Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_shared.h"
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
 
 
  23#include "xfs_mount.h"
 
 
  24#include "xfs_inode.h"
  25#include "xfs_trans.h"
  26#include "xfs_inode_item.h"
  27#include "xfs_alloc.h"
  28#include "xfs_error.h"
 
  29#include "xfs_iomap.h"
 
  30#include "xfs_trace.h"
  31#include "xfs_bmap.h"
  32#include "xfs_bmap_util.h"
  33#include "xfs_bmap_btree.h"
  34#include "xfs_reflink.h"
  35#include <linux/gfp.h>
  36#include <linux/mpage.h>
  37#include <linux/pagevec.h>
  38#include <linux/writeback.h>
  39
 
  40/*
  41 * structure owned by writepages passed to individual writepage calls
  42 */
  43struct xfs_writepage_ctx {
  44	struct xfs_bmbt_irec    imap;
  45	bool			imap_valid;
  46	unsigned int		io_type;
  47	struct xfs_ioend	*ioend;
  48	sector_t		last_block;
  49};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51void
  52xfs_count_page_state(
  53	struct page		*page,
  54	int			*delalloc,
  55	int			*unwritten)
  56{
  57	struct buffer_head	*bh, *head;
  58
  59	*delalloc = *unwritten = 0;
  60
  61	bh = head = page_buffers(page);
  62	do {
  63		if (buffer_unwritten(bh))
  64			(*unwritten) = 1;
  65		else if (buffer_delay(bh))
  66			(*delalloc) = 1;
  67	} while ((bh = bh->b_this_page) != head);
  68}
  69
  70struct block_device *
  71xfs_find_bdev_for_inode(
  72	struct inode		*inode)
  73{
  74	struct xfs_inode	*ip = XFS_I(inode);
  75	struct xfs_mount	*mp = ip->i_mount;
  76
  77	if (XFS_IS_REALTIME_INODE(ip))
  78		return mp->m_rtdev_targp->bt_bdev;
  79	else
  80		return mp->m_ddev_targp->bt_bdev;
  81}
  82
  83struct dax_device *
  84xfs_find_daxdev_for_inode(
  85	struct inode		*inode)
  86{
  87	struct xfs_inode	*ip = XFS_I(inode);
  88	struct xfs_mount	*mp = ip->i_mount;
  89
  90	if (XFS_IS_REALTIME_INODE(ip))
  91		return mp->m_rtdev_targp->bt_daxdev;
  92	else
  93		return mp->m_ddev_targp->bt_daxdev;
  94}
  95
  96/*
  97 * We're now finished for good with this page.  Update the page state via the
  98 * associated buffer_heads, paying attention to the start and end offsets that
  99 * we need to process on the page.
 100 *
 101 * Note that we open code the action in end_buffer_async_write here so that we
 102 * only have to iterate over the buffers attached to the page once.  This is not
 103 * only more efficient, but also ensures that we only calls end_page_writeback
 104 * at the end of the iteration, and thus avoids the pitfall of having the page
 105 * and buffers potentially freed after every call to end_buffer_async_write.
 106 */
 107static void
 108xfs_finish_page_writeback(
 109	struct inode		*inode,
 110	struct bio_vec		*bvec,
 111	int			error)
 112{
 113	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
 114	bool			busy = false;
 115	unsigned int		off = 0;
 116	unsigned long		flags;
 117
 118	ASSERT(bvec->bv_offset < PAGE_SIZE);
 119	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
 120	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
 121	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
 122
 123	local_irq_save(flags);
 124	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
 125	do {
 126		if (off >= bvec->bv_offset &&
 127		    off < bvec->bv_offset + bvec->bv_len) {
 128			ASSERT(buffer_async_write(bh));
 129			ASSERT(bh->b_end_io == NULL);
 130
 131			if (error) {
 132				mark_buffer_write_io_error(bh);
 133				clear_buffer_uptodate(bh);
 134				SetPageError(bvec->bv_page);
 135			} else {
 136				set_buffer_uptodate(bh);
 137			}
 138			clear_buffer_async_write(bh);
 139			unlock_buffer(bh);
 140		} else if (buffer_async_write(bh)) {
 141			ASSERT(buffer_locked(bh));
 142			busy = true;
 143		}
 144		off += bh->b_size;
 145	} while ((bh = bh->b_this_page) != head);
 146	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
 147	local_irq_restore(flags);
 148
 149	if (!busy)
 150		end_page_writeback(bvec->bv_page);
 151}
 152
 153/*
 154 * We're now finished for good with this ioend structure.  Update the page
 155 * state, release holds on bios, and finally free up memory.  Do not use the
 156 * ioend after this.
 157 */
 158STATIC void
 159xfs_destroy_ioend(
 160	struct xfs_ioend	*ioend,
 161	int			error)
 162{
 163	struct inode		*inode = ioend->io_inode;
 164	struct bio		*bio = &ioend->io_inline_bio;
 165	struct bio		*last = ioend->io_bio, *next;
 166	u64			start = bio->bi_iter.bi_sector;
 167	bool			quiet = bio_flagged(bio, BIO_QUIET);
 168
 169	for (bio = &ioend->io_inline_bio; bio; bio = next) {
 170		struct bio_vec	*bvec;
 171		int		i;
 172
 173		/*
 174		 * For the last bio, bi_private points to the ioend, so we
 175		 * need to explicitly end the iteration here.
 176		 */
 177		if (bio == last)
 178			next = NULL;
 179		else
 180			next = bio->bi_private;
 181
 182		/* walk each page on bio, ending page IO on them */
 183		bio_for_each_segment_all(bvec, bio, i)
 184			xfs_finish_page_writeback(inode, bvec, error);
 185
 186		bio_put(bio);
 
 
 187	}
 188
 189	if (unlikely(error && !quiet)) {
 190		xfs_err_ratelimited(XFS_I(inode)->i_mount,
 191			"writeback error on sector %llu", start);
 
 
 
 
 
 
 192	}
 
 
 
 193}
 194
 195/*
 196 * Fast and loose check if this write could update the on-disk inode size.
 
 197 */
 198static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
 199{
 200	return ioend->io_offset + ioend->io_size >
 201		XFS_I(ioend->io_inode)->i_d.di_size;
 202}
 203
 204STATIC int
 205xfs_setfilesize_trans_alloc(
 206	struct xfs_ioend	*ioend)
 207{
 208	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 209	struct xfs_trans	*tp;
 210	int			error;
 211
 212	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
 213				XFS_TRANS_NOFS, &tp);
 214	if (error)
 215		return error;
 216
 217	ioend->io_append_trans = tp;
 218
 219	/*
 220	 * We may pass freeze protection with a transaction.  So tell lockdep
 221	 * we released it.
 222	 */
 223	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
 224	/*
 225	 * We hand off the transaction to the completion thread now, so
 226	 * clear the flag here.
 227	 */
 228	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 229	return 0;
 230}
 231
 232/*
 233 * Update on-disk file size now that data has been written to disk.
 
 
 
 
 
 
 
 
 234 */
 235STATIC int
 236__xfs_setfilesize(
 237	struct xfs_inode	*ip,
 238	struct xfs_trans	*tp,
 239	xfs_off_t		offset,
 240	size_t			size)
 241{
 
 242	xfs_fsize_t		isize;
 243
 244	xfs_ilock(ip, XFS_ILOCK_EXCL);
 245	isize = xfs_new_eof(ip, offset + size);
 246	if (!isize) {
 247		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 248		xfs_trans_cancel(tp);
 249		return 0;
 250	}
 251
 252	trace_xfs_setfilesize(ip, offset, size);
 
 253
 254	ip->i_d.di_size = isize;
 255	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 256	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 257
 258	return xfs_trans_commit(tp);
 259}
 260
 261int
 262xfs_setfilesize(
 263	struct xfs_inode	*ip,
 264	xfs_off_t		offset,
 265	size_t			size)
 266{
 267	struct xfs_mount	*mp = ip->i_mount;
 268	struct xfs_trans	*tp;
 269	int			error;
 270
 271	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 272	if (error)
 273		return error;
 274
 275	return __xfs_setfilesize(ip, tp, offset, size);
 
 276}
 277
 278STATIC int
 279xfs_setfilesize_ioend(
 280	struct xfs_ioend	*ioend,
 281	int			error)
 
 
 282{
 283	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 284	struct xfs_trans	*tp = ioend->io_append_trans;
 285
 286	/*
 287	 * The transaction may have been allocated in the I/O submission thread,
 288	 * thus we need to mark ourselves as being in a transaction manually.
 289	 * Similarly for freeze protection.
 290	 */
 291	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
 292	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
 293
 294	/* we abort the update if there was an IO error */
 295	if (error) {
 296		xfs_trans_cancel(tp);
 297		return error;
 298	}
 299
 300	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
 301}
 302
 303/*
 304 * IO write completion.
 305 */
 306STATIC void
 307xfs_end_io(
 308	struct work_struct *work)
 309{
 310	struct xfs_ioend	*ioend =
 311		container_of(work, struct xfs_ioend, io_work);
 312	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 313	xfs_off_t		offset = ioend->io_offset;
 314	size_t			size = ioend->io_size;
 315	int			error;
 316
 317	/*
 318	 * Just clean up the in-memory strutures if the fs has been shut down.
 
 319	 */
 320	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 321		error = -EIO;
 322		goto done;
 
 
 
 
 323	}
 324
 325	/*
 326	 * Clean up any COW blocks on an I/O error.
 
 327	 */
 328	error = blk_status_to_errno(ioend->io_bio->bi_status);
 329	if (unlikely(error)) {
 330		switch (ioend->io_type) {
 331		case XFS_IO_COW:
 332			xfs_reflink_cancel_cow_range(ip, offset, size, true);
 333			break;
 334		}
 335
 336		goto done;
 337	}
 338
 339	/*
 340	 * Success:  commit the COW or unwritten blocks if needed.
 341	 */
 342	switch (ioend->io_type) {
 343	case XFS_IO_COW:
 344		error = xfs_reflink_end_cow(ip, offset, size);
 345		break;
 346	case XFS_IO_UNWRITTEN:
 347		/* writeback should never update isize */
 348		error = xfs_iomap_write_unwritten(ip, offset, size, false);
 349		break;
 350	default:
 351		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
 352		break;
 353	}
 354
 355done:
 356	if (ioend->io_append_trans)
 357		error = xfs_setfilesize_ioend(ioend, error);
 358	xfs_destroy_ioend(ioend, error);
 359}
 360
 
 
 
 361STATIC void
 362xfs_end_bio(
 363	struct bio		*bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364{
 365	struct xfs_ioend	*ioend = bio->bi_private;
 366	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
 367
 368	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
 369		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
 370	else if (ioend->io_append_trans)
 371		queue_work(mp->m_data_workqueue, &ioend->io_work);
 372	else
 373		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374}
 375
 376STATIC int
 377xfs_map_blocks(
 378	struct inode		*inode,
 379	loff_t			offset,
 380	struct xfs_bmbt_irec	*imap,
 381	int			type)
 
 382{
 383	struct xfs_inode	*ip = XFS_I(inode);
 384	struct xfs_mount	*mp = ip->i_mount;
 385	ssize_t			count = i_blocksize(inode);
 386	xfs_fileoff_t		offset_fsb, end_fsb;
 387	int			error = 0;
 388	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 389	int			nimaps = 1;
 390
 391	if (XFS_FORCED_SHUTDOWN(mp))
 392		return -EIO;
 393
 394	/*
 395	 * Truncate can race with writeback since writeback doesn't take the
 396	 * iolock and truncate decreases the file size before it starts
 397	 * truncating the pages between new_size and old_size.  Therefore, we
 398	 * can end up in the situation where writeback gets a CoW fork mapping
 399	 * but the truncate makes the mapping invalid and we end up in here
 400	 * trying to get a new mapping.  Bail out here so that we simply never
 401	 * get a valid mapping and so we drop the write altogether.  The page
 402	 * truncation will kill the contents anyway.
 403	 */
 404	if (type == XFS_IO_COW && offset > i_size_read(inode))
 405		return 0;
 406
 407	ASSERT(type != XFS_IO_COW);
 408	if (type == XFS_IO_UNWRITTEN)
 409		bmapi_flags |= XFS_BMAPI_IGSTATE;
 410
 411	xfs_ilock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 412	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 413	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 414	ASSERT(offset <= mp->m_super->s_maxbytes);
 415
 416	if (offset > mp->m_super->s_maxbytes - count)
 417		count = mp->m_super->s_maxbytes - offset;
 418	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 419	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 420	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
 421				imap, &nimaps, bmapi_flags);
 422	/*
 423	 * Truncate an overwrite extent if there's a pending CoW
 424	 * reservation before the end of this extent.  This forces us
 425	 * to come back to writepage to take care of the CoW.
 426	 */
 427	if (nimaps && type == XFS_IO_OVERWRITE)
 428		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
 429	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 430
 431	if (error)
 432		return error;
 433
 434	if (type == XFS_IO_DELALLOC &&
 435	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 436		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
 437				imap);
 438		if (!error)
 439			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 440		return error;
 441	}
 442
 443#ifdef DEBUG
 444	if (type == XFS_IO_UNWRITTEN) {
 445		ASSERT(nimaps);
 446		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 447		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 448	}
 449#endif
 450	if (nimaps)
 451		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 452	return 0;
 453}
 454
 455STATIC bool
 456xfs_imap_valid(
 457	struct inode		*inode,
 458	struct xfs_bmbt_irec	*imap,
 459	xfs_off_t		offset)
 460{
 461	offset >>= inode->i_blkbits;
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463	/*
 464	 * We have to make sure the cached mapping is within EOF to protect
 465	 * against eofblocks trimming on file release leaving us with a stale
 466	 * mapping. Otherwise, a page for a subsequent file extending buffered
 467	 * write could get picked up by this writeback cycle and written to the
 468	 * wrong blocks.
 469	 *
 470	 * Note that what we really want here is a generic mapping invalidation
 471	 * mechanism to protect us from arbitrary extent modifying contexts, not
 472	 * just eofblocks.
 473	 */
 474	xfs_trim_extent_eof(imap, XFS_I(inode));
 
 475
 476	return offset >= imap->br_startoff &&
 477		offset < imap->br_startoff + imap->br_blockcount;
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480STATIC void
 481xfs_start_buffer_writeback(
 482	struct buffer_head	*bh)
 483{
 484	ASSERT(buffer_mapped(bh));
 485	ASSERT(buffer_locked(bh));
 486	ASSERT(!buffer_delay(bh));
 487	ASSERT(!buffer_unwritten(bh));
 488
 489	bh->b_end_io = NULL;
 490	set_buffer_async_write(bh);
 491	set_buffer_uptodate(bh);
 492	clear_buffer_dirty(bh);
 493}
 494
 495STATIC void
 496xfs_start_page_writeback(
 497	struct page		*page,
 498	int			clear_dirty)
 
 499{
 500	ASSERT(PageLocked(page));
 501	ASSERT(!PageWriteback(page));
 502
 503	/*
 504	 * if the page was not fully cleaned, we need to ensure that the higher
 505	 * layers come back to it correctly. That means we need to keep the page
 506	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
 507	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
 508	 * write this page in this writeback sweep will be made.
 509	 */
 510	if (clear_dirty) {
 511		clear_page_dirty_for_io(page);
 512		set_page_writeback(page);
 513	} else
 514		set_page_writeback_keepwrite(page);
 515
 516	unlock_page(page);
 
 
 
 517}
 518
 519static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 520{
 521	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 522}
 523
 524/*
 525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
 526 * it, and we submit that bio. The ioend may be used for multiple bio
 527 * submissions, so we only want to allocate an append transaction for the ioend
 528 * once. In the case of multiple bio submission, each bio will take an IO
 529 * reference to the ioend to ensure that the ioend completion is only done once
 530 * all bios have been submitted and the ioend is really done.
 
 
 
 
 
 
 531 *
 532 * If @fail is non-zero, it means that we have a situation where some part of
 533 * the submission process has failed after we have marked paged for writeback
 534 * and unlocked them. In this situation, we need to fail the bio and ioend
 535 * rather than submit it to IO. This typically only happens on a filesystem
 536 * shutdown.
 537 */
 538STATIC int
 539xfs_submit_ioend(
 540	struct writeback_control *wbc,
 541	struct xfs_ioend	*ioend,
 542	int			status)
 543{
 544	/* Convert CoW extents to regular */
 545	if (!status && ioend->io_type == XFS_IO_COW) {
 546		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
 547				ioend->io_offset, ioend->io_size);
 548	}
 549
 550	/* Reserve log space if we might write beyond the on-disk inode size. */
 551	if (!status &&
 552	    ioend->io_type != XFS_IO_UNWRITTEN &&
 553	    xfs_ioend_is_append(ioend) &&
 554	    !ioend->io_append_trans)
 555		status = xfs_setfilesize_trans_alloc(ioend);
 556
 557	ioend->io_bio->bi_private = ioend;
 558	ioend->io_bio->bi_end_io = xfs_end_bio;
 559	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 560
 561	/*
 562	 * If we are failing the IO now, just mark the ioend with an
 563	 * error and finish it. This will run IO completion immediately
 564	 * as there is only one reference to the ioend at this point in
 565	 * time.
 566	 */
 567	if (status) {
 568		ioend->io_bio->bi_status = errno_to_blk_status(status);
 569		bio_endio(ioend->io_bio);
 570		return status;
 571	}
 572
 573	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
 574	submit_bio(ioend->io_bio);
 575	return 0;
 576}
 
 577
 578static void
 579xfs_init_bio_from_bh(
 580	struct bio		*bio,
 581	struct buffer_head	*bh)
 582{
 583	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 584	bio_set_dev(bio, bh->b_bdev);
 585}
 586
 587static struct xfs_ioend *
 588xfs_alloc_ioend(
 589	struct inode		*inode,
 590	unsigned int		type,
 591	xfs_off_t		offset,
 592	struct buffer_head	*bh)
 593{
 594	struct xfs_ioend	*ioend;
 595	struct bio		*bio;
 596
 597	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
 598	xfs_init_bio_from_bh(bio, bh);
 
 
 599
 600	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
 601	INIT_LIST_HEAD(&ioend->io_list);
 602	ioend->io_type = type;
 603	ioend->io_inode = inode;
 604	ioend->io_size = 0;
 605	ioend->io_offset = offset;
 606	INIT_WORK(&ioend->io_work, xfs_end_io);
 607	ioend->io_append_trans = NULL;
 608	ioend->io_bio = bio;
 609	return ioend;
 610}
 611
 612/*
 613 * Allocate a new bio, and chain the old bio to the new one.
 614 *
 615 * Note that we have to do perform the chaining in this unintuitive order
 616 * so that the bi_private linkage is set up in the right direction for the
 617 * traversal in xfs_destroy_ioend().
 618 */
 619static void
 620xfs_chain_bio(
 621	struct xfs_ioend	*ioend,
 622	struct writeback_control *wbc,
 623	struct buffer_head	*bh)
 624{
 625	struct bio *new;
 
 626
 627	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
 628	xfs_init_bio_from_bh(new, bh);
 
 
 
 
 
 
 629
 630	bio_chain(ioend->io_bio, new);
 631	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
 632	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
 633	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
 634	submit_bio(ioend->io_bio);
 635	ioend->io_bio = new;
 636}
 637
 638/*
 639 * Test to see if we've been building up a completion structure for
 640 * earlier buffers -- if so, we try to append to this ioend if we
 641 * can, otherwise we finish off any current ioend and start another.
 642 * Return the ioend we finished off so that the caller can submit it
 643 * once it has finished processing the dirty page.
 644 */
 645STATIC void
 646xfs_add_to_ioend(
 647	struct inode		*inode,
 648	struct buffer_head	*bh,
 649	xfs_off_t		offset,
 650	struct xfs_writepage_ctx *wpc,
 651	struct writeback_control *wbc,
 652	struct list_head	*iolist)
 653{
 654	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
 655	    bh->b_blocknr != wpc->last_block + 1 ||
 656	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
 657		if (wpc->ioend)
 658			list_add(&wpc->ioend->io_list, iolist);
 659		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
 660	}
 661
 662	/*
 663	 * If the buffer doesn't fit into the bio we need to allocate a new
 664	 * one.  This shouldn't happen more than once for a given buffer.
 665	 */
 666	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
 667		xfs_chain_bio(wpc->ioend, wbc, bh);
 668
 669	wpc->ioend->io_size += bh->b_size;
 670	wpc->last_block = bh->b_blocknr;
 671	xfs_start_buffer_writeback(bh);
 
 
 
 
 
 
 
 
 
 
 
 672}
 673
 674STATIC void
 675xfs_map_buffer(
 676	struct inode		*inode,
 677	struct buffer_head	*bh,
 678	struct xfs_bmbt_irec	*imap,
 679	xfs_off_t		offset)
 680{
 681	sector_t		bn;
 682	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 683	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 684	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 685
 686	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 687	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 688
 689	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 690	      ((offset - iomap_offset) >> inode->i_blkbits);
 691
 692	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 693
 694	bh->b_blocknr = bn;
 695	set_buffer_mapped(bh);
 696}
 697
 698STATIC void
 699xfs_map_at_offset(
 700	struct inode		*inode,
 701	struct buffer_head	*bh,
 702	struct xfs_bmbt_irec	*imap,
 703	xfs_off_t		offset)
 704{
 705	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 706	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 707
 708	xfs_map_buffer(inode, bh, imap, offset);
 709	set_buffer_mapped(bh);
 710	clear_buffer_delay(bh);
 711	clear_buffer_unwritten(bh);
 712}
 713
 714/*
 715 * Test if a given page contains at least one buffer of a given @type.
 716 * If @check_all_buffers is true, then we walk all the buffers in the page to
 717 * try to find one of the type passed in. If it is not set, then the caller only
 718 * needs to check the first buffer on the page for a match.
 719 */
 720STATIC bool
 721xfs_check_page_type(
 722	struct page		*page,
 723	unsigned int		type,
 724	bool			check_all_buffers)
 725{
 726	struct buffer_head	*bh;
 727	struct buffer_head	*head;
 728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729	if (PageWriteback(page))
 730		return false;
 731	if (!page->mapping)
 732		return false;
 733	if (!page_has_buffers(page))
 734		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735
 736	bh = head = page_buffers(page);
 737	do {
 738		if (buffer_unwritten(bh)) {
 739			if (type == XFS_IO_UNWRITTEN)
 740				return true;
 741		} else if (buffer_delay(bh)) {
 742			if (type == XFS_IO_DELALLOC)
 743				return true;
 744		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
 745			if (type == XFS_IO_OVERWRITE)
 746				return true;
 747		}
 748
 749		/* If we are only checking the first buffer, we are done now. */
 750		if (!check_all_buffers)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751			break;
 752	} while ((bh = bh->b_this_page) != head);
 753
 754	return false;
 
 
 
 
 
 
 
 
 
 755}
 756
 757STATIC void
 758xfs_vm_invalidatepage(
 759	struct page		*page,
 760	unsigned int		offset,
 761	unsigned int		length)
 762{
 763	trace_xfs_invalidatepage(page->mapping->host, page, offset,
 764				 length);
 765
 766	/*
 767	 * If we are invalidating the entire page, clear the dirty state from it
 768	 * so that we can check for attempts to release dirty cached pages in
 769	 * xfs_vm_releasepage().
 770	 */
 771	if (offset == 0 && length >= PAGE_SIZE)
 772		cancel_dirty_page(page);
 773	block_invalidatepage(page, offset, length);
 774}
 775
 776/*
 777 * If the page has delalloc buffers on it, we need to punch them out before we
 778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 780 * is done on that same region - the delalloc extent is returned when none is
 781 * supposed to be there.
 782 *
 783 * We prevent this by truncating away the delalloc regions on the page before
 784 * invalidating it. Because they are delalloc, we can do this without needing a
 785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 786 * truncation without a transaction as there is no space left for block
 787 * reservation (typically why we see a ENOSPC in writeback).
 788 *
 789 * This is not a performance critical path, so for now just do the punching a
 790 * buffer head at a time.
 791 */
 792STATIC void
 793xfs_aops_discard_page(
 794	struct page		*page)
 795{
 796	struct inode		*inode = page->mapping->host;
 797	struct xfs_inode	*ip = XFS_I(inode);
 798	struct buffer_head	*bh, *head;
 799	loff_t			offset = page_offset(page);
 800
 801	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
 802		goto out_invalidate;
 803
 804	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 805		goto out_invalidate;
 806
 807	xfs_alert(ip->i_mount,
 808		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
 809			page, ip->i_ino, offset);
 810
 811	xfs_ilock(ip, XFS_ILOCK_EXCL);
 812	bh = head = page_buffers(page);
 813	do {
 814		int		error;
 815		xfs_fileoff_t	start_fsb;
 816
 817		if (!buffer_delay(bh))
 818			goto next_buffer;
 819
 820		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 821		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 822		if (error) {
 823			/* something screwed, just bail */
 824			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 825				xfs_alert(ip->i_mount,
 826			"page discard unable to remove delalloc mapping.");
 827			}
 828			break;
 829		}
 830next_buffer:
 831		offset += i_blocksize(inode);
 832
 833	} while ((bh = bh->b_this_page) != head);
 834
 835	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 836out_invalidate:
 837	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
 838	return;
 839}
 840
 841static int
 842xfs_map_cow(
 843	struct xfs_writepage_ctx *wpc,
 844	struct inode		*inode,
 845	loff_t			offset,
 846	unsigned int		*new_type)
 
 
 
 
 
 
 847{
 848	struct xfs_inode	*ip = XFS_I(inode);
 
 849	struct xfs_bmbt_irec	imap;
 850	bool			is_cow = false;
 851	int			error;
 
 
 
 
 
 
 
 852
 853	/*
 854	 * If we already have a valid COW mapping keep using it.
 855	 */
 856	if (wpc->io_type == XFS_IO_COW) {
 857		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
 858		if (wpc->imap_valid) {
 859			*new_type = XFS_IO_COW;
 860			return 0;
 861		}
 862	}
 863
 864	/*
 865	 * Else we need to check if there is a COW mapping at this offset.
 
 
 
 
 
 
 
 
 866	 */
 867	xfs_ilock(ip, XFS_ILOCK_SHARED);
 868	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
 869	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 870
 871	if (!is_cow)
 872		return 0;
 873
 874	/*
 875	 * And if the COW mapping has a delayed extent here we need to
 876	 * allocate real space for it now.
 877	 */
 878	if (isnullstartblock(imap.br_startblock)) {
 879		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
 880				&imap);
 881		if (error)
 882			return error;
 
 
 
 
 
 
 
 
 883	}
 884
 885	wpc->io_type = *new_type = XFS_IO_COW;
 886	wpc->imap_valid = true;
 887	wpc->imap = imap;
 888	return 0;
 889}
 890
 891/*
 892 * We implement an immediate ioend submission policy here to avoid needing to
 893 * chain multiple ioends and hence nest mempool allocations which can violate
 894 * forward progress guarantees we need to provide. The current ioend we are
 895 * adding buffers to is cached on the writepage context, and if the new buffer
 896 * does not append to the cached ioend it will create a new ioend and cache that
 897 * instead.
 898 *
 899 * If a new ioend is created and cached, the old ioend is returned and queued
 900 * locally for submission once the entire page is processed or an error has been
 901 * detected.  While ioends are submitted immediately after they are completed,
 902 * batching optimisations are provided by higher level block plugging.
 903 *
 904 * At the end of a writeback pass, there will be a cached ioend remaining on the
 905 * writepage context that the caller will need to submit.
 906 */
 907static int
 908xfs_writepage_map(
 909	struct xfs_writepage_ctx *wpc,
 910	struct writeback_control *wbc,
 911	struct inode		*inode,
 912	struct page		*page,
 913	uint64_t		end_offset)
 914{
 915	LIST_HEAD(submit_list);
 916	struct xfs_ioend	*ioend, *next;
 917	struct buffer_head	*bh, *head;
 918	ssize_t			len = i_blocksize(inode);
 919	uint64_t		offset;
 920	int			error = 0;
 921	int			count = 0;
 922	int			uptodate = 1;
 923	unsigned int		new_type;
 924
 925	bh = head = page_buffers(page);
 926	offset = page_offset(page);
 
 
 
 
 
 927	do {
 
 
 928		if (offset >= end_offset)
 929			break;
 930		if (!buffer_uptodate(bh))
 931			uptodate = 0;
 932
 933		/*
 934		 * set_page_dirty dirties all buffers in a page, independent
 935		 * of their state.  The dirty state however is entirely
 936		 * meaningless for holes (!mapped && uptodate), so skip
 937		 * buffers covering holes here.
 938		 */
 939		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 940			wpc->imap_valid = false;
 941			continue;
 942		}
 943
 944		if (buffer_unwritten(bh))
 945			new_type = XFS_IO_UNWRITTEN;
 946		else if (buffer_delay(bh))
 947			new_type = XFS_IO_DELALLOC;
 948		else if (buffer_uptodate(bh))
 949			new_type = XFS_IO_OVERWRITE;
 950		else {
 951			if (PageUptodate(page))
 
 
 
 
 
 
 
 
 
 952				ASSERT(buffer_mapped(bh));
 953			/*
 954			 * This buffer is not uptodate and will not be
 955			 * written to disk.  Ensure that we will put any
 956			 * subsequent writeable buffers into a new
 957			 * ioend.
 958			 */
 959			wpc->imap_valid = false;
 960			continue;
 961		}
 962
 963		if (xfs_is_reflink_inode(XFS_I(inode))) {
 964			error = xfs_map_cow(wpc, inode, offset, &new_type);
 965			if (error)
 966				goto out;
 967		}
 968
 969		if (wpc->io_type != new_type) {
 970			wpc->io_type = new_type;
 971			wpc->imap_valid = false;
 972		}
 973
 974		if (wpc->imap_valid)
 975			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 976							 offset);
 977		if (!wpc->imap_valid) {
 978			error = xfs_map_blocks(inode, offset, &wpc->imap,
 979					     wpc->io_type);
 980			if (error)
 981				goto out;
 982			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
 983							 offset);
 984		}
 985		if (wpc->imap_valid) {
 986			lock_buffer(bh);
 987			if (wpc->io_type != XFS_IO_OVERWRITE)
 988				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
 989			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
 
 990			count++;
 991		}
 992
 
 
 
 993	} while (offset += len, ((bh = bh->b_this_page) != head));
 994
 995	if (uptodate && bh == head)
 996		SetPageUptodate(page);
 997
 998	ASSERT(wpc->ioend || list_empty(&submit_list));
 999
1000out:
1001	/*
1002	 * On error, we have to fail the ioend here because we have locked
1003	 * buffers in the ioend. If we don't do this, we'll deadlock
1004	 * invalidating the page as that tries to lock the buffers on the page.
1005	 * Also, because we may have set pages under writeback, we have to make
1006	 * sure we run IO completion to mark the error state of the IO
1007	 * appropriately, so we can't cancel the ioend directly here. That means
1008	 * we have to mark this page as under writeback if we included any
1009	 * buffers from it in the ioend chain so that completion treats it
1010	 * correctly.
1011	 *
1012	 * If we didn't include the page in the ioend, the on error we can
1013	 * simply discard and unlock it as there are no other users of the page
1014	 * or it's buffers right now. The caller will still need to trigger
1015	 * submission of outstanding ioends on the writepage context so they are
1016	 * treated correctly on error.
1017	 */
1018	if (count) {
1019		xfs_start_page_writeback(page, !error);
1020
1021		/*
1022		 * Preserve the original error if there was one, otherwise catch
1023		 * submission errors here and propagate into subsequent ioend
1024		 * submissions.
1025		 */
1026		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027			int error2;
1028
1029			list_del_init(&ioend->io_list);
1030			error2 = xfs_submit_ioend(wbc, ioend, error);
1031			if (error2 && !error)
1032				error = error2;
1033		}
1034	} else if (error) {
1035		xfs_aops_discard_page(page);
1036		ClearPageUptodate(page);
1037		unlock_page(page);
1038	} else {
1039		/*
1040		 * We can end up here with no error and nothing to write if we
1041		 * race with a partial page truncate on a sub-page block sized
1042		 * filesystem. In that case we need to mark the page clean.
1043		 */
1044		xfs_start_page_writeback(page, 1);
1045		end_page_writeback(page);
1046	}
1047
1048	mapping_set_error(page->mapping, error);
1049	return error;
1050}
1051
1052/*
1053 * Write out a dirty page.
1054 *
1055 * For delalloc space on the page we need to allocate space and flush it.
1056 * For unwritten space on the page we need to start the conversion to
1057 * regular allocated space.
1058 * For any other dirty buffer heads on the page we should flush them.
1059 */
1060STATIC int
1061xfs_do_writepage(
1062	struct page		*page,
1063	struct writeback_control *wbc,
1064	void			*data)
1065{
1066	struct xfs_writepage_ctx *wpc = data;
1067	struct inode		*inode = page->mapping->host;
1068	loff_t			offset;
1069	uint64_t              end_offset;
1070	pgoff_t                 end_index;
1071
1072	trace_xfs_writepage(inode, page, 0, 0);
1073
1074	ASSERT(page_has_buffers(page));
1075
1076	/*
1077	 * Refuse to write the page out if we are called from reclaim context.
1078	 *
1079	 * This avoids stack overflows when called from deeply used stacks in
1080	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1081	 * allow reclaim from kswapd as the stack usage there is relatively low.
1082	 *
1083	 * This should never happen except in the case of a VM regression so
1084	 * warn about it.
1085	 */
1086	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087			PF_MEMALLOC))
1088		goto redirty;
1089
1090	/*
1091	 * Given that we do not allow direct reclaim to call us, we should
1092	 * never be called while in a filesystem transaction.
1093	 */
1094	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095		goto redirty;
1096
1097	/*
1098	 * Is this page beyond the end of the file?
1099	 *
1100	 * The page index is less than the end_index, adjust the end_offset
1101	 * to the highest offset that this page should represent.
1102	 * -----------------------------------------------------
1103	 * |			file mapping	       | <EOF> |
1104	 * -----------------------------------------------------
1105	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1106	 * ^--------------------------------^----------|--------
1107	 * |     desired writeback range    |      see else    |
1108	 * ---------------------------------^------------------|
1109	 */
1110	offset = i_size_read(inode);
1111	end_index = offset >> PAGE_SHIFT;
1112	if (page->index < end_index)
1113		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114	else {
1115		/*
1116		 * Check whether the page to write out is beyond or straddles
1117		 * i_size or not.
1118		 * -------------------------------------------------------
1119		 * |		file mapping		        | <EOF>  |
1120		 * -------------------------------------------------------
1121		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1122		 * ^--------------------------------^-----------|---------
1123		 * |				    |      Straddles     |
1124		 * ---------------------------------^-----------|--------|
1125		 */
1126		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127
1128		/*
1129		 * Skip the page if it is fully outside i_size, e.g. due to a
1130		 * truncate operation that is in progress. We must redirty the
1131		 * page so that reclaim stops reclaiming it. Otherwise
1132		 * xfs_vm_releasepage() is called on it and gets confused.
1133		 *
1134		 * Note that the end_index is unsigned long, it would overflow
1135		 * if the given offset is greater than 16TB on 32-bit system
1136		 * and if we do check the page is fully outside i_size or not
1137		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138		 * will be evaluated to 0.  Hence this page will be redirtied
1139		 * and be written out repeatedly which would result in an
1140		 * infinite loop, the user program that perform this operation
1141		 * will hang.  Instead, we can verify this situation by checking
1142		 * if the page to write is totally beyond the i_size or if it's
1143		 * offset is just equal to the EOF.
1144		 */
1145		if (page->index > end_index ||
1146		    (page->index == end_index && offset_into_page == 0))
1147			goto redirty;
1148
1149		/*
1150		 * The page straddles i_size.  It must be zeroed out on each
1151		 * and every writepage invocation because it may be mmapped.
1152		 * "A file is mapped in multiples of the page size.  For a file
1153		 * that is not a multiple of the page size, the remaining
1154		 * memory is zeroed when mapped, and writes to that region are
1155		 * not written out to the file."
1156		 */
1157		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158
1159		/* Adjust the end_offset to the end of file */
1160		end_offset = offset;
1161	}
1162
1163	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
 
 
 
1164
1165redirty:
1166	redirty_page_for_writepage(wbc, page);
1167	unlock_page(page);
1168	return 0;
1169}
1170
1171STATIC int
1172xfs_vm_writepage(
1173	struct page		*page,
1174	struct writeback_control *wbc)
1175{
1176	struct xfs_writepage_ctx wpc = {
1177		.io_type = XFS_IO_INVALID,
1178	};
1179	int			ret;
1180
1181	ret = xfs_do_writepage(page, wbc, &wpc);
1182	if (wpc.ioend)
1183		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184	return ret;
1185}
1186
1187STATIC int
1188xfs_vm_writepages(
1189	struct address_space	*mapping,
1190	struct writeback_control *wbc)
1191{
1192	struct xfs_writepage_ctx wpc = {
1193		.io_type = XFS_IO_INVALID,
1194	};
1195	int			ret;
1196
1197	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199	if (wpc.ioend)
1200		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201	return ret;
1202}
1203
1204STATIC int
1205xfs_dax_writepages(
1206	struct address_space	*mapping,
1207	struct writeback_control *wbc)
1208{
1209	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210	return dax_writeback_mapping_range(mapping,
1211			xfs_find_bdev_for_inode(mapping->host), wbc);
1212}
1213
1214/*
1215 * Called to move a page into cleanable state - and from there
1216 * to be released. The page should already be clean. We always
1217 * have buffer heads in this call.
1218 *
1219 * Returns 1 if the page is ok to release, 0 otherwise.
1220 */
1221STATIC int
1222xfs_vm_releasepage(
1223	struct page		*page,
1224	gfp_t			gfp_mask)
1225{
1226	int			delalloc, unwritten;
1227
1228	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229
1230	/*
1231	 * mm accommodates an old ext3 case where clean pages might not have had
1232	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233	 * ->releasepage() via shrink_active_list(). Conversely,
1234	 * block_invalidatepage() can send pages that are still marked dirty but
1235	 * otherwise have invalidated buffers.
1236	 *
1237	 * We want to release the latter to avoid unnecessary buildup of the
1238	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239	 * that are entirely invalidated and need to be released.  Hence the
1240	 * only time we should get dirty pages here is through
1241	 * shrink_active_list() and so we can simply skip those now.
1242	 *
1243	 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244	 * or invalidated pages we are about to release.
1245	 */
1246	if (PageDirty(page))
1247		return 0;
1248
1249	xfs_count_page_state(page, &delalloc, &unwritten);
1250
1251	if (WARN_ON_ONCE(delalloc))
1252		return 0;
1253	if (WARN_ON_ONCE(unwritten))
1254		return 0;
1255
1256	return try_to_free_buffers(page);
1257}
1258
1259/*
1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261 * is, so that we can avoid repeated get_blocks calls.
1262 *
1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264 * for blocks beyond EOF must be marked new so that sub block regions can be
1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266 * was just allocated or is unwritten, otherwise the callers would overwrite
1267 * existing data with zeros. Hence we have to split the mapping into a range up
1268 * to and including EOF, and a second mapping for beyond EOF.
1269 */
1270static void
1271xfs_map_trim_size(
1272	struct inode		*inode,
1273	sector_t		iblock,
1274	struct buffer_head	*bh_result,
1275	struct xfs_bmbt_irec	*imap,
1276	xfs_off_t		offset,
1277	ssize_t			size)
1278{
1279	xfs_off_t		mapping_size;
1280
1281	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282	mapping_size <<= inode->i_blkbits;
1283
1284	ASSERT(mapping_size > 0);
1285	if (mapping_size > size)
1286		mapping_size = size;
1287	if (offset < i_size_read(inode) &&
1288	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289		/* limit mapping to block that spans EOF */
1290		mapping_size = roundup_64(i_size_read(inode) - offset,
1291					  i_blocksize(inode));
1292	}
1293	if (mapping_size > LONG_MAX)
1294		mapping_size = LONG_MAX;
1295
1296	bh_result->b_size = mapping_size;
1297}
1298
1299static int
1300xfs_get_blocks(
1301	struct inode		*inode,
1302	sector_t		iblock,
1303	struct buffer_head	*bh_result,
1304	int			create)
 
1305{
1306	struct xfs_inode	*ip = XFS_I(inode);
1307	struct xfs_mount	*mp = ip->i_mount;
1308	xfs_fileoff_t		offset_fsb, end_fsb;
1309	int			error = 0;
1310	int			lockmode = 0;
1311	struct xfs_bmbt_irec	imap;
1312	int			nimaps = 1;
1313	xfs_off_t		offset;
1314	ssize_t			size;
1315
1316	BUG_ON(create);
1317
1318	if (XFS_FORCED_SHUTDOWN(mp))
1319		return -EIO;
1320
1321	offset = (xfs_off_t)iblock << inode->i_blkbits;
1322	ASSERT(bh_result->b_size >= i_blocksize(inode));
1323	size = bh_result->b_size;
1324
1325	if (offset >= i_size_read(inode))
1326		return 0;
1327
1328	/*
1329	 * Direct I/O is usually done on preallocated files, so try getting
1330	 * a block mapping without an exclusive lock first.
1331	 */
1332	lockmode = xfs_ilock_data_map_shared(ip);
 
1333
1334	ASSERT(offset <= mp->m_super->s_maxbytes);
1335	if (offset > mp->m_super->s_maxbytes - size)
1336		size = mp->m_super->s_maxbytes - offset;
1337	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339
1340	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341			&nimaps, 0);
1342	if (error)
1343		goto out_unlock;
1344	if (!nimaps) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345		trace_xfs_get_blocks_notfound(ip, offset, size);
1346		goto out_unlock;
1347	}
1348
1349	trace_xfs_get_blocks_found(ip, offset, size,
1350		imap.br_state == XFS_EXT_UNWRITTEN ?
1351			XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352	xfs_iunlock(ip, lockmode);
1353
1354	/* trim mapping down to size requested */
1355	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356
1357	/*
1358	 * For unwritten extents do not report a disk address in the buffered
1359	 * read case (treat as if we're reading into a hole).
1360	 */
1361	if (xfs_bmap_is_real_extent(&imap))
1362		xfs_map_buffer(inode, bh_result, &imap, offset);
 
 
 
 
 
1363
1364	/*
1365	 * If this is a realtime file, data may be on a different device.
1366	 * to that pointed to from the buffer_head b_bdev currently.
1367	 */
1368	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369	return 0;
1370
1371out_unlock:
1372	xfs_iunlock(ip, lockmode);
1373	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374}
1375
1376STATIC sector_t
1377xfs_vm_bmap(
1378	struct address_space	*mapping,
1379	sector_t		block)
1380{
1381	struct inode		*inode = (struct inode *)mapping->host;
1382	struct xfs_inode	*ip = XFS_I(inode);
1383
1384	trace_xfs_vm_bmap(XFS_I(inode));
1385
1386	/*
1387	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1388	 * bypasses the file system for actual I/O.  We really can't allow
1389	 * that on reflinks inodes, so we have to skip out here.  And yes,
1390	 * 0 is the magic code for a bmap error.
1391	 *
1392	 * Since we don't pass back blockdev info, we can't return bmap
1393	 * information for rt files either.
1394	 */
1395	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1396		return 0;
1397
1398	filemap_write_and_wait(mapping);
1399	return generic_block_bmap(mapping, block, xfs_get_blocks);
1400}
1401
1402STATIC int
1403xfs_vm_readpage(
1404	struct file		*unused,
1405	struct page		*page)
1406{
1407	trace_xfs_vm_readpage(page->mapping->host, 1);
1408	return mpage_readpage(page, xfs_get_blocks);
1409}
1410
1411STATIC int
1412xfs_vm_readpages(
1413	struct file		*unused,
1414	struct address_space	*mapping,
1415	struct list_head	*pages,
1416	unsigned		nr_pages)
1417{
1418	trace_xfs_vm_readpages(mapping->host, nr_pages);
1419	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1420}
1421
1422/*
1423 * This is basically a copy of __set_page_dirty_buffers() with one
1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1425 * dirty, we'll never be able to clean them because we don't write buffers
1426 * beyond EOF, and that means we can't invalidate pages that span EOF
1427 * that have been marked dirty. Further, the dirty state can leak into
1428 * the file interior if the file is extended, resulting in all sorts of
1429 * bad things happening as the state does not match the underlying data.
1430 *
1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1432 * this only exist because of bufferheads and how the generic code manages them.
1433 */
1434STATIC int
1435xfs_vm_set_page_dirty(
1436	struct page		*page)
1437{
1438	struct address_space	*mapping = page->mapping;
1439	struct inode		*inode = mapping->host;
1440	loff_t			end_offset;
1441	loff_t			offset;
1442	int			newly_dirty;
1443
1444	if (unlikely(!mapping))
1445		return !TestSetPageDirty(page);
1446
1447	end_offset = i_size_read(inode);
1448	offset = page_offset(page);
1449
1450	spin_lock(&mapping->private_lock);
1451	if (page_has_buffers(page)) {
1452		struct buffer_head *head = page_buffers(page);
1453		struct buffer_head *bh = head;
1454
1455		do {
1456			if (offset < end_offset)
1457				set_buffer_dirty(bh);
1458			bh = bh->b_this_page;
1459			offset += i_blocksize(inode);
1460		} while (bh != head);
1461	}
1462	/*
1463	 * Lock out page->mem_cgroup migration to keep PageDirty
1464	 * synchronized with per-memcg dirty page counters.
1465	 */
1466	lock_page_memcg(page);
1467	newly_dirty = !TestSetPageDirty(page);
1468	spin_unlock(&mapping->private_lock);
1469
1470	if (newly_dirty)
1471		__set_page_dirty(page, mapping, 1);
1472	unlock_page_memcg(page);
1473	if (newly_dirty)
1474		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1475	return newly_dirty;
1476}
1477
1478const struct address_space_operations xfs_address_space_operations = {
1479	.readpage		= xfs_vm_readpage,
1480	.readpages		= xfs_vm_readpages,
1481	.writepage		= xfs_vm_writepage,
1482	.writepages		= xfs_vm_writepages,
1483	.set_page_dirty		= xfs_vm_set_page_dirty,
1484	.releasepage		= xfs_vm_releasepage,
1485	.invalidatepage		= xfs_vm_invalidatepage,
 
 
1486	.bmap			= xfs_vm_bmap,
1487	.direct_IO		= noop_direct_IO,
1488	.migratepage		= buffer_migrate_page,
1489	.is_partially_uptodate  = block_is_partially_uptodate,
1490	.error_remove_page	= generic_error_remove_page,
1491};
1492
1493const struct address_space_operations xfs_dax_aops = {
1494	.writepages		= xfs_dax_writepages,
1495	.direct_IO		= noop_direct_IO,
1496	.set_page_dirty		= noop_set_page_dirty,
1497	.invalidatepage		= noop_invalidatepage,
1498};
v3.1
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_bit.h"
  20#include "xfs_log.h"
  21#include "xfs_inum.h"
  22#include "xfs_sb.h"
  23#include "xfs_ag.h"
  24#include "xfs_trans.h"
  25#include "xfs_mount.h"
  26#include "xfs_bmap_btree.h"
  27#include "xfs_dinode.h"
  28#include "xfs_inode.h"
 
 
  29#include "xfs_alloc.h"
  30#include "xfs_error.h"
  31#include "xfs_rw.h"
  32#include "xfs_iomap.h"
  33#include "xfs_vnodeops.h"
  34#include "xfs_trace.h"
  35#include "xfs_bmap.h"
 
 
 
  36#include <linux/gfp.h>
  37#include <linux/mpage.h>
  38#include <linux/pagevec.h>
  39#include <linux/writeback.h>
  40
  41
  42/*
  43 * Prime number of hash buckets since address is used as the key.
  44 */
  45#define NVSYNC		37
  46#define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  48
  49void __init
  50xfs_ioend_init(void)
  51{
  52	int i;
  53
  54	for (i = 0; i < NVSYNC; i++)
  55		init_waitqueue_head(&xfs_ioend_wq[i]);
  56}
  57
  58void
  59xfs_ioend_wait(
  60	xfs_inode_t	*ip)
  61{
  62	wait_queue_head_t *wq = to_ioend_wq(ip);
  63
  64	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  65}
  66
  67STATIC void
  68xfs_ioend_wake(
  69	xfs_inode_t	*ip)
  70{
  71	if (atomic_dec_and_test(&ip->i_iocount))
  72		wake_up(to_ioend_wq(ip));
  73}
  74
  75void
  76xfs_count_page_state(
  77	struct page		*page,
  78	int			*delalloc,
  79	int			*unwritten)
  80{
  81	struct buffer_head	*bh, *head;
  82
  83	*delalloc = *unwritten = 0;
  84
  85	bh = head = page_buffers(page);
  86	do {
  87		if (buffer_unwritten(bh))
  88			(*unwritten) = 1;
  89		else if (buffer_delay(bh))
  90			(*delalloc) = 1;
  91	} while ((bh = bh->b_this_page) != head);
  92}
  93
  94STATIC struct block_device *
  95xfs_find_bdev_for_inode(
  96	struct inode		*inode)
  97{
  98	struct xfs_inode	*ip = XFS_I(inode);
  99	struct xfs_mount	*mp = ip->i_mount;
 100
 101	if (XFS_IS_REALTIME_INODE(ip))
 102		return mp->m_rtdev_targp->bt_bdev;
 103	else
 104		return mp->m_ddev_targp->bt_bdev;
 105}
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 107/*
 108 * We're now finished for good with this ioend structure.
 109 * Update the page state via the associated buffer_heads,
 110 * release holds on the inode and bio, and finally free
 111 * up memory.  Do not use the ioend after this.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112 */
 113STATIC void
 114xfs_destroy_ioend(
 115	xfs_ioend_t		*ioend)
 
 116{
 117	struct buffer_head	*bh, *next;
 118	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	for (bh = ioend->io_buffer_head; bh; bh = next) {
 121		next = bh->b_private;
 122		bh->b_end_io(bh, !ioend->io_error);
 123	}
 124
 125	/*
 126	 * Volume managers supporting multiple paths can send back ENODEV
 127	 * when the final path disappears.  In this case continuing to fill
 128	 * the page cache with dirty data which cannot be written out is
 129	 * evil, so prevent that.
 130	 */
 131	if (unlikely(ioend->io_error == -ENODEV)) {
 132		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
 133				      __FILE__, __LINE__);
 134	}
 135
 136	xfs_ioend_wake(ip);
 137	mempool_free(ioend, xfs_ioend_pool);
 138}
 139
 140/*
 141 * If the end of the current ioend is beyond the current EOF,
 142 * return the new EOF value, otherwise zero.
 143 */
 144STATIC xfs_fsize_t
 145xfs_ioend_new_eof(
 146	xfs_ioend_t		*ioend)
 
 
 
 
 
 
 147{
 148	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 149	xfs_fsize_t		isize;
 150	xfs_fsize_t		bsize;
 
 
 
 
 
 
 
 151
 152	bsize = ioend->io_offset + ioend->io_size;
 153	isize = MAX(ip->i_size, ip->i_new_size);
 154	isize = MIN(isize, bsize);
 155	return isize > ip->i_d.di_size ? isize : 0;
 
 
 
 
 
 
 
 156}
 157
 158/*
 159 * Update on-disk file size now that data has been written to disk.  The
 160 * current in-memory file size is i_size.  If a write is beyond eof i_new_size
 161 * will be the intended file size until i_size is updated.  If this write does
 162 * not extend all the way to the valid file size then restrict this update to
 163 * the end of the write.
 164 *
 165 * This function does not block as blocking on the inode lock in IO completion
 166 * can lead to IO completion order dependency deadlocks.. If it can't get the
 167 * inode ilock it will return EAGAIN. Callers must handle this.
 168 */
 169STATIC int
 170xfs_setfilesize(
 171	xfs_ioend_t		*ioend)
 
 
 
 172{
 173	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 174	xfs_fsize_t		isize;
 175
 176	if (unlikely(ioend->io_error))
 
 
 
 
 177		return 0;
 
 178
 179	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 180		return EAGAIN;
 181
 182	isize = xfs_ioend_new_eof(ioend);
 183	if (isize) {
 184		trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 185		ip->i_d.di_size = isize;
 186		xfs_mark_inode_dirty(ip);
 187	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188
 189	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 190	return 0;
 191}
 192
 193/*
 194 * Schedule IO completion handling on the final put of an ioend.
 195 */
 196STATIC void
 197xfs_finish_ioend(
 198	struct xfs_ioend	*ioend)
 199{
 200	if (atomic_dec_and_test(&ioend->io_remaining)) {
 201		if (ioend->io_type == IO_UNWRITTEN)
 202			queue_work(xfsconvertd_workqueue, &ioend->io_work);
 203		else
 204			queue_work(xfsdatad_workqueue, &ioend->io_work);
 
 
 
 
 
 
 
 
 
 
 205	}
 
 
 206}
 207
 208/*
 209 * IO write completion.
 210 */
 211STATIC void
 212xfs_end_io(
 213	struct work_struct *work)
 214{
 215	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 216	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 217	int		error = 0;
 
 
 
 218
 219	/*
 220	 * For unwritten extents we need to issue transactions to convert a
 221	 * range to normal written extens after the data I/O has finished.
 222	 */
 223	if (ioend->io_type == IO_UNWRITTEN &&
 224	    likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
 225
 226		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 227						 ioend->io_size);
 228		if (error)
 229			ioend->io_error = error;
 230	}
 231
 232	/*
 233	 * We might have to update the on-disk file size after extending
 234	 * writes.
 235	 */
 236	error = xfs_setfilesize(ioend);
 237	ASSERT(!error || error == EAGAIN);
 
 
 
 
 
 
 
 
 238
 239	/*
 240	 * If we didn't complete processing of the ioend, requeue it to the
 241	 * tail of the workqueue for another attempt later. Otherwise destroy
 242	 * it.
 243	 */
 244	if (error == EAGAIN) {
 245		atomic_inc(&ioend->io_remaining);
 246		xfs_finish_ioend(ioend);
 247		/* ensure we don't spin on blocked ioends */
 248		delay(1);
 249	} else {
 250		if (ioend->io_iocb)
 251			aio_complete(ioend->io_iocb, ioend->io_result, 0);
 252		xfs_destroy_ioend(ioend);
 253	}
 
 
 
 
 
 254}
 255
 256/*
 257 * Call IO completion handling in caller context on the final put of an ioend.
 258 */
 259STATIC void
 260xfs_finish_ioend_sync(
 261	struct xfs_ioend	*ioend)
 262{
 263	if (atomic_dec_and_test(&ioend->io_remaining))
 264		xfs_end_io(&ioend->io_work);
 265}
 266
 267/*
 268 * Allocate and initialise an IO completion structure.
 269 * We need to track unwritten extent write completion here initially.
 270 * We'll need to extend this for updating the ondisk inode size later
 271 * (vs. incore size).
 272 */
 273STATIC xfs_ioend_t *
 274xfs_alloc_ioend(
 275	struct inode		*inode,
 276	unsigned int		type)
 277{
 278	xfs_ioend_t		*ioend;
 
 279
 280	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 281
 282	/*
 283	 * Set the count to 1 initially, which will prevent an I/O
 284	 * completion callback from happening before we have started
 285	 * all the I/O from calling the completion routine too early.
 286	 */
 287	atomic_set(&ioend->io_remaining, 1);
 288	ioend->io_error = 0;
 289	ioend->io_list = NULL;
 290	ioend->io_type = type;
 291	ioend->io_inode = inode;
 292	ioend->io_buffer_head = NULL;
 293	ioend->io_buffer_tail = NULL;
 294	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
 295	ioend->io_offset = 0;
 296	ioend->io_size = 0;
 297	ioend->io_iocb = NULL;
 298	ioend->io_result = 0;
 299
 300	INIT_WORK(&ioend->io_work, xfs_end_io);
 301	return ioend;
 302}
 303
 304STATIC int
 305xfs_map_blocks(
 306	struct inode		*inode,
 307	loff_t			offset,
 308	struct xfs_bmbt_irec	*imap,
 309	int			type,
 310	int			nonblocking)
 311{
 312	struct xfs_inode	*ip = XFS_I(inode);
 313	struct xfs_mount	*mp = ip->i_mount;
 314	ssize_t			count = 1 << inode->i_blkbits;
 315	xfs_fileoff_t		offset_fsb, end_fsb;
 316	int			error = 0;
 317	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 318	int			nimaps = 1;
 319
 320	if (XFS_FORCED_SHUTDOWN(mp))
 321		return -XFS_ERROR(EIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 322
 323	if (type == IO_UNWRITTEN)
 
 324		bmapi_flags |= XFS_BMAPI_IGSTATE;
 325
 326	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 327		if (nonblocking)
 328			return -XFS_ERROR(EAGAIN);
 329		xfs_ilock(ip, XFS_ILOCK_SHARED);
 330	}
 331
 332	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 333	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 334	ASSERT(offset <= mp->m_maxioffset);
 335
 336	if (offset + count > mp->m_maxioffset)
 337		count = mp->m_maxioffset - offset;
 338	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 339	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 340	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
 341			  bmapi_flags,  NULL, 0, imap, &nimaps, NULL);
 
 
 
 
 
 
 
 342	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 343
 344	if (error)
 345		return -XFS_ERROR(error);
 346
 347	if (type == IO_DELALLOC &&
 348	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 349		error = xfs_iomap_write_allocate(ip, offset, count, imap);
 
 350		if (!error)
 351			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 352		return -XFS_ERROR(error);
 353	}
 354
 355#ifdef DEBUG
 356	if (type == IO_UNWRITTEN) {
 357		ASSERT(nimaps);
 358		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 359		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 360	}
 361#endif
 362	if (nimaps)
 363		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 364	return 0;
 365}
 366
 367STATIC int
 368xfs_imap_valid(
 369	struct inode		*inode,
 370	struct xfs_bmbt_irec	*imap,
 371	xfs_off_t		offset)
 372{
 373	offset >>= inode->i_blkbits;
 374
 375	return offset >= imap->br_startoff &&
 376		offset < imap->br_startoff + imap->br_blockcount;
 377}
 378
 379/*
 380 * BIO completion handler for buffered IO.
 381 */
 382STATIC void
 383xfs_end_bio(
 384	struct bio		*bio,
 385	int			error)
 386{
 387	xfs_ioend_t		*ioend = bio->bi_private;
 388
 389	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 390	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 391
 392	/* Toss bio and pass work off to an xfsdatad thread */
 393	bio->bi_private = NULL;
 394	bio->bi_end_io = NULL;
 395	bio_put(bio);
 396
 397	xfs_finish_ioend(ioend);
 398}
 399
 400STATIC void
 401xfs_submit_ioend_bio(
 402	struct writeback_control *wbc,
 403	xfs_ioend_t		*ioend,
 404	struct bio		*bio)
 405{
 406	atomic_inc(&ioend->io_remaining);
 407	bio->bi_private = ioend;
 408	bio->bi_end_io = xfs_end_bio;
 409
 410	/*
 411	 * If the I/O is beyond EOF we mark the inode dirty immediately
 412	 * but don't update the inode size until I/O completion.
 
 
 
 
 
 
 
 413	 */
 414	if (xfs_ioend_new_eof(ioend))
 415		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
 416
 417	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 418}
 419
 420STATIC struct bio *
 421xfs_alloc_ioend_bio(
 422	struct buffer_head	*bh)
 423{
 424	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
 425	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
 426
 427	ASSERT(bio->bi_private == NULL);
 428	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 429	bio->bi_bdev = bh->b_bdev;
 430	return bio;
 431}
 432
 433STATIC void
 434xfs_start_buffer_writeback(
 435	struct buffer_head	*bh)
 436{
 437	ASSERT(buffer_mapped(bh));
 438	ASSERT(buffer_locked(bh));
 439	ASSERT(!buffer_delay(bh));
 440	ASSERT(!buffer_unwritten(bh));
 441
 442	mark_buffer_async_write(bh);
 
 443	set_buffer_uptodate(bh);
 444	clear_buffer_dirty(bh);
 445}
 446
 447STATIC void
 448xfs_start_page_writeback(
 449	struct page		*page,
 450	int			clear_dirty,
 451	int			buffers)
 452{
 453	ASSERT(PageLocked(page));
 454	ASSERT(!PageWriteback(page));
 455	if (clear_dirty)
 
 
 
 
 
 
 
 
 456		clear_page_dirty_for_io(page);
 457	set_page_writeback(page);
 
 
 
 458	unlock_page(page);
 459	/* If no buffers on the page are to be written, finish it here */
 460	if (!buffers)
 461		end_page_writeback(page);
 462}
 463
 464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 465{
 466	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 467}
 468
 469/*
 470 * Submit all of the bios for all of the ioends we have saved up, covering the
 471 * initial writepage page and also any probed pages.
 472 *
 473 * Because we may have multiple ioends spanning a page, we need to start
 474 * writeback on all the buffers before we submit them for I/O. If we mark the
 475 * buffers as we got, then we can end up with a page that only has buffers
 476 * marked async write and I/O complete on can occur before we mark the other
 477 * buffers async write.
 478 *
 479 * The end result of this is that we trip a bug in end_page_writeback() because
 480 * we call it twice for the one page as the code in end_buffer_async_write()
 481 * assumes that all buffers on the page are started at the same time.
 482 *
 483 * The fix is two passes across the ioend list - one to start writeback on the
 484 * buffer_heads, and then submit them for I/O on the second pass.
 
 
 
 485 */
 486STATIC void
 487xfs_submit_ioend(
 488	struct writeback_control *wbc,
 489	xfs_ioend_t		*ioend)
 
 490{
 491	xfs_ioend_t		*head = ioend;
 492	xfs_ioend_t		*next;
 493	struct buffer_head	*bh;
 494	struct bio		*bio;
 495	sector_t		lastblock = 0;
 
 
 
 
 
 
 
 
 
 
 
 496
 497	/* Pass 1 - start writeback */
 498	do {
 499		next = ioend->io_list;
 500		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 501			xfs_start_buffer_writeback(bh);
 502	} while ((ioend = next) != NULL);
 
 
 
 
 
 503
 504	/* Pass 2 - submit I/O */
 505	ioend = head;
 506	do {
 507		next = ioend->io_list;
 508		bio = NULL;
 509
 510		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 
 
 
 
 
 
 
 511
 512			if (!bio) {
 513 retry:
 514				bio = xfs_alloc_ioend_bio(bh);
 515			} else if (bh->b_blocknr != lastblock + 1) {
 516				xfs_submit_ioend_bio(wbc, ioend, bio);
 517				goto retry;
 518			}
 
 
 519
 520			if (bio_add_buffer(bio, bh) != bh->b_size) {
 521				xfs_submit_ioend_bio(wbc, ioend, bio);
 522				goto retry;
 523			}
 524
 525			lastblock = bh->b_blocknr;
 526		}
 527		if (bio)
 528			xfs_submit_ioend_bio(wbc, ioend, bio);
 529		xfs_finish_ioend(ioend);
 530	} while ((ioend = next) != NULL);
 
 
 
 
 531}
 532
 533/*
 534 * Cancel submission of all buffer_heads so far in this endio.
 535 * Toss the endio too.  Only ever called for the initial page
 536 * in a writepage request, so only ever one page.
 
 
 537 */
 538STATIC void
 539xfs_cancel_ioend(
 540	xfs_ioend_t		*ioend)
 
 
 541{
 542	xfs_ioend_t		*next;
 543	struct buffer_head	*bh, *next_bh;
 544
 545	do {
 546		next = ioend->io_list;
 547		bh = ioend->io_buffer_head;
 548		do {
 549			next_bh = bh->b_private;
 550			clear_buffer_async_write(bh);
 551			unlock_buffer(bh);
 552		} while ((bh = next_bh) != NULL);
 553
 554		xfs_ioend_wake(XFS_I(ioend->io_inode));
 555		mempool_free(ioend, xfs_ioend_pool);
 556	} while ((ioend = next) != NULL);
 
 
 
 557}
 558
 559/*
 560 * Test to see if we've been building up a completion structure for
 561 * earlier buffers -- if so, we try to append to this ioend if we
 562 * can, otherwise we finish off any current ioend and start another.
 563 * Return true if we've finished the given ioend.
 
 564 */
 565STATIC void
 566xfs_add_to_ioend(
 567	struct inode		*inode,
 568	struct buffer_head	*bh,
 569	xfs_off_t		offset,
 570	unsigned int		type,
 571	xfs_ioend_t		**result,
 572	int			need_ioend)
 573{
 574	xfs_ioend_t		*ioend = *result;
 
 
 
 
 
 
 575
 576	if (!ioend || need_ioend || type != ioend->io_type) {
 577		xfs_ioend_t	*previous = *result;
 
 
 
 
 578
 579		ioend = xfs_alloc_ioend(inode, type);
 580		ioend->io_offset = offset;
 581		ioend->io_buffer_head = bh;
 582		ioend->io_buffer_tail = bh;
 583		if (previous)
 584			previous->io_list = ioend;
 585		*result = ioend;
 586	} else {
 587		ioend->io_buffer_tail->b_private = bh;
 588		ioend->io_buffer_tail = bh;
 589	}
 590
 591	bh->b_private = NULL;
 592	ioend->io_size += bh->b_size;
 593}
 594
 595STATIC void
 596xfs_map_buffer(
 597	struct inode		*inode,
 598	struct buffer_head	*bh,
 599	struct xfs_bmbt_irec	*imap,
 600	xfs_off_t		offset)
 601{
 602	sector_t		bn;
 603	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 604	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 605	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 606
 607	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 608	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 609
 610	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 611	      ((offset - iomap_offset) >> inode->i_blkbits);
 612
 613	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 614
 615	bh->b_blocknr = bn;
 616	set_buffer_mapped(bh);
 617}
 618
 619STATIC void
 620xfs_map_at_offset(
 621	struct inode		*inode,
 622	struct buffer_head	*bh,
 623	struct xfs_bmbt_irec	*imap,
 624	xfs_off_t		offset)
 625{
 626	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 627	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 628
 629	xfs_map_buffer(inode, bh, imap, offset);
 630	set_buffer_mapped(bh);
 631	clear_buffer_delay(bh);
 632	clear_buffer_unwritten(bh);
 633}
 634
 635/*
 636 * Test if a given page is suitable for writing as part of an unwritten
 637 * or delayed allocate extent.
 
 
 638 */
 639STATIC int
 640xfs_is_delayed_page(
 641	struct page		*page,
 642	unsigned int		type)
 
 643{
 644	if (PageWriteback(page))
 645		return 0;
 646
 647	if (page->mapping && page_has_buffers(page)) {
 648		struct buffer_head	*bh, *head;
 649		int			acceptable = 0;
 650
 651		bh = head = page_buffers(page);
 652		do {
 653			if (buffer_unwritten(bh))
 654				acceptable = (type == IO_UNWRITTEN);
 655			else if (buffer_delay(bh))
 656				acceptable = (type == IO_DELALLOC);
 657			else if (buffer_dirty(bh) && buffer_mapped(bh))
 658				acceptable = (type == IO_OVERWRITE);
 659			else
 660				break;
 661		} while ((bh = bh->b_this_page) != head);
 662
 663		if (acceptable)
 664			return 1;
 665	}
 666
 667	return 0;
 668}
 669
 670/*
 671 * Allocate & map buffers for page given the extent map. Write it out.
 672 * except for the original page of a writepage, this is called on
 673 * delalloc/unwritten pages only, for the original page it is possible
 674 * that the page has no mapping at all.
 675 */
 676STATIC int
 677xfs_convert_page(
 678	struct inode		*inode,
 679	struct page		*page,
 680	loff_t			tindex,
 681	struct xfs_bmbt_irec	*imap,
 682	xfs_ioend_t		**ioendp,
 683	struct writeback_control *wbc)
 684{
 685	struct buffer_head	*bh, *head;
 686	xfs_off_t		end_offset;
 687	unsigned long		p_offset;
 688	unsigned int		type;
 689	int			len, page_dirty;
 690	int			count = 0, done = 0, uptodate = 1;
 691 	xfs_off_t		offset = page_offset(page);
 692
 693	if (page->index != tindex)
 694		goto fail;
 695	if (!trylock_page(page))
 696		goto fail;
 697	if (PageWriteback(page))
 698		goto fail_unlock_page;
 699	if (page->mapping != inode->i_mapping)
 700		goto fail_unlock_page;
 701	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
 702		goto fail_unlock_page;
 703
 704	/*
 705	 * page_dirty is initially a count of buffers on the page before
 706	 * EOF and is decremented as we move each into a cleanable state.
 707	 *
 708	 * Derivation:
 709	 *
 710	 * End offset is the highest offset that this page should represent.
 711	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 712	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 713	 * hence give us the correct page_dirty count. On any other page,
 714	 * it will be zero and in that case we need page_dirty to be the
 715	 * count of buffers on the page.
 716	 */
 717	end_offset = min_t(unsigned long long,
 718			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 719			i_size_read(inode));
 720
 721	len = 1 << inode->i_blkbits;
 722	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 723					PAGE_CACHE_SIZE);
 724	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 725	page_dirty = p_offset / len;
 726
 727	bh = head = page_buffers(page);
 728	do {
 729		if (offset >= end_offset)
 730			break;
 731		if (!buffer_uptodate(bh))
 732			uptodate = 0;
 733		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 734			done = 1;
 735			continue;
 
 
 736		}
 737
 738		if (buffer_unwritten(bh) || buffer_delay(bh) ||
 739		    buffer_mapped(bh)) {
 740			if (buffer_unwritten(bh))
 741				type = IO_UNWRITTEN;
 742			else if (buffer_delay(bh))
 743				type = IO_DELALLOC;
 744			else
 745				type = IO_OVERWRITE;
 746
 747			if (!xfs_imap_valid(inode, imap, offset)) {
 748				done = 1;
 749				continue;
 750			}
 751
 752			lock_buffer(bh);
 753			if (type != IO_OVERWRITE)
 754				xfs_map_at_offset(inode, bh, imap, offset);
 755			xfs_add_to_ioend(inode, bh, offset, type,
 756					 ioendp, done);
 757
 758			page_dirty--;
 759			count++;
 760		} else {
 761			done = 1;
 762		}
 763	} while (offset += len, (bh = bh->b_this_page) != head);
 764
 765	if (uptodate && bh == head)
 766		SetPageUptodate(page);
 767
 768	if (count) {
 769		if (--wbc->nr_to_write <= 0 &&
 770		    wbc->sync_mode == WB_SYNC_NONE)
 771			done = 1;
 772	}
 773	xfs_start_page_writeback(page, !page_dirty, count);
 774
 775	return done;
 776 fail_unlock_page:
 777	unlock_page(page);
 778 fail:
 779	return 1;
 780}
 781
 782/*
 783 * Convert & write out a cluster of pages in the same extent as defined
 784 * by mp and following the start page.
 785 */
 786STATIC void
 787xfs_cluster_write(
 788	struct inode		*inode,
 789	pgoff_t			tindex,
 790	struct xfs_bmbt_irec	*imap,
 791	xfs_ioend_t		**ioendp,
 792	struct writeback_control *wbc,
 793	pgoff_t			tlast)
 794{
 795	struct pagevec		pvec;
 796	int			done = 0, i;
 797
 798	pagevec_init(&pvec, 0);
 799	while (!done && tindex <= tlast) {
 800		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 801
 802		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 803			break;
 
 804
 805		for (i = 0; i < pagevec_count(&pvec); i++) {
 806			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 807					imap, ioendp, wbc);
 808			if (done)
 809				break;
 810		}
 811
 812		pagevec_release(&pvec);
 813		cond_resched();
 814	}
 815}
 816
 817STATIC void
 818xfs_vm_invalidatepage(
 819	struct page		*page,
 820	unsigned long		offset)
 
 821{
 822	trace_xfs_invalidatepage(page->mapping->host, page, offset);
 823	block_invalidatepage(page, offset);
 
 
 
 
 
 
 
 
 
 824}
 825
 826/*
 827 * If the page has delalloc buffers on it, we need to punch them out before we
 828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 830 * is done on that same region - the delalloc extent is returned when none is
 831 * supposed to be there.
 832 *
 833 * We prevent this by truncating away the delalloc regions on the page before
 834 * invalidating it. Because they are delalloc, we can do this without needing a
 835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 836 * truncation without a transaction as there is no space left for block
 837 * reservation (typically why we see a ENOSPC in writeback).
 838 *
 839 * This is not a performance critical path, so for now just do the punching a
 840 * buffer head at a time.
 841 */
 842STATIC void
 843xfs_aops_discard_page(
 844	struct page		*page)
 845{
 846	struct inode		*inode = page->mapping->host;
 847	struct xfs_inode	*ip = XFS_I(inode);
 848	struct buffer_head	*bh, *head;
 849	loff_t			offset = page_offset(page);
 850
 851	if (!xfs_is_delayed_page(page, IO_DELALLOC))
 852		goto out_invalidate;
 853
 854	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 855		goto out_invalidate;
 856
 857	xfs_alert(ip->i_mount,
 858		"page discard on page %p, inode 0x%llx, offset %llu.",
 859			page, ip->i_ino, offset);
 860
 861	xfs_ilock(ip, XFS_ILOCK_EXCL);
 862	bh = head = page_buffers(page);
 863	do {
 864		int		error;
 865		xfs_fileoff_t	start_fsb;
 866
 867		if (!buffer_delay(bh))
 868			goto next_buffer;
 869
 870		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 871		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 872		if (error) {
 873			/* something screwed, just bail */
 874			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 875				xfs_alert(ip->i_mount,
 876			"page discard unable to remove delalloc mapping.");
 877			}
 878			break;
 879		}
 880next_buffer:
 881		offset += 1 << inode->i_blkbits;
 882
 883	} while ((bh = bh->b_this_page) != head);
 884
 885	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 886out_invalidate:
 887	xfs_vm_invalidatepage(page, 0);
 888	return;
 889}
 890
 891/*
 892 * Write out a dirty page.
 893 *
 894 * For delalloc space on the page we need to allocate space and flush it.
 895 * For unwritten space on the page we need to start the conversion to
 896 * regular allocated space.
 897 * For any other dirty buffer heads on the page we should flush them.
 898 */
 899STATIC int
 900xfs_vm_writepage(
 901	struct page		*page,
 902	struct writeback_control *wbc)
 903{
 904	struct inode		*inode = page->mapping->host;
 905	struct buffer_head	*bh, *head;
 906	struct xfs_bmbt_irec	imap;
 907	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
 908	loff_t			offset;
 909	unsigned int		type;
 910	__uint64_t              end_offset;
 911	pgoff_t                 end_index, last_index;
 912	ssize_t			len;
 913	int			err, imap_valid = 0, uptodate = 1;
 914	int			count = 0;
 915	int			nonblocking = 0;
 916
 917	trace_xfs_writepage(inode, page, 0);
 918
 919	ASSERT(page_has_buffers(page));
 
 
 
 
 
 
 
 920
 921	/*
 922	 * Refuse to write the page out if we are called from reclaim context.
 923	 *
 924	 * This avoids stack overflows when called from deeply used stacks in
 925	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 926	 * allow reclaim from kswapd as the stack usage there is relatively low.
 927	 *
 928	 * This should really be done by the core VM, but until that happens
 929	 * filesystems like XFS, btrfs and ext4 have to take care of this
 930	 * by themselves.
 931	 */
 932	if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
 933		goto redirty;
 
 
 
 
 934
 935	/*
 936	 * Given that we do not allow direct reclaim to call us, we should
 937	 * never be called while in a filesystem transaction.
 938	 */
 939	if (WARN_ON(current->flags & PF_FSTRANS))
 940		goto redirty;
 941
 942	/* Is this page beyond the end of the file? */
 943	offset = i_size_read(inode);
 944	end_index = offset >> PAGE_CACHE_SHIFT;
 945	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 946	if (page->index >= end_index) {
 947		if ((page->index >= end_index + 1) ||
 948		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
 949			unlock_page(page);
 950			return 0;
 951		}
 952	}
 953
 954	end_offset = min_t(unsigned long long,
 955			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 956			offset);
 957	len = 1 << inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958
 959	bh = head = page_buffers(page);
 960	offset = page_offset(page);
 961	type = IO_OVERWRITE;
 962
 963	if (wbc->sync_mode == WB_SYNC_NONE)
 964		nonblocking = 1;
 965
 966	do {
 967		int new_ioend = 0;
 968
 969		if (offset >= end_offset)
 970			break;
 971		if (!buffer_uptodate(bh))
 972			uptodate = 0;
 973
 974		/*
 975		 * set_page_dirty dirties all buffers in a page, independent
 976		 * of their state.  The dirty state however is entirely
 977		 * meaningless for holes (!mapped && uptodate), so skip
 978		 * buffers covering holes here.
 979		 */
 980		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 981			imap_valid = 0;
 982			continue;
 983		}
 984
 985		if (buffer_unwritten(bh)) {
 986			if (type != IO_UNWRITTEN) {
 987				type = IO_UNWRITTEN;
 988				imap_valid = 0;
 989			}
 990		} else if (buffer_delay(bh)) {
 991			if (type != IO_DELALLOC) {
 992				type = IO_DELALLOC;
 993				imap_valid = 0;
 994			}
 995		} else if (buffer_uptodate(bh)) {
 996			if (type != IO_OVERWRITE) {
 997				type = IO_OVERWRITE;
 998				imap_valid = 0;
 999			}
1000		} else {
1001			if (PageUptodate(page)) {
1002				ASSERT(buffer_mapped(bh));
1003				imap_valid = 0;
1004			}
 
 
 
 
 
1005			continue;
1006		}
1007
1008		if (imap_valid)
1009			imap_valid = xfs_imap_valid(inode, &imap, offset);
1010		if (!imap_valid) {
1011			/*
1012			 * If we didn't have a valid mapping then we need to
1013			 * put the new mapping into a separate ioend structure.
1014			 * This ensures non-contiguous extents always have
1015			 * separate ioends, which is particularly important
1016			 * for unwritten extent conversion at I/O completion
1017			 * time.
1018			 */
1019			new_ioend = 1;
1020			err = xfs_map_blocks(inode, offset, &imap, type,
1021					     nonblocking);
1022			if (err)
1023				goto error;
1024			imap_valid = xfs_imap_valid(inode, &imap, offset);
 
 
 
 
1025		}
1026		if (imap_valid) {
1027			lock_buffer(bh);
1028			if (type != IO_OVERWRITE)
1029				xfs_map_at_offset(inode, bh, &imap, offset);
1030			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031					 new_ioend);
1032			count++;
1033		}
1034
1035		if (!iohead)
1036			iohead = ioend;
1037
1038	} while (offset += len, ((bh = bh->b_this_page) != head));
1039
1040	if (uptodate && bh == head)
1041		SetPageUptodate(page);
1042
1043	xfs_start_page_writeback(page, 1, count);
1044
1045	if (ioend && imap_valid) {
1046		xfs_off_t		end_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048		end_index = imap.br_startoff + imap.br_blockcount;
 
 
 
 
 
 
1049
1050		/* to bytes */
1051		end_index <<= inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052
1053		/* to pages */
1054		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
 
1055
1056		/* check against file size */
1057		if (end_index > last_index)
1058			end_index = last_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1061				  wbc, end_index);
1062	}
 
 
 
1063
1064	if (iohead)
1065		xfs_submit_ioend(wbc, iohead);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066
1067	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069error:
1070	if (iohead)
1071		xfs_cancel_ioend(iohead);
 
 
 
 
 
 
1072
1073	if (err == -EAGAIN)
1074		goto redirty;
 
1075
1076	xfs_aops_discard_page(page);
1077	ClearPageUptodate(page);
1078	unlock_page(page);
1079	return err;
1080
1081redirty:
1082	redirty_page_for_writepage(wbc, page);
1083	unlock_page(page);
1084	return 0;
1085}
1086
1087STATIC int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088xfs_vm_writepages(
1089	struct address_space	*mapping,
1090	struct writeback_control *wbc)
1091{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093	return generic_writepages(mapping, wbc);
 
1094}
1095
1096/*
1097 * Called to move a page into cleanable state - and from there
1098 * to be released. The page should already be clean. We always
1099 * have buffer heads in this call.
1100 *
1101 * Returns 1 if the page is ok to release, 0 otherwise.
1102 */
1103STATIC int
1104xfs_vm_releasepage(
1105	struct page		*page,
1106	gfp_t			gfp_mask)
1107{
1108	int			delalloc, unwritten;
1109
1110	trace_xfs_releasepage(page->mapping->host, page, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111
1112	xfs_count_page_state(page, &delalloc, &unwritten);
1113
1114	if (WARN_ON(delalloc))
1115		return 0;
1116	if (WARN_ON(unwritten))
1117		return 0;
1118
1119	return try_to_free_buffers(page);
1120}
1121
1122STATIC int
1123__xfs_get_blocks(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124	struct inode		*inode,
1125	sector_t		iblock,
1126	struct buffer_head	*bh_result,
1127	int			create,
1128	int			direct)
1129{
1130	struct xfs_inode	*ip = XFS_I(inode);
1131	struct xfs_mount	*mp = ip->i_mount;
1132	xfs_fileoff_t		offset_fsb, end_fsb;
1133	int			error = 0;
1134	int			lockmode = 0;
1135	struct xfs_bmbt_irec	imap;
1136	int			nimaps = 1;
1137	xfs_off_t		offset;
1138	ssize_t			size;
1139	int			new = 0;
 
1140
1141	if (XFS_FORCED_SHUTDOWN(mp))
1142		return -XFS_ERROR(EIO);
1143
1144	offset = (xfs_off_t)iblock << inode->i_blkbits;
1145	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146	size = bh_result->b_size;
1147
1148	if (!create && direct && offset >= i_size_read(inode))
1149		return 0;
1150
1151	if (create) {
1152		lockmode = XFS_ILOCK_EXCL;
1153		xfs_ilock(ip, lockmode);
1154	} else {
1155		lockmode = xfs_ilock_map_shared(ip);
1156	}
1157
1158	ASSERT(offset <= mp->m_maxioffset);
1159	if (offset + size > mp->m_maxioffset)
1160		size = mp->m_maxioffset - offset;
1161	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163
1164	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165			  XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL);
1166	if (error)
1167		goto out_unlock;
1168
1169	if (create &&
1170	    (!nimaps ||
1171	     (imap.br_startblock == HOLESTARTBLOCK ||
1172	      imap.br_startblock == DELAYSTARTBLOCK))) {
1173		if (direct) {
1174			error = xfs_iomap_write_direct(ip, offset, size,
1175						       &imap, nimaps);
1176		} else {
1177			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178		}
1179		if (error)
1180			goto out_unlock;
1181
1182		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1183	} else if (nimaps) {
1184		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1185	} else {
1186		trace_xfs_get_blocks_notfound(ip, offset, size);
1187		goto out_unlock;
1188	}
 
 
 
 
1189	xfs_iunlock(ip, lockmode);
1190
1191	if (imap.br_startblock != HOLESTARTBLOCK &&
1192	    imap.br_startblock != DELAYSTARTBLOCK) {
1193		/*
1194		 * For unwritten extents do not report a disk address on
1195		 * the read case (treat as if we're reading into a hole).
1196		 */
1197		if (create || !ISUNWRITTEN(&imap))
1198			xfs_map_buffer(inode, bh_result, &imap, offset);
1199		if (create && ISUNWRITTEN(&imap)) {
1200			if (direct)
1201				bh_result->b_private = inode;
1202			set_buffer_unwritten(bh_result);
1203		}
1204	}
1205
1206	/*
1207	 * If this is a realtime file, data may be on a different device.
1208	 * to that pointed to from the buffer_head b_bdev currently.
1209	 */
1210	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1211
1212	/*
1213	 * If we previously allocated a block out beyond eof and we are now
1214	 * coming back to use it then we will need to flag it as new even if it
1215	 * has a disk address.
1216	 *
1217	 * With sub-block writes into unwritten extents we also need to mark
1218	 * the buffer as new so that the unwritten parts of the buffer gets
1219	 * correctly zeroed.
1220	 */
1221	if (create &&
1222	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1223	     (offset >= i_size_read(inode)) ||
1224	     (new || ISUNWRITTEN(&imap))))
1225		set_buffer_new(bh_result);
1226
1227	if (imap.br_startblock == DELAYSTARTBLOCK) {
1228		BUG_ON(direct);
1229		if (create) {
1230			set_buffer_uptodate(bh_result);
1231			set_buffer_mapped(bh_result);
1232			set_buffer_delay(bh_result);
1233		}
1234	}
1235
1236	/*
1237	 * If this is O_DIRECT or the mpage code calling tell them how large
1238	 * the mapping is, so that we can avoid repeated get_blocks calls.
1239	 */
1240	if (direct || size > (1 << inode->i_blkbits)) {
1241		xfs_off_t		mapping_size;
1242
1243		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244		mapping_size <<= inode->i_blkbits;
1245
1246		ASSERT(mapping_size > 0);
1247		if (mapping_size > size)
1248			mapping_size = size;
1249		if (mapping_size > LONG_MAX)
1250			mapping_size = LONG_MAX;
1251
1252		bh_result->b_size = mapping_size;
1253	}
1254
1255	return 0;
1256
1257out_unlock:
1258	xfs_iunlock(ip, lockmode);
1259	return -error;
1260}
1261
1262int
1263xfs_get_blocks(
1264	struct inode		*inode,
1265	sector_t		iblock,
1266	struct buffer_head	*bh_result,
1267	int			create)
1268{
1269	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1270}
1271
1272STATIC int
1273xfs_get_blocks_direct(
1274	struct inode		*inode,
1275	sector_t		iblock,
1276	struct buffer_head	*bh_result,
1277	int			create)
1278{
1279	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1280}
1281
1282/*
1283 * Complete a direct I/O write request.
1284 *
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1288 * to do this and we are done.  But in case this was a successful AIO
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions.  In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1292 */
1293STATIC void
1294xfs_end_io_direct_write(
1295	struct kiocb		*iocb,
1296	loff_t			offset,
1297	ssize_t			size,
1298	void			*private,
1299	int			ret,
1300	bool			is_async)
1301{
1302	struct xfs_ioend	*ioend = iocb->private;
1303	struct inode		*inode = ioend->io_inode;
1304
1305	/*
1306	 * blockdev_direct_IO can return an error even after the I/O
1307	 * completion handler was called.  Thus we need to protect
1308	 * against double-freeing.
1309	 */
1310	iocb->private = NULL;
1311
1312	ioend->io_offset = offset;
1313	ioend->io_size = size;
1314	if (private && size > 0)
1315		ioend->io_type = IO_UNWRITTEN;
1316
1317	if (is_async) {
1318		/*
1319		 * If we are converting an unwritten extent we need to delay
1320		 * the AIO completion until after the unwrittent extent
1321		 * conversion has completed, otherwise do it ASAP.
1322		 */
1323		if (ioend->io_type == IO_UNWRITTEN) {
1324			ioend->io_iocb = iocb;
1325			ioend->io_result = ret;
1326		} else {
1327			aio_complete(iocb, ret, 0);
1328		}
1329		xfs_finish_ioend(ioend);
1330	} else {
1331		xfs_finish_ioend_sync(ioend);
1332	}
1333
1334	/* XXX: probably should move into the real I/O completion handler */
1335	inode_dio_done(inode);
1336}
1337
1338STATIC ssize_t
1339xfs_vm_direct_IO(
1340	int			rw,
1341	struct kiocb		*iocb,
1342	const struct iovec	*iov,
1343	loff_t			offset,
1344	unsigned long		nr_segs)
1345{
1346	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1347	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1348	ssize_t			ret;
1349
1350	if (rw & WRITE) {
1351		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1352
1353		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354					    offset, nr_segs,
1355					    xfs_get_blocks_direct,
1356					    xfs_end_io_direct_write, NULL, 0);
1357		if (ret != -EIOCBQUEUED && iocb->private)
1358			xfs_destroy_ioend(iocb->private);
1359	} else {
1360		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361					    offset, nr_segs,
1362					    xfs_get_blocks_direct,
1363					    NULL, NULL, 0);
1364	}
1365
1366	return ret;
1367}
1368
1369STATIC void
1370xfs_vm_write_failed(
1371	struct address_space	*mapping,
1372	loff_t			to)
1373{
1374	struct inode		*inode = mapping->host;
1375
1376	if (to > inode->i_size) {
1377		/*
1378		 * punch out the delalloc blocks we have already allocated. We
1379		 * don't call xfs_setattr() to do this as we may be in the
1380		 * middle of a multi-iovec write and so the vfs inode->i_size
1381		 * will not match the xfs ip->i_size and so it will zero too
1382		 * much. Hence we jus truncate the page cache to zero what is
1383		 * necessary and punch the delalloc blocks directly.
1384		 */
1385		struct xfs_inode	*ip = XFS_I(inode);
1386		xfs_fileoff_t		start_fsb;
1387		xfs_fileoff_t		end_fsb;
1388		int			error;
1389
1390		truncate_pagecache(inode, to, inode->i_size);
1391
1392		/*
1393		 * Check if there are any blocks that are outside of i_size
1394		 * that need to be trimmed back.
1395		 */
1396		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398		if (end_fsb <= start_fsb)
1399			return;
1400
1401		xfs_ilock(ip, XFS_ILOCK_EXCL);
1402		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403							end_fsb - start_fsb);
1404		if (error) {
1405			/* something screwed, just bail */
1406			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1407				xfs_alert(ip->i_mount,
1408			"xfs_vm_write_failed: unable to clean up ino %lld",
1409						ip->i_ino);
1410			}
1411		}
1412		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1413	}
1414}
1415
1416STATIC int
1417xfs_vm_write_begin(
1418	struct file		*file,
1419	struct address_space	*mapping,
1420	loff_t			pos,
1421	unsigned		len,
1422	unsigned		flags,
1423	struct page		**pagep,
1424	void			**fsdata)
1425{
1426	int			ret;
1427
1428	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429				pagep, xfs_get_blocks);
1430	if (unlikely(ret))
1431		xfs_vm_write_failed(mapping, pos + len);
1432	return ret;
1433}
1434
1435STATIC int
1436xfs_vm_write_end(
1437	struct file		*file,
1438	struct address_space	*mapping,
1439	loff_t			pos,
1440	unsigned		len,
1441	unsigned		copied,
1442	struct page		*page,
1443	void			*fsdata)
1444{
1445	int			ret;
1446
1447	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448	if (unlikely(ret < len))
1449		xfs_vm_write_failed(mapping, pos + len);
1450	return ret;
1451}
1452
1453STATIC sector_t
1454xfs_vm_bmap(
1455	struct address_space	*mapping,
1456	sector_t		block)
1457{
1458	struct inode		*inode = (struct inode *)mapping->host;
1459	struct xfs_inode	*ip = XFS_I(inode);
1460
1461	trace_xfs_vm_bmap(XFS_I(inode));
1462	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1463	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1464	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
1465	return generic_block_bmap(mapping, block, xfs_get_blocks);
1466}
1467
1468STATIC int
1469xfs_vm_readpage(
1470	struct file		*unused,
1471	struct page		*page)
1472{
 
1473	return mpage_readpage(page, xfs_get_blocks);
1474}
1475
1476STATIC int
1477xfs_vm_readpages(
1478	struct file		*unused,
1479	struct address_space	*mapping,
1480	struct list_head	*pages,
1481	unsigned		nr_pages)
1482{
 
1483	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1484}
1485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486const struct address_space_operations xfs_address_space_operations = {
1487	.readpage		= xfs_vm_readpage,
1488	.readpages		= xfs_vm_readpages,
1489	.writepage		= xfs_vm_writepage,
1490	.writepages		= xfs_vm_writepages,
 
1491	.releasepage		= xfs_vm_releasepage,
1492	.invalidatepage		= xfs_vm_invalidatepage,
1493	.write_begin		= xfs_vm_write_begin,
1494	.write_end		= xfs_vm_write_end,
1495	.bmap			= xfs_vm_bmap,
1496	.direct_IO		= xfs_vm_direct_IO,
1497	.migratepage		= buffer_migrate_page,
1498	.is_partially_uptodate  = block_is_partially_uptodate,
1499	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
1500};