If we previously allocated a block out beyond eof and we are now
1267 * coming back to use it then we will need to flag it as new even if it
1268 * has a disk address.
1269 *
1270 * With sub-block writes into unwritten extents we also need to mark
1271 * the buffer as new so that the unwritten parts of the buffer gets
1272 * correctly zeroed.
1273 */
1274 if (create &&
1275 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1276 (offset >= i_size_read(inode)) ||
1277 (new || ISUNWRITTEN(&imap))))
1278 set_buffer_new(bh_result);
1279
1280 if (imap.br_startblock == DELAYSTARTBLOCK) {
1281 BUG_ON(direct);
1282 if (create) {
1283 set_buffer_uptodate(bh_result);
1284 set_buffer_mapped(bh_result);
1285 set_buffer_delay(bh_result);
1286 }
1287 }
1288
1289 return 0;
1290
1291out_unlock:
1292 xfs_iunlock(ip, lockmode);
1293 return error;
1294}
1295
1296int
1297xfs_get_blocks(
1298 struct inode *inode,
1299 sector_t iblock,
1300 struct buffer_head *bh_result,
1301 int create)
1302{
1303 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1304}
1305
1306int
1307xfs_get_blocks_direct(
1308 struct inode *inode,
1309 sector_t iblock,
1310 struct buffer_head *bh_result,
1311 int create)
1312{
1313 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1314}
1315
1316int
1317xfs_get_blocks_dax_fault(
1318 struct inode *inode,
1319 sector_t iblock,
1320 struct buffer_head *bh_result,
1321 int create)
1322{
1323 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1324}
1325
1326/*
1327 * Complete a direct I/O write request.
1328 *
1329 * xfs_map_direct passes us some flags in the private data to tell us what to
1330 * do. If no flags are set, then the write IO is an overwrite wholly within
1331 * the existing allocated file size and so there is nothing for us to do.
1332 *
1333 * Note that in this case the completion can be called in interrupt context,
1334 * whereas if we have flags set we will always be called in task context
1335 * (i.e. from a workqueue).
1336 */
1337STATIC int
1338xfs_end_io_direct_write(
1339 struct kiocb *iocb,
1340 loff_t offset,
1341 ssize_t size,
1342 void *private)
1343{
1344 struct inode *inode = file_inode(iocb->ki_filp);
1345 struct xfs_inode *ip = XFS_I(inode);
1346 struct xfs_mount *mp = ip->i_mount;
1347 uintptr_t flags = (uintptr_t)private;
1348 int error = 0;
1349
1350 trace_xfs_end_io_direct_write(ip, offset, size);
1351
1352 if (XFS_FORCED_SHUTDOWN(mp))
1353 return -EIO;
1354
1355 if (size <= 0)
1356 return size;
1357
1358 /*
1359 * The flags tell us whether we are doing unwritten extent conversions
1360 * or an append transaction that updates the on-disk file size. These
1361 * cases are the only cases where we should *potentially* be needing
1362 * to update the VFS inode size.
1363 */
1364 if (flags == 0) {
1365 ASSERT(offset + size <= i_size_read(inode));
1366 return 0;
1367 }
1368
1369 /*
1370 * We need to update the in-core inode size here so that we don't end up
1371 * with the on-disk inode size being outside the in-core inode size. We
1372 * have no other method of updating EOF for AIO, so always do it here
1373 * if necessary.
1374 *
1375 * We need to lock the test/set EOF update as we can be racing with
1376 * other IO completions here to update the EOF. Failing to serialise
1377 * here can result in EOF moving backwards and Bad Things Happen when
1378 * that occurs.
1379 */
1380 spin_lock(&ip->i_flags_lock);
1381 if (offset + size > i_size_read(inode))
1382 i_size_write(inode, offset + size);
1383 spin_unlock(&ip->i_flags_lock);
1384
1385 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1386 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1387
1388 error = xfs_iomap_write_unwritten(ip, offset, size);
1389 } else if (flags & XFS_DIO_FLAG_APPEND) {
1390 struct xfs_trans *tp;
1391
1392 trace_xfs_end_io_direct_write_append(ip, offset, size);
1393
1394 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1395 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1396 if (error) {
1397 xfs_trans_cancel(tp);
1398 return error;
1399 }
1400 error = xfs_setfilesize(ip, tp, offset, size);
1401 }
1402
1403 return error;
1404}
1405
1406STATIC ssize_t
1407xfs_vm_direct_IO(
1408 struct kiocb *iocb,
1409 struct iov_iter *iter,
1410 loff_t offset)
1411{
1412 struct inode *inode = iocb->ki_filp->f_mapping->host;
1413 dio_iodone_t *endio = NULL;
1414 int flags = 0;
1415 struct block_device *bdev;
1416
1417 if (iov_iter_rw(iter) == WRITE) {
1418 endio = xfs_end_io_direct_write;
1419 flags = DIO_ASYNC_EXTEND;
1420 }
1421
1422 if (IS_DAX(inode)) {
1423 return dax_do_io(iocb, inode, iter, offset,
1424 xfs_get_blocks_direct, endio, 0);
1425 }
1426
1427 bdev = xfs_find_bdev_for_inode(inode);
1428 return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1429 xfs_get_blocks_direct, endio, NULL, flags);
1430}
1431
1432/*
1433 * Punch out the delalloc blocks we have already allocated.
1434 *
1435 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436 * as the page is still locked at this point.
1437 */
1438STATIC void
1439xfs_vm_kill_delalloc_range(
1440 struct inode *inode,
1441 loff_t start,
1442 loff_t end)
1443{
1444 struct xfs_inode *ip = XFS_I(inode);
1445 xfs_fileoff_t start_fsb;
1446 xfs_fileoff_t end_fsb;
1447 int error;
1448
1449 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1450 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1451 if (end_fsb <= start_fsb)
1452 return;
1453
1454 xfs_ilock(ip, XFS_ILOCK_EXCL);
1455 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1456 end_fsb - start_fsb);
1457 if (error) {
1458 /* something screwed, just bail */
1459 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1460 xfs_alert(ip->i_mount,
1461 "xfs_vm_write_failed: unable to clean up ino %lld",
1462 ip->i_ino);
1463 }
1464 }
1465 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466}
1467
1468STATIC void
1469xfs_vm_write_failed(
1470 struct inode *inode,
1471 struct page *page,
1472 loff_t pos,
1473 unsigned len)
1474{
1475 loff_t block_offset;
1476 loff_t block_start;
1477 loff_t block_end;
1478 loff_t from = pos & (PAGE_SIZE - 1);
1479 loff_t to = from + len;
1480 struct buffer_head *bh, *head;
1481 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1482
1483 /*
1484 * The request pos offset might be 32 or 64 bit, this is all fine
1485 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1486 * platform, the high 32-bit will be masked off if we evaluate the
1487 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489 * which could cause the following ASSERT failed in most cases.
1490 * In order to avoid this, we can evaluate the block_offset of the
1491 * start of the page by using shifts rather than masks the mismatch
1492 * problem.
1493 */
1494 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1495
1496 ASSERT(block_offset + from == pos);
1497
1498 head = page_buffers(page);
1499 block_start = 0;
1500 for (bh = head; bh != head || !block_start;
1501 bh = bh->b_this_page, block_start = block_end,
1502 block_offset += bh->b_size) {
1503 block_end = block_start + bh->b_size;
1504
1505 /* skip buffers before the write */
1506 if (block_end <= from)
1507 continue;
1508
1509 /* if the buffer is after the write, we're done */
1510 if (block_start >= to)
1511 break;
1512
1513 /*
1514 * Process delalloc and unwritten buffers beyond EOF. We can
1515 * encounter unwritten buffers in the event that a file has
1516 * post-EOF unwritten extents and an extending write happens to
1517 * fail (e.g., an unaligned write that also involves a delalloc
1518 * to the same page).
1519 */
1520 if (!buffer_delay(bh) && !buffer_unwritten(bh))
1521 continue;
1522
1523 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1524 block_offset < i_size_read(inode))
1525 continue;
1526
1527 if (buffer_delay(bh))
1528 xfs_vm_kill_delalloc_range(inode, block_offset,
1529 block_offset + bh->b_size);
1530
1531 /*
1532 * This buffer does not contain data anymore. make sure anyone
1533 * who finds it knows that for certain.
1534 */
1535 clear_buffer_delay(bh);
1536 clear_buffer_uptodate(bh);
1537 clear_buffer_mapped(bh);
1538 clear_buffer_new(bh);
1539 clear_buffer_dirty(bh);
1540 clear_buffer_unwritten(bh);
1541 }
1542
1543}
1544
1545/*
1546 * This used to call block_write_begin(), but it unlocks and releases the page
1547 * on error, and we need that page to be able to punch stale delalloc blocks out
1548 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549 * the appropriate point.
1550 */
1551STATIC int
1552xfs_vm_write_begin(
1553 struct file *file,
1554 struct address_space *mapping,
1555 loff_t pos,
1556 unsigned len,
1557 unsigned flags,
1558 struct page **pagep,
1559 void **fsdata)
1560{
1561 pgoff_t index = pos >> PAGE_SHIFT;
1562 struct page *page;
1563 int status;
1564 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
1565
1566 ASSERT(len <= PAGE_SIZE);
1567
1568 page = grab_cache_page_write_begin(mapping, index, flags);
1569 if (!page)
1570 return -ENOMEM;
1571
1572 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1573 if (xfs_mp_fail_writes(mp))
1574 status = -EIO;
1575 if (unlikely(status)) {
1576 struct inode *inode = mapping->host;
1577 size_t isize = i_size_read(inode);
1578
1579 xfs_vm_write_failed(inode, page, pos, len);
1580 unlock_page(page);
1581
1582 /*
1583 * If the write is beyond EOF, we only want to kill blocks
1584 * allocated in this write, not blocks that were previously
1585 * written successfully.
1586 */
1587 if (xfs_mp_fail_writes(mp))
1588 isize = 0;
1589 if (pos + len > isize) {
1590 ssize_t start = max_t(ssize_t, pos, isize);
1591
1592 truncate_pagecache_range(inode, start, pos + len);
1593 }
1594
1595 put_page(page);
1596 page = NULL;
1597 }
1598
1599 *pagep = page;
1600 return status;
1601}
1602
1603/*
1604 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605 * this specific write because they will never be written. Previous writes
1606 * beyond EOF where block allocation succeeded do not need to be trashed, so
1607 * only new blocks from this write should be trashed. For blocks within
1608 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609 * written with all the other valid data.
1610 */
1611STATIC int
1612xfs_vm_write_end(
1613 struct file *file,
1614 struct address_space *mapping,
1615 loff_t pos,
1616 unsigned len,
1617 unsigned copied,
1618 struct page *page,
1619 void *fsdata)
1620{
1621 int ret;
1622
1623 ASSERT(len <= PAGE_SIZE);
1624
1625 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1626 if (unlikely(ret < len)) {
1627 struct inode *inode = mapping->host;
1628 size_t isize = i_size_read(inode);
1629 loff_t to = pos + len;
1630
1631 if (to > isize) {
1632 /* only kill blocks in this write beyond EOF */
1633 if (pos > isize)
1634 isize = pos;
1635 xfs_vm_kill_delalloc_range(inode, isize, to);
1636 truncate_pagecache_range(inode, isize, to);
1637 }
1638 }
1639 return ret;
1640}
1641
1642STATIC sector_t
1643xfs_vm_bmap(
1644 struct address_space *mapping,
1645 sector_t block)
1646{
1647 struct inode *inode = (struct inode *)mapping->host;
1648 struct xfs_inode *ip = XFS_I(inode);
1649
1650 trace_xfs_vm_bmap(XFS_I(inode));
1651 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1652 filemap_write_and_wait(mapping);
1653 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1654 return generic_block_bmap(mapping, block, xfs_get_blocks);
1655}
1656
1657STATIC int
1658xfs_vm_readpage(
1659 struct file *unused,
1660 struct page *page)
1661{
1662 trace_xfs_vm_readpage(page->mapping->host, 1);
1663 return mpage_readpage(page, xfs_get_blocks);
1664}
1665
1666STATIC int
1667xfs_vm_readpages(
1668 struct file *unused,
1669 struct address_space *mapping,
1670 struct list_head *pages,
1671 unsigned nr_pages)
1672{
1673 trace_xfs_vm_readpages(mapping->host, nr_pages);
1674 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1675}
1676
1677/*
1678 * This is basically a copy of __set_page_dirty_buffers() with one
1679 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680 * dirty, we'll never be able to clean them because we don't write buffers
1681 * beyond EOF, and that means we can't invalidate pages that span EOF
1682 * that have been marked dirty. Further, the dirty state can leak into
1683 * the file interior if the file is extended, resulting in all sorts of
1684 * bad things happening as the state does not match the underlying data.
1685 *
1686 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687 * this only exist because of bufferheads and how the generic code manages them.
1688 */
1689STATIC int
1690xfs_vm_set_page_dirty(
1691 struct page *page)
1692{
1693 struct address_space *mapping = page->mapping;
1694 struct inode *inode = mapping->host;
1695 loff_t end_offset;
1696 loff_t offset;
1697 int newly_dirty;
1698
1699 if (unlikely(!mapping))
1700 return !TestSetPageDirty(page);
1701
1702 end_offset = i_size_read(inode);
1703 offset = page_offset(page);
1704
1705 spin_lock(&mapping->private_lock);
1706 if (page_has_buffers(page)) {
1707 struct buffer_head *head = page_buffers(page);
1708 struct buffer_head *bh = head;
1709
1710 do {
1711 if (offset < end_offset)
1712 set_buffer_dirty(bh);
1713 bh = bh->b_this_page;
1714 offset += 1 << inode->i_blkbits;
1715 } while (bh != head);
1716 }
1717 /*
1718 * Lock out page->mem_cgroup migration to keep PageDirty
1719 * synchronized with per-memcg dirty page counters.
1720 */
1721 lock_page_memcg(page);
1722 newly_dirty = !TestSetPageDirty(page);
1723 spin_unlock(&mapping->private_lock);
1724
1725 if (newly_dirty) {
1726 /* sigh - __set_page_dirty() is static, so copy it here, too */
1727 unsigned long flags;
1728
1729 spin_lock_irqsave(&mapping->tree_lock, flags);
1730 if (page->mapping) { /* Race with truncate? */
1731 WARN_ON_ONCE(!PageUptodate(page));
1732 account_page_dirtied(page, mapping);
1733 radix_tree_tag_set(&mapping->page_tree,
1734 page_index(page), PAGECACHE_TAG_DIRTY);
1735 }
1736 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1737 }
1738 unlock_page_memcg(page);
1739 if (newly_dirty)
1740 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1741 return newly_dirty;
1742}
1743
1744const struct address_space_operations xfs_address_space_operations = {
1745 .readpage = xfs_vm_readpage,
1746 .readpages = xfs_vm_readpages,
1747 .writepage = xfs_vm_writepage,
1748 .writepages = xfs_vm_writepages,
1749 .set_page_dirty = xfs_vm_set_page_dirty,
1750 .releasepage = xfs_vm_releasepage,
1751 .invalidatepage = xfs_vm_invalidatepage,
1752 .write_begin = xfs_vm_write_begin,
1753 .write_end = xfs_vm_write_end,
1754 .bmap = xfs_vm_bmap,
1755 .direct_IO = xfs_vm_direct_IO,
1756 .migratepage = buffer_migrate_page,
1757 .is_partially_uptodate = block_is_partially_uptodate,
1758 .error_remove_page = generic_error_remove_page,
1759};