Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_mount.h"
  24#include "xfs_inode.h"
  25#include "xfs_trans.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_alloc.h"
  28#include "xfs_error.h"
  29#include "xfs_iomap.h"
  30#include "xfs_trace.h"
  31#include "xfs_bmap.h"
  32#include "xfs_bmap_util.h"
  33#include "xfs_bmap_btree.h"
  34#include "xfs_reflink.h"
  35#include <linux/gfp.h>
  36#include <linux/mpage.h>
  37#include <linux/pagevec.h>
  38#include <linux/writeback.h>
  39
  40/*
  41 * structure owned by writepages passed to individual writepage calls
  42 */
  43struct xfs_writepage_ctx {
  44	struct xfs_bmbt_irec    imap;
  45	bool			imap_valid;
  46	unsigned int		io_type;
 
  47	struct xfs_ioend	*ioend;
  48	sector_t		last_block;
  49};
  50
  51void
  52xfs_count_page_state(
  53	struct page		*page,
  54	int			*delalloc,
  55	int			*unwritten)
  56{
  57	struct buffer_head	*bh, *head;
  58
  59	*delalloc = *unwritten = 0;
  60
  61	bh = head = page_buffers(page);
  62	do {
  63		if (buffer_unwritten(bh))
  64			(*unwritten) = 1;
  65		else if (buffer_delay(bh))
  66			(*delalloc) = 1;
  67	} while ((bh = bh->b_this_page) != head);
  68}
  69
  70struct block_device *
  71xfs_find_bdev_for_inode(
  72	struct inode		*inode)
  73{
  74	struct xfs_inode	*ip = XFS_I(inode);
  75	struct xfs_mount	*mp = ip->i_mount;
  76
  77	if (XFS_IS_REALTIME_INODE(ip))
  78		return mp->m_rtdev_targp->bt_bdev;
  79	else
  80		return mp->m_ddev_targp->bt_bdev;
  81}
  82
  83struct dax_device *
  84xfs_find_daxdev_for_inode(
  85	struct inode		*inode)
  86{
  87	struct xfs_inode	*ip = XFS_I(inode);
  88	struct xfs_mount	*mp = ip->i_mount;
  89
  90	if (XFS_IS_REALTIME_INODE(ip))
  91		return mp->m_rtdev_targp->bt_daxdev;
  92	else
  93		return mp->m_ddev_targp->bt_daxdev;
  94}
  95
  96/*
  97 * We're now finished for good with this page.  Update the page state via the
  98 * associated buffer_heads, paying attention to the start and end offsets that
  99 * we need to process on the page.
 100 *
 101 * Note that we open code the action in end_buffer_async_write here so that we
 102 * only have to iterate over the buffers attached to the page once.  This is not
 103 * only more efficient, but also ensures that we only calls end_page_writeback
 104 * at the end of the iteration, and thus avoids the pitfall of having the page
 105 * and buffers potentially freed after every call to end_buffer_async_write.
 106 */
 107static void
 108xfs_finish_page_writeback(
 109	struct inode		*inode,
 110	struct bio_vec		*bvec,
 111	int			error)
 112{
 113	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
 114	bool			busy = false;
 115	unsigned int		off = 0;
 116	unsigned long		flags;
 117
 118	ASSERT(bvec->bv_offset < PAGE_SIZE);
 119	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
 120	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
 121	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
 122
 123	local_irq_save(flags);
 124	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
 125	do {
 126		if (off >= bvec->bv_offset &&
 127		    off < bvec->bv_offset + bvec->bv_len) {
 128			ASSERT(buffer_async_write(bh));
 129			ASSERT(bh->b_end_io == NULL);
 130
 131			if (error) {
 132				mark_buffer_write_io_error(bh);
 133				clear_buffer_uptodate(bh);
 134				SetPageError(bvec->bv_page);
 135			} else {
 136				set_buffer_uptodate(bh);
 137			}
 138			clear_buffer_async_write(bh);
 139			unlock_buffer(bh);
 140		} else if (buffer_async_write(bh)) {
 141			ASSERT(buffer_locked(bh));
 142			busy = true;
 143		}
 144		off += bh->b_size;
 145	} while ((bh = bh->b_this_page) != head);
 146	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
 147	local_irq_restore(flags);
 148
 149	if (!busy)
 150		end_page_writeback(bvec->bv_page);
 151}
 152
 153/*
 154 * We're now finished for good with this ioend structure.  Update the page
 155 * state, release holds on bios, and finally free up memory.  Do not use the
 156 * ioend after this.
 157 */
 158STATIC void
 159xfs_destroy_ioend(
 160	struct xfs_ioend	*ioend,
 161	int			error)
 162{
 163	struct inode		*inode = ioend->io_inode;
 164	struct bio		*bio = &ioend->io_inline_bio;
 165	struct bio		*last = ioend->io_bio, *next;
 166	u64			start = bio->bi_iter.bi_sector;
 167	bool			quiet = bio_flagged(bio, BIO_QUIET);
 168
 169	for (bio = &ioend->io_inline_bio; bio; bio = next) {
 170		struct bio_vec	*bvec;
 171		int		i;
 172
 173		/*
 174		 * For the last bio, bi_private points to the ioend, so we
 175		 * need to explicitly end the iteration here.
 176		 */
 177		if (bio == last)
 178			next = NULL;
 179		else
 180			next = bio->bi_private;
 181
 182		/* walk each page on bio, ending page IO on them */
 183		bio_for_each_segment_all(bvec, bio, i)
 184			xfs_finish_page_writeback(inode, bvec, error);
 185
 186		bio_put(bio);
 187	}
 188
 189	if (unlikely(error && !quiet)) {
 190		xfs_err_ratelimited(XFS_I(inode)->i_mount,
 191			"writeback error on sector %llu", start);
 192	}
 193}
 194
 195/*
 196 * Fast and loose check if this write could update the on-disk inode size.
 197 */
 198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 199{
 200	return ioend->io_offset + ioend->io_size >
 201		XFS_I(ioend->io_inode)->i_d.di_size;
 202}
 203
 204STATIC int
 205xfs_setfilesize_trans_alloc(
 206	struct xfs_ioend	*ioend)
 207{
 208	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 209	struct xfs_trans	*tp;
 210	int			error;
 211
 212	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
 213				XFS_TRANS_NOFS, &tp);
 214	if (error)
 215		return error;
 216
 217	ioend->io_append_trans = tp;
 218
 219	/*
 220	 * We may pass freeze protection with a transaction.  So tell lockdep
 221	 * we released it.
 222	 */
 223	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 224	/*
 225	 * We hand off the transaction to the completion thread now, so
 226	 * clear the flag here.
 227	 */
 228	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 229	return 0;
 230}
 231
 232/*
 233 * Update on-disk file size now that data has been written to disk.
 234 */
 235STATIC int
 236__xfs_setfilesize(
 237	struct xfs_inode	*ip,
 238	struct xfs_trans	*tp,
 239	xfs_off_t		offset,
 240	size_t			size)
 241{
 242	xfs_fsize_t		isize;
 243
 244	xfs_ilock(ip, XFS_ILOCK_EXCL);
 245	isize = xfs_new_eof(ip, offset + size);
 246	if (!isize) {
 247		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 248		xfs_trans_cancel(tp);
 249		return 0;
 250	}
 251
 252	trace_xfs_setfilesize(ip, offset, size);
 253
 254	ip->i_d.di_size = isize;
 255	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 256	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 257
 258	return xfs_trans_commit(tp);
 259}
 260
 261int
 262xfs_setfilesize(
 263	struct xfs_inode	*ip,
 264	xfs_off_t		offset,
 265	size_t			size)
 266{
 267	struct xfs_mount	*mp = ip->i_mount;
 268	struct xfs_trans	*tp;
 269	int			error;
 270
 271	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 272	if (error)
 273		return error;
 274
 275	return __xfs_setfilesize(ip, tp, offset, size);
 276}
 277
 278STATIC int
 279xfs_setfilesize_ioend(
 280	struct xfs_ioend	*ioend,
 281	int			error)
 282{
 283	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 284	struct xfs_trans	*tp = ioend->io_append_trans;
 285
 286	/*
 287	 * The transaction may have been allocated in the I/O submission thread,
 288	 * thus we need to mark ourselves as being in a transaction manually.
 289	 * Similarly for freeze protection.
 290	 */
 291	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 292	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 293
 294	/* we abort the update if there was an IO error */
 295	if (error) {
 296		xfs_trans_cancel(tp);
 297		return error;
 298	}
 299
 300	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 301}
 302
 303/*
 304 * IO write completion.
 305 */
 306STATIC void
 307xfs_end_io(
 308	struct work_struct *work)
 309{
 310	struct xfs_ioend	*ioend =
 311		container_of(work, struct xfs_ioend, io_work);
 312	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 313	xfs_off_t		offset = ioend->io_offset;
 314	size_t			size = ioend->io_size;
 
 315	int			error;
 316
 317	/*
 
 
 
 
 
 
 
 318	 * Just clean up the in-memory strutures if the fs has been shut down.
 319	 */
 320	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 321		error = -EIO;
 322		goto done;
 323	}
 324
 325	/*
 326	 * Clean up any COW blocks on an I/O error.
 327	 */
 328	error = blk_status_to_errno(ioend->io_bio->bi_status);
 329	if (unlikely(error)) {
 330		switch (ioend->io_type) {
 331		case XFS_IO_COW:
 332			xfs_reflink_cancel_cow_range(ip, offset, size, true);
 333			break;
 334		}
 335
 336		goto done;
 337	}
 338
 339	/*
 340	 * Success:  commit the COW or unwritten blocks if needed.
 341	 */
 342	switch (ioend->io_type) {
 343	case XFS_IO_COW:
 344		error = xfs_reflink_end_cow(ip, offset, size);
 345		break;
 346	case XFS_IO_UNWRITTEN:
 347		/* writeback should never update isize */
 348		error = xfs_iomap_write_unwritten(ip, offset, size, false);
 349		break;
 350	default:
 351		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
 352		break;
 353	}
 354
 355done:
 356	if (ioend->io_append_trans)
 357		error = xfs_setfilesize_ioend(ioend, error);
 
 358	xfs_destroy_ioend(ioend, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359}
 360
 361STATIC void
 362xfs_end_bio(
 363	struct bio		*bio)
 364{
 365	struct xfs_ioend	*ioend = bio->bi_private;
 366	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 
 
 367
 368	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
 369		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 370	else if (ioend->io_append_trans)
 371		queue_work(mp->m_data_workqueue, &ioend->io_work);
 372	else
 
 
 
 
 
 373		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
 374}
 375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376STATIC int
 377xfs_map_blocks(
 
 378	struct inode		*inode,
 379	loff_t			offset,
 380	struct xfs_bmbt_irec	*imap,
 381	int			type)
 382{
 383	struct xfs_inode	*ip = XFS_I(inode);
 384	struct xfs_mount	*mp = ip->i_mount;
 385	ssize_t			count = i_blocksize(inode);
 386	xfs_fileoff_t		offset_fsb, end_fsb;
 
 
 
 
 
 387	int			error = 0;
 388	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 389	int			nimaps = 1;
 390
 391	if (XFS_FORCED_SHUTDOWN(mp))
 392		return -EIO;
 393
 394	/*
 395	 * Truncate can race with writeback since writeback doesn't take the
 396	 * iolock and truncate decreases the file size before it starts
 397	 * truncating the pages between new_size and old_size.  Therefore, we
 398	 * can end up in the situation where writeback gets a CoW fork mapping
 399	 * but the truncate makes the mapping invalid and we end up in here
 400	 * trying to get a new mapping.  Bail out here so that we simply never
 401	 * get a valid mapping and so we drop the write altogether.  The page
 402	 * truncation will kill the contents anyway.
 
 
 
 
 
 403	 */
 404	if (type == XFS_IO_COW && offset > i_size_read(inode))
 405		return 0;
 406
 407	ASSERT(type != XFS_IO_COW);
 408	if (type == XFS_IO_UNWRITTEN)
 409		bmapi_flags |= XFS_BMAPI_IGSTATE;
 410
 
 
 
 411	xfs_ilock(ip, XFS_ILOCK_SHARED);
 412	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 413	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 414	ASSERT(offset <= mp->m_super->s_maxbytes);
 415
 416	if (offset > mp->m_super->s_maxbytes - count)
 417		count = mp->m_super->s_maxbytes - offset;
 418	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 419	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 420	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 421				imap, &nimaps, bmapi_flags);
 422	/*
 423	 * Truncate an overwrite extent if there's a pending CoW
 424	 * reservation before the end of this extent.  This forces us
 425	 * to come back to writepage to take care of the CoW.
 426	 */
 427	if (nimaps && type == XFS_IO_OVERWRITE)
 428		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
 429	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 430
 431	if (error)
 432		return error;
 433
 434	if (type == XFS_IO_DELALLOC &&
 435	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 436		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
 437				imap);
 438		if (!error)
 439			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 440		return error;
 441	}
 442
 443#ifdef DEBUG
 444	if (type == XFS_IO_UNWRITTEN) {
 445		ASSERT(nimaps);
 446		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 447		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 448	}
 449#endif
 450	if (nimaps)
 451		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 452	return 0;
 453}
 454
 455STATIC bool
 456xfs_imap_valid(
 457	struct inode		*inode,
 458	struct xfs_bmbt_irec	*imap,
 459	xfs_off_t		offset)
 460{
 461	offset >>= inode->i_blkbits;
 462
 463	/*
 464	 * We have to make sure the cached mapping is within EOF to protect
 465	 * against eofblocks trimming on file release leaving us with a stale
 466	 * mapping. Otherwise, a page for a subsequent file extending buffered
 467	 * write could get picked up by this writeback cycle and written to the
 468	 * wrong blocks.
 469	 *
 470	 * Note that what we really want here is a generic mapping invalidation
 471	 * mechanism to protect us from arbitrary extent modifying contexts, not
 472	 * just eofblocks.
 473	 */
 474	xfs_trim_extent_eof(imap, XFS_I(inode));
 
 
 
 475
 476	return offset >= imap->br_startoff &&
 477		offset < imap->br_startoff + imap->br_blockcount;
 478}
 
 
 
 
 
 
 479
 480STATIC void
 481xfs_start_buffer_writeback(
 482	struct buffer_head	*bh)
 483{
 484	ASSERT(buffer_mapped(bh));
 485	ASSERT(buffer_locked(bh));
 486	ASSERT(!buffer_delay(bh));
 487	ASSERT(!buffer_unwritten(bh));
 488
 489	bh->b_end_io = NULL;
 490	set_buffer_async_write(bh);
 491	set_buffer_uptodate(bh);
 492	clear_buffer_dirty(bh);
 493}
 494
 495STATIC void
 496xfs_start_page_writeback(
 497	struct page		*page,
 498	int			clear_dirty)
 499{
 500	ASSERT(PageLocked(page));
 501	ASSERT(!PageWriteback(page));
 502
 503	/*
 504	 * if the page was not fully cleaned, we need to ensure that the higher
 505	 * layers come back to it correctly. That means we need to keep the page
 506	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 507	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 508	 * write this page in this writeback sweep will be made.
 509	 */
 510	if (clear_dirty) {
 511		clear_page_dirty_for_io(page);
 512		set_page_writeback(page);
 513	} else
 514		set_page_writeback_keepwrite(page);
 
 
 515
 516	unlock_page(page);
 517}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518
 519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 520{
 521	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 
 
 
 
 
 
 
 
 
 
 522}
 523
 524/*
 525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 526 * it, and we submit that bio. The ioend may be used for multiple bio
 527 * submissions, so we only want to allocate an append transaction for the ioend
 528 * once. In the case of multiple bio submission, each bio will take an IO
 529 * reference to the ioend to ensure that the ioend completion is only done once
 530 * all bios have been submitted and the ioend is really done.
 531 *
 532 * If @fail is non-zero, it means that we have a situation where some part of
 533 * the submission process has failed after we have marked paged for writeback
 534 * and unlocked them. In this situation, we need to fail the bio and ioend
 535 * rather than submit it to IO. This typically only happens on a filesystem
 536 * shutdown.
 537 */
 538STATIC int
 539xfs_submit_ioend(
 540	struct writeback_control *wbc,
 541	struct xfs_ioend	*ioend,
 542	int			status)
 543{
 
 
 
 
 
 
 
 
 
 544	/* Convert CoW extents to regular */
 545	if (!status && ioend->io_type == XFS_IO_COW) {
 546		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
 547				ioend->io_offset, ioend->io_size);
 548	}
 549
 550	/* Reserve log space if we might write beyond the on-disk inode size. */
 551	if (!status &&
 552	    ioend->io_type != XFS_IO_UNWRITTEN &&
 
 553	    xfs_ioend_is_append(ioend) &&
 554	    !ioend->io_append_trans)
 555		status = xfs_setfilesize_trans_alloc(ioend);
 556
 
 
 557	ioend->io_bio->bi_private = ioend;
 558	ioend->io_bio->bi_end_io = xfs_end_bio;
 559	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 560
 561	/*
 562	 * If we are failing the IO now, just mark the ioend with an
 563	 * error and finish it. This will run IO completion immediately
 564	 * as there is only one reference to the ioend at this point in
 565	 * time.
 566	 */
 567	if (status) {
 568		ioend->io_bio->bi_status = errno_to_blk_status(status);
 569		bio_endio(ioend->io_bio);
 570		return status;
 571	}
 572
 573	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
 574	submit_bio(ioend->io_bio);
 575	return 0;
 576}
 577
 578static void
 579xfs_init_bio_from_bh(
 580	struct bio		*bio,
 581	struct buffer_head	*bh)
 582{
 583	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 584	bio_set_dev(bio, bh->b_bdev);
 585}
 586
 587static struct xfs_ioend *
 588xfs_alloc_ioend(
 589	struct inode		*inode,
 590	unsigned int		type,
 
 591	xfs_off_t		offset,
 592	struct buffer_head	*bh)
 
 
 593{
 594	struct xfs_ioend	*ioend;
 595	struct bio		*bio;
 596
 597	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
 598	xfs_init_bio_from_bh(bio, bh);
 
 
 
 
 599
 600	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
 601	INIT_LIST_HEAD(&ioend->io_list);
 602	ioend->io_type = type;
 
 603	ioend->io_inode = inode;
 604	ioend->io_size = 0;
 605	ioend->io_offset = offset;
 606	INIT_WORK(&ioend->io_work, xfs_end_io);
 607	ioend->io_append_trans = NULL;
 608	ioend->io_bio = bio;
 609	return ioend;
 610}
 611
 612/*
 613 * Allocate a new bio, and chain the old bio to the new one.
 614 *
 615 * Note that we have to do perform the chaining in this unintuitive order
 616 * so that the bi_private linkage is set up in the right direction for the
 617 * traversal in xfs_destroy_ioend().
 618 */
 619static void
 620xfs_chain_bio(
 621	struct xfs_ioend	*ioend,
 622	struct writeback_control *wbc,
 623	struct buffer_head	*bh)
 624{
 625	struct bio *new;
 626
 627	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
 628	xfs_init_bio_from_bh(new, bh);
 629
 630	bio_chain(ioend->io_bio, new);
 631	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
 632	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 633	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
 634	submit_bio(ioend->io_bio);
 635	ioend->io_bio = new;
 
 636}
 637
 638/*
 639 * Test to see if we've been building up a completion structure for
 640 * earlier buffers -- if so, we try to append to this ioend if we
 641 * can, otherwise we finish off any current ioend and start another.
 642 * Return the ioend we finished off so that the caller can submit it
 643 * once it has finished processing the dirty page.
 644 */
 645STATIC void
 646xfs_add_to_ioend(
 647	struct inode		*inode,
 648	struct buffer_head	*bh,
 649	xfs_off_t		offset,
 
 
 650	struct xfs_writepage_ctx *wpc,
 651	struct writeback_control *wbc,
 652	struct list_head	*iolist)
 653{
 654	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
 655	    bh->b_blocknr != wpc->last_block + 1 ||
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 657		if (wpc->ioend)
 658			list_add(&wpc->ioend->io_list, iolist);
 659		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
 
 660	}
 661
 662	/*
 663	 * If the buffer doesn't fit into the bio we need to allocate a new
 664	 * one.  This shouldn't happen more than once for a given buffer.
 665	 */
 666	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
 667		xfs_chain_bio(wpc->ioend, wbc, bh);
 668
 669	wpc->ioend->io_size += bh->b_size;
 670	wpc->last_block = bh->b_blocknr;
 671	xfs_start_buffer_writeback(bh);
 672}
 673
 674STATIC void
 675xfs_map_buffer(
 676	struct inode		*inode,
 677	struct buffer_head	*bh,
 678	struct xfs_bmbt_irec	*imap,
 679	xfs_off_t		offset)
 680{
 681	sector_t		bn;
 682	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 683	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 684	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 685
 686	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 687	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 688
 689	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 690	      ((offset - iomap_offset) >> inode->i_blkbits);
 691
 692	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 693
 694	bh->b_blocknr = bn;
 695	set_buffer_mapped(bh);
 696}
 697
 698STATIC void
 699xfs_map_at_offset(
 700	struct inode		*inode,
 701	struct buffer_head	*bh,
 702	struct xfs_bmbt_irec	*imap,
 703	xfs_off_t		offset)
 704{
 705	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 706	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 707
 708	xfs_map_buffer(inode, bh, imap, offset);
 709	set_buffer_mapped(bh);
 710	clear_buffer_delay(bh);
 711	clear_buffer_unwritten(bh);
 712}
 713
 714/*
 715 * Test if a given page contains at least one buffer of a given @type.
 716 * If @check_all_buffers is true, then we walk all the buffers in the page to
 717 * try to find one of the type passed in. If it is not set, then the caller only
 718 * needs to check the first buffer on the page for a match.
 719 */
 720STATIC bool
 721xfs_check_page_type(
 722	struct page		*page,
 723	unsigned int		type,
 724	bool			check_all_buffers)
 725{
 726	struct buffer_head	*bh;
 727	struct buffer_head	*head;
 728
 729	if (PageWriteback(page))
 730		return false;
 731	if (!page->mapping)
 732		return false;
 733	if (!page_has_buffers(page))
 734		return false;
 735
 736	bh = head = page_buffers(page);
 737	do {
 738		if (buffer_unwritten(bh)) {
 739			if (type == XFS_IO_UNWRITTEN)
 740				return true;
 741		} else if (buffer_delay(bh)) {
 742			if (type == XFS_IO_DELALLOC)
 743				return true;
 744		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 745			if (type == XFS_IO_OVERWRITE)
 746				return true;
 747		}
 748
 749		/* If we are only checking the first buffer, we are done now. */
 750		if (!check_all_buffers)
 751			break;
 752	} while ((bh = bh->b_this_page) != head);
 
 753
 754	return false;
 
 755}
 756
 757STATIC void
 758xfs_vm_invalidatepage(
 759	struct page		*page,
 760	unsigned int		offset,
 761	unsigned int		length)
 762{
 763	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 764				 length);
 765
 766	/*
 767	 * If we are invalidating the entire page, clear the dirty state from it
 768	 * so that we can check for attempts to release dirty cached pages in
 769	 * xfs_vm_releasepage().
 770	 */
 771	if (offset == 0 && length >= PAGE_SIZE)
 772		cancel_dirty_page(page);
 773	block_invalidatepage(page, offset, length);
 774}
 775
 776/*
 777 * If the page has delalloc buffers on it, we need to punch them out before we
 778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 780 * is done on that same region - the delalloc extent is returned when none is
 781 * supposed to be there.
 782 *
 783 * We prevent this by truncating away the delalloc regions on the page before
 784 * invalidating it. Because they are delalloc, we can do this without needing a
 785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 786 * truncation without a transaction as there is no space left for block
 787 * reservation (typically why we see a ENOSPC in writeback).
 788 *
 789 * This is not a performance critical path, so for now just do the punching a
 790 * buffer head at a time.
 791 */
 792STATIC void
 793xfs_aops_discard_page(
 794	struct page		*page)
 795{
 796	struct inode		*inode = page->mapping->host;
 797	struct xfs_inode	*ip = XFS_I(inode);
 798	struct buffer_head	*bh, *head;
 799	loff_t			offset = page_offset(page);
 
 
 800
 801	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 802		goto out_invalidate;
 803
 804	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 805		goto out_invalidate;
 806
 807	xfs_alert(ip->i_mount,
 808		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
 809			page, ip->i_ino, offset);
 810
 811	xfs_ilock(ip, XFS_ILOCK_EXCL);
 812	bh = head = page_buffers(page);
 813	do {
 814		int		error;
 815		xfs_fileoff_t	start_fsb;
 816
 817		if (!buffer_delay(bh))
 818			goto next_buffer;
 819
 820		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 821		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 822		if (error) {
 823			/* something screwed, just bail */
 824			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 825				xfs_alert(ip->i_mount,
 826			"page discard unable to remove delalloc mapping.");
 827			}
 828			break;
 829		}
 830next_buffer:
 831		offset += i_blocksize(inode);
 832
 833	} while ((bh = bh->b_this_page) != head);
 834
 835	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 836out_invalidate:
 837	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 838	return;
 839}
 840
 841static int
 842xfs_map_cow(
 843	struct xfs_writepage_ctx *wpc,
 844	struct inode		*inode,
 845	loff_t			offset,
 846	unsigned int		*new_type)
 847{
 848	struct xfs_inode	*ip = XFS_I(inode);
 849	struct xfs_bmbt_irec	imap;
 850	bool			is_cow = false;
 851	int			error;
 852
 853	/*
 854	 * If we already have a valid COW mapping keep using it.
 855	 */
 856	if (wpc->io_type == XFS_IO_COW) {
 857		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
 858		if (wpc->imap_valid) {
 859			*new_type = XFS_IO_COW;
 860			return 0;
 861		}
 862	}
 863
 864	/*
 865	 * Else we need to check if there is a COW mapping at this offset.
 866	 */
 867	xfs_ilock(ip, XFS_ILOCK_SHARED);
 868	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
 869	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 870
 871	if (!is_cow)
 872		return 0;
 873
 874	/*
 875	 * And if the COW mapping has a delayed extent here we need to
 876	 * allocate real space for it now.
 877	 */
 878	if (isnullstartblock(imap.br_startblock)) {
 879		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
 880				&imap);
 881		if (error)
 882			return error;
 883	}
 884
 885	wpc->io_type = *new_type = XFS_IO_COW;
 886	wpc->imap_valid = true;
 887	wpc->imap = imap;
 888	return 0;
 889}
 890
 891/*
 892 * We implement an immediate ioend submission policy here to avoid needing to
 893 * chain multiple ioends and hence nest mempool allocations which can violate
 894 * forward progress guarantees we need to provide. The current ioend we are
 895 * adding buffers to is cached on the writepage context, and if the new buffer
 896 * does not append to the cached ioend it will create a new ioend and cache that
 897 * instead.
 898 *
 899 * If a new ioend is created and cached, the old ioend is returned and queued
 900 * locally for submission once the entire page is processed or an error has been
 901 * detected.  While ioends are submitted immediately after they are completed,
 902 * batching optimisations are provided by higher level block plugging.
 903 *
 904 * At the end of a writeback pass, there will be a cached ioend remaining on the
 905 * writepage context that the caller will need to submit.
 906 */
 907static int
 908xfs_writepage_map(
 909	struct xfs_writepage_ctx *wpc,
 910	struct writeback_control *wbc,
 911	struct inode		*inode,
 912	struct page		*page,
 913	uint64_t		end_offset)
 914{
 915	LIST_HEAD(submit_list);
 
 
 916	struct xfs_ioend	*ioend, *next;
 917	struct buffer_head	*bh, *head;
 918	ssize_t			len = i_blocksize(inode);
 919	uint64_t		offset;
 920	int			error = 0;
 921	int			count = 0;
 922	int			uptodate = 1;
 923	unsigned int		new_type;
 924
 925	bh = head = page_buffers(page);
 926	offset = page_offset(page);
 927	do {
 928		if (offset >= end_offset)
 929			break;
 930		if (!buffer_uptodate(bh))
 931			uptodate = 0;
 932
 933		/*
 934		 * set_page_dirty dirties all buffers in a page, independent
 935		 * of their state.  The dirty state however is entirely
 936		 * meaningless for holes (!mapped && uptodate), so skip
 937		 * buffers covering holes here.
 938		 */
 939		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 940			wpc->imap_valid = false;
 
 941			continue;
 942		}
 943
 944		if (buffer_unwritten(bh))
 945			new_type = XFS_IO_UNWRITTEN;
 946		else if (buffer_delay(bh))
 947			new_type = XFS_IO_DELALLOC;
 948		else if (buffer_uptodate(bh))
 949			new_type = XFS_IO_OVERWRITE;
 950		else {
 951			if (PageUptodate(page))
 952				ASSERT(buffer_mapped(bh));
 953			/*
 954			 * This buffer is not uptodate and will not be
 955			 * written to disk.  Ensure that we will put any
 956			 * subsequent writeable buffers into a new
 957			 * ioend.
 958			 */
 959			wpc->imap_valid = false;
 960			continue;
 961		}
 962
 963		if (xfs_is_reflink_inode(XFS_I(inode))) {
 964			error = xfs_map_cow(wpc, inode, offset, &new_type);
 965			if (error)
 966				goto out;
 967		}
 968
 969		if (wpc->io_type != new_type) {
 970			wpc->io_type = new_type;
 971			wpc->imap_valid = false;
 972		}
 973
 974		if (wpc->imap_valid)
 975			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 976							 offset);
 977		if (!wpc->imap_valid) {
 978			error = xfs_map_blocks(inode, offset, &wpc->imap,
 979					     wpc->io_type);
 980			if (error)
 981				goto out;
 982			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 983							 offset);
 984		}
 985		if (wpc->imap_valid) {
 986			lock_buffer(bh);
 987			if (wpc->io_type != XFS_IO_OVERWRITE)
 988				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
 989			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
 990			count++;
 991		}
 992
 993	} while (offset += len, ((bh = bh->b_this_page) != head));
 994
 995	if (uptodate && bh == head)
 996		SetPageUptodate(page);
 997
 998	ASSERT(wpc->ioend || list_empty(&submit_list));
 
 
 999
1000out:
1001	/*
1002	 * On error, we have to fail the ioend here because we have locked
1003	 * buffers in the ioend. If we don't do this, we'll deadlock
1004	 * invalidating the page as that tries to lock the buffers on the page.
1005	 * Also, because we may have set pages under writeback, we have to make
1006	 * sure we run IO completion to mark the error state of the IO
1007	 * appropriately, so we can't cancel the ioend directly here. That means
1008	 * we have to mark this page as under writeback if we included any
1009	 * buffers from it in the ioend chain so that completion treats it
1010	 * correctly.
1011	 *
1012	 * If we didn't include the page in the ioend, the on error we can
1013	 * simply discard and unlock it as there are no other users of the page
1014	 * or it's buffers right now. The caller will still need to trigger
1015	 * submission of outstanding ioends on the writepage context so they are
1016	 * treated correctly on error.
1017	 */
1018	if (count) {
1019		xfs_start_page_writeback(page, !error);
 
 
 
 
 
1020
1021		/*
1022		 * Preserve the original error if there was one, otherwise catch
1023		 * submission errors here and propagate into subsequent ioend
1024		 * submissions.
 
 
 
1025		 */
1026		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027			int error2;
1028
1029			list_del_init(&ioend->io_list);
1030			error2 = xfs_submit_ioend(wbc, ioend, error);
1031			if (error2 && !error)
1032				error = error2;
1033		}
1034	} else if (error) {
1035		xfs_aops_discard_page(page);
1036		ClearPageUptodate(page);
1037		unlock_page(page);
1038	} else {
1039		/*
1040		 * We can end up here with no error and nothing to write if we
1041		 * race with a partial page truncate on a sub-page block sized
1042		 * filesystem. In that case we need to mark the page clean.
1043		 */
1044		xfs_start_page_writeback(page, 1);
1045		end_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
 
1046	}
1047
 
 
 
 
 
 
 
1048	mapping_set_error(page->mapping, error);
1049	return error;
1050}
1051
1052/*
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
1058 * For any other dirty buffer heads on the page we should flush them.
1059 */
1060STATIC int
1061xfs_do_writepage(
1062	struct page		*page,
1063	struct writeback_control *wbc,
1064	void			*data)
1065{
1066	struct xfs_writepage_ctx *wpc = data;
1067	struct inode		*inode = page->mapping->host;
1068	loff_t			offset;
1069	uint64_t              end_offset;
1070	pgoff_t                 end_index;
1071
1072	trace_xfs_writepage(inode, page, 0, 0);
1073
1074	ASSERT(page_has_buffers(page));
1075
1076	/*
1077	 * Refuse to write the page out if we are called from reclaim context.
1078	 *
1079	 * This avoids stack overflows when called from deeply used stacks in
1080	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1081	 * allow reclaim from kswapd as the stack usage there is relatively low.
1082	 *
1083	 * This should never happen except in the case of a VM regression so
1084	 * warn about it.
1085	 */
1086	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087			PF_MEMALLOC))
1088		goto redirty;
1089
1090	/*
1091	 * Given that we do not allow direct reclaim to call us, we should
1092	 * never be called while in a filesystem transaction.
1093	 */
1094	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095		goto redirty;
1096
1097	/*
1098	 * Is this page beyond the end of the file?
1099	 *
1100	 * The page index is less than the end_index, adjust the end_offset
1101	 * to the highest offset that this page should represent.
1102	 * -----------------------------------------------------
1103	 * |			file mapping	       | <EOF> |
1104	 * -----------------------------------------------------
1105	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1106	 * ^--------------------------------^----------|--------
1107	 * |     desired writeback range    |      see else    |
1108	 * ---------------------------------^------------------|
1109	 */
1110	offset = i_size_read(inode);
1111	end_index = offset >> PAGE_SHIFT;
1112	if (page->index < end_index)
1113		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114	else {
1115		/*
1116		 * Check whether the page to write out is beyond or straddles
1117		 * i_size or not.
1118		 * -------------------------------------------------------
1119		 * |		file mapping		        | <EOF>  |
1120		 * -------------------------------------------------------
1121		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1122		 * ^--------------------------------^-----------|---------
1123		 * |				    |      Straddles     |
1124		 * ---------------------------------^-----------|--------|
1125		 */
1126		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127
1128		/*
1129		 * Skip the page if it is fully outside i_size, e.g. due to a
1130		 * truncate operation that is in progress. We must redirty the
1131		 * page so that reclaim stops reclaiming it. Otherwise
1132		 * xfs_vm_releasepage() is called on it and gets confused.
1133		 *
1134		 * Note that the end_index is unsigned long, it would overflow
1135		 * if the given offset is greater than 16TB on 32-bit system
1136		 * and if we do check the page is fully outside i_size or not
1137		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138		 * will be evaluated to 0.  Hence this page will be redirtied
1139		 * and be written out repeatedly which would result in an
1140		 * infinite loop, the user program that perform this operation
1141		 * will hang.  Instead, we can verify this situation by checking
1142		 * if the page to write is totally beyond the i_size or if it's
1143		 * offset is just equal to the EOF.
1144		 */
1145		if (page->index > end_index ||
1146		    (page->index == end_index && offset_into_page == 0))
1147			goto redirty;
1148
1149		/*
1150		 * The page straddles i_size.  It must be zeroed out on each
1151		 * and every writepage invocation because it may be mmapped.
1152		 * "A file is mapped in multiples of the page size.  For a file
1153		 * that is not a multiple of the page size, the remaining
1154		 * memory is zeroed when mapped, and writes to that region are
1155		 * not written out to the file."
1156		 */
1157		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158
1159		/* Adjust the end_offset to the end of file */
1160		end_offset = offset;
1161	}
1162
1163	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164
1165redirty:
1166	redirty_page_for_writepage(wbc, page);
1167	unlock_page(page);
1168	return 0;
1169}
1170
1171STATIC int
1172xfs_vm_writepage(
1173	struct page		*page,
1174	struct writeback_control *wbc)
1175{
1176	struct xfs_writepage_ctx wpc = {
1177		.io_type = XFS_IO_INVALID,
1178	};
1179	int			ret;
1180
1181	ret = xfs_do_writepage(page, wbc, &wpc);
1182	if (wpc.ioend)
1183		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184	return ret;
1185}
1186
1187STATIC int
1188xfs_vm_writepages(
1189	struct address_space	*mapping,
1190	struct writeback_control *wbc)
1191{
1192	struct xfs_writepage_ctx wpc = {
1193		.io_type = XFS_IO_INVALID,
1194	};
1195	int			ret;
1196
1197	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199	if (wpc.ioend)
1200		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201	return ret;
1202}
1203
1204STATIC int
1205xfs_dax_writepages(
1206	struct address_space	*mapping,
1207	struct writeback_control *wbc)
1208{
1209	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210	return dax_writeback_mapping_range(mapping,
1211			xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
1214/*
1215 * Called to move a page into cleanable state - and from there
1216 * to be released. The page should already be clean. We always
1217 * have buffer heads in this call.
1218 *
1219 * Returns 1 if the page is ok to release, 0 otherwise.
1220 */
1221STATIC int
1222xfs_vm_releasepage(
1223	struct page		*page,
1224	gfp_t			gfp_mask)
1225{
1226	int			delalloc, unwritten;
1227
1228	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229
1230	/*
1231	 * mm accommodates an old ext3 case where clean pages might not have had
1232	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233	 * ->releasepage() via shrink_active_list(). Conversely,
1234	 * block_invalidatepage() can send pages that are still marked dirty but
1235	 * otherwise have invalidated buffers.
1236	 *
1237	 * We want to release the latter to avoid unnecessary buildup of the
1238	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239	 * that are entirely invalidated and need to be released.  Hence the
1240	 * only time we should get dirty pages here is through
1241	 * shrink_active_list() and so we can simply skip those now.
1242	 *
1243	 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244	 * or invalidated pages we are about to release.
1245	 */
1246	if (PageDirty(page))
1247		return 0;
1248
1249	xfs_count_page_state(page, &delalloc, &unwritten);
1250
1251	if (WARN_ON_ONCE(delalloc))
1252		return 0;
1253	if (WARN_ON_ONCE(unwritten))
1254		return 0;
1255
1256	return try_to_free_buffers(page);
1257}
1258
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272	struct inode		*inode,
1273	sector_t		iblock,
1274	struct buffer_head	*bh_result,
1275	struct xfs_bmbt_irec	*imap,
1276	xfs_off_t		offset,
1277	ssize_t			size)
1278{
1279	xfs_off_t		mapping_size;
1280
1281	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282	mapping_size <<= inode->i_blkbits;
1283
1284	ASSERT(mapping_size > 0);
1285	if (mapping_size > size)
1286		mapping_size = size;
1287	if (offset < i_size_read(inode) &&
1288	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289		/* limit mapping to block that spans EOF */
1290		mapping_size = roundup_64(i_size_read(inode) - offset,
1291					  i_blocksize(inode));
1292	}
1293	if (mapping_size > LONG_MAX)
1294		mapping_size = LONG_MAX;
1295
1296	bh_result->b_size = mapping_size;
1297}
1298
1299static int
1300xfs_get_blocks(
1301	struct inode		*inode,
1302	sector_t		iblock,
1303	struct buffer_head	*bh_result,
1304	int			create)
1305{
1306	struct xfs_inode	*ip = XFS_I(inode);
1307	struct xfs_mount	*mp = ip->i_mount;
1308	xfs_fileoff_t		offset_fsb, end_fsb;
1309	int			error = 0;
1310	int			lockmode = 0;
1311	struct xfs_bmbt_irec	imap;
1312	int			nimaps = 1;
1313	xfs_off_t		offset;
1314	ssize_t			size;
1315
1316	BUG_ON(create);
1317
1318	if (XFS_FORCED_SHUTDOWN(mp))
1319		return -EIO;
1320
1321	offset = (xfs_off_t)iblock << inode->i_blkbits;
1322	ASSERT(bh_result->b_size >= i_blocksize(inode));
1323	size = bh_result->b_size;
1324
1325	if (offset >= i_size_read(inode))
1326		return 0;
1327
1328	/*
1329	 * Direct I/O is usually done on preallocated files, so try getting
1330	 * a block mapping without an exclusive lock first.
1331	 */
1332	lockmode = xfs_ilock_data_map_shared(ip);
1333
1334	ASSERT(offset <= mp->m_super->s_maxbytes);
1335	if (offset > mp->m_super->s_maxbytes - size)
1336		size = mp->m_super->s_maxbytes - offset;
1337	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341			&nimaps, 0);
1342	if (error)
1343		goto out_unlock;
1344	if (!nimaps) {
1345		trace_xfs_get_blocks_notfound(ip, offset, size);
1346		goto out_unlock;
1347	}
1348
1349	trace_xfs_get_blocks_found(ip, offset, size,
1350		imap.br_state == XFS_EXT_UNWRITTEN ?
1351			XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352	xfs_iunlock(ip, lockmode);
1353
1354	/* trim mapping down to size requested */
1355	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356
1357	/*
1358	 * For unwritten extents do not report a disk address in the buffered
1359	 * read case (treat as if we're reading into a hole).
1360	 */
1361	if (xfs_bmap_is_real_extent(&imap))
1362		xfs_map_buffer(inode, bh_result, &imap, offset);
1363
1364	/*
1365	 * If this is a realtime file, data may be on a different device.
1366	 * to that pointed to from the buffer_head b_bdev currently.
1367	 */
1368	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1369	return 0;
1370
1371out_unlock:
1372	xfs_iunlock(ip, lockmode);
1373	return error;
1374}
1375
1376STATIC sector_t
1377xfs_vm_bmap(
1378	struct address_space	*mapping,
1379	sector_t		block)
1380{
1381	struct inode		*inode = (struct inode *)mapping->host;
1382	struct xfs_inode	*ip = XFS_I(inode);
1383
1384	trace_xfs_vm_bmap(XFS_I(inode));
1385
1386	/*
1387	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1388	 * bypasses the file system for actual I/O.  We really can't allow
1389	 * that on reflinks inodes, so we have to skip out here.  And yes,
1390	 * 0 is the magic code for a bmap error.
1391	 *
1392	 * Since we don't pass back blockdev info, we can't return bmap
1393	 * information for rt files either.
1394	 */
1395	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1396		return 0;
1397
1398	filemap_write_and_wait(mapping);
1399	return generic_block_bmap(mapping, block, xfs_get_blocks);
1400}
1401
1402STATIC int
1403xfs_vm_readpage(
1404	struct file		*unused,
1405	struct page		*page)
1406{
1407	trace_xfs_vm_readpage(page->mapping->host, 1);
1408	return mpage_readpage(page, xfs_get_blocks);
1409}
1410
1411STATIC int
1412xfs_vm_readpages(
1413	struct file		*unused,
1414	struct address_space	*mapping,
1415	struct list_head	*pages,
1416	unsigned		nr_pages)
1417{
1418	trace_xfs_vm_readpages(mapping->host, nr_pages);
1419	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1420}
1421
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436	struct page		*page)
1437{
1438	struct address_space	*mapping = page->mapping;
1439	struct inode		*inode = mapping->host;
1440	loff_t			end_offset;
1441	loff_t			offset;
1442	int			newly_dirty;
1443
1444	if (unlikely(!mapping))
1445		return !TestSetPageDirty(page);
1446
1447	end_offset = i_size_read(inode);
1448	offset = page_offset(page);
1449
1450	spin_lock(&mapping->private_lock);
1451	if (page_has_buffers(page)) {
1452		struct buffer_head *head = page_buffers(page);
1453		struct buffer_head *bh = head;
1454
1455		do {
1456			if (offset < end_offset)
1457				set_buffer_dirty(bh);
1458			bh = bh->b_this_page;
1459			offset += i_blocksize(inode);
1460		} while (bh != head);
1461	}
1462	/*
1463	 * Lock out page->mem_cgroup migration to keep PageDirty
1464	 * synchronized with per-memcg dirty page counters.
1465	 */
1466	lock_page_memcg(page);
1467	newly_dirty = !TestSetPageDirty(page);
1468	spin_unlock(&mapping->private_lock);
1469
1470	if (newly_dirty)
1471		__set_page_dirty(page, mapping, 1);
1472	unlock_page_memcg(page);
1473	if (newly_dirty)
1474		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1475	return newly_dirty;
1476}
1477
1478const struct address_space_operations xfs_address_space_operations = {
1479	.readpage		= xfs_vm_readpage,
1480	.readpages		= xfs_vm_readpages,
1481	.writepage		= xfs_vm_writepage,
1482	.writepages		= xfs_vm_writepages,
1483	.set_page_dirty		= xfs_vm_set_page_dirty,
1484	.releasepage		= xfs_vm_releasepage,
1485	.invalidatepage		= xfs_vm_invalidatepage,
1486	.bmap			= xfs_vm_bmap,
1487	.direct_IO		= noop_direct_IO,
1488	.migratepage		= buffer_migrate_page,
1489	.is_partially_uptodate  = block_is_partially_uptodate,
1490	.error_remove_page	= generic_error_remove_page,
 
1491};
1492
1493const struct address_space_operations xfs_dax_aops = {
1494	.writepages		= xfs_dax_writepages,
1495	.direct_IO		= noop_direct_IO,
1496	.set_page_dirty		= noop_set_page_dirty,
1497	.invalidatepage		= noop_invalidatepage,
 
1498};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * Copyright (c) 2016-2018 Christoph Hellwig.
   5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7#include "xfs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
 
 
 
  15#include "xfs_iomap.h"
  16#include "xfs_trace.h"
  17#include "xfs_bmap.h"
  18#include "xfs_bmap_util.h"
 
  19#include "xfs_reflink.h"
 
 
 
 
  20
  21/*
  22 * structure owned by writepages passed to individual writepage calls
  23 */
  24struct xfs_writepage_ctx {
  25	struct xfs_bmbt_irec    imap;
  26	int			fork;
  27	unsigned int		data_seq;
  28	unsigned int		cow_seq;
  29	struct xfs_ioend	*ioend;
 
  30};
  31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32struct block_device *
  33xfs_find_bdev_for_inode(
  34	struct inode		*inode)
  35{
  36	struct xfs_inode	*ip = XFS_I(inode);
  37	struct xfs_mount	*mp = ip->i_mount;
  38
  39	if (XFS_IS_REALTIME_INODE(ip))
  40		return mp->m_rtdev_targp->bt_bdev;
  41	else
  42		return mp->m_ddev_targp->bt_bdev;
  43}
  44
  45struct dax_device *
  46xfs_find_daxdev_for_inode(
  47	struct inode		*inode)
  48{
  49	struct xfs_inode	*ip = XFS_I(inode);
  50	struct xfs_mount	*mp = ip->i_mount;
  51
  52	if (XFS_IS_REALTIME_INODE(ip))
  53		return mp->m_rtdev_targp->bt_daxdev;
  54	else
  55		return mp->m_ddev_targp->bt_daxdev;
  56}
  57
 
 
 
 
 
 
 
 
 
 
 
  58static void
  59xfs_finish_page_writeback(
  60	struct inode		*inode,
  61	struct bio_vec	*bvec,
  62	int			error)
  63{
  64	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);
 
 
 
  65
  66	if (error) {
  67		SetPageError(bvec->bv_page);
  68		mapping_set_error(inode->i_mapping, -EIO);
  69	}
  70
  71	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
  72	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74	if (!iop || atomic_dec_and_test(&iop->write_count))
  75		end_page_writeback(bvec->bv_page);
  76}
  77
  78/*
  79 * We're now finished for good with this ioend structure.  Update the page
  80 * state, release holds on bios, and finally free up memory.  Do not use the
  81 * ioend after this.
  82 */
  83STATIC void
  84xfs_destroy_ioend(
  85	struct xfs_ioend	*ioend,
  86	int			error)
  87{
  88	struct inode		*inode = ioend->io_inode;
  89	struct bio		*bio = &ioend->io_inline_bio;
  90	struct bio		*last = ioend->io_bio, *next;
  91	u64			start = bio->bi_iter.bi_sector;
  92	bool			quiet = bio_flagged(bio, BIO_QUIET);
  93
  94	for (bio = &ioend->io_inline_bio; bio; bio = next) {
  95		struct bio_vec	*bvec;
  96		struct bvec_iter_all iter_all;
  97
  98		/*
  99		 * For the last bio, bi_private points to the ioend, so we
 100		 * need to explicitly end the iteration here.
 101		 */
 102		if (bio == last)
 103			next = NULL;
 104		else
 105			next = bio->bi_private;
 106
 107		/* walk each page on bio, ending page IO on them */
 108		bio_for_each_segment_all(bvec, bio, iter_all)
 109			xfs_finish_page_writeback(inode, bvec, error);
 
 110		bio_put(bio);
 111	}
 112
 113	if (unlikely(error && !quiet)) {
 114		xfs_err_ratelimited(XFS_I(inode)->i_mount,
 115			"writeback error on sector %llu", start);
 116	}
 117}
 118
 119/*
 120 * Fast and loose check if this write could update the on-disk inode size.
 121 */
 122static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 123{
 124	return ioend->io_offset + ioend->io_size >
 125		XFS_I(ioend->io_inode)->i_d.di_size;
 126}
 127
 128STATIC int
 129xfs_setfilesize_trans_alloc(
 130	struct xfs_ioend	*ioend)
 131{
 132	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 133	struct xfs_trans	*tp;
 134	int			error;
 135
 136	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 
 137	if (error)
 138		return error;
 139
 140	ioend->io_append_trans = tp;
 141
 142	/*
 143	 * We may pass freeze protection with a transaction.  So tell lockdep
 144	 * we released it.
 145	 */
 146	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 147	/*
 148	 * We hand off the transaction to the completion thread now, so
 149	 * clear the flag here.
 150	 */
 151	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 152	return 0;
 153}
 154
 155/*
 156 * Update on-disk file size now that data has been written to disk.
 157 */
 158STATIC int
 159__xfs_setfilesize(
 160	struct xfs_inode	*ip,
 161	struct xfs_trans	*tp,
 162	xfs_off_t		offset,
 163	size_t			size)
 164{
 165	xfs_fsize_t		isize;
 166
 167	xfs_ilock(ip, XFS_ILOCK_EXCL);
 168	isize = xfs_new_eof(ip, offset + size);
 169	if (!isize) {
 170		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 171		xfs_trans_cancel(tp);
 172		return 0;
 173	}
 174
 175	trace_xfs_setfilesize(ip, offset, size);
 176
 177	ip->i_d.di_size = isize;
 178	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 179	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 180
 181	return xfs_trans_commit(tp);
 182}
 183
 184int
 185xfs_setfilesize(
 186	struct xfs_inode	*ip,
 187	xfs_off_t		offset,
 188	size_t			size)
 189{
 190	struct xfs_mount	*mp = ip->i_mount;
 191	struct xfs_trans	*tp;
 192	int			error;
 193
 194	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 195	if (error)
 196		return error;
 197
 198	return __xfs_setfilesize(ip, tp, offset, size);
 199}
 200
 201STATIC int
 202xfs_setfilesize_ioend(
 203	struct xfs_ioend	*ioend,
 204	int			error)
 205{
 206	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 207	struct xfs_trans	*tp = ioend->io_append_trans;
 208
 209	/*
 210	 * The transaction may have been allocated in the I/O submission thread,
 211	 * thus we need to mark ourselves as being in a transaction manually.
 212	 * Similarly for freeze protection.
 213	 */
 214	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 215	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 216
 217	/* we abort the update if there was an IO error */
 218	if (error) {
 219		xfs_trans_cancel(tp);
 220		return error;
 221	}
 222
 223	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 224}
 225
 226/*
 227 * IO write completion.
 228 */
 229STATIC void
 230xfs_end_ioend(
 231	struct xfs_ioend	*ioend)
 232{
 233	struct list_head	ioend_list;
 
 234	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 235	xfs_off_t		offset = ioend->io_offset;
 236	size_t			size = ioend->io_size;
 237	unsigned int		nofs_flag;
 238	int			error;
 239
 240	/*
 241	 * We can allocate memory here while doing writeback on behalf of
 242	 * memory reclaim.  To avoid memory allocation deadlocks set the
 243	 * task-wide nofs context for the following operations.
 244	 */
 245	nofs_flag = memalloc_nofs_save();
 246
 247	/*
 248	 * Just clean up the in-memory strutures if the fs has been shut down.
 249	 */
 250	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 251		error = -EIO;
 252		goto done;
 253	}
 254
 255	/*
 256	 * Clean up any COW blocks on an I/O error.
 257	 */
 258	error = blk_status_to_errno(ioend->io_bio->bi_status);
 259	if (unlikely(error)) {
 260		if (ioend->io_fork == XFS_COW_FORK)
 
 261			xfs_reflink_cancel_cow_range(ip, offset, size, true);
 
 
 
 262		goto done;
 263	}
 264
 265	/*
 266	 * Success: commit the COW or unwritten blocks if needed.
 267	 */
 268	if (ioend->io_fork == XFS_COW_FORK)
 
 269		error = xfs_reflink_end_cow(ip, offset, size);
 270	else if (ioend->io_state == XFS_EXT_UNWRITTEN)
 
 
 271		error = xfs_iomap_write_unwritten(ip, offset, size, false);
 272	else
 
 273		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
 
 
 274
 275done:
 276	if (ioend->io_append_trans)
 277		error = xfs_setfilesize_ioend(ioend, error);
 278	list_replace_init(&ioend->io_list, &ioend_list);
 279	xfs_destroy_ioend(ioend, error);
 280
 281	while (!list_empty(&ioend_list)) {
 282		ioend = list_first_entry(&ioend_list, struct xfs_ioend,
 283				io_list);
 284		list_del_init(&ioend->io_list);
 285		xfs_destroy_ioend(ioend, error);
 286	}
 287
 288	memalloc_nofs_restore(nofs_flag);
 289}
 290
 291/*
 292 * We can merge two adjacent ioends if they have the same set of work to do.
 293 */
 294static bool
 295xfs_ioend_can_merge(
 296	struct xfs_ioend	*ioend,
 297	struct xfs_ioend	*next)
 298{
 299	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
 300		return false;
 301	if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK))
 302		return false;
 303	if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^
 304	    (next->io_state == XFS_EXT_UNWRITTEN))
 305		return false;
 306	if (ioend->io_offset + ioend->io_size != next->io_offset)
 307		return false;
 308	return true;
 309}
 310
 311/*
 312 * If the to be merged ioend has a preallocated transaction for file
 313 * size updates we need to ensure the ioend it is merged into also
 314 * has one.  If it already has one we can simply cancel the transaction
 315 * as it is guaranteed to be clean.
 316 */
 317static void
 318xfs_ioend_merge_append_transactions(
 319	struct xfs_ioend	*ioend,
 320	struct xfs_ioend	*next)
 321{
 322	if (!ioend->io_append_trans) {
 323		ioend->io_append_trans = next->io_append_trans;
 324		next->io_append_trans = NULL;
 325	} else {
 326		xfs_setfilesize_ioend(next, -ECANCELED);
 327	}
 328}
 329
 330/* Try to merge adjacent completions. */
 331STATIC void
 332xfs_ioend_try_merge(
 333	struct xfs_ioend	*ioend,
 334	struct list_head	*more_ioends)
 335{
 336	struct xfs_ioend	*next_ioend;
 337
 338	while (!list_empty(more_ioends)) {
 339		next_ioend = list_first_entry(more_ioends, struct xfs_ioend,
 340				io_list);
 341		if (!xfs_ioend_can_merge(ioend, next_ioend))
 342			break;
 343		list_move_tail(&next_ioend->io_list, &ioend->io_list);
 344		ioend->io_size += next_ioend->io_size;
 345		if (next_ioend->io_append_trans)
 346			xfs_ioend_merge_append_transactions(ioend, next_ioend);
 347	}
 348}
 349
 350/* list_sort compare function for ioends */
 351static int
 352xfs_ioend_compare(
 353	void			*priv,
 354	struct list_head	*a,
 355	struct list_head	*b)
 356{
 357	struct xfs_ioend	*ia;
 358	struct xfs_ioend	*ib;
 359
 360	ia = container_of(a, struct xfs_ioend, io_list);
 361	ib = container_of(b, struct xfs_ioend, io_list);
 362	if (ia->io_offset < ib->io_offset)
 363		return -1;
 364	else if (ia->io_offset > ib->io_offset)
 365		return 1;
 366	return 0;
 367}
 368
 369/* Finish all pending io completions. */
 370void
 371xfs_end_io(
 372	struct work_struct	*work)
 373{
 374	struct xfs_inode	*ip;
 375	struct xfs_ioend	*ioend;
 376	struct list_head	completion_list;
 377	unsigned long		flags;
 378
 379	ip = container_of(work, struct xfs_inode, i_ioend_work);
 380
 381	spin_lock_irqsave(&ip->i_ioend_lock, flags);
 382	list_replace_init(&ip->i_ioend_list, &completion_list);
 383	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
 384
 385	list_sort(NULL, &completion_list, xfs_ioend_compare);
 386
 387	while (!list_empty(&completion_list)) {
 388		ioend = list_first_entry(&completion_list, struct xfs_ioend,
 389				io_list);
 390		list_del_init(&ioend->io_list);
 391		xfs_ioend_try_merge(ioend, &completion_list);
 392		xfs_end_ioend(ioend);
 393	}
 394}
 395
 396STATIC void
 397xfs_end_bio(
 398	struct bio		*bio)
 399{
 400	struct xfs_ioend	*ioend = bio->bi_private;
 401	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 402	struct xfs_mount	*mp = ip->i_mount;
 403	unsigned long		flags;
 404
 405	if (ioend->io_fork == XFS_COW_FORK ||
 406	    ioend->io_state == XFS_EXT_UNWRITTEN ||
 407	    ioend->io_append_trans != NULL) {
 408		spin_lock_irqsave(&ip->i_ioend_lock, flags);
 409		if (list_empty(&ip->i_ioend_list))
 410			WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
 411						 &ip->i_ioend_work));
 412		list_add_tail(&ioend->io_list, &ip->i_ioend_list);
 413		spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
 414	} else
 415		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
 416}
 417
 418/*
 419 * Fast revalidation of the cached writeback mapping. Return true if the current
 420 * mapping is valid, false otherwise.
 421 */
 422static bool
 423xfs_imap_valid(
 424	struct xfs_writepage_ctx	*wpc,
 425	struct xfs_inode		*ip,
 426	xfs_fileoff_t			offset_fsb)
 427{
 428	if (offset_fsb < wpc->imap.br_startoff ||
 429	    offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
 430		return false;
 431	/*
 432	 * If this is a COW mapping, it is sufficient to check that the mapping
 433	 * covers the offset. Be careful to check this first because the caller
 434	 * can revalidate a COW mapping without updating the data seqno.
 435	 */
 436	if (wpc->fork == XFS_COW_FORK)
 437		return true;
 438
 439	/*
 440	 * This is not a COW mapping. Check the sequence number of the data fork
 441	 * because concurrent changes could have invalidated the extent. Check
 442	 * the COW fork because concurrent changes since the last time we
 443	 * checked (and found nothing at this offset) could have added
 444	 * overlapping blocks.
 445	 */
 446	if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
 447		return false;
 448	if (xfs_inode_has_cow_data(ip) &&
 449	    wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
 450		return false;
 451	return true;
 452}
 453
 454/*
 455 * Pass in a dellalloc extent and convert it to real extents, return the real
 456 * extent that maps offset_fsb in wpc->imap.
 457 *
 458 * The current page is held locked so nothing could have removed the block
 459 * backing offset_fsb, although it could have moved from the COW to the data
 460 * fork by another thread.
 461 */
 462static int
 463xfs_convert_blocks(
 464	struct xfs_writepage_ctx *wpc,
 465	struct xfs_inode	*ip,
 466	xfs_fileoff_t		offset_fsb)
 467{
 468	int			error;
 469
 470	/*
 471	 * Attempt to allocate whatever delalloc extent currently backs
 472	 * offset_fsb and put the result into wpc->imap.  Allocate in a loop
 473	 * because it may take several attempts to allocate real blocks for a
 474	 * contiguous delalloc extent if free space is sufficiently fragmented.
 475	 */
 476	do {
 477		error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
 478				&wpc->imap, wpc->fork == XFS_COW_FORK ?
 479					&wpc->cow_seq : &wpc->data_seq);
 480		if (error)
 481			return error;
 482	} while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
 483
 484	return 0;
 485}
 486
 487STATIC int
 488xfs_map_blocks(
 489	struct xfs_writepage_ctx *wpc,
 490	struct inode		*inode,
 491	loff_t			offset)
 
 
 492{
 493	struct xfs_inode	*ip = XFS_I(inode);
 494	struct xfs_mount	*mp = ip->i_mount;
 495	ssize_t			count = i_blocksize(inode);
 496	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 497	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
 498	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
 499	struct xfs_bmbt_irec	imap;
 500	struct xfs_iext_cursor	icur;
 501	int			retries = 0;
 502	int			error = 0;
 
 
 503
 504	if (XFS_FORCED_SHUTDOWN(mp))
 505		return -EIO;
 506
 507	/*
 508	 * COW fork blocks can overlap data fork blocks even if the blocks
 509	 * aren't shared.  COW I/O always takes precedent, so we must always
 510	 * check for overlap on reflink inodes unless the mapping is already a
 511	 * COW one, or the COW fork hasn't changed from the last time we looked
 512	 * at it.
 513	 *
 514	 * It's safe to check the COW fork if_seq here without the ILOCK because
 515	 * we've indirectly protected against concurrent updates: writeback has
 516	 * the page locked, which prevents concurrent invalidations by reflink
 517	 * and directio and prevents concurrent buffered writes to the same
 518	 * page.  Changes to if_seq always happen under i_lock, which protects
 519	 * against concurrent updates and provides a memory barrier on the way
 520	 * out that ensures that we always see the current value.
 521	 */
 522	if (xfs_imap_valid(wpc, ip, offset_fsb))
 523		return 0;
 524
 525	/*
 526	 * If we don't have a valid map, now it's time to get a new one for this
 527	 * offset.  This will convert delayed allocations (including COW ones)
 528	 * into real extents.  If we return without a valid map, it means we
 529	 * landed in a hole and we skip the block.
 530	 */
 531retry:
 532	xfs_ilock(ip, XFS_ILOCK_SHARED);
 533	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 534	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 
 535
 536	/*
 537	 * Check if this is offset is covered by a COW extents, and if yes use
 538	 * it directly instead of looking up anything in the data fork.
 
 
 
 
 
 
 
 539	 */
 540	if (xfs_inode_has_cow_data(ip) &&
 541	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
 542		cow_fsb = imap.br_startoff;
 543	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
 544		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
 545		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 546
 547		wpc->fork = XFS_COW_FORK;
 548		goto allocate_blocks;
 
 
 
 
 
 549	}
 550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551	/*
 552	 * No COW extent overlap. Revalidate now that we may have updated
 553	 * ->cow_seq. If the data mapping is still valid, we're done.
 
 
 
 
 
 
 
 554	 */
 555	if (xfs_imap_valid(wpc, ip, offset_fsb)) {
 556		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 557		return 0;
 558	}
 559
 560	/*
 561	 * If we don't have a valid map, now it's time to get a new one for this
 562	 * offset.  This will convert delayed allocations (including COW ones)
 563	 * into real extents.
 564	 */
 565	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
 566		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
 567	wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
 568	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 569
 570	wpc->fork = XFS_DATA_FORK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	/* landed in a hole or beyond EOF? */
 573	if (imap.br_startoff > offset_fsb) {
 574		imap.br_blockcount = imap.br_startoff - offset_fsb;
 575		imap.br_startoff = offset_fsb;
 576		imap.br_startblock = HOLESTARTBLOCK;
 577		imap.br_state = XFS_EXT_NORM;
 578	}
 579
 580	/*
 581	 * Truncate to the next COW extent if there is one.  This is the only
 582	 * opportunity to do this because we can skip COW fork lookups for the
 583	 * subsequent blocks in the mapping; however, the requirement to treat
 584	 * the COW range separately remains.
 585	 */
 586	if (cow_fsb != NULLFILEOFF &&
 587	    cow_fsb < imap.br_startoff + imap.br_blockcount)
 588		imap.br_blockcount = cow_fsb - imap.br_startoff;
 589
 590	/* got a delalloc extent? */
 591	if (imap.br_startblock != HOLESTARTBLOCK &&
 592	    isnullstartblock(imap.br_startblock))
 593		goto allocate_blocks;
 594
 595	wpc->imap = imap;
 596	trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
 597	return 0;
 598allocate_blocks:
 599	error = xfs_convert_blocks(wpc, ip, offset_fsb);
 600	if (error) {
 601		/*
 602		 * If we failed to find the extent in the COW fork we might have
 603		 * raced with a COW to data fork conversion or truncate.
 604		 * Restart the lookup to catch the extent in the data fork for
 605		 * the former case, but prevent additional retries to avoid
 606		 * looping forever for the latter case.
 607		 */
 608		if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
 609			goto retry;
 610		ASSERT(error != -EAGAIN);
 611		return error;
 612	}
 613
 614	/*
 615	 * Due to merging the return real extent might be larger than the
 616	 * original delalloc one.  Trim the return extent to the next COW
 617	 * boundary again to force a re-lookup.
 618	 */
 619	if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
 620	    cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
 621		wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
 622
 623	ASSERT(wpc->imap.br_startoff <= offset_fsb);
 624	ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
 625	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
 626	return 0;
 627}
 628
 629/*
 630 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 631 * it, and we submit that bio. The ioend may be used for multiple bio
 632 * submissions, so we only want to allocate an append transaction for the ioend
 633 * once. In the case of multiple bio submission, each bio will take an IO
 634 * reference to the ioend to ensure that the ioend completion is only done once
 635 * all bios have been submitted and the ioend is really done.
 636 *
 637 * If @status is non-zero, it means that we have a situation where some part of
 638 * the submission process has failed after we have marked paged for writeback
 639 * and unlocked them. In this situation, we need to fail the bio and ioend
 640 * rather than submit it to IO. This typically only happens on a filesystem
 641 * shutdown.
 642 */
 643STATIC int
 644xfs_submit_ioend(
 645	struct writeback_control *wbc,
 646	struct xfs_ioend	*ioend,
 647	int			status)
 648{
 649	unsigned int		nofs_flag;
 650
 651	/*
 652	 * We can allocate memory here while doing writeback on behalf of
 653	 * memory reclaim.  To avoid memory allocation deadlocks set the
 654	 * task-wide nofs context for the following operations.
 655	 */
 656	nofs_flag = memalloc_nofs_save();
 657
 658	/* Convert CoW extents to regular */
 659	if (!status && ioend->io_fork == XFS_COW_FORK) {
 660		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
 661				ioend->io_offset, ioend->io_size);
 662	}
 663
 664	/* Reserve log space if we might write beyond the on-disk inode size. */
 665	if (!status &&
 666	    (ioend->io_fork == XFS_COW_FORK ||
 667	     ioend->io_state != XFS_EXT_UNWRITTEN) &&
 668	    xfs_ioend_is_append(ioend) &&
 669	    !ioend->io_append_trans)
 670		status = xfs_setfilesize_trans_alloc(ioend);
 671
 672	memalloc_nofs_restore(nofs_flag);
 673
 674	ioend->io_bio->bi_private = ioend;
 675	ioend->io_bio->bi_end_io = xfs_end_bio;
 
 676
 677	/*
 678	 * If we are failing the IO now, just mark the ioend with an
 679	 * error and finish it. This will run IO completion immediately
 680	 * as there is only one reference to the ioend at this point in
 681	 * time.
 682	 */
 683	if (status) {
 684		ioend->io_bio->bi_status = errno_to_blk_status(status);
 685		bio_endio(ioend->io_bio);
 686		return status;
 687	}
 688
 
 689	submit_bio(ioend->io_bio);
 690	return 0;
 691}
 692
 
 
 
 
 
 
 
 
 
 693static struct xfs_ioend *
 694xfs_alloc_ioend(
 695	struct inode		*inode,
 696	int			fork,
 697	xfs_exntst_t		state,
 698	xfs_off_t		offset,
 699	struct block_device	*bdev,
 700	sector_t		sector,
 701	struct writeback_control *wbc)
 702{
 703	struct xfs_ioend	*ioend;
 704	struct bio		*bio;
 705
 706	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
 707	bio_set_dev(bio, bdev);
 708	bio->bi_iter.bi_sector = sector;
 709	bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 710	bio->bi_write_hint = inode->i_write_hint;
 711	wbc_init_bio(wbc, bio);
 712
 713	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
 714	INIT_LIST_HEAD(&ioend->io_list);
 715	ioend->io_fork = fork;
 716	ioend->io_state = state;
 717	ioend->io_inode = inode;
 718	ioend->io_size = 0;
 719	ioend->io_offset = offset;
 
 720	ioend->io_append_trans = NULL;
 721	ioend->io_bio = bio;
 722	return ioend;
 723}
 724
 725/*
 726 * Allocate a new bio, and chain the old bio to the new one.
 727 *
 728 * Note that we have to do perform the chaining in this unintuitive order
 729 * so that the bi_private linkage is set up in the right direction for the
 730 * traversal in xfs_destroy_ioend().
 731 */
 732static struct bio *
 733xfs_chain_bio(
 734	struct bio		*prev)
 
 
 735{
 736	struct bio *new;
 737
 738	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
 739	bio_copy_dev(new, prev);/* also copies over blkcg information */
 740	new->bi_iter.bi_sector = bio_end_sector(prev);
 741	new->bi_opf = prev->bi_opf;
 742	new->bi_write_hint = prev->bi_write_hint;
 743
 744	bio_chain(prev, new);
 745	bio_get(prev);		/* for xfs_destroy_ioend */
 746	submit_bio(prev);
 747	return new;
 748}
 749
 750/*
 751 * Test to see if we have an existing ioend structure that we could append to
 752 * first, otherwise finish off the current ioend and start another.
 
 
 
 753 */
 754STATIC void
 755xfs_add_to_ioend(
 756	struct inode		*inode,
 
 757	xfs_off_t		offset,
 758	struct page		*page,
 759	struct iomap_page	*iop,
 760	struct xfs_writepage_ctx *wpc,
 761	struct writeback_control *wbc,
 762	struct list_head	*iolist)
 763{
 764	struct xfs_inode	*ip = XFS_I(inode);
 765	struct xfs_mount	*mp = ip->i_mount;
 766	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
 767	unsigned		len = i_blocksize(inode);
 768	unsigned		poff = offset & (PAGE_SIZE - 1);
 769	bool			merged, same_page = false;
 770	sector_t		sector;
 771
 772	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
 773		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
 774
 775	if (!wpc->ioend ||
 776	    wpc->fork != wpc->ioend->io_fork ||
 777	    wpc->imap.br_state != wpc->ioend->io_state ||
 778	    sector != bio_end_sector(wpc->ioend->io_bio) ||
 779	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 780		if (wpc->ioend)
 781			list_add(&wpc->ioend->io_list, iolist);
 782		wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
 783				wpc->imap.br_state, offset, bdev, sector, wbc);
 784	}
 785
 786	merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
 787			&same_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788
 789	if (iop && !same_page)
 790		atomic_inc(&iop->write_count);
 
 
 
 
 
 
 
 
 
 
 791
 792	if (!merged) {
 793		if (bio_full(wpc->ioend->io_bio, len))
 794			wpc->ioend->io_bio = xfs_chain_bio(wpc->ioend->io_bio);
 795		bio_add_page(wpc->ioend->io_bio, page, len, poff);
 796	}
 797
 798	wpc->ioend->io_size += len;
 799	wbc_account_cgroup_owner(wbc, page, len);
 800}
 801
 802STATIC void
 803xfs_vm_invalidatepage(
 804	struct page		*page,
 805	unsigned int		offset,
 806	unsigned int		length)
 807{
 808	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
 809	iomap_invalidatepage(page, offset, length);
 
 
 
 
 
 
 
 
 
 810}
 811
 812/*
 813 * If the page has delalloc blocks on it, we need to punch them out before we
 814 * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
 815 * inode that can trip up a later direct I/O read operation on the same region.
 
 
 816 *
 817 * We prevent this by truncating away the delalloc regions on the page.  Because
 818 * they are delalloc, we can do this without needing a transaction. Indeed - if
 819 * we get ENOSPC errors, we have to be able to do this truncation without a
 820 * transaction as there is no space left for block reservation (typically why we
 821 * see a ENOSPC in writeback).
 
 
 
 822 */
 823STATIC void
 824xfs_aops_discard_page(
 825	struct page		*page)
 826{
 827	struct inode		*inode = page->mapping->host;
 828	struct xfs_inode	*ip = XFS_I(inode);
 829	struct xfs_mount	*mp = ip->i_mount;
 830	loff_t			offset = page_offset(page);
 831	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
 832	int			error;
 833
 834	if (XFS_FORCED_SHUTDOWN(mp))
 
 
 
 835		goto out_invalidate;
 836
 837	xfs_alert(mp,
 838		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
 839			page, ip->i_ino, offset);
 840
 841	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
 842			PAGE_SIZE / i_blocksize(inode));
 843	if (error && !XFS_FORCED_SHUTDOWN(mp))
 844		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845out_invalidate:
 846	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847}
 848
 849/*
 850 * We implement an immediate ioend submission policy here to avoid needing to
 851 * chain multiple ioends and hence nest mempool allocations which can violate
 852 * forward progress guarantees we need to provide. The current ioend we are
 853 * adding blocks to is cached on the writepage context, and if the new block
 854 * does not append to the cached ioend it will create a new ioend and cache that
 855 * instead.
 856 *
 857 * If a new ioend is created and cached, the old ioend is returned and queued
 858 * locally for submission once the entire page is processed or an error has been
 859 * detected.  While ioends are submitted immediately after they are completed,
 860 * batching optimisations are provided by higher level block plugging.
 861 *
 862 * At the end of a writeback pass, there will be a cached ioend remaining on the
 863 * writepage context that the caller will need to submit.
 864 */
 865static int
 866xfs_writepage_map(
 867	struct xfs_writepage_ctx *wpc,
 868	struct writeback_control *wbc,
 869	struct inode		*inode,
 870	struct page		*page,
 871	uint64_t		end_offset)
 872{
 873	LIST_HEAD(submit_list);
 874	struct iomap_page	*iop = to_iomap_page(page);
 875	unsigned		len = i_blocksize(inode);
 876	struct xfs_ioend	*ioend, *next;
 877	uint64_t		file_offset;	/* file offset of page */
 878	int			error = 0, count = 0, i;
 
 
 
 
 
 879
 880	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
 881	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
 
 
 
 
 
 882
 883	/*
 884	 * Walk through the page to find areas to write back. If we run off the
 885	 * end of the current map or find the current map invalid, grab a new
 886	 * one.
 887	 */
 888	for (i = 0, file_offset = page_offset(page);
 889	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
 890	     i++, file_offset += len) {
 891		if (iop && !test_bit(i, iop->uptodate))
 892			continue;
 
 893
 894		error = xfs_map_blocks(wpc, inode, file_offset);
 895		if (error)
 896			break;
 897		if (wpc->imap.br_startblock == HOLESTARTBLOCK)
 
 
 
 
 
 
 
 
 
 
 
 
 898			continue;
 899		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
 900				 &submit_list);
 901		count++;
 902	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	ASSERT(wpc->ioend || list_empty(&submit_list));
 905	ASSERT(PageLocked(page));
 906	ASSERT(!PageWriteback(page));
 907
 
 908	/*
 909	 * On error, we have to fail the ioend here because we may have set
 910	 * pages under writeback, we have to make sure we run IO completion to
 911	 * mark the error state of the IO appropriately, so we can't cancel the
 912	 * ioend directly here.  That means we have to mark this page as under
 913	 * writeback if we included any blocks from it in the ioend chain so
 914	 * that completion treats it correctly.
 
 
 
 915	 *
 916	 * If we didn't include the page in the ioend, the on error we can
 917	 * simply discard and unlock it as there are no other users of the page
 918	 * now.  The caller will still need to trigger submission of outstanding
 919	 * ioends on the writepage context so they are treated correctly on
 920	 * error.
 921	 */
 922	if (unlikely(error)) {
 923		if (!count) {
 924			xfs_aops_discard_page(page);
 925			ClearPageUptodate(page);
 926			unlock_page(page);
 927			goto done;
 928		}
 929
 930		/*
 931		 * If the page was not fully cleaned, we need to ensure that the
 932		 * higher layers come back to it correctly.  That means we need
 933		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
 934		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
 935		 * so another attempt to write this page in this writeback sweep
 936		 * will be made.
 937		 */
 938		set_page_writeback_keepwrite(page);
 
 
 
 
 
 
 
 
 
 
 
 939	} else {
 940		clear_page_dirty_for_io(page);
 941		set_page_writeback(page);
 942	}
 943
 944	unlock_page(page);
 945
 946	/*
 947	 * Preserve the original error if there was one, otherwise catch
 948	 * submission errors here and propagate into subsequent ioend
 949	 * submissions.
 950	 */
 951	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
 952		int error2;
 953
 954		list_del_init(&ioend->io_list);
 955		error2 = xfs_submit_ioend(wbc, ioend, error);
 956		if (error2 && !error)
 957			error = error2;
 958	}
 959
 960	/*
 961	 * We can end up here with no error and nothing to write only if we race
 962	 * with a partial page truncate on a sub-page block sized filesystem.
 963	 */
 964	if (!count)
 965		end_page_writeback(page);
 966done:
 967	mapping_set_error(page->mapping, error);
 968	return error;
 969}
 970
 971/*
 972 * Write out a dirty page.
 973 *
 974 * For delalloc space on the page we need to allocate space and flush it.
 975 * For unwritten space on the page we need to start the conversion to
 976 * regular allocated space.
 
 977 */
 978STATIC int
 979xfs_do_writepage(
 980	struct page		*page,
 981	struct writeback_control *wbc,
 982	void			*data)
 983{
 984	struct xfs_writepage_ctx *wpc = data;
 985	struct inode		*inode = page->mapping->host;
 986	loff_t			offset;
 987	uint64_t              end_offset;
 988	pgoff_t                 end_index;
 989
 990	trace_xfs_writepage(inode, page, 0, 0);
 991
 
 
 992	/*
 993	 * Refuse to write the page out if we are called from reclaim context.
 994	 *
 995	 * This avoids stack overflows when called from deeply used stacks in
 996	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 997	 * allow reclaim from kswapd as the stack usage there is relatively low.
 998	 *
 999	 * This should never happen except in the case of a VM regression so
1000	 * warn about it.
1001	 */
1002	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1003			PF_MEMALLOC))
1004		goto redirty;
1005
1006	/*
1007	 * Given that we do not allow direct reclaim to call us, we should
1008	 * never be called while in a filesystem transaction.
1009	 */
1010	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1011		goto redirty;
1012
1013	/*
1014	 * Is this page beyond the end of the file?
1015	 *
1016	 * The page index is less than the end_index, adjust the end_offset
1017	 * to the highest offset that this page should represent.
1018	 * -----------------------------------------------------
1019	 * |			file mapping	       | <EOF> |
1020	 * -----------------------------------------------------
1021	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1022	 * ^--------------------------------^----------|--------
1023	 * |     desired writeback range    |      see else    |
1024	 * ---------------------------------^------------------|
1025	 */
1026	offset = i_size_read(inode);
1027	end_index = offset >> PAGE_SHIFT;
1028	if (page->index < end_index)
1029		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1030	else {
1031		/*
1032		 * Check whether the page to write out is beyond or straddles
1033		 * i_size or not.
1034		 * -------------------------------------------------------
1035		 * |		file mapping		        | <EOF>  |
1036		 * -------------------------------------------------------
1037		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1038		 * ^--------------------------------^-----------|---------
1039		 * |				    |      Straddles     |
1040		 * ---------------------------------^-----------|--------|
1041		 */
1042		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1043
1044		/*
1045		 * Skip the page if it is fully outside i_size, e.g. due to a
1046		 * truncate operation that is in progress. We must redirty the
1047		 * page so that reclaim stops reclaiming it. Otherwise
1048		 * xfs_vm_releasepage() is called on it and gets confused.
1049		 *
1050		 * Note that the end_index is unsigned long, it would overflow
1051		 * if the given offset is greater than 16TB on 32-bit system
1052		 * and if we do check the page is fully outside i_size or not
1053		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1054		 * will be evaluated to 0.  Hence this page will be redirtied
1055		 * and be written out repeatedly which would result in an
1056		 * infinite loop, the user program that perform this operation
1057		 * will hang.  Instead, we can verify this situation by checking
1058		 * if the page to write is totally beyond the i_size or if it's
1059		 * offset is just equal to the EOF.
1060		 */
1061		if (page->index > end_index ||
1062		    (page->index == end_index && offset_into_page == 0))
1063			goto redirty;
1064
1065		/*
1066		 * The page straddles i_size.  It must be zeroed out on each
1067		 * and every writepage invocation because it may be mmapped.
1068		 * "A file is mapped in multiples of the page size.  For a file
1069		 * that is not a multiple of the page size, the remaining
1070		 * memory is zeroed when mapped, and writes to that region are
1071		 * not written out to the file."
1072		 */
1073		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1074
1075		/* Adjust the end_offset to the end of file */
1076		end_offset = offset;
1077	}
1078
1079	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1080
1081redirty:
1082	redirty_page_for_writepage(wbc, page);
1083	unlock_page(page);
1084	return 0;
1085}
1086
1087STATIC int
1088xfs_vm_writepage(
1089	struct page		*page,
1090	struct writeback_control *wbc)
1091{
1092	struct xfs_writepage_ctx wpc = { };
 
 
1093	int			ret;
1094
1095	ret = xfs_do_writepage(page, wbc, &wpc);
1096	if (wpc.ioend)
1097		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1098	return ret;
1099}
1100
1101STATIC int
1102xfs_vm_writepages(
1103	struct address_space	*mapping,
1104	struct writeback_control *wbc)
1105{
1106	struct xfs_writepage_ctx wpc = { };
 
 
1107	int			ret;
1108
1109	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1110	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1111	if (wpc.ioend)
1112		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1113	return ret;
1114}
1115
1116STATIC int
1117xfs_dax_writepages(
1118	struct address_space	*mapping,
1119	struct writeback_control *wbc)
1120{
1121	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1122	return dax_writeback_mapping_range(mapping,
1123			xfs_find_bdev_for_inode(mapping->host), wbc);
1124}
1125
 
 
 
 
 
 
 
1126STATIC int
1127xfs_vm_releasepage(
1128	struct page		*page,
1129	gfp_t			gfp_mask)
1130{
 
 
1131	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1132	return iomap_releasepage(page, gfp_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133}
1134
1135STATIC sector_t
1136xfs_vm_bmap(
1137	struct address_space	*mapping,
1138	sector_t		block)
1139{
1140	struct xfs_inode	*ip = XFS_I(mapping->host);
 
1141
1142	trace_xfs_vm_bmap(ip);
1143
1144	/*
1145	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1146	 * bypasses the file system for actual I/O.  We really can't allow
1147	 * that on reflinks inodes, so we have to skip out here.  And yes,
1148	 * 0 is the magic code for a bmap error.
1149	 *
1150	 * Since we don't pass back blockdev info, we can't return bmap
1151	 * information for rt files either.
1152	 */
1153	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1154		return 0;
1155	return iomap_bmap(mapping, block, &xfs_iomap_ops);
 
 
1156}
1157
1158STATIC int
1159xfs_vm_readpage(
1160	struct file		*unused,
1161	struct page		*page)
1162{
1163	trace_xfs_vm_readpage(page->mapping->host, 1);
1164	return iomap_readpage(page, &xfs_iomap_ops);
1165}
1166
1167STATIC int
1168xfs_vm_readpages(
1169	struct file		*unused,
1170	struct address_space	*mapping,
1171	struct list_head	*pages,
1172	unsigned		nr_pages)
1173{
1174	trace_xfs_vm_readpages(mapping->host, nr_pages);
1175	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1176}
1177
1178static int
1179xfs_iomap_swapfile_activate(
1180	struct swap_info_struct		*sis,
1181	struct file			*swap_file,
1182	sector_t			*span)
 
 
 
 
 
 
 
 
 
 
1183{
1184	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1185	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186}
1187
1188const struct address_space_operations xfs_address_space_operations = {
1189	.readpage		= xfs_vm_readpage,
1190	.readpages		= xfs_vm_readpages,
1191	.writepage		= xfs_vm_writepage,
1192	.writepages		= xfs_vm_writepages,
1193	.set_page_dirty		= iomap_set_page_dirty,
1194	.releasepage		= xfs_vm_releasepage,
1195	.invalidatepage		= xfs_vm_invalidatepage,
1196	.bmap			= xfs_vm_bmap,
1197	.direct_IO		= noop_direct_IO,
1198	.migratepage		= iomap_migrate_page,
1199	.is_partially_uptodate  = iomap_is_partially_uptodate,
1200	.error_remove_page	= generic_error_remove_page,
1201	.swap_activate		= xfs_iomap_swapfile_activate,
1202};
1203
1204const struct address_space_operations xfs_dax_aops = {
1205	.writepages		= xfs_dax_writepages,
1206	.direct_IO		= noop_direct_IO,
1207	.set_page_dirty		= noop_set_page_dirty,
1208	.invalidatepage		= noop_invalidatepage,
1209	.swap_activate		= xfs_iomap_swapfile_activate,
1210};