Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_errortag.h"
35#include "xfs_error.h"
36#include "xfs_bmap.h"
37#include "xfs_cksum.h"
38#include "xfs_trans.h"
39#include "xfs_buf_item.h"
40#include "xfs_icreate_item.h"
41#include "xfs_icache.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44#include "xfs_rmap.h"
45
46
47/*
48 * Allocation group level functions.
49 */
50int
51xfs_ialloc_cluster_alignment(
52 struct xfs_mount *mp)
53{
54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 return mp->m_sb.sb_inoalignmt;
57 return 1;
58}
59
60/*
61 * Lookup a record by ino in the btree given by cur.
62 */
63int /* error */
64xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
69{
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
76}
77
78/*
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
81 */
82STATIC int /* error */
83xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
85 xfs_inobt_rec_incore_t *irec) /* btree record */
86{
87 union xfs_btree_rec rec;
88
89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 }
98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 return xfs_btree_update(cur, &rec);
100}
101
102/* Convert on-disk btree record to incore inobt record. */
103void
104xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
108{
109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
115 /*
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
118 */
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
123 }
124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
125}
126
127/*
128 * Get the data from the pointed-to record.
129 */
130int
131xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
135{
136 union xfs_btree_rec *rec;
137 int error;
138
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
142
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
144
145 return 0;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151STATIC int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs, blks_per_cluster, inodes_per_cluster;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
288
289 /*
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
295 *
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
301 *
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
307 */
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
312
313 /*
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
320 */
321 if (tp)
322 xfs_icreate_log(tp, agno, agbno, icount,
323 mp->m_sb.sb_inodesize, length, gen);
324 } else
325 version = 2;
326
327 for (j = 0; j < nbufs; j++) {
328 /*
329 * Get the block.
330 */
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
335 if (!fbuf)
336 return -ENOMEM;
337
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf->b_ops = &xfs_inode_buf_ops;
340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 for (i = 0; i < inodes_per_cluster; i++) {
342 int ioffset = i << mp->m_sb.sb_inodelog;
343 uint isize = xfs_dinode_size(version);
344
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
350
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
356 xfs_dinode_calc_crc(mp, free);
357 } else if (tp) {
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
361 }
362 }
363
364 if (tp) {
365 /*
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
372 */
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
375 /*
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
380 */
381 xfs_trans_ordered_buf(tp, fbuf);
382 }
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
387 }
388 }
389 return 0;
390}
391
392/*
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
395 *
396 * Background:
397 *
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
406 *
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
414 */
415STATIC void
416xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
420{
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
424
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
429
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
433
434 /*
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
438 */
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440}
441
442/*
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
446 */
447STATIC bool
448__xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
451{
452 uint64_t talloc;
453 uint64_t salloc;
454
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
458
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
463
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
467
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
471
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
477
478 return true;
479}
480
481/*
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
484 */
485STATIC void
486__xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
489{
490 ASSERT(trec->ir_startino == srec->ir_startino);
491
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
495
496 /*
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 */
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
502}
503
504/*
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
509 *
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
515 *
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
518 */
519STATIC int
520xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
527{
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
534
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549
550 goto out;
551 }
552
553 /*
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
556 */
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
565
566 /*
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
569 */
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
572
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
579
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
582
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
586 }
587
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
591
592out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
598}
599
600/*
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
603 */
604STATIC int /* error code or 0 */
605xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
609{
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
612 xfs_agnumber_t agno;
613 int error;
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
616 int isaligned = 0; /* inode allocation at stripe unit */
617 /* boundary */
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 int do_sparse = 0;
622
623 memset(&args, 0, sizeof(args));
624 args.tp = tp;
625 args.mp = tp->t_mountp;
626 args.fsbno = NULLFSBLOCK;
627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
628
629#ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634#endif
635
636 /*
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
639 */
640 newlen = args.mp->m_ialloc_inos;
641 if (args.mp->m_maxicount &&
642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 args.mp->m_maxicount)
644 return -ENOSPC;
645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
646 /*
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
650 */
651 agi = XFS_BUF_TO_AGI(agbp);
652 newino = be32_to_cpu(agi->agi_newino);
653 agno = be32_to_cpu(agi->agi_seqno);
654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 args.mp->m_ialloc_blks;
656 if (do_sparse)
657 goto sparse_alloc;
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 args.type = XFS_ALLOCTYPE_THIS_BNO;
662 args.prod = 1;
663
664 /*
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
670 *
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
676 */
677 args.alignment = 1;
678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
679
680 /* Allow space for the inode btree to split. */
681 args.minleft = args.mp->m_in_maxlevels - 1;
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
684
685 /*
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
694 */
695 args.minalignslop = 0;
696 }
697
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 /*
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
706 */
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
712 } else
713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
714 /*
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
718 */
719 args.agbno = be32_to_cpu(agi->agi_root);
720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
721 /*
722 * Allocate a fixed-size extent of inodes.
723 */
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.prod = 1;
726 /*
727 * Allow space for the inode btree to split.
728 */
729 args.minleft = args.mp->m_in_maxlevels - 1;
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
734 /*
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
737 */
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
745 }
746
747 /*
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
750 */
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
754sparse_alloc:
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
760
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
763
764 /*
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
769 *
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
773 */
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
778
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
782
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
791 }
792 ASSERT(args.len == args.minlen);
793
794 /*
795 * Stamp and write the inode buffers.
796 *
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
802 */
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
805
806 if (error)
807 return error;
808 /*
809 * Convert the results.
810 */
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
812
813 if (xfs_inobt_issparse(~allocmask)) {
814 /*
815 * We've allocated a sparse chunk. Align the startino and mask.
816 */
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
824
825 /*
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
829 */
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 }
840 if (error)
841 return error;
842
843 /*
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
848 *
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
853 */
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
860 }
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
867
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
873 }
874 }
875
876 /*
877 * Update AGI counts and newino.
878 */
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
884 agi->agi_newino = cpu_to_be32(newino);
885
886 /*
887 * Log allocation group header fields
888 */
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 /*
892 * Modify/log superblock values for inode count and inode free count.
893 */
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
898}
899
900STATIC xfs_agnumber_t
901xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
903{
904 xfs_agnumber_t agno;
905
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
908 if (++mp->m_agirotor >= mp->m_maxagi)
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
911
912 return agno;
913}
914
915/*
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
918 */
919STATIC xfs_agnumber_t
920xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
923 umode_t mode) /* bits set to indicate file type */
924{
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
950
951 ASSERT(pagno < agcount);
952
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
973 }
974
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
978 }
979
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
983 goto nextag;
984 }
985
986 /*
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
995 *
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1001 */
1002 ineed = mp->m_ialloc_min_blks;
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1008
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1013 }
1014nextag:
1015 xfs_perag_put(pag);
1016 /*
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1019 */
1020 if (XFS_FORCED_SHUTDOWN(mp))
1021 return NULLAGNUMBER;
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1026 if (flags == 0)
1027 return NULLAGNUMBER;
1028 flags = 0;
1029 }
1030 }
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1042{
1043 int error;
1044 int i;
1045
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1050
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1059 }
1060
1061 return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
1069 int *done)
1070{
1071 int error;
1072 int i;
1073
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1083 }
1084
1085 return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1096{
1097 xfs_inofree_t realfree;
1098
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1102
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1105
1106 return xfs_lowbit64(realfree);
1107}
1108
1109/*
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1118{
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
1131 int searchdistance = 10;
1132
1133 pag = xfs_perag_get(mp, agno);
1134
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141 /*
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1144 */
1145 if (!pagino)
1146 pagino = be32_to_cpu(agi->agi_newino);
1147
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1151
1152 /*
1153 * If in the same AG as the parent, try to get near the parent.
1154 */
1155 if (pagno == agno) {
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1158
1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1163
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1168
1169 if (rec.ir_freecount > 0) {
1170 /*
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1173 */
1174 goto alloc_inode;
1175 }
1176
1177
1178 /*
1179 * In the same AG as parent, but parent's chunk is full.
1180 */
1181
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1186
1187 /*
1188 * Skip to last blocks looked up if same parent inode.
1189 */
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 &trec, &doneleft);
1196 if (error)
1197 goto error1;
1198
1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 &rec, &doneright);
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1208
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1213 }
1214
1215 /*
1216 * Loop until we find an inode chunk with a free inode.
1217 */
1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 int useleft; /* using left inode chunk this time */
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1228 }
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
1234
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
1238 rec = trec;
1239 goto alloc_inode;
1240 }
1241
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1250 }
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1262 }
1263
1264 if (searchdistance <= 0) {
1265 /*
1266 * Not in range - save last search
1267 * location and allocate a new inode
1268 */
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1273
1274 } else {
1275 /*
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1281 */
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1288 }
1289 }
1290
1291 /*
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1294 */
1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
1298 if (error)
1299 goto error0;
1300
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1305
1306 if (j == 1 && rec.ir_freecount > 0) {
1307 /*
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1310 */
1311 goto alloc_inode;
1312 }
1313 }
1314 }
1315
1316 /*
1317 * None left in the last group, search the whole AG
1318 */
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 }
1336
1337alloc_inode:
1338 offset = xfs_inobt_first_free_inode(&rec);
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1352
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1356
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 xfs_perag_put(pag);
1360 *inop = ino;
1361 return 0;
1362error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 xfs_perag_put(pag);
1367 return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1379{
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1385
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1389
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1395
1396 /*
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1400 */
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1404 }
1405
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1409
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1418 }
1419
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 if (i == 1 && j == 1) {
1422 /*
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1425 */
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443
1444 return 0;
1445
1446error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1460{
1461 int error;
1462 int i;
1463
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 return 0;
1475 }
1476 }
1477
1478 /*
1479 * Find the first inode available in the AG.
1480 */
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490
1491 return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1503{
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1507
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1519
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1522
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 (rec.ir_freecount == frec->ir_freecount));
1525
1526 return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1542{
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1556
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560 pag = xfs_perag_get(mp, agno);
1561
1562 /*
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1565 */
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1568
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1579 */
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1586
1587 offset = xfs_inobt_first_free_inode(&rec);
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594 /*
1595 * Modify or remove the finobt record.
1596 */
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1605
1606 /*
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1611 */
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1617
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1621
1622 /*
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1625 */
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1629
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1638
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1644
1645error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
1679 struct xfs_buf **IO_agbp,
1680 xfs_ino_t *inop)
1681{
1682 struct xfs_mount *mp = tp->t_mountp;
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
1688 xfs_agnumber_t start_agno;
1689 struct xfs_perag *pag;
1690 int okalloc = 1;
1691
1692 if (*IO_agbp) {
1693 /*
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1697 */
1698 agbp = *IO_agbp;
1699 goto out_alloc;
1700 }
1701
1702 /*
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1705 */
1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 if (start_agno == NULLAGNUMBER) {
1708 *inop = NULLFSINO;
1709 return 0;
1710 }
1711
1712 /*
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
1716 *
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1719 */
1720 if (mp->m_maxicount &&
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
1723 noroom = 1;
1724 okalloc = 0;
1725 }
1726
1727 /*
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1731 */
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1738 }
1739
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
1744 }
1745
1746 /*
1747 * Do a first racy fast path check if this AG is usable.
1748 */
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1751
1752 /*
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1755 */
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1759
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1763 }
1764
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1767
1768
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1772
1773 if (error != -ENOSPC)
1774 goto out_error;
1775
1776 xfs_perag_put(pag);
1777 *inop = NULLFSINO;
1778 return 0;
1779 }
1780
1781 if (ialloced) {
1782 /*
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1787 */
1788 ASSERT(pag->pagi_freecount > 0);
1789 xfs_perag_put(pag);
1790
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
1794 }
1795
1796nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
1798nextag:
1799 xfs_perag_put(pag);
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
1804 return noroom ? -ENOSPC : 0;
1805 }
1806 }
1807
1808out_alloc:
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812 xfs_perag_put(pag);
1813 return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
1826 struct xfs_defer_ops *dfops)
1827{
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
1833 struct xfs_owner_info oinfo;
1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 mp->m_ialloc_blks, &oinfo);
1841 return;
1842 }
1843
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1847
1848 /*
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1853 */
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1860 /*
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1863 */
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1868 }
1869
1870 /*
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1874 */
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 contigblk, &oinfo);
1885
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1888
1889next:
1890 nextbit++;
1891 }
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
1900 struct xfs_defer_ops *dfops,
1901 struct xfs_icluster *xic,
1902 struct xfs_inobt_rec_incore *orec)
1903{
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1913
1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917 /*
1918 * Initialize the cursor.
1919 */
1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1925
1926 /*
1927 * Look for the entry describing this inode.
1928 */
1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1939 goto error0;
1940 }
1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1942 /*
1943 * Get the offset in the inode chunk.
1944 */
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948 /*
1949 * Mark the inode free & increment the count.
1950 */
1951 rec.ir_free |= XFS_INOBT_MASK(off);
1952 rec.ir_freecount++;
1953
1954 /*
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1958 */
1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 xic->deleted = true;
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981 if ((error = xfs_btree_delete(cur, &i))) {
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1984 goto error0;
1985 }
1986
1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 } else {
1989 xic->deleted = false;
1990
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1995 goto error0;
1996 }
1997
1998 /*
1999 * Change the inode free counts and log the ag/sb changes.
2000 */
2001 be32_add_cpu(&agi->agi_freecount, 1);
2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 }
2008
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
2012
2013 *orec = rec;
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2016
2017error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2032{
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2040
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2047 /*
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2051 */
2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2053
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2061
2062 goto out;
2063 }
2064
2065 /*
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2071 */
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2083
2084 /*
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2091 *
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
2095 */
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120}
2121
2122/*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2132 struct xfs_defer_ops *dfops, /* extents to free */
2133 struct xfs_icluster *xic) /* cluster info if deleted */
2134{
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144 mp = tp->t_mountp;
2145
2146 /*
2147 * Break up inode number into its components.
2148 */
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2154 return -EINVAL;
2155 }
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2162 return -EINVAL;
2163 }
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2169 return -EINVAL;
2170 }
2171 /*
2172 * Get the allocation group header.
2173 */
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2179 }
2180
2181 /*
2182 * Fix up the inode allocation btree.
2183 */
2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 if (error)
2186 goto error0;
2187
2188 /*
2189 * Fix up the free inode btree.
2190 */
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2195 }
2196
2197 return 0;
2198
2199error0:
2200 return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2213{
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
2217 int error;
2218 int i;
2219
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
2225 return error;
2226 }
2227
2228 /*
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2233 */
2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2240 error = -EINVAL;
2241 }
2242
2243 xfs_trans_brelse(tp, agbp);
2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 if (error)
2246 return error;
2247
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 return -EINVAL;
2252
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags & XFS_IGET_UNTRUSTED) &&
2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 return -EINVAL;
2257
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
2270 xfs_ino_t ino, /* inode to locate */
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
2273{
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2280 int error; /* error code */
2281 int offset; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2283
2284 ASSERT(ino != NULLFSINO);
2285
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294#ifdef DEBUG
2295 /*
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2298 */
2299 if (flags & XFS_IGET_UNTRUSTED)
2300 return -EINVAL;
2301 if (agno >= mp->m_sb.sb_agcount) {
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
2305 }
2306 if (agbno >= mp->m_sb.sb_agblocks) {
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
2311 }
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
2317 }
2318 xfs_stack_trace();
2319#endif /* DEBUG */
2320 return -EINVAL;
2321 }
2322
2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2338 }
2339
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
2344 if (blks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 return 0;
2353 }
2354
2355 /*
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2359 */
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
2366 if (error)
2367 return error;
2368 }
2369
2370out_map:
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2405{
2406 uint inodes;
2407
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2430{
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
2448 sizeof(xfs_agi_t)
2449 };
2450#ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2452
2453 agi = XFS_BUF_TO_AGI(bp);
2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457 /*
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
2461 */
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
2468 /*
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2471 */
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2500
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return __this_address;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 return __this_address;
2507 }
2508
2509 /*
2510 * Validate the magic number of the agi block.
2511 */
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return __this_address;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return __this_address;
2516
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 return __this_address;
2520
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 return __this_address;
2525
2526 /*
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2531 */
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return __this_address;
2534
2535 xfs_check_agi_unlinked(agi);
2536 return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541 struct xfs_buf *bp)
2542{
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 xfs_failaddr_t fa;
2545
2546 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 else {
2550 fa = xfs_agi_verify(bp);
2551 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 }
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558 struct xfs_buf *bp)
2559{
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_log_item;
2562 xfs_failaddr_t fa;
2563
2564 fa = xfs_agi_verify(bp);
2565 if (fa) {
2566 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 return;
2568 }
2569
2570 if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 return;
2572
2573 if (bip)
2574 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 .name = "xfs_agi",
2580 .verify_read = xfs_agi_read_verify,
2581 .verify_write = xfs_agi_write_verify,
2582 .verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590 struct xfs_mount *mp, /* file system mount structure */
2591 struct xfs_trans *tp, /* transaction pointer */
2592 xfs_agnumber_t agno, /* allocation group number */
2593 struct xfs_buf **bpp) /* allocation group hdr buf */
2594{
2595 int error;
2596
2597 trace_xfs_read_agi(mp, agno);
2598
2599 ASSERT(agno != NULLAGNUMBER);
2600 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 if (error)
2604 return error;
2605 if (tp)
2606 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 return 0;
2610}
2611
2612int
2613xfs_ialloc_read_agi(
2614 struct xfs_mount *mp, /* file system mount structure */
2615 struct xfs_trans *tp, /* transaction pointer */
2616 xfs_agnumber_t agno, /* allocation group number */
2617 struct xfs_buf **bpp) /* allocation group hdr buf */
2618{
2619 struct xfs_agi *agi; /* allocation group header */
2620 struct xfs_perag *pag; /* per allocation group data */
2621 int error;
2622
2623 trace_xfs_ialloc_read_agi(mp, agno);
2624
2625 error = xfs_read_agi(mp, tp, agno, bpp);
2626 if (error)
2627 return error;
2628
2629 agi = XFS_BUF_TO_AGI(*bpp);
2630 pag = xfs_perag_get(mp, agno);
2631 if (!pag->pagi_init) {
2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 pag->pagi_init = 1;
2635 }
2636
2637 /*
2638 * It's possible for these to be out of sync if
2639 * we are in the middle of a forced shutdown.
2640 */
2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 XFS_FORCED_SHUTDOWN(mp));
2643 xfs_perag_put(pag);
2644 return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652 xfs_mount_t *mp, /* file system mount structure */
2653 xfs_trans_t *tp, /* transaction pointer */
2654 xfs_agnumber_t agno) /* allocation group number */
2655{
2656 xfs_buf_t *bp = NULL;
2657 int error;
2658
2659 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 if (error)
2661 return error;
2662 if (bp)
2663 xfs_trans_brelse(tp, bp);
2664 return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t *first,
2673 xfs_agino_t *last)
2674{
2675 xfs_agblock_t bno;
2676 xfs_agblock_t eoag;
2677
2678 eoag = xfs_ag_block_count(mp, agno);
2679
2680 /*
2681 * Calculate the first inode, which will be in the first
2682 * cluster-aligned block after the AGFL.
2683 */
2684 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 xfs_ialloc_cluster_alignment(mp));
2686 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688 /*
2689 * Calculate the last inode, which will be at the end of the
2690 * last (aligned) cluster that can be allocated in the AG.
2691 */
2692 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702 struct xfs_mount *mp,
2703 xfs_agnumber_t agno,
2704 xfs_agino_t agino)
2705{
2706 xfs_agino_t first;
2707 xfs_agino_t last;
2708
2709 xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719 struct xfs_mount *mp,
2720 xfs_ino_t ino)
2721{
2722 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2723 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725 if (agno >= mp->m_sb.sb_agcount)
2726 return false;
2727 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 return false;
2729 return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735 struct xfs_mount *mp,
2736 xfs_ino_t ino)
2737{
2738 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 (xfs_sb_version_hasquota(&mp->m_sb) &&
2740 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749 struct xfs_mount *mp,
2750 xfs_ino_t ino)
2751{
2752 if (xfs_internal_inum(mp, ino))
2753 return false;
2754 return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760 struct xfs_btree_cur *cur,
2761 xfs_agino_t low,
2762 xfs_agino_t high,
2763 bool *exists)
2764{
2765 struct xfs_inobt_rec_incore irec;
2766 xfs_agino_t agino;
2767 uint16_t holemask;
2768 int has_record;
2769 int i;
2770 int error;
2771
2772 *exists = false;
2773 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 while (error == 0 && has_record) {
2775 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 if (error || irec.ir_startino > high)
2777 break;
2778
2779 agino = irec.ir_startino;
2780 holemask = irec.ir_holemask;
2781 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 if (holemask & 1)
2784 continue;
2785 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 agino <= high) {
2787 *exists = true;
2788 return 0;
2789 }
2790 }
2791
2792 error = xfs_btree_increment(cur, 0, &has_record);
2793 }
2794 return error;
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800 struct xfs_btree_cur *cur,
2801 xfs_agblock_t bno,
2802 xfs_extlen_t len,
2803 bool *exists)
2804{
2805 xfs_agino_t low;
2806 xfs_agino_t high;
2807
2808 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810
2811 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 union xfs_btree_rec *rec,
2824 void *priv)
2825{
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2828
2829 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 ci->count += irec.ir_count;
2831 ci->freecount += irec.ir_freecount;
2832
2833 return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839 struct xfs_btree_cur *cur,
2840 xfs_agino_t *count,
2841 xfs_agino_t *freecount)
2842{
2843 struct xfs_ialloc_count_inodes ci = {0};
2844 int error;
2845
2846 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 if (error)
2849 return error;
2850
2851 *count = ci.count;
2852 *freecount = ci.freecount;
2853 return 0;
2854}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_btree.h"
17#include "xfs_ialloc.h"
18#include "xfs_ialloc_btree.h"
19#include "xfs_alloc.h"
20#include "xfs_errortag.h"
21#include "xfs_error.h"
22#include "xfs_bmap.h"
23#include "xfs_trans.h"
24#include "xfs_buf_item.h"
25#include "xfs_icreate_item.h"
26#include "xfs_icache.h"
27#include "xfs_trace.h"
28#include "xfs_log.h"
29#include "xfs_rmap.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 xfs_agnumber_t agno = cur->bc_private.a.agno;
109 union xfs_btree_rec *rec;
110 int error;
111 uint64_t realfree;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
118
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 goto out_bad_rec;
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
123 goto out_bad_rec;
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 goto out_bad_rec;
126
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
130 else
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
133 goto out_bad_rec;
134
135 return 0;
136
137out_bad_rec:
138 xfs_warn(mp,
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
286
287 /*
288 * Figure out what version number to use in the inodes we create. If
289 * the superblock version has caught up to the one that supports the new
290 * inode format, then use the new inode version. Otherwise use the old
291 * version so that old kernels will continue to be able to use the file
292 * system.
293 *
294 * For v3 inodes, we also need to write the inode number into the inode,
295 * so calculate the first inode number of the chunk here as
296 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
297 * across multiple filesystem blocks (such as a cluster) and so cannot
298 * be used in the cluster buffer loop below.
299 *
300 * Further, because we are writing the inode directly into the buffer
301 * and calculating a CRC on the entire inode, we have ot log the entire
302 * inode so that the entire range the CRC covers is present in the log.
303 * That means for v3 inode we log the entire buffer rather than just the
304 * inode cores.
305 */
306 if (xfs_sb_version_hascrc(&mp->m_sb)) {
307 version = 3;
308 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
309
310 /*
311 * log the initialisation that is about to take place as an
312 * logical operation. This means the transaction does not
313 * need to log the physical changes to the inode buffers as log
314 * recovery will know what initialisation is actually needed.
315 * Hence we only need to log the buffers as "ordered" buffers so
316 * they track in the AIL as if they were physically logged.
317 */
318 if (tp)
319 xfs_icreate_log(tp, agno, agbno, icount,
320 mp->m_sb.sb_inodesize, length, gen);
321 } else
322 version = 2;
323
324 for (j = 0; j < nbufs; j++) {
325 /*
326 * Get the block.
327 */
328 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
329 (j * M_IGEO(mp)->blocks_per_cluster));
330 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
331 mp->m_bsize *
332 M_IGEO(mp)->blocks_per_cluster,
333 XBF_UNMAPPED);
334 if (!fbuf)
335 return -ENOMEM;
336
337 /* Initialize the inode buffers and log them appropriately. */
338 fbuf->b_ops = &xfs_inode_buf_ops;
339 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
340 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
341 int ioffset = i << mp->m_sb.sb_inodelog;
342 uint isize = xfs_dinode_size(version);
343
344 free = xfs_make_iptr(mp, fbuf, i);
345 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
346 free->di_version = version;
347 free->di_gen = cpu_to_be32(gen);
348 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
349
350 if (version == 3) {
351 free->di_ino = cpu_to_be64(ino);
352 ino++;
353 uuid_copy(&free->di_uuid,
354 &mp->m_sb.sb_meta_uuid);
355 xfs_dinode_calc_crc(mp, free);
356 } else if (tp) {
357 /* just log the inode core */
358 xfs_trans_log_buf(tp, fbuf, ioffset,
359 ioffset + isize - 1);
360 }
361 }
362
363 if (tp) {
364 /*
365 * Mark the buffer as an inode allocation buffer so it
366 * sticks in AIL at the point of this allocation
367 * transaction. This ensures the they are on disk before
368 * the tail of the log can be moved past this
369 * transaction (i.e. by preventing relogging from moving
370 * it forward in the log).
371 */
372 xfs_trans_inode_alloc_buf(tp, fbuf);
373 if (version == 3) {
374 /*
375 * Mark the buffer as ordered so that they are
376 * not physically logged in the transaction but
377 * still tracked in the AIL as part of the
378 * transaction and pin the log appropriately.
379 */
380 xfs_trans_ordered_buf(tp, fbuf);
381 }
382 } else {
383 fbuf->b_flags |= XBF_DONE;
384 xfs_buf_delwri_queue(fbuf, buffer_list);
385 xfs_buf_relse(fbuf);
386 }
387 }
388 return 0;
389}
390
391/*
392 * Align startino and allocmask for a recently allocated sparse chunk such that
393 * they are fit for insertion (or merge) into the on-disk inode btrees.
394 *
395 * Background:
396 *
397 * When enabled, sparse inode support increases the inode alignment from cluster
398 * size to inode chunk size. This means that the minimum range between two
399 * non-adjacent inode records in the inobt is large enough for a full inode
400 * record. This allows for cluster sized, cluster aligned block allocation
401 * without need to worry about whether the resulting inode record overlaps with
402 * another record in the tree. Without this basic rule, we would have to deal
403 * with the consequences of overlap by potentially undoing recent allocations in
404 * the inode allocation codepath.
405 *
406 * Because of this alignment rule (which is enforced on mount), there are two
407 * inobt possibilities for newly allocated sparse chunks. One is that the
408 * aligned inode record for the chunk covers a range of inodes not already
409 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
410 * other is that a record already exists at the aligned startino that considers
411 * the newly allocated range as sparse. In the latter case, record content is
412 * merged in hope that sparse inode chunks fill to full chunks over time.
413 */
414STATIC void
415xfs_align_sparse_ino(
416 struct xfs_mount *mp,
417 xfs_agino_t *startino,
418 uint16_t *allocmask)
419{
420 xfs_agblock_t agbno;
421 xfs_agblock_t mod;
422 int offset;
423
424 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
425 mod = agbno % mp->m_sb.sb_inoalignmt;
426 if (!mod)
427 return;
428
429 /* calculate the inode offset and align startino */
430 offset = XFS_AGB_TO_AGINO(mp, mod);
431 *startino -= offset;
432
433 /*
434 * Since startino has been aligned down, left shift allocmask such that
435 * it continues to represent the same physical inodes relative to the
436 * new startino.
437 */
438 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
439}
440
441/*
442 * Determine whether the source inode record can merge into the target. Both
443 * records must be sparse, the inode ranges must match and there must be no
444 * allocation overlap between the records.
445 */
446STATIC bool
447__xfs_inobt_can_merge(
448 struct xfs_inobt_rec_incore *trec, /* tgt record */
449 struct xfs_inobt_rec_incore *srec) /* src record */
450{
451 uint64_t talloc;
452 uint64_t salloc;
453
454 /* records must cover the same inode range */
455 if (trec->ir_startino != srec->ir_startino)
456 return false;
457
458 /* both records must be sparse */
459 if (!xfs_inobt_issparse(trec->ir_holemask) ||
460 !xfs_inobt_issparse(srec->ir_holemask))
461 return false;
462
463 /* both records must track some inodes */
464 if (!trec->ir_count || !srec->ir_count)
465 return false;
466
467 /* can't exceed capacity of a full record */
468 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
469 return false;
470
471 /* verify there is no allocation overlap */
472 talloc = xfs_inobt_irec_to_allocmask(trec);
473 salloc = xfs_inobt_irec_to_allocmask(srec);
474 if (talloc & salloc)
475 return false;
476
477 return true;
478}
479
480/*
481 * Merge the source inode record into the target. The caller must call
482 * __xfs_inobt_can_merge() to ensure the merge is valid.
483 */
484STATIC void
485__xfs_inobt_rec_merge(
486 struct xfs_inobt_rec_incore *trec, /* target */
487 struct xfs_inobt_rec_incore *srec) /* src */
488{
489 ASSERT(trec->ir_startino == srec->ir_startino);
490
491 /* combine the counts */
492 trec->ir_count += srec->ir_count;
493 trec->ir_freecount += srec->ir_freecount;
494
495 /*
496 * Merge the holemask and free mask. For both fields, 0 bits refer to
497 * allocated inodes. We combine the allocated ranges with bitwise AND.
498 */
499 trec->ir_holemask &= srec->ir_holemask;
500 trec->ir_free &= srec->ir_free;
501}
502
503/*
504 * Insert a new sparse inode chunk into the associated inode btree. The inode
505 * record for the sparse chunk is pre-aligned to a startino that should match
506 * any pre-existing sparse inode record in the tree. This allows sparse chunks
507 * to fill over time.
508 *
509 * This function supports two modes of handling preexisting records depending on
510 * the merge flag. If merge is true, the provided record is merged with the
511 * existing record and updated in place. The merged record is returned in nrec.
512 * If merge is false, an existing record is replaced with the provided record.
513 * If no preexisting record exists, the provided record is always inserted.
514 *
515 * It is considered corruption if a merge is requested and not possible. Given
516 * the sparse inode alignment constraints, this should never happen.
517 */
518STATIC int
519xfs_inobt_insert_sprec(
520 struct xfs_mount *mp,
521 struct xfs_trans *tp,
522 struct xfs_buf *agbp,
523 int btnum,
524 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
525 bool merge) /* merge or replace */
526{
527 struct xfs_btree_cur *cur;
528 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
529 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
530 int error;
531 int i;
532 struct xfs_inobt_rec_incore rec;
533
534 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
535
536 /* the new record is pre-aligned so we know where to look */
537 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
538 if (error)
539 goto error;
540 /* if nothing there, insert a new record and return */
541 if (i == 0) {
542 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
543 nrec->ir_count, nrec->ir_freecount,
544 nrec->ir_free, &i);
545 if (error)
546 goto error;
547 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
548
549 goto out;
550 }
551
552 /*
553 * A record exists at this startino. Merge or replace the record
554 * depending on what we've been asked to do.
555 */
556 if (merge) {
557 error = xfs_inobt_get_rec(cur, &rec, &i);
558 if (error)
559 goto error;
560 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
561 XFS_WANT_CORRUPTED_GOTO(mp,
562 rec.ir_startino == nrec->ir_startino,
563 error);
564
565 /*
566 * This should never fail. If we have coexisting records that
567 * cannot merge, something is seriously wrong.
568 */
569 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
570 error);
571
572 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
573 rec.ir_holemask, nrec->ir_startino,
574 nrec->ir_holemask);
575
576 /* merge to nrec to output the updated record */
577 __xfs_inobt_rec_merge(nrec, &rec);
578
579 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
580 nrec->ir_holemask);
581
582 error = xfs_inobt_rec_check_count(mp, nrec);
583 if (error)
584 goto error;
585 }
586
587 error = xfs_inobt_update(cur, nrec);
588 if (error)
589 goto error;
590
591out:
592 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
593 return 0;
594error:
595 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
596 return error;
597}
598
599/*
600 * Allocate new inodes in the allocation group specified by agbp.
601 * Return 0 for success, else error code.
602 */
603STATIC int
604xfs_ialloc_ag_alloc(
605 struct xfs_trans *tp,
606 struct xfs_buf *agbp,
607 int *alloc)
608{
609 struct xfs_agi *agi;
610 struct xfs_alloc_arg args;
611 xfs_agnumber_t agno;
612 int error;
613 xfs_agino_t newino; /* new first inode's number */
614 xfs_agino_t newlen; /* new number of inodes */
615 int isaligned = 0; /* inode allocation at stripe */
616 /* unit boundary */
617 /* init. to full chunk */
618 uint16_t allocmask = (uint16_t) -1;
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
622 int do_sparse = 0;
623
624 memset(&args, 0, sizeof(args));
625 args.tp = tp;
626 args.mp = tp->t_mountp;
627 args.fsbno = NULLFSBLOCK;
628 args.oinfo = XFS_RMAP_OINFO_INODES;
629
630#ifdef DEBUG
631 /* randomly do sparse inode allocations */
632 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
633 igeo->ialloc_min_blks < igeo->ialloc_blks)
634 do_sparse = prandom_u32() & 1;
635#endif
636
637 /*
638 * Locking will ensure that we don't have two callers in here
639 * at one time.
640 */
641 newlen = igeo->ialloc_inos;
642 if (igeo->maxicount &&
643 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
644 igeo->maxicount)
645 return -ENOSPC;
646 args.minlen = args.maxlen = igeo->ialloc_blks;
647 /*
648 * First try to allocate inodes contiguous with the last-allocated
649 * chunk of inodes. If the filesystem is striped, this will fill
650 * an entire stripe unit with inodes.
651 */
652 agi = XFS_BUF_TO_AGI(agbp);
653 newino = be32_to_cpu(agi->agi_newino);
654 agno = be32_to_cpu(agi->agi_seqno);
655 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
656 igeo->ialloc_blks;
657 if (do_sparse)
658 goto sparse_alloc;
659 if (likely(newino != NULLAGINO &&
660 (args.agbno < be32_to_cpu(agi->agi_length)))) {
661 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
662 args.type = XFS_ALLOCTYPE_THIS_BNO;
663 args.prod = 1;
664
665 /*
666 * We need to take into account alignment here to ensure that
667 * we don't modify the free list if we fail to have an exact
668 * block. If we don't have an exact match, and every oher
669 * attempt allocation attempt fails, we'll end up cancelling
670 * a dirty transaction and shutting down.
671 *
672 * For an exact allocation, alignment must be 1,
673 * however we need to take cluster alignment into account when
674 * fixing up the freelist. Use the minalignslop field to
675 * indicate that extra blocks might be required for alignment,
676 * but not to use them in the actual exact allocation.
677 */
678 args.alignment = 1;
679 args.minalignslop = igeo->cluster_align - 1;
680
681 /* Allow space for the inode btree to split. */
682 args.minleft = igeo->inobt_maxlevels - 1;
683 if ((error = xfs_alloc_vextent(&args)))
684 return error;
685
686 /*
687 * This request might have dirtied the transaction if the AG can
688 * satisfy the request, but the exact block was not available.
689 * If the allocation did fail, subsequent requests will relax
690 * the exact agbno requirement and increase the alignment
691 * instead. It is critical that the total size of the request
692 * (len + alignment + slop) does not increase from this point
693 * on, so reset minalignslop to ensure it is not included in
694 * subsequent requests.
695 */
696 args.minalignslop = 0;
697 }
698
699 if (unlikely(args.fsbno == NULLFSBLOCK)) {
700 /*
701 * Set the alignment for the allocation.
702 * If stripe alignment is turned on then align at stripe unit
703 * boundary.
704 * If the cluster size is smaller than a filesystem block
705 * then we're doing I/O for inodes in filesystem block size
706 * pieces, so don't need alignment anyway.
707 */
708 isaligned = 0;
709 if (igeo->ialloc_align) {
710 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
711 args.alignment = args.mp->m_dalign;
712 isaligned = 1;
713 } else
714 args.alignment = igeo->cluster_align;
715 /*
716 * Need to figure out where to allocate the inode blocks.
717 * Ideally they should be spaced out through the a.g.
718 * For now, just allocate blocks up front.
719 */
720 args.agbno = be32_to_cpu(agi->agi_root);
721 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
722 /*
723 * Allocate a fixed-size extent of inodes.
724 */
725 args.type = XFS_ALLOCTYPE_NEAR_BNO;
726 args.prod = 1;
727 /*
728 * Allow space for the inode btree to split.
729 */
730 args.minleft = igeo->inobt_maxlevels - 1;
731 if ((error = xfs_alloc_vextent(&args)))
732 return error;
733 }
734
735 /*
736 * If stripe alignment is turned on, then try again with cluster
737 * alignment.
738 */
739 if (isaligned && args.fsbno == NULLFSBLOCK) {
740 args.type = XFS_ALLOCTYPE_NEAR_BNO;
741 args.agbno = be32_to_cpu(agi->agi_root);
742 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
743 args.alignment = igeo->cluster_align;
744 if ((error = xfs_alloc_vextent(&args)))
745 return error;
746 }
747
748 /*
749 * Finally, try a sparse allocation if the filesystem supports it and
750 * the sparse allocation length is smaller than a full chunk.
751 */
752 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
753 igeo->ialloc_min_blks < igeo->ialloc_blks &&
754 args.fsbno == NULLFSBLOCK) {
755sparse_alloc:
756 args.type = XFS_ALLOCTYPE_NEAR_BNO;
757 args.agbno = be32_to_cpu(agi->agi_root);
758 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
759 args.alignment = args.mp->m_sb.sb_spino_align;
760 args.prod = 1;
761
762 args.minlen = igeo->ialloc_min_blks;
763 args.maxlen = args.minlen;
764
765 /*
766 * The inode record will be aligned to full chunk size. We must
767 * prevent sparse allocation from AG boundaries that result in
768 * invalid inode records, such as records that start at agbno 0
769 * or extend beyond the AG.
770 *
771 * Set min agbno to the first aligned, non-zero agbno and max to
772 * the last aligned agbno that is at least one full chunk from
773 * the end of the AG.
774 */
775 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
776 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
777 args.mp->m_sb.sb_inoalignmt) -
778 igeo->ialloc_blks;
779
780 error = xfs_alloc_vextent(&args);
781 if (error)
782 return error;
783
784 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
785 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
786 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
787 }
788
789 if (args.fsbno == NULLFSBLOCK) {
790 *alloc = 0;
791 return 0;
792 }
793 ASSERT(args.len == args.minlen);
794
795 /*
796 * Stamp and write the inode buffers.
797 *
798 * Seed the new inode cluster with a random generation number. This
799 * prevents short-term reuse of generation numbers if a chunk is
800 * freed and then immediately reallocated. We use random numbers
801 * rather than a linear progression to prevent the next generation
802 * number from being easily guessable.
803 */
804 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
805 args.agbno, args.len, prandom_u32());
806
807 if (error)
808 return error;
809 /*
810 * Convert the results.
811 */
812 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
813
814 if (xfs_inobt_issparse(~allocmask)) {
815 /*
816 * We've allocated a sparse chunk. Align the startino and mask.
817 */
818 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
819
820 rec.ir_startino = newino;
821 rec.ir_holemask = ~allocmask;
822 rec.ir_count = newlen;
823 rec.ir_freecount = newlen;
824 rec.ir_free = XFS_INOBT_ALL_FREE;
825
826 /*
827 * Insert the sparse record into the inobt and allow for a merge
828 * if necessary. If a merge does occur, rec is updated to the
829 * merged record.
830 */
831 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
832 &rec, true);
833 if (error == -EFSCORRUPTED) {
834 xfs_alert(args.mp,
835 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
836 XFS_AGINO_TO_INO(args.mp, agno,
837 rec.ir_startino),
838 rec.ir_holemask, rec.ir_count);
839 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
840 }
841 if (error)
842 return error;
843
844 /*
845 * We can't merge the part we've just allocated as for the inobt
846 * due to finobt semantics. The original record may or may not
847 * exist independent of whether physical inodes exist in this
848 * sparse chunk.
849 *
850 * We must update the finobt record based on the inobt record.
851 * rec contains the fully merged and up to date inobt record
852 * from the previous call. Set merge false to replace any
853 * existing record with this one.
854 */
855 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
856 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
857 XFS_BTNUM_FINO, &rec,
858 false);
859 if (error)
860 return error;
861 }
862 } else {
863 /* full chunk - insert new records to both btrees */
864 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
865 XFS_BTNUM_INO);
866 if (error)
867 return error;
868
869 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
870 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
871 newlen, XFS_BTNUM_FINO);
872 if (error)
873 return error;
874 }
875 }
876
877 /*
878 * Update AGI counts and newino.
879 */
880 be32_add_cpu(&agi->agi_count, newlen);
881 be32_add_cpu(&agi->agi_freecount, newlen);
882 pag = xfs_perag_get(args.mp, agno);
883 pag->pagi_freecount += newlen;
884 pag->pagi_count += newlen;
885 xfs_perag_put(pag);
886 agi->agi_newino = cpu_to_be32(newino);
887
888 /*
889 * Log allocation group header fields
890 */
891 xfs_ialloc_log_agi(tp, agbp,
892 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
893 /*
894 * Modify/log superblock values for inode count and inode free count.
895 */
896 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
898 *alloc = 1;
899 return 0;
900}
901
902STATIC xfs_agnumber_t
903xfs_ialloc_next_ag(
904 xfs_mount_t *mp)
905{
906 xfs_agnumber_t agno;
907
908 spin_lock(&mp->m_agirotor_lock);
909 agno = mp->m_agirotor;
910 if (++mp->m_agirotor >= mp->m_maxagi)
911 mp->m_agirotor = 0;
912 spin_unlock(&mp->m_agirotor_lock);
913
914 return agno;
915}
916
917/*
918 * Select an allocation group to look for a free inode in, based on the parent
919 * inode and the mode. Return the allocation group buffer.
920 */
921STATIC xfs_agnumber_t
922xfs_ialloc_ag_select(
923 xfs_trans_t *tp, /* transaction pointer */
924 xfs_ino_t parent, /* parent directory inode number */
925 umode_t mode) /* bits set to indicate file type */
926{
927 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
928 xfs_agnumber_t agno; /* current ag number */
929 int flags; /* alloc buffer locking flags */
930 xfs_extlen_t ineed; /* blocks needed for inode allocation */
931 xfs_extlen_t longest = 0; /* longest extent available */
932 xfs_mount_t *mp; /* mount point structure */
933 int needspace; /* file mode implies space allocated */
934 xfs_perag_t *pag; /* per allocation group data */
935 xfs_agnumber_t pagno; /* parent (starting) ag number */
936 int error;
937
938 /*
939 * Files of these types need at least one block if length > 0
940 * (and they won't fit in the inode, but that's hard to figure out).
941 */
942 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
943 mp = tp->t_mountp;
944 agcount = mp->m_maxagi;
945 if (S_ISDIR(mode))
946 pagno = xfs_ialloc_next_ag(mp);
947 else {
948 pagno = XFS_INO_TO_AGNO(mp, parent);
949 if (pagno >= agcount)
950 pagno = 0;
951 }
952
953 ASSERT(pagno < agcount);
954
955 /*
956 * Loop through allocation groups, looking for one with a little
957 * free space in it. Note we don't look for free inodes, exactly.
958 * Instead, we include whether there is a need to allocate inodes
959 * to mean that blocks must be allocated for them,
960 * if none are currently free.
961 */
962 agno = pagno;
963 flags = XFS_ALLOC_FLAG_TRYLOCK;
964 for (;;) {
965 pag = xfs_perag_get(mp, agno);
966 if (!pag->pagi_inodeok) {
967 xfs_ialloc_next_ag(mp);
968 goto nextag;
969 }
970
971 if (!pag->pagi_init) {
972 error = xfs_ialloc_pagi_init(mp, tp, agno);
973 if (error)
974 goto nextag;
975 }
976
977 if (pag->pagi_freecount) {
978 xfs_perag_put(pag);
979 return agno;
980 }
981
982 if (!pag->pagf_init) {
983 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
984 if (error)
985 goto nextag;
986 }
987
988 /*
989 * Check that there is enough free space for the file plus a
990 * chunk of inodes if we need to allocate some. If this is the
991 * first pass across the AGs, take into account the potential
992 * space needed for alignment of inode chunks when checking the
993 * longest contiguous free space in the AG - this prevents us
994 * from getting ENOSPC because we have free space larger than
995 * ialloc_blks but alignment constraints prevent us from using
996 * it.
997 *
998 * If we can't find an AG with space for full alignment slack to
999 * be taken into account, we must be near ENOSPC in all AGs.
1000 * Hence we don't include alignment for the second pass and so
1001 * if we fail allocation due to alignment issues then it is most
1002 * likely a real ENOSPC condition.
1003 */
1004 ineed = M_IGEO(mp)->ialloc_min_blks;
1005 if (flags && ineed > 1)
1006 ineed += M_IGEO(mp)->cluster_align;
1007 longest = pag->pagf_longest;
1008 if (!longest)
1009 longest = pag->pagf_flcount > 0;
1010
1011 if (pag->pagf_freeblks >= needspace + ineed &&
1012 longest >= ineed) {
1013 xfs_perag_put(pag);
1014 return agno;
1015 }
1016nextag:
1017 xfs_perag_put(pag);
1018 /*
1019 * No point in iterating over the rest, if we're shutting
1020 * down.
1021 */
1022 if (XFS_FORCED_SHUTDOWN(mp))
1023 return NULLAGNUMBER;
1024 agno++;
1025 if (agno >= agcount)
1026 agno = 0;
1027 if (agno == pagno) {
1028 if (flags == 0)
1029 return NULLAGNUMBER;
1030 flags = 0;
1031 }
1032 }
1033}
1034
1035/*
1036 * Try to retrieve the next record to the left/right from the current one.
1037 */
1038STATIC int
1039xfs_ialloc_next_rec(
1040 struct xfs_btree_cur *cur,
1041 xfs_inobt_rec_incore_t *rec,
1042 int *done,
1043 int left)
1044{
1045 int error;
1046 int i;
1047
1048 if (left)
1049 error = xfs_btree_decrement(cur, 0, &i);
1050 else
1051 error = xfs_btree_increment(cur, 0, &i);
1052
1053 if (error)
1054 return error;
1055 *done = !i;
1056 if (i) {
1057 error = xfs_inobt_get_rec(cur, rec, &i);
1058 if (error)
1059 return error;
1060 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1061 }
1062
1063 return 0;
1064}
1065
1066STATIC int
1067xfs_ialloc_get_rec(
1068 struct xfs_btree_cur *cur,
1069 xfs_agino_t agino,
1070 xfs_inobt_rec_incore_t *rec,
1071 int *done)
1072{
1073 int error;
1074 int i;
1075
1076 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1077 if (error)
1078 return error;
1079 *done = !i;
1080 if (i) {
1081 error = xfs_inobt_get_rec(cur, rec, &i);
1082 if (error)
1083 return error;
1084 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1085 }
1086
1087 return 0;
1088}
1089
1090/*
1091 * Return the offset of the first free inode in the record. If the inode chunk
1092 * is sparsely allocated, we convert the record holemask to inode granularity
1093 * and mask off the unallocated regions from the inode free mask.
1094 */
1095STATIC int
1096xfs_inobt_first_free_inode(
1097 struct xfs_inobt_rec_incore *rec)
1098{
1099 xfs_inofree_t realfree;
1100
1101 /* if there are no holes, return the first available offset */
1102 if (!xfs_inobt_issparse(rec->ir_holemask))
1103 return xfs_lowbit64(rec->ir_free);
1104
1105 realfree = xfs_inobt_irec_to_allocmask(rec);
1106 realfree &= rec->ir_free;
1107
1108 return xfs_lowbit64(realfree);
1109}
1110
1111/*
1112 * Allocate an inode using the inobt-only algorithm.
1113 */
1114STATIC int
1115xfs_dialloc_ag_inobt(
1116 struct xfs_trans *tp,
1117 struct xfs_buf *agbp,
1118 xfs_ino_t parent,
1119 xfs_ino_t *inop)
1120{
1121 struct xfs_mount *mp = tp->t_mountp;
1122 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1123 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1124 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1125 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1126 struct xfs_perag *pag;
1127 struct xfs_btree_cur *cur, *tcur;
1128 struct xfs_inobt_rec_incore rec, trec;
1129 xfs_ino_t ino;
1130 int error;
1131 int offset;
1132 int i, j;
1133 int searchdistance = 10;
1134
1135 pag = xfs_perag_get(mp, agno);
1136
1137 ASSERT(pag->pagi_init);
1138 ASSERT(pag->pagi_inodeok);
1139 ASSERT(pag->pagi_freecount > 0);
1140
1141 restart_pagno:
1142 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1143 /*
1144 * If pagino is 0 (this is the root inode allocation) use newino.
1145 * This must work because we've just allocated some.
1146 */
1147 if (!pagino)
1148 pagino = be32_to_cpu(agi->agi_newino);
1149
1150 error = xfs_check_agi_freecount(cur, agi);
1151 if (error)
1152 goto error0;
1153
1154 /*
1155 * If in the same AG as the parent, try to get near the parent.
1156 */
1157 if (pagno == agno) {
1158 int doneleft; /* done, to the left */
1159 int doneright; /* done, to the right */
1160
1161 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1162 if (error)
1163 goto error0;
1164 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1165
1166 error = xfs_inobt_get_rec(cur, &rec, &j);
1167 if (error)
1168 goto error0;
1169 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1170
1171 if (rec.ir_freecount > 0) {
1172 /*
1173 * Found a free inode in the same chunk
1174 * as the parent, done.
1175 */
1176 goto alloc_inode;
1177 }
1178
1179
1180 /*
1181 * In the same AG as parent, but parent's chunk is full.
1182 */
1183
1184 /* duplicate the cursor, search left & right simultaneously */
1185 error = xfs_btree_dup_cursor(cur, &tcur);
1186 if (error)
1187 goto error0;
1188
1189 /*
1190 * Skip to last blocks looked up if same parent inode.
1191 */
1192 if (pagino != NULLAGINO &&
1193 pag->pagl_pagino == pagino &&
1194 pag->pagl_leftrec != NULLAGINO &&
1195 pag->pagl_rightrec != NULLAGINO) {
1196 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1197 &trec, &doneleft);
1198 if (error)
1199 goto error1;
1200
1201 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1202 &rec, &doneright);
1203 if (error)
1204 goto error1;
1205 } else {
1206 /* search left with tcur, back up 1 record */
1207 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1208 if (error)
1209 goto error1;
1210
1211 /* search right with cur, go forward 1 record. */
1212 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1213 if (error)
1214 goto error1;
1215 }
1216
1217 /*
1218 * Loop until we find an inode chunk with a free inode.
1219 */
1220 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1221 int useleft; /* using left inode chunk this time */
1222
1223 /* figure out the closer block if both are valid. */
1224 if (!doneleft && !doneright) {
1225 useleft = pagino -
1226 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1227 rec.ir_startino - pagino;
1228 } else {
1229 useleft = !doneleft;
1230 }
1231
1232 /* free inodes to the left? */
1233 if (useleft && trec.ir_freecount) {
1234 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1235 cur = tcur;
1236
1237 pag->pagl_leftrec = trec.ir_startino;
1238 pag->pagl_rightrec = rec.ir_startino;
1239 pag->pagl_pagino = pagino;
1240 rec = trec;
1241 goto alloc_inode;
1242 }
1243
1244 /* free inodes to the right? */
1245 if (!useleft && rec.ir_freecount) {
1246 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1247
1248 pag->pagl_leftrec = trec.ir_startino;
1249 pag->pagl_rightrec = rec.ir_startino;
1250 pag->pagl_pagino = pagino;
1251 goto alloc_inode;
1252 }
1253
1254 /* get next record to check */
1255 if (useleft) {
1256 error = xfs_ialloc_next_rec(tcur, &trec,
1257 &doneleft, 1);
1258 } else {
1259 error = xfs_ialloc_next_rec(cur, &rec,
1260 &doneright, 0);
1261 }
1262 if (error)
1263 goto error1;
1264 }
1265
1266 if (searchdistance <= 0) {
1267 /*
1268 * Not in range - save last search
1269 * location and allocate a new inode
1270 */
1271 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1272 pag->pagl_leftrec = trec.ir_startino;
1273 pag->pagl_rightrec = rec.ir_startino;
1274 pag->pagl_pagino = pagino;
1275
1276 } else {
1277 /*
1278 * We've reached the end of the btree. because
1279 * we are only searching a small chunk of the
1280 * btree each search, there is obviously free
1281 * inodes closer to the parent inode than we
1282 * are now. restart the search again.
1283 */
1284 pag->pagl_pagino = NULLAGINO;
1285 pag->pagl_leftrec = NULLAGINO;
1286 pag->pagl_rightrec = NULLAGINO;
1287 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1288 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1289 goto restart_pagno;
1290 }
1291 }
1292
1293 /*
1294 * In a different AG from the parent.
1295 * See if the most recently allocated block has any free.
1296 */
1297 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1298 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1299 XFS_LOOKUP_EQ, &i);
1300 if (error)
1301 goto error0;
1302
1303 if (i == 1) {
1304 error = xfs_inobt_get_rec(cur, &rec, &j);
1305 if (error)
1306 goto error0;
1307
1308 if (j == 1 && rec.ir_freecount > 0) {
1309 /*
1310 * The last chunk allocated in the group
1311 * still has a free inode.
1312 */
1313 goto alloc_inode;
1314 }
1315 }
1316 }
1317
1318 /*
1319 * None left in the last group, search the whole AG
1320 */
1321 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1322 if (error)
1323 goto error0;
1324 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1325
1326 for (;;) {
1327 error = xfs_inobt_get_rec(cur, &rec, &i);
1328 if (error)
1329 goto error0;
1330 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1331 if (rec.ir_freecount > 0)
1332 break;
1333 error = xfs_btree_increment(cur, 0, &i);
1334 if (error)
1335 goto error0;
1336 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1337 }
1338
1339alloc_inode:
1340 offset = xfs_inobt_first_free_inode(&rec);
1341 ASSERT(offset >= 0);
1342 ASSERT(offset < XFS_INODES_PER_CHUNK);
1343 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1344 XFS_INODES_PER_CHUNK) == 0);
1345 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1346 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1347 rec.ir_freecount--;
1348 error = xfs_inobt_update(cur, &rec);
1349 if (error)
1350 goto error0;
1351 be32_add_cpu(&agi->agi_freecount, -1);
1352 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1353 pag->pagi_freecount--;
1354
1355 error = xfs_check_agi_freecount(cur, agi);
1356 if (error)
1357 goto error0;
1358
1359 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1360 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1361 xfs_perag_put(pag);
1362 *inop = ino;
1363 return 0;
1364error1:
1365 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1366error0:
1367 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1368 xfs_perag_put(pag);
1369 return error;
1370}
1371
1372/*
1373 * Use the free inode btree to allocate an inode based on distance from the
1374 * parent. Note that the provided cursor may be deleted and replaced.
1375 */
1376STATIC int
1377xfs_dialloc_ag_finobt_near(
1378 xfs_agino_t pagino,
1379 struct xfs_btree_cur **ocur,
1380 struct xfs_inobt_rec_incore *rec)
1381{
1382 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1383 struct xfs_btree_cur *rcur; /* right search cursor */
1384 struct xfs_inobt_rec_incore rrec;
1385 int error;
1386 int i, j;
1387
1388 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1389 if (error)
1390 return error;
1391
1392 if (i == 1) {
1393 error = xfs_inobt_get_rec(lcur, rec, &i);
1394 if (error)
1395 return error;
1396 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1397
1398 /*
1399 * See if we've landed in the parent inode record. The finobt
1400 * only tracks chunks with at least one free inode, so record
1401 * existence is enough.
1402 */
1403 if (pagino >= rec->ir_startino &&
1404 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1405 return 0;
1406 }
1407
1408 error = xfs_btree_dup_cursor(lcur, &rcur);
1409 if (error)
1410 return error;
1411
1412 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1413 if (error)
1414 goto error_rcur;
1415 if (j == 1) {
1416 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1417 if (error)
1418 goto error_rcur;
1419 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1420 }
1421
1422 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1423 if (i == 1 && j == 1) {
1424 /*
1425 * Both the left and right records are valid. Choose the closer
1426 * inode chunk to the target.
1427 */
1428 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1429 (rrec.ir_startino - pagino)) {
1430 *rec = rrec;
1431 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1432 *ocur = rcur;
1433 } else {
1434 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1435 }
1436 } else if (j == 1) {
1437 /* only the right record is valid */
1438 *rec = rrec;
1439 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1440 *ocur = rcur;
1441 } else if (i == 1) {
1442 /* only the left record is valid */
1443 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1444 }
1445
1446 return 0;
1447
1448error_rcur:
1449 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1450 return error;
1451}
1452
1453/*
1454 * Use the free inode btree to find a free inode based on a newino hint. If
1455 * the hint is NULL, find the first free inode in the AG.
1456 */
1457STATIC int
1458xfs_dialloc_ag_finobt_newino(
1459 struct xfs_agi *agi,
1460 struct xfs_btree_cur *cur,
1461 struct xfs_inobt_rec_incore *rec)
1462{
1463 int error;
1464 int i;
1465
1466 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1467 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1468 XFS_LOOKUP_EQ, &i);
1469 if (error)
1470 return error;
1471 if (i == 1) {
1472 error = xfs_inobt_get_rec(cur, rec, &i);
1473 if (error)
1474 return error;
1475 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1476 return 0;
1477 }
1478 }
1479
1480 /*
1481 * Find the first inode available in the AG.
1482 */
1483 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1484 if (error)
1485 return error;
1486 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1487
1488 error = xfs_inobt_get_rec(cur, rec, &i);
1489 if (error)
1490 return error;
1491 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1492
1493 return 0;
1494}
1495
1496/*
1497 * Update the inobt based on a modification made to the finobt. Also ensure that
1498 * the records from both trees are equivalent post-modification.
1499 */
1500STATIC int
1501xfs_dialloc_ag_update_inobt(
1502 struct xfs_btree_cur *cur, /* inobt cursor */
1503 struct xfs_inobt_rec_incore *frec, /* finobt record */
1504 int offset) /* inode offset */
1505{
1506 struct xfs_inobt_rec_incore rec;
1507 int error;
1508 int i;
1509
1510 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1511 if (error)
1512 return error;
1513 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1514
1515 error = xfs_inobt_get_rec(cur, &rec, &i);
1516 if (error)
1517 return error;
1518 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1519 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1520 XFS_INODES_PER_CHUNK) == 0);
1521
1522 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1523 rec.ir_freecount--;
1524
1525 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1526 (rec.ir_freecount == frec->ir_freecount));
1527
1528 return xfs_inobt_update(cur, &rec);
1529}
1530
1531/*
1532 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1533 * back to the inobt search algorithm.
1534 *
1535 * The caller selected an AG for us, and made sure that free inodes are
1536 * available.
1537 */
1538STATIC int
1539xfs_dialloc_ag(
1540 struct xfs_trans *tp,
1541 struct xfs_buf *agbp,
1542 xfs_ino_t parent,
1543 xfs_ino_t *inop)
1544{
1545 struct xfs_mount *mp = tp->t_mountp;
1546 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1547 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1548 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1549 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1550 struct xfs_perag *pag;
1551 struct xfs_btree_cur *cur; /* finobt cursor */
1552 struct xfs_btree_cur *icur; /* inobt cursor */
1553 struct xfs_inobt_rec_incore rec;
1554 xfs_ino_t ino;
1555 int error;
1556 int offset;
1557 int i;
1558
1559 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1560 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1561
1562 pag = xfs_perag_get(mp, agno);
1563
1564 /*
1565 * If pagino is 0 (this is the root inode allocation) use newino.
1566 * This must work because we've just allocated some.
1567 */
1568 if (!pagino)
1569 pagino = be32_to_cpu(agi->agi_newino);
1570
1571 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1572
1573 error = xfs_check_agi_freecount(cur, agi);
1574 if (error)
1575 goto error_cur;
1576
1577 /*
1578 * The search algorithm depends on whether we're in the same AG as the
1579 * parent. If so, find the closest available inode to the parent. If
1580 * not, consider the agi hint or find the first free inode in the AG.
1581 */
1582 if (agno == pagno)
1583 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1584 else
1585 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1586 if (error)
1587 goto error_cur;
1588
1589 offset = xfs_inobt_first_free_inode(&rec);
1590 ASSERT(offset >= 0);
1591 ASSERT(offset < XFS_INODES_PER_CHUNK);
1592 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1593 XFS_INODES_PER_CHUNK) == 0);
1594 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1595
1596 /*
1597 * Modify or remove the finobt record.
1598 */
1599 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1600 rec.ir_freecount--;
1601 if (rec.ir_freecount)
1602 error = xfs_inobt_update(cur, &rec);
1603 else
1604 error = xfs_btree_delete(cur, &i);
1605 if (error)
1606 goto error_cur;
1607
1608 /*
1609 * The finobt has now been updated appropriately. We haven't updated the
1610 * agi and superblock yet, so we can create an inobt cursor and validate
1611 * the original freecount. If all is well, make the equivalent update to
1612 * the inobt using the finobt record and offset information.
1613 */
1614 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1615
1616 error = xfs_check_agi_freecount(icur, agi);
1617 if (error)
1618 goto error_icur;
1619
1620 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1621 if (error)
1622 goto error_icur;
1623
1624 /*
1625 * Both trees have now been updated. We must update the perag and
1626 * superblock before we can check the freecount for each btree.
1627 */
1628 be32_add_cpu(&agi->agi_freecount, -1);
1629 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1630 pag->pagi_freecount--;
1631
1632 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1633
1634 error = xfs_check_agi_freecount(icur, agi);
1635 if (error)
1636 goto error_icur;
1637 error = xfs_check_agi_freecount(cur, agi);
1638 if (error)
1639 goto error_icur;
1640
1641 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1642 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1643 xfs_perag_put(pag);
1644 *inop = ino;
1645 return 0;
1646
1647error_icur:
1648 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1649error_cur:
1650 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1651 xfs_perag_put(pag);
1652 return error;
1653}
1654
1655/*
1656 * Allocate an inode on disk.
1657 *
1658 * Mode is used to tell whether the new inode will need space, and whether it
1659 * is a directory.
1660 *
1661 * This function is designed to be called twice if it has to do an allocation
1662 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1663 * If an inode is available without having to performn an allocation, an inode
1664 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1665 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1666 * The caller should then commit the current transaction, allocate a
1667 * new transaction, and call xfs_dialloc() again, passing in the previous value
1668 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1669 * buffer is locked across the two calls, the second call is guaranteed to have
1670 * a free inode available.
1671 *
1672 * Once we successfully pick an inode its number is returned and the on-disk
1673 * data structures are updated. The inode itself is not read in, since doing so
1674 * would break ordering constraints with xfs_reclaim.
1675 */
1676int
1677xfs_dialloc(
1678 struct xfs_trans *tp,
1679 xfs_ino_t parent,
1680 umode_t mode,
1681 struct xfs_buf **IO_agbp,
1682 xfs_ino_t *inop)
1683{
1684 struct xfs_mount *mp = tp->t_mountp;
1685 struct xfs_buf *agbp;
1686 xfs_agnumber_t agno;
1687 int error;
1688 int ialloced;
1689 int noroom = 0;
1690 xfs_agnumber_t start_agno;
1691 struct xfs_perag *pag;
1692 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1693 int okalloc = 1;
1694
1695 if (*IO_agbp) {
1696 /*
1697 * If the caller passes in a pointer to the AGI buffer,
1698 * continue where we left off before. In this case, we
1699 * know that the allocation group has free inodes.
1700 */
1701 agbp = *IO_agbp;
1702 goto out_alloc;
1703 }
1704
1705 /*
1706 * We do not have an agbp, so select an initial allocation
1707 * group for inode allocation.
1708 */
1709 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1710 if (start_agno == NULLAGNUMBER) {
1711 *inop = NULLFSINO;
1712 return 0;
1713 }
1714
1715 /*
1716 * If we have already hit the ceiling of inode blocks then clear
1717 * okalloc so we scan all available agi structures for a free
1718 * inode.
1719 *
1720 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1721 * which will sacrifice the preciseness but improve the performance.
1722 */
1723 if (igeo->maxicount &&
1724 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1725 > igeo->maxicount) {
1726 noroom = 1;
1727 okalloc = 0;
1728 }
1729
1730 /*
1731 * Loop until we find an allocation group that either has free inodes
1732 * or in which we can allocate some inodes. Iterate through the
1733 * allocation groups upward, wrapping at the end.
1734 */
1735 agno = start_agno;
1736 for (;;) {
1737 pag = xfs_perag_get(mp, agno);
1738 if (!pag->pagi_inodeok) {
1739 xfs_ialloc_next_ag(mp);
1740 goto nextag;
1741 }
1742
1743 if (!pag->pagi_init) {
1744 error = xfs_ialloc_pagi_init(mp, tp, agno);
1745 if (error)
1746 goto out_error;
1747 }
1748
1749 /*
1750 * Do a first racy fast path check if this AG is usable.
1751 */
1752 if (!pag->pagi_freecount && !okalloc)
1753 goto nextag;
1754
1755 /*
1756 * Then read in the AGI buffer and recheck with the AGI buffer
1757 * lock held.
1758 */
1759 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1760 if (error)
1761 goto out_error;
1762
1763 if (pag->pagi_freecount) {
1764 xfs_perag_put(pag);
1765 goto out_alloc;
1766 }
1767
1768 if (!okalloc)
1769 goto nextag_relse_buffer;
1770
1771
1772 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1773 if (error) {
1774 xfs_trans_brelse(tp, agbp);
1775
1776 if (error != -ENOSPC)
1777 goto out_error;
1778
1779 xfs_perag_put(pag);
1780 *inop = NULLFSINO;
1781 return 0;
1782 }
1783
1784 if (ialloced) {
1785 /*
1786 * We successfully allocated some inodes, return
1787 * the current context to the caller so that it
1788 * can commit the current transaction and call
1789 * us again where we left off.
1790 */
1791 ASSERT(pag->pagi_freecount > 0);
1792 xfs_perag_put(pag);
1793
1794 *IO_agbp = agbp;
1795 *inop = NULLFSINO;
1796 return 0;
1797 }
1798
1799nextag_relse_buffer:
1800 xfs_trans_brelse(tp, agbp);
1801nextag:
1802 xfs_perag_put(pag);
1803 if (++agno == mp->m_sb.sb_agcount)
1804 agno = 0;
1805 if (agno == start_agno) {
1806 *inop = NULLFSINO;
1807 return noroom ? -ENOSPC : 0;
1808 }
1809 }
1810
1811out_alloc:
1812 *IO_agbp = NULL;
1813 return xfs_dialloc_ag(tp, agbp, parent, inop);
1814out_error:
1815 xfs_perag_put(pag);
1816 return error;
1817}
1818
1819/*
1820 * Free the blocks of an inode chunk. We must consider that the inode chunk
1821 * might be sparse and only free the regions that are allocated as part of the
1822 * chunk.
1823 */
1824STATIC void
1825xfs_difree_inode_chunk(
1826 struct xfs_trans *tp,
1827 xfs_agnumber_t agno,
1828 struct xfs_inobt_rec_incore *rec)
1829{
1830 struct xfs_mount *mp = tp->t_mountp;
1831 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1832 rec->ir_startino);
1833 int startidx, endidx;
1834 int nextbit;
1835 xfs_agblock_t agbno;
1836 int contigblk;
1837 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1838
1839 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1840 /* not sparse, calculate extent info directly */
1841 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1842 M_IGEO(mp)->ialloc_blks,
1843 &XFS_RMAP_OINFO_INODES);
1844 return;
1845 }
1846
1847 /* holemask is only 16-bits (fits in an unsigned long) */
1848 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1849 holemask[0] = rec->ir_holemask;
1850
1851 /*
1852 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1853 * holemask and convert the start/end index of each range to an extent.
1854 * We start with the start and end index both pointing at the first 0 in
1855 * the mask.
1856 */
1857 startidx = endidx = find_first_zero_bit(holemask,
1858 XFS_INOBT_HOLEMASK_BITS);
1859 nextbit = startidx + 1;
1860 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1861 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1862 nextbit);
1863 /*
1864 * If the next zero bit is contiguous, update the end index of
1865 * the current range and continue.
1866 */
1867 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1868 nextbit == endidx + 1) {
1869 endidx = nextbit;
1870 goto next;
1871 }
1872
1873 /*
1874 * nextbit is not contiguous with the current end index. Convert
1875 * the current start/end to an extent and add it to the free
1876 * list.
1877 */
1878 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880 contigblk = ((endidx - startidx + 1) *
1881 XFS_INODES_PER_HOLEMASK_BIT) /
1882 mp->m_sb.sb_inopblock;
1883
1884 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1885 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1886 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1887 contigblk, &XFS_RMAP_OINFO_INODES);
1888
1889 /* reset range to current bit and carry on... */
1890 startidx = endidx = nextbit;
1891
1892next:
1893 nextbit++;
1894 }
1895}
1896
1897STATIC int
1898xfs_difree_inobt(
1899 struct xfs_mount *mp,
1900 struct xfs_trans *tp,
1901 struct xfs_buf *agbp,
1902 xfs_agino_t agino,
1903 struct xfs_icluster *xic,
1904 struct xfs_inobt_rec_incore *orec)
1905{
1906 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1907 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1908 struct xfs_perag *pag;
1909 struct xfs_btree_cur *cur;
1910 struct xfs_inobt_rec_incore rec;
1911 int ilen;
1912 int error;
1913 int i;
1914 int off;
1915
1916 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1917 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1918
1919 /*
1920 * Initialize the cursor.
1921 */
1922 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1923
1924 error = xfs_check_agi_freecount(cur, agi);
1925 if (error)
1926 goto error0;
1927
1928 /*
1929 * Look for the entry describing this inode.
1930 */
1931 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1932 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1933 __func__, error);
1934 goto error0;
1935 }
1936 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1937 error = xfs_inobt_get_rec(cur, &rec, &i);
1938 if (error) {
1939 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1940 __func__, error);
1941 goto error0;
1942 }
1943 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1944 /*
1945 * Get the offset in the inode chunk.
1946 */
1947 off = agino - rec.ir_startino;
1948 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1949 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1950 /*
1951 * Mark the inode free & increment the count.
1952 */
1953 rec.ir_free |= XFS_INOBT_MASK(off);
1954 rec.ir_freecount++;
1955
1956 /*
1957 * When an inode chunk is free, it becomes eligible for removal. Don't
1958 * remove the chunk if the block size is large enough for multiple inode
1959 * chunks (that might not be free).
1960 */
1961 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1962 rec.ir_free == XFS_INOBT_ALL_FREE &&
1963 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1964 xic->deleted = true;
1965 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1966 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1967
1968 /*
1969 * Remove the inode cluster from the AGI B+Tree, adjust the
1970 * AGI and Superblock inode counts, and mark the disk space
1971 * to be freed when the transaction is committed.
1972 */
1973 ilen = rec.ir_freecount;
1974 be32_add_cpu(&agi->agi_count, -ilen);
1975 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1976 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1977 pag = xfs_perag_get(mp, agno);
1978 pag->pagi_freecount -= ilen - 1;
1979 pag->pagi_count -= ilen;
1980 xfs_perag_put(pag);
1981 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1982 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1983
1984 if ((error = xfs_btree_delete(cur, &i))) {
1985 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1986 __func__, error);
1987 goto error0;
1988 }
1989
1990 xfs_difree_inode_chunk(tp, agno, &rec);
1991 } else {
1992 xic->deleted = false;
1993
1994 error = xfs_inobt_update(cur, &rec);
1995 if (error) {
1996 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1997 __func__, error);
1998 goto error0;
1999 }
2000
2001 /*
2002 * Change the inode free counts and log the ag/sb changes.
2003 */
2004 be32_add_cpu(&agi->agi_freecount, 1);
2005 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2006 pag = xfs_perag_get(mp, agno);
2007 pag->pagi_freecount++;
2008 xfs_perag_put(pag);
2009 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2010 }
2011
2012 error = xfs_check_agi_freecount(cur, agi);
2013 if (error)
2014 goto error0;
2015
2016 *orec = rec;
2017 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2018 return 0;
2019
2020error0:
2021 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2022 return error;
2023}
2024
2025/*
2026 * Free an inode in the free inode btree.
2027 */
2028STATIC int
2029xfs_difree_finobt(
2030 struct xfs_mount *mp,
2031 struct xfs_trans *tp,
2032 struct xfs_buf *agbp,
2033 xfs_agino_t agino,
2034 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2035{
2036 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2037 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2038 struct xfs_btree_cur *cur;
2039 struct xfs_inobt_rec_incore rec;
2040 int offset = agino - ibtrec->ir_startino;
2041 int error;
2042 int i;
2043
2044 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2045
2046 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2047 if (error)
2048 goto error;
2049 if (i == 0) {
2050 /*
2051 * If the record does not exist in the finobt, we must have just
2052 * freed an inode in a previously fully allocated chunk. If not,
2053 * something is out of sync.
2054 */
2055 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2056
2057 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2058 ibtrec->ir_count,
2059 ibtrec->ir_freecount,
2060 ibtrec->ir_free, &i);
2061 if (error)
2062 goto error;
2063 ASSERT(i == 1);
2064
2065 goto out;
2066 }
2067
2068 /*
2069 * Read and update the existing record. We could just copy the ibtrec
2070 * across here, but that would defeat the purpose of having redundant
2071 * metadata. By making the modifications independently, we can catch
2072 * corruptions that we wouldn't see if we just copied from one record
2073 * to another.
2074 */
2075 error = xfs_inobt_get_rec(cur, &rec, &i);
2076 if (error)
2077 goto error;
2078 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2079
2080 rec.ir_free |= XFS_INOBT_MASK(offset);
2081 rec.ir_freecount++;
2082
2083 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2084 (rec.ir_freecount == ibtrec->ir_freecount),
2085 error);
2086
2087 /*
2088 * The content of inobt records should always match between the inobt
2089 * and finobt. The lifecycle of records in the finobt is different from
2090 * the inobt in that the finobt only tracks records with at least one
2091 * free inode. Hence, if all of the inodes are free and we aren't
2092 * keeping inode chunks permanently on disk, remove the record.
2093 * Otherwise, update the record with the new information.
2094 *
2095 * Note that we currently can't free chunks when the block size is large
2096 * enough for multiple chunks. Leave the finobt record to remain in sync
2097 * with the inobt.
2098 */
2099 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2100 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2101 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2102 error = xfs_btree_delete(cur, &i);
2103 if (error)
2104 goto error;
2105 ASSERT(i == 1);
2106 } else {
2107 error = xfs_inobt_update(cur, &rec);
2108 if (error)
2109 goto error;
2110 }
2111
2112out:
2113 error = xfs_check_agi_freecount(cur, agi);
2114 if (error)
2115 goto error;
2116
2117 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2118 return 0;
2119
2120error:
2121 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2122 return error;
2123}
2124
2125/*
2126 * Free disk inode. Carefully avoids touching the incore inode, all
2127 * manipulations incore are the caller's responsibility.
2128 * The on-disk inode is not changed by this operation, only the
2129 * btree (free inode mask) is changed.
2130 */
2131int
2132xfs_difree(
2133 struct xfs_trans *tp, /* transaction pointer */
2134 xfs_ino_t inode, /* inode to be freed */
2135 struct xfs_icluster *xic) /* cluster info if deleted */
2136{
2137 /* REFERENCED */
2138 xfs_agblock_t agbno; /* block number containing inode */
2139 struct xfs_buf *agbp; /* buffer for allocation group header */
2140 xfs_agino_t agino; /* allocation group inode number */
2141 xfs_agnumber_t agno; /* allocation group number */
2142 int error; /* error return value */
2143 struct xfs_mount *mp; /* mount structure for filesystem */
2144 struct xfs_inobt_rec_incore rec;/* btree record */
2145
2146 mp = tp->t_mountp;
2147
2148 /*
2149 * Break up inode number into its components.
2150 */
2151 agno = XFS_INO_TO_AGNO(mp, inode);
2152 if (agno >= mp->m_sb.sb_agcount) {
2153 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2154 __func__, agno, mp->m_sb.sb_agcount);
2155 ASSERT(0);
2156 return -EINVAL;
2157 }
2158 agino = XFS_INO_TO_AGINO(mp, inode);
2159 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2160 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2161 __func__, (unsigned long long)inode,
2162 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2163 ASSERT(0);
2164 return -EINVAL;
2165 }
2166 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2167 if (agbno >= mp->m_sb.sb_agblocks) {
2168 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2169 __func__, agbno, mp->m_sb.sb_agblocks);
2170 ASSERT(0);
2171 return -EINVAL;
2172 }
2173 /*
2174 * Get the allocation group header.
2175 */
2176 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2177 if (error) {
2178 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2179 __func__, error);
2180 return error;
2181 }
2182
2183 /*
2184 * Fix up the inode allocation btree.
2185 */
2186 error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec);
2187 if (error)
2188 goto error0;
2189
2190 /*
2191 * Fix up the free inode btree.
2192 */
2193 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2194 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2195 if (error)
2196 goto error0;
2197 }
2198
2199 return 0;
2200
2201error0:
2202 return error;
2203}
2204
2205STATIC int
2206xfs_imap_lookup(
2207 struct xfs_mount *mp,
2208 struct xfs_trans *tp,
2209 xfs_agnumber_t agno,
2210 xfs_agino_t agino,
2211 xfs_agblock_t agbno,
2212 xfs_agblock_t *chunk_agbno,
2213 xfs_agblock_t *offset_agbno,
2214 int flags)
2215{
2216 struct xfs_inobt_rec_incore rec;
2217 struct xfs_btree_cur *cur;
2218 struct xfs_buf *agbp;
2219 int error;
2220 int i;
2221
2222 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2223 if (error) {
2224 xfs_alert(mp,
2225 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2226 __func__, error, agno);
2227 return error;
2228 }
2229
2230 /*
2231 * Lookup the inode record for the given agino. If the record cannot be
2232 * found, then it's an invalid inode number and we should abort. Once
2233 * we have a record, we need to ensure it contains the inode number
2234 * we are looking up.
2235 */
2236 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2237 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2238 if (!error) {
2239 if (i)
2240 error = xfs_inobt_get_rec(cur, &rec, &i);
2241 if (!error && i == 0)
2242 error = -EINVAL;
2243 }
2244
2245 xfs_trans_brelse(tp, agbp);
2246 xfs_btree_del_cursor(cur, error);
2247 if (error)
2248 return error;
2249
2250 /* check that the returned record contains the required inode */
2251 if (rec.ir_startino > agino ||
2252 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2253 return -EINVAL;
2254
2255 /* for untrusted inodes check it is allocated first */
2256 if ((flags & XFS_IGET_UNTRUSTED) &&
2257 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2258 return -EINVAL;
2259
2260 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2261 *offset_agbno = agbno - *chunk_agbno;
2262 return 0;
2263}
2264
2265/*
2266 * Return the location of the inode in imap, for mapping it into a buffer.
2267 */
2268int
2269xfs_imap(
2270 xfs_mount_t *mp, /* file system mount structure */
2271 xfs_trans_t *tp, /* transaction pointer */
2272 xfs_ino_t ino, /* inode to locate */
2273 struct xfs_imap *imap, /* location map structure */
2274 uint flags) /* flags for inode btree lookup */
2275{
2276 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2277 xfs_agino_t agino; /* inode number within alloc group */
2278 xfs_agnumber_t agno; /* allocation group number */
2279 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2280 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2281 int error; /* error code */
2282 int offset; /* index of inode in its buffer */
2283 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2284
2285 ASSERT(ino != NULLFSINO);
2286
2287 /*
2288 * Split up the inode number into its parts.
2289 */
2290 agno = XFS_INO_TO_AGNO(mp, ino);
2291 agino = XFS_INO_TO_AGINO(mp, ino);
2292 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2293 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2294 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2295#ifdef DEBUG
2296 /*
2297 * Don't output diagnostic information for untrusted inodes
2298 * as they can be invalid without implying corruption.
2299 */
2300 if (flags & XFS_IGET_UNTRUSTED)
2301 return -EINVAL;
2302 if (agno >= mp->m_sb.sb_agcount) {
2303 xfs_alert(mp,
2304 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2305 __func__, agno, mp->m_sb.sb_agcount);
2306 }
2307 if (agbno >= mp->m_sb.sb_agblocks) {
2308 xfs_alert(mp,
2309 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2310 __func__, (unsigned long long)agbno,
2311 (unsigned long)mp->m_sb.sb_agblocks);
2312 }
2313 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2314 xfs_alert(mp,
2315 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2316 __func__, ino,
2317 XFS_AGINO_TO_INO(mp, agno, agino));
2318 }
2319 xfs_stack_trace();
2320#endif /* DEBUG */
2321 return -EINVAL;
2322 }
2323
2324 /*
2325 * For bulkstat and handle lookups, we have an untrusted inode number
2326 * that we have to verify is valid. We cannot do this just by reading
2327 * the inode buffer as it may have been unlinked and removed leaving
2328 * inodes in stale state on disk. Hence we have to do a btree lookup
2329 * in all cases where an untrusted inode number is passed.
2330 */
2331 if (flags & XFS_IGET_UNTRUSTED) {
2332 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2333 &chunk_agbno, &offset_agbno, flags);
2334 if (error)
2335 return error;
2336 goto out_map;
2337 }
2338
2339 /*
2340 * If the inode cluster size is the same as the blocksize or
2341 * smaller we get to the buffer by simple arithmetics.
2342 */
2343 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2344 offset = XFS_INO_TO_OFFSET(mp, ino);
2345 ASSERT(offset < mp->m_sb.sb_inopblock);
2346
2347 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2348 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2349 imap->im_boffset = (unsigned short)(offset <<
2350 mp->m_sb.sb_inodelog);
2351 return 0;
2352 }
2353
2354 /*
2355 * If the inode chunks are aligned then use simple maths to
2356 * find the location. Otherwise we have to do a btree
2357 * lookup to find the location.
2358 */
2359 if (M_IGEO(mp)->inoalign_mask) {
2360 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2361 chunk_agbno = agbno - offset_agbno;
2362 } else {
2363 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2364 &chunk_agbno, &offset_agbno, flags);
2365 if (error)
2366 return error;
2367 }
2368
2369out_map:
2370 ASSERT(agbno >= chunk_agbno);
2371 cluster_agbno = chunk_agbno +
2372 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2373 M_IGEO(mp)->blocks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Log specified fields for the ag hdr (inode section). The growth of the agi
2401 * structure over time requires that we interpret the buffer as two logical
2402 * regions delineated by the end of the unlinked list. This is due to the size
2403 * of the hash table and its location in the middle of the agi.
2404 *
2405 * For example, a request to log a field before agi_unlinked and a field after
2406 * agi_unlinked could cause us to log the entire hash table and use an excessive
2407 * amount of log space. To avoid this behavior, log the region up through
2408 * agi_unlinked in one call and the region after agi_unlinked through the end of
2409 * the structure in another.
2410 */
2411void
2412xfs_ialloc_log_agi(
2413 xfs_trans_t *tp, /* transaction pointer */
2414 xfs_buf_t *bp, /* allocation group header buffer */
2415 int fields) /* bitmask of fields to log */
2416{
2417 int first; /* first byte number */
2418 int last; /* last byte number */
2419 static const short offsets[] = { /* field starting offsets */
2420 /* keep in sync with bit definitions */
2421 offsetof(xfs_agi_t, agi_magicnum),
2422 offsetof(xfs_agi_t, agi_versionnum),
2423 offsetof(xfs_agi_t, agi_seqno),
2424 offsetof(xfs_agi_t, agi_length),
2425 offsetof(xfs_agi_t, agi_count),
2426 offsetof(xfs_agi_t, agi_root),
2427 offsetof(xfs_agi_t, agi_level),
2428 offsetof(xfs_agi_t, agi_freecount),
2429 offsetof(xfs_agi_t, agi_newino),
2430 offsetof(xfs_agi_t, agi_dirino),
2431 offsetof(xfs_agi_t, agi_unlinked),
2432 offsetof(xfs_agi_t, agi_free_root),
2433 offsetof(xfs_agi_t, agi_free_level),
2434 sizeof(xfs_agi_t)
2435 };
2436#ifdef DEBUG
2437 xfs_agi_t *agi; /* allocation group header */
2438
2439 agi = XFS_BUF_TO_AGI(bp);
2440 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2441#endif
2442
2443 /*
2444 * Compute byte offsets for the first and last fields in the first
2445 * region and log the agi buffer. This only logs up through
2446 * agi_unlinked.
2447 */
2448 if (fields & XFS_AGI_ALL_BITS_R1) {
2449 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2450 &first, &last);
2451 xfs_trans_log_buf(tp, bp, first, last);
2452 }
2453
2454 /*
2455 * Mask off the bits in the first region and calculate the first and
2456 * last field offsets for any bits in the second region.
2457 */
2458 fields &= ~XFS_AGI_ALL_BITS_R1;
2459 if (fields) {
2460 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2461 &first, &last);
2462 xfs_trans_log_buf(tp, bp, first, last);
2463 }
2464}
2465
2466static xfs_failaddr_t
2467xfs_agi_verify(
2468 struct xfs_buf *bp)
2469{
2470 struct xfs_mount *mp = bp->b_mount;
2471 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2472 int i;
2473
2474 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2475 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2476 return __this_address;
2477 if (!xfs_log_check_lsn(mp,
2478 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2479 return __this_address;
2480 }
2481
2482 /*
2483 * Validate the magic number of the agi block.
2484 */
2485 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2486 return __this_address;
2487 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2488 return __this_address;
2489
2490 if (be32_to_cpu(agi->agi_level) < 1 ||
2491 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2492 return __this_address;
2493
2494 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2495 (be32_to_cpu(agi->agi_free_level) < 1 ||
2496 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2497 return __this_address;
2498
2499 /*
2500 * during growfs operations, the perag is not fully initialised,
2501 * so we can't use it for any useful checking. growfs ensures we can't
2502 * use it by using uncached buffers that don't have the perag attached
2503 * so we can detect and avoid this problem.
2504 */
2505 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2506 return __this_address;
2507
2508 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2509 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2510 continue;
2511 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2512 return __this_address;
2513 }
2514
2515 return NULL;
2516}
2517
2518static void
2519xfs_agi_read_verify(
2520 struct xfs_buf *bp)
2521{
2522 struct xfs_mount *mp = bp->b_mount;
2523 xfs_failaddr_t fa;
2524
2525 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2526 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2527 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2528 else {
2529 fa = xfs_agi_verify(bp);
2530 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2531 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2532 }
2533}
2534
2535static void
2536xfs_agi_write_verify(
2537 struct xfs_buf *bp)
2538{
2539 struct xfs_mount *mp = bp->b_mount;
2540 struct xfs_buf_log_item *bip = bp->b_log_item;
2541 xfs_failaddr_t fa;
2542
2543 fa = xfs_agi_verify(bp);
2544 if (fa) {
2545 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2546 return;
2547 }
2548
2549 if (!xfs_sb_version_hascrc(&mp->m_sb))
2550 return;
2551
2552 if (bip)
2553 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2554 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2555}
2556
2557const struct xfs_buf_ops xfs_agi_buf_ops = {
2558 .name = "xfs_agi",
2559 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2560 .verify_read = xfs_agi_read_verify,
2561 .verify_write = xfs_agi_write_verify,
2562 .verify_struct = xfs_agi_verify,
2563};
2564
2565/*
2566 * Read in the allocation group header (inode allocation section)
2567 */
2568int
2569xfs_read_agi(
2570 struct xfs_mount *mp, /* file system mount structure */
2571 struct xfs_trans *tp, /* transaction pointer */
2572 xfs_agnumber_t agno, /* allocation group number */
2573 struct xfs_buf **bpp) /* allocation group hdr buf */
2574{
2575 int error;
2576
2577 trace_xfs_read_agi(mp, agno);
2578
2579 ASSERT(agno != NULLAGNUMBER);
2580 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2581 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2582 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2583 if (error)
2584 return error;
2585 if (tp)
2586 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2587
2588 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2589 return 0;
2590}
2591
2592int
2593xfs_ialloc_read_agi(
2594 struct xfs_mount *mp, /* file system mount structure */
2595 struct xfs_trans *tp, /* transaction pointer */
2596 xfs_agnumber_t agno, /* allocation group number */
2597 struct xfs_buf **bpp) /* allocation group hdr buf */
2598{
2599 struct xfs_agi *agi; /* allocation group header */
2600 struct xfs_perag *pag; /* per allocation group data */
2601 int error;
2602
2603 trace_xfs_ialloc_read_agi(mp, agno);
2604
2605 error = xfs_read_agi(mp, tp, agno, bpp);
2606 if (error)
2607 return error;
2608
2609 agi = XFS_BUF_TO_AGI(*bpp);
2610 pag = xfs_perag_get(mp, agno);
2611 if (!pag->pagi_init) {
2612 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2613 pag->pagi_count = be32_to_cpu(agi->agi_count);
2614 pag->pagi_init = 1;
2615 }
2616
2617 /*
2618 * It's possible for these to be out of sync if
2619 * we are in the middle of a forced shutdown.
2620 */
2621 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2622 XFS_FORCED_SHUTDOWN(mp));
2623 xfs_perag_put(pag);
2624 return 0;
2625}
2626
2627/*
2628 * Read in the agi to initialise the per-ag data in the mount structure
2629 */
2630int
2631xfs_ialloc_pagi_init(
2632 xfs_mount_t *mp, /* file system mount structure */
2633 xfs_trans_t *tp, /* transaction pointer */
2634 xfs_agnumber_t agno) /* allocation group number */
2635{
2636 xfs_buf_t *bp = NULL;
2637 int error;
2638
2639 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2640 if (error)
2641 return error;
2642 if (bp)
2643 xfs_trans_brelse(tp, bp);
2644 return 0;
2645}
2646
2647/* Is there an inode record covering a given range of inode numbers? */
2648int
2649xfs_ialloc_has_inode_record(
2650 struct xfs_btree_cur *cur,
2651 xfs_agino_t low,
2652 xfs_agino_t high,
2653 bool *exists)
2654{
2655 struct xfs_inobt_rec_incore irec;
2656 xfs_agino_t agino;
2657 uint16_t holemask;
2658 int has_record;
2659 int i;
2660 int error;
2661
2662 *exists = false;
2663 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2664 while (error == 0 && has_record) {
2665 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2666 if (error || irec.ir_startino > high)
2667 break;
2668
2669 agino = irec.ir_startino;
2670 holemask = irec.ir_holemask;
2671 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2672 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2673 if (holemask & 1)
2674 continue;
2675 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2676 agino <= high) {
2677 *exists = true;
2678 return 0;
2679 }
2680 }
2681
2682 error = xfs_btree_increment(cur, 0, &has_record);
2683 }
2684 return error;
2685}
2686
2687/* Is there an inode record covering a given extent? */
2688int
2689xfs_ialloc_has_inodes_at_extent(
2690 struct xfs_btree_cur *cur,
2691 xfs_agblock_t bno,
2692 xfs_extlen_t len,
2693 bool *exists)
2694{
2695 xfs_agino_t low;
2696 xfs_agino_t high;
2697
2698 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2699 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2700
2701 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2702}
2703
2704struct xfs_ialloc_count_inodes {
2705 xfs_agino_t count;
2706 xfs_agino_t freecount;
2707};
2708
2709/* Record inode counts across all inobt records. */
2710STATIC int
2711xfs_ialloc_count_inodes_rec(
2712 struct xfs_btree_cur *cur,
2713 union xfs_btree_rec *rec,
2714 void *priv)
2715{
2716 struct xfs_inobt_rec_incore irec;
2717 struct xfs_ialloc_count_inodes *ci = priv;
2718
2719 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2720 ci->count += irec.ir_count;
2721 ci->freecount += irec.ir_freecount;
2722
2723 return 0;
2724}
2725
2726/* Count allocated and free inodes under an inobt. */
2727int
2728xfs_ialloc_count_inodes(
2729 struct xfs_btree_cur *cur,
2730 xfs_agino_t *count,
2731 xfs_agino_t *freecount)
2732{
2733 struct xfs_ialloc_count_inodes ci = {0};
2734 int error;
2735
2736 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2737 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2738 if (error)
2739 return error;
2740
2741 *count = ci.count;
2742 *freecount = ci.freecount;
2743 return 0;
2744}
2745
2746/*
2747 * Initialize inode-related geometry information.
2748 *
2749 * Compute the inode btree min and max levels and set maxicount.
2750 *
2751 * Set the inode cluster size. This may still be overridden by the file
2752 * system block size if it is larger than the chosen cluster size.
2753 *
2754 * For v5 filesystems, scale the cluster size with the inode size to keep a
2755 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2756 * inode alignment value appropriately for larger cluster sizes.
2757 *
2758 * Then compute the inode cluster alignment information.
2759 */
2760void
2761xfs_ialloc_setup_geometry(
2762 struct xfs_mount *mp)
2763{
2764 struct xfs_sb *sbp = &mp->m_sb;
2765 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2766 uint64_t icount;
2767 uint inodes;
2768
2769 /* Compute inode btree geometry. */
2770 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2771 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2772 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2773 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2774 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2775
2776 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2777 sbp->sb_inopblock);
2778 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2779
2780 if (sbp->sb_spino_align)
2781 igeo->ialloc_min_blks = sbp->sb_spino_align;
2782 else
2783 igeo->ialloc_min_blks = igeo->ialloc_blks;
2784
2785 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2786 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2787 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2788 inodes);
2789
2790 /*
2791 * Set the maximum inode count for this filesystem, being careful not
2792 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2793 * users should never get here due to failing sb verification, but
2794 * certain users (xfs_db) need to be usable even with corrupt metadata.
2795 */
2796 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2797 /*
2798 * Make sure the maximum inode count is a multiple
2799 * of the units we allocate inodes in.
2800 */
2801 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2802 do_div(icount, 100);
2803 do_div(icount, igeo->ialloc_blks);
2804 igeo->maxicount = XFS_FSB_TO_INO(mp,
2805 icount * igeo->ialloc_blks);
2806 } else {
2807 igeo->maxicount = 0;
2808 }
2809
2810 /*
2811 * Compute the desired size of an inode cluster buffer size, which
2812 * starts at 8K and (on v5 filesystems) scales up with larger inode
2813 * sizes.
2814 *
2815 * Preserve the desired inode cluster size because the sparse inodes
2816 * feature uses that desired size (not the actual size) to compute the
2817 * sparse inode alignment. The mount code validates this value, so we
2818 * cannot change the behavior.
2819 */
2820 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2821 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2822 int new_size = igeo->inode_cluster_size_raw;
2823
2824 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2825 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2826 igeo->inode_cluster_size_raw = new_size;
2827 }
2828
2829 /* Calculate inode cluster ratios. */
2830 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2831 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2832 igeo->inode_cluster_size_raw);
2833 else
2834 igeo->blocks_per_cluster = 1;
2835 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2836 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2837
2838 /* Calculate inode cluster alignment. */
2839 if (xfs_sb_version_hasalign(&mp->m_sb) &&
2840 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2841 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2842 else
2843 igeo->cluster_align = 1;
2844 igeo->inoalign_mask = igeo->cluster_align - 1;
2845 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2846
2847 /*
2848 * If we are using stripe alignment, check whether
2849 * the stripe unit is a multiple of the inode alignment
2850 */
2851 if (mp->m_dalign && igeo->inoalign_mask &&
2852 !(mp->m_dalign & igeo->inoalign_mask))
2853 igeo->ialloc_align = mp->m_dalign;
2854 else
2855 igeo->ialloc_align = 0;
2856}