Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_inode.h"
  29#include "xfs_btree.h"
  30#include "xfs_ialloc.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_alloc.h"
  33#include "xfs_rtalloc.h"
  34#include "xfs_errortag.h"
  35#include "xfs_error.h"
  36#include "xfs_bmap.h"
  37#include "xfs_cksum.h"
  38#include "xfs_trans.h"
  39#include "xfs_buf_item.h"
  40#include "xfs_icreate_item.h"
  41#include "xfs_icache.h"
  42#include "xfs_trace.h"
  43#include "xfs_log.h"
  44#include "xfs_rmap.h"
  45
  46
  47/*
  48 * Allocation group level functions.
  49 */
  50int
  51xfs_ialloc_cluster_alignment(
  52	struct xfs_mount	*mp)
  53{
  54	if (xfs_sb_version_hasalign(&mp->m_sb) &&
  55	    mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
  56		return mp->m_sb.sb_inoalignmt;
  57	return 1;
  58}
  59
  60/*
  61 * Lookup a record by ino in the btree given by cur.
  62 */
  63int					/* error */
  64xfs_inobt_lookup(
  65	struct xfs_btree_cur	*cur,	/* btree cursor */
  66	xfs_agino_t		ino,	/* starting inode of chunk */
  67	xfs_lookup_t		dir,	/* <=, >=, == */
  68	int			*stat)	/* success/failure */
  69{
  70	cur->bc_rec.i.ir_startino = ino;
  71	cur->bc_rec.i.ir_holemask = 0;
  72	cur->bc_rec.i.ir_count = 0;
  73	cur->bc_rec.i.ir_freecount = 0;
  74	cur->bc_rec.i.ir_free = 0;
  75	return xfs_btree_lookup(cur, dir, stat);
  76}
  77
  78/*
  79 * Update the record referred to by cur to the value given.
  80 * This either works (return 0) or gets an EFSCORRUPTED error.
  81 */
  82STATIC int				/* error */
  83xfs_inobt_update(
  84	struct xfs_btree_cur	*cur,	/* btree cursor */
  85	xfs_inobt_rec_incore_t	*irec)	/* btree record */
  86{
  87	union xfs_btree_rec	rec;
  88
  89	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  90	if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  91		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  92		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  93		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  94	} else {
  95		/* ir_holemask/ir_count not supported on-disk */
  96		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  97	}
  98	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  99	return xfs_btree_update(cur, &rec);
 100}
 101
 102/* Convert on-disk btree record to incore inobt record. */
 103void
 104xfs_inobt_btrec_to_irec(
 105	struct xfs_mount		*mp,
 106	union xfs_btree_rec		*rec,
 107	struct xfs_inobt_rec_incore	*irec)
 108{
 109	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
 110	if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
 111		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
 112		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
 113		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
 114	} else {
 115		/*
 116		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
 117		 * values for full inode chunks.
 118		 */
 119		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
 120		irec->ir_count = XFS_INODES_PER_CHUNK;
 121		irec->ir_freecount =
 122				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
 123	}
 124	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
 125}
 126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127/*
 128 * Get the data from the pointed-to record.
 129 */
 130int
 131xfs_inobt_get_rec(
 132	struct xfs_btree_cur		*cur,
 133	struct xfs_inobt_rec_incore	*irec,
 134	int				*stat)
 135{
 
 136	union xfs_btree_rec		*rec;
 
 137	int				error;
 138
 139	error = xfs_btree_get_rec(cur, &rec, stat);
 140	if (error || *stat == 0)
 141		return error;
 142
 143	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
 
 
 
 144
 145	return 0;
 146}
 147
 148/*
 149 * Insert a single inobt record. Cursor must already point to desired location.
 150 */
 151STATIC int
 152xfs_inobt_insert_rec(
 153	struct xfs_btree_cur	*cur,
 154	uint16_t		holemask,
 155	uint8_t			count,
 156	int32_t			freecount,
 157	xfs_inofree_t		free,
 158	int			*stat)
 159{
 160	cur->bc_rec.i.ir_holemask = holemask;
 161	cur->bc_rec.i.ir_count = count;
 162	cur->bc_rec.i.ir_freecount = freecount;
 163	cur->bc_rec.i.ir_free = free;
 164	return xfs_btree_insert(cur, stat);
 165}
 166
 167/*
 168 * Insert records describing a newly allocated inode chunk into the inobt.
 169 */
 170STATIC int
 171xfs_inobt_insert(
 172	struct xfs_mount	*mp,
 173	struct xfs_trans	*tp,
 174	struct xfs_buf		*agbp,
 175	xfs_agino_t		newino,
 176	xfs_agino_t		newlen,
 177	xfs_btnum_t		btnum)
 178{
 179	struct xfs_btree_cur	*cur;
 180	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
 181	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
 182	xfs_agino_t		thisino;
 183	int			i;
 184	int			error;
 185
 186	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 
 
 
 187
 188	for (thisino = newino;
 189	     thisino < newino + newlen;
 190	     thisino += XFS_INODES_PER_CHUNK) {
 191		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 192		if (error) {
 193			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 194			return error;
 195		}
 196		ASSERT(i == 0);
 197
 198		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 199					     XFS_INODES_PER_CHUNK,
 200					     XFS_INODES_PER_CHUNK,
 201					     XFS_INOBT_ALL_FREE, &i);
 202		if (error) {
 203			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 204			return error;
 205		}
 206		ASSERT(i == 1);
 207	}
 208
 209	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 210
 211	return 0;
 212}
 213
 214/*
 215 * Verify that the number of free inodes in the AGI is correct.
 216 */
 217#ifdef DEBUG
 218STATIC int
 219xfs_check_agi_freecount(
 220	struct xfs_btree_cur	*cur,
 221	struct xfs_agi		*agi)
 222{
 223	if (cur->bc_nlevels == 1) {
 224		xfs_inobt_rec_incore_t rec;
 225		int		freecount = 0;
 226		int		error;
 227		int		i;
 228
 229		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 230		if (error)
 231			return error;
 232
 233		do {
 234			error = xfs_inobt_get_rec(cur, &rec, &i);
 235			if (error)
 236				return error;
 237
 238			if (i) {
 239				freecount += rec.ir_freecount;
 240				error = xfs_btree_increment(cur, 0, &i);
 241				if (error)
 242					return error;
 243			}
 244		} while (i == 1);
 245
 246		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
 247			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
 248	}
 249	return 0;
 250}
 251#else
 252#define xfs_check_agi_freecount(cur, agi)	0
 253#endif
 254
 255/*
 256 * Initialise a new set of inodes. When called without a transaction context
 257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 258 * than logging them (which in a transaction context puts them into the AIL
 259 * for writeback rather than the xfsbufd queue).
 260 */
 261int
 262xfs_ialloc_inode_init(
 263	struct xfs_mount	*mp,
 264	struct xfs_trans	*tp,
 265	struct list_head	*buffer_list,
 266	int			icount,
 267	xfs_agnumber_t		agno,
 268	xfs_agblock_t		agbno,
 269	xfs_agblock_t		length,
 270	unsigned int		gen)
 271{
 272	struct xfs_buf		*fbuf;
 273	struct xfs_dinode	*free;
 274	int			nbufs, blks_per_cluster, inodes_per_cluster;
 275	int			version;
 276	int			i, j;
 277	xfs_daddr_t		d;
 278	xfs_ino_t		ino = 0;
 
 279
 280	/*
 281	 * Loop over the new block(s), filling in the inodes.  For small block
 282	 * sizes, manipulate the inodes in buffers  which are multiples of the
 283	 * blocks size.
 284	 */
 285	blks_per_cluster = xfs_icluster_size_fsb(mp);
 286	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
 287	nbufs = length / blks_per_cluster;
 288
 289	/*
 290	 * Figure out what version number to use in the inodes we create.  If
 291	 * the superblock version has caught up to the one that supports the new
 292	 * inode format, then use the new inode version.  Otherwise use the old
 293	 * version so that old kernels will continue to be able to use the file
 294	 * system.
 295	 *
 296	 * For v3 inodes, we also need to write the inode number into the inode,
 297	 * so calculate the first inode number of the chunk here as
 298	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
 299	 * across multiple filesystem blocks (such as a cluster) and so cannot
 300	 * be used in the cluster buffer loop below.
 301	 *
 302	 * Further, because we are writing the inode directly into the buffer
 303	 * and calculating a CRC on the entire inode, we have ot log the entire
 304	 * inode so that the entire range the CRC covers is present in the log.
 305	 * That means for v3 inode we log the entire buffer rather than just the
 306	 * inode cores.
 307	 */
 308	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 309		version = 3;
 310		ino = XFS_AGINO_TO_INO(mp, agno,
 311				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
 312
 313		/*
 314		 * log the initialisation that is about to take place as an
 315		 * logical operation. This means the transaction does not
 316		 * need to log the physical changes to the inode buffers as log
 317		 * recovery will know what initialisation is actually needed.
 318		 * Hence we only need to log the buffers as "ordered" buffers so
 319		 * they track in the AIL as if they were physically logged.
 320		 */
 321		if (tp)
 322			xfs_icreate_log(tp, agno, agbno, icount,
 323					mp->m_sb.sb_inodesize, length, gen);
 324	} else
 325		version = 2;
 326
 327	for (j = 0; j < nbufs; j++) {
 328		/*
 329		 * Get the block.
 330		 */
 331		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
 332		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 333					 mp->m_bsize * blks_per_cluster,
 334					 XBF_UNMAPPED);
 335		if (!fbuf)
 336			return -ENOMEM;
 
 337
 338		/* Initialize the inode buffers and log them appropriately. */
 339		fbuf->b_ops = &xfs_inode_buf_ops;
 340		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 341		for (i = 0; i < inodes_per_cluster; i++) {
 342			int	ioffset = i << mp->m_sb.sb_inodelog;
 343			uint	isize = xfs_dinode_size(version);
 344
 345			free = xfs_make_iptr(mp, fbuf, i);
 346			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 347			free->di_version = version;
 348			free->di_gen = cpu_to_be32(gen);
 349			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 350
 351			if (version == 3) {
 352				free->di_ino = cpu_to_be64(ino);
 353				ino++;
 354				uuid_copy(&free->di_uuid,
 355					  &mp->m_sb.sb_meta_uuid);
 356				xfs_dinode_calc_crc(mp, free);
 357			} else if (tp) {
 358				/* just log the inode core */
 359				xfs_trans_log_buf(tp, fbuf, ioffset,
 360						  ioffset + isize - 1);
 361			}
 362		}
 363
 364		if (tp) {
 365			/*
 366			 * Mark the buffer as an inode allocation buffer so it
 367			 * sticks in AIL at the point of this allocation
 368			 * transaction. This ensures the they are on disk before
 369			 * the tail of the log can be moved past this
 370			 * transaction (i.e. by preventing relogging from moving
 371			 * it forward in the log).
 372			 */
 373			xfs_trans_inode_alloc_buf(tp, fbuf);
 374			if (version == 3) {
 375				/*
 376				 * Mark the buffer as ordered so that they are
 377				 * not physically logged in the transaction but
 378				 * still tracked in the AIL as part of the
 379				 * transaction and pin the log appropriately.
 380				 */
 381				xfs_trans_ordered_buf(tp, fbuf);
 382			}
 383		} else {
 384			fbuf->b_flags |= XBF_DONE;
 385			xfs_buf_delwri_queue(fbuf, buffer_list);
 386			xfs_buf_relse(fbuf);
 387		}
 388	}
 389	return 0;
 390}
 391
 392/*
 393 * Align startino and allocmask for a recently allocated sparse chunk such that
 394 * they are fit for insertion (or merge) into the on-disk inode btrees.
 395 *
 396 * Background:
 397 *
 398 * When enabled, sparse inode support increases the inode alignment from cluster
 399 * size to inode chunk size. This means that the minimum range between two
 400 * non-adjacent inode records in the inobt is large enough for a full inode
 401 * record. This allows for cluster sized, cluster aligned block allocation
 402 * without need to worry about whether the resulting inode record overlaps with
 403 * another record in the tree. Without this basic rule, we would have to deal
 404 * with the consequences of overlap by potentially undoing recent allocations in
 405 * the inode allocation codepath.
 406 *
 407 * Because of this alignment rule (which is enforced on mount), there are two
 408 * inobt possibilities for newly allocated sparse chunks. One is that the
 409 * aligned inode record for the chunk covers a range of inodes not already
 410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 411 * other is that a record already exists at the aligned startino that considers
 412 * the newly allocated range as sparse. In the latter case, record content is
 413 * merged in hope that sparse inode chunks fill to full chunks over time.
 414 */
 415STATIC void
 416xfs_align_sparse_ino(
 417	struct xfs_mount		*mp,
 418	xfs_agino_t			*startino,
 419	uint16_t			*allocmask)
 420{
 421	xfs_agblock_t			agbno;
 422	xfs_agblock_t			mod;
 423	int				offset;
 424
 425	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 426	mod = agbno % mp->m_sb.sb_inoalignmt;
 427	if (!mod)
 428		return;
 429
 430	/* calculate the inode offset and align startino */
 431	offset = mod << mp->m_sb.sb_inopblog;
 432	*startino -= offset;
 433
 434	/*
 435	 * Since startino has been aligned down, left shift allocmask such that
 436	 * it continues to represent the same physical inodes relative to the
 437	 * new startino.
 438	 */
 439	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 440}
 441
 442/*
 443 * Determine whether the source inode record can merge into the target. Both
 444 * records must be sparse, the inode ranges must match and there must be no
 445 * allocation overlap between the records.
 446 */
 447STATIC bool
 448__xfs_inobt_can_merge(
 449	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
 450	struct xfs_inobt_rec_incore	*srec)	/* src record */
 451{
 452	uint64_t			talloc;
 453	uint64_t			salloc;
 454
 455	/* records must cover the same inode range */
 456	if (trec->ir_startino != srec->ir_startino)
 457		return false;
 458
 459	/* both records must be sparse */
 460	if (!xfs_inobt_issparse(trec->ir_holemask) ||
 461	    !xfs_inobt_issparse(srec->ir_holemask))
 462		return false;
 463
 464	/* both records must track some inodes */
 465	if (!trec->ir_count || !srec->ir_count)
 466		return false;
 467
 468	/* can't exceed capacity of a full record */
 469	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 470		return false;
 471
 472	/* verify there is no allocation overlap */
 473	talloc = xfs_inobt_irec_to_allocmask(trec);
 474	salloc = xfs_inobt_irec_to_allocmask(srec);
 475	if (talloc & salloc)
 476		return false;
 477
 478	return true;
 479}
 480
 481/*
 482 * Merge the source inode record into the target. The caller must call
 483 * __xfs_inobt_can_merge() to ensure the merge is valid.
 484 */
 485STATIC void
 486__xfs_inobt_rec_merge(
 487	struct xfs_inobt_rec_incore	*trec,	/* target */
 488	struct xfs_inobt_rec_incore	*srec)	/* src */
 489{
 490	ASSERT(trec->ir_startino == srec->ir_startino);
 491
 492	/* combine the counts */
 493	trec->ir_count += srec->ir_count;
 494	trec->ir_freecount += srec->ir_freecount;
 495
 496	/*
 497	 * Merge the holemask and free mask. For both fields, 0 bits refer to
 498	 * allocated inodes. We combine the allocated ranges with bitwise AND.
 499	 */
 500	trec->ir_holemask &= srec->ir_holemask;
 501	trec->ir_free &= srec->ir_free;
 502}
 503
 504/*
 505 * Insert a new sparse inode chunk into the associated inode btree. The inode
 506 * record for the sparse chunk is pre-aligned to a startino that should match
 507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 508 * to fill over time.
 509 *
 510 * This function supports two modes of handling preexisting records depending on
 511 * the merge flag. If merge is true, the provided record is merged with the
 512 * existing record and updated in place. The merged record is returned in nrec.
 513 * If merge is false, an existing record is replaced with the provided record.
 514 * If no preexisting record exists, the provided record is always inserted.
 515 *
 516 * It is considered corruption if a merge is requested and not possible. Given
 517 * the sparse inode alignment constraints, this should never happen.
 518 */
 519STATIC int
 520xfs_inobt_insert_sprec(
 521	struct xfs_mount		*mp,
 522	struct xfs_trans		*tp,
 523	struct xfs_buf			*agbp,
 524	int				btnum,
 525	struct xfs_inobt_rec_incore	*nrec,	/* in/out: new/merged rec. */
 526	bool				merge)	/* merge or replace */
 527{
 
 528	struct xfs_btree_cur		*cur;
 529	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
 530	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
 531	int				error;
 532	int				i;
 533	struct xfs_inobt_rec_incore	rec;
 534
 535	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
 536
 537	/* the new record is pre-aligned so we know where to look */
 538	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 539	if (error)
 540		goto error;
 541	/* if nothing there, insert a new record and return */
 542	if (i == 0) {
 543		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 544					     nrec->ir_count, nrec->ir_freecount,
 545					     nrec->ir_free, &i);
 546		if (error)
 547			goto error;
 548		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 
 
 
 
 549
 550		goto out;
 551	}
 552
 553	/*
 554	 * A record exists at this startino. Merge or replace the record
 555	 * depending on what we've been asked to do.
 556	 */
 557	if (merge) {
 558		error = xfs_inobt_get_rec(cur, &rec, &i);
 559		if (error)
 560			goto error;
 561		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 562		XFS_WANT_CORRUPTED_GOTO(mp,
 563					rec.ir_startino == nrec->ir_startino,
 564					error);
 
 
 
 
 
 565
 566		/*
 567		 * This should never fail. If we have coexisting records that
 568		 * cannot merge, something is seriously wrong.
 569		 */
 570		XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
 571					error);
 
 
 
 572
 573		trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
 574					 rec.ir_holemask, nrec->ir_startino,
 575					 nrec->ir_holemask);
 576
 577		/* merge to nrec to output the updated record */
 578		__xfs_inobt_rec_merge(nrec, &rec);
 579
 580		trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
 581					  nrec->ir_holemask);
 582
 583		error = xfs_inobt_rec_check_count(mp, nrec);
 584		if (error)
 585			goto error;
 586	}
 587
 588	error = xfs_inobt_update(cur, nrec);
 589	if (error)
 590		goto error;
 591
 592out:
 593	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 594	return 0;
 595error:
 596	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 597	return error;
 598}
 599
 600/*
 601 * Allocate new inodes in the allocation group specified by agbp.
 602 * Return 0 for success, else error code.
 
 
 
 
 
 603 */
 604STATIC int				/* error code or 0 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605xfs_ialloc_ag_alloc(
 606	xfs_trans_t	*tp,		/* transaction pointer */
 607	xfs_buf_t	*agbp,		/* alloc group buffer */
 608	int		*alloc)
 609{
 610	xfs_agi_t	*agi;		/* allocation group header */
 611	xfs_alloc_arg_t	args;		/* allocation argument structure */
 612	xfs_agnumber_t	agno;
 613	int		error;
 614	xfs_agino_t	newino;		/* new first inode's number */
 615	xfs_agino_t	newlen;		/* new number of inodes */
 616	int		isaligned = 0;	/* inode allocation at stripe unit */
 617					/* boundary */
 618	uint16_t	allocmask = (uint16_t) -1; /* init. to full chunk */
 619	struct xfs_inobt_rec_incore rec;
 620	struct xfs_perag *pag;
 621	int		do_sparse = 0;
 
 622
 623	memset(&args, 0, sizeof(args));
 624	args.tp = tp;
 625	args.mp = tp->t_mountp;
 626	args.fsbno = NULLFSBLOCK;
 627	xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
 
 628
 629#ifdef DEBUG
 630	/* randomly do sparse inode allocations */
 631	if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
 632	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
 633		do_sparse = prandom_u32() & 1;
 634#endif
 635
 636	/*
 637	 * Locking will ensure that we don't have two callers in here
 638	 * at one time.
 639	 */
 640	newlen = args.mp->m_ialloc_inos;
 641	if (args.mp->m_maxicount &&
 642	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 643							args.mp->m_maxicount)
 644		return -ENOSPC;
 645	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
 646	/*
 647	 * First try to allocate inodes contiguous with the last-allocated
 648	 * chunk of inodes.  If the filesystem is striped, this will fill
 649	 * an entire stripe unit with inodes.
 650	 */
 651	agi = XFS_BUF_TO_AGI(agbp);
 652	newino = be32_to_cpu(agi->agi_newino);
 653	agno = be32_to_cpu(agi->agi_seqno);
 654	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 655		     args.mp->m_ialloc_blks;
 656	if (do_sparse)
 657		goto sparse_alloc;
 658	if (likely(newino != NULLAGINO &&
 659		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 660		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 661		args.type = XFS_ALLOCTYPE_THIS_BNO;
 662		args.prod = 1;
 663
 664		/*
 665		 * We need to take into account alignment here to ensure that
 666		 * we don't modify the free list if we fail to have an exact
 667		 * block. If we don't have an exact match, and every oher
 668		 * attempt allocation attempt fails, we'll end up cancelling
 669		 * a dirty transaction and shutting down.
 670		 *
 671		 * For an exact allocation, alignment must be 1,
 672		 * however we need to take cluster alignment into account when
 673		 * fixing up the freelist. Use the minalignslop field to
 674		 * indicate that extra blocks might be required for alignment,
 675		 * but not to use them in the actual exact allocation.
 676		 */
 677		args.alignment = 1;
 678		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
 679
 680		/* Allow space for the inode btree to split. */
 681		args.minleft = args.mp->m_in_maxlevels - 1;
 682		if ((error = xfs_alloc_vextent(&args)))
 
 
 
 683			return error;
 684
 685		/*
 686		 * This request might have dirtied the transaction if the AG can
 687		 * satisfy the request, but the exact block was not available.
 688		 * If the allocation did fail, subsequent requests will relax
 689		 * the exact agbno requirement and increase the alignment
 690		 * instead. It is critical that the total size of the request
 691		 * (len + alignment + slop) does not increase from this point
 692		 * on, so reset minalignslop to ensure it is not included in
 693		 * subsequent requests.
 694		 */
 695		args.minalignslop = 0;
 696	}
 697
 698	if (unlikely(args.fsbno == NULLFSBLOCK)) {
 699		/*
 700		 * Set the alignment for the allocation.
 701		 * If stripe alignment is turned on then align at stripe unit
 702		 * boundary.
 703		 * If the cluster size is smaller than a filesystem block
 704		 * then we're doing I/O for inodes in filesystem block size
 705		 * pieces, so don't need alignment anyway.
 706		 */
 707		isaligned = 0;
 708		if (args.mp->m_sinoalign) {
 709			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
 710			args.alignment = args.mp->m_dalign;
 711			isaligned = 1;
 712		} else
 713			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 714		/*
 715		 * Need to figure out where to allocate the inode blocks.
 716		 * Ideally they should be spaced out through the a.g.
 717		 * For now, just allocate blocks up front.
 718		 */
 719		args.agbno = be32_to_cpu(agi->agi_root);
 720		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 721		/*
 722		 * Allocate a fixed-size extent of inodes.
 723		 */
 724		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 725		args.prod = 1;
 726		/*
 727		 * Allow space for the inode btree to split.
 728		 */
 729		args.minleft = args.mp->m_in_maxlevels - 1;
 730		if ((error = xfs_alloc_vextent(&args)))
 
 
 
 731			return error;
 732	}
 733
 734	/*
 735	 * If stripe alignment is turned on, then try again with cluster
 736	 * alignment.
 737	 */
 738	if (isaligned && args.fsbno == NULLFSBLOCK) {
 739		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 740		args.agbno = be32_to_cpu(agi->agi_root);
 741		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 742		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
 743		if ((error = xfs_alloc_vextent(&args)))
 744			return error;
 745	}
 746
 747	/*
 748	 * Finally, try a sparse allocation if the filesystem supports it and
 749	 * the sparse allocation length is smaller than a full chunk.
 750	 */
 751	if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
 752	    args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
 753	    args.fsbno == NULLFSBLOCK) {
 754sparse_alloc:
 755		args.type = XFS_ALLOCTYPE_NEAR_BNO;
 756		args.agbno = be32_to_cpu(agi->agi_root);
 757		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
 758		args.alignment = args.mp->m_sb.sb_spino_align;
 759		args.prod = 1;
 760
 761		args.minlen = args.mp->m_ialloc_min_blks;
 762		args.maxlen = args.minlen;
 763
 764		/*
 765		 * The inode record will be aligned to full chunk size. We must
 766		 * prevent sparse allocation from AG boundaries that result in
 767		 * invalid inode records, such as records that start at agbno 0
 768		 * or extend beyond the AG.
 769		 *
 770		 * Set min agbno to the first aligned, non-zero agbno and max to
 771		 * the last aligned agbno that is at least one full chunk from
 772		 * the end of the AG.
 773		 */
 774		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 775		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 776					    args.mp->m_sb.sb_inoalignmt) -
 777				 args.mp->m_ialloc_blks;
 778
 779		error = xfs_alloc_vextent(&args);
 
 
 780		if (error)
 781			return error;
 782
 783		newlen = args.len << args.mp->m_sb.sb_inopblog;
 784		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 785		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 786	}
 787
 788	if (args.fsbno == NULLFSBLOCK) {
 789		*alloc = 0;
 790		return 0;
 791	}
 792	ASSERT(args.len == args.minlen);
 793
 794	/*
 795	 * Stamp and write the inode buffers.
 796	 *
 797	 * Seed the new inode cluster with a random generation number. This
 798	 * prevents short-term reuse of generation numbers if a chunk is
 799	 * freed and then immediately reallocated. We use random numbers
 800	 * rather than a linear progression to prevent the next generation
 801	 * number from being easily guessable.
 802	 */
 803	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
 804			args.agbno, args.len, prandom_u32());
 805
 806	if (error)
 807		return error;
 808	/*
 809	 * Convert the results.
 810	 */
 811	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
 812
 813	if (xfs_inobt_issparse(~allocmask)) {
 814		/*
 815		 * We've allocated a sparse chunk. Align the startino and mask.
 816		 */
 817		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 818
 819		rec.ir_startino = newino;
 820		rec.ir_holemask = ~allocmask;
 821		rec.ir_count = newlen;
 822		rec.ir_freecount = newlen;
 823		rec.ir_free = XFS_INOBT_ALL_FREE;
 824
 825		/*
 826		 * Insert the sparse record into the inobt and allow for a merge
 827		 * if necessary. If a merge does occur, rec is updated to the
 828		 * merged record.
 829		 */
 830		error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
 831					       &rec, true);
 832		if (error == -EFSCORRUPTED) {
 833			xfs_alert(args.mp,
 834	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 835				  XFS_AGINO_TO_INO(args.mp, agno,
 836						   rec.ir_startino),
 837				  rec.ir_holemask, rec.ir_count);
 838			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 839		}
 840		if (error)
 841			return error;
 842
 843		/*
 844		 * We can't merge the part we've just allocated as for the inobt
 845		 * due to finobt semantics. The original record may or may not
 846		 * exist independent of whether physical inodes exist in this
 847		 * sparse chunk.
 848		 *
 849		 * We must update the finobt record based on the inobt record.
 850		 * rec contains the fully merged and up to date inobt record
 851		 * from the previous call. Set merge false to replace any
 852		 * existing record with this one.
 853		 */
 854		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 855			error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
 856						       XFS_BTNUM_FINO, &rec,
 857						       false);
 858			if (error)
 859				return error;
 860		}
 861	} else {
 862		/* full chunk - insert new records to both btrees */
 863		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
 864					 XFS_BTNUM_INO);
 865		if (error)
 866			return error;
 867
 868		if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
 869			error = xfs_inobt_insert(args.mp, tp, agbp, newino,
 870						 newlen, XFS_BTNUM_FINO);
 871			if (error)
 872				return error;
 873		}
 874	}
 875
 876	/*
 877	 * Update AGI counts and newino.
 878	 */
 879	be32_add_cpu(&agi->agi_count, newlen);
 880	be32_add_cpu(&agi->agi_freecount, newlen);
 881	pag = xfs_perag_get(args.mp, agno);
 882	pag->pagi_freecount += newlen;
 883	xfs_perag_put(pag);
 884	agi->agi_newino = cpu_to_be32(newino);
 885
 886	/*
 887	 * Log allocation group header fields
 888	 */
 889	xfs_ialloc_log_agi(tp, agbp,
 890		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 891	/*
 892	 * Modify/log superblock values for inode count and inode free count.
 893	 */
 894	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 895	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 896	*alloc = 1;
 897	return 0;
 898}
 899
 900STATIC xfs_agnumber_t
 901xfs_ialloc_next_ag(
 902	xfs_mount_t	*mp)
 903{
 904	xfs_agnumber_t	agno;
 905
 906	spin_lock(&mp->m_agirotor_lock);
 907	agno = mp->m_agirotor;
 908	if (++mp->m_agirotor >= mp->m_maxagi)
 909		mp->m_agirotor = 0;
 910	spin_unlock(&mp->m_agirotor_lock);
 911
 912	return agno;
 913}
 914
 915/*
 916 * Select an allocation group to look for a free inode in, based on the parent
 917 * inode and the mode.  Return the allocation group buffer.
 918 */
 919STATIC xfs_agnumber_t
 920xfs_ialloc_ag_select(
 921	xfs_trans_t	*tp,		/* transaction pointer */
 922	xfs_ino_t	parent,		/* parent directory inode number */
 923	umode_t		mode)		/* bits set to indicate file type */
 924{
 925	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
 926	xfs_agnumber_t	agno;		/* current ag number */
 927	int		flags;		/* alloc buffer locking flags */
 928	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
 929	xfs_extlen_t	longest = 0;	/* longest extent available */
 930	xfs_mount_t	*mp;		/* mount point structure */
 931	int		needspace;	/* file mode implies space allocated */
 932	xfs_perag_t	*pag;		/* per allocation group data */
 933	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
 934	int		error;
 935
 936	/*
 937	 * Files of these types need at least one block if length > 0
 938	 * (and they won't fit in the inode, but that's hard to figure out).
 939	 */
 940	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
 941	mp = tp->t_mountp;
 942	agcount = mp->m_maxagi;
 943	if (S_ISDIR(mode))
 944		pagno = xfs_ialloc_next_ag(mp);
 945	else {
 946		pagno = XFS_INO_TO_AGNO(mp, parent);
 947		if (pagno >= agcount)
 948			pagno = 0;
 949	}
 950
 951	ASSERT(pagno < agcount);
 952
 953	/*
 954	 * Loop through allocation groups, looking for one with a little
 955	 * free space in it.  Note we don't look for free inodes, exactly.
 956	 * Instead, we include whether there is a need to allocate inodes
 957	 * to mean that blocks must be allocated for them,
 958	 * if none are currently free.
 959	 */
 960	agno = pagno;
 961	flags = XFS_ALLOC_FLAG_TRYLOCK;
 962	for (;;) {
 963		pag = xfs_perag_get(mp, agno);
 964		if (!pag->pagi_inodeok) {
 965			xfs_ialloc_next_ag(mp);
 966			goto nextag;
 967		}
 968
 969		if (!pag->pagi_init) {
 970			error = xfs_ialloc_pagi_init(mp, tp, agno);
 971			if (error)
 972				goto nextag;
 973		}
 974
 975		if (pag->pagi_freecount) {
 976			xfs_perag_put(pag);
 977			return agno;
 978		}
 979
 980		if (!pag->pagf_init) {
 981			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
 982			if (error)
 983				goto nextag;
 984		}
 985
 986		/*
 987		 * Check that there is enough free space for the file plus a
 988		 * chunk of inodes if we need to allocate some. If this is the
 989		 * first pass across the AGs, take into account the potential
 990		 * space needed for alignment of inode chunks when checking the
 991		 * longest contiguous free space in the AG - this prevents us
 992		 * from getting ENOSPC because we have free space larger than
 993		 * m_ialloc_blks but alignment constraints prevent us from using
 994		 * it.
 995		 *
 996		 * If we can't find an AG with space for full alignment slack to
 997		 * be taken into account, we must be near ENOSPC in all AGs.
 998		 * Hence we don't include alignment for the second pass and so
 999		 * if we fail allocation due to alignment issues then it is most
1000		 * likely a real ENOSPC condition.
1001		 */
1002		ineed = mp->m_ialloc_min_blks;
1003		if (flags && ineed > 1)
1004			ineed += xfs_ialloc_cluster_alignment(mp);
1005		longest = pag->pagf_longest;
1006		if (!longest)
1007			longest = pag->pagf_flcount > 0;
1008
1009		if (pag->pagf_freeblks >= needspace + ineed &&
1010		    longest >= ineed) {
1011			xfs_perag_put(pag);
1012			return agno;
1013		}
1014nextag:
1015		xfs_perag_put(pag);
1016		/*
1017		 * No point in iterating over the rest, if we're shutting
1018		 * down.
1019		 */
1020		if (XFS_FORCED_SHUTDOWN(mp))
1021			return NULLAGNUMBER;
1022		agno++;
1023		if (agno >= agcount)
1024			agno = 0;
1025		if (agno == pagno) {
1026			if (flags == 0)
1027				return NULLAGNUMBER;
1028			flags = 0;
1029		}
1030	}
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038	struct xfs_btree_cur	*cur,
1039	xfs_inobt_rec_incore_t	*rec,
1040	int			*done,
1041	int			left)
1042{
1043	int                     error;
1044	int			i;
1045
1046	if (left)
1047		error = xfs_btree_decrement(cur, 0, &i);
1048	else
1049		error = xfs_btree_increment(cur, 0, &i);
1050
1051	if (error)
1052		return error;
1053	*done = !i;
1054	if (i) {
1055		error = xfs_inobt_get_rec(cur, rec, &i);
1056		if (error)
1057			return error;
1058		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1059	}
1060
1061	return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066	struct xfs_btree_cur	*cur,
1067	xfs_agino_t		agino,
1068	xfs_inobt_rec_incore_t	*rec,
1069	int			*done)
1070{
1071	int                     error;
1072	int			i;
1073
1074	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075	if (error)
1076		return error;
1077	*done = !i;
1078	if (i) {
1079		error = xfs_inobt_get_rec(cur, rec, &i);
1080		if (error)
1081			return error;
1082		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1083	}
1084
1085	return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095	struct xfs_inobt_rec_incore	*rec)
1096{
1097	xfs_inofree_t			realfree;
1098
1099	/* if there are no holes, return the first available offset */
1100	if (!xfs_inobt_issparse(rec->ir_holemask))
1101		return xfs_lowbit64(rec->ir_free);
1102
1103	realfree = xfs_inobt_irec_to_allocmask(rec);
1104	realfree &= rec->ir_free;
1105
1106	return xfs_lowbit64(realfree);
1107}
1108
1109/*
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
 
1114	struct xfs_trans	*tp,
1115	struct xfs_buf		*agbp,
1116	xfs_ino_t		parent,
1117	xfs_ino_t		*inop)
1118{
1119	struct xfs_mount	*mp = tp->t_mountp;
1120	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
1121	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
1122	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1123	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1124	struct xfs_perag	*pag;
1125	struct xfs_btree_cur	*cur, *tcur;
1126	struct xfs_inobt_rec_incore rec, trec;
1127	xfs_ino_t		ino;
1128	int			error;
1129	int			offset;
1130	int			i, j;
1131	int			searchdistance = 10;
1132
1133	pag = xfs_perag_get(mp, agno);
1134
1135	ASSERT(pag->pagi_init);
1136	ASSERT(pag->pagi_inodeok);
1137	ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141	/*
1142	 * If pagino is 0 (this is the root inode allocation) use newino.
1143	 * This must work because we've just allocated some.
1144	 */
1145	if (!pagino)
1146		pagino = be32_to_cpu(agi->agi_newino);
1147
1148	error = xfs_check_agi_freecount(cur, agi);
1149	if (error)
1150		goto error0;
1151
1152	/*
1153	 * If in the same AG as the parent, try to get near the parent.
1154	 */
1155	if (pagno == agno) {
1156		int		doneleft;	/* done, to the left */
1157		int		doneright;	/* done, to the right */
1158
1159		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160		if (error)
1161			goto error0;
1162		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1163
1164		error = xfs_inobt_get_rec(cur, &rec, &j);
1165		if (error)
1166			goto error0;
1167		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
 
 
 
 
1168
1169		if (rec.ir_freecount > 0) {
1170			/*
1171			 * Found a free inode in the same chunk
1172			 * as the parent, done.
1173			 */
1174			goto alloc_inode;
1175		}
1176
1177
1178		/*
1179		 * In the same AG as parent, but parent's chunk is full.
1180		 */
1181
1182		/* duplicate the cursor, search left & right simultaneously */
1183		error = xfs_btree_dup_cursor(cur, &tcur);
1184		if (error)
1185			goto error0;
1186
1187		/*
1188		 * Skip to last blocks looked up if same parent inode.
1189		 */
1190		if (pagino != NULLAGINO &&
1191		    pag->pagl_pagino == pagino &&
1192		    pag->pagl_leftrec != NULLAGINO &&
1193		    pag->pagl_rightrec != NULLAGINO) {
1194			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195						   &trec, &doneleft);
1196			if (error)
1197				goto error1;
1198
1199			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200						   &rec, &doneright);
1201			if (error)
1202				goto error1;
1203		} else {
1204			/* search left with tcur, back up 1 record */
1205			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206			if (error)
1207				goto error1;
1208
1209			/* search right with cur, go forward 1 record. */
1210			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211			if (error)
1212				goto error1;
1213		}
1214
1215		/*
1216		 * Loop until we find an inode chunk with a free inode.
1217		 */
1218		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219			int	useleft;  /* using left inode chunk this time */
1220
1221			/* figure out the closer block if both are valid. */
1222			if (!doneleft && !doneright) {
1223				useleft = pagino -
1224				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225				  rec.ir_startino - pagino;
1226			} else {
1227				useleft = !doneleft;
1228			}
1229
1230			/* free inodes to the left? */
1231			if (useleft && trec.ir_freecount) {
1232				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233				cur = tcur;
1234
1235				pag->pagl_leftrec = trec.ir_startino;
1236				pag->pagl_rightrec = rec.ir_startino;
1237				pag->pagl_pagino = pagino;
1238				rec = trec;
1239				goto alloc_inode;
1240			}
1241
1242			/* free inodes to the right? */
1243			if (!useleft && rec.ir_freecount) {
1244				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246				pag->pagl_leftrec = trec.ir_startino;
1247				pag->pagl_rightrec = rec.ir_startino;
1248				pag->pagl_pagino = pagino;
1249				goto alloc_inode;
1250			}
1251
1252			/* get next record to check */
1253			if (useleft) {
1254				error = xfs_ialloc_next_rec(tcur, &trec,
1255								 &doneleft, 1);
1256			} else {
1257				error = xfs_ialloc_next_rec(cur, &rec,
1258								 &doneright, 0);
1259			}
1260			if (error)
1261				goto error1;
1262		}
1263
1264		if (searchdistance <= 0) {
1265			/*
1266			 * Not in range - save last search
1267			 * location and allocate a new inode
1268			 */
1269			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270			pag->pagl_leftrec = trec.ir_startino;
1271			pag->pagl_rightrec = rec.ir_startino;
1272			pag->pagl_pagino = pagino;
1273
1274		} else {
1275			/*
1276			 * We've reached the end of the btree. because
1277			 * we are only searching a small chunk of the
1278			 * btree each search, there is obviously free
1279			 * inodes closer to the parent inode than we
1280			 * are now. restart the search again.
1281			 */
1282			pag->pagl_pagino = NULLAGINO;
1283			pag->pagl_leftrec = NULLAGINO;
1284			pag->pagl_rightrec = NULLAGINO;
1285			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287			goto restart_pagno;
1288		}
1289	}
1290
1291	/*
1292	 * In a different AG from the parent.
1293	 * See if the most recently allocated block has any free.
1294	 */
1295	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297					 XFS_LOOKUP_EQ, &i);
1298		if (error)
1299			goto error0;
1300
1301		if (i == 1) {
1302			error = xfs_inobt_get_rec(cur, &rec, &j);
1303			if (error)
1304				goto error0;
1305
1306			if (j == 1 && rec.ir_freecount > 0) {
1307				/*
1308				 * The last chunk allocated in the group
1309				 * still has a free inode.
1310				 */
1311				goto alloc_inode;
1312			}
1313		}
1314	}
1315
1316	/*
1317	 * None left in the last group, search the whole AG
1318	 */
1319	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320	if (error)
1321		goto error0;
1322	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1323
1324	for (;;) {
1325		error = xfs_inobt_get_rec(cur, &rec, &i);
1326		if (error)
1327			goto error0;
1328		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1329		if (rec.ir_freecount > 0)
1330			break;
1331		error = xfs_btree_increment(cur, 0, &i);
1332		if (error)
1333			goto error0;
1334		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1335	}
1336
1337alloc_inode:
1338	offset = xfs_inobt_first_free_inode(&rec);
1339	ASSERT(offset >= 0);
1340	ASSERT(offset < XFS_INODES_PER_CHUNK);
1341	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342				   XFS_INODES_PER_CHUNK) == 0);
1343	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345	rec.ir_freecount--;
1346	error = xfs_inobt_update(cur, &rec);
1347	if (error)
1348		goto error0;
1349	be32_add_cpu(&agi->agi_freecount, -1);
1350	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351	pag->pagi_freecount--;
1352
1353	error = xfs_check_agi_freecount(cur, agi);
1354	if (error)
1355		goto error0;
1356
1357	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359	xfs_perag_put(pag);
1360	*inop = ino;
1361	return 0;
1362error1:
1363	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366	xfs_perag_put(pag);
1367	return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376	xfs_agino_t			pagino,
1377	struct xfs_btree_cur		**ocur,
1378	struct xfs_inobt_rec_incore	*rec)
1379{
1380	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1381	struct xfs_btree_cur		*rcur;	/* right search cursor */
1382	struct xfs_inobt_rec_incore	rrec;
1383	int				error;
1384	int				i, j;
1385
1386	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387	if (error)
1388		return error;
1389
1390	if (i == 1) {
1391		error = xfs_inobt_get_rec(lcur, rec, &i);
1392		if (error)
1393			return error;
1394		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
 
 
 
1395
1396		/*
1397		 * See if we've landed in the parent inode record. The finobt
1398		 * only tracks chunks with at least one free inode, so record
1399		 * existence is enough.
1400		 */
1401		if (pagino >= rec->ir_startino &&
1402		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403			return 0;
1404	}
1405
1406	error = xfs_btree_dup_cursor(lcur, &rcur);
1407	if (error)
1408		return error;
1409
1410	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411	if (error)
1412		goto error_rcur;
1413	if (j == 1) {
1414		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415		if (error)
1416			goto error_rcur;
1417		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
 
 
 
 
1418	}
1419
1420	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
 
 
 
 
1421	if (i == 1 && j == 1) {
1422		/*
1423		 * Both the left and right records are valid. Choose the closer
1424		 * inode chunk to the target.
1425		 */
1426		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427		    (rrec.ir_startino - pagino)) {
1428			*rec = rrec;
1429			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430			*ocur = rcur;
1431		} else {
1432			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433		}
1434	} else if (j == 1) {
1435		/* only the right record is valid */
1436		*rec = rrec;
1437		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438		*ocur = rcur;
1439	} else if (i == 1) {
1440		/* only the left record is valid */
1441		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442	}
1443
1444	return 0;
1445
1446error_rcur:
1447	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448	return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457	struct xfs_agi			*agi,
1458	struct xfs_btree_cur		*cur,
1459	struct xfs_inobt_rec_incore	*rec)
1460{
1461	int error;
1462	int i;
1463
1464	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466					 XFS_LOOKUP_EQ, &i);
1467		if (error)
1468			return error;
1469		if (i == 1) {
1470			error = xfs_inobt_get_rec(cur, rec, &i);
1471			if (error)
1472				return error;
1473			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1474			return 0;
1475		}
1476	}
1477
1478	/*
1479	 * Find the first inode available in the AG.
1480	 */
1481	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482	if (error)
1483		return error;
1484	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1485
1486	error = xfs_inobt_get_rec(cur, rec, &i);
1487	if (error)
1488		return error;
1489	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1490
1491	return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500	struct xfs_btree_cur		*cur,	/* inobt cursor */
1501	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1502	int				offset) /* inode offset */
1503{
1504	struct xfs_inobt_rec_incore	rec;
1505	int				error;
1506	int				i;
1507
1508	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509	if (error)
1510		return error;
1511	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1512
1513	error = xfs_inobt_get_rec(cur, &rec, &i);
1514	if (error)
1515		return error;
1516	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
 
 
 
1517	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518				   XFS_INODES_PER_CHUNK) == 0);
1519
1520	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521	rec.ir_freecount--;
1522
1523	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524				  (rec.ir_freecount == frec->ir_freecount));
 
 
 
 
1525
1526	return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
 
1538	struct xfs_trans	*tp,
1539	struct xfs_buf		*agbp,
1540	xfs_ino_t		parent,
1541	xfs_ino_t		*inop)
1542{
1543	struct xfs_mount		*mp = tp->t_mountp;
1544	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1545	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1546	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1547	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1548	struct xfs_perag		*pag;
1549	struct xfs_btree_cur		*cur;	/* finobt cursor */
1550	struct xfs_btree_cur		*icur;	/* inobt cursor */
1551	struct xfs_inobt_rec_incore	rec;
1552	xfs_ino_t			ino;
1553	int				error;
1554	int				offset;
1555	int				i;
1556
1557	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560	pag = xfs_perag_get(mp, agno);
1561
1562	/*
1563	 * If pagino is 0 (this is the root inode allocation) use newino.
1564	 * This must work because we've just allocated some.
1565	 */
1566	if (!pagino)
1567		pagino = be32_to_cpu(agi->agi_newino);
1568
1569	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571	error = xfs_check_agi_freecount(cur, agi);
1572	if (error)
1573		goto error_cur;
1574
1575	/*
1576	 * The search algorithm depends on whether we're in the same AG as the
1577	 * parent. If so, find the closest available inode to the parent. If
1578	 * not, consider the agi hint or find the first free inode in the AG.
1579	 */
1580	if (agno == pagno)
1581		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582	else
1583		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584	if (error)
1585		goto error_cur;
1586
1587	offset = xfs_inobt_first_free_inode(&rec);
1588	ASSERT(offset >= 0);
1589	ASSERT(offset < XFS_INODES_PER_CHUNK);
1590	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591				   XFS_INODES_PER_CHUNK) == 0);
1592	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594	/*
1595	 * Modify or remove the finobt record.
1596	 */
1597	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598	rec.ir_freecount--;
1599	if (rec.ir_freecount)
1600		error = xfs_inobt_update(cur, &rec);
1601	else
1602		error = xfs_btree_delete(cur, &i);
1603	if (error)
1604		goto error_cur;
1605
1606	/*
1607	 * The finobt has now been updated appropriately. We haven't updated the
1608	 * agi and superblock yet, so we can create an inobt cursor and validate
1609	 * the original freecount. If all is well, make the equivalent update to
1610	 * the inobt using the finobt record and offset information.
1611	 */
1612	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614	error = xfs_check_agi_freecount(icur, agi);
1615	if (error)
1616		goto error_icur;
1617
1618	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619	if (error)
1620		goto error_icur;
1621
1622	/*
1623	 * Both trees have now been updated. We must update the perag and
1624	 * superblock before we can check the freecount for each btree.
1625	 */
1626	be32_add_cpu(&agi->agi_freecount, -1);
1627	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628	pag->pagi_freecount--;
1629
1630	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632	error = xfs_check_agi_freecount(icur, agi);
1633	if (error)
1634		goto error_icur;
1635	error = xfs_check_agi_freecount(cur, agi);
1636	if (error)
1637		goto error_icur;
1638
1639	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641	xfs_perag_put(pag);
1642	*inop = ino;
1643	return 0;
1644
1645error_icur:
1646	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649	xfs_perag_put(pag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650	return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated.  The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676	struct xfs_trans	*tp,
1677	xfs_ino_t		parent,
1678	umode_t			mode,
1679	struct xfs_buf		**IO_agbp,
1680	xfs_ino_t		*inop)
1681{
1682	struct xfs_mount	*mp = tp->t_mountp;
1683	struct xfs_buf		*agbp;
1684	xfs_agnumber_t		agno;
1685	int			error;
1686	int			ialloced;
1687	int			noroom = 0;
1688	xfs_agnumber_t		start_agno;
1689	struct xfs_perag	*pag;
1690	int			okalloc = 1;
1691
1692	if (*IO_agbp) {
1693		/*
1694		 * If the caller passes in a pointer to the AGI buffer,
1695		 * continue where we left off before.  In this case, we
1696		 * know that the allocation group has free inodes.
1697		 */
1698		agbp = *IO_agbp;
1699		goto out_alloc;
1700	}
1701
1702	/*
1703	 * We do not have an agbp, so select an initial allocation
1704	 * group for inode allocation.
 
1705	 */
1706	start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707	if (start_agno == NULLAGNUMBER) {
1708		*inop = NULLFSINO;
1709		return 0;
 
 
 
1710	}
1711
1712	/*
1713	 * If we have already hit the ceiling of inode blocks then clear
1714	 * okalloc so we scan all available agi structures for a free
1715	 * inode.
1716	 *
1717	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718	 * which will sacrifice the preciseness but improve the performance.
1719	 */
1720	if (mp->m_maxicount &&
1721	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722							> mp->m_maxicount) {
1723		noroom = 1;
1724		okalloc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1725	}
1726
1727	/*
1728	 * Loop until we find an allocation group that either has free inodes
1729	 * or in which we can allocate some inodes.  Iterate through the
1730	 * allocation groups upward, wrapping at the end.
1731	 */
1732	agno = start_agno;
1733	for (;;) {
1734		pag = xfs_perag_get(mp, agno);
1735		if (!pag->pagi_inodeok) {
1736			xfs_ialloc_next_ag(mp);
1737			goto nextag;
1738		}
1739
1740		if (!pag->pagi_init) {
1741			error = xfs_ialloc_pagi_init(mp, tp, agno);
1742			if (error)
1743				goto out_error;
1744		}
1745
1746		/*
1747		 * Do a first racy fast path check if this AG is usable.
1748		 */
1749		if (!pag->pagi_freecount && !okalloc)
1750			goto nextag;
1751
1752		/*
1753		 * Then read in the AGI buffer and recheck with the AGI buffer
1754		 * lock held.
1755		 */
1756		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757		if (error)
1758			goto out_error;
1759
1760		if (pag->pagi_freecount) {
1761			xfs_perag_put(pag);
1762			goto out_alloc;
1763		}
1764
1765		if (!okalloc)
1766			goto nextag_relse_buffer;
1767
1768
1769		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770		if (error) {
1771			xfs_trans_brelse(tp, agbp);
1772
1773			if (error != -ENOSPC)
1774				goto out_error;
1775
1776			xfs_perag_put(pag);
1777			*inop = NULLFSINO;
1778			return 0;
1779		}
1780
1781		if (ialloced) {
1782			/*
1783			 * We successfully allocated some inodes, return
1784			 * the current context to the caller so that it
1785			 * can commit the current transaction and call
1786			 * us again where we left off.
1787			 */
1788			ASSERT(pag->pagi_freecount > 0);
1789			xfs_perag_put(pag);
1790
1791			*IO_agbp = agbp;
1792			*inop = NULLFSINO;
1793			return 0;
1794		}
1795
1796nextag_relse_buffer:
1797		xfs_trans_brelse(tp, agbp);
1798nextag:
1799		xfs_perag_put(pag);
1800		if (++agno == mp->m_sb.sb_agcount)
1801			agno = 0;
1802		if (agno == start_agno) {
1803			*inop = NULLFSINO;
1804			return noroom ? -ENOSPC : 0;
 
1805		}
 
1806	}
1807
1808out_alloc:
1809	*IO_agbp = NULL;
1810	return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812	xfs_perag_put(pag);
1813	return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823	struct xfs_mount		*mp,
1824	xfs_agnumber_t			agno,
1825	struct xfs_inobt_rec_incore	*rec,
1826	struct xfs_defer_ops		*dfops)
1827{
1828	xfs_agblock_t	sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829	int		startidx, endidx;
1830	int		nextbit;
1831	xfs_agblock_t	agbno;
1832	int		contigblk;
1833	struct xfs_owner_info	oinfo;
 
1834	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838		/* not sparse, calculate extent info directly */
1839		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840				  mp->m_ialloc_blks, &oinfo);
1841		return;
 
1842	}
1843
1844	/* holemask is only 16-bits (fits in an unsigned long) */
1845	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846	holemask[0] = rec->ir_holemask;
1847
1848	/*
1849	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850	 * holemask and convert the start/end index of each range to an extent.
1851	 * We start with the start and end index both pointing at the first 0 in
1852	 * the mask.
1853	 */
1854	startidx = endidx = find_first_zero_bit(holemask,
1855						XFS_INOBT_HOLEMASK_BITS);
1856	nextbit = startidx + 1;
1857	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
 
 
1858		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859					     nextbit);
1860		/*
1861		 * If the next zero bit is contiguous, update the end index of
1862		 * the current range and continue.
1863		 */
1864		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865		    nextbit == endidx + 1) {
1866			endidx = nextbit;
1867			goto next;
1868		}
1869
1870		/*
1871		 * nextbit is not contiguous with the current end index. Convert
1872		 * the current start/end to an extent and add it to the free
1873		 * list.
1874		 */
1875		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876				  mp->m_sb.sb_inopblock;
1877		contigblk = ((endidx - startidx + 1) *
1878			     XFS_INODES_PER_HOLEMASK_BIT) /
1879			    mp->m_sb.sb_inopblock;
1880
1881		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883		xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884				  contigblk, &oinfo);
 
 
 
 
1885
1886		/* reset range to current bit and carry on... */
1887		startidx = endidx = nextbit;
1888
1889next:
1890		nextbit++;
1891	}
 
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896	struct xfs_mount		*mp,
1897	struct xfs_trans		*tp,
1898	struct xfs_buf			*agbp,
1899	xfs_agino_t			agino,
1900	struct xfs_defer_ops		*dfops,
1901	struct xfs_icluster		*xic,
1902	struct xfs_inobt_rec_incore	*orec)
1903{
1904	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1905	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1906	struct xfs_perag		*pag;
1907	struct xfs_btree_cur		*cur;
1908	struct xfs_inobt_rec_incore	rec;
1909	int				ilen;
1910	int				error;
1911	int				i;
1912	int				off;
1913
1914	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917	/*
1918	 * Initialize the cursor.
1919	 */
1920	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922	error = xfs_check_agi_freecount(cur, agi);
1923	if (error)
1924		goto error0;
1925
1926	/*
1927	 * Look for the entry describing this inode.
1928	 */
1929	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931			__func__, error);
1932		goto error0;
1933	}
1934	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1935	error = xfs_inobt_get_rec(cur, &rec, &i);
1936	if (error) {
1937		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938			__func__, error);
1939		goto error0;
1940	}
1941	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
 
 
 
 
1942	/*
1943	 * Get the offset in the inode chunk.
1944	 */
1945	off = agino - rec.ir_startino;
1946	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948	/*
1949	 * Mark the inode free & increment the count.
1950	 */
1951	rec.ir_free |= XFS_INOBT_MASK(off);
1952	rec.ir_freecount++;
1953
1954	/*
1955	 * When an inode chunk is free, it becomes eligible for removal. Don't
1956	 * remove the chunk if the block size is large enough for multiple inode
1957	 * chunks (that might not be free).
1958	 */
1959	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960	    rec.ir_free == XFS_INOBT_ALL_FREE &&
1961	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962		xic->deleted = true;
1963		xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
 
1964		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966		/*
1967		 * Remove the inode cluster from the AGI B+Tree, adjust the
1968		 * AGI and Superblock inode counts, and mark the disk space
1969		 * to be freed when the transaction is committed.
1970		 */
1971		ilen = rec.ir_freecount;
1972		be32_add_cpu(&agi->agi_count, -ilen);
1973		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975		pag = xfs_perag_get(mp, agno);
1976		pag->pagi_freecount -= ilen - 1;
1977		xfs_perag_put(pag);
1978		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981		if ((error = xfs_btree_delete(cur, &i))) {
1982			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983				__func__, error);
1984			goto error0;
1985		}
1986
1987		xfs_difree_inode_chunk(mp, agno, &rec, dfops);
 
 
1988	} else {
1989		xic->deleted = false;
1990
1991		error = xfs_inobt_update(cur, &rec);
1992		if (error) {
1993			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994				__func__, error);
1995			goto error0;
1996		}
1997
1998		/* 
1999		 * Change the inode free counts and log the ag/sb changes.
2000		 */
2001		be32_add_cpu(&agi->agi_freecount, 1);
2002		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003		pag = xfs_perag_get(mp, agno);
2004		pag->pagi_freecount++;
2005		xfs_perag_put(pag);
2006		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007	}
2008
2009	error = xfs_check_agi_freecount(cur, agi);
2010	if (error)
2011		goto error0;
2012
2013	*orec = rec;
2014	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015	return 0;
2016
2017error0:
2018	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019	return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027	struct xfs_mount		*mp,
2028	struct xfs_trans		*tp,
2029	struct xfs_buf			*agbp,
2030	xfs_agino_t			agino,
2031	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2032{
2033	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
2034	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
2035	struct xfs_btree_cur		*cur;
2036	struct xfs_inobt_rec_incore	rec;
2037	int				offset = agino - ibtrec->ir_startino;
2038	int				error;
2039	int				i;
2040
2041	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044	if (error)
2045		goto error;
2046	if (i == 0) {
2047		/*
2048		 * If the record does not exist in the finobt, we must have just
2049		 * freed an inode in a previously fully allocated chunk. If not,
2050		 * something is out of sync.
2051		 */
2052		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
 
 
 
 
2053
2054		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055					     ibtrec->ir_count,
2056					     ibtrec->ir_freecount,
2057					     ibtrec->ir_free, &i);
2058		if (error)
2059			goto error;
2060		ASSERT(i == 1);
2061
2062		goto out;
2063	}
2064
2065	/*
2066	 * Read and update the existing record. We could just copy the ibtrec
2067	 * across here, but that would defeat the purpose of having redundant
2068	 * metadata. By making the modifications independently, we can catch
2069	 * corruptions that we wouldn't see if we just copied from one record
2070	 * to another.
2071	 */
2072	error = xfs_inobt_get_rec(cur, &rec, &i);
2073	if (error)
2074		goto error;
2075	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
 
 
 
 
2076
2077	rec.ir_free |= XFS_INOBT_MASK(offset);
2078	rec.ir_freecount++;
2079
2080	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081				(rec.ir_freecount == ibtrec->ir_freecount),
2082				error);
 
 
 
 
2083
2084	/*
2085	 * The content of inobt records should always match between the inobt
2086	 * and finobt. The lifecycle of records in the finobt is different from
2087	 * the inobt in that the finobt only tracks records with at least one
2088	 * free inode. Hence, if all of the inodes are free and we aren't
2089	 * keeping inode chunks permanently on disk, remove the record.
2090	 * Otherwise, update the record with the new information.
2091	 *
2092	 * Note that we currently can't free chunks when the block size is large
2093	 * enough for multiple chunks. Leave the finobt record to remain in sync
2094	 * with the inobt.
2095	 */
2096	if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099		error = xfs_btree_delete(cur, &i);
2100		if (error)
2101			goto error;
2102		ASSERT(i == 1);
2103	} else {
2104		error = xfs_inobt_update(cur, &rec);
2105		if (error)
2106			goto error;
2107	}
2108
2109out:
2110	error = xfs_check_agi_freecount(cur, agi);
2111	if (error)
2112		goto error;
2113
2114	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115	return 0;
2116
2117error:
2118	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119	return error;
2120}
2121
2122/*
2123 * Free disk inode.  Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130	struct xfs_trans	*tp,		/* transaction pointer */
2131	xfs_ino_t		inode,		/* inode to be freed */
2132	struct xfs_defer_ops	*dfops,		/* extents to free */
2133	struct xfs_icluster	*xic)	/* cluster info if deleted */
2134{
2135	/* REFERENCED */
2136	xfs_agblock_t		agbno;	/* block number containing inode */
2137	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2138	xfs_agino_t		agino;	/* allocation group inode number */
2139	xfs_agnumber_t		agno;	/* allocation group number */
2140	int			error;	/* error return value */
2141	struct xfs_mount	*mp;	/* mount structure for filesystem */
2142	struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144	mp = tp->t_mountp;
2145
2146	/*
2147	 * Break up inode number into its components.
2148	 */
2149	agno = XFS_INO_TO_AGNO(mp, inode);
2150	if (agno >= mp->m_sb.sb_agcount)  {
2151		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152			__func__, agno, mp->m_sb.sb_agcount);
2153		ASSERT(0);
2154		return -EINVAL;
2155	}
2156	agino = XFS_INO_TO_AGINO(mp, inode);
2157	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
2158		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159			__func__, (unsigned long long)inode,
2160			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161		ASSERT(0);
2162		return -EINVAL;
2163	}
2164	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165	if (agbno >= mp->m_sb.sb_agblocks)  {
2166		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167			__func__, agbno, mp->m_sb.sb_agblocks);
2168		ASSERT(0);
2169		return -EINVAL;
2170	}
2171	/*
2172	 * Get the allocation group header.
2173	 */
2174	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175	if (error) {
2176		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177			__func__, error);
2178		return error;
2179	}
2180
2181	/*
2182	 * Fix up the inode allocation btree.
2183	 */
2184	error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185	if (error)
2186		goto error0;
2187
2188	/*
2189	 * Fix up the free inode btree.
2190	 */
2191	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193		if (error)
2194			goto error0;
2195	}
2196
2197	return 0;
2198
2199error0:
2200	return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205	struct xfs_mount	*mp,
2206	struct xfs_trans	*tp,
2207	xfs_agnumber_t		agno,
2208	xfs_agino_t		agino,
2209	xfs_agblock_t		agbno,
2210	xfs_agblock_t		*chunk_agbno,
2211	xfs_agblock_t		*offset_agbno,
2212	int			flags)
2213{
 
2214	struct xfs_inobt_rec_incore rec;
2215	struct xfs_btree_cur	*cur;
2216	struct xfs_buf		*agbp;
2217	int			error;
2218	int			i;
2219
2220	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221	if (error) {
2222		xfs_alert(mp,
2223			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224			__func__, error, agno);
2225		return error;
2226	}
2227
2228	/*
2229	 * Lookup the inode record for the given agino. If the record cannot be
2230	 * found, then it's an invalid inode number and we should abort. Once
2231	 * we have a record, we need to ensure it contains the inode number
2232	 * we are looking up.
2233	 */
2234	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236	if (!error) {
2237		if (i)
2238			error = xfs_inobt_get_rec(cur, &rec, &i);
2239		if (!error && i == 0)
2240			error = -EINVAL;
2241	}
2242
2243	xfs_trans_brelse(tp, agbp);
2244	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245	if (error)
2246		return error;
2247
2248	/* check that the returned record contains the required inode */
2249	if (rec.ir_startino > agino ||
2250	    rec.ir_startino + mp->m_ialloc_inos <= agino)
2251		return -EINVAL;
2252
2253	/* for untrusted inodes check it is allocated first */
2254	if ((flags & XFS_IGET_UNTRUSTED) &&
2255	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256		return -EINVAL;
2257
2258	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259	*offset_agbno = agbno - *chunk_agbno;
2260	return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268	xfs_mount_t	 *mp,	/* file system mount structure */
2269	xfs_trans_t	 *tp,	/* transaction pointer */
2270	xfs_ino_t	ino,	/* inode to locate */
2271	struct xfs_imap	*imap,	/* location map structure */
2272	uint		flags)	/* flags for inode btree lookup */
2273{
2274	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
2275	xfs_agino_t	agino;	/* inode number within alloc group */
2276	xfs_agnumber_t	agno;	/* allocation group number */
2277	int		blks_per_cluster; /* num blocks per inode cluster */
2278	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
2279	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
2280	int		error;	/* error code */
2281	int		offset;	/* index of inode in its buffer */
2282	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
2283
2284	ASSERT(ino != NULLFSINO);
2285
2286	/*
2287	 * Split up the inode number into its parts.
2288	 */
2289	agno = XFS_INO_TO_AGNO(mp, ino);
2290	agino = XFS_INO_TO_AGINO(mp, ino);
2291	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
 
2294#ifdef DEBUG
2295		/*
2296		 * Don't output diagnostic information for untrusted inodes
2297		 * as they can be invalid without implying corruption.
2298		 */
2299		if (flags & XFS_IGET_UNTRUSTED)
2300			return -EINVAL;
2301		if (agno >= mp->m_sb.sb_agcount) {
2302			xfs_alert(mp,
2303				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304				__func__, agno, mp->m_sb.sb_agcount);
2305		}
2306		if (agbno >= mp->m_sb.sb_agblocks) {
2307			xfs_alert(mp,
2308		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309				__func__, (unsigned long long)agbno,
2310				(unsigned long)mp->m_sb.sb_agblocks);
2311		}
2312		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313			xfs_alert(mp,
2314		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315				__func__, ino,
2316				XFS_AGINO_TO_INO(mp, agno, agino));
2317		}
2318		xfs_stack_trace();
2319#endif /* DEBUG */
2320		return -EINVAL;
2321	}
2322
2323	blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325	/*
2326	 * For bulkstat and handle lookups, we have an untrusted inode number
2327	 * that we have to verify is valid. We cannot do this just by reading
2328	 * the inode buffer as it may have been unlinked and removed leaving
2329	 * inodes in stale state on disk. Hence we have to do a btree lookup
2330	 * in all cases where an untrusted inode number is passed.
2331	 */
2332	if (flags & XFS_IGET_UNTRUSTED) {
2333		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334					&chunk_agbno, &offset_agbno, flags);
2335		if (error)
2336			return error;
2337		goto out_map;
2338	}
2339
2340	/*
2341	 * If the inode cluster size is the same as the blocksize or
2342	 * smaller we get to the buffer by simple arithmetics.
2343	 */
2344	if (blks_per_cluster == 1) {
2345		offset = XFS_INO_TO_OFFSET(mp, ino);
2346		ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350		imap->im_boffset = (unsigned short)(offset <<
2351							mp->m_sb.sb_inodelog);
2352		return 0;
2353	}
2354
2355	/*
2356	 * If the inode chunks are aligned then use simple maths to
2357	 * find the location. Otherwise we have to do a btree
2358	 * lookup to find the location.
2359	 */
2360	if (mp->m_inoalign_mask) {
2361		offset_agbno = agbno & mp->m_inoalign_mask;
2362		chunk_agbno = agbno - offset_agbno;
2363	} else {
2364		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365					&chunk_agbno, &offset_agbno, flags);
2366		if (error)
2367			return error;
2368	}
2369
2370out_map:
2371	ASSERT(agbno >= chunk_agbno);
2372	cluster_agbno = chunk_agbno +
2373		((offset_agbno / blks_per_cluster) * blks_per_cluster);
 
2374	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375		XFS_INO_TO_OFFSET(mp, ino);
2376
2377	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381	/*
2382	 * If the inode number maps to a block outside the bounds
2383	 * of the file system then return NULL rather than calling
2384	 * read_buf and panicing when we get an error from the
2385	 * driver.
2386	 */
2387	if ((imap->im_blkno + imap->im_len) >
2388	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389		xfs_alert(mp,
2390	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391			__func__, (unsigned long long) imap->im_blkno,
2392			(unsigned long long) imap->im_len,
2393			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394		return -EINVAL;
2395	}
2396	return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404	xfs_mount_t	*mp)		/* file system mount structure */
2405{
2406	uint		inodes;
2407
2408	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409	mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410							 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427	xfs_trans_t	*tp,		/* transaction pointer */
2428	xfs_buf_t	*bp,		/* allocation group header buffer */
2429	int		fields)		/* bitmask of fields to log */
2430{
2431	int			first;		/* first byte number */
2432	int			last;		/* last byte number */
2433	static const short	offsets[] = {	/* field starting offsets */
2434					/* keep in sync with bit definitions */
2435		offsetof(xfs_agi_t, agi_magicnum),
2436		offsetof(xfs_agi_t, agi_versionnum),
2437		offsetof(xfs_agi_t, agi_seqno),
2438		offsetof(xfs_agi_t, agi_length),
2439		offsetof(xfs_agi_t, agi_count),
2440		offsetof(xfs_agi_t, agi_root),
2441		offsetof(xfs_agi_t, agi_level),
2442		offsetof(xfs_agi_t, agi_freecount),
2443		offsetof(xfs_agi_t, agi_newino),
2444		offsetof(xfs_agi_t, agi_dirino),
2445		offsetof(xfs_agi_t, agi_unlinked),
2446		offsetof(xfs_agi_t, agi_free_root),
2447		offsetof(xfs_agi_t, agi_free_level),
 
2448		sizeof(xfs_agi_t)
2449	};
2450#ifdef DEBUG
2451	xfs_agi_t		*agi;	/* allocation group header */
2452
2453	agi = XFS_BUF_TO_AGI(bp);
2454	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457	/*
2458	 * Compute byte offsets for the first and last fields in the first
2459	 * region and log the agi buffer. This only logs up through
2460	 * agi_unlinked.
2461	 */
2462	if (fields & XFS_AGI_ALL_BITS_R1) {
2463		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464				  &first, &last);
2465		xfs_trans_log_buf(tp, bp, first, last);
2466	}
2467
2468	/*
2469	 * Mask off the bits in the first region and calculate the first and
2470	 * last field offsets for any bits in the second region.
2471	 */
2472	fields &= ~XFS_AGI_ALL_BITS_R1;
2473	if (fields) {
2474		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475				  &first, &last);
2476		xfs_trans_log_buf(tp, bp, first, last);
2477	}
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483	struct xfs_agi		*agi)
2484{
2485	int			i;
2486
2487	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488		ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496	struct xfs_buf	*bp)
2497{
2498	struct xfs_mount *mp = bp->b_target->bt_mount;
2499	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
 
 
 
 
2500
2501	if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503			return __this_address;
2504		if (!xfs_log_check_lsn(mp,
2505				be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506			return __this_address;
2507	}
2508
2509	/*
2510	 * Validate the magic number of the agi block.
2511	 */
2512	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513		return __this_address;
2514	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515		return __this_address;
2516
 
 
 
 
2517	if (be32_to_cpu(agi->agi_level) < 1 ||
2518	    be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519		return __this_address;
2520
2521	if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2523	     be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524		return __this_address;
2525
2526	/*
2527	 * during growfs operations, the perag is not fully initialised,
2528	 * so we can't use it for any useful checking. growfs ensures we can't
2529	 * use it by using uncached buffers that don't have the perag attached
2530	 * so we can detect and avoid this problem.
2531	 */
2532	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533		return __this_address;
2534
2535	xfs_check_agi_unlinked(agi);
2536	return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541	struct xfs_buf	*bp)
2542{
2543	struct xfs_mount *mp = bp->b_target->bt_mount;
2544	xfs_failaddr_t	fa;
2545
2546	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549	else {
2550		fa = xfs_agi_verify(bp);
2551		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553	}
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558	struct xfs_buf	*bp)
2559{
2560	struct xfs_mount	*mp = bp->b_target->bt_mount;
2561	struct xfs_buf_log_item	*bip = bp->b_log_item;
 
2562	xfs_failaddr_t		fa;
2563
2564	fa = xfs_agi_verify(bp);
2565	if (fa) {
2566		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567		return;
2568	}
2569
2570	if (!xfs_sb_version_hascrc(&mp->m_sb))
2571		return;
2572
2573	if (bip)
2574		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579	.name = "xfs_agi",
 
2580	.verify_read = xfs_agi_read_verify,
2581	.verify_write = xfs_agi_write_verify,
2582	.verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590	struct xfs_mount	*mp,	/* file system mount structure */
2591	struct xfs_trans	*tp,	/* transaction pointer */
2592	xfs_agnumber_t		agno,	/* allocation group number */
2593	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2594{
 
2595	int			error;
2596
2597	trace_xfs_read_agi(mp, agno);
2598
2599	ASSERT(agno != NULLAGNUMBER);
2600	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
 
 
2603	if (error)
2604		return error;
2605	if (tp)
2606		xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609	return 0;
2610}
2611
 
 
 
 
2612int
2613xfs_ialloc_read_agi(
2614	struct xfs_mount	*mp,	/* file system mount structure */
2615	struct xfs_trans	*tp,	/* transaction pointer */
2616	xfs_agnumber_t		agno,	/* allocation group number */
2617	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2618{
2619	struct xfs_agi		*agi;	/* allocation group header */
2620	struct xfs_perag	*pag;	/* per allocation group data */
2621	int			error;
2622
2623	trace_xfs_ialloc_read_agi(mp, agno);
2624
2625	error = xfs_read_agi(mp, tp, agno, bpp);
2626	if (error)
2627		return error;
2628
2629	agi = XFS_BUF_TO_AGI(*bpp);
2630	pag = xfs_perag_get(mp, agno);
2631	if (!pag->pagi_init) {
2632		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633		pag->pagi_count = be32_to_cpu(agi->agi_count);
2634		pag->pagi_init = 1;
2635	}
2636
2637	/*
2638	 * It's possible for these to be out of sync if
2639	 * we are in the middle of a forced shutdown.
2640	 */
2641	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642		XFS_FORCED_SHUTDOWN(mp));
2643	xfs_perag_put(pag);
 
 
 
2644	return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652	xfs_mount_t	*mp,		/* file system mount structure */
2653	xfs_trans_t	*tp,		/* transaction pointer */
2654	xfs_agnumber_t	agno)		/* allocation group number */
2655{
2656	xfs_buf_t	*bp = NULL;
2657	int		error;
 
 
2658
2659	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660	if (error)
2661		return error;
2662	if (bp)
2663		xfs_trans_brelse(tp, bp);
2664	return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670	struct xfs_mount	*mp,
2671	xfs_agnumber_t		agno,
2672	xfs_agino_t		*first,
2673	xfs_agino_t		*last)
2674{
2675	xfs_agblock_t		bno;
2676	xfs_agblock_t		eoag;
2677
2678	eoag = xfs_ag_block_count(mp, agno);
2679
2680	/*
2681	 * Calculate the first inode, which will be in the first
2682	 * cluster-aligned block after the AGFL.
2683	 */
2684	bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685			xfs_ialloc_cluster_alignment(mp));
2686	*first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688	/*
2689	 * Calculate the last inode, which will be at the end of the
2690	 * last (aligned) cluster that can be allocated in the AG.
2691	 */
2692	bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693	*last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702	struct xfs_mount	*mp,
2703	xfs_agnumber_t		agno,
2704	xfs_agino_t		agino)
2705{
2706	xfs_agino_t		first;
2707	xfs_agino_t		last;
2708
2709	xfs_ialloc_agino_range(mp, agno, &first, &last);
2710	return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719	struct xfs_mount	*mp,
2720	xfs_ino_t		ino)
2721{
2722	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ino);
2723	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725	if (agno >= mp->m_sb.sb_agcount)
2726		return false;
2727	if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728		return false;
2729	return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735	struct xfs_mount	*mp,
2736	xfs_ino_t		ino)
2737{
2738	return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739		(xfs_sb_version_hasquota(&mp->m_sb) &&
2740		 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749	struct xfs_mount	*mp,
2750	xfs_ino_t		ino)
2751{
2752	if (xfs_internal_inum(mp, ino))
2753		return false;
2754	return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760	struct xfs_btree_cur	*cur,
2761	xfs_agino_t		low,
2762	xfs_agino_t		high,
2763	bool			*exists)
2764{
2765	struct xfs_inobt_rec_incore	irec;
2766	xfs_agino_t		agino;
2767	uint16_t		holemask;
2768	int			has_record;
2769	int			i;
2770	int			error;
2771
2772	*exists = false;
2773	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774	while (error == 0 && has_record) {
2775		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776		if (error || irec.ir_startino > high)
 
 
2777			break;
2778
2779		agino = irec.ir_startino;
2780		holemask = irec.ir_holemask;
2781		for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782				i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783			if (holemask & 1)
2784				continue;
2785			if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786					agino <= high) {
2787				*exists = true;
2788				return 0;
2789			}
 
2790		}
2791
2792		error = xfs_btree_increment(cur, 0, &has_record);
 
 
2793	}
2794	return error;
 
 
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800	struct xfs_btree_cur	*cur,
2801	xfs_agblock_t		bno,
2802	xfs_extlen_t		len,
2803	bool			*exists)
2804{
2805	xfs_agino_t		low;
2806	xfs_agino_t		high;
 
 
 
 
 
2807
2808	low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809	high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
 
2810
2811	return xfs_ialloc_has_inode_record(cur, low, high, exists);
 
 
 
 
 
 
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815	xfs_agino_t			count;
2816	xfs_agino_t			freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822	struct xfs_btree_cur		*cur,
2823	union xfs_btree_rec		*rec,
2824	void				*priv)
2825{
2826	struct xfs_inobt_rec_incore	irec;
2827	struct xfs_ialloc_count_inodes	*ci = priv;
 
2828
2829	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
 
 
 
 
2830	ci->count += irec.ir_count;
2831	ci->freecount += irec.ir_freecount;
2832
2833	return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839	struct xfs_btree_cur		*cur,
2840	xfs_agino_t			*count,
2841	xfs_agino_t			*freecount)
2842{
2843	struct xfs_ialloc_count_inodes	ci = {0};
2844	int				error;
2845
2846	ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848	if (error)
2849		return error;
2850
2851	*count = ci.count;
2852	*freecount = ci.freecount;
2853	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
 
  13#include "xfs_mount.h"
 
  14#include "xfs_inode.h"
  15#include "xfs_btree.h"
  16#include "xfs_ialloc.h"
  17#include "xfs_ialloc_btree.h"
  18#include "xfs_alloc.h"
 
  19#include "xfs_errortag.h"
  20#include "xfs_error.h"
  21#include "xfs_bmap.h"
 
  22#include "xfs_trans.h"
  23#include "xfs_buf_item.h"
  24#include "xfs_icreate_item.h"
  25#include "xfs_icache.h"
  26#include "xfs_trace.h"
  27#include "xfs_log.h"
  28#include "xfs_rmap.h"
  29#include "xfs_ag.h"
  30#include "xfs_health.h"
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32/*
  33 * Lookup a record by ino in the btree given by cur.
  34 */
  35int					/* error */
  36xfs_inobt_lookup(
  37	struct xfs_btree_cur	*cur,	/* btree cursor */
  38	xfs_agino_t		ino,	/* starting inode of chunk */
  39	xfs_lookup_t		dir,	/* <=, >=, == */
  40	int			*stat)	/* success/failure */
  41{
  42	cur->bc_rec.i.ir_startino = ino;
  43	cur->bc_rec.i.ir_holemask = 0;
  44	cur->bc_rec.i.ir_count = 0;
  45	cur->bc_rec.i.ir_freecount = 0;
  46	cur->bc_rec.i.ir_free = 0;
  47	return xfs_btree_lookup(cur, dir, stat);
  48}
  49
  50/*
  51 * Update the record referred to by cur to the value given.
  52 * This either works (return 0) or gets an EFSCORRUPTED error.
  53 */
  54STATIC int				/* error */
  55xfs_inobt_update(
  56	struct xfs_btree_cur	*cur,	/* btree cursor */
  57	xfs_inobt_rec_incore_t	*irec)	/* btree record */
  58{
  59	union xfs_btree_rec	rec;
  60
  61	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
  62	if (xfs_has_sparseinodes(cur->bc_mp)) {
  63		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
  64		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
  65		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
  66	} else {
  67		/* ir_holemask/ir_count not supported on-disk */
  68		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
  69	}
  70	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
  71	return xfs_btree_update(cur, &rec);
  72}
  73
  74/* Convert on-disk btree record to incore inobt record. */
  75void
  76xfs_inobt_btrec_to_irec(
  77	struct xfs_mount		*mp,
  78	const union xfs_btree_rec	*rec,
  79	struct xfs_inobt_rec_incore	*irec)
  80{
  81	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
  82	if (xfs_has_sparseinodes(mp)) {
  83		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
  84		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
  85		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
  86	} else {
  87		/*
  88		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
  89		 * values for full inode chunks.
  90		 */
  91		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
  92		irec->ir_count = XFS_INODES_PER_CHUNK;
  93		irec->ir_freecount =
  94				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
  95	}
  96	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
  97}
  98
  99/* Compute the freecount of an incore inode record. */
 100uint8_t
 101xfs_inobt_rec_freecount(
 102	const struct xfs_inobt_rec_incore	*irec)
 103{
 104	uint64_t				realfree = irec->ir_free;
 105
 106	if (xfs_inobt_issparse(irec->ir_holemask))
 107		realfree &= xfs_inobt_irec_to_allocmask(irec);
 108	return hweight64(realfree);
 109}
 110
 111/* Simple checks for inode records. */
 112xfs_failaddr_t
 113xfs_inobt_check_irec(
 114	struct xfs_perag			*pag,
 115	const struct xfs_inobt_rec_incore	*irec)
 116{
 117	/* Record has to be properly aligned within the AG. */
 118	if (!xfs_verify_agino(pag, irec->ir_startino))
 119		return __this_address;
 120	if (!xfs_verify_agino(pag,
 121				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
 122		return __this_address;
 123	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
 124	    irec->ir_count > XFS_INODES_PER_CHUNK)
 125		return __this_address;
 126	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
 127		return __this_address;
 128
 129	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
 130		return __this_address;
 131
 132	return NULL;
 133}
 134
 135static inline int
 136xfs_inobt_complain_bad_rec(
 137	struct xfs_btree_cur		*cur,
 138	xfs_failaddr_t			fa,
 139	const struct xfs_inobt_rec_incore *irec)
 140{
 141	struct xfs_mount		*mp = cur->bc_mp;
 142
 143	xfs_warn(mp,
 144		"%sbt record corruption in AG %d detected at %pS!",
 145		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
 146	xfs_warn(mp,
 147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
 148		irec->ir_startino, irec->ir_count, irec->ir_freecount,
 149		irec->ir_free, irec->ir_holemask);
 150	xfs_btree_mark_sick(cur);
 151	return -EFSCORRUPTED;
 152}
 153
 154/*
 155 * Get the data from the pointed-to record.
 156 */
 157int
 158xfs_inobt_get_rec(
 159	struct xfs_btree_cur		*cur,
 160	struct xfs_inobt_rec_incore	*irec,
 161	int				*stat)
 162{
 163	struct xfs_mount		*mp = cur->bc_mp;
 164	union xfs_btree_rec		*rec;
 165	xfs_failaddr_t			fa;
 166	int				error;
 167
 168	error = xfs_btree_get_rec(cur, &rec, stat);
 169	if (error || *stat == 0)
 170		return error;
 171
 172	xfs_inobt_btrec_to_irec(mp, rec, irec);
 173	fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
 174	if (fa)
 175		return xfs_inobt_complain_bad_rec(cur, fa, irec);
 176
 177	return 0;
 178}
 179
 180/*
 181 * Insert a single inobt record. Cursor must already point to desired location.
 182 */
 183int
 184xfs_inobt_insert_rec(
 185	struct xfs_btree_cur	*cur,
 186	uint16_t		holemask,
 187	uint8_t			count,
 188	int32_t			freecount,
 189	xfs_inofree_t		free,
 190	int			*stat)
 191{
 192	cur->bc_rec.i.ir_holemask = holemask;
 193	cur->bc_rec.i.ir_count = count;
 194	cur->bc_rec.i.ir_freecount = freecount;
 195	cur->bc_rec.i.ir_free = free;
 196	return xfs_btree_insert(cur, stat);
 197}
 198
 199/*
 200 * Insert records describing a newly allocated inode chunk into the inobt.
 201 */
 202STATIC int
 203xfs_inobt_insert(
 204	struct xfs_perag	*pag,
 205	struct xfs_trans	*tp,
 206	struct xfs_buf		*agbp,
 207	xfs_agino_t		newino,
 208	xfs_agino_t		newlen,
 209	bool			is_finobt)
 210{
 211	struct xfs_btree_cur	*cur;
 
 
 212	xfs_agino_t		thisino;
 213	int			i;
 214	int			error;
 215
 216	if (is_finobt)
 217		cur = xfs_finobt_init_cursor(pag, tp, agbp);
 218	else
 219		cur = xfs_inobt_init_cursor(pag, tp, agbp);
 220
 221	for (thisino = newino;
 222	     thisino < newino + newlen;
 223	     thisino += XFS_INODES_PER_CHUNK) {
 224		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
 225		if (error) {
 226			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 227			return error;
 228		}
 229		ASSERT(i == 0);
 230
 231		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
 232					     XFS_INODES_PER_CHUNK,
 233					     XFS_INODES_PER_CHUNK,
 234					     XFS_INOBT_ALL_FREE, &i);
 235		if (error) {
 236			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 237			return error;
 238		}
 239		ASSERT(i == 1);
 240	}
 241
 242	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 243
 244	return 0;
 245}
 246
 247/*
 248 * Verify that the number of free inodes in the AGI is correct.
 249 */
 250#ifdef DEBUG
 251static int
 252xfs_check_agi_freecount(
 253	struct xfs_btree_cur	*cur)
 
 254{
 255	if (cur->bc_nlevels == 1) {
 256		xfs_inobt_rec_incore_t rec;
 257		int		freecount = 0;
 258		int		error;
 259		int		i;
 260
 261		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
 262		if (error)
 263			return error;
 264
 265		do {
 266			error = xfs_inobt_get_rec(cur, &rec, &i);
 267			if (error)
 268				return error;
 269
 270			if (i) {
 271				freecount += rec.ir_freecount;
 272				error = xfs_btree_increment(cur, 0, &i);
 273				if (error)
 274					return error;
 275			}
 276		} while (i == 1);
 277
 278		if (!xfs_is_shutdown(cur->bc_mp))
 279			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
 280	}
 281	return 0;
 282}
 283#else
 284#define xfs_check_agi_freecount(cur)	0
 285#endif
 286
 287/*
 288 * Initialise a new set of inodes. When called without a transaction context
 289 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
 290 * than logging them (which in a transaction context puts them into the AIL
 291 * for writeback rather than the xfsbufd queue).
 292 */
 293int
 294xfs_ialloc_inode_init(
 295	struct xfs_mount	*mp,
 296	struct xfs_trans	*tp,
 297	struct list_head	*buffer_list,
 298	int			icount,
 299	xfs_agnumber_t		agno,
 300	xfs_agblock_t		agbno,
 301	xfs_agblock_t		length,
 302	unsigned int		gen)
 303{
 304	struct xfs_buf		*fbuf;
 305	struct xfs_dinode	*free;
 306	int			nbufs;
 307	int			version;
 308	int			i, j;
 309	xfs_daddr_t		d;
 310	xfs_ino_t		ino = 0;
 311	int			error;
 312
 313	/*
 314	 * Loop over the new block(s), filling in the inodes.  For small block
 315	 * sizes, manipulate the inodes in buffers  which are multiples of the
 316	 * blocks size.
 317	 */
 318	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
 
 
 319
 320	/*
 321	 * Figure out what version number to use in the inodes we create.  If
 322	 * the superblock version has caught up to the one that supports the new
 323	 * inode format, then use the new inode version.  Otherwise use the old
 324	 * version so that old kernels will continue to be able to use the file
 325	 * system.
 326	 *
 327	 * For v3 inodes, we also need to write the inode number into the inode,
 328	 * so calculate the first inode number of the chunk here as
 329	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
 330	 * across multiple filesystem blocks (such as a cluster) and so cannot
 331	 * be used in the cluster buffer loop below.
 332	 *
 333	 * Further, because we are writing the inode directly into the buffer
 334	 * and calculating a CRC on the entire inode, we have ot log the entire
 335	 * inode so that the entire range the CRC covers is present in the log.
 336	 * That means for v3 inode we log the entire buffer rather than just the
 337	 * inode cores.
 338	 */
 339	if (xfs_has_v3inodes(mp)) {
 340		version = 3;
 341		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
 
 342
 343		/*
 344		 * log the initialisation that is about to take place as an
 345		 * logical operation. This means the transaction does not
 346		 * need to log the physical changes to the inode buffers as log
 347		 * recovery will know what initialisation is actually needed.
 348		 * Hence we only need to log the buffers as "ordered" buffers so
 349		 * they track in the AIL as if they were physically logged.
 350		 */
 351		if (tp)
 352			xfs_icreate_log(tp, agno, agbno, icount,
 353					mp->m_sb.sb_inodesize, length, gen);
 354	} else
 355		version = 2;
 356
 357	for (j = 0; j < nbufs; j++) {
 358		/*
 359		 * Get the block.
 360		 */
 361		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
 362				(j * M_IGEO(mp)->blocks_per_cluster));
 363		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
 364				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
 365				XBF_UNMAPPED, &fbuf);
 366		if (error)
 367			return error;
 368
 369		/* Initialize the inode buffers and log them appropriately. */
 370		fbuf->b_ops = &xfs_inode_buf_ops;
 371		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
 372		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
 373			int	ioffset = i << mp->m_sb.sb_inodelog;
 
 374
 375			free = xfs_make_iptr(mp, fbuf, i);
 376			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
 377			free->di_version = version;
 378			free->di_gen = cpu_to_be32(gen);
 379			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
 380
 381			if (version == 3) {
 382				free->di_ino = cpu_to_be64(ino);
 383				ino++;
 384				uuid_copy(&free->di_uuid,
 385					  &mp->m_sb.sb_meta_uuid);
 386				xfs_dinode_calc_crc(mp, free);
 387			} else if (tp) {
 388				/* just log the inode core */
 389				xfs_trans_log_buf(tp, fbuf, ioffset,
 390					  ioffset + XFS_DINODE_SIZE(mp) - 1);
 391			}
 392		}
 393
 394		if (tp) {
 395			/*
 396			 * Mark the buffer as an inode allocation buffer so it
 397			 * sticks in AIL at the point of this allocation
 398			 * transaction. This ensures the they are on disk before
 399			 * the tail of the log can be moved past this
 400			 * transaction (i.e. by preventing relogging from moving
 401			 * it forward in the log).
 402			 */
 403			xfs_trans_inode_alloc_buf(tp, fbuf);
 404			if (version == 3) {
 405				/*
 406				 * Mark the buffer as ordered so that they are
 407				 * not physically logged in the transaction but
 408				 * still tracked in the AIL as part of the
 409				 * transaction and pin the log appropriately.
 410				 */
 411				xfs_trans_ordered_buf(tp, fbuf);
 412			}
 413		} else {
 414			fbuf->b_flags |= XBF_DONE;
 415			xfs_buf_delwri_queue(fbuf, buffer_list);
 416			xfs_buf_relse(fbuf);
 417		}
 418	}
 419	return 0;
 420}
 421
 422/*
 423 * Align startino and allocmask for a recently allocated sparse chunk such that
 424 * they are fit for insertion (or merge) into the on-disk inode btrees.
 425 *
 426 * Background:
 427 *
 428 * When enabled, sparse inode support increases the inode alignment from cluster
 429 * size to inode chunk size. This means that the minimum range between two
 430 * non-adjacent inode records in the inobt is large enough for a full inode
 431 * record. This allows for cluster sized, cluster aligned block allocation
 432 * without need to worry about whether the resulting inode record overlaps with
 433 * another record in the tree. Without this basic rule, we would have to deal
 434 * with the consequences of overlap by potentially undoing recent allocations in
 435 * the inode allocation codepath.
 436 *
 437 * Because of this alignment rule (which is enforced on mount), there are two
 438 * inobt possibilities for newly allocated sparse chunks. One is that the
 439 * aligned inode record for the chunk covers a range of inodes not already
 440 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
 441 * other is that a record already exists at the aligned startino that considers
 442 * the newly allocated range as sparse. In the latter case, record content is
 443 * merged in hope that sparse inode chunks fill to full chunks over time.
 444 */
 445STATIC void
 446xfs_align_sparse_ino(
 447	struct xfs_mount		*mp,
 448	xfs_agino_t			*startino,
 449	uint16_t			*allocmask)
 450{
 451	xfs_agblock_t			agbno;
 452	xfs_agblock_t			mod;
 453	int				offset;
 454
 455	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
 456	mod = agbno % mp->m_sb.sb_inoalignmt;
 457	if (!mod)
 458		return;
 459
 460	/* calculate the inode offset and align startino */
 461	offset = XFS_AGB_TO_AGINO(mp, mod);
 462	*startino -= offset;
 463
 464	/*
 465	 * Since startino has been aligned down, left shift allocmask such that
 466	 * it continues to represent the same physical inodes relative to the
 467	 * new startino.
 468	 */
 469	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
 470}
 471
 472/*
 473 * Determine whether the source inode record can merge into the target. Both
 474 * records must be sparse, the inode ranges must match and there must be no
 475 * allocation overlap between the records.
 476 */
 477STATIC bool
 478__xfs_inobt_can_merge(
 479	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
 480	struct xfs_inobt_rec_incore	*srec)	/* src record */
 481{
 482	uint64_t			talloc;
 483	uint64_t			salloc;
 484
 485	/* records must cover the same inode range */
 486	if (trec->ir_startino != srec->ir_startino)
 487		return false;
 488
 489	/* both records must be sparse */
 490	if (!xfs_inobt_issparse(trec->ir_holemask) ||
 491	    !xfs_inobt_issparse(srec->ir_holemask))
 492		return false;
 493
 494	/* both records must track some inodes */
 495	if (!trec->ir_count || !srec->ir_count)
 496		return false;
 497
 498	/* can't exceed capacity of a full record */
 499	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
 500		return false;
 501
 502	/* verify there is no allocation overlap */
 503	talloc = xfs_inobt_irec_to_allocmask(trec);
 504	salloc = xfs_inobt_irec_to_allocmask(srec);
 505	if (talloc & salloc)
 506		return false;
 507
 508	return true;
 509}
 510
 511/*
 512 * Merge the source inode record into the target. The caller must call
 513 * __xfs_inobt_can_merge() to ensure the merge is valid.
 514 */
 515STATIC void
 516__xfs_inobt_rec_merge(
 517	struct xfs_inobt_rec_incore	*trec,	/* target */
 518	struct xfs_inobt_rec_incore	*srec)	/* src */
 519{
 520	ASSERT(trec->ir_startino == srec->ir_startino);
 521
 522	/* combine the counts */
 523	trec->ir_count += srec->ir_count;
 524	trec->ir_freecount += srec->ir_freecount;
 525
 526	/*
 527	 * Merge the holemask and free mask. For both fields, 0 bits refer to
 528	 * allocated inodes. We combine the allocated ranges with bitwise AND.
 529	 */
 530	trec->ir_holemask &= srec->ir_holemask;
 531	trec->ir_free &= srec->ir_free;
 532}
 533
 534/*
 535 * Insert a new sparse inode chunk into the associated inode allocation btree.
 536 * The inode record for the sparse chunk is pre-aligned to a startino that
 537 * should match any pre-existing sparse inode record in the tree. This allows
 538 * sparse chunks to fill over time.
 539 *
 540 * If no preexisting record exists, the provided record is inserted.
 541 * If there is a preexisting record, the provided record is merged with the
 542 * existing record and updated in place. The merged record is returned in nrec.
 
 
 543 *
 544 * It is considered corruption if a merge is requested and not possible. Given
 545 * the sparse inode alignment constraints, this should never happen.
 546 */
 547STATIC int
 548xfs_inobt_insert_sprec(
 549	struct xfs_perag		*pag,
 550	struct xfs_trans		*tp,
 551	struct xfs_buf			*agbp,
 552	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
 
 
 553{
 554	struct xfs_mount		*mp = pag->pag_mount;
 555	struct xfs_btree_cur		*cur;
 
 
 556	int				error;
 557	int				i;
 558	struct xfs_inobt_rec_incore	rec;
 559
 560	cur = xfs_inobt_init_cursor(pag, tp, agbp);
 561
 562	/* the new record is pre-aligned so we know where to look */
 563	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 564	if (error)
 565		goto error;
 566	/* if nothing there, insert a new record and return */
 567	if (i == 0) {
 568		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 569					     nrec->ir_count, nrec->ir_freecount,
 570					     nrec->ir_free, &i);
 571		if (error)
 572			goto error;
 573		if (XFS_IS_CORRUPT(mp, i != 1)) {
 574			xfs_btree_mark_sick(cur);
 575			error = -EFSCORRUPTED;
 576			goto error;
 577		}
 578
 579		goto out;
 580	}
 581
 582	/*
 583	 * A record exists at this startino.  Merge the records.
 
 584	 */
 585	error = xfs_inobt_get_rec(cur, &rec, &i);
 586	if (error)
 587		goto error;
 588	if (XFS_IS_CORRUPT(mp, i != 1)) {
 589		xfs_btree_mark_sick(cur);
 590		error = -EFSCORRUPTED;
 591		goto error;
 592	}
 593	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
 594		xfs_btree_mark_sick(cur);
 595		error = -EFSCORRUPTED;
 596		goto error;
 597	}
 598
 599	/*
 600	 * This should never fail. If we have coexisting records that
 601	 * cannot merge, something is seriously wrong.
 602	 */
 603	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
 604		xfs_btree_mark_sick(cur);
 605		error = -EFSCORRUPTED;
 606		goto error;
 607	}
 608
 609	trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
 610				 rec.ir_holemask, nrec->ir_startino,
 611				 nrec->ir_holemask);
 612
 613	/* merge to nrec to output the updated record */
 614	__xfs_inobt_rec_merge(nrec, &rec);
 615
 616	trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
 617				  nrec->ir_holemask);
 618
 619	error = xfs_inobt_rec_check_count(mp, nrec);
 620	if (error)
 621		goto error;
 
 622
 623	error = xfs_inobt_update(cur, nrec);
 624	if (error)
 625		goto error;
 626
 627out:
 628	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 629	return 0;
 630error:
 631	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 632	return error;
 633}
 634
 635/*
 636 * Insert a new sparse inode chunk into the free inode btree. The inode
 637 * record for the sparse chunk is pre-aligned to a startino that should match
 638 * any pre-existing sparse inode record in the tree. This allows sparse chunks
 639 * to fill over time.
 640 *
 641 * The new record is always inserted, overwriting a pre-existing record if
 642 * there is one.
 643 */
 644STATIC int
 645xfs_finobt_insert_sprec(
 646	struct xfs_perag		*pag,
 647	struct xfs_trans		*tp,
 648	struct xfs_buf			*agbp,
 649	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
 650{
 651	struct xfs_mount		*mp = pag->pag_mount;
 652	struct xfs_btree_cur		*cur;
 653	int				error;
 654	int				i;
 655
 656	cur = xfs_finobt_init_cursor(pag, tp, agbp);
 657
 658	/* the new record is pre-aligned so we know where to look */
 659	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
 660	if (error)
 661		goto error;
 662	/* if nothing there, insert a new record and return */
 663	if (i == 0) {
 664		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
 665					     nrec->ir_count, nrec->ir_freecount,
 666					     nrec->ir_free, &i);
 667		if (error)
 668			goto error;
 669		if (XFS_IS_CORRUPT(mp, i != 1)) {
 670			xfs_btree_mark_sick(cur);
 671			error = -EFSCORRUPTED;
 672			goto error;
 673		}
 674	} else {
 675		error = xfs_inobt_update(cur, nrec);
 676		if (error)
 677			goto error;
 678	}
 679
 680	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 681	return 0;
 682error:
 683	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 684	return error;
 685}
 686
 687
 688/*
 689 * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
 690 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
 691 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
 692 * inode count threshold, or the usual negative error code for other errors.
 693 */
 694STATIC int
 695xfs_ialloc_ag_alloc(
 696	struct xfs_perag	*pag,
 697	struct xfs_trans	*tp,
 698	struct xfs_buf		*agbp)
 699{
 700	struct xfs_agi		*agi;
 701	struct xfs_alloc_arg	args;
 702	int			error;
 703	xfs_agino_t		newino;		/* new first inode's number */
 704	xfs_agino_t		newlen;		/* new number of inodes */
 705	int			isaligned = 0;	/* inode allocation at stripe */
 706						/* unit boundary */
 707	/* init. to full chunk */
 
 708	struct xfs_inobt_rec_incore rec;
 709	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
 710	uint16_t		allocmask = (uint16_t) -1;
 711	int			do_sparse = 0;
 712
 713	memset(&args, 0, sizeof(args));
 714	args.tp = tp;
 715	args.mp = tp->t_mountp;
 716	args.fsbno = NULLFSBLOCK;
 717	args.oinfo = XFS_RMAP_OINFO_INODES;
 718	args.pag = pag;
 719
 720#ifdef DEBUG
 721	/* randomly do sparse inode allocations */
 722	if (xfs_has_sparseinodes(tp->t_mountp) &&
 723	    igeo->ialloc_min_blks < igeo->ialloc_blks)
 724		do_sparse = get_random_u32_below(2);
 725#endif
 726
 727	/*
 728	 * Locking will ensure that we don't have two callers in here
 729	 * at one time.
 730	 */
 731	newlen = igeo->ialloc_inos;
 732	if (igeo->maxicount &&
 733	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
 734							igeo->maxicount)
 735		return -ENOSPC;
 736	args.minlen = args.maxlen = igeo->ialloc_blks;
 737	/*
 738	 * First try to allocate inodes contiguous with the last-allocated
 739	 * chunk of inodes.  If the filesystem is striped, this will fill
 740	 * an entire stripe unit with inodes.
 741	 */
 742	agi = agbp->b_addr;
 743	newino = be32_to_cpu(agi->agi_newino);
 
 744	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
 745		     igeo->ialloc_blks;
 746	if (do_sparse)
 747		goto sparse_alloc;
 748	if (likely(newino != NULLAGINO &&
 749		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
 
 
 750		args.prod = 1;
 751
 752		/*
 753		 * We need to take into account alignment here to ensure that
 754		 * we don't modify the free list if we fail to have an exact
 755		 * block. If we don't have an exact match, and every oher
 756		 * attempt allocation attempt fails, we'll end up cancelling
 757		 * a dirty transaction and shutting down.
 758		 *
 759		 * For an exact allocation, alignment must be 1,
 760		 * however we need to take cluster alignment into account when
 761		 * fixing up the freelist. Use the minalignslop field to
 762		 * indicate that extra blocks might be required for alignment,
 763		 * but not to use them in the actual exact allocation.
 764		 */
 765		args.alignment = 1;
 766		args.minalignslop = igeo->cluster_align - 1;
 767
 768		/* Allow space for the inode btree to split. */
 769		args.minleft = igeo->inobt_maxlevels;
 770		error = xfs_alloc_vextent_exact_bno(&args,
 771				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
 772						args.agbno));
 773		if (error)
 774			return error;
 775
 776		/*
 777		 * This request might have dirtied the transaction if the AG can
 778		 * satisfy the request, but the exact block was not available.
 779		 * If the allocation did fail, subsequent requests will relax
 780		 * the exact agbno requirement and increase the alignment
 781		 * instead. It is critical that the total size of the request
 782		 * (len + alignment + slop) does not increase from this point
 783		 * on, so reset minalignslop to ensure it is not included in
 784		 * subsequent requests.
 785		 */
 786		args.minalignslop = 0;
 787	}
 788
 789	if (unlikely(args.fsbno == NULLFSBLOCK)) {
 790		/*
 791		 * Set the alignment for the allocation.
 792		 * If stripe alignment is turned on then align at stripe unit
 793		 * boundary.
 794		 * If the cluster size is smaller than a filesystem block
 795		 * then we're doing I/O for inodes in filesystem block size
 796		 * pieces, so don't need alignment anyway.
 797		 */
 798		isaligned = 0;
 799		if (igeo->ialloc_align) {
 800			ASSERT(!xfs_has_noalign(args.mp));
 801			args.alignment = args.mp->m_dalign;
 802			isaligned = 1;
 803		} else
 804			args.alignment = igeo->cluster_align;
 
 
 
 
 
 
 
 805		/*
 806		 * Allocate a fixed-size extent of inodes.
 807		 */
 
 808		args.prod = 1;
 809		/*
 810		 * Allow space for the inode btree to split.
 811		 */
 812		args.minleft = igeo->inobt_maxlevels;
 813		error = xfs_alloc_vextent_near_bno(&args,
 814				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
 815						be32_to_cpu(agi->agi_root)));
 816		if (error)
 817			return error;
 818	}
 819
 820	/*
 821	 * If stripe alignment is turned on, then try again with cluster
 822	 * alignment.
 823	 */
 824	if (isaligned && args.fsbno == NULLFSBLOCK) {
 825		args.alignment = igeo->cluster_align;
 826		error = xfs_alloc_vextent_near_bno(&args,
 827				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
 828						be32_to_cpu(agi->agi_root)));
 829		if (error)
 830			return error;
 831	}
 832
 833	/*
 834	 * Finally, try a sparse allocation if the filesystem supports it and
 835	 * the sparse allocation length is smaller than a full chunk.
 836	 */
 837	if (xfs_has_sparseinodes(args.mp) &&
 838	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
 839	    args.fsbno == NULLFSBLOCK) {
 840sparse_alloc:
 
 
 
 841		args.alignment = args.mp->m_sb.sb_spino_align;
 842		args.prod = 1;
 843
 844		args.minlen = igeo->ialloc_min_blks;
 845		args.maxlen = args.minlen;
 846
 847		/*
 848		 * The inode record will be aligned to full chunk size. We must
 849		 * prevent sparse allocation from AG boundaries that result in
 850		 * invalid inode records, such as records that start at agbno 0
 851		 * or extend beyond the AG.
 852		 *
 853		 * Set min agbno to the first aligned, non-zero agbno and max to
 854		 * the last aligned agbno that is at least one full chunk from
 855		 * the end of the AG.
 856		 */
 857		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
 858		args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
 859					    args.mp->m_sb.sb_inoalignmt) -
 860				 igeo->ialloc_blks;
 861
 862		error = xfs_alloc_vextent_near_bno(&args,
 863				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
 864						be32_to_cpu(agi->agi_root)));
 865		if (error)
 866			return error;
 867
 868		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
 869		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
 870		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
 871	}
 872
 873	if (args.fsbno == NULLFSBLOCK)
 874		return -EAGAIN;
 875
 
 876	ASSERT(args.len == args.minlen);
 877
 878	/*
 879	 * Stamp and write the inode buffers.
 880	 *
 881	 * Seed the new inode cluster with a random generation number. This
 882	 * prevents short-term reuse of generation numbers if a chunk is
 883	 * freed and then immediately reallocated. We use random numbers
 884	 * rather than a linear progression to prevent the next generation
 885	 * number from being easily guessable.
 886	 */
 887	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
 888			args.agbno, args.len, get_random_u32());
 889
 890	if (error)
 891		return error;
 892	/*
 893	 * Convert the results.
 894	 */
 895	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
 896
 897	if (xfs_inobt_issparse(~allocmask)) {
 898		/*
 899		 * We've allocated a sparse chunk. Align the startino and mask.
 900		 */
 901		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
 902
 903		rec.ir_startino = newino;
 904		rec.ir_holemask = ~allocmask;
 905		rec.ir_count = newlen;
 906		rec.ir_freecount = newlen;
 907		rec.ir_free = XFS_INOBT_ALL_FREE;
 908
 909		/*
 910		 * Insert the sparse record into the inobt and allow for a merge
 911		 * if necessary. If a merge does occur, rec is updated to the
 912		 * merged record.
 913		 */
 914		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
 
 915		if (error == -EFSCORRUPTED) {
 916			xfs_alert(args.mp,
 917	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
 918				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
 919						   rec.ir_startino),
 920				  rec.ir_holemask, rec.ir_count);
 921			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
 922		}
 923		if (error)
 924			return error;
 925
 926		/*
 927		 * We can't merge the part we've just allocated as for the inobt
 928		 * due to finobt semantics. The original record may or may not
 929		 * exist independent of whether physical inodes exist in this
 930		 * sparse chunk.
 931		 *
 932		 * We must update the finobt record based on the inobt record.
 933		 * rec contains the fully merged and up to date inobt record
 934		 * from the previous call. Set merge false to replace any
 935		 * existing record with this one.
 936		 */
 937		if (xfs_has_finobt(args.mp)) {
 938			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
 
 
 939			if (error)
 940				return error;
 941		}
 942	} else {
 943		/* full chunk - insert new records to both btrees */
 944		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
 
 945		if (error)
 946			return error;
 947
 948		if (xfs_has_finobt(args.mp)) {
 949			error = xfs_inobt_insert(pag, tp, agbp, newino,
 950						 newlen, true);
 951			if (error)
 952				return error;
 953		}
 954	}
 955
 956	/*
 957	 * Update AGI counts and newino.
 958	 */
 959	be32_add_cpu(&agi->agi_count, newlen);
 960	be32_add_cpu(&agi->agi_freecount, newlen);
 
 961	pag->pagi_freecount += newlen;
 962	pag->pagi_count += newlen;
 963	agi->agi_newino = cpu_to_be32(newino);
 964
 965	/*
 966	 * Log allocation group header fields
 967	 */
 968	xfs_ialloc_log_agi(tp, agbp,
 969		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
 970	/*
 971	 * Modify/log superblock values for inode count and inode free count.
 972	 */
 973	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
 974	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
 
 975	return 0;
 976}
 977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978/*
 979 * Try to retrieve the next record to the left/right from the current one.
 980 */
 981STATIC int
 982xfs_ialloc_next_rec(
 983	struct xfs_btree_cur	*cur,
 984	xfs_inobt_rec_incore_t	*rec,
 985	int			*done,
 986	int			left)
 987{
 988	int                     error;
 989	int			i;
 990
 991	if (left)
 992		error = xfs_btree_decrement(cur, 0, &i);
 993	else
 994		error = xfs_btree_increment(cur, 0, &i);
 995
 996	if (error)
 997		return error;
 998	*done = !i;
 999	if (i) {
1000		error = xfs_inobt_get_rec(cur, rec, &i);
1001		if (error)
1002			return error;
1003		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1004			xfs_btree_mark_sick(cur);
1005			return -EFSCORRUPTED;
1006		}
1007	}
1008
1009	return 0;
1010}
1011
1012STATIC int
1013xfs_ialloc_get_rec(
1014	struct xfs_btree_cur	*cur,
1015	xfs_agino_t		agino,
1016	xfs_inobt_rec_incore_t	*rec,
1017	int			*done)
1018{
1019	int                     error;
1020	int			i;
1021
1022	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1023	if (error)
1024		return error;
1025	*done = !i;
1026	if (i) {
1027		error = xfs_inobt_get_rec(cur, rec, &i);
1028		if (error)
1029			return error;
1030		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1031			xfs_btree_mark_sick(cur);
1032			return -EFSCORRUPTED;
1033		}
1034	}
1035
1036	return 0;
1037}
1038
1039/*
1040 * Return the offset of the first free inode in the record. If the inode chunk
1041 * is sparsely allocated, we convert the record holemask to inode granularity
1042 * and mask off the unallocated regions from the inode free mask.
1043 */
1044STATIC int
1045xfs_inobt_first_free_inode(
1046	struct xfs_inobt_rec_incore	*rec)
1047{
1048	xfs_inofree_t			realfree;
1049
1050	/* if there are no holes, return the first available offset */
1051	if (!xfs_inobt_issparse(rec->ir_holemask))
1052		return xfs_lowbit64(rec->ir_free);
1053
1054	realfree = xfs_inobt_irec_to_allocmask(rec);
1055	realfree &= rec->ir_free;
1056
1057	return xfs_lowbit64(realfree);
1058}
1059
1060/*
1061 * Allocate an inode using the inobt-only algorithm.
1062 */
1063STATIC int
1064xfs_dialloc_ag_inobt(
1065	struct xfs_perag	*pag,
1066	struct xfs_trans	*tp,
1067	struct xfs_buf		*agbp,
1068	xfs_ino_t		parent,
1069	xfs_ino_t		*inop)
1070{
1071	struct xfs_mount	*mp = tp->t_mountp;
1072	struct xfs_agi		*agi = agbp->b_addr;
 
1073	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1074	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
 
1075	struct xfs_btree_cur	*cur, *tcur;
1076	struct xfs_inobt_rec_incore rec, trec;
1077	xfs_ino_t		ino;
1078	int			error;
1079	int			offset;
1080	int			i, j;
1081	int			searchdistance = 10;
1082
1083	ASSERT(xfs_perag_initialised_agi(pag));
1084	ASSERT(xfs_perag_allows_inodes(pag));
 
 
1085	ASSERT(pag->pagi_freecount > 0);
1086
1087 restart_pagno:
1088	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1089	/*
1090	 * If pagino is 0 (this is the root inode allocation) use newino.
1091	 * This must work because we've just allocated some.
1092	 */
1093	if (!pagino)
1094		pagino = be32_to_cpu(agi->agi_newino);
1095
1096	error = xfs_check_agi_freecount(cur);
1097	if (error)
1098		goto error0;
1099
1100	/*
1101	 * If in the same AG as the parent, try to get near the parent.
1102	 */
1103	if (pagno == pag->pag_agno) {
1104		int		doneleft;	/* done, to the left */
1105		int		doneright;	/* done, to the right */
1106
1107		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1108		if (error)
1109			goto error0;
1110		if (XFS_IS_CORRUPT(mp, i != 1)) {
1111			xfs_btree_mark_sick(cur);
1112			error = -EFSCORRUPTED;
1113			goto error0;
1114		}
1115
1116		error = xfs_inobt_get_rec(cur, &rec, &j);
1117		if (error)
1118			goto error0;
1119		if (XFS_IS_CORRUPT(mp, j != 1)) {
1120			xfs_btree_mark_sick(cur);
1121			error = -EFSCORRUPTED;
1122			goto error0;
1123		}
1124
1125		if (rec.ir_freecount > 0) {
1126			/*
1127			 * Found a free inode in the same chunk
1128			 * as the parent, done.
1129			 */
1130			goto alloc_inode;
1131		}
1132
1133
1134		/*
1135		 * In the same AG as parent, but parent's chunk is full.
1136		 */
1137
1138		/* duplicate the cursor, search left & right simultaneously */
1139		error = xfs_btree_dup_cursor(cur, &tcur);
1140		if (error)
1141			goto error0;
1142
1143		/*
1144		 * Skip to last blocks looked up if same parent inode.
1145		 */
1146		if (pagino != NULLAGINO &&
1147		    pag->pagl_pagino == pagino &&
1148		    pag->pagl_leftrec != NULLAGINO &&
1149		    pag->pagl_rightrec != NULLAGINO) {
1150			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1151						   &trec, &doneleft);
1152			if (error)
1153				goto error1;
1154
1155			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1156						   &rec, &doneright);
1157			if (error)
1158				goto error1;
1159		} else {
1160			/* search left with tcur, back up 1 record */
1161			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1162			if (error)
1163				goto error1;
1164
1165			/* search right with cur, go forward 1 record. */
1166			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1167			if (error)
1168				goto error1;
1169		}
1170
1171		/*
1172		 * Loop until we find an inode chunk with a free inode.
1173		 */
1174		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1175			int	useleft;  /* using left inode chunk this time */
1176
1177			/* figure out the closer block if both are valid. */
1178			if (!doneleft && !doneright) {
1179				useleft = pagino -
1180				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1181				  rec.ir_startino - pagino;
1182			} else {
1183				useleft = !doneleft;
1184			}
1185
1186			/* free inodes to the left? */
1187			if (useleft && trec.ir_freecount) {
1188				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1189				cur = tcur;
1190
1191				pag->pagl_leftrec = trec.ir_startino;
1192				pag->pagl_rightrec = rec.ir_startino;
1193				pag->pagl_pagino = pagino;
1194				rec = trec;
1195				goto alloc_inode;
1196			}
1197
1198			/* free inodes to the right? */
1199			if (!useleft && rec.ir_freecount) {
1200				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1201
1202				pag->pagl_leftrec = trec.ir_startino;
1203				pag->pagl_rightrec = rec.ir_startino;
1204				pag->pagl_pagino = pagino;
1205				goto alloc_inode;
1206			}
1207
1208			/* get next record to check */
1209			if (useleft) {
1210				error = xfs_ialloc_next_rec(tcur, &trec,
1211								 &doneleft, 1);
1212			} else {
1213				error = xfs_ialloc_next_rec(cur, &rec,
1214								 &doneright, 0);
1215			}
1216			if (error)
1217				goto error1;
1218		}
1219
1220		if (searchdistance <= 0) {
1221			/*
1222			 * Not in range - save last search
1223			 * location and allocate a new inode
1224			 */
1225			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1226			pag->pagl_leftrec = trec.ir_startino;
1227			pag->pagl_rightrec = rec.ir_startino;
1228			pag->pagl_pagino = pagino;
1229
1230		} else {
1231			/*
1232			 * We've reached the end of the btree. because
1233			 * we are only searching a small chunk of the
1234			 * btree each search, there is obviously free
1235			 * inodes closer to the parent inode than we
1236			 * are now. restart the search again.
1237			 */
1238			pag->pagl_pagino = NULLAGINO;
1239			pag->pagl_leftrec = NULLAGINO;
1240			pag->pagl_rightrec = NULLAGINO;
1241			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1242			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1243			goto restart_pagno;
1244		}
1245	}
1246
1247	/*
1248	 * In a different AG from the parent.
1249	 * See if the most recently allocated block has any free.
1250	 */
1251	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1252		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1253					 XFS_LOOKUP_EQ, &i);
1254		if (error)
1255			goto error0;
1256
1257		if (i == 1) {
1258			error = xfs_inobt_get_rec(cur, &rec, &j);
1259			if (error)
1260				goto error0;
1261
1262			if (j == 1 && rec.ir_freecount > 0) {
1263				/*
1264				 * The last chunk allocated in the group
1265				 * still has a free inode.
1266				 */
1267				goto alloc_inode;
1268			}
1269		}
1270	}
1271
1272	/*
1273	 * None left in the last group, search the whole AG
1274	 */
1275	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1276	if (error)
1277		goto error0;
1278	if (XFS_IS_CORRUPT(mp, i != 1)) {
1279		xfs_btree_mark_sick(cur);
1280		error = -EFSCORRUPTED;
1281		goto error0;
1282	}
1283
1284	for (;;) {
1285		error = xfs_inobt_get_rec(cur, &rec, &i);
1286		if (error)
1287			goto error0;
1288		if (XFS_IS_CORRUPT(mp, i != 1)) {
1289			xfs_btree_mark_sick(cur);
1290			error = -EFSCORRUPTED;
1291			goto error0;
1292		}
1293		if (rec.ir_freecount > 0)
1294			break;
1295		error = xfs_btree_increment(cur, 0, &i);
1296		if (error)
1297			goto error0;
1298		if (XFS_IS_CORRUPT(mp, i != 1)) {
1299			xfs_btree_mark_sick(cur);
1300			error = -EFSCORRUPTED;
1301			goto error0;
1302		}
1303	}
1304
1305alloc_inode:
1306	offset = xfs_inobt_first_free_inode(&rec);
1307	ASSERT(offset >= 0);
1308	ASSERT(offset < XFS_INODES_PER_CHUNK);
1309	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1310				   XFS_INODES_PER_CHUNK) == 0);
1311	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1312	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1313	rec.ir_freecount--;
1314	error = xfs_inobt_update(cur, &rec);
1315	if (error)
1316		goto error0;
1317	be32_add_cpu(&agi->agi_freecount, -1);
1318	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1319	pag->pagi_freecount--;
1320
1321	error = xfs_check_agi_freecount(cur);
1322	if (error)
1323		goto error0;
1324
1325	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1326	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
 
1327	*inop = ino;
1328	return 0;
1329error1:
1330	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1331error0:
1332	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
 
1333	return error;
1334}
1335
1336/*
1337 * Use the free inode btree to allocate an inode based on distance from the
1338 * parent. Note that the provided cursor may be deleted and replaced.
1339 */
1340STATIC int
1341xfs_dialloc_ag_finobt_near(
1342	xfs_agino_t			pagino,
1343	struct xfs_btree_cur		**ocur,
1344	struct xfs_inobt_rec_incore	*rec)
1345{
1346	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1347	struct xfs_btree_cur		*rcur;	/* right search cursor */
1348	struct xfs_inobt_rec_incore	rrec;
1349	int				error;
1350	int				i, j;
1351
1352	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1353	if (error)
1354		return error;
1355
1356	if (i == 1) {
1357		error = xfs_inobt_get_rec(lcur, rec, &i);
1358		if (error)
1359			return error;
1360		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1361			xfs_btree_mark_sick(lcur);
1362			return -EFSCORRUPTED;
1363		}
1364
1365		/*
1366		 * See if we've landed in the parent inode record. The finobt
1367		 * only tracks chunks with at least one free inode, so record
1368		 * existence is enough.
1369		 */
1370		if (pagino >= rec->ir_startino &&
1371		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1372			return 0;
1373	}
1374
1375	error = xfs_btree_dup_cursor(lcur, &rcur);
1376	if (error)
1377		return error;
1378
1379	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1380	if (error)
1381		goto error_rcur;
1382	if (j == 1) {
1383		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1384		if (error)
1385			goto error_rcur;
1386		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1387			xfs_btree_mark_sick(lcur);
1388			error = -EFSCORRUPTED;
1389			goto error_rcur;
1390		}
1391	}
1392
1393	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1394		xfs_btree_mark_sick(lcur);
1395		error = -EFSCORRUPTED;
1396		goto error_rcur;
1397	}
1398	if (i == 1 && j == 1) {
1399		/*
1400		 * Both the left and right records are valid. Choose the closer
1401		 * inode chunk to the target.
1402		 */
1403		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1404		    (rrec.ir_startino - pagino)) {
1405			*rec = rrec;
1406			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1407			*ocur = rcur;
1408		} else {
1409			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1410		}
1411	} else if (j == 1) {
1412		/* only the right record is valid */
1413		*rec = rrec;
1414		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1415		*ocur = rcur;
1416	} else if (i == 1) {
1417		/* only the left record is valid */
1418		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1419	}
1420
1421	return 0;
1422
1423error_rcur:
1424	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1425	return error;
1426}
1427
1428/*
1429 * Use the free inode btree to find a free inode based on a newino hint. If
1430 * the hint is NULL, find the first free inode in the AG.
1431 */
1432STATIC int
1433xfs_dialloc_ag_finobt_newino(
1434	struct xfs_agi			*agi,
1435	struct xfs_btree_cur		*cur,
1436	struct xfs_inobt_rec_incore	*rec)
1437{
1438	int error;
1439	int i;
1440
1441	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1442		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1443					 XFS_LOOKUP_EQ, &i);
1444		if (error)
1445			return error;
1446		if (i == 1) {
1447			error = xfs_inobt_get_rec(cur, rec, &i);
1448			if (error)
1449				return error;
1450			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1451				xfs_btree_mark_sick(cur);
1452				return -EFSCORRUPTED;
1453			}
1454			return 0;
1455		}
1456	}
1457
1458	/*
1459	 * Find the first inode available in the AG.
1460	 */
1461	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1462	if (error)
1463		return error;
1464	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1465		xfs_btree_mark_sick(cur);
1466		return -EFSCORRUPTED;
1467	}
1468
1469	error = xfs_inobt_get_rec(cur, rec, &i);
1470	if (error)
1471		return error;
1472	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1473		xfs_btree_mark_sick(cur);
1474		return -EFSCORRUPTED;
1475	}
1476
1477	return 0;
1478}
1479
1480/*
1481 * Update the inobt based on a modification made to the finobt. Also ensure that
1482 * the records from both trees are equivalent post-modification.
1483 */
1484STATIC int
1485xfs_dialloc_ag_update_inobt(
1486	struct xfs_btree_cur		*cur,	/* inobt cursor */
1487	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1488	int				offset) /* inode offset */
1489{
1490	struct xfs_inobt_rec_incore	rec;
1491	int				error;
1492	int				i;
1493
1494	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1495	if (error)
1496		return error;
1497	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1498		xfs_btree_mark_sick(cur);
1499		return -EFSCORRUPTED;
1500	}
1501
1502	error = xfs_inobt_get_rec(cur, &rec, &i);
1503	if (error)
1504		return error;
1505	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1506		xfs_btree_mark_sick(cur);
1507		return -EFSCORRUPTED;
1508	}
1509	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1510				   XFS_INODES_PER_CHUNK) == 0);
1511
1512	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1513	rec.ir_freecount--;
1514
1515	if (XFS_IS_CORRUPT(cur->bc_mp,
1516			   rec.ir_free != frec->ir_free ||
1517			   rec.ir_freecount != frec->ir_freecount)) {
1518		xfs_btree_mark_sick(cur);
1519		return -EFSCORRUPTED;
1520	}
1521
1522	return xfs_inobt_update(cur, &rec);
1523}
1524
1525/*
1526 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1527 * back to the inobt search algorithm.
1528 *
1529 * The caller selected an AG for us, and made sure that free inodes are
1530 * available.
1531 */
1532static int
1533xfs_dialloc_ag(
1534	struct xfs_perag	*pag,
1535	struct xfs_trans	*tp,
1536	struct xfs_buf		*agbp,
1537	xfs_ino_t		parent,
1538	xfs_ino_t		*inop)
1539{
1540	struct xfs_mount		*mp = tp->t_mountp;
1541	struct xfs_agi			*agi = agbp->b_addr;
 
1542	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1543	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
 
1544	struct xfs_btree_cur		*cur;	/* finobt cursor */
1545	struct xfs_btree_cur		*icur;	/* inobt cursor */
1546	struct xfs_inobt_rec_incore	rec;
1547	xfs_ino_t			ino;
1548	int				error;
1549	int				offset;
1550	int				i;
1551
1552	if (!xfs_has_finobt(mp))
1553		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
 
 
1554
1555	/*
1556	 * If pagino is 0 (this is the root inode allocation) use newino.
1557	 * This must work because we've just allocated some.
1558	 */
1559	if (!pagino)
1560		pagino = be32_to_cpu(agi->agi_newino);
1561
1562	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1563
1564	error = xfs_check_agi_freecount(cur);
1565	if (error)
1566		goto error_cur;
1567
1568	/*
1569	 * The search algorithm depends on whether we're in the same AG as the
1570	 * parent. If so, find the closest available inode to the parent. If
1571	 * not, consider the agi hint or find the first free inode in the AG.
1572	 */
1573	if (pag->pag_agno == pagno)
1574		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1575	else
1576		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1577	if (error)
1578		goto error_cur;
1579
1580	offset = xfs_inobt_first_free_inode(&rec);
1581	ASSERT(offset >= 0);
1582	ASSERT(offset < XFS_INODES_PER_CHUNK);
1583	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1584				   XFS_INODES_PER_CHUNK) == 0);
1585	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1586
1587	/*
1588	 * Modify or remove the finobt record.
1589	 */
1590	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1591	rec.ir_freecount--;
1592	if (rec.ir_freecount)
1593		error = xfs_inobt_update(cur, &rec);
1594	else
1595		error = xfs_btree_delete(cur, &i);
1596	if (error)
1597		goto error_cur;
1598
1599	/*
1600	 * The finobt has now been updated appropriately. We haven't updated the
1601	 * agi and superblock yet, so we can create an inobt cursor and validate
1602	 * the original freecount. If all is well, make the equivalent update to
1603	 * the inobt using the finobt record and offset information.
1604	 */
1605	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1606
1607	error = xfs_check_agi_freecount(icur);
1608	if (error)
1609		goto error_icur;
1610
1611	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1612	if (error)
1613		goto error_icur;
1614
1615	/*
1616	 * Both trees have now been updated. We must update the perag and
1617	 * superblock before we can check the freecount for each btree.
1618	 */
1619	be32_add_cpu(&agi->agi_freecount, -1);
1620	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1621	pag->pagi_freecount--;
1622
1623	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1624
1625	error = xfs_check_agi_freecount(icur);
1626	if (error)
1627		goto error_icur;
1628	error = xfs_check_agi_freecount(cur);
1629	if (error)
1630		goto error_icur;
1631
1632	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1633	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
 
1634	*inop = ino;
1635	return 0;
1636
1637error_icur:
1638	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1639error_cur:
1640	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1641	return error;
1642}
1643
1644static int
1645xfs_dialloc_roll(
1646	struct xfs_trans	**tpp,
1647	struct xfs_buf		*agibp)
1648{
1649	struct xfs_trans	*tp = *tpp;
1650	struct xfs_dquot_acct	*dqinfo;
1651	int			error;
1652
1653	/*
1654	 * Hold to on to the agibp across the commit so no other allocation can
1655	 * come in and take the free inodes we just allocated for our caller.
1656	 */
1657	xfs_trans_bhold(tp, agibp);
1658
1659	/*
1660	 * We want the quota changes to be associated with the next transaction,
1661	 * NOT this one. So, detach the dqinfo from this and attach it to the
1662	 * next transaction.
1663	 */
1664	dqinfo = tp->t_dqinfo;
1665	tp->t_dqinfo = NULL;
1666
1667	error = xfs_trans_roll(&tp);
1668
1669	/* Re-attach the quota info that we detached from prev trx. */
1670	tp->t_dqinfo = dqinfo;
1671
1672	/*
1673	 * Join the buffer even on commit error so that the buffer is released
1674	 * when the caller cancels the transaction and doesn't have to handle
1675	 * this error case specially.
1676	 */
1677	xfs_trans_bjoin(tp, agibp);
1678	*tpp = tp;
1679	return error;
1680}
1681
1682static bool
1683xfs_dialloc_good_ag(
1684	struct xfs_perag	*pag,
1685	struct xfs_trans	*tp,
1686	umode_t			mode,
1687	int			flags,
1688	bool			ok_alloc)
1689{
1690	struct xfs_mount	*mp = tp->t_mountp;
1691	xfs_extlen_t		ineed;
1692	xfs_extlen_t		longest = 0;
1693	int			needspace;
1694	int			error;
1695
1696	if (!pag)
1697		return false;
1698	if (!xfs_perag_allows_inodes(pag))
1699		return false;
1700
1701	if (!xfs_perag_initialised_agi(pag)) {
1702		error = xfs_ialloc_read_agi(pag, tp, NULL);
1703		if (error)
1704			return false;
1705	}
1706
1707	if (pag->pagi_freecount)
1708		return true;
1709	if (!ok_alloc)
1710		return false;
1711
1712	if (!xfs_perag_initialised_agf(pag)) {
1713		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1714		if (error)
1715			return false;
1716	}
1717
1718	/*
1719	 * Check that there is enough free space for the file plus a chunk of
1720	 * inodes if we need to allocate some. If this is the first pass across
1721	 * the AGs, take into account the potential space needed for alignment
1722	 * of inode chunks when checking the longest contiguous free space in
1723	 * the AG - this prevents us from getting ENOSPC because we have free
1724	 * space larger than ialloc_blks but alignment constraints prevent us
1725	 * from using it.
1726	 *
1727	 * If we can't find an AG with space for full alignment slack to be
1728	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1729	 * don't include alignment for the second pass and so if we fail
1730	 * allocation due to alignment issues then it is most likely a real
1731	 * ENOSPC condition.
1732	 *
1733	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1734	 * reservations that xfs_alloc_fix_freelist() now does via
1735	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1736	 * be more than large enough for the check below to succeed, but
1737	 * xfs_alloc_space_available() will fail because of the non-zero
1738	 * metadata reservation and hence we won't actually be able to allocate
1739	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1740	 * because of this.
1741	 */
1742	ineed = M_IGEO(mp)->ialloc_min_blks;
1743	if (flags && ineed > 1)
1744		ineed += M_IGEO(mp)->cluster_align;
1745	longest = pag->pagf_longest;
1746	if (!longest)
1747		longest = pag->pagf_flcount > 0;
1748	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1749
1750	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1751		return false;
1752	return true;
1753}
1754
1755static int
1756xfs_dialloc_try_ag(
1757	struct xfs_perag	*pag,
1758	struct xfs_trans	**tpp,
1759	xfs_ino_t		parent,
1760	xfs_ino_t		*new_ino,
1761	bool			ok_alloc)
1762{
1763	struct xfs_buf		*agbp;
1764	xfs_ino_t		ino;
1765	int			error;
1766
1767	/*
1768	 * Then read in the AGI buffer and recheck with the AGI buffer
1769	 * lock held.
1770	 */
1771	error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1772	if (error)
1773		return error;
1774
1775	if (!pag->pagi_freecount) {
1776		if (!ok_alloc) {
1777			error = -EAGAIN;
1778			goto out_release;
1779		}
1780
1781		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1782		if (error < 0)
1783			goto out_release;
1784
1785		/*
1786		 * We successfully allocated space for an inode cluster in this
1787		 * AG.  Roll the transaction so that we can allocate one of the
1788		 * new inodes.
1789		 */
1790		ASSERT(pag->pagi_freecount > 0);
1791		error = xfs_dialloc_roll(tpp, agbp);
1792		if (error)
1793			goto out_release;
1794	}
1795
1796	/* Allocate an inode in the found AG */
1797	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1798	if (!error)
1799		*new_ino = ino;
1800	return error;
1801
1802out_release:
1803	xfs_trans_brelse(*tpp, agbp);
1804	return error;
1805}
1806
1807/*
1808 * Allocate an on-disk inode.
 
 
 
1809 *
1810 * Mode is used to tell whether the new inode is a directory and hence where to
1811 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1812 * on success, otherwise an error will be set to indicate the failure (e.g.
1813 * -ENOSPC).
 
 
 
 
 
 
 
 
 
 
1814 */
1815int
1816xfs_dialloc(
1817	struct xfs_trans	**tpp,
1818	xfs_ino_t		parent,
1819	umode_t			mode,
1820	xfs_ino_t		*new_ino)
 
1821{
1822	struct xfs_mount	*mp = (*tpp)->t_mountp;
 
1823	xfs_agnumber_t		agno;
1824	int			error = 0;
 
 
1825	xfs_agnumber_t		start_agno;
1826	struct xfs_perag	*pag;
1827	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1828	bool			ok_alloc = true;
1829	bool			low_space = false;
1830	int			flags;
1831	xfs_ino_t		ino = NULLFSINO;
 
 
 
 
 
 
1832
1833	/*
1834	 * Directories, symlinks, and regular files frequently allocate at least
1835	 * one block, so factor that potential expansion when we examine whether
1836	 * an AG has enough space for file creation.
1837	 */
1838	if (S_ISDIR(mode))
1839		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1840				mp->m_maxagi;
1841	else {
1842		start_agno = XFS_INO_TO_AGNO(mp, parent);
1843		if (start_agno >= mp->m_maxagi)
1844			start_agno = 0;
1845	}
1846
1847	/*
1848	 * If we have already hit the ceiling of inode blocks then clear
1849	 * ok_alloc so we scan all available agi structures for a free
1850	 * inode.
1851	 *
1852	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1853	 * which will sacrifice the preciseness but improve the performance.
1854	 */
1855	if (igeo->maxicount &&
1856	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1857							> igeo->maxicount) {
1858		ok_alloc = false;
1859	}
1860
1861	/*
1862	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1863	 * have free inodes in them rather than use up free space allocating new
1864	 * inode chunks. Hence we turn off allocation for the first non-blocking
1865	 * pass through the AGs if we are near ENOSPC to consume free inodes
1866	 * that we can immediately allocate, but then we allow allocation on the
1867	 * second pass if we fail to find an AG with free inodes in it.
1868	 */
1869	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1870			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1871		ok_alloc = false;
1872		low_space = true;
1873	}
1874
1875	/*
1876	 * Loop until we find an allocation group that either has free inodes
1877	 * or in which we can allocate some inodes.  Iterate through the
1878	 * allocation groups upward, wrapping at the end.
1879	 */
1880	flags = XFS_ALLOC_FLAG_TRYLOCK;
1881retry:
1882	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1883		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1884			error = xfs_dialloc_try_ag(pag, tpp, parent,
1885					&ino, ok_alloc);
1886			if (error != -EAGAIN)
1887				break;
1888			error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889		}
1890
1891		if (xfs_is_shutdown(mp)) {
1892			error = -EFSCORRUPTED;
1893			break;
 
 
 
 
 
 
 
 
 
 
1894		}
1895	}
1896	if (pag)
1897		xfs_perag_rele(pag);
1898	if (error)
1899		return error;
1900	if (ino == NULLFSINO) {
1901		if (flags) {
1902			flags = 0;
1903			if (low_space)
1904				ok_alloc = true;
1905			goto retry;
1906		}
1907		return -ENOSPC;
1908	}
1909	*new_ino = ino;
1910	return 0;
 
 
 
 
 
1911}
1912
1913/*
1914 * Free the blocks of an inode chunk. We must consider that the inode chunk
1915 * might be sparse and only free the regions that are allocated as part of the
1916 * chunk.
1917 */
1918static int
1919xfs_difree_inode_chunk(
1920	struct xfs_trans		*tp,
1921	xfs_agnumber_t			agno,
1922	struct xfs_inobt_rec_incore	*rec)
 
1923{
1924	struct xfs_mount		*mp = tp->t_mountp;
1925	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1926							rec->ir_startino);
1927	int				startidx, endidx;
1928	int				nextbit;
1929	xfs_agblock_t			agbno;
1930	int				contigblk;
1931	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
 
1932
1933	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1934		/* not sparse, calculate extent info directly */
1935		return xfs_free_extent_later(tp,
1936				XFS_AGB_TO_FSB(mp, agno, sagbno),
1937				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1938				XFS_AG_RESV_NONE, false);
1939	}
1940
1941	/* holemask is only 16-bits (fits in an unsigned long) */
1942	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1943	holemask[0] = rec->ir_holemask;
1944
1945	/*
1946	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1947	 * holemask and convert the start/end index of each range to an extent.
1948	 * We start with the start and end index both pointing at the first 0 in
1949	 * the mask.
1950	 */
1951	startidx = endidx = find_first_zero_bit(holemask,
1952						XFS_INOBT_HOLEMASK_BITS);
1953	nextbit = startidx + 1;
1954	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1955		int error;
1956
1957		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1958					     nextbit);
1959		/*
1960		 * If the next zero bit is contiguous, update the end index of
1961		 * the current range and continue.
1962		 */
1963		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1964		    nextbit == endidx + 1) {
1965			endidx = nextbit;
1966			goto next;
1967		}
1968
1969		/*
1970		 * nextbit is not contiguous with the current end index. Convert
1971		 * the current start/end to an extent and add it to the free
1972		 * list.
1973		 */
1974		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1975				  mp->m_sb.sb_inopblock;
1976		contigblk = ((endidx - startidx + 1) *
1977			     XFS_INODES_PER_HOLEMASK_BIT) /
1978			    mp->m_sb.sb_inopblock;
1979
1980		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1981		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1982		error = xfs_free_extent_later(tp,
1983				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1984				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1985				false);
1986		if (error)
1987			return error;
1988
1989		/* reset range to current bit and carry on... */
1990		startidx = endidx = nextbit;
1991
1992next:
1993		nextbit++;
1994	}
1995	return 0;
1996}
1997
1998STATIC int
1999xfs_difree_inobt(
2000	struct xfs_perag		*pag,
2001	struct xfs_trans		*tp,
2002	struct xfs_buf			*agbp,
2003	xfs_agino_t			agino,
 
2004	struct xfs_icluster		*xic,
2005	struct xfs_inobt_rec_incore	*orec)
2006{
2007	struct xfs_mount		*mp = pag->pag_mount;
2008	struct xfs_agi			*agi = agbp->b_addr;
 
2009	struct xfs_btree_cur		*cur;
2010	struct xfs_inobt_rec_incore	rec;
2011	int				ilen;
2012	int				error;
2013	int				i;
2014	int				off;
2015
2016	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2017	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2018
2019	/*
2020	 * Initialize the cursor.
2021	 */
2022	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2023
2024	error = xfs_check_agi_freecount(cur);
2025	if (error)
2026		goto error0;
2027
2028	/*
2029	 * Look for the entry describing this inode.
2030	 */
2031	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2032		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2033			__func__, error);
2034		goto error0;
2035	}
2036	if (XFS_IS_CORRUPT(mp, i != 1)) {
2037		xfs_btree_mark_sick(cur);
2038		error = -EFSCORRUPTED;
2039		goto error0;
2040	}
2041	error = xfs_inobt_get_rec(cur, &rec, &i);
2042	if (error) {
2043		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2044			__func__, error);
2045		goto error0;
2046	}
2047	if (XFS_IS_CORRUPT(mp, i != 1)) {
2048		xfs_btree_mark_sick(cur);
2049		error = -EFSCORRUPTED;
2050		goto error0;
2051	}
2052	/*
2053	 * Get the offset in the inode chunk.
2054	 */
2055	off = agino - rec.ir_startino;
2056	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2057	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2058	/*
2059	 * Mark the inode free & increment the count.
2060	 */
2061	rec.ir_free |= XFS_INOBT_MASK(off);
2062	rec.ir_freecount++;
2063
2064	/*
2065	 * When an inode chunk is free, it becomes eligible for removal. Don't
2066	 * remove the chunk if the block size is large enough for multiple inode
2067	 * chunks (that might not be free).
2068	 */
2069	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
 
2070	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2071		xic->deleted = true;
2072		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2073				rec.ir_startino);
2074		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2075
2076		/*
2077		 * Remove the inode cluster from the AGI B+Tree, adjust the
2078		 * AGI and Superblock inode counts, and mark the disk space
2079		 * to be freed when the transaction is committed.
2080		 */
2081		ilen = rec.ir_freecount;
2082		be32_add_cpu(&agi->agi_count, -ilen);
2083		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2084		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
 
2085		pag->pagi_freecount -= ilen - 1;
2086		pag->pagi_count -= ilen;
2087		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2088		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2089
2090		if ((error = xfs_btree_delete(cur, &i))) {
2091			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2092				__func__, error);
2093			goto error0;
2094		}
2095
2096		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2097		if (error)
2098			goto error0;
2099	} else {
2100		xic->deleted = false;
2101
2102		error = xfs_inobt_update(cur, &rec);
2103		if (error) {
2104			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2105				__func__, error);
2106			goto error0;
2107		}
2108
2109		/*
2110		 * Change the inode free counts and log the ag/sb changes.
2111		 */
2112		be32_add_cpu(&agi->agi_freecount, 1);
2113		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
 
2114		pag->pagi_freecount++;
 
2115		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2116	}
2117
2118	error = xfs_check_agi_freecount(cur);
2119	if (error)
2120		goto error0;
2121
2122	*orec = rec;
2123	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2124	return 0;
2125
2126error0:
2127	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2128	return error;
2129}
2130
2131/*
2132 * Free an inode in the free inode btree.
2133 */
2134STATIC int
2135xfs_difree_finobt(
2136	struct xfs_perag		*pag,
2137	struct xfs_trans		*tp,
2138	struct xfs_buf			*agbp,
2139	xfs_agino_t			agino,
2140	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2141{
2142	struct xfs_mount		*mp = pag->pag_mount;
 
2143	struct xfs_btree_cur		*cur;
2144	struct xfs_inobt_rec_incore	rec;
2145	int				offset = agino - ibtrec->ir_startino;
2146	int				error;
2147	int				i;
2148
2149	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2150
2151	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2152	if (error)
2153		goto error;
2154	if (i == 0) {
2155		/*
2156		 * If the record does not exist in the finobt, we must have just
2157		 * freed an inode in a previously fully allocated chunk. If not,
2158		 * something is out of sync.
2159		 */
2160		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2161			xfs_btree_mark_sick(cur);
2162			error = -EFSCORRUPTED;
2163			goto error;
2164		}
2165
2166		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2167					     ibtrec->ir_count,
2168					     ibtrec->ir_freecount,
2169					     ibtrec->ir_free, &i);
2170		if (error)
2171			goto error;
2172		ASSERT(i == 1);
2173
2174		goto out;
2175	}
2176
2177	/*
2178	 * Read and update the existing record. We could just copy the ibtrec
2179	 * across here, but that would defeat the purpose of having redundant
2180	 * metadata. By making the modifications independently, we can catch
2181	 * corruptions that we wouldn't see if we just copied from one record
2182	 * to another.
2183	 */
2184	error = xfs_inobt_get_rec(cur, &rec, &i);
2185	if (error)
2186		goto error;
2187	if (XFS_IS_CORRUPT(mp, i != 1)) {
2188		xfs_btree_mark_sick(cur);
2189		error = -EFSCORRUPTED;
2190		goto error;
2191	}
2192
2193	rec.ir_free |= XFS_INOBT_MASK(offset);
2194	rec.ir_freecount++;
2195
2196	if (XFS_IS_CORRUPT(mp,
2197			   rec.ir_free != ibtrec->ir_free ||
2198			   rec.ir_freecount != ibtrec->ir_freecount)) {
2199		xfs_btree_mark_sick(cur);
2200		error = -EFSCORRUPTED;
2201		goto error;
2202	}
2203
2204	/*
2205	 * The content of inobt records should always match between the inobt
2206	 * and finobt. The lifecycle of records in the finobt is different from
2207	 * the inobt in that the finobt only tracks records with at least one
2208	 * free inode. Hence, if all of the inodes are free and we aren't
2209	 * keeping inode chunks permanently on disk, remove the record.
2210	 * Otherwise, update the record with the new information.
2211	 *
2212	 * Note that we currently can't free chunks when the block size is large
2213	 * enough for multiple chunks. Leave the finobt record to remain in sync
2214	 * with the inobt.
2215	 */
2216	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2217	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
 
2218		error = xfs_btree_delete(cur, &i);
2219		if (error)
2220			goto error;
2221		ASSERT(i == 1);
2222	} else {
2223		error = xfs_inobt_update(cur, &rec);
2224		if (error)
2225			goto error;
2226	}
2227
2228out:
2229	error = xfs_check_agi_freecount(cur);
2230	if (error)
2231		goto error;
2232
2233	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2234	return 0;
2235
2236error:
2237	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2238	return error;
2239}
2240
2241/*
2242 * Free disk inode.  Carefully avoids touching the incore inode, all
2243 * manipulations incore are the caller's responsibility.
2244 * The on-disk inode is not changed by this operation, only the
2245 * btree (free inode mask) is changed.
2246 */
2247int
2248xfs_difree(
2249	struct xfs_trans	*tp,
2250	struct xfs_perag	*pag,
2251	xfs_ino_t		inode,
2252	struct xfs_icluster	*xic)
2253{
2254	/* REFERENCED */
2255	xfs_agblock_t		agbno;	/* block number containing inode */
2256	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2257	xfs_agino_t		agino;	/* allocation group inode number */
 
2258	int			error;	/* error return value */
2259	struct xfs_mount	*mp = tp->t_mountp;
2260	struct xfs_inobt_rec_incore rec;/* btree record */
2261
 
 
2262	/*
2263	 * Break up inode number into its components.
2264	 */
2265	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2266		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2267			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
 
2268		ASSERT(0);
2269		return -EINVAL;
2270	}
2271	agino = XFS_INO_TO_AGINO(mp, inode);
2272	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2273		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2274			__func__, (unsigned long long)inode,
2275			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2276		ASSERT(0);
2277		return -EINVAL;
2278	}
2279	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2280	if (agbno >= mp->m_sb.sb_agblocks)  {
2281		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2282			__func__, agbno, mp->m_sb.sb_agblocks);
2283		ASSERT(0);
2284		return -EINVAL;
2285	}
2286	/*
2287	 * Get the allocation group header.
2288	 */
2289	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2290	if (error) {
2291		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2292			__func__, error);
2293		return error;
2294	}
2295
2296	/*
2297	 * Fix up the inode allocation btree.
2298	 */
2299	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2300	if (error)
2301		goto error0;
2302
2303	/*
2304	 * Fix up the free inode btree.
2305	 */
2306	if (xfs_has_finobt(mp)) {
2307		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2308		if (error)
2309			goto error0;
2310	}
2311
2312	return 0;
2313
2314error0:
2315	return error;
2316}
2317
2318STATIC int
2319xfs_imap_lookup(
2320	struct xfs_perag	*pag,
2321	struct xfs_trans	*tp,
 
2322	xfs_agino_t		agino,
2323	xfs_agblock_t		agbno,
2324	xfs_agblock_t		*chunk_agbno,
2325	xfs_agblock_t		*offset_agbno,
2326	int			flags)
2327{
2328	struct xfs_mount	*mp = pag->pag_mount;
2329	struct xfs_inobt_rec_incore rec;
2330	struct xfs_btree_cur	*cur;
2331	struct xfs_buf		*agbp;
2332	int			error;
2333	int			i;
2334
2335	error = xfs_ialloc_read_agi(pag, tp, &agbp);
2336	if (error) {
2337		xfs_alert(mp,
2338			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2339			__func__, error, pag->pag_agno);
2340		return error;
2341	}
2342
2343	/*
2344	 * Lookup the inode record for the given agino. If the record cannot be
2345	 * found, then it's an invalid inode number and we should abort. Once
2346	 * we have a record, we need to ensure it contains the inode number
2347	 * we are looking up.
2348	 */
2349	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2350	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2351	if (!error) {
2352		if (i)
2353			error = xfs_inobt_get_rec(cur, &rec, &i);
2354		if (!error && i == 0)
2355			error = -EINVAL;
2356	}
2357
2358	xfs_trans_brelse(tp, agbp);
2359	xfs_btree_del_cursor(cur, error);
2360	if (error)
2361		return error;
2362
2363	/* check that the returned record contains the required inode */
2364	if (rec.ir_startino > agino ||
2365	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2366		return -EINVAL;
2367
2368	/* for untrusted inodes check it is allocated first */
2369	if ((flags & XFS_IGET_UNTRUSTED) &&
2370	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2371		return -EINVAL;
2372
2373	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2374	*offset_agbno = agbno - *chunk_agbno;
2375	return 0;
2376}
2377
2378/*
2379 * Return the location of the inode in imap, for mapping it into a buffer.
2380 */
2381int
2382xfs_imap(
2383	struct xfs_perag	*pag,
2384	struct xfs_trans	*tp,
2385	xfs_ino_t		ino,	/* inode to locate */
2386	struct xfs_imap		*imap,	/* location map structure */
2387	uint			flags)	/* flags for inode btree lookup */
2388{
2389	struct xfs_mount	*mp = pag->pag_mount;
2390	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2391	xfs_agino_t		agino;	/* inode number within alloc group */
2392	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2393	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2394	int			error;	/* error code */
2395	int			offset;	/* index of inode in its buffer */
2396	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
 
2397
2398	ASSERT(ino != NULLFSINO);
2399
2400	/*
2401	 * Split up the inode number into its parts.
2402	 */
 
2403	agino = XFS_INO_TO_AGINO(mp, ino);
2404	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2405	if (agbno >= mp->m_sb.sb_agblocks ||
2406	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2407		error = -EINVAL;
2408#ifdef DEBUG
2409		/*
2410		 * Don't output diagnostic information for untrusted inodes
2411		 * as they can be invalid without implying corruption.
2412		 */
2413		if (flags & XFS_IGET_UNTRUSTED)
2414			return error;
 
 
 
 
 
2415		if (agbno >= mp->m_sb.sb_agblocks) {
2416			xfs_alert(mp,
2417		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2418				__func__, (unsigned long long)agbno,
2419				(unsigned long)mp->m_sb.sb_agblocks);
2420		}
2421		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2422			xfs_alert(mp,
2423		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2424				__func__, ino,
2425				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2426		}
2427		xfs_stack_trace();
2428#endif /* DEBUG */
2429		return error;
2430	}
2431
 
 
2432	/*
2433	 * For bulkstat and handle lookups, we have an untrusted inode number
2434	 * that we have to verify is valid. We cannot do this just by reading
2435	 * the inode buffer as it may have been unlinked and removed leaving
2436	 * inodes in stale state on disk. Hence we have to do a btree lookup
2437	 * in all cases where an untrusted inode number is passed.
2438	 */
2439	if (flags & XFS_IGET_UNTRUSTED) {
2440		error = xfs_imap_lookup(pag, tp, agino, agbno,
2441					&chunk_agbno, &offset_agbno, flags);
2442		if (error)
2443			return error;
2444		goto out_map;
2445	}
2446
2447	/*
2448	 * If the inode cluster size is the same as the blocksize or
2449	 * smaller we get to the buffer by simple arithmetics.
2450	 */
2451	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2452		offset = XFS_INO_TO_OFFSET(mp, ino);
2453		ASSERT(offset < mp->m_sb.sb_inopblock);
2454
2455		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2456		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2457		imap->im_boffset = (unsigned short)(offset <<
2458							mp->m_sb.sb_inodelog);
2459		return 0;
2460	}
2461
2462	/*
2463	 * If the inode chunks are aligned then use simple maths to
2464	 * find the location. Otherwise we have to do a btree
2465	 * lookup to find the location.
2466	 */
2467	if (M_IGEO(mp)->inoalign_mask) {
2468		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2469		chunk_agbno = agbno - offset_agbno;
2470	} else {
2471		error = xfs_imap_lookup(pag, tp, agino, agbno,
2472					&chunk_agbno, &offset_agbno, flags);
2473		if (error)
2474			return error;
2475	}
2476
2477out_map:
2478	ASSERT(agbno >= chunk_agbno);
2479	cluster_agbno = chunk_agbno +
2480		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2481		 M_IGEO(mp)->blocks_per_cluster);
2482	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2483		XFS_INO_TO_OFFSET(mp, ino);
2484
2485	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2486	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2487	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2488
2489	/*
2490	 * If the inode number maps to a block outside the bounds
2491	 * of the file system then return NULL rather than calling
2492	 * read_buf and panicing when we get an error from the
2493	 * driver.
2494	 */
2495	if ((imap->im_blkno + imap->im_len) >
2496	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2497		xfs_alert(mp,
2498	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2499			__func__, (unsigned long long) imap->im_blkno,
2500			(unsigned long long) imap->im_len,
2501			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2502		return -EINVAL;
2503	}
2504	return 0;
2505}
2506
2507/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508 * Log specified fields for the ag hdr (inode section). The growth of the agi
2509 * structure over time requires that we interpret the buffer as two logical
2510 * regions delineated by the end of the unlinked list. This is due to the size
2511 * of the hash table and its location in the middle of the agi.
2512 *
2513 * For example, a request to log a field before agi_unlinked and a field after
2514 * agi_unlinked could cause us to log the entire hash table and use an excessive
2515 * amount of log space. To avoid this behavior, log the region up through
2516 * agi_unlinked in one call and the region after agi_unlinked through the end of
2517 * the structure in another.
2518 */
2519void
2520xfs_ialloc_log_agi(
2521	struct xfs_trans	*tp,
2522	struct xfs_buf		*bp,
2523	uint32_t		fields)
2524{
2525	int			first;		/* first byte number */
2526	int			last;		/* last byte number */
2527	static const short	offsets[] = {	/* field starting offsets */
2528					/* keep in sync with bit definitions */
2529		offsetof(xfs_agi_t, agi_magicnum),
2530		offsetof(xfs_agi_t, agi_versionnum),
2531		offsetof(xfs_agi_t, agi_seqno),
2532		offsetof(xfs_agi_t, agi_length),
2533		offsetof(xfs_agi_t, agi_count),
2534		offsetof(xfs_agi_t, agi_root),
2535		offsetof(xfs_agi_t, agi_level),
2536		offsetof(xfs_agi_t, agi_freecount),
2537		offsetof(xfs_agi_t, agi_newino),
2538		offsetof(xfs_agi_t, agi_dirino),
2539		offsetof(xfs_agi_t, agi_unlinked),
2540		offsetof(xfs_agi_t, agi_free_root),
2541		offsetof(xfs_agi_t, agi_free_level),
2542		offsetof(xfs_agi_t, agi_iblocks),
2543		sizeof(xfs_agi_t)
2544	};
2545#ifdef DEBUG
2546	struct xfs_agi		*agi = bp->b_addr;
2547
 
2548	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2549#endif
2550
2551	/*
2552	 * Compute byte offsets for the first and last fields in the first
2553	 * region and log the agi buffer. This only logs up through
2554	 * agi_unlinked.
2555	 */
2556	if (fields & XFS_AGI_ALL_BITS_R1) {
2557		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2558				  &first, &last);
2559		xfs_trans_log_buf(tp, bp, first, last);
2560	}
2561
2562	/*
2563	 * Mask off the bits in the first region and calculate the first and
2564	 * last field offsets for any bits in the second region.
2565	 */
2566	fields &= ~XFS_AGI_ALL_BITS_R1;
2567	if (fields) {
2568		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2569				  &first, &last);
2570		xfs_trans_log_buf(tp, bp, first, last);
2571	}
2572}
2573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2574static xfs_failaddr_t
2575xfs_agi_verify(
2576	struct xfs_buf		*bp)
2577{
2578	struct xfs_mount	*mp = bp->b_mount;
2579	struct xfs_agi		*agi = bp->b_addr;
2580	xfs_failaddr_t		fa;
2581	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2582	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2583	int			i;
2584
2585	if (xfs_has_crc(mp)) {
2586		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2587			return __this_address;
2588		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
 
2589			return __this_address;
2590	}
2591
2592	/*
2593	 * Validate the magic number of the agi block.
2594	 */
2595	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2596		return __this_address;
2597	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2598		return __this_address;
2599
2600	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2601	if (fa)
2602		return fa;
2603
2604	if (be32_to_cpu(agi->agi_level) < 1 ||
2605	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2606		return __this_address;
2607
2608	if (xfs_has_finobt(mp) &&
2609	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2610	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2611		return __this_address;
2612
2613	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2614		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2615			continue;
2616		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2617			return __this_address;
2618	}
 
 
2619
 
2620	return NULL;
2621}
2622
2623static void
2624xfs_agi_read_verify(
2625	struct xfs_buf	*bp)
2626{
2627	struct xfs_mount *mp = bp->b_mount;
2628	xfs_failaddr_t	fa;
2629
2630	if (xfs_has_crc(mp) &&
2631	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2632		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2633	else {
2634		fa = xfs_agi_verify(bp);
2635		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2636			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2637	}
2638}
2639
2640static void
2641xfs_agi_write_verify(
2642	struct xfs_buf	*bp)
2643{
2644	struct xfs_mount	*mp = bp->b_mount;
2645	struct xfs_buf_log_item	*bip = bp->b_log_item;
2646	struct xfs_agi		*agi = bp->b_addr;
2647	xfs_failaddr_t		fa;
2648
2649	fa = xfs_agi_verify(bp);
2650	if (fa) {
2651		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2652		return;
2653	}
2654
2655	if (!xfs_has_crc(mp))
2656		return;
2657
2658	if (bip)
2659		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2660	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2661}
2662
2663const struct xfs_buf_ops xfs_agi_buf_ops = {
2664	.name = "xfs_agi",
2665	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2666	.verify_read = xfs_agi_read_verify,
2667	.verify_write = xfs_agi_write_verify,
2668	.verify_struct = xfs_agi_verify,
2669};
2670
2671/*
2672 * Read in the allocation group header (inode allocation section)
2673 */
2674int
2675xfs_read_agi(
2676	struct xfs_perag	*pag,
2677	struct xfs_trans	*tp,
2678	struct xfs_buf		**agibpp)
 
2679{
2680	struct xfs_mount	*mp = pag->pag_mount;
2681	int			error;
2682
2683	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2684
 
2685	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2686			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2687			XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2688	if (xfs_metadata_is_sick(error))
2689		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2690	if (error)
2691		return error;
2692	if (tp)
2693		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2694
2695	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2696	return 0;
2697}
2698
2699/*
2700 * Read in the agi and initialise the per-ag data. If the caller supplies a
2701 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2702 */
2703int
2704xfs_ialloc_read_agi(
2705	struct xfs_perag	*pag,
2706	struct xfs_trans	*tp,
2707	struct xfs_buf		**agibpp)
 
2708{
2709	struct xfs_buf		*agibp;
2710	struct xfs_agi		*agi;
2711	int			error;
2712
2713	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2714
2715	error = xfs_read_agi(pag, tp, &agibp);
2716	if (error)
2717		return error;
2718
2719	agi = agibp->b_addr;
2720	if (!xfs_perag_initialised_agi(pag)) {
 
2721		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2722		pag->pagi_count = be32_to_cpu(agi->agi_count);
2723		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2724	}
2725
2726	/*
2727	 * It's possible for these to be out of sync if
2728	 * we are in the middle of a forced shutdown.
2729	 */
2730	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2731		xfs_is_shutdown(pag->pag_mount));
2732	if (agibpp)
2733		*agibpp = agibp;
2734	else
2735		xfs_trans_brelse(tp, agibp);
2736	return 0;
2737}
2738
2739/* How many inodes are backed by inode clusters ondisk? */
2740STATIC int
2741xfs_ialloc_count_ondisk(
2742	struct xfs_btree_cur		*cur,
2743	xfs_agino_t			low,
2744	xfs_agino_t			high,
2745	unsigned int			*allocated)
 
2746{
2747	struct xfs_inobt_rec_incore	irec;
2748	unsigned int			ret = 0;
2749	int				has_record;
2750	int				error;
2751
2752	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2753	if (error)
2754		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755
2756	while (has_record) {
2757		unsigned int		i, hole_idx;
 
 
 
 
 
2758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2759		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2760		if (error)
2761			return error;
2762		if (irec.ir_startino > high)
2763			break;
2764
2765		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2766			if (irec.ir_startino + i < low)
 
 
 
2767				continue;
2768			if (irec.ir_startino + i > high)
2769				break;
2770
2771			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2772			if (!(irec.ir_holemask & (1U << hole_idx)))
2773				ret++;
2774		}
2775
2776		error = xfs_btree_increment(cur, 0, &has_record);
2777		if (error)
2778			return error;
2779	}
2780
2781	*allocated = ret;
2782	return 0;
2783}
2784
2785/* Is there an inode record covering a given extent? */
2786int
2787xfs_ialloc_has_inodes_at_extent(
2788	struct xfs_btree_cur	*cur,
2789	xfs_agblock_t		bno,
2790	xfs_extlen_t		len,
2791	enum xbtree_recpacking	*outcome)
2792{
2793	xfs_agino_t		agino;
2794	xfs_agino_t		last_agino;
2795	unsigned int		allocated;
2796	int			error;
2797
2798	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2799	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2800
2801	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2802	if (error)
2803		return error;
2804
2805	if (allocated == 0)
2806		*outcome = XBTREE_RECPACKING_EMPTY;
2807	else if (allocated == last_agino - agino + 1)
2808		*outcome = XBTREE_RECPACKING_FULL;
2809	else
2810		*outcome = XBTREE_RECPACKING_SPARSE;
2811	return 0;
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815	xfs_agino_t			count;
2816	xfs_agino_t			freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822	struct xfs_btree_cur		*cur,
2823	const union xfs_btree_rec	*rec,
2824	void				*priv)
2825{
2826	struct xfs_inobt_rec_incore	irec;
2827	struct xfs_ialloc_count_inodes	*ci = priv;
2828	xfs_failaddr_t			fa;
2829
2830	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2831	fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2832	if (fa)
2833		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2834
2835	ci->count += irec.ir_count;
2836	ci->freecount += irec.ir_freecount;
2837
2838	return 0;
2839}
2840
2841/* Count allocated and free inodes under an inobt. */
2842int
2843xfs_ialloc_count_inodes(
2844	struct xfs_btree_cur		*cur,
2845	xfs_agino_t			*count,
2846	xfs_agino_t			*freecount)
2847{
2848	struct xfs_ialloc_count_inodes	ci = {0};
2849	int				error;
2850
2851	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2852	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2853	if (error)
2854		return error;
2855
2856	*count = ci.count;
2857	*freecount = ci.freecount;
2858	return 0;
2859}
2860
2861/*
2862 * Initialize inode-related geometry information.
2863 *
2864 * Compute the inode btree min and max levels and set maxicount.
2865 *
2866 * Set the inode cluster size.  This may still be overridden by the file
2867 * system block size if it is larger than the chosen cluster size.
2868 *
2869 * For v5 filesystems, scale the cluster size with the inode size to keep a
2870 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2871 * inode alignment value appropriately for larger cluster sizes.
2872 *
2873 * Then compute the inode cluster alignment information.
2874 */
2875void
2876xfs_ialloc_setup_geometry(
2877	struct xfs_mount	*mp)
2878{
2879	struct xfs_sb		*sbp = &mp->m_sb;
2880	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2881	uint64_t		icount;
2882	uint			inodes;
2883
2884	igeo->new_diflags2 = 0;
2885	if (xfs_has_bigtime(mp))
2886		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2887	if (xfs_has_large_extent_counts(mp))
2888		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2889
2890	/* Compute inode btree geometry. */
2891	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2892	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2893	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2894	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2895	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2896
2897	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2898			sbp->sb_inopblock);
2899	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2900
2901	if (sbp->sb_spino_align)
2902		igeo->ialloc_min_blks = sbp->sb_spino_align;
2903	else
2904		igeo->ialloc_min_blks = igeo->ialloc_blks;
2905
2906	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2907	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2908	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2909			inodes);
2910	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2911
2912	/*
2913	 * Set the maximum inode count for this filesystem, being careful not
2914	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2915	 * users should never get here due to failing sb verification, but
2916	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2917	 */
2918	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2919		/*
2920		 * Make sure the maximum inode count is a multiple
2921		 * of the units we allocate inodes in.
2922		 */
2923		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2924		do_div(icount, 100);
2925		do_div(icount, igeo->ialloc_blks);
2926		igeo->maxicount = XFS_FSB_TO_INO(mp,
2927				icount * igeo->ialloc_blks);
2928	} else {
2929		igeo->maxicount = 0;
2930	}
2931
2932	/*
2933	 * Compute the desired size of an inode cluster buffer size, which
2934	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2935	 * sizes.
2936	 *
2937	 * Preserve the desired inode cluster size because the sparse inodes
2938	 * feature uses that desired size (not the actual size) to compute the
2939	 * sparse inode alignment.  The mount code validates this value, so we
2940	 * cannot change the behavior.
2941	 */
2942	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2943	if (xfs_has_v3inodes(mp)) {
2944		int	new_size = igeo->inode_cluster_size_raw;
2945
2946		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2947		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2948			igeo->inode_cluster_size_raw = new_size;
2949	}
2950
2951	/* Calculate inode cluster ratios. */
2952	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2953		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2954				igeo->inode_cluster_size_raw);
2955	else
2956		igeo->blocks_per_cluster = 1;
2957	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2958	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2959
2960	/* Calculate inode cluster alignment. */
2961	if (xfs_has_align(mp) &&
2962	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2963		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2964	else
2965		igeo->cluster_align = 1;
2966	igeo->inoalign_mask = igeo->cluster_align - 1;
2967	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2968
2969	/*
2970	 * If we are using stripe alignment, check whether
2971	 * the stripe unit is a multiple of the inode alignment
2972	 */
2973	if (mp->m_dalign && igeo->inoalign_mask &&
2974	    !(mp->m_dalign & igeo->inoalign_mask))
2975		igeo->ialloc_align = mp->m_dalign;
2976	else
2977		igeo->ialloc_align = 0;
2978}
2979
2980/* Compute the location of the root directory inode that is laid out by mkfs. */
2981xfs_ino_t
2982xfs_ialloc_calc_rootino(
2983	struct xfs_mount	*mp,
2984	int			sunit)
2985{
2986	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2987	xfs_agblock_t		first_bno;
2988
2989	/*
2990	 * Pre-calculate the geometry of AG 0.  We know what it looks like
2991	 * because libxfs knows how to create allocation groups now.
2992	 *
2993	 * first_bno is the first block in which mkfs could possibly have
2994	 * allocated the root directory inode, once we factor in the metadata
2995	 * that mkfs formats before it.  Namely, the four AG headers...
2996	 */
2997	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2998
2999	/* ...the two free space btree roots... */
3000	first_bno += 2;
3001
3002	/* ...the inode btree root... */
3003	first_bno += 1;
3004
3005	/* ...the initial AGFL... */
3006	first_bno += xfs_alloc_min_freelist(mp, NULL);
3007
3008	/* ...the free inode btree root... */
3009	if (xfs_has_finobt(mp))
3010		first_bno++;
3011
3012	/* ...the reverse mapping btree root... */
3013	if (xfs_has_rmapbt(mp))
3014		first_bno++;
3015
3016	/* ...the reference count btree... */
3017	if (xfs_has_reflink(mp))
3018		first_bno++;
3019
3020	/*
3021	 * ...and the log, if it is allocated in the first allocation group.
3022	 *
3023	 * This can happen with filesystems that only have a single
3024	 * allocation group, or very odd geometries created by old mkfs
3025	 * versions on very small filesystems.
3026	 */
3027	if (xfs_ag_contains_log(mp, 0))
3028		 first_bno += mp->m_sb.sb_logblocks;
3029
3030	/*
3031	 * Now round first_bno up to whatever allocation alignment is given
3032	 * by the filesystem or was passed in.
3033	 */
3034	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3035		first_bno = roundup(first_bno, sunit);
3036	else if (xfs_has_align(mp) &&
3037			mp->m_sb.sb_inoalignmt > 1)
3038		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3039
3040	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3041}
3042
3043/*
3044 * Ensure there are not sparse inode clusters that cross the new EOAG.
3045 *
3046 * This is a no-op for non-spinode filesystems since clusters are always fully
3047 * allocated and checking the bnobt suffices.  However, a spinode filesystem
3048 * could have a record where the upper inodes are free blocks.  If those blocks
3049 * were removed from the filesystem, the inode record would extend beyond EOAG,
3050 * which will be flagged as corruption.
3051 */
3052int
3053xfs_ialloc_check_shrink(
3054	struct xfs_perag	*pag,
3055	struct xfs_trans	*tp,
3056	struct xfs_buf		*agibp,
3057	xfs_agblock_t		new_length)
3058{
3059	struct xfs_inobt_rec_incore rec;
3060	struct xfs_btree_cur	*cur;
3061	xfs_agino_t		agino;
3062	int			has;
3063	int			error;
3064
3065	if (!xfs_has_sparseinodes(pag->pag_mount))
3066		return 0;
3067
3068	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3069
3070	/* Look up the inobt record that would correspond to the new EOFS. */
3071	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3072	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3073	if (error || !has)
3074		goto out;
3075
3076	error = xfs_inobt_get_rec(cur, &rec, &has);
3077	if (error)
3078		goto out;
3079
3080	if (!has) {
3081		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3082		error = -EFSCORRUPTED;
3083		goto out;
3084	}
3085
3086	/* If the record covers inodes that would be beyond EOFS, bail out. */
3087	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3088		error = -ENOSPC;
3089		goto out;
3090	}
3091out:
3092	xfs_btree_del_cursor(cur, error);
3093	return error;
3094}