Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_errortag.h"
35#include "xfs_error.h"
36#include "xfs_bmap.h"
37#include "xfs_cksum.h"
38#include "xfs_trans.h"
39#include "xfs_buf_item.h"
40#include "xfs_icreate_item.h"
41#include "xfs_icache.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44#include "xfs_rmap.h"
45
46
47/*
48 * Allocation group level functions.
49 */
50int
51xfs_ialloc_cluster_alignment(
52 struct xfs_mount *mp)
53{
54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 return mp->m_sb.sb_inoalignmt;
57 return 1;
58}
59
60/*
61 * Lookup a record by ino in the btree given by cur.
62 */
63int /* error */
64xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
69{
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
76}
77
78/*
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
81 */
82STATIC int /* error */
83xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
85 xfs_inobt_rec_incore_t *irec) /* btree record */
86{
87 union xfs_btree_rec rec;
88
89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 }
98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 return xfs_btree_update(cur, &rec);
100}
101
102/* Convert on-disk btree record to incore inobt record. */
103void
104xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
108{
109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
115 /*
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
118 */
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
123 }
124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
125}
126
127/*
128 * Get the data from the pointed-to record.
129 */
130int
131xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
135{
136 union xfs_btree_rec *rec;
137 int error;
138
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
142
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
144
145 return 0;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151STATIC int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs, blks_per_cluster, inodes_per_cluster;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
288
289 /*
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
295 *
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
301 *
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
307 */
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
312
313 /*
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
320 */
321 if (tp)
322 xfs_icreate_log(tp, agno, agbno, icount,
323 mp->m_sb.sb_inodesize, length, gen);
324 } else
325 version = 2;
326
327 for (j = 0; j < nbufs; j++) {
328 /*
329 * Get the block.
330 */
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
335 if (!fbuf)
336 return -ENOMEM;
337
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf->b_ops = &xfs_inode_buf_ops;
340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 for (i = 0; i < inodes_per_cluster; i++) {
342 int ioffset = i << mp->m_sb.sb_inodelog;
343 uint isize = xfs_dinode_size(version);
344
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
350
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
356 xfs_dinode_calc_crc(mp, free);
357 } else if (tp) {
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
361 }
362 }
363
364 if (tp) {
365 /*
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
372 */
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
375 /*
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
380 */
381 xfs_trans_ordered_buf(tp, fbuf);
382 }
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
387 }
388 }
389 return 0;
390}
391
392/*
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
395 *
396 * Background:
397 *
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
406 *
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
414 */
415STATIC void
416xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
420{
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
424
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
429
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
433
434 /*
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
438 */
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440}
441
442/*
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
446 */
447STATIC bool
448__xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
451{
452 uint64_t talloc;
453 uint64_t salloc;
454
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
458
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
463
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
467
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
471
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
477
478 return true;
479}
480
481/*
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
484 */
485STATIC void
486__xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
489{
490 ASSERT(trec->ir_startino == srec->ir_startino);
491
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
495
496 /*
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 */
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
502}
503
504/*
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
509 *
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
515 *
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
518 */
519STATIC int
520xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
527{
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
534
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549
550 goto out;
551 }
552
553 /*
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
556 */
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
565
566 /*
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
569 */
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
572
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
579
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
582
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
586 }
587
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
591
592out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
598}
599
600/*
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
603 */
604STATIC int /* error code or 0 */
605xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
609{
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
612 xfs_agnumber_t agno;
613 int error;
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
616 int isaligned = 0; /* inode allocation at stripe unit */
617 /* boundary */
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 int do_sparse = 0;
622
623 memset(&args, 0, sizeof(args));
624 args.tp = tp;
625 args.mp = tp->t_mountp;
626 args.fsbno = NULLFSBLOCK;
627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
628
629#ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634#endif
635
636 /*
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
639 */
640 newlen = args.mp->m_ialloc_inos;
641 if (args.mp->m_maxicount &&
642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 args.mp->m_maxicount)
644 return -ENOSPC;
645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
646 /*
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
650 */
651 agi = XFS_BUF_TO_AGI(agbp);
652 newino = be32_to_cpu(agi->agi_newino);
653 agno = be32_to_cpu(agi->agi_seqno);
654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 args.mp->m_ialloc_blks;
656 if (do_sparse)
657 goto sparse_alloc;
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 args.type = XFS_ALLOCTYPE_THIS_BNO;
662 args.prod = 1;
663
664 /*
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
670 *
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
676 */
677 args.alignment = 1;
678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
679
680 /* Allow space for the inode btree to split. */
681 args.minleft = args.mp->m_in_maxlevels - 1;
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
684
685 /*
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
694 */
695 args.minalignslop = 0;
696 }
697
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 /*
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
706 */
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
712 } else
713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
714 /*
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
718 */
719 args.agbno = be32_to_cpu(agi->agi_root);
720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
721 /*
722 * Allocate a fixed-size extent of inodes.
723 */
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.prod = 1;
726 /*
727 * Allow space for the inode btree to split.
728 */
729 args.minleft = args.mp->m_in_maxlevels - 1;
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
734 /*
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
737 */
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
745 }
746
747 /*
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
750 */
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
754sparse_alloc:
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
760
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
763
764 /*
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
769 *
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
773 */
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
778
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
782
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
791 }
792 ASSERT(args.len == args.minlen);
793
794 /*
795 * Stamp and write the inode buffers.
796 *
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
802 */
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
805
806 if (error)
807 return error;
808 /*
809 * Convert the results.
810 */
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
812
813 if (xfs_inobt_issparse(~allocmask)) {
814 /*
815 * We've allocated a sparse chunk. Align the startino and mask.
816 */
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
824
825 /*
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
829 */
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 }
840 if (error)
841 return error;
842
843 /*
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
848 *
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
853 */
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
860 }
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
867
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
873 }
874 }
875
876 /*
877 * Update AGI counts and newino.
878 */
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
884 agi->agi_newino = cpu_to_be32(newino);
885
886 /*
887 * Log allocation group header fields
888 */
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 /*
892 * Modify/log superblock values for inode count and inode free count.
893 */
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
898}
899
900STATIC xfs_agnumber_t
901xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
903{
904 xfs_agnumber_t agno;
905
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
908 if (++mp->m_agirotor >= mp->m_maxagi)
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
911
912 return agno;
913}
914
915/*
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
918 */
919STATIC xfs_agnumber_t
920xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
923 umode_t mode) /* bits set to indicate file type */
924{
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
950
951 ASSERT(pagno < agcount);
952
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
973 }
974
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
978 }
979
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
983 goto nextag;
984 }
985
986 /*
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
995 *
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1001 */
1002 ineed = mp->m_ialloc_min_blks;
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1008
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1013 }
1014nextag:
1015 xfs_perag_put(pag);
1016 /*
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1019 */
1020 if (XFS_FORCED_SHUTDOWN(mp))
1021 return NULLAGNUMBER;
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1026 if (flags == 0)
1027 return NULLAGNUMBER;
1028 flags = 0;
1029 }
1030 }
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1042{
1043 int error;
1044 int i;
1045
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1050
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1059 }
1060
1061 return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
1069 int *done)
1070{
1071 int error;
1072 int i;
1073
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1083 }
1084
1085 return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1096{
1097 xfs_inofree_t realfree;
1098
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1102
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1105
1106 return xfs_lowbit64(realfree);
1107}
1108
1109/*
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1118{
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
1131 int searchdistance = 10;
1132
1133 pag = xfs_perag_get(mp, agno);
1134
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141 /*
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1144 */
1145 if (!pagino)
1146 pagino = be32_to_cpu(agi->agi_newino);
1147
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1151
1152 /*
1153 * If in the same AG as the parent, try to get near the parent.
1154 */
1155 if (pagno == agno) {
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1158
1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1163
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1168
1169 if (rec.ir_freecount > 0) {
1170 /*
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1173 */
1174 goto alloc_inode;
1175 }
1176
1177
1178 /*
1179 * In the same AG as parent, but parent's chunk is full.
1180 */
1181
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1186
1187 /*
1188 * Skip to last blocks looked up if same parent inode.
1189 */
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 &trec, &doneleft);
1196 if (error)
1197 goto error1;
1198
1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 &rec, &doneright);
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1208
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1213 }
1214
1215 /*
1216 * Loop until we find an inode chunk with a free inode.
1217 */
1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 int useleft; /* using left inode chunk this time */
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1228 }
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
1234
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
1238 rec = trec;
1239 goto alloc_inode;
1240 }
1241
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1250 }
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1262 }
1263
1264 if (searchdistance <= 0) {
1265 /*
1266 * Not in range - save last search
1267 * location and allocate a new inode
1268 */
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1273
1274 } else {
1275 /*
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1281 */
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1288 }
1289 }
1290
1291 /*
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1294 */
1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
1298 if (error)
1299 goto error0;
1300
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1305
1306 if (j == 1 && rec.ir_freecount > 0) {
1307 /*
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1310 */
1311 goto alloc_inode;
1312 }
1313 }
1314 }
1315
1316 /*
1317 * None left in the last group, search the whole AG
1318 */
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 }
1336
1337alloc_inode:
1338 offset = xfs_inobt_first_free_inode(&rec);
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1352
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1356
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 xfs_perag_put(pag);
1360 *inop = ino;
1361 return 0;
1362error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 xfs_perag_put(pag);
1367 return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1379{
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1385
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1389
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1395
1396 /*
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1400 */
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1404 }
1405
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1409
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1418 }
1419
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 if (i == 1 && j == 1) {
1422 /*
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1425 */
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443
1444 return 0;
1445
1446error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1460{
1461 int error;
1462 int i;
1463
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 return 0;
1475 }
1476 }
1477
1478 /*
1479 * Find the first inode available in the AG.
1480 */
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490
1491 return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1503{
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1507
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1519
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1522
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 (rec.ir_freecount == frec->ir_freecount));
1525
1526 return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1542{
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1556
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560 pag = xfs_perag_get(mp, agno);
1561
1562 /*
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1565 */
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1568
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1579 */
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1586
1587 offset = xfs_inobt_first_free_inode(&rec);
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594 /*
1595 * Modify or remove the finobt record.
1596 */
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1605
1606 /*
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1611 */
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1617
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1621
1622 /*
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1625 */
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1629
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1638
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1644
1645error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
1679 struct xfs_buf **IO_agbp,
1680 xfs_ino_t *inop)
1681{
1682 struct xfs_mount *mp = tp->t_mountp;
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
1688 xfs_agnumber_t start_agno;
1689 struct xfs_perag *pag;
1690 int okalloc = 1;
1691
1692 if (*IO_agbp) {
1693 /*
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1697 */
1698 agbp = *IO_agbp;
1699 goto out_alloc;
1700 }
1701
1702 /*
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1705 */
1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 if (start_agno == NULLAGNUMBER) {
1708 *inop = NULLFSINO;
1709 return 0;
1710 }
1711
1712 /*
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
1716 *
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1719 */
1720 if (mp->m_maxicount &&
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
1723 noroom = 1;
1724 okalloc = 0;
1725 }
1726
1727 /*
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1731 */
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1738 }
1739
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
1744 }
1745
1746 /*
1747 * Do a first racy fast path check if this AG is usable.
1748 */
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1751
1752 /*
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1755 */
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1759
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1763 }
1764
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1767
1768
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1772
1773 if (error != -ENOSPC)
1774 goto out_error;
1775
1776 xfs_perag_put(pag);
1777 *inop = NULLFSINO;
1778 return 0;
1779 }
1780
1781 if (ialloced) {
1782 /*
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1787 */
1788 ASSERT(pag->pagi_freecount > 0);
1789 xfs_perag_put(pag);
1790
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
1794 }
1795
1796nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
1798nextag:
1799 xfs_perag_put(pag);
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
1804 return noroom ? -ENOSPC : 0;
1805 }
1806 }
1807
1808out_alloc:
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812 xfs_perag_put(pag);
1813 return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
1826 struct xfs_defer_ops *dfops)
1827{
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
1833 struct xfs_owner_info oinfo;
1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 mp->m_ialloc_blks, &oinfo);
1841 return;
1842 }
1843
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1847
1848 /*
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1853 */
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1860 /*
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1863 */
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1868 }
1869
1870 /*
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1874 */
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 contigblk, &oinfo);
1885
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1888
1889next:
1890 nextbit++;
1891 }
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
1900 struct xfs_defer_ops *dfops,
1901 struct xfs_icluster *xic,
1902 struct xfs_inobt_rec_incore *orec)
1903{
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1913
1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917 /*
1918 * Initialize the cursor.
1919 */
1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1925
1926 /*
1927 * Look for the entry describing this inode.
1928 */
1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1939 goto error0;
1940 }
1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1942 /*
1943 * Get the offset in the inode chunk.
1944 */
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948 /*
1949 * Mark the inode free & increment the count.
1950 */
1951 rec.ir_free |= XFS_INOBT_MASK(off);
1952 rec.ir_freecount++;
1953
1954 /*
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1958 */
1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 xic->deleted = true;
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981 if ((error = xfs_btree_delete(cur, &i))) {
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1984 goto error0;
1985 }
1986
1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 } else {
1989 xic->deleted = false;
1990
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1995 goto error0;
1996 }
1997
1998 /*
1999 * Change the inode free counts and log the ag/sb changes.
2000 */
2001 be32_add_cpu(&agi->agi_freecount, 1);
2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 }
2008
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
2012
2013 *orec = rec;
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2016
2017error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2032{
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2040
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2047 /*
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2051 */
2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2053
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2061
2062 goto out;
2063 }
2064
2065 /*
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2071 */
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2083
2084 /*
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2091 *
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
2095 */
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120}
2121
2122/*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2132 struct xfs_defer_ops *dfops, /* extents to free */
2133 struct xfs_icluster *xic) /* cluster info if deleted */
2134{
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144 mp = tp->t_mountp;
2145
2146 /*
2147 * Break up inode number into its components.
2148 */
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2154 return -EINVAL;
2155 }
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2162 return -EINVAL;
2163 }
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2169 return -EINVAL;
2170 }
2171 /*
2172 * Get the allocation group header.
2173 */
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2179 }
2180
2181 /*
2182 * Fix up the inode allocation btree.
2183 */
2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 if (error)
2186 goto error0;
2187
2188 /*
2189 * Fix up the free inode btree.
2190 */
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2195 }
2196
2197 return 0;
2198
2199error0:
2200 return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2213{
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
2217 int error;
2218 int i;
2219
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
2225 return error;
2226 }
2227
2228 /*
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2233 */
2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2240 error = -EINVAL;
2241 }
2242
2243 xfs_trans_brelse(tp, agbp);
2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 if (error)
2246 return error;
2247
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 return -EINVAL;
2252
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags & XFS_IGET_UNTRUSTED) &&
2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 return -EINVAL;
2257
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
2270 xfs_ino_t ino, /* inode to locate */
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
2273{
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2280 int error; /* error code */
2281 int offset; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2283
2284 ASSERT(ino != NULLFSINO);
2285
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294#ifdef DEBUG
2295 /*
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2298 */
2299 if (flags & XFS_IGET_UNTRUSTED)
2300 return -EINVAL;
2301 if (agno >= mp->m_sb.sb_agcount) {
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
2305 }
2306 if (agbno >= mp->m_sb.sb_agblocks) {
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
2311 }
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
2317 }
2318 xfs_stack_trace();
2319#endif /* DEBUG */
2320 return -EINVAL;
2321 }
2322
2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2338 }
2339
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
2344 if (blks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 return 0;
2353 }
2354
2355 /*
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2359 */
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
2366 if (error)
2367 return error;
2368 }
2369
2370out_map:
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2405{
2406 uint inodes;
2407
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2430{
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
2448 sizeof(xfs_agi_t)
2449 };
2450#ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2452
2453 agi = XFS_BUF_TO_AGI(bp);
2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457 /*
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
2461 */
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
2468 /*
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2471 */
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2500
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return __this_address;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 return __this_address;
2507 }
2508
2509 /*
2510 * Validate the magic number of the agi block.
2511 */
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return __this_address;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return __this_address;
2516
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 return __this_address;
2520
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 return __this_address;
2525
2526 /*
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2531 */
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return __this_address;
2534
2535 xfs_check_agi_unlinked(agi);
2536 return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541 struct xfs_buf *bp)
2542{
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 xfs_failaddr_t fa;
2545
2546 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 else {
2550 fa = xfs_agi_verify(bp);
2551 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 }
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558 struct xfs_buf *bp)
2559{
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_log_item;
2562 xfs_failaddr_t fa;
2563
2564 fa = xfs_agi_verify(bp);
2565 if (fa) {
2566 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 return;
2568 }
2569
2570 if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 return;
2572
2573 if (bip)
2574 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 .name = "xfs_agi",
2580 .verify_read = xfs_agi_read_verify,
2581 .verify_write = xfs_agi_write_verify,
2582 .verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590 struct xfs_mount *mp, /* file system mount structure */
2591 struct xfs_trans *tp, /* transaction pointer */
2592 xfs_agnumber_t agno, /* allocation group number */
2593 struct xfs_buf **bpp) /* allocation group hdr buf */
2594{
2595 int error;
2596
2597 trace_xfs_read_agi(mp, agno);
2598
2599 ASSERT(agno != NULLAGNUMBER);
2600 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 if (error)
2604 return error;
2605 if (tp)
2606 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 return 0;
2610}
2611
2612int
2613xfs_ialloc_read_agi(
2614 struct xfs_mount *mp, /* file system mount structure */
2615 struct xfs_trans *tp, /* transaction pointer */
2616 xfs_agnumber_t agno, /* allocation group number */
2617 struct xfs_buf **bpp) /* allocation group hdr buf */
2618{
2619 struct xfs_agi *agi; /* allocation group header */
2620 struct xfs_perag *pag; /* per allocation group data */
2621 int error;
2622
2623 trace_xfs_ialloc_read_agi(mp, agno);
2624
2625 error = xfs_read_agi(mp, tp, agno, bpp);
2626 if (error)
2627 return error;
2628
2629 agi = XFS_BUF_TO_AGI(*bpp);
2630 pag = xfs_perag_get(mp, agno);
2631 if (!pag->pagi_init) {
2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 pag->pagi_init = 1;
2635 }
2636
2637 /*
2638 * It's possible for these to be out of sync if
2639 * we are in the middle of a forced shutdown.
2640 */
2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 XFS_FORCED_SHUTDOWN(mp));
2643 xfs_perag_put(pag);
2644 return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652 xfs_mount_t *mp, /* file system mount structure */
2653 xfs_trans_t *tp, /* transaction pointer */
2654 xfs_agnumber_t agno) /* allocation group number */
2655{
2656 xfs_buf_t *bp = NULL;
2657 int error;
2658
2659 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 if (error)
2661 return error;
2662 if (bp)
2663 xfs_trans_brelse(tp, bp);
2664 return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t *first,
2673 xfs_agino_t *last)
2674{
2675 xfs_agblock_t bno;
2676 xfs_agblock_t eoag;
2677
2678 eoag = xfs_ag_block_count(mp, agno);
2679
2680 /*
2681 * Calculate the first inode, which will be in the first
2682 * cluster-aligned block after the AGFL.
2683 */
2684 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 xfs_ialloc_cluster_alignment(mp));
2686 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688 /*
2689 * Calculate the last inode, which will be at the end of the
2690 * last (aligned) cluster that can be allocated in the AG.
2691 */
2692 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702 struct xfs_mount *mp,
2703 xfs_agnumber_t agno,
2704 xfs_agino_t agino)
2705{
2706 xfs_agino_t first;
2707 xfs_agino_t last;
2708
2709 xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719 struct xfs_mount *mp,
2720 xfs_ino_t ino)
2721{
2722 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2723 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725 if (agno >= mp->m_sb.sb_agcount)
2726 return false;
2727 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 return false;
2729 return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735 struct xfs_mount *mp,
2736 xfs_ino_t ino)
2737{
2738 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 (xfs_sb_version_hasquota(&mp->m_sb) &&
2740 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749 struct xfs_mount *mp,
2750 xfs_ino_t ino)
2751{
2752 if (xfs_internal_inum(mp, ino))
2753 return false;
2754 return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760 struct xfs_btree_cur *cur,
2761 xfs_agino_t low,
2762 xfs_agino_t high,
2763 bool *exists)
2764{
2765 struct xfs_inobt_rec_incore irec;
2766 xfs_agino_t agino;
2767 uint16_t holemask;
2768 int has_record;
2769 int i;
2770 int error;
2771
2772 *exists = false;
2773 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 while (error == 0 && has_record) {
2775 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 if (error || irec.ir_startino > high)
2777 break;
2778
2779 agino = irec.ir_startino;
2780 holemask = irec.ir_holemask;
2781 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 if (holemask & 1)
2784 continue;
2785 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 agino <= high) {
2787 *exists = true;
2788 return 0;
2789 }
2790 }
2791
2792 error = xfs_btree_increment(cur, 0, &has_record);
2793 }
2794 return error;
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800 struct xfs_btree_cur *cur,
2801 xfs_agblock_t bno,
2802 xfs_extlen_t len,
2803 bool *exists)
2804{
2805 xfs_agino_t low;
2806 xfs_agino_t high;
2807
2808 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810
2811 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 union xfs_btree_rec *rec,
2824 void *priv)
2825{
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2828
2829 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 ci->count += irec.ir_count;
2831 ci->freecount += irec.ir_freecount;
2832
2833 return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839 struct xfs_btree_cur *cur,
2840 xfs_agino_t *count,
2841 xfs_agino_t *freecount)
2842{
2843 struct xfs_ialloc_count_inodes ci = {0};
2844 int error;
2845
2846 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 if (error)
2849 return error;
2850
2851 *count = ci.count;
2852 *freecount = ci.freecount;
2853 return 0;
2854}
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_inode.h"
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
30#include "xfs_ialloc_btree.h"
31#include "xfs_alloc.h"
32#include "xfs_rtalloc.h"
33#include "xfs_error.h"
34#include "xfs_bmap.h"
35#include "xfs_cksum.h"
36#include "xfs_trans.h"
37#include "xfs_buf_item.h"
38#include "xfs_icreate_item.h"
39#include "xfs_icache.h"
40#include "xfs_trace.h"
41#include "xfs_log.h"
42
43
44/*
45 * Allocation group level functions.
46 */
47static inline int
48xfs_ialloc_cluster_alignment(
49 struct xfs_mount *mp)
50{
51 if (xfs_sb_version_hasalign(&mp->m_sb) &&
52 mp->m_sb.sb_inoalignmt >=
53 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
54 return mp->m_sb.sb_inoalignmt;
55 return 1;
56}
57
58/*
59 * Lookup a record by ino in the btree given by cur.
60 */
61int /* error */
62xfs_inobt_lookup(
63 struct xfs_btree_cur *cur, /* btree cursor */
64 xfs_agino_t ino, /* starting inode of chunk */
65 xfs_lookup_t dir, /* <=, >=, == */
66 int *stat) /* success/failure */
67{
68 cur->bc_rec.i.ir_startino = ino;
69 cur->bc_rec.i.ir_holemask = 0;
70 cur->bc_rec.i.ir_count = 0;
71 cur->bc_rec.i.ir_freecount = 0;
72 cur->bc_rec.i.ir_free = 0;
73 return xfs_btree_lookup(cur, dir, stat);
74}
75
76/*
77 * Update the record referred to by cur to the value given.
78 * This either works (return 0) or gets an EFSCORRUPTED error.
79 */
80STATIC int /* error */
81xfs_inobt_update(
82 struct xfs_btree_cur *cur, /* btree cursor */
83 xfs_inobt_rec_incore_t *irec) /* btree record */
84{
85 union xfs_btree_rec rec;
86
87 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
88 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
89 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
90 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
91 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
92 } else {
93 /* ir_holemask/ir_count not supported on-disk */
94 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
95 }
96 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
97 return xfs_btree_update(cur, &rec);
98}
99
100/*
101 * Get the data from the pointed-to record.
102 */
103int /* error */
104xfs_inobt_get_rec(
105 struct xfs_btree_cur *cur, /* btree cursor */
106 xfs_inobt_rec_incore_t *irec, /* btree record */
107 int *stat) /* output: success/failure */
108{
109 union xfs_btree_rec *rec;
110 int error;
111
112 error = xfs_btree_get_rec(cur, &rec, stat);
113 if (error || *stat == 0)
114 return error;
115
116 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
117 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
118 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
119 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
120 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
121 } else {
122 /*
123 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
124 * values for full inode chunks.
125 */
126 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
127 irec->ir_count = XFS_INODES_PER_CHUNK;
128 irec->ir_freecount =
129 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
130 }
131 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
132
133 return 0;
134}
135
136/*
137 * Insert a single inobt record. Cursor must already point to desired location.
138 */
139STATIC int
140xfs_inobt_insert_rec(
141 struct xfs_btree_cur *cur,
142 __uint16_t holemask,
143 __uint8_t count,
144 __int32_t freecount,
145 xfs_inofree_t free,
146 int *stat)
147{
148 cur->bc_rec.i.ir_holemask = holemask;
149 cur->bc_rec.i.ir_count = count;
150 cur->bc_rec.i.ir_freecount = freecount;
151 cur->bc_rec.i.ir_free = free;
152 return xfs_btree_insert(cur, stat);
153}
154
155/*
156 * Insert records describing a newly allocated inode chunk into the inobt.
157 */
158STATIC int
159xfs_inobt_insert(
160 struct xfs_mount *mp,
161 struct xfs_trans *tp,
162 struct xfs_buf *agbp,
163 xfs_agino_t newino,
164 xfs_agino_t newlen,
165 xfs_btnum_t btnum)
166{
167 struct xfs_btree_cur *cur;
168 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
169 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
170 xfs_agino_t thisino;
171 int i;
172 int error;
173
174 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
175
176 for (thisino = newino;
177 thisino < newino + newlen;
178 thisino += XFS_INODES_PER_CHUNK) {
179 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
180 if (error) {
181 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
182 return error;
183 }
184 ASSERT(i == 0);
185
186 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
187 XFS_INODES_PER_CHUNK,
188 XFS_INODES_PER_CHUNK,
189 XFS_INOBT_ALL_FREE, &i);
190 if (error) {
191 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
192 return error;
193 }
194 ASSERT(i == 1);
195 }
196
197 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
198
199 return 0;
200}
201
202/*
203 * Verify that the number of free inodes in the AGI is correct.
204 */
205#ifdef DEBUG
206STATIC int
207xfs_check_agi_freecount(
208 struct xfs_btree_cur *cur,
209 struct xfs_agi *agi)
210{
211 if (cur->bc_nlevels == 1) {
212 xfs_inobt_rec_incore_t rec;
213 int freecount = 0;
214 int error;
215 int i;
216
217 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
218 if (error)
219 return error;
220
221 do {
222 error = xfs_inobt_get_rec(cur, &rec, &i);
223 if (error)
224 return error;
225
226 if (i) {
227 freecount += rec.ir_freecount;
228 error = xfs_btree_increment(cur, 0, &i);
229 if (error)
230 return error;
231 }
232 } while (i == 1);
233
234 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
235 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
236 }
237 return 0;
238}
239#else
240#define xfs_check_agi_freecount(cur, agi) 0
241#endif
242
243/*
244 * Initialise a new set of inodes. When called without a transaction context
245 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
246 * than logging them (which in a transaction context puts them into the AIL
247 * for writeback rather than the xfsbufd queue).
248 */
249int
250xfs_ialloc_inode_init(
251 struct xfs_mount *mp,
252 struct xfs_trans *tp,
253 struct list_head *buffer_list,
254 int icount,
255 xfs_agnumber_t agno,
256 xfs_agblock_t agbno,
257 xfs_agblock_t length,
258 unsigned int gen)
259{
260 struct xfs_buf *fbuf;
261 struct xfs_dinode *free;
262 int nbufs, blks_per_cluster, inodes_per_cluster;
263 int version;
264 int i, j;
265 xfs_daddr_t d;
266 xfs_ino_t ino = 0;
267
268 /*
269 * Loop over the new block(s), filling in the inodes. For small block
270 * sizes, manipulate the inodes in buffers which are multiples of the
271 * blocks size.
272 */
273 blks_per_cluster = xfs_icluster_size_fsb(mp);
274 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
275 nbufs = length / blks_per_cluster;
276
277 /*
278 * Figure out what version number to use in the inodes we create. If
279 * the superblock version has caught up to the one that supports the new
280 * inode format, then use the new inode version. Otherwise use the old
281 * version so that old kernels will continue to be able to use the file
282 * system.
283 *
284 * For v3 inodes, we also need to write the inode number into the inode,
285 * so calculate the first inode number of the chunk here as
286 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
287 * across multiple filesystem blocks (such as a cluster) and so cannot
288 * be used in the cluster buffer loop below.
289 *
290 * Further, because we are writing the inode directly into the buffer
291 * and calculating a CRC on the entire inode, we have ot log the entire
292 * inode so that the entire range the CRC covers is present in the log.
293 * That means for v3 inode we log the entire buffer rather than just the
294 * inode cores.
295 */
296 if (xfs_sb_version_hascrc(&mp->m_sb)) {
297 version = 3;
298 ino = XFS_AGINO_TO_INO(mp, agno,
299 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
300
301 /*
302 * log the initialisation that is about to take place as an
303 * logical operation. This means the transaction does not
304 * need to log the physical changes to the inode buffers as log
305 * recovery will know what initialisation is actually needed.
306 * Hence we only need to log the buffers as "ordered" buffers so
307 * they track in the AIL as if they were physically logged.
308 */
309 if (tp)
310 xfs_icreate_log(tp, agno, agbno, icount,
311 mp->m_sb.sb_inodesize, length, gen);
312 } else
313 version = 2;
314
315 for (j = 0; j < nbufs; j++) {
316 /*
317 * Get the block.
318 */
319 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
320 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
321 mp->m_bsize * blks_per_cluster,
322 XBF_UNMAPPED);
323 if (!fbuf)
324 return -ENOMEM;
325
326 /* Initialize the inode buffers and log them appropriately. */
327 fbuf->b_ops = &xfs_inode_buf_ops;
328 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
329 for (i = 0; i < inodes_per_cluster; i++) {
330 int ioffset = i << mp->m_sb.sb_inodelog;
331 uint isize = xfs_dinode_size(version);
332
333 free = xfs_make_iptr(mp, fbuf, i);
334 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
335 free->di_version = version;
336 free->di_gen = cpu_to_be32(gen);
337 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
338
339 if (version == 3) {
340 free->di_ino = cpu_to_be64(ino);
341 ino++;
342 uuid_copy(&free->di_uuid,
343 &mp->m_sb.sb_meta_uuid);
344 xfs_dinode_calc_crc(mp, free);
345 } else if (tp) {
346 /* just log the inode core */
347 xfs_trans_log_buf(tp, fbuf, ioffset,
348 ioffset + isize - 1);
349 }
350 }
351
352 if (tp) {
353 /*
354 * Mark the buffer as an inode allocation buffer so it
355 * sticks in AIL at the point of this allocation
356 * transaction. This ensures the they are on disk before
357 * the tail of the log can be moved past this
358 * transaction (i.e. by preventing relogging from moving
359 * it forward in the log).
360 */
361 xfs_trans_inode_alloc_buf(tp, fbuf);
362 if (version == 3) {
363 /*
364 * Mark the buffer as ordered so that they are
365 * not physically logged in the transaction but
366 * still tracked in the AIL as part of the
367 * transaction and pin the log appropriately.
368 */
369 xfs_trans_ordered_buf(tp, fbuf);
370 xfs_trans_log_buf(tp, fbuf, 0,
371 BBTOB(fbuf->b_length) - 1);
372 }
373 } else {
374 fbuf->b_flags |= XBF_DONE;
375 xfs_buf_delwri_queue(fbuf, buffer_list);
376 xfs_buf_relse(fbuf);
377 }
378 }
379 return 0;
380}
381
382/*
383 * Align startino and allocmask for a recently allocated sparse chunk such that
384 * they are fit for insertion (or merge) into the on-disk inode btrees.
385 *
386 * Background:
387 *
388 * When enabled, sparse inode support increases the inode alignment from cluster
389 * size to inode chunk size. This means that the minimum range between two
390 * non-adjacent inode records in the inobt is large enough for a full inode
391 * record. This allows for cluster sized, cluster aligned block allocation
392 * without need to worry about whether the resulting inode record overlaps with
393 * another record in the tree. Without this basic rule, we would have to deal
394 * with the consequences of overlap by potentially undoing recent allocations in
395 * the inode allocation codepath.
396 *
397 * Because of this alignment rule (which is enforced on mount), there are two
398 * inobt possibilities for newly allocated sparse chunks. One is that the
399 * aligned inode record for the chunk covers a range of inodes not already
400 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
401 * other is that a record already exists at the aligned startino that considers
402 * the newly allocated range as sparse. In the latter case, record content is
403 * merged in hope that sparse inode chunks fill to full chunks over time.
404 */
405STATIC void
406xfs_align_sparse_ino(
407 struct xfs_mount *mp,
408 xfs_agino_t *startino,
409 uint16_t *allocmask)
410{
411 xfs_agblock_t agbno;
412 xfs_agblock_t mod;
413 int offset;
414
415 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
416 mod = agbno % mp->m_sb.sb_inoalignmt;
417 if (!mod)
418 return;
419
420 /* calculate the inode offset and align startino */
421 offset = mod << mp->m_sb.sb_inopblog;
422 *startino -= offset;
423
424 /*
425 * Since startino has been aligned down, left shift allocmask such that
426 * it continues to represent the same physical inodes relative to the
427 * new startino.
428 */
429 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
430}
431
432/*
433 * Determine whether the source inode record can merge into the target. Both
434 * records must be sparse, the inode ranges must match and there must be no
435 * allocation overlap between the records.
436 */
437STATIC bool
438__xfs_inobt_can_merge(
439 struct xfs_inobt_rec_incore *trec, /* tgt record */
440 struct xfs_inobt_rec_incore *srec) /* src record */
441{
442 uint64_t talloc;
443 uint64_t salloc;
444
445 /* records must cover the same inode range */
446 if (trec->ir_startino != srec->ir_startino)
447 return false;
448
449 /* both records must be sparse */
450 if (!xfs_inobt_issparse(trec->ir_holemask) ||
451 !xfs_inobt_issparse(srec->ir_holemask))
452 return false;
453
454 /* both records must track some inodes */
455 if (!trec->ir_count || !srec->ir_count)
456 return false;
457
458 /* can't exceed capacity of a full record */
459 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
460 return false;
461
462 /* verify there is no allocation overlap */
463 talloc = xfs_inobt_irec_to_allocmask(trec);
464 salloc = xfs_inobt_irec_to_allocmask(srec);
465 if (talloc & salloc)
466 return false;
467
468 return true;
469}
470
471/*
472 * Merge the source inode record into the target. The caller must call
473 * __xfs_inobt_can_merge() to ensure the merge is valid.
474 */
475STATIC void
476__xfs_inobt_rec_merge(
477 struct xfs_inobt_rec_incore *trec, /* target */
478 struct xfs_inobt_rec_incore *srec) /* src */
479{
480 ASSERT(trec->ir_startino == srec->ir_startino);
481
482 /* combine the counts */
483 trec->ir_count += srec->ir_count;
484 trec->ir_freecount += srec->ir_freecount;
485
486 /*
487 * Merge the holemask and free mask. For both fields, 0 bits refer to
488 * allocated inodes. We combine the allocated ranges with bitwise AND.
489 */
490 trec->ir_holemask &= srec->ir_holemask;
491 trec->ir_free &= srec->ir_free;
492}
493
494/*
495 * Insert a new sparse inode chunk into the associated inode btree. The inode
496 * record for the sparse chunk is pre-aligned to a startino that should match
497 * any pre-existing sparse inode record in the tree. This allows sparse chunks
498 * to fill over time.
499 *
500 * This function supports two modes of handling preexisting records depending on
501 * the merge flag. If merge is true, the provided record is merged with the
502 * existing record and updated in place. The merged record is returned in nrec.
503 * If merge is false, an existing record is replaced with the provided record.
504 * If no preexisting record exists, the provided record is always inserted.
505 *
506 * It is considered corruption if a merge is requested and not possible. Given
507 * the sparse inode alignment constraints, this should never happen.
508 */
509STATIC int
510xfs_inobt_insert_sprec(
511 struct xfs_mount *mp,
512 struct xfs_trans *tp,
513 struct xfs_buf *agbp,
514 int btnum,
515 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
516 bool merge) /* merge or replace */
517{
518 struct xfs_btree_cur *cur;
519 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
520 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
521 int error;
522 int i;
523 struct xfs_inobt_rec_incore rec;
524
525 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
526
527 /* the new record is pre-aligned so we know where to look */
528 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
529 if (error)
530 goto error;
531 /* if nothing there, insert a new record and return */
532 if (i == 0) {
533 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
534 nrec->ir_count, nrec->ir_freecount,
535 nrec->ir_free, &i);
536 if (error)
537 goto error;
538 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
539
540 goto out;
541 }
542
543 /*
544 * A record exists at this startino. Merge or replace the record
545 * depending on what we've been asked to do.
546 */
547 if (merge) {
548 error = xfs_inobt_get_rec(cur, &rec, &i);
549 if (error)
550 goto error;
551 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
552 XFS_WANT_CORRUPTED_GOTO(mp,
553 rec.ir_startino == nrec->ir_startino,
554 error);
555
556 /*
557 * This should never fail. If we have coexisting records that
558 * cannot merge, something is seriously wrong.
559 */
560 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
561 error);
562
563 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
564 rec.ir_holemask, nrec->ir_startino,
565 nrec->ir_holemask);
566
567 /* merge to nrec to output the updated record */
568 __xfs_inobt_rec_merge(nrec, &rec);
569
570 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
571 nrec->ir_holemask);
572
573 error = xfs_inobt_rec_check_count(mp, nrec);
574 if (error)
575 goto error;
576 }
577
578 error = xfs_inobt_update(cur, nrec);
579 if (error)
580 goto error;
581
582out:
583 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
584 return 0;
585error:
586 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
587 return error;
588}
589
590/*
591 * Allocate new inodes in the allocation group specified by agbp.
592 * Return 0 for success, else error code.
593 */
594STATIC int /* error code or 0 */
595xfs_ialloc_ag_alloc(
596 xfs_trans_t *tp, /* transaction pointer */
597 xfs_buf_t *agbp, /* alloc group buffer */
598 int *alloc)
599{
600 xfs_agi_t *agi; /* allocation group header */
601 xfs_alloc_arg_t args; /* allocation argument structure */
602 xfs_agnumber_t agno;
603 int error;
604 xfs_agino_t newino; /* new first inode's number */
605 xfs_agino_t newlen; /* new number of inodes */
606 int isaligned = 0; /* inode allocation at stripe unit */
607 /* boundary */
608 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
609 struct xfs_inobt_rec_incore rec;
610 struct xfs_perag *pag;
611 int do_sparse = 0;
612
613 memset(&args, 0, sizeof(args));
614 args.tp = tp;
615 args.mp = tp->t_mountp;
616 args.fsbno = NULLFSBLOCK;
617
618#ifdef DEBUG
619 /* randomly do sparse inode allocations */
620 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
621 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
622 do_sparse = prandom_u32() & 1;
623#endif
624
625 /*
626 * Locking will ensure that we don't have two callers in here
627 * at one time.
628 */
629 newlen = args.mp->m_ialloc_inos;
630 if (args.mp->m_maxicount &&
631 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
632 args.mp->m_maxicount)
633 return -ENOSPC;
634 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
635 /*
636 * First try to allocate inodes contiguous with the last-allocated
637 * chunk of inodes. If the filesystem is striped, this will fill
638 * an entire stripe unit with inodes.
639 */
640 agi = XFS_BUF_TO_AGI(agbp);
641 newino = be32_to_cpu(agi->agi_newino);
642 agno = be32_to_cpu(agi->agi_seqno);
643 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
644 args.mp->m_ialloc_blks;
645 if (do_sparse)
646 goto sparse_alloc;
647 if (likely(newino != NULLAGINO &&
648 (args.agbno < be32_to_cpu(agi->agi_length)))) {
649 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
650 args.type = XFS_ALLOCTYPE_THIS_BNO;
651 args.prod = 1;
652
653 /*
654 * We need to take into account alignment here to ensure that
655 * we don't modify the free list if we fail to have an exact
656 * block. If we don't have an exact match, and every oher
657 * attempt allocation attempt fails, we'll end up cancelling
658 * a dirty transaction and shutting down.
659 *
660 * For an exact allocation, alignment must be 1,
661 * however we need to take cluster alignment into account when
662 * fixing up the freelist. Use the minalignslop field to
663 * indicate that extra blocks might be required for alignment,
664 * but not to use them in the actual exact allocation.
665 */
666 args.alignment = 1;
667 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
668
669 /* Allow space for the inode btree to split. */
670 args.minleft = args.mp->m_in_maxlevels - 1;
671 if ((error = xfs_alloc_vextent(&args)))
672 return error;
673
674 /*
675 * This request might have dirtied the transaction if the AG can
676 * satisfy the request, but the exact block was not available.
677 * If the allocation did fail, subsequent requests will relax
678 * the exact agbno requirement and increase the alignment
679 * instead. It is critical that the total size of the request
680 * (len + alignment + slop) does not increase from this point
681 * on, so reset minalignslop to ensure it is not included in
682 * subsequent requests.
683 */
684 args.minalignslop = 0;
685 }
686
687 if (unlikely(args.fsbno == NULLFSBLOCK)) {
688 /*
689 * Set the alignment for the allocation.
690 * If stripe alignment is turned on then align at stripe unit
691 * boundary.
692 * If the cluster size is smaller than a filesystem block
693 * then we're doing I/O for inodes in filesystem block size
694 * pieces, so don't need alignment anyway.
695 */
696 isaligned = 0;
697 if (args.mp->m_sinoalign) {
698 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
699 args.alignment = args.mp->m_dalign;
700 isaligned = 1;
701 } else
702 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
703 /*
704 * Need to figure out where to allocate the inode blocks.
705 * Ideally they should be spaced out through the a.g.
706 * For now, just allocate blocks up front.
707 */
708 args.agbno = be32_to_cpu(agi->agi_root);
709 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
710 /*
711 * Allocate a fixed-size extent of inodes.
712 */
713 args.type = XFS_ALLOCTYPE_NEAR_BNO;
714 args.prod = 1;
715 /*
716 * Allow space for the inode btree to split.
717 */
718 args.minleft = args.mp->m_in_maxlevels - 1;
719 if ((error = xfs_alloc_vextent(&args)))
720 return error;
721 }
722
723 /*
724 * If stripe alignment is turned on, then try again with cluster
725 * alignment.
726 */
727 if (isaligned && args.fsbno == NULLFSBLOCK) {
728 args.type = XFS_ALLOCTYPE_NEAR_BNO;
729 args.agbno = be32_to_cpu(agi->agi_root);
730 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
731 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
732 if ((error = xfs_alloc_vextent(&args)))
733 return error;
734 }
735
736 /*
737 * Finally, try a sparse allocation if the filesystem supports it and
738 * the sparse allocation length is smaller than a full chunk.
739 */
740 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
741 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
742 args.fsbno == NULLFSBLOCK) {
743sparse_alloc:
744 args.type = XFS_ALLOCTYPE_NEAR_BNO;
745 args.agbno = be32_to_cpu(agi->agi_root);
746 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
747 args.alignment = args.mp->m_sb.sb_spino_align;
748 args.prod = 1;
749
750 args.minlen = args.mp->m_ialloc_min_blks;
751 args.maxlen = args.minlen;
752
753 /*
754 * The inode record will be aligned to full chunk size. We must
755 * prevent sparse allocation from AG boundaries that result in
756 * invalid inode records, such as records that start at agbno 0
757 * or extend beyond the AG.
758 *
759 * Set min agbno to the first aligned, non-zero agbno and max to
760 * the last aligned agbno that is at least one full chunk from
761 * the end of the AG.
762 */
763 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
764 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
765 args.mp->m_sb.sb_inoalignmt) -
766 args.mp->m_ialloc_blks;
767
768 error = xfs_alloc_vextent(&args);
769 if (error)
770 return error;
771
772 newlen = args.len << args.mp->m_sb.sb_inopblog;
773 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
774 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
775 }
776
777 if (args.fsbno == NULLFSBLOCK) {
778 *alloc = 0;
779 return 0;
780 }
781 ASSERT(args.len == args.minlen);
782
783 /*
784 * Stamp and write the inode buffers.
785 *
786 * Seed the new inode cluster with a random generation number. This
787 * prevents short-term reuse of generation numbers if a chunk is
788 * freed and then immediately reallocated. We use random numbers
789 * rather than a linear progression to prevent the next generation
790 * number from being easily guessable.
791 */
792 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
793 args.agbno, args.len, prandom_u32());
794
795 if (error)
796 return error;
797 /*
798 * Convert the results.
799 */
800 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
801
802 if (xfs_inobt_issparse(~allocmask)) {
803 /*
804 * We've allocated a sparse chunk. Align the startino and mask.
805 */
806 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
807
808 rec.ir_startino = newino;
809 rec.ir_holemask = ~allocmask;
810 rec.ir_count = newlen;
811 rec.ir_freecount = newlen;
812 rec.ir_free = XFS_INOBT_ALL_FREE;
813
814 /*
815 * Insert the sparse record into the inobt and allow for a merge
816 * if necessary. If a merge does occur, rec is updated to the
817 * merged record.
818 */
819 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
820 &rec, true);
821 if (error == -EFSCORRUPTED) {
822 xfs_alert(args.mp,
823 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
824 XFS_AGINO_TO_INO(args.mp, agno,
825 rec.ir_startino),
826 rec.ir_holemask, rec.ir_count);
827 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
828 }
829 if (error)
830 return error;
831
832 /*
833 * We can't merge the part we've just allocated as for the inobt
834 * due to finobt semantics. The original record may or may not
835 * exist independent of whether physical inodes exist in this
836 * sparse chunk.
837 *
838 * We must update the finobt record based on the inobt record.
839 * rec contains the fully merged and up to date inobt record
840 * from the previous call. Set merge false to replace any
841 * existing record with this one.
842 */
843 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
844 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
845 XFS_BTNUM_FINO, &rec,
846 false);
847 if (error)
848 return error;
849 }
850 } else {
851 /* full chunk - insert new records to both btrees */
852 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
853 XFS_BTNUM_INO);
854 if (error)
855 return error;
856
857 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
858 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
859 newlen, XFS_BTNUM_FINO);
860 if (error)
861 return error;
862 }
863 }
864
865 /*
866 * Update AGI counts and newino.
867 */
868 be32_add_cpu(&agi->agi_count, newlen);
869 be32_add_cpu(&agi->agi_freecount, newlen);
870 pag = xfs_perag_get(args.mp, agno);
871 pag->pagi_freecount += newlen;
872 xfs_perag_put(pag);
873 agi->agi_newino = cpu_to_be32(newino);
874
875 /*
876 * Log allocation group header fields
877 */
878 xfs_ialloc_log_agi(tp, agbp,
879 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
880 /*
881 * Modify/log superblock values for inode count and inode free count.
882 */
883 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
884 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
885 *alloc = 1;
886 return 0;
887}
888
889STATIC xfs_agnumber_t
890xfs_ialloc_next_ag(
891 xfs_mount_t *mp)
892{
893 xfs_agnumber_t agno;
894
895 spin_lock(&mp->m_agirotor_lock);
896 agno = mp->m_agirotor;
897 if (++mp->m_agirotor >= mp->m_maxagi)
898 mp->m_agirotor = 0;
899 spin_unlock(&mp->m_agirotor_lock);
900
901 return agno;
902}
903
904/*
905 * Select an allocation group to look for a free inode in, based on the parent
906 * inode and the mode. Return the allocation group buffer.
907 */
908STATIC xfs_agnumber_t
909xfs_ialloc_ag_select(
910 xfs_trans_t *tp, /* transaction pointer */
911 xfs_ino_t parent, /* parent directory inode number */
912 umode_t mode, /* bits set to indicate file type */
913 int okalloc) /* ok to allocate more space */
914{
915 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
916 xfs_agnumber_t agno; /* current ag number */
917 int flags; /* alloc buffer locking flags */
918 xfs_extlen_t ineed; /* blocks needed for inode allocation */
919 xfs_extlen_t longest = 0; /* longest extent available */
920 xfs_mount_t *mp; /* mount point structure */
921 int needspace; /* file mode implies space allocated */
922 xfs_perag_t *pag; /* per allocation group data */
923 xfs_agnumber_t pagno; /* parent (starting) ag number */
924 int error;
925
926 /*
927 * Files of these types need at least one block if length > 0
928 * (and they won't fit in the inode, but that's hard to figure out).
929 */
930 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
931 mp = tp->t_mountp;
932 agcount = mp->m_maxagi;
933 if (S_ISDIR(mode))
934 pagno = xfs_ialloc_next_ag(mp);
935 else {
936 pagno = XFS_INO_TO_AGNO(mp, parent);
937 if (pagno >= agcount)
938 pagno = 0;
939 }
940
941 ASSERT(pagno < agcount);
942
943 /*
944 * Loop through allocation groups, looking for one with a little
945 * free space in it. Note we don't look for free inodes, exactly.
946 * Instead, we include whether there is a need to allocate inodes
947 * to mean that blocks must be allocated for them,
948 * if none are currently free.
949 */
950 agno = pagno;
951 flags = XFS_ALLOC_FLAG_TRYLOCK;
952 for (;;) {
953 pag = xfs_perag_get(mp, agno);
954 if (!pag->pagi_inodeok) {
955 xfs_ialloc_next_ag(mp);
956 goto nextag;
957 }
958
959 if (!pag->pagi_init) {
960 error = xfs_ialloc_pagi_init(mp, tp, agno);
961 if (error)
962 goto nextag;
963 }
964
965 if (pag->pagi_freecount) {
966 xfs_perag_put(pag);
967 return agno;
968 }
969
970 if (!okalloc)
971 goto nextag;
972
973 if (!pag->pagf_init) {
974 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
975 if (error)
976 goto nextag;
977 }
978
979 /*
980 * Check that there is enough free space for the file plus a
981 * chunk of inodes if we need to allocate some. If this is the
982 * first pass across the AGs, take into account the potential
983 * space needed for alignment of inode chunks when checking the
984 * longest contiguous free space in the AG - this prevents us
985 * from getting ENOSPC because we have free space larger than
986 * m_ialloc_blks but alignment constraints prevent us from using
987 * it.
988 *
989 * If we can't find an AG with space for full alignment slack to
990 * be taken into account, we must be near ENOSPC in all AGs.
991 * Hence we don't include alignment for the second pass and so
992 * if we fail allocation due to alignment issues then it is most
993 * likely a real ENOSPC condition.
994 */
995 ineed = mp->m_ialloc_min_blks;
996 if (flags && ineed > 1)
997 ineed += xfs_ialloc_cluster_alignment(mp);
998 longest = pag->pagf_longest;
999 if (!longest)
1000 longest = pag->pagf_flcount > 0;
1001
1002 if (pag->pagf_freeblks >= needspace + ineed &&
1003 longest >= ineed) {
1004 xfs_perag_put(pag);
1005 return agno;
1006 }
1007nextag:
1008 xfs_perag_put(pag);
1009 /*
1010 * No point in iterating over the rest, if we're shutting
1011 * down.
1012 */
1013 if (XFS_FORCED_SHUTDOWN(mp))
1014 return NULLAGNUMBER;
1015 agno++;
1016 if (agno >= agcount)
1017 agno = 0;
1018 if (agno == pagno) {
1019 if (flags == 0)
1020 return NULLAGNUMBER;
1021 flags = 0;
1022 }
1023 }
1024}
1025
1026/*
1027 * Try to retrieve the next record to the left/right from the current one.
1028 */
1029STATIC int
1030xfs_ialloc_next_rec(
1031 struct xfs_btree_cur *cur,
1032 xfs_inobt_rec_incore_t *rec,
1033 int *done,
1034 int left)
1035{
1036 int error;
1037 int i;
1038
1039 if (left)
1040 error = xfs_btree_decrement(cur, 0, &i);
1041 else
1042 error = xfs_btree_increment(cur, 0, &i);
1043
1044 if (error)
1045 return error;
1046 *done = !i;
1047 if (i) {
1048 error = xfs_inobt_get_rec(cur, rec, &i);
1049 if (error)
1050 return error;
1051 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1052 }
1053
1054 return 0;
1055}
1056
1057STATIC int
1058xfs_ialloc_get_rec(
1059 struct xfs_btree_cur *cur,
1060 xfs_agino_t agino,
1061 xfs_inobt_rec_incore_t *rec,
1062 int *done)
1063{
1064 int error;
1065 int i;
1066
1067 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1068 if (error)
1069 return error;
1070 *done = !i;
1071 if (i) {
1072 error = xfs_inobt_get_rec(cur, rec, &i);
1073 if (error)
1074 return error;
1075 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1076 }
1077
1078 return 0;
1079}
1080
1081/*
1082 * Return the offset of the first free inode in the record. If the inode chunk
1083 * is sparsely allocated, we convert the record holemask to inode granularity
1084 * and mask off the unallocated regions from the inode free mask.
1085 */
1086STATIC int
1087xfs_inobt_first_free_inode(
1088 struct xfs_inobt_rec_incore *rec)
1089{
1090 xfs_inofree_t realfree;
1091
1092 /* if there are no holes, return the first available offset */
1093 if (!xfs_inobt_issparse(rec->ir_holemask))
1094 return xfs_lowbit64(rec->ir_free);
1095
1096 realfree = xfs_inobt_irec_to_allocmask(rec);
1097 realfree &= rec->ir_free;
1098
1099 return xfs_lowbit64(realfree);
1100}
1101
1102/*
1103 * Allocate an inode using the inobt-only algorithm.
1104 */
1105STATIC int
1106xfs_dialloc_ag_inobt(
1107 struct xfs_trans *tp,
1108 struct xfs_buf *agbp,
1109 xfs_ino_t parent,
1110 xfs_ino_t *inop)
1111{
1112 struct xfs_mount *mp = tp->t_mountp;
1113 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1114 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1115 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1116 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1117 struct xfs_perag *pag;
1118 struct xfs_btree_cur *cur, *tcur;
1119 struct xfs_inobt_rec_incore rec, trec;
1120 xfs_ino_t ino;
1121 int error;
1122 int offset;
1123 int i, j;
1124
1125 pag = xfs_perag_get(mp, agno);
1126
1127 ASSERT(pag->pagi_init);
1128 ASSERT(pag->pagi_inodeok);
1129 ASSERT(pag->pagi_freecount > 0);
1130
1131 restart_pagno:
1132 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1133 /*
1134 * If pagino is 0 (this is the root inode allocation) use newino.
1135 * This must work because we've just allocated some.
1136 */
1137 if (!pagino)
1138 pagino = be32_to_cpu(agi->agi_newino);
1139
1140 error = xfs_check_agi_freecount(cur, agi);
1141 if (error)
1142 goto error0;
1143
1144 /*
1145 * If in the same AG as the parent, try to get near the parent.
1146 */
1147 if (pagno == agno) {
1148 int doneleft; /* done, to the left */
1149 int doneright; /* done, to the right */
1150 int searchdistance = 10;
1151
1152 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1153 if (error)
1154 goto error0;
1155 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1156
1157 error = xfs_inobt_get_rec(cur, &rec, &j);
1158 if (error)
1159 goto error0;
1160 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1161
1162 if (rec.ir_freecount > 0) {
1163 /*
1164 * Found a free inode in the same chunk
1165 * as the parent, done.
1166 */
1167 goto alloc_inode;
1168 }
1169
1170
1171 /*
1172 * In the same AG as parent, but parent's chunk is full.
1173 */
1174
1175 /* duplicate the cursor, search left & right simultaneously */
1176 error = xfs_btree_dup_cursor(cur, &tcur);
1177 if (error)
1178 goto error0;
1179
1180 /*
1181 * Skip to last blocks looked up if same parent inode.
1182 */
1183 if (pagino != NULLAGINO &&
1184 pag->pagl_pagino == pagino &&
1185 pag->pagl_leftrec != NULLAGINO &&
1186 pag->pagl_rightrec != NULLAGINO) {
1187 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1188 &trec, &doneleft);
1189 if (error)
1190 goto error1;
1191
1192 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1193 &rec, &doneright);
1194 if (error)
1195 goto error1;
1196 } else {
1197 /* search left with tcur, back up 1 record */
1198 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1199 if (error)
1200 goto error1;
1201
1202 /* search right with cur, go forward 1 record. */
1203 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1204 if (error)
1205 goto error1;
1206 }
1207
1208 /*
1209 * Loop until we find an inode chunk with a free inode.
1210 */
1211 while (!doneleft || !doneright) {
1212 int useleft; /* using left inode chunk this time */
1213
1214 if (!--searchdistance) {
1215 /*
1216 * Not in range - save last search
1217 * location and allocate a new inode
1218 */
1219 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1220 pag->pagl_leftrec = trec.ir_startino;
1221 pag->pagl_rightrec = rec.ir_startino;
1222 pag->pagl_pagino = pagino;
1223 goto newino;
1224 }
1225
1226 /* figure out the closer block if both are valid. */
1227 if (!doneleft && !doneright) {
1228 useleft = pagino -
1229 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1230 rec.ir_startino - pagino;
1231 } else {
1232 useleft = !doneleft;
1233 }
1234
1235 /* free inodes to the left? */
1236 if (useleft && trec.ir_freecount) {
1237 rec = trec;
1238 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1239 cur = tcur;
1240
1241 pag->pagl_leftrec = trec.ir_startino;
1242 pag->pagl_rightrec = rec.ir_startino;
1243 pag->pagl_pagino = pagino;
1244 goto alloc_inode;
1245 }
1246
1247 /* free inodes to the right? */
1248 if (!useleft && rec.ir_freecount) {
1249 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1250
1251 pag->pagl_leftrec = trec.ir_startino;
1252 pag->pagl_rightrec = rec.ir_startino;
1253 pag->pagl_pagino = pagino;
1254 goto alloc_inode;
1255 }
1256
1257 /* get next record to check */
1258 if (useleft) {
1259 error = xfs_ialloc_next_rec(tcur, &trec,
1260 &doneleft, 1);
1261 } else {
1262 error = xfs_ialloc_next_rec(cur, &rec,
1263 &doneright, 0);
1264 }
1265 if (error)
1266 goto error1;
1267 }
1268
1269 /*
1270 * We've reached the end of the btree. because
1271 * we are only searching a small chunk of the
1272 * btree each search, there is obviously free
1273 * inodes closer to the parent inode than we
1274 * are now. restart the search again.
1275 */
1276 pag->pagl_pagino = NULLAGINO;
1277 pag->pagl_leftrec = NULLAGINO;
1278 pag->pagl_rightrec = NULLAGINO;
1279 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1280 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1281 goto restart_pagno;
1282 }
1283
1284 /*
1285 * In a different AG from the parent.
1286 * See if the most recently allocated block has any free.
1287 */
1288newino:
1289 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1290 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1291 XFS_LOOKUP_EQ, &i);
1292 if (error)
1293 goto error0;
1294
1295 if (i == 1) {
1296 error = xfs_inobt_get_rec(cur, &rec, &j);
1297 if (error)
1298 goto error0;
1299
1300 if (j == 1 && rec.ir_freecount > 0) {
1301 /*
1302 * The last chunk allocated in the group
1303 * still has a free inode.
1304 */
1305 goto alloc_inode;
1306 }
1307 }
1308 }
1309
1310 /*
1311 * None left in the last group, search the whole AG
1312 */
1313 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1314 if (error)
1315 goto error0;
1316 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1317
1318 for (;;) {
1319 error = xfs_inobt_get_rec(cur, &rec, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323 if (rec.ir_freecount > 0)
1324 break;
1325 error = xfs_btree_increment(cur, 0, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 }
1330
1331alloc_inode:
1332 offset = xfs_inobt_first_free_inode(&rec);
1333 ASSERT(offset >= 0);
1334 ASSERT(offset < XFS_INODES_PER_CHUNK);
1335 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1336 XFS_INODES_PER_CHUNK) == 0);
1337 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1338 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1339 rec.ir_freecount--;
1340 error = xfs_inobt_update(cur, &rec);
1341 if (error)
1342 goto error0;
1343 be32_add_cpu(&agi->agi_freecount, -1);
1344 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1345 pag->pagi_freecount--;
1346
1347 error = xfs_check_agi_freecount(cur, agi);
1348 if (error)
1349 goto error0;
1350
1351 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1352 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1353 xfs_perag_put(pag);
1354 *inop = ino;
1355 return 0;
1356error1:
1357 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1358error0:
1359 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1360 xfs_perag_put(pag);
1361 return error;
1362}
1363
1364/*
1365 * Use the free inode btree to allocate an inode based on distance from the
1366 * parent. Note that the provided cursor may be deleted and replaced.
1367 */
1368STATIC int
1369xfs_dialloc_ag_finobt_near(
1370 xfs_agino_t pagino,
1371 struct xfs_btree_cur **ocur,
1372 struct xfs_inobt_rec_incore *rec)
1373{
1374 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1375 struct xfs_btree_cur *rcur; /* right search cursor */
1376 struct xfs_inobt_rec_incore rrec;
1377 int error;
1378 int i, j;
1379
1380 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1381 if (error)
1382 return error;
1383
1384 if (i == 1) {
1385 error = xfs_inobt_get_rec(lcur, rec, &i);
1386 if (error)
1387 return error;
1388 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1389
1390 /*
1391 * See if we've landed in the parent inode record. The finobt
1392 * only tracks chunks with at least one free inode, so record
1393 * existence is enough.
1394 */
1395 if (pagino >= rec->ir_startino &&
1396 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1397 return 0;
1398 }
1399
1400 error = xfs_btree_dup_cursor(lcur, &rcur);
1401 if (error)
1402 return error;
1403
1404 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1405 if (error)
1406 goto error_rcur;
1407 if (j == 1) {
1408 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1409 if (error)
1410 goto error_rcur;
1411 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1412 }
1413
1414 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1415 if (i == 1 && j == 1) {
1416 /*
1417 * Both the left and right records are valid. Choose the closer
1418 * inode chunk to the target.
1419 */
1420 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1421 (rrec.ir_startino - pagino)) {
1422 *rec = rrec;
1423 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1424 *ocur = rcur;
1425 } else {
1426 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1427 }
1428 } else if (j == 1) {
1429 /* only the right record is valid */
1430 *rec = rrec;
1431 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1432 *ocur = rcur;
1433 } else if (i == 1) {
1434 /* only the left record is valid */
1435 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1436 }
1437
1438 return 0;
1439
1440error_rcur:
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1442 return error;
1443}
1444
1445/*
1446 * Use the free inode btree to find a free inode based on a newino hint. If
1447 * the hint is NULL, find the first free inode in the AG.
1448 */
1449STATIC int
1450xfs_dialloc_ag_finobt_newino(
1451 struct xfs_agi *agi,
1452 struct xfs_btree_cur *cur,
1453 struct xfs_inobt_rec_incore *rec)
1454{
1455 int error;
1456 int i;
1457
1458 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1459 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1460 XFS_LOOKUP_EQ, &i);
1461 if (error)
1462 return error;
1463 if (i == 1) {
1464 error = xfs_inobt_get_rec(cur, rec, &i);
1465 if (error)
1466 return error;
1467 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1468 return 0;
1469 }
1470 }
1471
1472 /*
1473 * Find the first inode available in the AG.
1474 */
1475 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1476 if (error)
1477 return error;
1478 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1479
1480 error = xfs_inobt_get_rec(cur, rec, &i);
1481 if (error)
1482 return error;
1483 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1484
1485 return 0;
1486}
1487
1488/*
1489 * Update the inobt based on a modification made to the finobt. Also ensure that
1490 * the records from both trees are equivalent post-modification.
1491 */
1492STATIC int
1493xfs_dialloc_ag_update_inobt(
1494 struct xfs_btree_cur *cur, /* inobt cursor */
1495 struct xfs_inobt_rec_incore *frec, /* finobt record */
1496 int offset) /* inode offset */
1497{
1498 struct xfs_inobt_rec_incore rec;
1499 int error;
1500 int i;
1501
1502 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1503 if (error)
1504 return error;
1505 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1506
1507 error = xfs_inobt_get_rec(cur, &rec, &i);
1508 if (error)
1509 return error;
1510 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1511 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1512 XFS_INODES_PER_CHUNK) == 0);
1513
1514 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1515 rec.ir_freecount--;
1516
1517 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1518 (rec.ir_freecount == frec->ir_freecount));
1519
1520 return xfs_inobt_update(cur, &rec);
1521}
1522
1523/*
1524 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1525 * back to the inobt search algorithm.
1526 *
1527 * The caller selected an AG for us, and made sure that free inodes are
1528 * available.
1529 */
1530STATIC int
1531xfs_dialloc_ag(
1532 struct xfs_trans *tp,
1533 struct xfs_buf *agbp,
1534 xfs_ino_t parent,
1535 xfs_ino_t *inop)
1536{
1537 struct xfs_mount *mp = tp->t_mountp;
1538 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1539 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1540 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1541 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1542 struct xfs_perag *pag;
1543 struct xfs_btree_cur *cur; /* finobt cursor */
1544 struct xfs_btree_cur *icur; /* inobt cursor */
1545 struct xfs_inobt_rec_incore rec;
1546 xfs_ino_t ino;
1547 int error;
1548 int offset;
1549 int i;
1550
1551 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1552 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1553
1554 pag = xfs_perag_get(mp, agno);
1555
1556 /*
1557 * If pagino is 0 (this is the root inode allocation) use newino.
1558 * This must work because we've just allocated some.
1559 */
1560 if (!pagino)
1561 pagino = be32_to_cpu(agi->agi_newino);
1562
1563 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1564
1565 error = xfs_check_agi_freecount(cur, agi);
1566 if (error)
1567 goto error_cur;
1568
1569 /*
1570 * The search algorithm depends on whether we're in the same AG as the
1571 * parent. If so, find the closest available inode to the parent. If
1572 * not, consider the agi hint or find the first free inode in the AG.
1573 */
1574 if (agno == pagno)
1575 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1576 else
1577 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1578 if (error)
1579 goto error_cur;
1580
1581 offset = xfs_inobt_first_free_inode(&rec);
1582 ASSERT(offset >= 0);
1583 ASSERT(offset < XFS_INODES_PER_CHUNK);
1584 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1585 XFS_INODES_PER_CHUNK) == 0);
1586 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1587
1588 /*
1589 * Modify or remove the finobt record.
1590 */
1591 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1592 rec.ir_freecount--;
1593 if (rec.ir_freecount)
1594 error = xfs_inobt_update(cur, &rec);
1595 else
1596 error = xfs_btree_delete(cur, &i);
1597 if (error)
1598 goto error_cur;
1599
1600 /*
1601 * The finobt has now been updated appropriately. We haven't updated the
1602 * agi and superblock yet, so we can create an inobt cursor and validate
1603 * the original freecount. If all is well, make the equivalent update to
1604 * the inobt using the finobt record and offset information.
1605 */
1606 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1607
1608 error = xfs_check_agi_freecount(icur, agi);
1609 if (error)
1610 goto error_icur;
1611
1612 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1613 if (error)
1614 goto error_icur;
1615
1616 /*
1617 * Both trees have now been updated. We must update the perag and
1618 * superblock before we can check the freecount for each btree.
1619 */
1620 be32_add_cpu(&agi->agi_freecount, -1);
1621 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1622 pag->pagi_freecount--;
1623
1624 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1625
1626 error = xfs_check_agi_freecount(icur, agi);
1627 if (error)
1628 goto error_icur;
1629 error = xfs_check_agi_freecount(cur, agi);
1630 if (error)
1631 goto error_icur;
1632
1633 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1634 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1635 xfs_perag_put(pag);
1636 *inop = ino;
1637 return 0;
1638
1639error_icur:
1640 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1641error_cur:
1642 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1643 xfs_perag_put(pag);
1644 return error;
1645}
1646
1647/*
1648 * Allocate an inode on disk.
1649 *
1650 * Mode is used to tell whether the new inode will need space, and whether it
1651 * is a directory.
1652 *
1653 * This function is designed to be called twice if it has to do an allocation
1654 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1655 * If an inode is available without having to performn an allocation, an inode
1656 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1657 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1658 * The caller should then commit the current transaction, allocate a
1659 * new transaction, and call xfs_dialloc() again, passing in the previous value
1660 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1661 * buffer is locked across the two calls, the second call is guaranteed to have
1662 * a free inode available.
1663 *
1664 * Once we successfully pick an inode its number is returned and the on-disk
1665 * data structures are updated. The inode itself is not read in, since doing so
1666 * would break ordering constraints with xfs_reclaim.
1667 */
1668int
1669xfs_dialloc(
1670 struct xfs_trans *tp,
1671 xfs_ino_t parent,
1672 umode_t mode,
1673 int okalloc,
1674 struct xfs_buf **IO_agbp,
1675 xfs_ino_t *inop)
1676{
1677 struct xfs_mount *mp = tp->t_mountp;
1678 struct xfs_buf *agbp;
1679 xfs_agnumber_t agno;
1680 int error;
1681 int ialloced;
1682 int noroom = 0;
1683 xfs_agnumber_t start_agno;
1684 struct xfs_perag *pag;
1685
1686 if (*IO_agbp) {
1687 /*
1688 * If the caller passes in a pointer to the AGI buffer,
1689 * continue where we left off before. In this case, we
1690 * know that the allocation group has free inodes.
1691 */
1692 agbp = *IO_agbp;
1693 goto out_alloc;
1694 }
1695
1696 /*
1697 * We do not have an agbp, so select an initial allocation
1698 * group for inode allocation.
1699 */
1700 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1701 if (start_agno == NULLAGNUMBER) {
1702 *inop = NULLFSINO;
1703 return 0;
1704 }
1705
1706 /*
1707 * If we have already hit the ceiling of inode blocks then clear
1708 * okalloc so we scan all available agi structures for a free
1709 * inode.
1710 *
1711 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1712 * which will sacrifice the preciseness but improve the performance.
1713 */
1714 if (mp->m_maxicount &&
1715 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1716 > mp->m_maxicount) {
1717 noroom = 1;
1718 okalloc = 0;
1719 }
1720
1721 /*
1722 * Loop until we find an allocation group that either has free inodes
1723 * or in which we can allocate some inodes. Iterate through the
1724 * allocation groups upward, wrapping at the end.
1725 */
1726 agno = start_agno;
1727 for (;;) {
1728 pag = xfs_perag_get(mp, agno);
1729 if (!pag->pagi_inodeok) {
1730 xfs_ialloc_next_ag(mp);
1731 goto nextag;
1732 }
1733
1734 if (!pag->pagi_init) {
1735 error = xfs_ialloc_pagi_init(mp, tp, agno);
1736 if (error)
1737 goto out_error;
1738 }
1739
1740 /*
1741 * Do a first racy fast path check if this AG is usable.
1742 */
1743 if (!pag->pagi_freecount && !okalloc)
1744 goto nextag;
1745
1746 /*
1747 * Then read in the AGI buffer and recheck with the AGI buffer
1748 * lock held.
1749 */
1750 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1751 if (error)
1752 goto out_error;
1753
1754 if (pag->pagi_freecount) {
1755 xfs_perag_put(pag);
1756 goto out_alloc;
1757 }
1758
1759 if (!okalloc)
1760 goto nextag_relse_buffer;
1761
1762
1763 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1764 if (error) {
1765 xfs_trans_brelse(tp, agbp);
1766
1767 if (error != -ENOSPC)
1768 goto out_error;
1769
1770 xfs_perag_put(pag);
1771 *inop = NULLFSINO;
1772 return 0;
1773 }
1774
1775 if (ialloced) {
1776 /*
1777 * We successfully allocated some inodes, return
1778 * the current context to the caller so that it
1779 * can commit the current transaction and call
1780 * us again where we left off.
1781 */
1782 ASSERT(pag->pagi_freecount > 0);
1783 xfs_perag_put(pag);
1784
1785 *IO_agbp = agbp;
1786 *inop = NULLFSINO;
1787 return 0;
1788 }
1789
1790nextag_relse_buffer:
1791 xfs_trans_brelse(tp, agbp);
1792nextag:
1793 xfs_perag_put(pag);
1794 if (++agno == mp->m_sb.sb_agcount)
1795 agno = 0;
1796 if (agno == start_agno) {
1797 *inop = NULLFSINO;
1798 return noroom ? -ENOSPC : 0;
1799 }
1800 }
1801
1802out_alloc:
1803 *IO_agbp = NULL;
1804 return xfs_dialloc_ag(tp, agbp, parent, inop);
1805out_error:
1806 xfs_perag_put(pag);
1807 return error;
1808}
1809
1810/*
1811 * Free the blocks of an inode chunk. We must consider that the inode chunk
1812 * might be sparse and only free the regions that are allocated as part of the
1813 * chunk.
1814 */
1815STATIC void
1816xfs_difree_inode_chunk(
1817 struct xfs_mount *mp,
1818 xfs_agnumber_t agno,
1819 struct xfs_inobt_rec_incore *rec,
1820 struct xfs_bmap_free *flist)
1821{
1822 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1823 int startidx, endidx;
1824 int nextbit;
1825 xfs_agblock_t agbno;
1826 int contigblk;
1827 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1828
1829 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1830 /* not sparse, calculate extent info directly */
1831 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1832 XFS_AGINO_TO_AGBNO(mp, rec->ir_startino)),
1833 mp->m_ialloc_blks, flist, mp);
1834 return;
1835 }
1836
1837 /* holemask is only 16-bits (fits in an unsigned long) */
1838 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 holemask[0] = rec->ir_holemask;
1840
1841 /*
1842 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 * holemask and convert the start/end index of each range to an extent.
1844 * We start with the start and end index both pointing at the first 0 in
1845 * the mask.
1846 */
1847 startidx = endidx = find_first_zero_bit(holemask,
1848 XFS_INOBT_HOLEMASK_BITS);
1849 nextbit = startidx + 1;
1850 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 nextbit);
1853 /*
1854 * If the next zero bit is contiguous, update the end index of
1855 * the current range and continue.
1856 */
1857 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 nextbit == endidx + 1) {
1859 endidx = nextbit;
1860 goto next;
1861 }
1862
1863 /*
1864 * nextbit is not contiguous with the current end index. Convert
1865 * the current start/end to an extent and add it to the free
1866 * list.
1867 */
1868 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 mp->m_sb.sb_inopblock;
1870 contigblk = ((endidx - startidx + 1) *
1871 XFS_INODES_PER_HOLEMASK_BIT) /
1872 mp->m_sb.sb_inopblock;
1873
1874 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1876 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1877 flist, mp);
1878
1879 /* reset range to current bit and carry on... */
1880 startidx = endidx = nextbit;
1881
1882next:
1883 nextbit++;
1884 }
1885}
1886
1887STATIC int
1888xfs_difree_inobt(
1889 struct xfs_mount *mp,
1890 struct xfs_trans *tp,
1891 struct xfs_buf *agbp,
1892 xfs_agino_t agino,
1893 struct xfs_bmap_free *flist,
1894 struct xfs_icluster *xic,
1895 struct xfs_inobt_rec_incore *orec)
1896{
1897 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1898 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1899 struct xfs_perag *pag;
1900 struct xfs_btree_cur *cur;
1901 struct xfs_inobt_rec_incore rec;
1902 int ilen;
1903 int error;
1904 int i;
1905 int off;
1906
1907 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1908 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1909
1910 /*
1911 * Initialize the cursor.
1912 */
1913 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1914
1915 error = xfs_check_agi_freecount(cur, agi);
1916 if (error)
1917 goto error0;
1918
1919 /*
1920 * Look for the entry describing this inode.
1921 */
1922 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1923 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1924 __func__, error);
1925 goto error0;
1926 }
1927 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1928 error = xfs_inobt_get_rec(cur, &rec, &i);
1929 if (error) {
1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 /*
1936 * Get the offset in the inode chunk.
1937 */
1938 off = agino - rec.ir_startino;
1939 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1940 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1941 /*
1942 * Mark the inode free & increment the count.
1943 */
1944 rec.ir_free |= XFS_INOBT_MASK(off);
1945 rec.ir_freecount++;
1946
1947 /*
1948 * When an inode chunk is free, it becomes eligible for removal. Don't
1949 * remove the chunk if the block size is large enough for multiple inode
1950 * chunks (that might not be free).
1951 */
1952 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1953 rec.ir_free == XFS_INOBT_ALL_FREE &&
1954 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1955 xic->deleted = 1;
1956 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1957 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1958
1959 /*
1960 * Remove the inode cluster from the AGI B+Tree, adjust the
1961 * AGI and Superblock inode counts, and mark the disk space
1962 * to be freed when the transaction is committed.
1963 */
1964 ilen = rec.ir_freecount;
1965 be32_add_cpu(&agi->agi_count, -ilen);
1966 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1967 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1968 pag = xfs_perag_get(mp, agno);
1969 pag->pagi_freecount -= ilen - 1;
1970 xfs_perag_put(pag);
1971 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1973
1974 if ((error = xfs_btree_delete(cur, &i))) {
1975 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1976 __func__, error);
1977 goto error0;
1978 }
1979
1980 xfs_difree_inode_chunk(mp, agno, &rec, flist);
1981 } else {
1982 xic->deleted = 0;
1983
1984 error = xfs_inobt_update(cur, &rec);
1985 if (error) {
1986 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1987 __func__, error);
1988 goto error0;
1989 }
1990
1991 /*
1992 * Change the inode free counts and log the ag/sb changes.
1993 */
1994 be32_add_cpu(&agi->agi_freecount, 1);
1995 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1996 pag = xfs_perag_get(mp, agno);
1997 pag->pagi_freecount++;
1998 xfs_perag_put(pag);
1999 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2000 }
2001
2002 error = xfs_check_agi_freecount(cur, agi);
2003 if (error)
2004 goto error0;
2005
2006 *orec = rec;
2007 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2008 return 0;
2009
2010error0:
2011 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2012 return error;
2013}
2014
2015/*
2016 * Free an inode in the free inode btree.
2017 */
2018STATIC int
2019xfs_difree_finobt(
2020 struct xfs_mount *mp,
2021 struct xfs_trans *tp,
2022 struct xfs_buf *agbp,
2023 xfs_agino_t agino,
2024 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2025{
2026 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2027 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2028 struct xfs_btree_cur *cur;
2029 struct xfs_inobt_rec_incore rec;
2030 int offset = agino - ibtrec->ir_startino;
2031 int error;
2032 int i;
2033
2034 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2035
2036 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2037 if (error)
2038 goto error;
2039 if (i == 0) {
2040 /*
2041 * If the record does not exist in the finobt, we must have just
2042 * freed an inode in a previously fully allocated chunk. If not,
2043 * something is out of sync.
2044 */
2045 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2046
2047 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2048 ibtrec->ir_count,
2049 ibtrec->ir_freecount,
2050 ibtrec->ir_free, &i);
2051 if (error)
2052 goto error;
2053 ASSERT(i == 1);
2054
2055 goto out;
2056 }
2057
2058 /*
2059 * Read and update the existing record. We could just copy the ibtrec
2060 * across here, but that would defeat the purpose of having redundant
2061 * metadata. By making the modifications independently, we can catch
2062 * corruptions that we wouldn't see if we just copied from one record
2063 * to another.
2064 */
2065 error = xfs_inobt_get_rec(cur, &rec, &i);
2066 if (error)
2067 goto error;
2068 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2069
2070 rec.ir_free |= XFS_INOBT_MASK(offset);
2071 rec.ir_freecount++;
2072
2073 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2074 (rec.ir_freecount == ibtrec->ir_freecount),
2075 error);
2076
2077 /*
2078 * The content of inobt records should always match between the inobt
2079 * and finobt. The lifecycle of records in the finobt is different from
2080 * the inobt in that the finobt only tracks records with at least one
2081 * free inode. Hence, if all of the inodes are free and we aren't
2082 * keeping inode chunks permanently on disk, remove the record.
2083 * Otherwise, update the record with the new information.
2084 *
2085 * Note that we currently can't free chunks when the block size is large
2086 * enough for multiple chunks. Leave the finobt record to remain in sync
2087 * with the inobt.
2088 */
2089 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2090 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2091 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2092 error = xfs_btree_delete(cur, &i);
2093 if (error)
2094 goto error;
2095 ASSERT(i == 1);
2096 } else {
2097 error = xfs_inobt_update(cur, &rec);
2098 if (error)
2099 goto error;
2100 }
2101
2102out:
2103 error = xfs_check_agi_freecount(cur, agi);
2104 if (error)
2105 goto error;
2106
2107 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2108 return 0;
2109
2110error:
2111 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2112 return error;
2113}
2114
2115/*
2116 * Free disk inode. Carefully avoids touching the incore inode, all
2117 * manipulations incore are the caller's responsibility.
2118 * The on-disk inode is not changed by this operation, only the
2119 * btree (free inode mask) is changed.
2120 */
2121int
2122xfs_difree(
2123 struct xfs_trans *tp, /* transaction pointer */
2124 xfs_ino_t inode, /* inode to be freed */
2125 struct xfs_bmap_free *flist, /* extents to free */
2126 struct xfs_icluster *xic) /* cluster info if deleted */
2127{
2128 /* REFERENCED */
2129 xfs_agblock_t agbno; /* block number containing inode */
2130 struct xfs_buf *agbp; /* buffer for allocation group header */
2131 xfs_agino_t agino; /* allocation group inode number */
2132 xfs_agnumber_t agno; /* allocation group number */
2133 int error; /* error return value */
2134 struct xfs_mount *mp; /* mount structure for filesystem */
2135 struct xfs_inobt_rec_incore rec;/* btree record */
2136
2137 mp = tp->t_mountp;
2138
2139 /*
2140 * Break up inode number into its components.
2141 */
2142 agno = XFS_INO_TO_AGNO(mp, inode);
2143 if (agno >= mp->m_sb.sb_agcount) {
2144 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2145 __func__, agno, mp->m_sb.sb_agcount);
2146 ASSERT(0);
2147 return -EINVAL;
2148 }
2149 agino = XFS_INO_TO_AGINO(mp, inode);
2150 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2151 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2152 __func__, (unsigned long long)inode,
2153 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2154 ASSERT(0);
2155 return -EINVAL;
2156 }
2157 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2158 if (agbno >= mp->m_sb.sb_agblocks) {
2159 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2160 __func__, agbno, mp->m_sb.sb_agblocks);
2161 ASSERT(0);
2162 return -EINVAL;
2163 }
2164 /*
2165 * Get the allocation group header.
2166 */
2167 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2168 if (error) {
2169 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2170 __func__, error);
2171 return error;
2172 }
2173
2174 /*
2175 * Fix up the inode allocation btree.
2176 */
2177 error = xfs_difree_inobt(mp, tp, agbp, agino, flist, xic, &rec);
2178 if (error)
2179 goto error0;
2180
2181 /*
2182 * Fix up the free inode btree.
2183 */
2184 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2185 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2186 if (error)
2187 goto error0;
2188 }
2189
2190 return 0;
2191
2192error0:
2193 return error;
2194}
2195
2196STATIC int
2197xfs_imap_lookup(
2198 struct xfs_mount *mp,
2199 struct xfs_trans *tp,
2200 xfs_agnumber_t agno,
2201 xfs_agino_t agino,
2202 xfs_agblock_t agbno,
2203 xfs_agblock_t *chunk_agbno,
2204 xfs_agblock_t *offset_agbno,
2205 int flags)
2206{
2207 struct xfs_inobt_rec_incore rec;
2208 struct xfs_btree_cur *cur;
2209 struct xfs_buf *agbp;
2210 int error;
2211 int i;
2212
2213 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2214 if (error) {
2215 xfs_alert(mp,
2216 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2217 __func__, error, agno);
2218 return error;
2219 }
2220
2221 /*
2222 * Lookup the inode record for the given agino. If the record cannot be
2223 * found, then it's an invalid inode number and we should abort. Once
2224 * we have a record, we need to ensure it contains the inode number
2225 * we are looking up.
2226 */
2227 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2228 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2229 if (!error) {
2230 if (i)
2231 error = xfs_inobt_get_rec(cur, &rec, &i);
2232 if (!error && i == 0)
2233 error = -EINVAL;
2234 }
2235
2236 xfs_trans_brelse(tp, agbp);
2237 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2238 if (error)
2239 return error;
2240
2241 /* check that the returned record contains the required inode */
2242 if (rec.ir_startino > agino ||
2243 rec.ir_startino + mp->m_ialloc_inos <= agino)
2244 return -EINVAL;
2245
2246 /* for untrusted inodes check it is allocated first */
2247 if ((flags & XFS_IGET_UNTRUSTED) &&
2248 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2249 return -EINVAL;
2250
2251 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2252 *offset_agbno = agbno - *chunk_agbno;
2253 return 0;
2254}
2255
2256/*
2257 * Return the location of the inode in imap, for mapping it into a buffer.
2258 */
2259int
2260xfs_imap(
2261 xfs_mount_t *mp, /* file system mount structure */
2262 xfs_trans_t *tp, /* transaction pointer */
2263 xfs_ino_t ino, /* inode to locate */
2264 struct xfs_imap *imap, /* location map structure */
2265 uint flags) /* flags for inode btree lookup */
2266{
2267 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2268 xfs_agino_t agino; /* inode number within alloc group */
2269 xfs_agnumber_t agno; /* allocation group number */
2270 int blks_per_cluster; /* num blocks per inode cluster */
2271 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2272 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2273 int error; /* error code */
2274 int offset; /* index of inode in its buffer */
2275 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2276
2277 ASSERT(ino != NULLFSINO);
2278
2279 /*
2280 * Split up the inode number into its parts.
2281 */
2282 agno = XFS_INO_TO_AGNO(mp, ino);
2283 agino = XFS_INO_TO_AGINO(mp, ino);
2284 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2285 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2286 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2287#ifdef DEBUG
2288 /*
2289 * Don't output diagnostic information for untrusted inodes
2290 * as they can be invalid without implying corruption.
2291 */
2292 if (flags & XFS_IGET_UNTRUSTED)
2293 return -EINVAL;
2294 if (agno >= mp->m_sb.sb_agcount) {
2295 xfs_alert(mp,
2296 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2297 __func__, agno, mp->m_sb.sb_agcount);
2298 }
2299 if (agbno >= mp->m_sb.sb_agblocks) {
2300 xfs_alert(mp,
2301 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2302 __func__, (unsigned long long)agbno,
2303 (unsigned long)mp->m_sb.sb_agblocks);
2304 }
2305 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2306 xfs_alert(mp,
2307 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2308 __func__, ino,
2309 XFS_AGINO_TO_INO(mp, agno, agino));
2310 }
2311 xfs_stack_trace();
2312#endif /* DEBUG */
2313 return -EINVAL;
2314 }
2315
2316 blks_per_cluster = xfs_icluster_size_fsb(mp);
2317
2318 /*
2319 * For bulkstat and handle lookups, we have an untrusted inode number
2320 * that we have to verify is valid. We cannot do this just by reading
2321 * the inode buffer as it may have been unlinked and removed leaving
2322 * inodes in stale state on disk. Hence we have to do a btree lookup
2323 * in all cases where an untrusted inode number is passed.
2324 */
2325 if (flags & XFS_IGET_UNTRUSTED) {
2326 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2327 &chunk_agbno, &offset_agbno, flags);
2328 if (error)
2329 return error;
2330 goto out_map;
2331 }
2332
2333 /*
2334 * If the inode cluster size is the same as the blocksize or
2335 * smaller we get to the buffer by simple arithmetics.
2336 */
2337 if (blks_per_cluster == 1) {
2338 offset = XFS_INO_TO_OFFSET(mp, ino);
2339 ASSERT(offset < mp->m_sb.sb_inopblock);
2340
2341 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2342 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2343 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2344 return 0;
2345 }
2346
2347 /*
2348 * If the inode chunks are aligned then use simple maths to
2349 * find the location. Otherwise we have to do a btree
2350 * lookup to find the location.
2351 */
2352 if (mp->m_inoalign_mask) {
2353 offset_agbno = agbno & mp->m_inoalign_mask;
2354 chunk_agbno = agbno - offset_agbno;
2355 } else {
2356 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2357 &chunk_agbno, &offset_agbno, flags);
2358 if (error)
2359 return error;
2360 }
2361
2362out_map:
2363 ASSERT(agbno >= chunk_agbno);
2364 cluster_agbno = chunk_agbno +
2365 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2366 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2367 XFS_INO_TO_OFFSET(mp, ino);
2368
2369 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2370 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2371 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2372
2373 /*
2374 * If the inode number maps to a block outside the bounds
2375 * of the file system then return NULL rather than calling
2376 * read_buf and panicing when we get an error from the
2377 * driver.
2378 */
2379 if ((imap->im_blkno + imap->im_len) >
2380 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2381 xfs_alert(mp,
2382 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2383 __func__, (unsigned long long) imap->im_blkno,
2384 (unsigned long long) imap->im_len,
2385 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2386 return -EINVAL;
2387 }
2388 return 0;
2389}
2390
2391/*
2392 * Compute and fill in value of m_in_maxlevels.
2393 */
2394void
2395xfs_ialloc_compute_maxlevels(
2396 xfs_mount_t *mp) /* file system mount structure */
2397{
2398 int level;
2399 uint maxblocks;
2400 uint maxleafents;
2401 int minleafrecs;
2402 int minnoderecs;
2403
2404 maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
2405 XFS_INODES_PER_CHUNK_LOG;
2406 minleafrecs = mp->m_inobt_mnr[0];
2407 minnoderecs = mp->m_inobt_mnr[1];
2408 maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
2409 for (level = 1; maxblocks > 1; level++)
2410 maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
2411 mp->m_in_maxlevels = level;
2412}
2413
2414/*
2415 * Log specified fields for the ag hdr (inode section). The growth of the agi
2416 * structure over time requires that we interpret the buffer as two logical
2417 * regions delineated by the end of the unlinked list. This is due to the size
2418 * of the hash table and its location in the middle of the agi.
2419 *
2420 * For example, a request to log a field before agi_unlinked and a field after
2421 * agi_unlinked could cause us to log the entire hash table and use an excessive
2422 * amount of log space. To avoid this behavior, log the region up through
2423 * agi_unlinked in one call and the region after agi_unlinked through the end of
2424 * the structure in another.
2425 */
2426void
2427xfs_ialloc_log_agi(
2428 xfs_trans_t *tp, /* transaction pointer */
2429 xfs_buf_t *bp, /* allocation group header buffer */
2430 int fields) /* bitmask of fields to log */
2431{
2432 int first; /* first byte number */
2433 int last; /* last byte number */
2434 static const short offsets[] = { /* field starting offsets */
2435 /* keep in sync with bit definitions */
2436 offsetof(xfs_agi_t, agi_magicnum),
2437 offsetof(xfs_agi_t, agi_versionnum),
2438 offsetof(xfs_agi_t, agi_seqno),
2439 offsetof(xfs_agi_t, agi_length),
2440 offsetof(xfs_agi_t, agi_count),
2441 offsetof(xfs_agi_t, agi_root),
2442 offsetof(xfs_agi_t, agi_level),
2443 offsetof(xfs_agi_t, agi_freecount),
2444 offsetof(xfs_agi_t, agi_newino),
2445 offsetof(xfs_agi_t, agi_dirino),
2446 offsetof(xfs_agi_t, agi_unlinked),
2447 offsetof(xfs_agi_t, agi_free_root),
2448 offsetof(xfs_agi_t, agi_free_level),
2449 sizeof(xfs_agi_t)
2450 };
2451#ifdef DEBUG
2452 xfs_agi_t *agi; /* allocation group header */
2453
2454 agi = XFS_BUF_TO_AGI(bp);
2455 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2456#endif
2457
2458 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2459
2460 /*
2461 * Compute byte offsets for the first and last fields in the first
2462 * region and log the agi buffer. This only logs up through
2463 * agi_unlinked.
2464 */
2465 if (fields & XFS_AGI_ALL_BITS_R1) {
2466 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2467 &first, &last);
2468 xfs_trans_log_buf(tp, bp, first, last);
2469 }
2470
2471 /*
2472 * Mask off the bits in the first region and calculate the first and
2473 * last field offsets for any bits in the second region.
2474 */
2475 fields &= ~XFS_AGI_ALL_BITS_R1;
2476 if (fields) {
2477 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2478 &first, &last);
2479 xfs_trans_log_buf(tp, bp, first, last);
2480 }
2481}
2482
2483#ifdef DEBUG
2484STATIC void
2485xfs_check_agi_unlinked(
2486 struct xfs_agi *agi)
2487{
2488 int i;
2489
2490 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2491 ASSERT(agi->agi_unlinked[i]);
2492}
2493#else
2494#define xfs_check_agi_unlinked(agi)
2495#endif
2496
2497static bool
2498xfs_agi_verify(
2499 struct xfs_buf *bp)
2500{
2501 struct xfs_mount *mp = bp->b_target->bt_mount;
2502 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2503
2504 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2505 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2506 return false;
2507 if (!xfs_log_check_lsn(mp,
2508 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2509 return false;
2510 }
2511
2512 /*
2513 * Validate the magic number of the agi block.
2514 */
2515 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2516 return false;
2517 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2518 return false;
2519
2520 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2521 return false;
2522 /*
2523 * during growfs operations, the perag is not fully initialised,
2524 * so we can't use it for any useful checking. growfs ensures we can't
2525 * use it by using uncached buffers that don't have the perag attached
2526 * so we can detect and avoid this problem.
2527 */
2528 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2529 return false;
2530
2531 xfs_check_agi_unlinked(agi);
2532 return true;
2533}
2534
2535static void
2536xfs_agi_read_verify(
2537 struct xfs_buf *bp)
2538{
2539 struct xfs_mount *mp = bp->b_target->bt_mount;
2540
2541 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2542 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2543 xfs_buf_ioerror(bp, -EFSBADCRC);
2544 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2545 XFS_ERRTAG_IALLOC_READ_AGI,
2546 XFS_RANDOM_IALLOC_READ_AGI))
2547 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2548
2549 if (bp->b_error)
2550 xfs_verifier_error(bp);
2551}
2552
2553static void
2554xfs_agi_write_verify(
2555 struct xfs_buf *bp)
2556{
2557 struct xfs_mount *mp = bp->b_target->bt_mount;
2558 struct xfs_buf_log_item *bip = bp->b_fspriv;
2559
2560 if (!xfs_agi_verify(bp)) {
2561 xfs_buf_ioerror(bp, -EFSCORRUPTED);
2562 xfs_verifier_error(bp);
2563 return;
2564 }
2565
2566 if (!xfs_sb_version_hascrc(&mp->m_sb))
2567 return;
2568
2569 if (bip)
2570 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2571 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2572}
2573
2574const struct xfs_buf_ops xfs_agi_buf_ops = {
2575 .name = "xfs_agi",
2576 .verify_read = xfs_agi_read_verify,
2577 .verify_write = xfs_agi_write_verify,
2578};
2579
2580/*
2581 * Read in the allocation group header (inode allocation section)
2582 */
2583int
2584xfs_read_agi(
2585 struct xfs_mount *mp, /* file system mount structure */
2586 struct xfs_trans *tp, /* transaction pointer */
2587 xfs_agnumber_t agno, /* allocation group number */
2588 struct xfs_buf **bpp) /* allocation group hdr buf */
2589{
2590 int error;
2591
2592 trace_xfs_read_agi(mp, agno);
2593
2594 ASSERT(agno != NULLAGNUMBER);
2595 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2596 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2597 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2598 if (error)
2599 return error;
2600
2601 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2602 return 0;
2603}
2604
2605int
2606xfs_ialloc_read_agi(
2607 struct xfs_mount *mp, /* file system mount structure */
2608 struct xfs_trans *tp, /* transaction pointer */
2609 xfs_agnumber_t agno, /* allocation group number */
2610 struct xfs_buf **bpp) /* allocation group hdr buf */
2611{
2612 struct xfs_agi *agi; /* allocation group header */
2613 struct xfs_perag *pag; /* per allocation group data */
2614 int error;
2615
2616 trace_xfs_ialloc_read_agi(mp, agno);
2617
2618 error = xfs_read_agi(mp, tp, agno, bpp);
2619 if (error)
2620 return error;
2621
2622 agi = XFS_BUF_TO_AGI(*bpp);
2623 pag = xfs_perag_get(mp, agno);
2624 if (!pag->pagi_init) {
2625 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2626 pag->pagi_count = be32_to_cpu(agi->agi_count);
2627 pag->pagi_init = 1;
2628 }
2629
2630 /*
2631 * It's possible for these to be out of sync if
2632 * we are in the middle of a forced shutdown.
2633 */
2634 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2635 XFS_FORCED_SHUTDOWN(mp));
2636 xfs_perag_put(pag);
2637 return 0;
2638}
2639
2640/*
2641 * Read in the agi to initialise the per-ag data in the mount structure
2642 */
2643int
2644xfs_ialloc_pagi_init(
2645 xfs_mount_t *mp, /* file system mount structure */
2646 xfs_trans_t *tp, /* transaction pointer */
2647 xfs_agnumber_t agno) /* allocation group number */
2648{
2649 xfs_buf_t *bp = NULL;
2650 int error;
2651
2652 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2653 if (error)
2654 return error;
2655 if (bp)
2656 xfs_trans_brelse(tp, bp);
2657 return 0;
2658}