Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include "xfs_reflink.h"
35#include <linux/gfp.h>
36#include <linux/mpage.h>
37#include <linux/pagevec.h>
38#include <linux/writeback.h>
39
40/*
41 * structure owned by writepages passed to individual writepage calls
42 */
43struct xfs_writepage_ctx {
44 struct xfs_bmbt_irec imap;
45 bool imap_valid;
46 unsigned int io_type;
47 struct xfs_ioend *ioend;
48 sector_t last_block;
49};
50
51void
52xfs_count_page_state(
53 struct page *page,
54 int *delalloc,
55 int *unwritten)
56{
57 struct buffer_head *bh, *head;
58
59 *delalloc = *unwritten = 0;
60
61 bh = head = page_buffers(page);
62 do {
63 if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
70struct block_device *
71xfs_find_bdev_for_inode(
72 struct inode *inode)
73{
74 struct xfs_inode *ip = XFS_I(inode);
75 struct xfs_mount *mp = ip->i_mount;
76
77 if (XFS_IS_REALTIME_INODE(ip))
78 return mp->m_rtdev_targp->bt_bdev;
79 else
80 return mp->m_ddev_targp->bt_bdev;
81}
82
83struct dax_device *
84xfs_find_daxdev_for_inode(
85 struct inode *inode)
86{
87 struct xfs_inode *ip = XFS_I(inode);
88 struct xfs_mount *mp = ip->i_mount;
89
90 if (XFS_IS_REALTIME_INODE(ip))
91 return mp->m_rtdev_targp->bt_daxdev;
92 else
93 return mp->m_ddev_targp->bt_daxdev;
94}
95
96/*
97 * We're now finished for good with this page. Update the page state via the
98 * associated buffer_heads, paying attention to the start and end offsets that
99 * we need to process on the page.
100 *
101 * Note that we open code the action in end_buffer_async_write here so that we
102 * only have to iterate over the buffers attached to the page once. This is not
103 * only more efficient, but also ensures that we only calls end_page_writeback
104 * at the end of the iteration, and thus avoids the pitfall of having the page
105 * and buffers potentially freed after every call to end_buffer_async_write.
106 */
107static void
108xfs_finish_page_writeback(
109 struct inode *inode,
110 struct bio_vec *bvec,
111 int error)
112{
113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head;
114 bool busy = false;
115 unsigned int off = 0;
116 unsigned long flags;
117
118 ASSERT(bvec->bv_offset < PAGE_SIZE);
119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122
123 local_irq_save(flags);
124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 do {
126 if (off >= bvec->bv_offset &&
127 off < bvec->bv_offset + bvec->bv_len) {
128 ASSERT(buffer_async_write(bh));
129 ASSERT(bh->b_end_io == NULL);
130
131 if (error) {
132 mark_buffer_write_io_error(bh);
133 clear_buffer_uptodate(bh);
134 SetPageError(bvec->bv_page);
135 } else {
136 set_buffer_uptodate(bh);
137 }
138 clear_buffer_async_write(bh);
139 unlock_buffer(bh);
140 } else if (buffer_async_write(bh)) {
141 ASSERT(buffer_locked(bh));
142 busy = true;
143 }
144 off += bh->b_size;
145 } while ((bh = bh->b_this_page) != head);
146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 local_irq_restore(flags);
148
149 if (!busy)
150 end_page_writeback(bvec->bv_page);
151}
152
153/*
154 * We're now finished for good with this ioend structure. Update the page
155 * state, release holds on bios, and finally free up memory. Do not use the
156 * ioend after this.
157 */
158STATIC void
159xfs_destroy_ioend(
160 struct xfs_ioend *ioend,
161 int error)
162{
163 struct inode *inode = ioend->io_inode;
164 struct bio *bio = &ioend->io_inline_bio;
165 struct bio *last = ioend->io_bio, *next;
166 u64 start = bio->bi_iter.bi_sector;
167 bool quiet = bio_flagged(bio, BIO_QUIET);
168
169 for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 struct bio_vec *bvec;
171 int i;
172
173 /*
174 * For the last bio, bi_private points to the ioend, so we
175 * need to explicitly end the iteration here.
176 */
177 if (bio == last)
178 next = NULL;
179 else
180 next = bio->bi_private;
181
182 /* walk each page on bio, ending page IO on them */
183 bio_for_each_segment_all(bvec, bio, i)
184 xfs_finish_page_writeback(inode, bvec, error);
185
186 bio_put(bio);
187 }
188
189 if (unlikely(error && !quiet)) {
190 xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 "writeback error on sector %llu", start);
192 }
193}
194
195/*
196 * Fast and loose check if this write could update the on-disk inode size.
197 */
198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199{
200 return ioend->io_offset + ioend->io_size >
201 XFS_I(ioend->io_inode)->i_d.di_size;
202}
203
204STATIC int
205xfs_setfilesize_trans_alloc(
206 struct xfs_ioend *ioend)
207{
208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
209 struct xfs_trans *tp;
210 int error;
211
212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
213 XFS_TRANS_NOFS, &tp);
214 if (error)
215 return error;
216
217 ioend->io_append_trans = tp;
218
219 /*
220 * We may pass freeze protection with a transaction. So tell lockdep
221 * we released it.
222 */
223 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
224 /*
225 * We hand off the transaction to the completion thread now, so
226 * clear the flag here.
227 */
228 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
229 return 0;
230}
231
232/*
233 * Update on-disk file size now that data has been written to disk.
234 */
235STATIC int
236__xfs_setfilesize(
237 struct xfs_inode *ip,
238 struct xfs_trans *tp,
239 xfs_off_t offset,
240 size_t size)
241{
242 xfs_fsize_t isize;
243
244 xfs_ilock(ip, XFS_ILOCK_EXCL);
245 isize = xfs_new_eof(ip, offset + size);
246 if (!isize) {
247 xfs_iunlock(ip, XFS_ILOCK_EXCL);
248 xfs_trans_cancel(tp);
249 return 0;
250 }
251
252 trace_xfs_setfilesize(ip, offset, size);
253
254 ip->i_d.di_size = isize;
255 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
256 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257
258 return xfs_trans_commit(tp);
259}
260
261int
262xfs_setfilesize(
263 struct xfs_inode *ip,
264 xfs_off_t offset,
265 size_t size)
266{
267 struct xfs_mount *mp = ip->i_mount;
268 struct xfs_trans *tp;
269 int error;
270
271 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
272 if (error)
273 return error;
274
275 return __xfs_setfilesize(ip, tp, offset, size);
276}
277
278STATIC int
279xfs_setfilesize_ioend(
280 struct xfs_ioend *ioend,
281 int error)
282{
283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
284 struct xfs_trans *tp = ioend->io_append_trans;
285
286 /*
287 * The transaction may have been allocated in the I/O submission thread,
288 * thus we need to mark ourselves as being in a transaction manually.
289 * Similarly for freeze protection.
290 */
291 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
292 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
293
294 /* we abort the update if there was an IO error */
295 if (error) {
296 xfs_trans_cancel(tp);
297 return error;
298 }
299
300 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
301}
302
303/*
304 * IO write completion.
305 */
306STATIC void
307xfs_end_io(
308 struct work_struct *work)
309{
310 struct xfs_ioend *ioend =
311 container_of(work, struct xfs_ioend, io_work);
312 struct xfs_inode *ip = XFS_I(ioend->io_inode);
313 xfs_off_t offset = ioend->io_offset;
314 size_t size = ioend->io_size;
315 int error;
316
317 /*
318 * Just clean up the in-memory strutures if the fs has been shut down.
319 */
320 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
321 error = -EIO;
322 goto done;
323 }
324
325 /*
326 * Clean up any COW blocks on an I/O error.
327 */
328 error = blk_status_to_errno(ioend->io_bio->bi_status);
329 if (unlikely(error)) {
330 switch (ioend->io_type) {
331 case XFS_IO_COW:
332 xfs_reflink_cancel_cow_range(ip, offset, size, true);
333 break;
334 }
335
336 goto done;
337 }
338
339 /*
340 * Success: commit the COW or unwritten blocks if needed.
341 */
342 switch (ioend->io_type) {
343 case XFS_IO_COW:
344 error = xfs_reflink_end_cow(ip, offset, size);
345 break;
346 case XFS_IO_UNWRITTEN:
347 /* writeback should never update isize */
348 error = xfs_iomap_write_unwritten(ip, offset, size, false);
349 break;
350 default:
351 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
352 break;
353 }
354
355done:
356 if (ioend->io_append_trans)
357 error = xfs_setfilesize_ioend(ioend, error);
358 xfs_destroy_ioend(ioend, error);
359}
360
361STATIC void
362xfs_end_bio(
363 struct bio *bio)
364{
365 struct xfs_ioend *ioend = bio->bi_private;
366 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
367
368 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
369 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
370 else if (ioend->io_append_trans)
371 queue_work(mp->m_data_workqueue, &ioend->io_work);
372 else
373 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
374}
375
376STATIC int
377xfs_map_blocks(
378 struct inode *inode,
379 loff_t offset,
380 struct xfs_bmbt_irec *imap,
381 int type)
382{
383 struct xfs_inode *ip = XFS_I(inode);
384 struct xfs_mount *mp = ip->i_mount;
385 ssize_t count = i_blocksize(inode);
386 xfs_fileoff_t offset_fsb, end_fsb;
387 int error = 0;
388 int bmapi_flags = XFS_BMAPI_ENTIRE;
389 int nimaps = 1;
390
391 if (XFS_FORCED_SHUTDOWN(mp))
392 return -EIO;
393
394 /*
395 * Truncate can race with writeback since writeback doesn't take the
396 * iolock and truncate decreases the file size before it starts
397 * truncating the pages between new_size and old_size. Therefore, we
398 * can end up in the situation where writeback gets a CoW fork mapping
399 * but the truncate makes the mapping invalid and we end up in here
400 * trying to get a new mapping. Bail out here so that we simply never
401 * get a valid mapping and so we drop the write altogether. The page
402 * truncation will kill the contents anyway.
403 */
404 if (type == XFS_IO_COW && offset > i_size_read(inode))
405 return 0;
406
407 ASSERT(type != XFS_IO_COW);
408 if (type == XFS_IO_UNWRITTEN)
409 bmapi_flags |= XFS_BMAPI_IGSTATE;
410
411 xfs_ilock(ip, XFS_ILOCK_SHARED);
412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 (ip->i_df.if_flags & XFS_IFEXTENTS));
414 ASSERT(offset <= mp->m_super->s_maxbytes);
415
416 if (offset > mp->m_super->s_maxbytes - count)
417 count = mp->m_super->s_maxbytes - offset;
418 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
419 offset_fsb = XFS_B_TO_FSBT(mp, offset);
420 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
421 imap, &nimaps, bmapi_flags);
422 /*
423 * Truncate an overwrite extent if there's a pending CoW
424 * reservation before the end of this extent. This forces us
425 * to come back to writepage to take care of the CoW.
426 */
427 if (nimaps && type == XFS_IO_OVERWRITE)
428 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
429 xfs_iunlock(ip, XFS_ILOCK_SHARED);
430
431 if (error)
432 return error;
433
434 if (type == XFS_IO_DELALLOC &&
435 (!nimaps || isnullstartblock(imap->br_startblock))) {
436 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
437 imap);
438 if (!error)
439 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
440 return error;
441 }
442
443#ifdef DEBUG
444 if (type == XFS_IO_UNWRITTEN) {
445 ASSERT(nimaps);
446 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
447 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 }
449#endif
450 if (nimaps)
451 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
452 return 0;
453}
454
455STATIC bool
456xfs_imap_valid(
457 struct inode *inode,
458 struct xfs_bmbt_irec *imap,
459 xfs_off_t offset)
460{
461 offset >>= inode->i_blkbits;
462
463 /*
464 * We have to make sure the cached mapping is within EOF to protect
465 * against eofblocks trimming on file release leaving us with a stale
466 * mapping. Otherwise, a page for a subsequent file extending buffered
467 * write could get picked up by this writeback cycle and written to the
468 * wrong blocks.
469 *
470 * Note that what we really want here is a generic mapping invalidation
471 * mechanism to protect us from arbitrary extent modifying contexts, not
472 * just eofblocks.
473 */
474 xfs_trim_extent_eof(imap, XFS_I(inode));
475
476 return offset >= imap->br_startoff &&
477 offset < imap->br_startoff + imap->br_blockcount;
478}
479
480STATIC void
481xfs_start_buffer_writeback(
482 struct buffer_head *bh)
483{
484 ASSERT(buffer_mapped(bh));
485 ASSERT(buffer_locked(bh));
486 ASSERT(!buffer_delay(bh));
487 ASSERT(!buffer_unwritten(bh));
488
489 bh->b_end_io = NULL;
490 set_buffer_async_write(bh);
491 set_buffer_uptodate(bh);
492 clear_buffer_dirty(bh);
493}
494
495STATIC void
496xfs_start_page_writeback(
497 struct page *page,
498 int clear_dirty)
499{
500 ASSERT(PageLocked(page));
501 ASSERT(!PageWriteback(page));
502
503 /*
504 * if the page was not fully cleaned, we need to ensure that the higher
505 * layers come back to it correctly. That means we need to keep the page
506 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
507 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
508 * write this page in this writeback sweep will be made.
509 */
510 if (clear_dirty) {
511 clear_page_dirty_for_io(page);
512 set_page_writeback(page);
513 } else
514 set_page_writeback_keepwrite(page);
515
516 unlock_page(page);
517}
518
519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
520{
521 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
522}
523
524/*
525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
526 * it, and we submit that bio. The ioend may be used for multiple bio
527 * submissions, so we only want to allocate an append transaction for the ioend
528 * once. In the case of multiple bio submission, each bio will take an IO
529 * reference to the ioend to ensure that the ioend completion is only done once
530 * all bios have been submitted and the ioend is really done.
531 *
532 * If @fail is non-zero, it means that we have a situation where some part of
533 * the submission process has failed after we have marked paged for writeback
534 * and unlocked them. In this situation, we need to fail the bio and ioend
535 * rather than submit it to IO. This typically only happens on a filesystem
536 * shutdown.
537 */
538STATIC int
539xfs_submit_ioend(
540 struct writeback_control *wbc,
541 struct xfs_ioend *ioend,
542 int status)
543{
544 /* Convert CoW extents to regular */
545 if (!status && ioend->io_type == XFS_IO_COW) {
546 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
547 ioend->io_offset, ioend->io_size);
548 }
549
550 /* Reserve log space if we might write beyond the on-disk inode size. */
551 if (!status &&
552 ioend->io_type != XFS_IO_UNWRITTEN &&
553 xfs_ioend_is_append(ioend) &&
554 !ioend->io_append_trans)
555 status = xfs_setfilesize_trans_alloc(ioend);
556
557 ioend->io_bio->bi_private = ioend;
558 ioend->io_bio->bi_end_io = xfs_end_bio;
559 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
560
561 /*
562 * If we are failing the IO now, just mark the ioend with an
563 * error and finish it. This will run IO completion immediately
564 * as there is only one reference to the ioend at this point in
565 * time.
566 */
567 if (status) {
568 ioend->io_bio->bi_status = errno_to_blk_status(status);
569 bio_endio(ioend->io_bio);
570 return status;
571 }
572
573 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
574 submit_bio(ioend->io_bio);
575 return 0;
576}
577
578static void
579xfs_init_bio_from_bh(
580 struct bio *bio,
581 struct buffer_head *bh)
582{
583 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
584 bio_set_dev(bio, bh->b_bdev);
585}
586
587static struct xfs_ioend *
588xfs_alloc_ioend(
589 struct inode *inode,
590 unsigned int type,
591 xfs_off_t offset,
592 struct buffer_head *bh)
593{
594 struct xfs_ioend *ioend;
595 struct bio *bio;
596
597 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
598 xfs_init_bio_from_bh(bio, bh);
599
600 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
601 INIT_LIST_HEAD(&ioend->io_list);
602 ioend->io_type = type;
603 ioend->io_inode = inode;
604 ioend->io_size = 0;
605 ioend->io_offset = offset;
606 INIT_WORK(&ioend->io_work, xfs_end_io);
607 ioend->io_append_trans = NULL;
608 ioend->io_bio = bio;
609 return ioend;
610}
611
612/*
613 * Allocate a new bio, and chain the old bio to the new one.
614 *
615 * Note that we have to do perform the chaining in this unintuitive order
616 * so that the bi_private linkage is set up in the right direction for the
617 * traversal in xfs_destroy_ioend().
618 */
619static void
620xfs_chain_bio(
621 struct xfs_ioend *ioend,
622 struct writeback_control *wbc,
623 struct buffer_head *bh)
624{
625 struct bio *new;
626
627 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
628 xfs_init_bio_from_bh(new, bh);
629
630 bio_chain(ioend->io_bio, new);
631 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
632 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
633 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
634 submit_bio(ioend->io_bio);
635 ioend->io_bio = new;
636}
637
638/*
639 * Test to see if we've been building up a completion structure for
640 * earlier buffers -- if so, we try to append to this ioend if we
641 * can, otherwise we finish off any current ioend and start another.
642 * Return the ioend we finished off so that the caller can submit it
643 * once it has finished processing the dirty page.
644 */
645STATIC void
646xfs_add_to_ioend(
647 struct inode *inode,
648 struct buffer_head *bh,
649 xfs_off_t offset,
650 struct xfs_writepage_ctx *wpc,
651 struct writeback_control *wbc,
652 struct list_head *iolist)
653{
654 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
655 bh->b_blocknr != wpc->last_block + 1 ||
656 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
657 if (wpc->ioend)
658 list_add(&wpc->ioend->io_list, iolist);
659 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
660 }
661
662 /*
663 * If the buffer doesn't fit into the bio we need to allocate a new
664 * one. This shouldn't happen more than once for a given buffer.
665 */
666 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
667 xfs_chain_bio(wpc->ioend, wbc, bh);
668
669 wpc->ioend->io_size += bh->b_size;
670 wpc->last_block = bh->b_blocknr;
671 xfs_start_buffer_writeback(bh);
672}
673
674STATIC void
675xfs_map_buffer(
676 struct inode *inode,
677 struct buffer_head *bh,
678 struct xfs_bmbt_irec *imap,
679 xfs_off_t offset)
680{
681 sector_t bn;
682 struct xfs_mount *m = XFS_I(inode)->i_mount;
683 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
684 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
685
686 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
687 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
688
689 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
690 ((offset - iomap_offset) >> inode->i_blkbits);
691
692 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
693
694 bh->b_blocknr = bn;
695 set_buffer_mapped(bh);
696}
697
698STATIC void
699xfs_map_at_offset(
700 struct inode *inode,
701 struct buffer_head *bh,
702 struct xfs_bmbt_irec *imap,
703 xfs_off_t offset)
704{
705 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
706 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
707
708 xfs_map_buffer(inode, bh, imap, offset);
709 set_buffer_mapped(bh);
710 clear_buffer_delay(bh);
711 clear_buffer_unwritten(bh);
712}
713
714/*
715 * Test if a given page contains at least one buffer of a given @type.
716 * If @check_all_buffers is true, then we walk all the buffers in the page to
717 * try to find one of the type passed in. If it is not set, then the caller only
718 * needs to check the first buffer on the page for a match.
719 */
720STATIC bool
721xfs_check_page_type(
722 struct page *page,
723 unsigned int type,
724 bool check_all_buffers)
725{
726 struct buffer_head *bh;
727 struct buffer_head *head;
728
729 if (PageWriteback(page))
730 return false;
731 if (!page->mapping)
732 return false;
733 if (!page_has_buffers(page))
734 return false;
735
736 bh = head = page_buffers(page);
737 do {
738 if (buffer_unwritten(bh)) {
739 if (type == XFS_IO_UNWRITTEN)
740 return true;
741 } else if (buffer_delay(bh)) {
742 if (type == XFS_IO_DELALLOC)
743 return true;
744 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
745 if (type == XFS_IO_OVERWRITE)
746 return true;
747 }
748
749 /* If we are only checking the first buffer, we are done now. */
750 if (!check_all_buffers)
751 break;
752 } while ((bh = bh->b_this_page) != head);
753
754 return false;
755}
756
757STATIC void
758xfs_vm_invalidatepage(
759 struct page *page,
760 unsigned int offset,
761 unsigned int length)
762{
763 trace_xfs_invalidatepage(page->mapping->host, page, offset,
764 length);
765
766 /*
767 * If we are invalidating the entire page, clear the dirty state from it
768 * so that we can check for attempts to release dirty cached pages in
769 * xfs_vm_releasepage().
770 */
771 if (offset == 0 && length >= PAGE_SIZE)
772 cancel_dirty_page(page);
773 block_invalidatepage(page, offset, length);
774}
775
776/*
777 * If the page has delalloc buffers on it, we need to punch them out before we
778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
780 * is done on that same region - the delalloc extent is returned when none is
781 * supposed to be there.
782 *
783 * We prevent this by truncating away the delalloc regions on the page before
784 * invalidating it. Because they are delalloc, we can do this without needing a
785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
786 * truncation without a transaction as there is no space left for block
787 * reservation (typically why we see a ENOSPC in writeback).
788 *
789 * This is not a performance critical path, so for now just do the punching a
790 * buffer head at a time.
791 */
792STATIC void
793xfs_aops_discard_page(
794 struct page *page)
795{
796 struct inode *inode = page->mapping->host;
797 struct xfs_inode *ip = XFS_I(inode);
798 struct buffer_head *bh, *head;
799 loff_t offset = page_offset(page);
800
801 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
802 goto out_invalidate;
803
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 goto out_invalidate;
806
807 xfs_alert(ip->i_mount,
808 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
809 page, ip->i_ino, offset);
810
811 xfs_ilock(ip, XFS_ILOCK_EXCL);
812 bh = head = page_buffers(page);
813 do {
814 int error;
815 xfs_fileoff_t start_fsb;
816
817 if (!buffer_delay(bh))
818 goto next_buffer;
819
820 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
821 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
822 if (error) {
823 /* something screwed, just bail */
824 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 xfs_alert(ip->i_mount,
826 "page discard unable to remove delalloc mapping.");
827 }
828 break;
829 }
830next_buffer:
831 offset += i_blocksize(inode);
832
833 } while ((bh = bh->b_this_page) != head);
834
835 xfs_iunlock(ip, XFS_ILOCK_EXCL);
836out_invalidate:
837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
838 return;
839}
840
841static int
842xfs_map_cow(
843 struct xfs_writepage_ctx *wpc,
844 struct inode *inode,
845 loff_t offset,
846 unsigned int *new_type)
847{
848 struct xfs_inode *ip = XFS_I(inode);
849 struct xfs_bmbt_irec imap;
850 bool is_cow = false;
851 int error;
852
853 /*
854 * If we already have a valid COW mapping keep using it.
855 */
856 if (wpc->io_type == XFS_IO_COW) {
857 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
858 if (wpc->imap_valid) {
859 *new_type = XFS_IO_COW;
860 return 0;
861 }
862 }
863
864 /*
865 * Else we need to check if there is a COW mapping at this offset.
866 */
867 xfs_ilock(ip, XFS_ILOCK_SHARED);
868 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
869 xfs_iunlock(ip, XFS_ILOCK_SHARED);
870
871 if (!is_cow)
872 return 0;
873
874 /*
875 * And if the COW mapping has a delayed extent here we need to
876 * allocate real space for it now.
877 */
878 if (isnullstartblock(imap.br_startblock)) {
879 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
880 &imap);
881 if (error)
882 return error;
883 }
884
885 wpc->io_type = *new_type = XFS_IO_COW;
886 wpc->imap_valid = true;
887 wpc->imap = imap;
888 return 0;
889}
890
891/*
892 * We implement an immediate ioend submission policy here to avoid needing to
893 * chain multiple ioends and hence nest mempool allocations which can violate
894 * forward progress guarantees we need to provide. The current ioend we are
895 * adding buffers to is cached on the writepage context, and if the new buffer
896 * does not append to the cached ioend it will create a new ioend and cache that
897 * instead.
898 *
899 * If a new ioend is created and cached, the old ioend is returned and queued
900 * locally for submission once the entire page is processed or an error has been
901 * detected. While ioends are submitted immediately after they are completed,
902 * batching optimisations are provided by higher level block plugging.
903 *
904 * At the end of a writeback pass, there will be a cached ioend remaining on the
905 * writepage context that the caller will need to submit.
906 */
907static int
908xfs_writepage_map(
909 struct xfs_writepage_ctx *wpc,
910 struct writeback_control *wbc,
911 struct inode *inode,
912 struct page *page,
913 uint64_t end_offset)
914{
915 LIST_HEAD(submit_list);
916 struct xfs_ioend *ioend, *next;
917 struct buffer_head *bh, *head;
918 ssize_t len = i_blocksize(inode);
919 uint64_t offset;
920 int error = 0;
921 int count = 0;
922 int uptodate = 1;
923 unsigned int new_type;
924
925 bh = head = page_buffers(page);
926 offset = page_offset(page);
927 do {
928 if (offset >= end_offset)
929 break;
930 if (!buffer_uptodate(bh))
931 uptodate = 0;
932
933 /*
934 * set_page_dirty dirties all buffers in a page, independent
935 * of their state. The dirty state however is entirely
936 * meaningless for holes (!mapped && uptodate), so skip
937 * buffers covering holes here.
938 */
939 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
940 wpc->imap_valid = false;
941 continue;
942 }
943
944 if (buffer_unwritten(bh))
945 new_type = XFS_IO_UNWRITTEN;
946 else if (buffer_delay(bh))
947 new_type = XFS_IO_DELALLOC;
948 else if (buffer_uptodate(bh))
949 new_type = XFS_IO_OVERWRITE;
950 else {
951 if (PageUptodate(page))
952 ASSERT(buffer_mapped(bh));
953 /*
954 * This buffer is not uptodate and will not be
955 * written to disk. Ensure that we will put any
956 * subsequent writeable buffers into a new
957 * ioend.
958 */
959 wpc->imap_valid = false;
960 continue;
961 }
962
963 if (xfs_is_reflink_inode(XFS_I(inode))) {
964 error = xfs_map_cow(wpc, inode, offset, &new_type);
965 if (error)
966 goto out;
967 }
968
969 if (wpc->io_type != new_type) {
970 wpc->io_type = new_type;
971 wpc->imap_valid = false;
972 }
973
974 if (wpc->imap_valid)
975 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
976 offset);
977 if (!wpc->imap_valid) {
978 error = xfs_map_blocks(inode, offset, &wpc->imap,
979 wpc->io_type);
980 if (error)
981 goto out;
982 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
983 offset);
984 }
985 if (wpc->imap_valid) {
986 lock_buffer(bh);
987 if (wpc->io_type != XFS_IO_OVERWRITE)
988 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
989 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
990 count++;
991 }
992
993 } while (offset += len, ((bh = bh->b_this_page) != head));
994
995 if (uptodate && bh == head)
996 SetPageUptodate(page);
997
998 ASSERT(wpc->ioend || list_empty(&submit_list));
999
1000out:
1001 /*
1002 * On error, we have to fail the ioend here because we have locked
1003 * buffers in the ioend. If we don't do this, we'll deadlock
1004 * invalidating the page as that tries to lock the buffers on the page.
1005 * Also, because we may have set pages under writeback, we have to make
1006 * sure we run IO completion to mark the error state of the IO
1007 * appropriately, so we can't cancel the ioend directly here. That means
1008 * we have to mark this page as under writeback if we included any
1009 * buffers from it in the ioend chain so that completion treats it
1010 * correctly.
1011 *
1012 * If we didn't include the page in the ioend, the on error we can
1013 * simply discard and unlock it as there are no other users of the page
1014 * or it's buffers right now. The caller will still need to trigger
1015 * submission of outstanding ioends on the writepage context so they are
1016 * treated correctly on error.
1017 */
1018 if (count) {
1019 xfs_start_page_writeback(page, !error);
1020
1021 /*
1022 * Preserve the original error if there was one, otherwise catch
1023 * submission errors here and propagate into subsequent ioend
1024 * submissions.
1025 */
1026 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027 int error2;
1028
1029 list_del_init(&ioend->io_list);
1030 error2 = xfs_submit_ioend(wbc, ioend, error);
1031 if (error2 && !error)
1032 error = error2;
1033 }
1034 } else if (error) {
1035 xfs_aops_discard_page(page);
1036 ClearPageUptodate(page);
1037 unlock_page(page);
1038 } else {
1039 /*
1040 * We can end up here with no error and nothing to write if we
1041 * race with a partial page truncate on a sub-page block sized
1042 * filesystem. In that case we need to mark the page clean.
1043 */
1044 xfs_start_page_writeback(page, 1);
1045 end_page_writeback(page);
1046 }
1047
1048 mapping_set_error(page->mapping, error);
1049 return error;
1050}
1051
1052/*
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
1058 * For any other dirty buffer heads on the page we should flush them.
1059 */
1060STATIC int
1061xfs_do_writepage(
1062 struct page *page,
1063 struct writeback_control *wbc,
1064 void *data)
1065{
1066 struct xfs_writepage_ctx *wpc = data;
1067 struct inode *inode = page->mapping->host;
1068 loff_t offset;
1069 uint64_t end_offset;
1070 pgoff_t end_index;
1071
1072 trace_xfs_writepage(inode, page, 0, 0);
1073
1074 ASSERT(page_has_buffers(page));
1075
1076 /*
1077 * Refuse to write the page out if we are called from reclaim context.
1078 *
1079 * This avoids stack overflows when called from deeply used stacks in
1080 * random callers for direct reclaim or memcg reclaim. We explicitly
1081 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 *
1083 * This should never happen except in the case of a VM regression so
1084 * warn about it.
1085 */
1086 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087 PF_MEMALLOC))
1088 goto redirty;
1089
1090 /*
1091 * Given that we do not allow direct reclaim to call us, we should
1092 * never be called while in a filesystem transaction.
1093 */
1094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095 goto redirty;
1096
1097 /*
1098 * Is this page beyond the end of the file?
1099 *
1100 * The page index is less than the end_index, adjust the end_offset
1101 * to the highest offset that this page should represent.
1102 * -----------------------------------------------------
1103 * | file mapping | <EOF> |
1104 * -----------------------------------------------------
1105 * | Page ... | Page N-2 | Page N-1 | Page N | |
1106 * ^--------------------------------^----------|--------
1107 * | desired writeback range | see else |
1108 * ---------------------------------^------------------|
1109 */
1110 offset = i_size_read(inode);
1111 end_index = offset >> PAGE_SHIFT;
1112 if (page->index < end_index)
1113 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114 else {
1115 /*
1116 * Check whether the page to write out is beyond or straddles
1117 * i_size or not.
1118 * -------------------------------------------------------
1119 * | file mapping | <EOF> |
1120 * -------------------------------------------------------
1121 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1122 * ^--------------------------------^-----------|---------
1123 * | | Straddles |
1124 * ---------------------------------^-----------|--------|
1125 */
1126 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127
1128 /*
1129 * Skip the page if it is fully outside i_size, e.g. due to a
1130 * truncate operation that is in progress. We must redirty the
1131 * page so that reclaim stops reclaiming it. Otherwise
1132 * xfs_vm_releasepage() is called on it and gets confused.
1133 *
1134 * Note that the end_index is unsigned long, it would overflow
1135 * if the given offset is greater than 16TB on 32-bit system
1136 * and if we do check the page is fully outside i_size or not
1137 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138 * will be evaluated to 0. Hence this page will be redirtied
1139 * and be written out repeatedly which would result in an
1140 * infinite loop, the user program that perform this operation
1141 * will hang. Instead, we can verify this situation by checking
1142 * if the page to write is totally beyond the i_size or if it's
1143 * offset is just equal to the EOF.
1144 */
1145 if (page->index > end_index ||
1146 (page->index == end_index && offset_into_page == 0))
1147 goto redirty;
1148
1149 /*
1150 * The page straddles i_size. It must be zeroed out on each
1151 * and every writepage invocation because it may be mmapped.
1152 * "A file is mapped in multiples of the page size. For a file
1153 * that is not a multiple of the page size, the remaining
1154 * memory is zeroed when mapped, and writes to that region are
1155 * not written out to the file."
1156 */
1157 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158
1159 /* Adjust the end_offset to the end of file */
1160 end_offset = offset;
1161 }
1162
1163 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164
1165redirty:
1166 redirty_page_for_writepage(wbc, page);
1167 unlock_page(page);
1168 return 0;
1169}
1170
1171STATIC int
1172xfs_vm_writepage(
1173 struct page *page,
1174 struct writeback_control *wbc)
1175{
1176 struct xfs_writepage_ctx wpc = {
1177 .io_type = XFS_IO_INVALID,
1178 };
1179 int ret;
1180
1181 ret = xfs_do_writepage(page, wbc, &wpc);
1182 if (wpc.ioend)
1183 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184 return ret;
1185}
1186
1187STATIC int
1188xfs_vm_writepages(
1189 struct address_space *mapping,
1190 struct writeback_control *wbc)
1191{
1192 struct xfs_writepage_ctx wpc = {
1193 .io_type = XFS_IO_INVALID,
1194 };
1195 int ret;
1196
1197 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199 if (wpc.ioend)
1200 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201 return ret;
1202}
1203
1204STATIC int
1205xfs_dax_writepages(
1206 struct address_space *mapping,
1207 struct writeback_control *wbc)
1208{
1209 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210 return dax_writeback_mapping_range(mapping,
1211 xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
1214/*
1215 * Called to move a page into cleanable state - and from there
1216 * to be released. The page should already be clean. We always
1217 * have buffer heads in this call.
1218 *
1219 * Returns 1 if the page is ok to release, 0 otherwise.
1220 */
1221STATIC int
1222xfs_vm_releasepage(
1223 struct page *page,
1224 gfp_t gfp_mask)
1225{
1226 int delalloc, unwritten;
1227
1228 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229
1230 /*
1231 * mm accommodates an old ext3 case where clean pages might not have had
1232 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233 * ->releasepage() via shrink_active_list(). Conversely,
1234 * block_invalidatepage() can send pages that are still marked dirty but
1235 * otherwise have invalidated buffers.
1236 *
1237 * We want to release the latter to avoid unnecessary buildup of the
1238 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239 * that are entirely invalidated and need to be released. Hence the
1240 * only time we should get dirty pages here is through
1241 * shrink_active_list() and so we can simply skip those now.
1242 *
1243 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244 * or invalidated pages we are about to release.
1245 */
1246 if (PageDirty(page))
1247 return 0;
1248
1249 xfs_count_page_state(page, &delalloc, &unwritten);
1250
1251 if (WARN_ON_ONCE(delalloc))
1252 return 0;
1253 if (WARN_ON_ONCE(unwritten))
1254 return 0;
1255
1256 return try_to_free_buffers(page);
1257}
1258
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272 struct inode *inode,
1273 sector_t iblock,
1274 struct buffer_head *bh_result,
1275 struct xfs_bmbt_irec *imap,
1276 xfs_off_t offset,
1277 ssize_t size)
1278{
1279 xfs_off_t mapping_size;
1280
1281 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282 mapping_size <<= inode->i_blkbits;
1283
1284 ASSERT(mapping_size > 0);
1285 if (mapping_size > size)
1286 mapping_size = size;
1287 if (offset < i_size_read(inode) &&
1288 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289 /* limit mapping to block that spans EOF */
1290 mapping_size = roundup_64(i_size_read(inode) - offset,
1291 i_blocksize(inode));
1292 }
1293 if (mapping_size > LONG_MAX)
1294 mapping_size = LONG_MAX;
1295
1296 bh_result->b_size = mapping_size;
1297}
1298
1299static int
1300xfs_get_blocks(
1301 struct inode *inode,
1302 sector_t iblock,
1303 struct buffer_head *bh_result,
1304 int create)
1305{
1306 struct xfs_inode *ip = XFS_I(inode);
1307 struct xfs_mount *mp = ip->i_mount;
1308 xfs_fileoff_t offset_fsb, end_fsb;
1309 int error = 0;
1310 int lockmode = 0;
1311 struct xfs_bmbt_irec imap;
1312 int nimaps = 1;
1313 xfs_off_t offset;
1314 ssize_t size;
1315
1316 BUG_ON(create);
1317
1318 if (XFS_FORCED_SHUTDOWN(mp))
1319 return -EIO;
1320
1321 offset = (xfs_off_t)iblock << inode->i_blkbits;
1322 ASSERT(bh_result->b_size >= i_blocksize(inode));
1323 size = bh_result->b_size;
1324
1325 if (offset >= i_size_read(inode))
1326 return 0;
1327
1328 /*
1329 * Direct I/O is usually done on preallocated files, so try getting
1330 * a block mapping without an exclusive lock first.
1331 */
1332 lockmode = xfs_ilock_data_map_shared(ip);
1333
1334 ASSERT(offset <= mp->m_super->s_maxbytes);
1335 if (offset > mp->m_super->s_maxbytes - size)
1336 size = mp->m_super->s_maxbytes - offset;
1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341 &nimaps, 0);
1342 if (error)
1343 goto out_unlock;
1344 if (!nimaps) {
1345 trace_xfs_get_blocks_notfound(ip, offset, size);
1346 goto out_unlock;
1347 }
1348
1349 trace_xfs_get_blocks_found(ip, offset, size,
1350 imap.br_state == XFS_EXT_UNWRITTEN ?
1351 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352 xfs_iunlock(ip, lockmode);
1353
1354 /* trim mapping down to size requested */
1355 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356
1357 /*
1358 * For unwritten extents do not report a disk address in the buffered
1359 * read case (treat as if we're reading into a hole).
1360 */
1361 if (xfs_bmap_is_real_extent(&imap))
1362 xfs_map_buffer(inode, bh_result, &imap, offset);
1363
1364 /*
1365 * If this is a realtime file, data may be on a different device.
1366 * to that pointed to from the buffer_head b_bdev currently.
1367 */
1368 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1369 return 0;
1370
1371out_unlock:
1372 xfs_iunlock(ip, lockmode);
1373 return error;
1374}
1375
1376STATIC sector_t
1377xfs_vm_bmap(
1378 struct address_space *mapping,
1379 sector_t block)
1380{
1381 struct inode *inode = (struct inode *)mapping->host;
1382 struct xfs_inode *ip = XFS_I(inode);
1383
1384 trace_xfs_vm_bmap(XFS_I(inode));
1385
1386 /*
1387 * The swap code (ab-)uses ->bmap to get a block mapping and then
1388 * bypasses the file system for actual I/O. We really can't allow
1389 * that on reflinks inodes, so we have to skip out here. And yes,
1390 * 0 is the magic code for a bmap error.
1391 *
1392 * Since we don't pass back blockdev info, we can't return bmap
1393 * information for rt files either.
1394 */
1395 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1396 return 0;
1397
1398 filemap_write_and_wait(mapping);
1399 return generic_block_bmap(mapping, block, xfs_get_blocks);
1400}
1401
1402STATIC int
1403xfs_vm_readpage(
1404 struct file *unused,
1405 struct page *page)
1406{
1407 trace_xfs_vm_readpage(page->mapping->host, 1);
1408 return mpage_readpage(page, xfs_get_blocks);
1409}
1410
1411STATIC int
1412xfs_vm_readpages(
1413 struct file *unused,
1414 struct address_space *mapping,
1415 struct list_head *pages,
1416 unsigned nr_pages)
1417{
1418 trace_xfs_vm_readpages(mapping->host, nr_pages);
1419 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1420}
1421
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436 struct page *page)
1437{
1438 struct address_space *mapping = page->mapping;
1439 struct inode *inode = mapping->host;
1440 loff_t end_offset;
1441 loff_t offset;
1442 int newly_dirty;
1443
1444 if (unlikely(!mapping))
1445 return !TestSetPageDirty(page);
1446
1447 end_offset = i_size_read(inode);
1448 offset = page_offset(page);
1449
1450 spin_lock(&mapping->private_lock);
1451 if (page_has_buffers(page)) {
1452 struct buffer_head *head = page_buffers(page);
1453 struct buffer_head *bh = head;
1454
1455 do {
1456 if (offset < end_offset)
1457 set_buffer_dirty(bh);
1458 bh = bh->b_this_page;
1459 offset += i_blocksize(inode);
1460 } while (bh != head);
1461 }
1462 /*
1463 * Lock out page->mem_cgroup migration to keep PageDirty
1464 * synchronized with per-memcg dirty page counters.
1465 */
1466 lock_page_memcg(page);
1467 newly_dirty = !TestSetPageDirty(page);
1468 spin_unlock(&mapping->private_lock);
1469
1470 if (newly_dirty)
1471 __set_page_dirty(page, mapping, 1);
1472 unlock_page_memcg(page);
1473 if (newly_dirty)
1474 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1475 return newly_dirty;
1476}
1477
1478const struct address_space_operations xfs_address_space_operations = {
1479 .readpage = xfs_vm_readpage,
1480 .readpages = xfs_vm_readpages,
1481 .writepage = xfs_vm_writepage,
1482 .writepages = xfs_vm_writepages,
1483 .set_page_dirty = xfs_vm_set_page_dirty,
1484 .releasepage = xfs_vm_releasepage,
1485 .invalidatepage = xfs_vm_invalidatepage,
1486 .bmap = xfs_vm_bmap,
1487 .direct_IO = noop_direct_IO,
1488 .migratepage = buffer_migrate_page,
1489 .is_partially_uptodate = block_is_partially_uptodate,
1490 .error_remove_page = generic_error_remove_page,
1491};
1492
1493const struct address_space_operations xfs_dax_aops = {
1494 .writepages = xfs_dax_writepages,
1495 .direct_IO = noop_direct_IO,
1496 .set_page_dirty = noop_set_page_dirty,
1497 .invalidatepage = noop_invalidatepage,
1498};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_iomap.h"
16#include "xfs_trace.h"
17#include "xfs_bmap.h"
18#include "xfs_bmap_util.h"
19#include "xfs_reflink.h"
20
21/*
22 * structure owned by writepages passed to individual writepage calls
23 */
24struct xfs_writepage_ctx {
25 struct xfs_bmbt_irec imap;
26 int fork;
27 unsigned int data_seq;
28 unsigned int cow_seq;
29 struct xfs_ioend *ioend;
30};
31
32struct block_device *
33xfs_find_bdev_for_inode(
34 struct inode *inode)
35{
36 struct xfs_inode *ip = XFS_I(inode);
37 struct xfs_mount *mp = ip->i_mount;
38
39 if (XFS_IS_REALTIME_INODE(ip))
40 return mp->m_rtdev_targp->bt_bdev;
41 else
42 return mp->m_ddev_targp->bt_bdev;
43}
44
45struct dax_device *
46xfs_find_daxdev_for_inode(
47 struct inode *inode)
48{
49 struct xfs_inode *ip = XFS_I(inode);
50 struct xfs_mount *mp = ip->i_mount;
51
52 if (XFS_IS_REALTIME_INODE(ip))
53 return mp->m_rtdev_targp->bt_daxdev;
54 else
55 return mp->m_ddev_targp->bt_daxdev;
56}
57
58static void
59xfs_finish_page_writeback(
60 struct inode *inode,
61 struct bio_vec *bvec,
62 int error)
63{
64 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
65
66 if (error) {
67 SetPageError(bvec->bv_page);
68 mapping_set_error(inode->i_mapping, -EIO);
69 }
70
71 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
72 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
73
74 if (!iop || atomic_dec_and_test(&iop->write_count))
75 end_page_writeback(bvec->bv_page);
76}
77
78/*
79 * We're now finished for good with this ioend structure. Update the page
80 * state, release holds on bios, and finally free up memory. Do not use the
81 * ioend after this.
82 */
83STATIC void
84xfs_destroy_ioend(
85 struct xfs_ioend *ioend,
86 int error)
87{
88 struct inode *inode = ioend->io_inode;
89 struct bio *bio = &ioend->io_inline_bio;
90 struct bio *last = ioend->io_bio, *next;
91 u64 start = bio->bi_iter.bi_sector;
92 bool quiet = bio_flagged(bio, BIO_QUIET);
93
94 for (bio = &ioend->io_inline_bio; bio; bio = next) {
95 struct bio_vec *bvec;
96 struct bvec_iter_all iter_all;
97
98 /*
99 * For the last bio, bi_private points to the ioend, so we
100 * need to explicitly end the iteration here.
101 */
102 if (bio == last)
103 next = NULL;
104 else
105 next = bio->bi_private;
106
107 /* walk each page on bio, ending page IO on them */
108 bio_for_each_segment_all(bvec, bio, iter_all)
109 xfs_finish_page_writeback(inode, bvec, error);
110 bio_put(bio);
111 }
112
113 if (unlikely(error && !quiet)) {
114 xfs_err_ratelimited(XFS_I(inode)->i_mount,
115 "writeback error on sector %llu", start);
116 }
117}
118
119/*
120 * Fast and loose check if this write could update the on-disk inode size.
121 */
122static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
123{
124 return ioend->io_offset + ioend->io_size >
125 XFS_I(ioend->io_inode)->i_d.di_size;
126}
127
128STATIC int
129xfs_setfilesize_trans_alloc(
130 struct xfs_ioend *ioend)
131{
132 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
133 struct xfs_trans *tp;
134 int error;
135
136 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
137 if (error)
138 return error;
139
140 ioend->io_append_trans = tp;
141
142 /*
143 * We may pass freeze protection with a transaction. So tell lockdep
144 * we released it.
145 */
146 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
147 /*
148 * We hand off the transaction to the completion thread now, so
149 * clear the flag here.
150 */
151 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
152 return 0;
153}
154
155/*
156 * Update on-disk file size now that data has been written to disk.
157 */
158STATIC int
159__xfs_setfilesize(
160 struct xfs_inode *ip,
161 struct xfs_trans *tp,
162 xfs_off_t offset,
163 size_t size)
164{
165 xfs_fsize_t isize;
166
167 xfs_ilock(ip, XFS_ILOCK_EXCL);
168 isize = xfs_new_eof(ip, offset + size);
169 if (!isize) {
170 xfs_iunlock(ip, XFS_ILOCK_EXCL);
171 xfs_trans_cancel(tp);
172 return 0;
173 }
174
175 trace_xfs_setfilesize(ip, offset, size);
176
177 ip->i_d.di_size = isize;
178 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
179 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
180
181 return xfs_trans_commit(tp);
182}
183
184int
185xfs_setfilesize(
186 struct xfs_inode *ip,
187 xfs_off_t offset,
188 size_t size)
189{
190 struct xfs_mount *mp = ip->i_mount;
191 struct xfs_trans *tp;
192 int error;
193
194 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
195 if (error)
196 return error;
197
198 return __xfs_setfilesize(ip, tp, offset, size);
199}
200
201STATIC int
202xfs_setfilesize_ioend(
203 struct xfs_ioend *ioend,
204 int error)
205{
206 struct xfs_inode *ip = XFS_I(ioend->io_inode);
207 struct xfs_trans *tp = ioend->io_append_trans;
208
209 /*
210 * The transaction may have been allocated in the I/O submission thread,
211 * thus we need to mark ourselves as being in a transaction manually.
212 * Similarly for freeze protection.
213 */
214 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
215 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
216
217 /* we abort the update if there was an IO error */
218 if (error) {
219 xfs_trans_cancel(tp);
220 return error;
221 }
222
223 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
224}
225
226/*
227 * IO write completion.
228 */
229STATIC void
230xfs_end_ioend(
231 struct xfs_ioend *ioend)
232{
233 struct list_head ioend_list;
234 struct xfs_inode *ip = XFS_I(ioend->io_inode);
235 xfs_off_t offset = ioend->io_offset;
236 size_t size = ioend->io_size;
237 unsigned int nofs_flag;
238 int error;
239
240 /*
241 * We can allocate memory here while doing writeback on behalf of
242 * memory reclaim. To avoid memory allocation deadlocks set the
243 * task-wide nofs context for the following operations.
244 */
245 nofs_flag = memalloc_nofs_save();
246
247 /*
248 * Just clean up the in-memory strutures if the fs has been shut down.
249 */
250 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
251 error = -EIO;
252 goto done;
253 }
254
255 /*
256 * Clean up any COW blocks on an I/O error.
257 */
258 error = blk_status_to_errno(ioend->io_bio->bi_status);
259 if (unlikely(error)) {
260 if (ioend->io_fork == XFS_COW_FORK)
261 xfs_reflink_cancel_cow_range(ip, offset, size, true);
262 goto done;
263 }
264
265 /*
266 * Success: commit the COW or unwritten blocks if needed.
267 */
268 if (ioend->io_fork == XFS_COW_FORK)
269 error = xfs_reflink_end_cow(ip, offset, size);
270 else if (ioend->io_state == XFS_EXT_UNWRITTEN)
271 error = xfs_iomap_write_unwritten(ip, offset, size, false);
272 else
273 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
274
275done:
276 if (ioend->io_append_trans)
277 error = xfs_setfilesize_ioend(ioend, error);
278 list_replace_init(&ioend->io_list, &ioend_list);
279 xfs_destroy_ioend(ioend, error);
280
281 while (!list_empty(&ioend_list)) {
282 ioend = list_first_entry(&ioend_list, struct xfs_ioend,
283 io_list);
284 list_del_init(&ioend->io_list);
285 xfs_destroy_ioend(ioend, error);
286 }
287
288 memalloc_nofs_restore(nofs_flag);
289}
290
291/*
292 * We can merge two adjacent ioends if they have the same set of work to do.
293 */
294static bool
295xfs_ioend_can_merge(
296 struct xfs_ioend *ioend,
297 struct xfs_ioend *next)
298{
299 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
300 return false;
301 if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK))
302 return false;
303 if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^
304 (next->io_state == XFS_EXT_UNWRITTEN))
305 return false;
306 if (ioend->io_offset + ioend->io_size != next->io_offset)
307 return false;
308 return true;
309}
310
311/*
312 * If the to be merged ioend has a preallocated transaction for file
313 * size updates we need to ensure the ioend it is merged into also
314 * has one. If it already has one we can simply cancel the transaction
315 * as it is guaranteed to be clean.
316 */
317static void
318xfs_ioend_merge_append_transactions(
319 struct xfs_ioend *ioend,
320 struct xfs_ioend *next)
321{
322 if (!ioend->io_append_trans) {
323 ioend->io_append_trans = next->io_append_trans;
324 next->io_append_trans = NULL;
325 } else {
326 xfs_setfilesize_ioend(next, -ECANCELED);
327 }
328}
329
330/* Try to merge adjacent completions. */
331STATIC void
332xfs_ioend_try_merge(
333 struct xfs_ioend *ioend,
334 struct list_head *more_ioends)
335{
336 struct xfs_ioend *next_ioend;
337
338 while (!list_empty(more_ioends)) {
339 next_ioend = list_first_entry(more_ioends, struct xfs_ioend,
340 io_list);
341 if (!xfs_ioend_can_merge(ioend, next_ioend))
342 break;
343 list_move_tail(&next_ioend->io_list, &ioend->io_list);
344 ioend->io_size += next_ioend->io_size;
345 if (next_ioend->io_append_trans)
346 xfs_ioend_merge_append_transactions(ioend, next_ioend);
347 }
348}
349
350/* list_sort compare function for ioends */
351static int
352xfs_ioend_compare(
353 void *priv,
354 struct list_head *a,
355 struct list_head *b)
356{
357 struct xfs_ioend *ia;
358 struct xfs_ioend *ib;
359
360 ia = container_of(a, struct xfs_ioend, io_list);
361 ib = container_of(b, struct xfs_ioend, io_list);
362 if (ia->io_offset < ib->io_offset)
363 return -1;
364 else if (ia->io_offset > ib->io_offset)
365 return 1;
366 return 0;
367}
368
369/* Finish all pending io completions. */
370void
371xfs_end_io(
372 struct work_struct *work)
373{
374 struct xfs_inode *ip;
375 struct xfs_ioend *ioend;
376 struct list_head completion_list;
377 unsigned long flags;
378
379 ip = container_of(work, struct xfs_inode, i_ioend_work);
380
381 spin_lock_irqsave(&ip->i_ioend_lock, flags);
382 list_replace_init(&ip->i_ioend_list, &completion_list);
383 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
384
385 list_sort(NULL, &completion_list, xfs_ioend_compare);
386
387 while (!list_empty(&completion_list)) {
388 ioend = list_first_entry(&completion_list, struct xfs_ioend,
389 io_list);
390 list_del_init(&ioend->io_list);
391 xfs_ioend_try_merge(ioend, &completion_list);
392 xfs_end_ioend(ioend);
393 }
394}
395
396STATIC void
397xfs_end_bio(
398 struct bio *bio)
399{
400 struct xfs_ioend *ioend = bio->bi_private;
401 struct xfs_inode *ip = XFS_I(ioend->io_inode);
402 struct xfs_mount *mp = ip->i_mount;
403 unsigned long flags;
404
405 if (ioend->io_fork == XFS_COW_FORK ||
406 ioend->io_state == XFS_EXT_UNWRITTEN ||
407 ioend->io_append_trans != NULL) {
408 spin_lock_irqsave(&ip->i_ioend_lock, flags);
409 if (list_empty(&ip->i_ioend_list))
410 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
411 &ip->i_ioend_work));
412 list_add_tail(&ioend->io_list, &ip->i_ioend_list);
413 spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
414 } else
415 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
416}
417
418/*
419 * Fast revalidation of the cached writeback mapping. Return true if the current
420 * mapping is valid, false otherwise.
421 */
422static bool
423xfs_imap_valid(
424 struct xfs_writepage_ctx *wpc,
425 struct xfs_inode *ip,
426 xfs_fileoff_t offset_fsb)
427{
428 if (offset_fsb < wpc->imap.br_startoff ||
429 offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
430 return false;
431 /*
432 * If this is a COW mapping, it is sufficient to check that the mapping
433 * covers the offset. Be careful to check this first because the caller
434 * can revalidate a COW mapping without updating the data seqno.
435 */
436 if (wpc->fork == XFS_COW_FORK)
437 return true;
438
439 /*
440 * This is not a COW mapping. Check the sequence number of the data fork
441 * because concurrent changes could have invalidated the extent. Check
442 * the COW fork because concurrent changes since the last time we
443 * checked (and found nothing at this offset) could have added
444 * overlapping blocks.
445 */
446 if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
447 return false;
448 if (xfs_inode_has_cow_data(ip) &&
449 wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
450 return false;
451 return true;
452}
453
454/*
455 * Pass in a dellalloc extent and convert it to real extents, return the real
456 * extent that maps offset_fsb in wpc->imap.
457 *
458 * The current page is held locked so nothing could have removed the block
459 * backing offset_fsb, although it could have moved from the COW to the data
460 * fork by another thread.
461 */
462static int
463xfs_convert_blocks(
464 struct xfs_writepage_ctx *wpc,
465 struct xfs_inode *ip,
466 xfs_fileoff_t offset_fsb)
467{
468 int error;
469
470 /*
471 * Attempt to allocate whatever delalloc extent currently backs
472 * offset_fsb and put the result into wpc->imap. Allocate in a loop
473 * because it may take several attempts to allocate real blocks for a
474 * contiguous delalloc extent if free space is sufficiently fragmented.
475 */
476 do {
477 error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
478 &wpc->imap, wpc->fork == XFS_COW_FORK ?
479 &wpc->cow_seq : &wpc->data_seq);
480 if (error)
481 return error;
482 } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
483
484 return 0;
485}
486
487STATIC int
488xfs_map_blocks(
489 struct xfs_writepage_ctx *wpc,
490 struct inode *inode,
491 loff_t offset)
492{
493 struct xfs_inode *ip = XFS_I(inode);
494 struct xfs_mount *mp = ip->i_mount;
495 ssize_t count = i_blocksize(inode);
496 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
497 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
498 xfs_fileoff_t cow_fsb = NULLFILEOFF;
499 struct xfs_bmbt_irec imap;
500 struct xfs_iext_cursor icur;
501 int retries = 0;
502 int error = 0;
503
504 if (XFS_FORCED_SHUTDOWN(mp))
505 return -EIO;
506
507 /*
508 * COW fork blocks can overlap data fork blocks even if the blocks
509 * aren't shared. COW I/O always takes precedent, so we must always
510 * check for overlap on reflink inodes unless the mapping is already a
511 * COW one, or the COW fork hasn't changed from the last time we looked
512 * at it.
513 *
514 * It's safe to check the COW fork if_seq here without the ILOCK because
515 * we've indirectly protected against concurrent updates: writeback has
516 * the page locked, which prevents concurrent invalidations by reflink
517 * and directio and prevents concurrent buffered writes to the same
518 * page. Changes to if_seq always happen under i_lock, which protects
519 * against concurrent updates and provides a memory barrier on the way
520 * out that ensures that we always see the current value.
521 */
522 if (xfs_imap_valid(wpc, ip, offset_fsb))
523 return 0;
524
525 /*
526 * If we don't have a valid map, now it's time to get a new one for this
527 * offset. This will convert delayed allocations (including COW ones)
528 * into real extents. If we return without a valid map, it means we
529 * landed in a hole and we skip the block.
530 */
531retry:
532 xfs_ilock(ip, XFS_ILOCK_SHARED);
533 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
534 (ip->i_df.if_flags & XFS_IFEXTENTS));
535
536 /*
537 * Check if this is offset is covered by a COW extents, and if yes use
538 * it directly instead of looking up anything in the data fork.
539 */
540 if (xfs_inode_has_cow_data(ip) &&
541 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
542 cow_fsb = imap.br_startoff;
543 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
544 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
545 xfs_iunlock(ip, XFS_ILOCK_SHARED);
546
547 wpc->fork = XFS_COW_FORK;
548 goto allocate_blocks;
549 }
550
551 /*
552 * No COW extent overlap. Revalidate now that we may have updated
553 * ->cow_seq. If the data mapping is still valid, we're done.
554 */
555 if (xfs_imap_valid(wpc, ip, offset_fsb)) {
556 xfs_iunlock(ip, XFS_ILOCK_SHARED);
557 return 0;
558 }
559
560 /*
561 * If we don't have a valid map, now it's time to get a new one for this
562 * offset. This will convert delayed allocations (including COW ones)
563 * into real extents.
564 */
565 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
566 imap.br_startoff = end_fsb; /* fake a hole past EOF */
567 wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
568 xfs_iunlock(ip, XFS_ILOCK_SHARED);
569
570 wpc->fork = XFS_DATA_FORK;
571
572 /* landed in a hole or beyond EOF? */
573 if (imap.br_startoff > offset_fsb) {
574 imap.br_blockcount = imap.br_startoff - offset_fsb;
575 imap.br_startoff = offset_fsb;
576 imap.br_startblock = HOLESTARTBLOCK;
577 imap.br_state = XFS_EXT_NORM;
578 }
579
580 /*
581 * Truncate to the next COW extent if there is one. This is the only
582 * opportunity to do this because we can skip COW fork lookups for the
583 * subsequent blocks in the mapping; however, the requirement to treat
584 * the COW range separately remains.
585 */
586 if (cow_fsb != NULLFILEOFF &&
587 cow_fsb < imap.br_startoff + imap.br_blockcount)
588 imap.br_blockcount = cow_fsb - imap.br_startoff;
589
590 /* got a delalloc extent? */
591 if (imap.br_startblock != HOLESTARTBLOCK &&
592 isnullstartblock(imap.br_startblock))
593 goto allocate_blocks;
594
595 wpc->imap = imap;
596 trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
597 return 0;
598allocate_blocks:
599 error = xfs_convert_blocks(wpc, ip, offset_fsb);
600 if (error) {
601 /*
602 * If we failed to find the extent in the COW fork we might have
603 * raced with a COW to data fork conversion or truncate.
604 * Restart the lookup to catch the extent in the data fork for
605 * the former case, but prevent additional retries to avoid
606 * looping forever for the latter case.
607 */
608 if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
609 goto retry;
610 ASSERT(error != -EAGAIN);
611 return error;
612 }
613
614 /*
615 * Due to merging the return real extent might be larger than the
616 * original delalloc one. Trim the return extent to the next COW
617 * boundary again to force a re-lookup.
618 */
619 if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
620 cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
621 wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
622
623 ASSERT(wpc->imap.br_startoff <= offset_fsb);
624 ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
625 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
626 return 0;
627}
628
629/*
630 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
631 * it, and we submit that bio. The ioend may be used for multiple bio
632 * submissions, so we only want to allocate an append transaction for the ioend
633 * once. In the case of multiple bio submission, each bio will take an IO
634 * reference to the ioend to ensure that the ioend completion is only done once
635 * all bios have been submitted and the ioend is really done.
636 *
637 * If @status is non-zero, it means that we have a situation where some part of
638 * the submission process has failed after we have marked paged for writeback
639 * and unlocked them. In this situation, we need to fail the bio and ioend
640 * rather than submit it to IO. This typically only happens on a filesystem
641 * shutdown.
642 */
643STATIC int
644xfs_submit_ioend(
645 struct writeback_control *wbc,
646 struct xfs_ioend *ioend,
647 int status)
648{
649 unsigned int nofs_flag;
650
651 /*
652 * We can allocate memory here while doing writeback on behalf of
653 * memory reclaim. To avoid memory allocation deadlocks set the
654 * task-wide nofs context for the following operations.
655 */
656 nofs_flag = memalloc_nofs_save();
657
658 /* Convert CoW extents to regular */
659 if (!status && ioend->io_fork == XFS_COW_FORK) {
660 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
661 ioend->io_offset, ioend->io_size);
662 }
663
664 /* Reserve log space if we might write beyond the on-disk inode size. */
665 if (!status &&
666 (ioend->io_fork == XFS_COW_FORK ||
667 ioend->io_state != XFS_EXT_UNWRITTEN) &&
668 xfs_ioend_is_append(ioend) &&
669 !ioend->io_append_trans)
670 status = xfs_setfilesize_trans_alloc(ioend);
671
672 memalloc_nofs_restore(nofs_flag);
673
674 ioend->io_bio->bi_private = ioend;
675 ioend->io_bio->bi_end_io = xfs_end_bio;
676
677 /*
678 * If we are failing the IO now, just mark the ioend with an
679 * error and finish it. This will run IO completion immediately
680 * as there is only one reference to the ioend at this point in
681 * time.
682 */
683 if (status) {
684 ioend->io_bio->bi_status = errno_to_blk_status(status);
685 bio_endio(ioend->io_bio);
686 return status;
687 }
688
689 submit_bio(ioend->io_bio);
690 return 0;
691}
692
693static struct xfs_ioend *
694xfs_alloc_ioend(
695 struct inode *inode,
696 int fork,
697 xfs_exntst_t state,
698 xfs_off_t offset,
699 struct block_device *bdev,
700 sector_t sector,
701 struct writeback_control *wbc)
702{
703 struct xfs_ioend *ioend;
704 struct bio *bio;
705
706 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
707 bio_set_dev(bio, bdev);
708 bio->bi_iter.bi_sector = sector;
709 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
710 bio->bi_write_hint = inode->i_write_hint;
711 wbc_init_bio(wbc, bio);
712
713 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
714 INIT_LIST_HEAD(&ioend->io_list);
715 ioend->io_fork = fork;
716 ioend->io_state = state;
717 ioend->io_inode = inode;
718 ioend->io_size = 0;
719 ioend->io_offset = offset;
720 ioend->io_append_trans = NULL;
721 ioend->io_bio = bio;
722 return ioend;
723}
724
725/*
726 * Allocate a new bio, and chain the old bio to the new one.
727 *
728 * Note that we have to do perform the chaining in this unintuitive order
729 * so that the bi_private linkage is set up in the right direction for the
730 * traversal in xfs_destroy_ioend().
731 */
732static struct bio *
733xfs_chain_bio(
734 struct bio *prev)
735{
736 struct bio *new;
737
738 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
739 bio_copy_dev(new, prev);/* also copies over blkcg information */
740 new->bi_iter.bi_sector = bio_end_sector(prev);
741 new->bi_opf = prev->bi_opf;
742 new->bi_write_hint = prev->bi_write_hint;
743
744 bio_chain(prev, new);
745 bio_get(prev); /* for xfs_destroy_ioend */
746 submit_bio(prev);
747 return new;
748}
749
750/*
751 * Test to see if we have an existing ioend structure that we could append to
752 * first, otherwise finish off the current ioend and start another.
753 */
754STATIC void
755xfs_add_to_ioend(
756 struct inode *inode,
757 xfs_off_t offset,
758 struct page *page,
759 struct iomap_page *iop,
760 struct xfs_writepage_ctx *wpc,
761 struct writeback_control *wbc,
762 struct list_head *iolist)
763{
764 struct xfs_inode *ip = XFS_I(inode);
765 struct xfs_mount *mp = ip->i_mount;
766 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
767 unsigned len = i_blocksize(inode);
768 unsigned poff = offset & (PAGE_SIZE - 1);
769 bool merged, same_page = false;
770 sector_t sector;
771
772 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
773 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
774
775 if (!wpc->ioend ||
776 wpc->fork != wpc->ioend->io_fork ||
777 wpc->imap.br_state != wpc->ioend->io_state ||
778 sector != bio_end_sector(wpc->ioend->io_bio) ||
779 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
780 if (wpc->ioend)
781 list_add(&wpc->ioend->io_list, iolist);
782 wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
783 wpc->imap.br_state, offset, bdev, sector, wbc);
784 }
785
786 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
787 &same_page);
788
789 if (iop && !same_page)
790 atomic_inc(&iop->write_count);
791
792 if (!merged) {
793 if (bio_full(wpc->ioend->io_bio, len))
794 wpc->ioend->io_bio = xfs_chain_bio(wpc->ioend->io_bio);
795 bio_add_page(wpc->ioend->io_bio, page, len, poff);
796 }
797
798 wpc->ioend->io_size += len;
799 wbc_account_cgroup_owner(wbc, page, len);
800}
801
802STATIC void
803xfs_vm_invalidatepage(
804 struct page *page,
805 unsigned int offset,
806 unsigned int length)
807{
808 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
809 iomap_invalidatepage(page, offset, length);
810}
811
812/*
813 * If the page has delalloc blocks on it, we need to punch them out before we
814 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
815 * inode that can trip up a later direct I/O read operation on the same region.
816 *
817 * We prevent this by truncating away the delalloc regions on the page. Because
818 * they are delalloc, we can do this without needing a transaction. Indeed - if
819 * we get ENOSPC errors, we have to be able to do this truncation without a
820 * transaction as there is no space left for block reservation (typically why we
821 * see a ENOSPC in writeback).
822 */
823STATIC void
824xfs_aops_discard_page(
825 struct page *page)
826{
827 struct inode *inode = page->mapping->host;
828 struct xfs_inode *ip = XFS_I(inode);
829 struct xfs_mount *mp = ip->i_mount;
830 loff_t offset = page_offset(page);
831 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
832 int error;
833
834 if (XFS_FORCED_SHUTDOWN(mp))
835 goto out_invalidate;
836
837 xfs_alert(mp,
838 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
839 page, ip->i_ino, offset);
840
841 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
842 PAGE_SIZE / i_blocksize(inode));
843 if (error && !XFS_FORCED_SHUTDOWN(mp))
844 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
845out_invalidate:
846 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
847}
848
849/*
850 * We implement an immediate ioend submission policy here to avoid needing to
851 * chain multiple ioends and hence nest mempool allocations which can violate
852 * forward progress guarantees we need to provide. The current ioend we are
853 * adding blocks to is cached on the writepage context, and if the new block
854 * does not append to the cached ioend it will create a new ioend and cache that
855 * instead.
856 *
857 * If a new ioend is created and cached, the old ioend is returned and queued
858 * locally for submission once the entire page is processed or an error has been
859 * detected. While ioends are submitted immediately after they are completed,
860 * batching optimisations are provided by higher level block plugging.
861 *
862 * At the end of a writeback pass, there will be a cached ioend remaining on the
863 * writepage context that the caller will need to submit.
864 */
865static int
866xfs_writepage_map(
867 struct xfs_writepage_ctx *wpc,
868 struct writeback_control *wbc,
869 struct inode *inode,
870 struct page *page,
871 uint64_t end_offset)
872{
873 LIST_HEAD(submit_list);
874 struct iomap_page *iop = to_iomap_page(page);
875 unsigned len = i_blocksize(inode);
876 struct xfs_ioend *ioend, *next;
877 uint64_t file_offset; /* file offset of page */
878 int error = 0, count = 0, i;
879
880 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
881 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
882
883 /*
884 * Walk through the page to find areas to write back. If we run off the
885 * end of the current map or find the current map invalid, grab a new
886 * one.
887 */
888 for (i = 0, file_offset = page_offset(page);
889 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
890 i++, file_offset += len) {
891 if (iop && !test_bit(i, iop->uptodate))
892 continue;
893
894 error = xfs_map_blocks(wpc, inode, file_offset);
895 if (error)
896 break;
897 if (wpc->imap.br_startblock == HOLESTARTBLOCK)
898 continue;
899 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
900 &submit_list);
901 count++;
902 }
903
904 ASSERT(wpc->ioend || list_empty(&submit_list));
905 ASSERT(PageLocked(page));
906 ASSERT(!PageWriteback(page));
907
908 /*
909 * On error, we have to fail the ioend here because we may have set
910 * pages under writeback, we have to make sure we run IO completion to
911 * mark the error state of the IO appropriately, so we can't cancel the
912 * ioend directly here. That means we have to mark this page as under
913 * writeback if we included any blocks from it in the ioend chain so
914 * that completion treats it correctly.
915 *
916 * If we didn't include the page in the ioend, the on error we can
917 * simply discard and unlock it as there are no other users of the page
918 * now. The caller will still need to trigger submission of outstanding
919 * ioends on the writepage context so they are treated correctly on
920 * error.
921 */
922 if (unlikely(error)) {
923 if (!count) {
924 xfs_aops_discard_page(page);
925 ClearPageUptodate(page);
926 unlock_page(page);
927 goto done;
928 }
929
930 /*
931 * If the page was not fully cleaned, we need to ensure that the
932 * higher layers come back to it correctly. That means we need
933 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
934 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
935 * so another attempt to write this page in this writeback sweep
936 * will be made.
937 */
938 set_page_writeback_keepwrite(page);
939 } else {
940 clear_page_dirty_for_io(page);
941 set_page_writeback(page);
942 }
943
944 unlock_page(page);
945
946 /*
947 * Preserve the original error if there was one, otherwise catch
948 * submission errors here and propagate into subsequent ioend
949 * submissions.
950 */
951 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
952 int error2;
953
954 list_del_init(&ioend->io_list);
955 error2 = xfs_submit_ioend(wbc, ioend, error);
956 if (error2 && !error)
957 error = error2;
958 }
959
960 /*
961 * We can end up here with no error and nothing to write only if we race
962 * with a partial page truncate on a sub-page block sized filesystem.
963 */
964 if (!count)
965 end_page_writeback(page);
966done:
967 mapping_set_error(page->mapping, error);
968 return error;
969}
970
971/*
972 * Write out a dirty page.
973 *
974 * For delalloc space on the page we need to allocate space and flush it.
975 * For unwritten space on the page we need to start the conversion to
976 * regular allocated space.
977 */
978STATIC int
979xfs_do_writepage(
980 struct page *page,
981 struct writeback_control *wbc,
982 void *data)
983{
984 struct xfs_writepage_ctx *wpc = data;
985 struct inode *inode = page->mapping->host;
986 loff_t offset;
987 uint64_t end_offset;
988 pgoff_t end_index;
989
990 trace_xfs_writepage(inode, page, 0, 0);
991
992 /*
993 * Refuse to write the page out if we are called from reclaim context.
994 *
995 * This avoids stack overflows when called from deeply used stacks in
996 * random callers for direct reclaim or memcg reclaim. We explicitly
997 * allow reclaim from kswapd as the stack usage there is relatively low.
998 *
999 * This should never happen except in the case of a VM regression so
1000 * warn about it.
1001 */
1002 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1003 PF_MEMALLOC))
1004 goto redirty;
1005
1006 /*
1007 * Given that we do not allow direct reclaim to call us, we should
1008 * never be called while in a filesystem transaction.
1009 */
1010 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1011 goto redirty;
1012
1013 /*
1014 * Is this page beyond the end of the file?
1015 *
1016 * The page index is less than the end_index, adjust the end_offset
1017 * to the highest offset that this page should represent.
1018 * -----------------------------------------------------
1019 * | file mapping | <EOF> |
1020 * -----------------------------------------------------
1021 * | Page ... | Page N-2 | Page N-1 | Page N | |
1022 * ^--------------------------------^----------|--------
1023 * | desired writeback range | see else |
1024 * ---------------------------------^------------------|
1025 */
1026 offset = i_size_read(inode);
1027 end_index = offset >> PAGE_SHIFT;
1028 if (page->index < end_index)
1029 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1030 else {
1031 /*
1032 * Check whether the page to write out is beyond or straddles
1033 * i_size or not.
1034 * -------------------------------------------------------
1035 * | file mapping | <EOF> |
1036 * -------------------------------------------------------
1037 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1038 * ^--------------------------------^-----------|---------
1039 * | | Straddles |
1040 * ---------------------------------^-----------|--------|
1041 */
1042 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1043
1044 /*
1045 * Skip the page if it is fully outside i_size, e.g. due to a
1046 * truncate operation that is in progress. We must redirty the
1047 * page so that reclaim stops reclaiming it. Otherwise
1048 * xfs_vm_releasepage() is called on it and gets confused.
1049 *
1050 * Note that the end_index is unsigned long, it would overflow
1051 * if the given offset is greater than 16TB on 32-bit system
1052 * and if we do check the page is fully outside i_size or not
1053 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1054 * will be evaluated to 0. Hence this page will be redirtied
1055 * and be written out repeatedly which would result in an
1056 * infinite loop, the user program that perform this operation
1057 * will hang. Instead, we can verify this situation by checking
1058 * if the page to write is totally beyond the i_size or if it's
1059 * offset is just equal to the EOF.
1060 */
1061 if (page->index > end_index ||
1062 (page->index == end_index && offset_into_page == 0))
1063 goto redirty;
1064
1065 /*
1066 * The page straddles i_size. It must be zeroed out on each
1067 * and every writepage invocation because it may be mmapped.
1068 * "A file is mapped in multiples of the page size. For a file
1069 * that is not a multiple of the page size, the remaining
1070 * memory is zeroed when mapped, and writes to that region are
1071 * not written out to the file."
1072 */
1073 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1074
1075 /* Adjust the end_offset to the end of file */
1076 end_offset = offset;
1077 }
1078
1079 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1080
1081redirty:
1082 redirty_page_for_writepage(wbc, page);
1083 unlock_page(page);
1084 return 0;
1085}
1086
1087STATIC int
1088xfs_vm_writepage(
1089 struct page *page,
1090 struct writeback_control *wbc)
1091{
1092 struct xfs_writepage_ctx wpc = { };
1093 int ret;
1094
1095 ret = xfs_do_writepage(page, wbc, &wpc);
1096 if (wpc.ioend)
1097 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1098 return ret;
1099}
1100
1101STATIC int
1102xfs_vm_writepages(
1103 struct address_space *mapping,
1104 struct writeback_control *wbc)
1105{
1106 struct xfs_writepage_ctx wpc = { };
1107 int ret;
1108
1109 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1110 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1111 if (wpc.ioend)
1112 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1113 return ret;
1114}
1115
1116STATIC int
1117xfs_dax_writepages(
1118 struct address_space *mapping,
1119 struct writeback_control *wbc)
1120{
1121 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1122 return dax_writeback_mapping_range(mapping,
1123 xfs_find_bdev_for_inode(mapping->host), wbc);
1124}
1125
1126STATIC int
1127xfs_vm_releasepage(
1128 struct page *page,
1129 gfp_t gfp_mask)
1130{
1131 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1132 return iomap_releasepage(page, gfp_mask);
1133}
1134
1135STATIC sector_t
1136xfs_vm_bmap(
1137 struct address_space *mapping,
1138 sector_t block)
1139{
1140 struct xfs_inode *ip = XFS_I(mapping->host);
1141
1142 trace_xfs_vm_bmap(ip);
1143
1144 /*
1145 * The swap code (ab-)uses ->bmap to get a block mapping and then
1146 * bypasses the file system for actual I/O. We really can't allow
1147 * that on reflinks inodes, so we have to skip out here. And yes,
1148 * 0 is the magic code for a bmap error.
1149 *
1150 * Since we don't pass back blockdev info, we can't return bmap
1151 * information for rt files either.
1152 */
1153 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1154 return 0;
1155 return iomap_bmap(mapping, block, &xfs_iomap_ops);
1156}
1157
1158STATIC int
1159xfs_vm_readpage(
1160 struct file *unused,
1161 struct page *page)
1162{
1163 trace_xfs_vm_readpage(page->mapping->host, 1);
1164 return iomap_readpage(page, &xfs_iomap_ops);
1165}
1166
1167STATIC int
1168xfs_vm_readpages(
1169 struct file *unused,
1170 struct address_space *mapping,
1171 struct list_head *pages,
1172 unsigned nr_pages)
1173{
1174 trace_xfs_vm_readpages(mapping->host, nr_pages);
1175 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1176}
1177
1178static int
1179xfs_iomap_swapfile_activate(
1180 struct swap_info_struct *sis,
1181 struct file *swap_file,
1182 sector_t *span)
1183{
1184 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1185 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1186}
1187
1188const struct address_space_operations xfs_address_space_operations = {
1189 .readpage = xfs_vm_readpage,
1190 .readpages = xfs_vm_readpages,
1191 .writepage = xfs_vm_writepage,
1192 .writepages = xfs_vm_writepages,
1193 .set_page_dirty = iomap_set_page_dirty,
1194 .releasepage = xfs_vm_releasepage,
1195 .invalidatepage = xfs_vm_invalidatepage,
1196 .bmap = xfs_vm_bmap,
1197 .direct_IO = noop_direct_IO,
1198 .migratepage = iomap_migrate_page,
1199 .is_partially_uptodate = iomap_is_partially_uptodate,
1200 .error_remove_page = generic_error_remove_page,
1201 .swap_activate = xfs_iomap_swapfile_activate,
1202};
1203
1204const struct address_space_operations xfs_dax_aops = {
1205 .writepages = xfs_dax_writepages,
1206 .direct_IO = noop_direct_IO,
1207 .set_page_dirty = noop_set_page_dirty,
1208 .invalidatepage = noop_invalidatepage,
1209 .swap_activate = xfs_iomap_swapfile_activate,
1210};