Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_errortag.h"
35#include "xfs_error.h"
36#include "xfs_bmap.h"
37#include "xfs_cksum.h"
38#include "xfs_trans.h"
39#include "xfs_buf_item.h"
40#include "xfs_icreate_item.h"
41#include "xfs_icache.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44#include "xfs_rmap.h"
45
46
47/*
48 * Allocation group level functions.
49 */
50int
51xfs_ialloc_cluster_alignment(
52 struct xfs_mount *mp)
53{
54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 return mp->m_sb.sb_inoalignmt;
57 return 1;
58}
59
60/*
61 * Lookup a record by ino in the btree given by cur.
62 */
63int /* error */
64xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
69{
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
76}
77
78/*
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
81 */
82STATIC int /* error */
83xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
85 xfs_inobt_rec_incore_t *irec) /* btree record */
86{
87 union xfs_btree_rec rec;
88
89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 }
98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 return xfs_btree_update(cur, &rec);
100}
101
102/* Convert on-disk btree record to incore inobt record. */
103void
104xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
108{
109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
115 /*
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
118 */
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
123 }
124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
125}
126
127/*
128 * Get the data from the pointed-to record.
129 */
130int
131xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
135{
136 union xfs_btree_rec *rec;
137 int error;
138
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
142
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
144
145 return 0;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151STATIC int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs, blks_per_cluster, inodes_per_cluster;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
288
289 /*
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
295 *
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
301 *
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
307 */
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
312
313 /*
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
320 */
321 if (tp)
322 xfs_icreate_log(tp, agno, agbno, icount,
323 mp->m_sb.sb_inodesize, length, gen);
324 } else
325 version = 2;
326
327 for (j = 0; j < nbufs; j++) {
328 /*
329 * Get the block.
330 */
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
335 if (!fbuf)
336 return -ENOMEM;
337
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf->b_ops = &xfs_inode_buf_ops;
340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 for (i = 0; i < inodes_per_cluster; i++) {
342 int ioffset = i << mp->m_sb.sb_inodelog;
343 uint isize = xfs_dinode_size(version);
344
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
350
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
356 xfs_dinode_calc_crc(mp, free);
357 } else if (tp) {
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
361 }
362 }
363
364 if (tp) {
365 /*
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
372 */
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
375 /*
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
380 */
381 xfs_trans_ordered_buf(tp, fbuf);
382 }
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
387 }
388 }
389 return 0;
390}
391
392/*
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
395 *
396 * Background:
397 *
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
406 *
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
414 */
415STATIC void
416xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
420{
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
424
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
429
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
433
434 /*
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
438 */
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440}
441
442/*
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
446 */
447STATIC bool
448__xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
451{
452 uint64_t talloc;
453 uint64_t salloc;
454
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
458
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
463
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
467
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
471
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
477
478 return true;
479}
480
481/*
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
484 */
485STATIC void
486__xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
489{
490 ASSERT(trec->ir_startino == srec->ir_startino);
491
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
495
496 /*
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 */
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
502}
503
504/*
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
509 *
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
515 *
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
518 */
519STATIC int
520xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
527{
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
534
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549
550 goto out;
551 }
552
553 /*
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
556 */
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
565
566 /*
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
569 */
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
572
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
579
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
582
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
586 }
587
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
591
592out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
598}
599
600/*
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
603 */
604STATIC int /* error code or 0 */
605xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
609{
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
612 xfs_agnumber_t agno;
613 int error;
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
616 int isaligned = 0; /* inode allocation at stripe unit */
617 /* boundary */
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 int do_sparse = 0;
622
623 memset(&args, 0, sizeof(args));
624 args.tp = tp;
625 args.mp = tp->t_mountp;
626 args.fsbno = NULLFSBLOCK;
627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
628
629#ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634#endif
635
636 /*
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
639 */
640 newlen = args.mp->m_ialloc_inos;
641 if (args.mp->m_maxicount &&
642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 args.mp->m_maxicount)
644 return -ENOSPC;
645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
646 /*
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
650 */
651 agi = XFS_BUF_TO_AGI(agbp);
652 newino = be32_to_cpu(agi->agi_newino);
653 agno = be32_to_cpu(agi->agi_seqno);
654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 args.mp->m_ialloc_blks;
656 if (do_sparse)
657 goto sparse_alloc;
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 args.type = XFS_ALLOCTYPE_THIS_BNO;
662 args.prod = 1;
663
664 /*
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
670 *
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
676 */
677 args.alignment = 1;
678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
679
680 /* Allow space for the inode btree to split. */
681 args.minleft = args.mp->m_in_maxlevels - 1;
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
684
685 /*
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
694 */
695 args.minalignslop = 0;
696 }
697
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 /*
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
706 */
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
712 } else
713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
714 /*
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
718 */
719 args.agbno = be32_to_cpu(agi->agi_root);
720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
721 /*
722 * Allocate a fixed-size extent of inodes.
723 */
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.prod = 1;
726 /*
727 * Allow space for the inode btree to split.
728 */
729 args.minleft = args.mp->m_in_maxlevels - 1;
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
734 /*
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
737 */
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
745 }
746
747 /*
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
750 */
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
754sparse_alloc:
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
760
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
763
764 /*
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
769 *
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
773 */
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
778
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
782
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
791 }
792 ASSERT(args.len == args.minlen);
793
794 /*
795 * Stamp and write the inode buffers.
796 *
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
802 */
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
805
806 if (error)
807 return error;
808 /*
809 * Convert the results.
810 */
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
812
813 if (xfs_inobt_issparse(~allocmask)) {
814 /*
815 * We've allocated a sparse chunk. Align the startino and mask.
816 */
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
824
825 /*
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
829 */
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 }
840 if (error)
841 return error;
842
843 /*
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
848 *
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
853 */
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
860 }
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
867
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
873 }
874 }
875
876 /*
877 * Update AGI counts and newino.
878 */
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
884 agi->agi_newino = cpu_to_be32(newino);
885
886 /*
887 * Log allocation group header fields
888 */
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 /*
892 * Modify/log superblock values for inode count and inode free count.
893 */
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
898}
899
900STATIC xfs_agnumber_t
901xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
903{
904 xfs_agnumber_t agno;
905
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
908 if (++mp->m_agirotor >= mp->m_maxagi)
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
911
912 return agno;
913}
914
915/*
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
918 */
919STATIC xfs_agnumber_t
920xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
923 umode_t mode) /* bits set to indicate file type */
924{
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
950
951 ASSERT(pagno < agcount);
952
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
973 }
974
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
978 }
979
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
983 goto nextag;
984 }
985
986 /*
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
995 *
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1001 */
1002 ineed = mp->m_ialloc_min_blks;
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1008
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1013 }
1014nextag:
1015 xfs_perag_put(pag);
1016 /*
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1019 */
1020 if (XFS_FORCED_SHUTDOWN(mp))
1021 return NULLAGNUMBER;
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1026 if (flags == 0)
1027 return NULLAGNUMBER;
1028 flags = 0;
1029 }
1030 }
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1042{
1043 int error;
1044 int i;
1045
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1050
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1059 }
1060
1061 return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
1069 int *done)
1070{
1071 int error;
1072 int i;
1073
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1083 }
1084
1085 return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1096{
1097 xfs_inofree_t realfree;
1098
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1102
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1105
1106 return xfs_lowbit64(realfree);
1107}
1108
1109/*
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1118{
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
1131 int searchdistance = 10;
1132
1133 pag = xfs_perag_get(mp, agno);
1134
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141 /*
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1144 */
1145 if (!pagino)
1146 pagino = be32_to_cpu(agi->agi_newino);
1147
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1151
1152 /*
1153 * If in the same AG as the parent, try to get near the parent.
1154 */
1155 if (pagno == agno) {
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1158
1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1163
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1168
1169 if (rec.ir_freecount > 0) {
1170 /*
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1173 */
1174 goto alloc_inode;
1175 }
1176
1177
1178 /*
1179 * In the same AG as parent, but parent's chunk is full.
1180 */
1181
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1186
1187 /*
1188 * Skip to last blocks looked up if same parent inode.
1189 */
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 &trec, &doneleft);
1196 if (error)
1197 goto error1;
1198
1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 &rec, &doneright);
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1208
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1213 }
1214
1215 /*
1216 * Loop until we find an inode chunk with a free inode.
1217 */
1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 int useleft; /* using left inode chunk this time */
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1228 }
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
1234
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
1238 rec = trec;
1239 goto alloc_inode;
1240 }
1241
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1250 }
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1262 }
1263
1264 if (searchdistance <= 0) {
1265 /*
1266 * Not in range - save last search
1267 * location and allocate a new inode
1268 */
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1273
1274 } else {
1275 /*
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1281 */
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1288 }
1289 }
1290
1291 /*
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1294 */
1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
1298 if (error)
1299 goto error0;
1300
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1305
1306 if (j == 1 && rec.ir_freecount > 0) {
1307 /*
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1310 */
1311 goto alloc_inode;
1312 }
1313 }
1314 }
1315
1316 /*
1317 * None left in the last group, search the whole AG
1318 */
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 }
1336
1337alloc_inode:
1338 offset = xfs_inobt_first_free_inode(&rec);
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1352
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1356
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 xfs_perag_put(pag);
1360 *inop = ino;
1361 return 0;
1362error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 xfs_perag_put(pag);
1367 return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1379{
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1385
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1389
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1395
1396 /*
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1400 */
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1404 }
1405
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1409
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1418 }
1419
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 if (i == 1 && j == 1) {
1422 /*
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1425 */
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443
1444 return 0;
1445
1446error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1460{
1461 int error;
1462 int i;
1463
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 return 0;
1475 }
1476 }
1477
1478 /*
1479 * Find the first inode available in the AG.
1480 */
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490
1491 return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1503{
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1507
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1519
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1522
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 (rec.ir_freecount == frec->ir_freecount));
1525
1526 return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1542{
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1556
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560 pag = xfs_perag_get(mp, agno);
1561
1562 /*
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1565 */
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1568
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1579 */
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1586
1587 offset = xfs_inobt_first_free_inode(&rec);
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594 /*
1595 * Modify or remove the finobt record.
1596 */
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1605
1606 /*
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1611 */
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1617
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1621
1622 /*
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1625 */
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1629
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1638
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1644
1645error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
1679 struct xfs_buf **IO_agbp,
1680 xfs_ino_t *inop)
1681{
1682 struct xfs_mount *mp = tp->t_mountp;
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
1688 xfs_agnumber_t start_agno;
1689 struct xfs_perag *pag;
1690 int okalloc = 1;
1691
1692 if (*IO_agbp) {
1693 /*
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1697 */
1698 agbp = *IO_agbp;
1699 goto out_alloc;
1700 }
1701
1702 /*
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1705 */
1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 if (start_agno == NULLAGNUMBER) {
1708 *inop = NULLFSINO;
1709 return 0;
1710 }
1711
1712 /*
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
1716 *
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1719 */
1720 if (mp->m_maxicount &&
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
1723 noroom = 1;
1724 okalloc = 0;
1725 }
1726
1727 /*
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1731 */
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1738 }
1739
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
1744 }
1745
1746 /*
1747 * Do a first racy fast path check if this AG is usable.
1748 */
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1751
1752 /*
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1755 */
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1759
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1763 }
1764
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1767
1768
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1772
1773 if (error != -ENOSPC)
1774 goto out_error;
1775
1776 xfs_perag_put(pag);
1777 *inop = NULLFSINO;
1778 return 0;
1779 }
1780
1781 if (ialloced) {
1782 /*
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1787 */
1788 ASSERT(pag->pagi_freecount > 0);
1789 xfs_perag_put(pag);
1790
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
1794 }
1795
1796nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
1798nextag:
1799 xfs_perag_put(pag);
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
1804 return noroom ? -ENOSPC : 0;
1805 }
1806 }
1807
1808out_alloc:
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812 xfs_perag_put(pag);
1813 return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
1826 struct xfs_defer_ops *dfops)
1827{
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
1833 struct xfs_owner_info oinfo;
1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 mp->m_ialloc_blks, &oinfo);
1841 return;
1842 }
1843
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1847
1848 /*
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1853 */
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1860 /*
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1863 */
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1868 }
1869
1870 /*
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1874 */
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 contigblk, &oinfo);
1885
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1888
1889next:
1890 nextbit++;
1891 }
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
1900 struct xfs_defer_ops *dfops,
1901 struct xfs_icluster *xic,
1902 struct xfs_inobt_rec_incore *orec)
1903{
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1913
1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917 /*
1918 * Initialize the cursor.
1919 */
1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1925
1926 /*
1927 * Look for the entry describing this inode.
1928 */
1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1939 goto error0;
1940 }
1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1942 /*
1943 * Get the offset in the inode chunk.
1944 */
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948 /*
1949 * Mark the inode free & increment the count.
1950 */
1951 rec.ir_free |= XFS_INOBT_MASK(off);
1952 rec.ir_freecount++;
1953
1954 /*
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1958 */
1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 xic->deleted = true;
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981 if ((error = xfs_btree_delete(cur, &i))) {
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1984 goto error0;
1985 }
1986
1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 } else {
1989 xic->deleted = false;
1990
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1995 goto error0;
1996 }
1997
1998 /*
1999 * Change the inode free counts and log the ag/sb changes.
2000 */
2001 be32_add_cpu(&agi->agi_freecount, 1);
2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 }
2008
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
2012
2013 *orec = rec;
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2016
2017error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2032{
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2040
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2047 /*
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2051 */
2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2053
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2061
2062 goto out;
2063 }
2064
2065 /*
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2071 */
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2083
2084 /*
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2091 *
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
2095 */
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120}
2121
2122/*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2132 struct xfs_defer_ops *dfops, /* extents to free */
2133 struct xfs_icluster *xic) /* cluster info if deleted */
2134{
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144 mp = tp->t_mountp;
2145
2146 /*
2147 * Break up inode number into its components.
2148 */
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2154 return -EINVAL;
2155 }
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2162 return -EINVAL;
2163 }
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2169 return -EINVAL;
2170 }
2171 /*
2172 * Get the allocation group header.
2173 */
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2179 }
2180
2181 /*
2182 * Fix up the inode allocation btree.
2183 */
2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 if (error)
2186 goto error0;
2187
2188 /*
2189 * Fix up the free inode btree.
2190 */
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2195 }
2196
2197 return 0;
2198
2199error0:
2200 return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2213{
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
2217 int error;
2218 int i;
2219
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
2225 return error;
2226 }
2227
2228 /*
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2233 */
2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2240 error = -EINVAL;
2241 }
2242
2243 xfs_trans_brelse(tp, agbp);
2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 if (error)
2246 return error;
2247
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 return -EINVAL;
2252
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags & XFS_IGET_UNTRUSTED) &&
2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 return -EINVAL;
2257
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
2270 xfs_ino_t ino, /* inode to locate */
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
2273{
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2280 int error; /* error code */
2281 int offset; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2283
2284 ASSERT(ino != NULLFSINO);
2285
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294#ifdef DEBUG
2295 /*
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2298 */
2299 if (flags & XFS_IGET_UNTRUSTED)
2300 return -EINVAL;
2301 if (agno >= mp->m_sb.sb_agcount) {
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
2305 }
2306 if (agbno >= mp->m_sb.sb_agblocks) {
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
2311 }
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
2317 }
2318 xfs_stack_trace();
2319#endif /* DEBUG */
2320 return -EINVAL;
2321 }
2322
2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2338 }
2339
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
2344 if (blks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 return 0;
2353 }
2354
2355 /*
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2359 */
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
2366 if (error)
2367 return error;
2368 }
2369
2370out_map:
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2405{
2406 uint inodes;
2407
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2430{
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
2448 sizeof(xfs_agi_t)
2449 };
2450#ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2452
2453 agi = XFS_BUF_TO_AGI(bp);
2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457 /*
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
2461 */
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
2468 /*
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2471 */
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2500
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return __this_address;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 return __this_address;
2507 }
2508
2509 /*
2510 * Validate the magic number of the agi block.
2511 */
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return __this_address;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return __this_address;
2516
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 return __this_address;
2520
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 return __this_address;
2525
2526 /*
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2531 */
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return __this_address;
2534
2535 xfs_check_agi_unlinked(agi);
2536 return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541 struct xfs_buf *bp)
2542{
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 xfs_failaddr_t fa;
2545
2546 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 else {
2550 fa = xfs_agi_verify(bp);
2551 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 }
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558 struct xfs_buf *bp)
2559{
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_log_item;
2562 xfs_failaddr_t fa;
2563
2564 fa = xfs_agi_verify(bp);
2565 if (fa) {
2566 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 return;
2568 }
2569
2570 if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 return;
2572
2573 if (bip)
2574 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 .name = "xfs_agi",
2580 .verify_read = xfs_agi_read_verify,
2581 .verify_write = xfs_agi_write_verify,
2582 .verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590 struct xfs_mount *mp, /* file system mount structure */
2591 struct xfs_trans *tp, /* transaction pointer */
2592 xfs_agnumber_t agno, /* allocation group number */
2593 struct xfs_buf **bpp) /* allocation group hdr buf */
2594{
2595 int error;
2596
2597 trace_xfs_read_agi(mp, agno);
2598
2599 ASSERT(agno != NULLAGNUMBER);
2600 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 if (error)
2604 return error;
2605 if (tp)
2606 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 return 0;
2610}
2611
2612int
2613xfs_ialloc_read_agi(
2614 struct xfs_mount *mp, /* file system mount structure */
2615 struct xfs_trans *tp, /* transaction pointer */
2616 xfs_agnumber_t agno, /* allocation group number */
2617 struct xfs_buf **bpp) /* allocation group hdr buf */
2618{
2619 struct xfs_agi *agi; /* allocation group header */
2620 struct xfs_perag *pag; /* per allocation group data */
2621 int error;
2622
2623 trace_xfs_ialloc_read_agi(mp, agno);
2624
2625 error = xfs_read_agi(mp, tp, agno, bpp);
2626 if (error)
2627 return error;
2628
2629 agi = XFS_BUF_TO_AGI(*bpp);
2630 pag = xfs_perag_get(mp, agno);
2631 if (!pag->pagi_init) {
2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 pag->pagi_init = 1;
2635 }
2636
2637 /*
2638 * It's possible for these to be out of sync if
2639 * we are in the middle of a forced shutdown.
2640 */
2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 XFS_FORCED_SHUTDOWN(mp));
2643 xfs_perag_put(pag);
2644 return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652 xfs_mount_t *mp, /* file system mount structure */
2653 xfs_trans_t *tp, /* transaction pointer */
2654 xfs_agnumber_t agno) /* allocation group number */
2655{
2656 xfs_buf_t *bp = NULL;
2657 int error;
2658
2659 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 if (error)
2661 return error;
2662 if (bp)
2663 xfs_trans_brelse(tp, bp);
2664 return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t *first,
2673 xfs_agino_t *last)
2674{
2675 xfs_agblock_t bno;
2676 xfs_agblock_t eoag;
2677
2678 eoag = xfs_ag_block_count(mp, agno);
2679
2680 /*
2681 * Calculate the first inode, which will be in the first
2682 * cluster-aligned block after the AGFL.
2683 */
2684 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 xfs_ialloc_cluster_alignment(mp));
2686 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688 /*
2689 * Calculate the last inode, which will be at the end of the
2690 * last (aligned) cluster that can be allocated in the AG.
2691 */
2692 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702 struct xfs_mount *mp,
2703 xfs_agnumber_t agno,
2704 xfs_agino_t agino)
2705{
2706 xfs_agino_t first;
2707 xfs_agino_t last;
2708
2709 xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719 struct xfs_mount *mp,
2720 xfs_ino_t ino)
2721{
2722 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2723 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725 if (agno >= mp->m_sb.sb_agcount)
2726 return false;
2727 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 return false;
2729 return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735 struct xfs_mount *mp,
2736 xfs_ino_t ino)
2737{
2738 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 (xfs_sb_version_hasquota(&mp->m_sb) &&
2740 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749 struct xfs_mount *mp,
2750 xfs_ino_t ino)
2751{
2752 if (xfs_internal_inum(mp, ino))
2753 return false;
2754 return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760 struct xfs_btree_cur *cur,
2761 xfs_agino_t low,
2762 xfs_agino_t high,
2763 bool *exists)
2764{
2765 struct xfs_inobt_rec_incore irec;
2766 xfs_agino_t agino;
2767 uint16_t holemask;
2768 int has_record;
2769 int i;
2770 int error;
2771
2772 *exists = false;
2773 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 while (error == 0 && has_record) {
2775 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 if (error || irec.ir_startino > high)
2777 break;
2778
2779 agino = irec.ir_startino;
2780 holemask = irec.ir_holemask;
2781 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 if (holemask & 1)
2784 continue;
2785 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 agino <= high) {
2787 *exists = true;
2788 return 0;
2789 }
2790 }
2791
2792 error = xfs_btree_increment(cur, 0, &has_record);
2793 }
2794 return error;
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800 struct xfs_btree_cur *cur,
2801 xfs_agblock_t bno,
2802 xfs_extlen_t len,
2803 bool *exists)
2804{
2805 xfs_agino_t low;
2806 xfs_agino_t high;
2807
2808 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810
2811 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 union xfs_btree_rec *rec,
2824 void *priv)
2825{
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2828
2829 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 ci->count += irec.ir_count;
2831 ci->freecount += irec.ir_freecount;
2832
2833 return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839 struct xfs_btree_cur *cur,
2840 xfs_agino_t *count,
2841 xfs_agino_t *freecount)
2842{
2843 struct xfs_ialloc_count_inodes ci = {0};
2844 int error;
2845
2846 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 if (error)
2849 return error;
2850
2851 *count = ci.count;
2852 *freecount = ci.freecount;
2853 return 0;
2854}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_btree.h"
17#include "xfs_ialloc.h"
18#include "xfs_ialloc_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_bmap.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_icreate_item.h"
26#include "xfs_icache.h"
27#include "xfs_trace.h"
28#include "xfs_log.h"
29#include "xfs_rmap.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 xfs_agnumber_t agno = cur->bc_ag.agno;
109 union xfs_btree_rec *rec;
110 int error;
111 uint64_t realfree;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
118
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 goto out_bad_rec;
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
123 goto out_bad_rec;
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 goto out_bad_rec;
126
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
130 else
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
133 goto out_bad_rec;
134
135 return 0;
136
137out_bad_rec:
138 xfs_warn(mp,
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = agbp->b_addr;
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279 int error;
280
281 /*
282 * Loop over the new block(s), filling in the inodes. For small block
283 * sizes, manipulate the inodes in buffers which are multiples of the
284 * blocks size.
285 */
286 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
287
288 /*
289 * Figure out what version number to use in the inodes we create. If
290 * the superblock version has caught up to the one that supports the new
291 * inode format, then use the new inode version. Otherwise use the old
292 * version so that old kernels will continue to be able to use the file
293 * system.
294 *
295 * For v3 inodes, we also need to write the inode number into the inode,
296 * so calculate the first inode number of the chunk here as
297 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
298 * across multiple filesystem blocks (such as a cluster) and so cannot
299 * be used in the cluster buffer loop below.
300 *
301 * Further, because we are writing the inode directly into the buffer
302 * and calculating a CRC on the entire inode, we have ot log the entire
303 * inode so that the entire range the CRC covers is present in the log.
304 * That means for v3 inode we log the entire buffer rather than just the
305 * inode cores.
306 */
307 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
308 version = 3;
309 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
310
311 /*
312 * log the initialisation that is about to take place as an
313 * logical operation. This means the transaction does not
314 * need to log the physical changes to the inode buffers as log
315 * recovery will know what initialisation is actually needed.
316 * Hence we only need to log the buffers as "ordered" buffers so
317 * they track in the AIL as if they were physically logged.
318 */
319 if (tp)
320 xfs_icreate_log(tp, agno, agbno, icount,
321 mp->m_sb.sb_inodesize, length, gen);
322 } else
323 version = 2;
324
325 for (j = 0; j < nbufs; j++) {
326 /*
327 * Get the block.
328 */
329 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
330 (j * M_IGEO(mp)->blocks_per_cluster));
331 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
332 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
333 XBF_UNMAPPED, &fbuf);
334 if (error)
335 return error;
336
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf->b_ops = &xfs_inode_buf_ops;
339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 int ioffset = i << mp->m_sb.sb_inodelog;
342 uint isize = XFS_DINODE_SIZE(&mp->m_sb);
343
344 free = xfs_make_iptr(mp, fbuf, i);
345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 free->di_version = version;
347 free->di_gen = cpu_to_be32(gen);
348 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349
350 if (version == 3) {
351 free->di_ino = cpu_to_be64(ino);
352 ino++;
353 uuid_copy(&free->di_uuid,
354 &mp->m_sb.sb_meta_uuid);
355 xfs_dinode_calc_crc(mp, free);
356 } else if (tp) {
357 /* just log the inode core */
358 xfs_trans_log_buf(tp, fbuf, ioffset,
359 ioffset + isize - 1);
360 }
361 }
362
363 if (tp) {
364 /*
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
371 */
372 xfs_trans_inode_alloc_buf(tp, fbuf);
373 if (version == 3) {
374 /*
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
379 */
380 xfs_trans_ordered_buf(tp, fbuf);
381 }
382 } else {
383 fbuf->b_flags |= XBF_DONE;
384 xfs_buf_delwri_queue(fbuf, buffer_list);
385 xfs_buf_relse(fbuf);
386 }
387 }
388 return 0;
389}
390
391/*
392 * Align startino and allocmask for a recently allocated sparse chunk such that
393 * they are fit for insertion (or merge) into the on-disk inode btrees.
394 *
395 * Background:
396 *
397 * When enabled, sparse inode support increases the inode alignment from cluster
398 * size to inode chunk size. This means that the minimum range between two
399 * non-adjacent inode records in the inobt is large enough for a full inode
400 * record. This allows for cluster sized, cluster aligned block allocation
401 * without need to worry about whether the resulting inode record overlaps with
402 * another record in the tree. Without this basic rule, we would have to deal
403 * with the consequences of overlap by potentially undoing recent allocations in
404 * the inode allocation codepath.
405 *
406 * Because of this alignment rule (which is enforced on mount), there are two
407 * inobt possibilities for newly allocated sparse chunks. One is that the
408 * aligned inode record for the chunk covers a range of inodes not already
409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410 * other is that a record already exists at the aligned startino that considers
411 * the newly allocated range as sparse. In the latter case, record content is
412 * merged in hope that sparse inode chunks fill to full chunks over time.
413 */
414STATIC void
415xfs_align_sparse_ino(
416 struct xfs_mount *mp,
417 xfs_agino_t *startino,
418 uint16_t *allocmask)
419{
420 xfs_agblock_t agbno;
421 xfs_agblock_t mod;
422 int offset;
423
424 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 mod = agbno % mp->m_sb.sb_inoalignmt;
426 if (!mod)
427 return;
428
429 /* calculate the inode offset and align startino */
430 offset = XFS_AGB_TO_AGINO(mp, mod);
431 *startino -= offset;
432
433 /*
434 * Since startino has been aligned down, left shift allocmask such that
435 * it continues to represent the same physical inodes relative to the
436 * new startino.
437 */
438 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439}
440
441/*
442 * Determine whether the source inode record can merge into the target. Both
443 * records must be sparse, the inode ranges must match and there must be no
444 * allocation overlap between the records.
445 */
446STATIC bool
447__xfs_inobt_can_merge(
448 struct xfs_inobt_rec_incore *trec, /* tgt record */
449 struct xfs_inobt_rec_incore *srec) /* src record */
450{
451 uint64_t talloc;
452 uint64_t salloc;
453
454 /* records must cover the same inode range */
455 if (trec->ir_startino != srec->ir_startino)
456 return false;
457
458 /* both records must be sparse */
459 if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 !xfs_inobt_issparse(srec->ir_holemask))
461 return false;
462
463 /* both records must track some inodes */
464 if (!trec->ir_count || !srec->ir_count)
465 return false;
466
467 /* can't exceed capacity of a full record */
468 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 return false;
470
471 /* verify there is no allocation overlap */
472 talloc = xfs_inobt_irec_to_allocmask(trec);
473 salloc = xfs_inobt_irec_to_allocmask(srec);
474 if (talloc & salloc)
475 return false;
476
477 return true;
478}
479
480/*
481 * Merge the source inode record into the target. The caller must call
482 * __xfs_inobt_can_merge() to ensure the merge is valid.
483 */
484STATIC void
485__xfs_inobt_rec_merge(
486 struct xfs_inobt_rec_incore *trec, /* target */
487 struct xfs_inobt_rec_incore *srec) /* src */
488{
489 ASSERT(trec->ir_startino == srec->ir_startino);
490
491 /* combine the counts */
492 trec->ir_count += srec->ir_count;
493 trec->ir_freecount += srec->ir_freecount;
494
495 /*
496 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 */
499 trec->ir_holemask &= srec->ir_holemask;
500 trec->ir_free &= srec->ir_free;
501}
502
503/*
504 * Insert a new sparse inode chunk into the associated inode btree. The inode
505 * record for the sparse chunk is pre-aligned to a startino that should match
506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
507 * to fill over time.
508 *
509 * This function supports two modes of handling preexisting records depending on
510 * the merge flag. If merge is true, the provided record is merged with the
511 * existing record and updated in place. The merged record is returned in nrec.
512 * If merge is false, an existing record is replaced with the provided record.
513 * If no preexisting record exists, the provided record is always inserted.
514 *
515 * It is considered corruption if a merge is requested and not possible. Given
516 * the sparse inode alignment constraints, this should never happen.
517 */
518STATIC int
519xfs_inobt_insert_sprec(
520 struct xfs_mount *mp,
521 struct xfs_trans *tp,
522 struct xfs_buf *agbp,
523 int btnum,
524 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
525 bool merge) /* merge or replace */
526{
527 struct xfs_btree_cur *cur;
528 struct xfs_agi *agi = agbp->b_addr;
529 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
530 int error;
531 int i;
532 struct xfs_inobt_rec_incore rec;
533
534 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535
536 /* the new record is pre-aligned so we know where to look */
537 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 if (error)
539 goto error;
540 /* if nothing there, insert a new record and return */
541 if (i == 0) {
542 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 nrec->ir_count, nrec->ir_freecount,
544 nrec->ir_free, &i);
545 if (error)
546 goto error;
547 if (XFS_IS_CORRUPT(mp, i != 1)) {
548 error = -EFSCORRUPTED;
549 goto error;
550 }
551
552 goto out;
553 }
554
555 /*
556 * A record exists at this startino. Merge or replace the record
557 * depending on what we've been asked to do.
558 */
559 if (merge) {
560 error = xfs_inobt_get_rec(cur, &rec, &i);
561 if (error)
562 goto error;
563 if (XFS_IS_CORRUPT(mp, i != 1)) {
564 error = -EFSCORRUPTED;
565 goto error;
566 }
567 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
568 error = -EFSCORRUPTED;
569 goto error;
570 }
571
572 /*
573 * This should never fail. If we have coexisting records that
574 * cannot merge, something is seriously wrong.
575 */
576 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
577 error = -EFSCORRUPTED;
578 goto error;
579 }
580
581 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
582 rec.ir_holemask, nrec->ir_startino,
583 nrec->ir_holemask);
584
585 /* merge to nrec to output the updated record */
586 __xfs_inobt_rec_merge(nrec, &rec);
587
588 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
589 nrec->ir_holemask);
590
591 error = xfs_inobt_rec_check_count(mp, nrec);
592 if (error)
593 goto error;
594 }
595
596 error = xfs_inobt_update(cur, nrec);
597 if (error)
598 goto error;
599
600out:
601 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
602 return 0;
603error:
604 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
605 return error;
606}
607
608/*
609 * Allocate new inodes in the allocation group specified by agbp.
610 * Return 0 for success, else error code.
611 */
612STATIC int
613xfs_ialloc_ag_alloc(
614 struct xfs_trans *tp,
615 struct xfs_buf *agbp,
616 int *alloc)
617{
618 struct xfs_agi *agi;
619 struct xfs_alloc_arg args;
620 xfs_agnumber_t agno;
621 int error;
622 xfs_agino_t newino; /* new first inode's number */
623 xfs_agino_t newlen; /* new number of inodes */
624 int isaligned = 0; /* inode allocation at stripe */
625 /* unit boundary */
626 /* init. to full chunk */
627 uint16_t allocmask = (uint16_t) -1;
628 struct xfs_inobt_rec_incore rec;
629 struct xfs_perag *pag;
630 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
631 int do_sparse = 0;
632
633 memset(&args, 0, sizeof(args));
634 args.tp = tp;
635 args.mp = tp->t_mountp;
636 args.fsbno = NULLFSBLOCK;
637 args.oinfo = XFS_RMAP_OINFO_INODES;
638
639#ifdef DEBUG
640 /* randomly do sparse inode allocations */
641 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
642 igeo->ialloc_min_blks < igeo->ialloc_blks)
643 do_sparse = prandom_u32() & 1;
644#endif
645
646 /*
647 * Locking will ensure that we don't have two callers in here
648 * at one time.
649 */
650 newlen = igeo->ialloc_inos;
651 if (igeo->maxicount &&
652 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
653 igeo->maxicount)
654 return -ENOSPC;
655 args.minlen = args.maxlen = igeo->ialloc_blks;
656 /*
657 * First try to allocate inodes contiguous with the last-allocated
658 * chunk of inodes. If the filesystem is striped, this will fill
659 * an entire stripe unit with inodes.
660 */
661 agi = agbp->b_addr;
662 newino = be32_to_cpu(agi->agi_newino);
663 agno = be32_to_cpu(agi->agi_seqno);
664 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
665 igeo->ialloc_blks;
666 if (do_sparse)
667 goto sparse_alloc;
668 if (likely(newino != NULLAGINO &&
669 (args.agbno < be32_to_cpu(agi->agi_length)))) {
670 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
671 args.type = XFS_ALLOCTYPE_THIS_BNO;
672 args.prod = 1;
673
674 /*
675 * We need to take into account alignment here to ensure that
676 * we don't modify the free list if we fail to have an exact
677 * block. If we don't have an exact match, and every oher
678 * attempt allocation attempt fails, we'll end up cancelling
679 * a dirty transaction and shutting down.
680 *
681 * For an exact allocation, alignment must be 1,
682 * however we need to take cluster alignment into account when
683 * fixing up the freelist. Use the minalignslop field to
684 * indicate that extra blocks might be required for alignment,
685 * but not to use them in the actual exact allocation.
686 */
687 args.alignment = 1;
688 args.minalignslop = igeo->cluster_align - 1;
689
690 /* Allow space for the inode btree to split. */
691 args.minleft = igeo->inobt_maxlevels;
692 if ((error = xfs_alloc_vextent(&args)))
693 return error;
694
695 /*
696 * This request might have dirtied the transaction if the AG can
697 * satisfy the request, but the exact block was not available.
698 * If the allocation did fail, subsequent requests will relax
699 * the exact agbno requirement and increase the alignment
700 * instead. It is critical that the total size of the request
701 * (len + alignment + slop) does not increase from this point
702 * on, so reset minalignslop to ensure it is not included in
703 * subsequent requests.
704 */
705 args.minalignslop = 0;
706 }
707
708 if (unlikely(args.fsbno == NULLFSBLOCK)) {
709 /*
710 * Set the alignment for the allocation.
711 * If stripe alignment is turned on then align at stripe unit
712 * boundary.
713 * If the cluster size is smaller than a filesystem block
714 * then we're doing I/O for inodes in filesystem block size
715 * pieces, so don't need alignment anyway.
716 */
717 isaligned = 0;
718 if (igeo->ialloc_align) {
719 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
720 args.alignment = args.mp->m_dalign;
721 isaligned = 1;
722 } else
723 args.alignment = igeo->cluster_align;
724 /*
725 * Need to figure out where to allocate the inode blocks.
726 * Ideally they should be spaced out through the a.g.
727 * For now, just allocate blocks up front.
728 */
729 args.agbno = be32_to_cpu(agi->agi_root);
730 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 /*
732 * Allocate a fixed-size extent of inodes.
733 */
734 args.type = XFS_ALLOCTYPE_NEAR_BNO;
735 args.prod = 1;
736 /*
737 * Allow space for the inode btree to split.
738 */
739 args.minleft = igeo->inobt_maxlevels;
740 if ((error = xfs_alloc_vextent(&args)))
741 return error;
742 }
743
744 /*
745 * If stripe alignment is turned on, then try again with cluster
746 * alignment.
747 */
748 if (isaligned && args.fsbno == NULLFSBLOCK) {
749 args.type = XFS_ALLOCTYPE_NEAR_BNO;
750 args.agbno = be32_to_cpu(agi->agi_root);
751 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
752 args.alignment = igeo->cluster_align;
753 if ((error = xfs_alloc_vextent(&args)))
754 return error;
755 }
756
757 /*
758 * Finally, try a sparse allocation if the filesystem supports it and
759 * the sparse allocation length is smaller than a full chunk.
760 */
761 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
762 igeo->ialloc_min_blks < igeo->ialloc_blks &&
763 args.fsbno == NULLFSBLOCK) {
764sparse_alloc:
765 args.type = XFS_ALLOCTYPE_NEAR_BNO;
766 args.agbno = be32_to_cpu(agi->agi_root);
767 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
768 args.alignment = args.mp->m_sb.sb_spino_align;
769 args.prod = 1;
770
771 args.minlen = igeo->ialloc_min_blks;
772 args.maxlen = args.minlen;
773
774 /*
775 * The inode record will be aligned to full chunk size. We must
776 * prevent sparse allocation from AG boundaries that result in
777 * invalid inode records, such as records that start at agbno 0
778 * or extend beyond the AG.
779 *
780 * Set min agbno to the first aligned, non-zero agbno and max to
781 * the last aligned agbno that is at least one full chunk from
782 * the end of the AG.
783 */
784 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
785 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
786 args.mp->m_sb.sb_inoalignmt) -
787 igeo->ialloc_blks;
788
789 error = xfs_alloc_vextent(&args);
790 if (error)
791 return error;
792
793 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
794 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
795 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
796 }
797
798 if (args.fsbno == NULLFSBLOCK) {
799 *alloc = 0;
800 return 0;
801 }
802 ASSERT(args.len == args.minlen);
803
804 /*
805 * Stamp and write the inode buffers.
806 *
807 * Seed the new inode cluster with a random generation number. This
808 * prevents short-term reuse of generation numbers if a chunk is
809 * freed and then immediately reallocated. We use random numbers
810 * rather than a linear progression to prevent the next generation
811 * number from being easily guessable.
812 */
813 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
814 args.agbno, args.len, prandom_u32());
815
816 if (error)
817 return error;
818 /*
819 * Convert the results.
820 */
821 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
822
823 if (xfs_inobt_issparse(~allocmask)) {
824 /*
825 * We've allocated a sparse chunk. Align the startino and mask.
826 */
827 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
828
829 rec.ir_startino = newino;
830 rec.ir_holemask = ~allocmask;
831 rec.ir_count = newlen;
832 rec.ir_freecount = newlen;
833 rec.ir_free = XFS_INOBT_ALL_FREE;
834
835 /*
836 * Insert the sparse record into the inobt and allow for a merge
837 * if necessary. If a merge does occur, rec is updated to the
838 * merged record.
839 */
840 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
841 &rec, true);
842 if (error == -EFSCORRUPTED) {
843 xfs_alert(args.mp,
844 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
845 XFS_AGINO_TO_INO(args.mp, agno,
846 rec.ir_startino),
847 rec.ir_holemask, rec.ir_count);
848 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
849 }
850 if (error)
851 return error;
852
853 /*
854 * We can't merge the part we've just allocated as for the inobt
855 * due to finobt semantics. The original record may or may not
856 * exist independent of whether physical inodes exist in this
857 * sparse chunk.
858 *
859 * We must update the finobt record based on the inobt record.
860 * rec contains the fully merged and up to date inobt record
861 * from the previous call. Set merge false to replace any
862 * existing record with this one.
863 */
864 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
865 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
866 XFS_BTNUM_FINO, &rec,
867 false);
868 if (error)
869 return error;
870 }
871 } else {
872 /* full chunk - insert new records to both btrees */
873 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
874 XFS_BTNUM_INO);
875 if (error)
876 return error;
877
878 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
879 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
880 newlen, XFS_BTNUM_FINO);
881 if (error)
882 return error;
883 }
884 }
885
886 /*
887 * Update AGI counts and newino.
888 */
889 be32_add_cpu(&agi->agi_count, newlen);
890 be32_add_cpu(&agi->agi_freecount, newlen);
891 pag = agbp->b_pag;
892 pag->pagi_freecount += newlen;
893 pag->pagi_count += newlen;
894 agi->agi_newino = cpu_to_be32(newino);
895
896 /*
897 * Log allocation group header fields
898 */
899 xfs_ialloc_log_agi(tp, agbp,
900 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
901 /*
902 * Modify/log superblock values for inode count and inode free count.
903 */
904 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
905 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
906 *alloc = 1;
907 return 0;
908}
909
910STATIC xfs_agnumber_t
911xfs_ialloc_next_ag(
912 xfs_mount_t *mp)
913{
914 xfs_agnumber_t agno;
915
916 spin_lock(&mp->m_agirotor_lock);
917 agno = mp->m_agirotor;
918 if (++mp->m_agirotor >= mp->m_maxagi)
919 mp->m_agirotor = 0;
920 spin_unlock(&mp->m_agirotor_lock);
921
922 return agno;
923}
924
925/*
926 * Select an allocation group to look for a free inode in, based on the parent
927 * inode and the mode. Return the allocation group buffer.
928 */
929STATIC xfs_agnumber_t
930xfs_ialloc_ag_select(
931 xfs_trans_t *tp, /* transaction pointer */
932 xfs_ino_t parent, /* parent directory inode number */
933 umode_t mode) /* bits set to indicate file type */
934{
935 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
936 xfs_agnumber_t agno; /* current ag number */
937 int flags; /* alloc buffer locking flags */
938 xfs_extlen_t ineed; /* blocks needed for inode allocation */
939 xfs_extlen_t longest = 0; /* longest extent available */
940 xfs_mount_t *mp; /* mount point structure */
941 int needspace; /* file mode implies space allocated */
942 xfs_perag_t *pag; /* per allocation group data */
943 xfs_agnumber_t pagno; /* parent (starting) ag number */
944 int error;
945
946 /*
947 * Files of these types need at least one block if length > 0
948 * (and they won't fit in the inode, but that's hard to figure out).
949 */
950 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
951 mp = tp->t_mountp;
952 agcount = mp->m_maxagi;
953 if (S_ISDIR(mode))
954 pagno = xfs_ialloc_next_ag(mp);
955 else {
956 pagno = XFS_INO_TO_AGNO(mp, parent);
957 if (pagno >= agcount)
958 pagno = 0;
959 }
960
961 ASSERT(pagno < agcount);
962
963 /*
964 * Loop through allocation groups, looking for one with a little
965 * free space in it. Note we don't look for free inodes, exactly.
966 * Instead, we include whether there is a need to allocate inodes
967 * to mean that blocks must be allocated for them,
968 * if none are currently free.
969 */
970 agno = pagno;
971 flags = XFS_ALLOC_FLAG_TRYLOCK;
972 for (;;) {
973 pag = xfs_perag_get(mp, agno);
974 if (!pag->pagi_inodeok) {
975 xfs_ialloc_next_ag(mp);
976 goto nextag;
977 }
978
979 if (!pag->pagi_init) {
980 error = xfs_ialloc_pagi_init(mp, tp, agno);
981 if (error)
982 goto nextag;
983 }
984
985 if (pag->pagi_freecount) {
986 xfs_perag_put(pag);
987 return agno;
988 }
989
990 if (!pag->pagf_init) {
991 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
992 if (error)
993 goto nextag;
994 }
995
996 /*
997 * Check that there is enough free space for the file plus a
998 * chunk of inodes if we need to allocate some. If this is the
999 * first pass across the AGs, take into account the potential
1000 * space needed for alignment of inode chunks when checking the
1001 * longest contiguous free space in the AG - this prevents us
1002 * from getting ENOSPC because we have free space larger than
1003 * ialloc_blks but alignment constraints prevent us from using
1004 * it.
1005 *
1006 * If we can't find an AG with space for full alignment slack to
1007 * be taken into account, we must be near ENOSPC in all AGs.
1008 * Hence we don't include alignment for the second pass and so
1009 * if we fail allocation due to alignment issues then it is most
1010 * likely a real ENOSPC condition.
1011 */
1012 ineed = M_IGEO(mp)->ialloc_min_blks;
1013 if (flags && ineed > 1)
1014 ineed += M_IGEO(mp)->cluster_align;
1015 longest = pag->pagf_longest;
1016 if (!longest)
1017 longest = pag->pagf_flcount > 0;
1018
1019 if (pag->pagf_freeblks >= needspace + ineed &&
1020 longest >= ineed) {
1021 xfs_perag_put(pag);
1022 return agno;
1023 }
1024nextag:
1025 xfs_perag_put(pag);
1026 /*
1027 * No point in iterating over the rest, if we're shutting
1028 * down.
1029 */
1030 if (XFS_FORCED_SHUTDOWN(mp))
1031 return NULLAGNUMBER;
1032 agno++;
1033 if (agno >= agcount)
1034 agno = 0;
1035 if (agno == pagno) {
1036 if (flags == 0)
1037 return NULLAGNUMBER;
1038 flags = 0;
1039 }
1040 }
1041}
1042
1043/*
1044 * Try to retrieve the next record to the left/right from the current one.
1045 */
1046STATIC int
1047xfs_ialloc_next_rec(
1048 struct xfs_btree_cur *cur,
1049 xfs_inobt_rec_incore_t *rec,
1050 int *done,
1051 int left)
1052{
1053 int error;
1054 int i;
1055
1056 if (left)
1057 error = xfs_btree_decrement(cur, 0, &i);
1058 else
1059 error = xfs_btree_increment(cur, 0, &i);
1060
1061 if (error)
1062 return error;
1063 *done = !i;
1064 if (i) {
1065 error = xfs_inobt_get_rec(cur, rec, &i);
1066 if (error)
1067 return error;
1068 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1069 return -EFSCORRUPTED;
1070 }
1071
1072 return 0;
1073}
1074
1075STATIC int
1076xfs_ialloc_get_rec(
1077 struct xfs_btree_cur *cur,
1078 xfs_agino_t agino,
1079 xfs_inobt_rec_incore_t *rec,
1080 int *done)
1081{
1082 int error;
1083 int i;
1084
1085 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1086 if (error)
1087 return error;
1088 *done = !i;
1089 if (i) {
1090 error = xfs_inobt_get_rec(cur, rec, &i);
1091 if (error)
1092 return error;
1093 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1094 return -EFSCORRUPTED;
1095 }
1096
1097 return 0;
1098}
1099
1100/*
1101 * Return the offset of the first free inode in the record. If the inode chunk
1102 * is sparsely allocated, we convert the record holemask to inode granularity
1103 * and mask off the unallocated regions from the inode free mask.
1104 */
1105STATIC int
1106xfs_inobt_first_free_inode(
1107 struct xfs_inobt_rec_incore *rec)
1108{
1109 xfs_inofree_t realfree;
1110
1111 /* if there are no holes, return the first available offset */
1112 if (!xfs_inobt_issparse(rec->ir_holemask))
1113 return xfs_lowbit64(rec->ir_free);
1114
1115 realfree = xfs_inobt_irec_to_allocmask(rec);
1116 realfree &= rec->ir_free;
1117
1118 return xfs_lowbit64(realfree);
1119}
1120
1121/*
1122 * Allocate an inode using the inobt-only algorithm.
1123 */
1124STATIC int
1125xfs_dialloc_ag_inobt(
1126 struct xfs_trans *tp,
1127 struct xfs_buf *agbp,
1128 xfs_ino_t parent,
1129 xfs_ino_t *inop)
1130{
1131 struct xfs_mount *mp = tp->t_mountp;
1132 struct xfs_agi *agi = agbp->b_addr;
1133 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1134 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1135 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1136 struct xfs_perag *pag = agbp->b_pag;
1137 struct xfs_btree_cur *cur, *tcur;
1138 struct xfs_inobt_rec_incore rec, trec;
1139 xfs_ino_t ino;
1140 int error;
1141 int offset;
1142 int i, j;
1143 int searchdistance = 10;
1144
1145 ASSERT(pag->pagi_init);
1146 ASSERT(pag->pagi_inodeok);
1147 ASSERT(pag->pagi_freecount > 0);
1148
1149 restart_pagno:
1150 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1151 /*
1152 * If pagino is 0 (this is the root inode allocation) use newino.
1153 * This must work because we've just allocated some.
1154 */
1155 if (!pagino)
1156 pagino = be32_to_cpu(agi->agi_newino);
1157
1158 error = xfs_check_agi_freecount(cur, agi);
1159 if (error)
1160 goto error0;
1161
1162 /*
1163 * If in the same AG as the parent, try to get near the parent.
1164 */
1165 if (pagno == agno) {
1166 int doneleft; /* done, to the left */
1167 int doneright; /* done, to the right */
1168
1169 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1170 if (error)
1171 goto error0;
1172 if (XFS_IS_CORRUPT(mp, i != 1)) {
1173 error = -EFSCORRUPTED;
1174 goto error0;
1175 }
1176
1177 error = xfs_inobt_get_rec(cur, &rec, &j);
1178 if (error)
1179 goto error0;
1180 if (XFS_IS_CORRUPT(mp, j != 1)) {
1181 error = -EFSCORRUPTED;
1182 goto error0;
1183 }
1184
1185 if (rec.ir_freecount > 0) {
1186 /*
1187 * Found a free inode in the same chunk
1188 * as the parent, done.
1189 */
1190 goto alloc_inode;
1191 }
1192
1193
1194 /*
1195 * In the same AG as parent, but parent's chunk is full.
1196 */
1197
1198 /* duplicate the cursor, search left & right simultaneously */
1199 error = xfs_btree_dup_cursor(cur, &tcur);
1200 if (error)
1201 goto error0;
1202
1203 /*
1204 * Skip to last blocks looked up if same parent inode.
1205 */
1206 if (pagino != NULLAGINO &&
1207 pag->pagl_pagino == pagino &&
1208 pag->pagl_leftrec != NULLAGINO &&
1209 pag->pagl_rightrec != NULLAGINO) {
1210 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1211 &trec, &doneleft);
1212 if (error)
1213 goto error1;
1214
1215 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1216 &rec, &doneright);
1217 if (error)
1218 goto error1;
1219 } else {
1220 /* search left with tcur, back up 1 record */
1221 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1222 if (error)
1223 goto error1;
1224
1225 /* search right with cur, go forward 1 record. */
1226 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1227 if (error)
1228 goto error1;
1229 }
1230
1231 /*
1232 * Loop until we find an inode chunk with a free inode.
1233 */
1234 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1235 int useleft; /* using left inode chunk this time */
1236
1237 /* figure out the closer block if both are valid. */
1238 if (!doneleft && !doneright) {
1239 useleft = pagino -
1240 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1241 rec.ir_startino - pagino;
1242 } else {
1243 useleft = !doneleft;
1244 }
1245
1246 /* free inodes to the left? */
1247 if (useleft && trec.ir_freecount) {
1248 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1249 cur = tcur;
1250
1251 pag->pagl_leftrec = trec.ir_startino;
1252 pag->pagl_rightrec = rec.ir_startino;
1253 pag->pagl_pagino = pagino;
1254 rec = trec;
1255 goto alloc_inode;
1256 }
1257
1258 /* free inodes to the right? */
1259 if (!useleft && rec.ir_freecount) {
1260 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1261
1262 pag->pagl_leftrec = trec.ir_startino;
1263 pag->pagl_rightrec = rec.ir_startino;
1264 pag->pagl_pagino = pagino;
1265 goto alloc_inode;
1266 }
1267
1268 /* get next record to check */
1269 if (useleft) {
1270 error = xfs_ialloc_next_rec(tcur, &trec,
1271 &doneleft, 1);
1272 } else {
1273 error = xfs_ialloc_next_rec(cur, &rec,
1274 &doneright, 0);
1275 }
1276 if (error)
1277 goto error1;
1278 }
1279
1280 if (searchdistance <= 0) {
1281 /*
1282 * Not in range - save last search
1283 * location and allocate a new inode
1284 */
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 pag->pagl_leftrec = trec.ir_startino;
1287 pag->pagl_rightrec = rec.ir_startino;
1288 pag->pagl_pagino = pagino;
1289
1290 } else {
1291 /*
1292 * We've reached the end of the btree. because
1293 * we are only searching a small chunk of the
1294 * btree each search, there is obviously free
1295 * inodes closer to the parent inode than we
1296 * are now. restart the search again.
1297 */
1298 pag->pagl_pagino = NULLAGINO;
1299 pag->pagl_leftrec = NULLAGINO;
1300 pag->pagl_rightrec = NULLAGINO;
1301 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1302 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1303 goto restart_pagno;
1304 }
1305 }
1306
1307 /*
1308 * In a different AG from the parent.
1309 * See if the most recently allocated block has any free.
1310 */
1311 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1312 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1313 XFS_LOOKUP_EQ, &i);
1314 if (error)
1315 goto error0;
1316
1317 if (i == 1) {
1318 error = xfs_inobt_get_rec(cur, &rec, &j);
1319 if (error)
1320 goto error0;
1321
1322 if (j == 1 && rec.ir_freecount > 0) {
1323 /*
1324 * The last chunk allocated in the group
1325 * still has a free inode.
1326 */
1327 goto alloc_inode;
1328 }
1329 }
1330 }
1331
1332 /*
1333 * None left in the last group, search the whole AG
1334 */
1335 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1336 if (error)
1337 goto error0;
1338 if (XFS_IS_CORRUPT(mp, i != 1)) {
1339 error = -EFSCORRUPTED;
1340 goto error0;
1341 }
1342
1343 for (;;) {
1344 error = xfs_inobt_get_rec(cur, &rec, &i);
1345 if (error)
1346 goto error0;
1347 if (XFS_IS_CORRUPT(mp, i != 1)) {
1348 error = -EFSCORRUPTED;
1349 goto error0;
1350 }
1351 if (rec.ir_freecount > 0)
1352 break;
1353 error = xfs_btree_increment(cur, 0, &i);
1354 if (error)
1355 goto error0;
1356 if (XFS_IS_CORRUPT(mp, i != 1)) {
1357 error = -EFSCORRUPTED;
1358 goto error0;
1359 }
1360 }
1361
1362alloc_inode:
1363 offset = xfs_inobt_first_free_inode(&rec);
1364 ASSERT(offset >= 0);
1365 ASSERT(offset < XFS_INODES_PER_CHUNK);
1366 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1367 XFS_INODES_PER_CHUNK) == 0);
1368 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1369 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1370 rec.ir_freecount--;
1371 error = xfs_inobt_update(cur, &rec);
1372 if (error)
1373 goto error0;
1374 be32_add_cpu(&agi->agi_freecount, -1);
1375 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1376 pag->pagi_freecount--;
1377
1378 error = xfs_check_agi_freecount(cur, agi);
1379 if (error)
1380 goto error0;
1381
1382 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1383 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1384 *inop = ino;
1385 return 0;
1386error1:
1387 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1388error0:
1389 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1390 return error;
1391}
1392
1393/*
1394 * Use the free inode btree to allocate an inode based on distance from the
1395 * parent. Note that the provided cursor may be deleted and replaced.
1396 */
1397STATIC int
1398xfs_dialloc_ag_finobt_near(
1399 xfs_agino_t pagino,
1400 struct xfs_btree_cur **ocur,
1401 struct xfs_inobt_rec_incore *rec)
1402{
1403 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1404 struct xfs_btree_cur *rcur; /* right search cursor */
1405 struct xfs_inobt_rec_incore rrec;
1406 int error;
1407 int i, j;
1408
1409 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1410 if (error)
1411 return error;
1412
1413 if (i == 1) {
1414 error = xfs_inobt_get_rec(lcur, rec, &i);
1415 if (error)
1416 return error;
1417 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1418 return -EFSCORRUPTED;
1419
1420 /*
1421 * See if we've landed in the parent inode record. The finobt
1422 * only tracks chunks with at least one free inode, so record
1423 * existence is enough.
1424 */
1425 if (pagino >= rec->ir_startino &&
1426 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1427 return 0;
1428 }
1429
1430 error = xfs_btree_dup_cursor(lcur, &rcur);
1431 if (error)
1432 return error;
1433
1434 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1435 if (error)
1436 goto error_rcur;
1437 if (j == 1) {
1438 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1439 if (error)
1440 goto error_rcur;
1441 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1442 error = -EFSCORRUPTED;
1443 goto error_rcur;
1444 }
1445 }
1446
1447 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1448 error = -EFSCORRUPTED;
1449 goto error_rcur;
1450 }
1451 if (i == 1 && j == 1) {
1452 /*
1453 * Both the left and right records are valid. Choose the closer
1454 * inode chunk to the target.
1455 */
1456 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1457 (rrec.ir_startino - pagino)) {
1458 *rec = rrec;
1459 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1460 *ocur = rcur;
1461 } else {
1462 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1463 }
1464 } else if (j == 1) {
1465 /* only the right record is valid */
1466 *rec = rrec;
1467 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1468 *ocur = rcur;
1469 } else if (i == 1) {
1470 /* only the left record is valid */
1471 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1472 }
1473
1474 return 0;
1475
1476error_rcur:
1477 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1478 return error;
1479}
1480
1481/*
1482 * Use the free inode btree to find a free inode based on a newino hint. If
1483 * the hint is NULL, find the first free inode in the AG.
1484 */
1485STATIC int
1486xfs_dialloc_ag_finobt_newino(
1487 struct xfs_agi *agi,
1488 struct xfs_btree_cur *cur,
1489 struct xfs_inobt_rec_incore *rec)
1490{
1491 int error;
1492 int i;
1493
1494 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1495 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1496 XFS_LOOKUP_EQ, &i);
1497 if (error)
1498 return error;
1499 if (i == 1) {
1500 error = xfs_inobt_get_rec(cur, rec, &i);
1501 if (error)
1502 return error;
1503 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1504 return -EFSCORRUPTED;
1505 return 0;
1506 }
1507 }
1508
1509 /*
1510 * Find the first inode available in the AG.
1511 */
1512 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1513 if (error)
1514 return error;
1515 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1516 return -EFSCORRUPTED;
1517
1518 error = xfs_inobt_get_rec(cur, rec, &i);
1519 if (error)
1520 return error;
1521 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1522 return -EFSCORRUPTED;
1523
1524 return 0;
1525}
1526
1527/*
1528 * Update the inobt based on a modification made to the finobt. Also ensure that
1529 * the records from both trees are equivalent post-modification.
1530 */
1531STATIC int
1532xfs_dialloc_ag_update_inobt(
1533 struct xfs_btree_cur *cur, /* inobt cursor */
1534 struct xfs_inobt_rec_incore *frec, /* finobt record */
1535 int offset) /* inode offset */
1536{
1537 struct xfs_inobt_rec_incore rec;
1538 int error;
1539 int i;
1540
1541 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1542 if (error)
1543 return error;
1544 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1545 return -EFSCORRUPTED;
1546
1547 error = xfs_inobt_get_rec(cur, &rec, &i);
1548 if (error)
1549 return error;
1550 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1551 return -EFSCORRUPTED;
1552 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1553 XFS_INODES_PER_CHUNK) == 0);
1554
1555 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1556 rec.ir_freecount--;
1557
1558 if (XFS_IS_CORRUPT(cur->bc_mp,
1559 rec.ir_free != frec->ir_free ||
1560 rec.ir_freecount != frec->ir_freecount))
1561 return -EFSCORRUPTED;
1562
1563 return xfs_inobt_update(cur, &rec);
1564}
1565
1566/*
1567 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1568 * back to the inobt search algorithm.
1569 *
1570 * The caller selected an AG for us, and made sure that free inodes are
1571 * available.
1572 */
1573STATIC int
1574xfs_dialloc_ag(
1575 struct xfs_trans *tp,
1576 struct xfs_buf *agbp,
1577 xfs_ino_t parent,
1578 xfs_ino_t *inop)
1579{
1580 struct xfs_mount *mp = tp->t_mountp;
1581 struct xfs_agi *agi = agbp->b_addr;
1582 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1583 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1584 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1585 struct xfs_btree_cur *cur; /* finobt cursor */
1586 struct xfs_btree_cur *icur; /* inobt cursor */
1587 struct xfs_inobt_rec_incore rec;
1588 xfs_ino_t ino;
1589 int error;
1590 int offset;
1591 int i;
1592
1593 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1594 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1595
1596 /*
1597 * If pagino is 0 (this is the root inode allocation) use newino.
1598 * This must work because we've just allocated some.
1599 */
1600 if (!pagino)
1601 pagino = be32_to_cpu(agi->agi_newino);
1602
1603 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1604
1605 error = xfs_check_agi_freecount(cur, agi);
1606 if (error)
1607 goto error_cur;
1608
1609 /*
1610 * The search algorithm depends on whether we're in the same AG as the
1611 * parent. If so, find the closest available inode to the parent. If
1612 * not, consider the agi hint or find the first free inode in the AG.
1613 */
1614 if (agno == pagno)
1615 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1616 else
1617 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1618 if (error)
1619 goto error_cur;
1620
1621 offset = xfs_inobt_first_free_inode(&rec);
1622 ASSERT(offset >= 0);
1623 ASSERT(offset < XFS_INODES_PER_CHUNK);
1624 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1625 XFS_INODES_PER_CHUNK) == 0);
1626 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1627
1628 /*
1629 * Modify or remove the finobt record.
1630 */
1631 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632 rec.ir_freecount--;
1633 if (rec.ir_freecount)
1634 error = xfs_inobt_update(cur, &rec);
1635 else
1636 error = xfs_btree_delete(cur, &i);
1637 if (error)
1638 goto error_cur;
1639
1640 /*
1641 * The finobt has now been updated appropriately. We haven't updated the
1642 * agi and superblock yet, so we can create an inobt cursor and validate
1643 * the original freecount. If all is well, make the equivalent update to
1644 * the inobt using the finobt record and offset information.
1645 */
1646 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1647
1648 error = xfs_check_agi_freecount(icur, agi);
1649 if (error)
1650 goto error_icur;
1651
1652 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1653 if (error)
1654 goto error_icur;
1655
1656 /*
1657 * Both trees have now been updated. We must update the perag and
1658 * superblock before we can check the freecount for each btree.
1659 */
1660 be32_add_cpu(&agi->agi_freecount, -1);
1661 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1662 agbp->b_pag->pagi_freecount--;
1663
1664 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665
1666 error = xfs_check_agi_freecount(icur, agi);
1667 if (error)
1668 goto error_icur;
1669 error = xfs_check_agi_freecount(cur, agi);
1670 if (error)
1671 goto error_icur;
1672
1673 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1674 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1675 *inop = ino;
1676 return 0;
1677
1678error_icur:
1679 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680error_cur:
1681 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1682 return error;
1683}
1684
1685/*
1686 * Allocate an inode on disk.
1687 *
1688 * Mode is used to tell whether the new inode will need space, and whether it
1689 * is a directory.
1690 *
1691 * This function is designed to be called twice if it has to do an allocation
1692 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1693 * If an inode is available without having to performn an allocation, an inode
1694 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1695 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1696 * The caller should then commit the current transaction, allocate a
1697 * new transaction, and call xfs_dialloc() again, passing in the previous value
1698 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1699 * buffer is locked across the two calls, the second call is guaranteed to have
1700 * a free inode available.
1701 *
1702 * Once we successfully pick an inode its number is returned and the on-disk
1703 * data structures are updated. The inode itself is not read in, since doing so
1704 * would break ordering constraints with xfs_reclaim.
1705 */
1706int
1707xfs_dialloc(
1708 struct xfs_trans *tp,
1709 xfs_ino_t parent,
1710 umode_t mode,
1711 struct xfs_buf **IO_agbp,
1712 xfs_ino_t *inop)
1713{
1714 struct xfs_mount *mp = tp->t_mountp;
1715 struct xfs_buf *agbp;
1716 xfs_agnumber_t agno;
1717 int error;
1718 int ialloced;
1719 int noroom = 0;
1720 xfs_agnumber_t start_agno;
1721 struct xfs_perag *pag;
1722 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1723 int okalloc = 1;
1724
1725 if (*IO_agbp) {
1726 /*
1727 * If the caller passes in a pointer to the AGI buffer,
1728 * continue where we left off before. In this case, we
1729 * know that the allocation group has free inodes.
1730 */
1731 agbp = *IO_agbp;
1732 goto out_alloc;
1733 }
1734
1735 /*
1736 * We do not have an agbp, so select an initial allocation
1737 * group for inode allocation.
1738 */
1739 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1740 if (start_agno == NULLAGNUMBER) {
1741 *inop = NULLFSINO;
1742 return 0;
1743 }
1744
1745 /*
1746 * If we have already hit the ceiling of inode blocks then clear
1747 * okalloc so we scan all available agi structures for a free
1748 * inode.
1749 *
1750 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1751 * which will sacrifice the preciseness but improve the performance.
1752 */
1753 if (igeo->maxicount &&
1754 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1755 > igeo->maxicount) {
1756 noroom = 1;
1757 okalloc = 0;
1758 }
1759
1760 /*
1761 * Loop until we find an allocation group that either has free inodes
1762 * or in which we can allocate some inodes. Iterate through the
1763 * allocation groups upward, wrapping at the end.
1764 */
1765 agno = start_agno;
1766 for (;;) {
1767 pag = xfs_perag_get(mp, agno);
1768 if (!pag->pagi_inodeok) {
1769 xfs_ialloc_next_ag(mp);
1770 goto nextag;
1771 }
1772
1773 if (!pag->pagi_init) {
1774 error = xfs_ialloc_pagi_init(mp, tp, agno);
1775 if (error)
1776 goto out_error;
1777 }
1778
1779 /*
1780 * Do a first racy fast path check if this AG is usable.
1781 */
1782 if (!pag->pagi_freecount && !okalloc)
1783 goto nextag;
1784
1785 /*
1786 * Then read in the AGI buffer and recheck with the AGI buffer
1787 * lock held.
1788 */
1789 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1790 if (error)
1791 goto out_error;
1792
1793 if (pag->pagi_freecount) {
1794 xfs_perag_put(pag);
1795 goto out_alloc;
1796 }
1797
1798 if (!okalloc)
1799 goto nextag_relse_buffer;
1800
1801
1802 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1803 if (error) {
1804 xfs_trans_brelse(tp, agbp);
1805
1806 if (error != -ENOSPC)
1807 goto out_error;
1808
1809 xfs_perag_put(pag);
1810 *inop = NULLFSINO;
1811 return 0;
1812 }
1813
1814 if (ialloced) {
1815 /*
1816 * We successfully allocated some inodes, return
1817 * the current context to the caller so that it
1818 * can commit the current transaction and call
1819 * us again where we left off.
1820 */
1821 ASSERT(pag->pagi_freecount > 0);
1822 xfs_perag_put(pag);
1823
1824 *IO_agbp = agbp;
1825 *inop = NULLFSINO;
1826 return 0;
1827 }
1828
1829nextag_relse_buffer:
1830 xfs_trans_brelse(tp, agbp);
1831nextag:
1832 xfs_perag_put(pag);
1833 if (++agno == mp->m_sb.sb_agcount)
1834 agno = 0;
1835 if (agno == start_agno) {
1836 *inop = NULLFSINO;
1837 return noroom ? -ENOSPC : 0;
1838 }
1839 }
1840
1841out_alloc:
1842 *IO_agbp = NULL;
1843 return xfs_dialloc_ag(tp, agbp, parent, inop);
1844out_error:
1845 xfs_perag_put(pag);
1846 return error;
1847}
1848
1849/*
1850 * Free the blocks of an inode chunk. We must consider that the inode chunk
1851 * might be sparse and only free the regions that are allocated as part of the
1852 * chunk.
1853 */
1854STATIC void
1855xfs_difree_inode_chunk(
1856 struct xfs_trans *tp,
1857 xfs_agnumber_t agno,
1858 struct xfs_inobt_rec_incore *rec)
1859{
1860 struct xfs_mount *mp = tp->t_mountp;
1861 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1862 rec->ir_startino);
1863 int startidx, endidx;
1864 int nextbit;
1865 xfs_agblock_t agbno;
1866 int contigblk;
1867 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1868
1869 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1870 /* not sparse, calculate extent info directly */
1871 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1872 M_IGEO(mp)->ialloc_blks,
1873 &XFS_RMAP_OINFO_INODES);
1874 return;
1875 }
1876
1877 /* holemask is only 16-bits (fits in an unsigned long) */
1878 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1879 holemask[0] = rec->ir_holemask;
1880
1881 /*
1882 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1883 * holemask and convert the start/end index of each range to an extent.
1884 * We start with the start and end index both pointing at the first 0 in
1885 * the mask.
1886 */
1887 startidx = endidx = find_first_zero_bit(holemask,
1888 XFS_INOBT_HOLEMASK_BITS);
1889 nextbit = startidx + 1;
1890 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1891 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1892 nextbit);
1893 /*
1894 * If the next zero bit is contiguous, update the end index of
1895 * the current range and continue.
1896 */
1897 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1898 nextbit == endidx + 1) {
1899 endidx = nextbit;
1900 goto next;
1901 }
1902
1903 /*
1904 * nextbit is not contiguous with the current end index. Convert
1905 * the current start/end to an extent and add it to the free
1906 * list.
1907 */
1908 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1909 mp->m_sb.sb_inopblock;
1910 contigblk = ((endidx - startidx + 1) *
1911 XFS_INODES_PER_HOLEMASK_BIT) /
1912 mp->m_sb.sb_inopblock;
1913
1914 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1915 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1916 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1917 contigblk, &XFS_RMAP_OINFO_INODES);
1918
1919 /* reset range to current bit and carry on... */
1920 startidx = endidx = nextbit;
1921
1922next:
1923 nextbit++;
1924 }
1925}
1926
1927STATIC int
1928xfs_difree_inobt(
1929 struct xfs_mount *mp,
1930 struct xfs_trans *tp,
1931 struct xfs_buf *agbp,
1932 xfs_agino_t agino,
1933 struct xfs_icluster *xic,
1934 struct xfs_inobt_rec_incore *orec)
1935{
1936 struct xfs_agi *agi = agbp->b_addr;
1937 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1938 struct xfs_btree_cur *cur;
1939 struct xfs_inobt_rec_incore rec;
1940 int ilen;
1941 int error;
1942 int i;
1943 int off;
1944
1945 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1946 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1947
1948 /*
1949 * Initialize the cursor.
1950 */
1951 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1952
1953 error = xfs_check_agi_freecount(cur, agi);
1954 if (error)
1955 goto error0;
1956
1957 /*
1958 * Look for the entry describing this inode.
1959 */
1960 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1961 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1962 __func__, error);
1963 goto error0;
1964 }
1965 if (XFS_IS_CORRUPT(mp, i != 1)) {
1966 error = -EFSCORRUPTED;
1967 goto error0;
1968 }
1969 error = xfs_inobt_get_rec(cur, &rec, &i);
1970 if (error) {
1971 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1972 __func__, error);
1973 goto error0;
1974 }
1975 if (XFS_IS_CORRUPT(mp, i != 1)) {
1976 error = -EFSCORRUPTED;
1977 goto error0;
1978 }
1979 /*
1980 * Get the offset in the inode chunk.
1981 */
1982 off = agino - rec.ir_startino;
1983 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1984 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1985 /*
1986 * Mark the inode free & increment the count.
1987 */
1988 rec.ir_free |= XFS_INOBT_MASK(off);
1989 rec.ir_freecount++;
1990
1991 /*
1992 * When an inode chunk is free, it becomes eligible for removal. Don't
1993 * remove the chunk if the block size is large enough for multiple inode
1994 * chunks (that might not be free).
1995 */
1996 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1997 rec.ir_free == XFS_INOBT_ALL_FREE &&
1998 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1999 struct xfs_perag *pag = agbp->b_pag;
2000
2001 xic->deleted = true;
2002 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
2003 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2004
2005 /*
2006 * Remove the inode cluster from the AGI B+Tree, adjust the
2007 * AGI and Superblock inode counts, and mark the disk space
2008 * to be freed when the transaction is committed.
2009 */
2010 ilen = rec.ir_freecount;
2011 be32_add_cpu(&agi->agi_count, -ilen);
2012 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2013 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2014 pag->pagi_freecount -= ilen - 1;
2015 pag->pagi_count -= ilen;
2016 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2017 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2018
2019 if ((error = xfs_btree_delete(cur, &i))) {
2020 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2021 __func__, error);
2022 goto error0;
2023 }
2024
2025 xfs_difree_inode_chunk(tp, agno, &rec);
2026 } else {
2027 xic->deleted = false;
2028
2029 error = xfs_inobt_update(cur, &rec);
2030 if (error) {
2031 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2032 __func__, error);
2033 goto error0;
2034 }
2035
2036 /*
2037 * Change the inode free counts and log the ag/sb changes.
2038 */
2039 be32_add_cpu(&agi->agi_freecount, 1);
2040 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2041 agbp->b_pag->pagi_freecount++;
2042 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2043 }
2044
2045 error = xfs_check_agi_freecount(cur, agi);
2046 if (error)
2047 goto error0;
2048
2049 *orec = rec;
2050 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2051 return 0;
2052
2053error0:
2054 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2055 return error;
2056}
2057
2058/*
2059 * Free an inode in the free inode btree.
2060 */
2061STATIC int
2062xfs_difree_finobt(
2063 struct xfs_mount *mp,
2064 struct xfs_trans *tp,
2065 struct xfs_buf *agbp,
2066 xfs_agino_t agino,
2067 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2068{
2069 struct xfs_agi *agi = agbp->b_addr;
2070 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2071 struct xfs_btree_cur *cur;
2072 struct xfs_inobt_rec_incore rec;
2073 int offset = agino - ibtrec->ir_startino;
2074 int error;
2075 int i;
2076
2077 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2078
2079 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2080 if (error)
2081 goto error;
2082 if (i == 0) {
2083 /*
2084 * If the record does not exist in the finobt, we must have just
2085 * freed an inode in a previously fully allocated chunk. If not,
2086 * something is out of sync.
2087 */
2088 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2089 error = -EFSCORRUPTED;
2090 goto error;
2091 }
2092
2093 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2094 ibtrec->ir_count,
2095 ibtrec->ir_freecount,
2096 ibtrec->ir_free, &i);
2097 if (error)
2098 goto error;
2099 ASSERT(i == 1);
2100
2101 goto out;
2102 }
2103
2104 /*
2105 * Read and update the existing record. We could just copy the ibtrec
2106 * across here, but that would defeat the purpose of having redundant
2107 * metadata. By making the modifications independently, we can catch
2108 * corruptions that we wouldn't see if we just copied from one record
2109 * to another.
2110 */
2111 error = xfs_inobt_get_rec(cur, &rec, &i);
2112 if (error)
2113 goto error;
2114 if (XFS_IS_CORRUPT(mp, i != 1)) {
2115 error = -EFSCORRUPTED;
2116 goto error;
2117 }
2118
2119 rec.ir_free |= XFS_INOBT_MASK(offset);
2120 rec.ir_freecount++;
2121
2122 if (XFS_IS_CORRUPT(mp,
2123 rec.ir_free != ibtrec->ir_free ||
2124 rec.ir_freecount != ibtrec->ir_freecount)) {
2125 error = -EFSCORRUPTED;
2126 goto error;
2127 }
2128
2129 /*
2130 * The content of inobt records should always match between the inobt
2131 * and finobt. The lifecycle of records in the finobt is different from
2132 * the inobt in that the finobt only tracks records with at least one
2133 * free inode. Hence, if all of the inodes are free and we aren't
2134 * keeping inode chunks permanently on disk, remove the record.
2135 * Otherwise, update the record with the new information.
2136 *
2137 * Note that we currently can't free chunks when the block size is large
2138 * enough for multiple chunks. Leave the finobt record to remain in sync
2139 * with the inobt.
2140 */
2141 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2142 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2143 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2144 error = xfs_btree_delete(cur, &i);
2145 if (error)
2146 goto error;
2147 ASSERT(i == 1);
2148 } else {
2149 error = xfs_inobt_update(cur, &rec);
2150 if (error)
2151 goto error;
2152 }
2153
2154out:
2155 error = xfs_check_agi_freecount(cur, agi);
2156 if (error)
2157 goto error;
2158
2159 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2160 return 0;
2161
2162error:
2163 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2164 return error;
2165}
2166
2167/*
2168 * Free disk inode. Carefully avoids touching the incore inode, all
2169 * manipulations incore are the caller's responsibility.
2170 * The on-disk inode is not changed by this operation, only the
2171 * btree (free inode mask) is changed.
2172 */
2173int
2174xfs_difree(
2175 struct xfs_trans *tp, /* transaction pointer */
2176 xfs_ino_t inode, /* inode to be freed */
2177 struct xfs_icluster *xic) /* cluster info if deleted */
2178{
2179 /* REFERENCED */
2180 xfs_agblock_t agbno; /* block number containing inode */
2181 struct xfs_buf *agbp; /* buffer for allocation group header */
2182 xfs_agino_t agino; /* allocation group inode number */
2183 xfs_agnumber_t agno; /* allocation group number */
2184 int error; /* error return value */
2185 struct xfs_mount *mp; /* mount structure for filesystem */
2186 struct xfs_inobt_rec_incore rec;/* btree record */
2187
2188 mp = tp->t_mountp;
2189
2190 /*
2191 * Break up inode number into its components.
2192 */
2193 agno = XFS_INO_TO_AGNO(mp, inode);
2194 if (agno >= mp->m_sb.sb_agcount) {
2195 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2196 __func__, agno, mp->m_sb.sb_agcount);
2197 ASSERT(0);
2198 return -EINVAL;
2199 }
2200 agino = XFS_INO_TO_AGINO(mp, inode);
2201 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2202 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2203 __func__, (unsigned long long)inode,
2204 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2205 ASSERT(0);
2206 return -EINVAL;
2207 }
2208 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2209 if (agbno >= mp->m_sb.sb_agblocks) {
2210 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2211 __func__, agbno, mp->m_sb.sb_agblocks);
2212 ASSERT(0);
2213 return -EINVAL;
2214 }
2215 /*
2216 * Get the allocation group header.
2217 */
2218 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2219 if (error) {
2220 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2221 __func__, error);
2222 return error;
2223 }
2224
2225 /*
2226 * Fix up the inode allocation btree.
2227 */
2228 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2229 if (error)
2230 goto error0;
2231
2232 /*
2233 * Fix up the free inode btree.
2234 */
2235 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2236 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2237 if (error)
2238 goto error0;
2239 }
2240
2241 return 0;
2242
2243error0:
2244 return error;
2245}
2246
2247STATIC int
2248xfs_imap_lookup(
2249 struct xfs_mount *mp,
2250 struct xfs_trans *tp,
2251 xfs_agnumber_t agno,
2252 xfs_agino_t agino,
2253 xfs_agblock_t agbno,
2254 xfs_agblock_t *chunk_agbno,
2255 xfs_agblock_t *offset_agbno,
2256 int flags)
2257{
2258 struct xfs_inobt_rec_incore rec;
2259 struct xfs_btree_cur *cur;
2260 struct xfs_buf *agbp;
2261 int error;
2262 int i;
2263
2264 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2265 if (error) {
2266 xfs_alert(mp,
2267 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2268 __func__, error, agno);
2269 return error;
2270 }
2271
2272 /*
2273 * Lookup the inode record for the given agino. If the record cannot be
2274 * found, then it's an invalid inode number and we should abort. Once
2275 * we have a record, we need to ensure it contains the inode number
2276 * we are looking up.
2277 */
2278 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2279 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2280 if (!error) {
2281 if (i)
2282 error = xfs_inobt_get_rec(cur, &rec, &i);
2283 if (!error && i == 0)
2284 error = -EINVAL;
2285 }
2286
2287 xfs_trans_brelse(tp, agbp);
2288 xfs_btree_del_cursor(cur, error);
2289 if (error)
2290 return error;
2291
2292 /* check that the returned record contains the required inode */
2293 if (rec.ir_startino > agino ||
2294 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2295 return -EINVAL;
2296
2297 /* for untrusted inodes check it is allocated first */
2298 if ((flags & XFS_IGET_UNTRUSTED) &&
2299 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2300 return -EINVAL;
2301
2302 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2303 *offset_agbno = agbno - *chunk_agbno;
2304 return 0;
2305}
2306
2307/*
2308 * Return the location of the inode in imap, for mapping it into a buffer.
2309 */
2310int
2311xfs_imap(
2312 xfs_mount_t *mp, /* file system mount structure */
2313 xfs_trans_t *tp, /* transaction pointer */
2314 xfs_ino_t ino, /* inode to locate */
2315 struct xfs_imap *imap, /* location map structure */
2316 uint flags) /* flags for inode btree lookup */
2317{
2318 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2319 xfs_agino_t agino; /* inode number within alloc group */
2320 xfs_agnumber_t agno; /* allocation group number */
2321 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2322 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2323 int error; /* error code */
2324 int offset; /* index of inode in its buffer */
2325 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2326
2327 ASSERT(ino != NULLFSINO);
2328
2329 /*
2330 * Split up the inode number into its parts.
2331 */
2332 agno = XFS_INO_TO_AGNO(mp, ino);
2333 agino = XFS_INO_TO_AGINO(mp, ino);
2334 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2335 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2336 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2337#ifdef DEBUG
2338 /*
2339 * Don't output diagnostic information for untrusted inodes
2340 * as they can be invalid without implying corruption.
2341 */
2342 if (flags & XFS_IGET_UNTRUSTED)
2343 return -EINVAL;
2344 if (agno >= mp->m_sb.sb_agcount) {
2345 xfs_alert(mp,
2346 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2347 __func__, agno, mp->m_sb.sb_agcount);
2348 }
2349 if (agbno >= mp->m_sb.sb_agblocks) {
2350 xfs_alert(mp,
2351 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2352 __func__, (unsigned long long)agbno,
2353 (unsigned long)mp->m_sb.sb_agblocks);
2354 }
2355 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2356 xfs_alert(mp,
2357 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2358 __func__, ino,
2359 XFS_AGINO_TO_INO(mp, agno, agino));
2360 }
2361 xfs_stack_trace();
2362#endif /* DEBUG */
2363 return -EINVAL;
2364 }
2365
2366 /*
2367 * For bulkstat and handle lookups, we have an untrusted inode number
2368 * that we have to verify is valid. We cannot do this just by reading
2369 * the inode buffer as it may have been unlinked and removed leaving
2370 * inodes in stale state on disk. Hence we have to do a btree lookup
2371 * in all cases where an untrusted inode number is passed.
2372 */
2373 if (flags & XFS_IGET_UNTRUSTED) {
2374 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2375 &chunk_agbno, &offset_agbno, flags);
2376 if (error)
2377 return error;
2378 goto out_map;
2379 }
2380
2381 /*
2382 * If the inode cluster size is the same as the blocksize or
2383 * smaller we get to the buffer by simple arithmetics.
2384 */
2385 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2386 offset = XFS_INO_TO_OFFSET(mp, ino);
2387 ASSERT(offset < mp->m_sb.sb_inopblock);
2388
2389 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2390 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2391 imap->im_boffset = (unsigned short)(offset <<
2392 mp->m_sb.sb_inodelog);
2393 return 0;
2394 }
2395
2396 /*
2397 * If the inode chunks are aligned then use simple maths to
2398 * find the location. Otherwise we have to do a btree
2399 * lookup to find the location.
2400 */
2401 if (M_IGEO(mp)->inoalign_mask) {
2402 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2403 chunk_agbno = agbno - offset_agbno;
2404 } else {
2405 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2406 &chunk_agbno, &offset_agbno, flags);
2407 if (error)
2408 return error;
2409 }
2410
2411out_map:
2412 ASSERT(agbno >= chunk_agbno);
2413 cluster_agbno = chunk_agbno +
2414 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2415 M_IGEO(mp)->blocks_per_cluster);
2416 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2417 XFS_INO_TO_OFFSET(mp, ino);
2418
2419 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2420 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2421 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2422
2423 /*
2424 * If the inode number maps to a block outside the bounds
2425 * of the file system then return NULL rather than calling
2426 * read_buf and panicing when we get an error from the
2427 * driver.
2428 */
2429 if ((imap->im_blkno + imap->im_len) >
2430 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2431 xfs_alert(mp,
2432 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2433 __func__, (unsigned long long) imap->im_blkno,
2434 (unsigned long long) imap->im_len,
2435 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2436 return -EINVAL;
2437 }
2438 return 0;
2439}
2440
2441/*
2442 * Log specified fields for the ag hdr (inode section). The growth of the agi
2443 * structure over time requires that we interpret the buffer as two logical
2444 * regions delineated by the end of the unlinked list. This is due to the size
2445 * of the hash table and its location in the middle of the agi.
2446 *
2447 * For example, a request to log a field before agi_unlinked and a field after
2448 * agi_unlinked could cause us to log the entire hash table and use an excessive
2449 * amount of log space. To avoid this behavior, log the region up through
2450 * agi_unlinked in one call and the region after agi_unlinked through the end of
2451 * the structure in another.
2452 */
2453void
2454xfs_ialloc_log_agi(
2455 xfs_trans_t *tp, /* transaction pointer */
2456 xfs_buf_t *bp, /* allocation group header buffer */
2457 int fields) /* bitmask of fields to log */
2458{
2459 int first; /* first byte number */
2460 int last; /* last byte number */
2461 static const short offsets[] = { /* field starting offsets */
2462 /* keep in sync with bit definitions */
2463 offsetof(xfs_agi_t, agi_magicnum),
2464 offsetof(xfs_agi_t, agi_versionnum),
2465 offsetof(xfs_agi_t, agi_seqno),
2466 offsetof(xfs_agi_t, agi_length),
2467 offsetof(xfs_agi_t, agi_count),
2468 offsetof(xfs_agi_t, agi_root),
2469 offsetof(xfs_agi_t, agi_level),
2470 offsetof(xfs_agi_t, agi_freecount),
2471 offsetof(xfs_agi_t, agi_newino),
2472 offsetof(xfs_agi_t, agi_dirino),
2473 offsetof(xfs_agi_t, agi_unlinked),
2474 offsetof(xfs_agi_t, agi_free_root),
2475 offsetof(xfs_agi_t, agi_free_level),
2476 sizeof(xfs_agi_t)
2477 };
2478#ifdef DEBUG
2479 struct xfs_agi *agi = bp->b_addr;
2480
2481 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2482#endif
2483
2484 /*
2485 * Compute byte offsets for the first and last fields in the first
2486 * region and log the agi buffer. This only logs up through
2487 * agi_unlinked.
2488 */
2489 if (fields & XFS_AGI_ALL_BITS_R1) {
2490 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2491 &first, &last);
2492 xfs_trans_log_buf(tp, bp, first, last);
2493 }
2494
2495 /*
2496 * Mask off the bits in the first region and calculate the first and
2497 * last field offsets for any bits in the second region.
2498 */
2499 fields &= ~XFS_AGI_ALL_BITS_R1;
2500 if (fields) {
2501 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2502 &first, &last);
2503 xfs_trans_log_buf(tp, bp, first, last);
2504 }
2505}
2506
2507static xfs_failaddr_t
2508xfs_agi_verify(
2509 struct xfs_buf *bp)
2510{
2511 struct xfs_mount *mp = bp->b_mount;
2512 struct xfs_agi *agi = bp->b_addr;
2513 int i;
2514
2515 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2516 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2517 return __this_address;
2518 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2519 return __this_address;
2520 }
2521
2522 /*
2523 * Validate the magic number of the agi block.
2524 */
2525 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2526 return __this_address;
2527 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2528 return __this_address;
2529
2530 if (be32_to_cpu(agi->agi_level) < 1 ||
2531 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2532 return __this_address;
2533
2534 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2535 (be32_to_cpu(agi->agi_free_level) < 1 ||
2536 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2537 return __this_address;
2538
2539 /*
2540 * during growfs operations, the perag is not fully initialised,
2541 * so we can't use it for any useful checking. growfs ensures we can't
2542 * use it by using uncached buffers that don't have the perag attached
2543 * so we can detect and avoid this problem.
2544 */
2545 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2546 return __this_address;
2547
2548 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2549 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2550 continue;
2551 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2552 return __this_address;
2553 }
2554
2555 return NULL;
2556}
2557
2558static void
2559xfs_agi_read_verify(
2560 struct xfs_buf *bp)
2561{
2562 struct xfs_mount *mp = bp->b_mount;
2563 xfs_failaddr_t fa;
2564
2565 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2566 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2567 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2568 else {
2569 fa = xfs_agi_verify(bp);
2570 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2571 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2572 }
2573}
2574
2575static void
2576xfs_agi_write_verify(
2577 struct xfs_buf *bp)
2578{
2579 struct xfs_mount *mp = bp->b_mount;
2580 struct xfs_buf_log_item *bip = bp->b_log_item;
2581 struct xfs_agi *agi = bp->b_addr;
2582 xfs_failaddr_t fa;
2583
2584 fa = xfs_agi_verify(bp);
2585 if (fa) {
2586 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2587 return;
2588 }
2589
2590 if (!xfs_sb_version_hascrc(&mp->m_sb))
2591 return;
2592
2593 if (bip)
2594 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2595 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2596}
2597
2598const struct xfs_buf_ops xfs_agi_buf_ops = {
2599 .name = "xfs_agi",
2600 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2601 .verify_read = xfs_agi_read_verify,
2602 .verify_write = xfs_agi_write_verify,
2603 .verify_struct = xfs_agi_verify,
2604};
2605
2606/*
2607 * Read in the allocation group header (inode allocation section)
2608 */
2609int
2610xfs_read_agi(
2611 struct xfs_mount *mp, /* file system mount structure */
2612 struct xfs_trans *tp, /* transaction pointer */
2613 xfs_agnumber_t agno, /* allocation group number */
2614 struct xfs_buf **bpp) /* allocation group hdr buf */
2615{
2616 int error;
2617
2618 trace_xfs_read_agi(mp, agno);
2619
2620 ASSERT(agno != NULLAGNUMBER);
2621 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2622 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2623 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2624 if (error)
2625 return error;
2626 if (tp)
2627 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2628
2629 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2630 return 0;
2631}
2632
2633int
2634xfs_ialloc_read_agi(
2635 struct xfs_mount *mp, /* file system mount structure */
2636 struct xfs_trans *tp, /* transaction pointer */
2637 xfs_agnumber_t agno, /* allocation group number */
2638 struct xfs_buf **bpp) /* allocation group hdr buf */
2639{
2640 struct xfs_agi *agi; /* allocation group header */
2641 struct xfs_perag *pag; /* per allocation group data */
2642 int error;
2643
2644 trace_xfs_ialloc_read_agi(mp, agno);
2645
2646 error = xfs_read_agi(mp, tp, agno, bpp);
2647 if (error)
2648 return error;
2649
2650 agi = (*bpp)->b_addr;
2651 pag = (*bpp)->b_pag;
2652 if (!pag->pagi_init) {
2653 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2654 pag->pagi_count = be32_to_cpu(agi->agi_count);
2655 pag->pagi_init = 1;
2656 }
2657
2658 /*
2659 * It's possible for these to be out of sync if
2660 * we are in the middle of a forced shutdown.
2661 */
2662 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2663 XFS_FORCED_SHUTDOWN(mp));
2664 return 0;
2665}
2666
2667/*
2668 * Read in the agi to initialise the per-ag data in the mount structure
2669 */
2670int
2671xfs_ialloc_pagi_init(
2672 xfs_mount_t *mp, /* file system mount structure */
2673 xfs_trans_t *tp, /* transaction pointer */
2674 xfs_agnumber_t agno) /* allocation group number */
2675{
2676 xfs_buf_t *bp = NULL;
2677 int error;
2678
2679 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2680 if (error)
2681 return error;
2682 if (bp)
2683 xfs_trans_brelse(tp, bp);
2684 return 0;
2685}
2686
2687/* Is there an inode record covering a given range of inode numbers? */
2688int
2689xfs_ialloc_has_inode_record(
2690 struct xfs_btree_cur *cur,
2691 xfs_agino_t low,
2692 xfs_agino_t high,
2693 bool *exists)
2694{
2695 struct xfs_inobt_rec_incore irec;
2696 xfs_agino_t agino;
2697 uint16_t holemask;
2698 int has_record;
2699 int i;
2700 int error;
2701
2702 *exists = false;
2703 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2704 while (error == 0 && has_record) {
2705 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2706 if (error || irec.ir_startino > high)
2707 break;
2708
2709 agino = irec.ir_startino;
2710 holemask = irec.ir_holemask;
2711 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2712 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2713 if (holemask & 1)
2714 continue;
2715 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2716 agino <= high) {
2717 *exists = true;
2718 return 0;
2719 }
2720 }
2721
2722 error = xfs_btree_increment(cur, 0, &has_record);
2723 }
2724 return error;
2725}
2726
2727/* Is there an inode record covering a given extent? */
2728int
2729xfs_ialloc_has_inodes_at_extent(
2730 struct xfs_btree_cur *cur,
2731 xfs_agblock_t bno,
2732 xfs_extlen_t len,
2733 bool *exists)
2734{
2735 xfs_agino_t low;
2736 xfs_agino_t high;
2737
2738 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2739 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2740
2741 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2742}
2743
2744struct xfs_ialloc_count_inodes {
2745 xfs_agino_t count;
2746 xfs_agino_t freecount;
2747};
2748
2749/* Record inode counts across all inobt records. */
2750STATIC int
2751xfs_ialloc_count_inodes_rec(
2752 struct xfs_btree_cur *cur,
2753 union xfs_btree_rec *rec,
2754 void *priv)
2755{
2756 struct xfs_inobt_rec_incore irec;
2757 struct xfs_ialloc_count_inodes *ci = priv;
2758
2759 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2760 ci->count += irec.ir_count;
2761 ci->freecount += irec.ir_freecount;
2762
2763 return 0;
2764}
2765
2766/* Count allocated and free inodes under an inobt. */
2767int
2768xfs_ialloc_count_inodes(
2769 struct xfs_btree_cur *cur,
2770 xfs_agino_t *count,
2771 xfs_agino_t *freecount)
2772{
2773 struct xfs_ialloc_count_inodes ci = {0};
2774 int error;
2775
2776 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2777 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2778 if (error)
2779 return error;
2780
2781 *count = ci.count;
2782 *freecount = ci.freecount;
2783 return 0;
2784}
2785
2786/*
2787 * Initialize inode-related geometry information.
2788 *
2789 * Compute the inode btree min and max levels and set maxicount.
2790 *
2791 * Set the inode cluster size. This may still be overridden by the file
2792 * system block size if it is larger than the chosen cluster size.
2793 *
2794 * For v5 filesystems, scale the cluster size with the inode size to keep a
2795 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2796 * inode alignment value appropriately for larger cluster sizes.
2797 *
2798 * Then compute the inode cluster alignment information.
2799 */
2800void
2801xfs_ialloc_setup_geometry(
2802 struct xfs_mount *mp)
2803{
2804 struct xfs_sb *sbp = &mp->m_sb;
2805 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2806 uint64_t icount;
2807 uint inodes;
2808
2809 /* Compute inode btree geometry. */
2810 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2811 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2812 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2813 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2814 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2815
2816 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2817 sbp->sb_inopblock);
2818 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2819
2820 if (sbp->sb_spino_align)
2821 igeo->ialloc_min_blks = sbp->sb_spino_align;
2822 else
2823 igeo->ialloc_min_blks = igeo->ialloc_blks;
2824
2825 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2826 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2827 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2828 inodes);
2829
2830 /*
2831 * Set the maximum inode count for this filesystem, being careful not
2832 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2833 * users should never get here due to failing sb verification, but
2834 * certain users (xfs_db) need to be usable even with corrupt metadata.
2835 */
2836 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2837 /*
2838 * Make sure the maximum inode count is a multiple
2839 * of the units we allocate inodes in.
2840 */
2841 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2842 do_div(icount, 100);
2843 do_div(icount, igeo->ialloc_blks);
2844 igeo->maxicount = XFS_FSB_TO_INO(mp,
2845 icount * igeo->ialloc_blks);
2846 } else {
2847 igeo->maxicount = 0;
2848 }
2849
2850 /*
2851 * Compute the desired size of an inode cluster buffer size, which
2852 * starts at 8K and (on v5 filesystems) scales up with larger inode
2853 * sizes.
2854 *
2855 * Preserve the desired inode cluster size because the sparse inodes
2856 * feature uses that desired size (not the actual size) to compute the
2857 * sparse inode alignment. The mount code validates this value, so we
2858 * cannot change the behavior.
2859 */
2860 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2861 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2862 int new_size = igeo->inode_cluster_size_raw;
2863
2864 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2865 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2866 igeo->inode_cluster_size_raw = new_size;
2867 }
2868
2869 /* Calculate inode cluster ratios. */
2870 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2871 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2872 igeo->inode_cluster_size_raw);
2873 else
2874 igeo->blocks_per_cluster = 1;
2875 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2876 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2877
2878 /* Calculate inode cluster alignment. */
2879 if (xfs_sb_version_hasalign(&mp->m_sb) &&
2880 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2881 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2882 else
2883 igeo->cluster_align = 1;
2884 igeo->inoalign_mask = igeo->cluster_align - 1;
2885 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2886
2887 /*
2888 * If we are using stripe alignment, check whether
2889 * the stripe unit is a multiple of the inode alignment
2890 */
2891 if (mp->m_dalign && igeo->inoalign_mask &&
2892 !(mp->m_dalign & igeo->inoalign_mask))
2893 igeo->ialloc_align = mp->m_dalign;
2894 else
2895 igeo->ialloc_align = 0;
2896}
2897
2898/* Compute the location of the root directory inode that is laid out by mkfs. */
2899xfs_ino_t
2900xfs_ialloc_calc_rootino(
2901 struct xfs_mount *mp,
2902 int sunit)
2903{
2904 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2905 xfs_agblock_t first_bno;
2906
2907 /*
2908 * Pre-calculate the geometry of AG 0. We know what it looks like
2909 * because libxfs knows how to create allocation groups now.
2910 *
2911 * first_bno is the first block in which mkfs could possibly have
2912 * allocated the root directory inode, once we factor in the metadata
2913 * that mkfs formats before it. Namely, the four AG headers...
2914 */
2915 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2916
2917 /* ...the two free space btree roots... */
2918 first_bno += 2;
2919
2920 /* ...the inode btree root... */
2921 first_bno += 1;
2922
2923 /* ...the initial AGFL... */
2924 first_bno += xfs_alloc_min_freelist(mp, NULL);
2925
2926 /* ...the free inode btree root... */
2927 if (xfs_sb_version_hasfinobt(&mp->m_sb))
2928 first_bno++;
2929
2930 /* ...the reverse mapping btree root... */
2931 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2932 first_bno++;
2933
2934 /* ...the reference count btree... */
2935 if (xfs_sb_version_hasreflink(&mp->m_sb))
2936 first_bno++;
2937
2938 /*
2939 * ...and the log, if it is allocated in the first allocation group.
2940 *
2941 * This can happen with filesystems that only have a single
2942 * allocation group, or very odd geometries created by old mkfs
2943 * versions on very small filesystems.
2944 */
2945 if (mp->m_sb.sb_logstart &&
2946 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2947 first_bno += mp->m_sb.sb_logblocks;
2948
2949 /*
2950 * Now round first_bno up to whatever allocation alignment is given
2951 * by the filesystem or was passed in.
2952 */
2953 if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2954 first_bno = roundup(first_bno, sunit);
2955 else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2956 mp->m_sb.sb_inoalignmt > 1)
2957 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2958
2959 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2960}