Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_errortag.h"
35#include "xfs_error.h"
36#include "xfs_bmap.h"
37#include "xfs_cksum.h"
38#include "xfs_trans.h"
39#include "xfs_buf_item.h"
40#include "xfs_icreate_item.h"
41#include "xfs_icache.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44#include "xfs_rmap.h"
45
46
47/*
48 * Allocation group level functions.
49 */
50int
51xfs_ialloc_cluster_alignment(
52 struct xfs_mount *mp)
53{
54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 return mp->m_sb.sb_inoalignmt;
57 return 1;
58}
59
60/*
61 * Lookup a record by ino in the btree given by cur.
62 */
63int /* error */
64xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
69{
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
76}
77
78/*
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
81 */
82STATIC int /* error */
83xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
85 xfs_inobt_rec_incore_t *irec) /* btree record */
86{
87 union xfs_btree_rec rec;
88
89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 }
98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 return xfs_btree_update(cur, &rec);
100}
101
102/* Convert on-disk btree record to incore inobt record. */
103void
104xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
108{
109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
115 /*
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
118 */
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
123 }
124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
125}
126
127/*
128 * Get the data from the pointed-to record.
129 */
130int
131xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
135{
136 union xfs_btree_rec *rec;
137 int error;
138
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
142
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
144
145 return 0;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151STATIC int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs, blks_per_cluster, inodes_per_cluster;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
288
289 /*
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
295 *
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
301 *
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
307 */
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
312
313 /*
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
320 */
321 if (tp)
322 xfs_icreate_log(tp, agno, agbno, icount,
323 mp->m_sb.sb_inodesize, length, gen);
324 } else
325 version = 2;
326
327 for (j = 0; j < nbufs; j++) {
328 /*
329 * Get the block.
330 */
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
335 if (!fbuf)
336 return -ENOMEM;
337
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf->b_ops = &xfs_inode_buf_ops;
340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 for (i = 0; i < inodes_per_cluster; i++) {
342 int ioffset = i << mp->m_sb.sb_inodelog;
343 uint isize = xfs_dinode_size(version);
344
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
350
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
356 xfs_dinode_calc_crc(mp, free);
357 } else if (tp) {
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
361 }
362 }
363
364 if (tp) {
365 /*
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
372 */
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
375 /*
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
380 */
381 xfs_trans_ordered_buf(tp, fbuf);
382 }
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
387 }
388 }
389 return 0;
390}
391
392/*
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
395 *
396 * Background:
397 *
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
406 *
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
414 */
415STATIC void
416xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
420{
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
424
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
429
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
433
434 /*
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
438 */
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440}
441
442/*
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
446 */
447STATIC bool
448__xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
451{
452 uint64_t talloc;
453 uint64_t salloc;
454
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
458
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
463
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
467
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
471
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
477
478 return true;
479}
480
481/*
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
484 */
485STATIC void
486__xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
489{
490 ASSERT(trec->ir_startino == srec->ir_startino);
491
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
495
496 /*
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 */
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
502}
503
504/*
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
509 *
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
515 *
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
518 */
519STATIC int
520xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
527{
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
534
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549
550 goto out;
551 }
552
553 /*
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
556 */
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
565
566 /*
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
569 */
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
572
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
579
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
582
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
586 }
587
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
591
592out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
598}
599
600/*
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
603 */
604STATIC int /* error code or 0 */
605xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
609{
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
612 xfs_agnumber_t agno;
613 int error;
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
616 int isaligned = 0; /* inode allocation at stripe unit */
617 /* boundary */
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 int do_sparse = 0;
622
623 memset(&args, 0, sizeof(args));
624 args.tp = tp;
625 args.mp = tp->t_mountp;
626 args.fsbno = NULLFSBLOCK;
627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
628
629#ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634#endif
635
636 /*
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
639 */
640 newlen = args.mp->m_ialloc_inos;
641 if (args.mp->m_maxicount &&
642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 args.mp->m_maxicount)
644 return -ENOSPC;
645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
646 /*
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
650 */
651 agi = XFS_BUF_TO_AGI(agbp);
652 newino = be32_to_cpu(agi->agi_newino);
653 agno = be32_to_cpu(agi->agi_seqno);
654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 args.mp->m_ialloc_blks;
656 if (do_sparse)
657 goto sparse_alloc;
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 args.type = XFS_ALLOCTYPE_THIS_BNO;
662 args.prod = 1;
663
664 /*
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
670 *
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
676 */
677 args.alignment = 1;
678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
679
680 /* Allow space for the inode btree to split. */
681 args.minleft = args.mp->m_in_maxlevels - 1;
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
684
685 /*
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
694 */
695 args.minalignslop = 0;
696 }
697
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 /*
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
706 */
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
712 } else
713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
714 /*
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
718 */
719 args.agbno = be32_to_cpu(agi->agi_root);
720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
721 /*
722 * Allocate a fixed-size extent of inodes.
723 */
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.prod = 1;
726 /*
727 * Allow space for the inode btree to split.
728 */
729 args.minleft = args.mp->m_in_maxlevels - 1;
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
734 /*
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
737 */
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
745 }
746
747 /*
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
750 */
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
754sparse_alloc:
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
760
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
763
764 /*
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
769 *
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
773 */
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
778
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
782
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
791 }
792 ASSERT(args.len == args.minlen);
793
794 /*
795 * Stamp and write the inode buffers.
796 *
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
802 */
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
805
806 if (error)
807 return error;
808 /*
809 * Convert the results.
810 */
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
812
813 if (xfs_inobt_issparse(~allocmask)) {
814 /*
815 * We've allocated a sparse chunk. Align the startino and mask.
816 */
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
824
825 /*
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
829 */
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 }
840 if (error)
841 return error;
842
843 /*
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
848 *
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
853 */
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
860 }
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
867
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
873 }
874 }
875
876 /*
877 * Update AGI counts and newino.
878 */
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
884 agi->agi_newino = cpu_to_be32(newino);
885
886 /*
887 * Log allocation group header fields
888 */
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 /*
892 * Modify/log superblock values for inode count and inode free count.
893 */
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
898}
899
900STATIC xfs_agnumber_t
901xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
903{
904 xfs_agnumber_t agno;
905
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
908 if (++mp->m_agirotor >= mp->m_maxagi)
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
911
912 return agno;
913}
914
915/*
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
918 */
919STATIC xfs_agnumber_t
920xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
923 umode_t mode) /* bits set to indicate file type */
924{
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
950
951 ASSERT(pagno < agcount);
952
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
973 }
974
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
978 }
979
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
983 goto nextag;
984 }
985
986 /*
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
995 *
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1001 */
1002 ineed = mp->m_ialloc_min_blks;
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1008
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1013 }
1014nextag:
1015 xfs_perag_put(pag);
1016 /*
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1019 */
1020 if (XFS_FORCED_SHUTDOWN(mp))
1021 return NULLAGNUMBER;
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1026 if (flags == 0)
1027 return NULLAGNUMBER;
1028 flags = 0;
1029 }
1030 }
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1042{
1043 int error;
1044 int i;
1045
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1050
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1059 }
1060
1061 return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
1069 int *done)
1070{
1071 int error;
1072 int i;
1073
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1083 }
1084
1085 return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1096{
1097 xfs_inofree_t realfree;
1098
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1102
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1105
1106 return xfs_lowbit64(realfree);
1107}
1108
1109/*
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1118{
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
1131 int searchdistance = 10;
1132
1133 pag = xfs_perag_get(mp, agno);
1134
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141 /*
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1144 */
1145 if (!pagino)
1146 pagino = be32_to_cpu(agi->agi_newino);
1147
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1151
1152 /*
1153 * If in the same AG as the parent, try to get near the parent.
1154 */
1155 if (pagno == agno) {
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1158
1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1163
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1168
1169 if (rec.ir_freecount > 0) {
1170 /*
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1173 */
1174 goto alloc_inode;
1175 }
1176
1177
1178 /*
1179 * In the same AG as parent, but parent's chunk is full.
1180 */
1181
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1186
1187 /*
1188 * Skip to last blocks looked up if same parent inode.
1189 */
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 &trec, &doneleft);
1196 if (error)
1197 goto error1;
1198
1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 &rec, &doneright);
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1208
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1213 }
1214
1215 /*
1216 * Loop until we find an inode chunk with a free inode.
1217 */
1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 int useleft; /* using left inode chunk this time */
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1228 }
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
1234
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
1238 rec = trec;
1239 goto alloc_inode;
1240 }
1241
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1250 }
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1262 }
1263
1264 if (searchdistance <= 0) {
1265 /*
1266 * Not in range - save last search
1267 * location and allocate a new inode
1268 */
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1273
1274 } else {
1275 /*
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1281 */
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1288 }
1289 }
1290
1291 /*
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1294 */
1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
1298 if (error)
1299 goto error0;
1300
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1305
1306 if (j == 1 && rec.ir_freecount > 0) {
1307 /*
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1310 */
1311 goto alloc_inode;
1312 }
1313 }
1314 }
1315
1316 /*
1317 * None left in the last group, search the whole AG
1318 */
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 }
1336
1337alloc_inode:
1338 offset = xfs_inobt_first_free_inode(&rec);
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1352
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1356
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 xfs_perag_put(pag);
1360 *inop = ino;
1361 return 0;
1362error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 xfs_perag_put(pag);
1367 return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1379{
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1385
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1389
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1395
1396 /*
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1400 */
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1404 }
1405
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1409
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1418 }
1419
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 if (i == 1 && j == 1) {
1422 /*
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1425 */
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443
1444 return 0;
1445
1446error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1460{
1461 int error;
1462 int i;
1463
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 return 0;
1475 }
1476 }
1477
1478 /*
1479 * Find the first inode available in the AG.
1480 */
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490
1491 return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1503{
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1507
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1519
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1522
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 (rec.ir_freecount == frec->ir_freecount));
1525
1526 return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1542{
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1556
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560 pag = xfs_perag_get(mp, agno);
1561
1562 /*
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1565 */
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1568
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1579 */
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1586
1587 offset = xfs_inobt_first_free_inode(&rec);
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594 /*
1595 * Modify or remove the finobt record.
1596 */
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1605
1606 /*
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1611 */
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1617
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1621
1622 /*
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1625 */
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1629
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1638
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1644
1645error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
1679 struct xfs_buf **IO_agbp,
1680 xfs_ino_t *inop)
1681{
1682 struct xfs_mount *mp = tp->t_mountp;
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
1688 xfs_agnumber_t start_agno;
1689 struct xfs_perag *pag;
1690 int okalloc = 1;
1691
1692 if (*IO_agbp) {
1693 /*
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1697 */
1698 agbp = *IO_agbp;
1699 goto out_alloc;
1700 }
1701
1702 /*
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1705 */
1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 if (start_agno == NULLAGNUMBER) {
1708 *inop = NULLFSINO;
1709 return 0;
1710 }
1711
1712 /*
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
1716 *
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1719 */
1720 if (mp->m_maxicount &&
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
1723 noroom = 1;
1724 okalloc = 0;
1725 }
1726
1727 /*
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1731 */
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1738 }
1739
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
1744 }
1745
1746 /*
1747 * Do a first racy fast path check if this AG is usable.
1748 */
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1751
1752 /*
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1755 */
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1759
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1763 }
1764
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1767
1768
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1772
1773 if (error != -ENOSPC)
1774 goto out_error;
1775
1776 xfs_perag_put(pag);
1777 *inop = NULLFSINO;
1778 return 0;
1779 }
1780
1781 if (ialloced) {
1782 /*
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1787 */
1788 ASSERT(pag->pagi_freecount > 0);
1789 xfs_perag_put(pag);
1790
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
1794 }
1795
1796nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
1798nextag:
1799 xfs_perag_put(pag);
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
1804 return noroom ? -ENOSPC : 0;
1805 }
1806 }
1807
1808out_alloc:
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812 xfs_perag_put(pag);
1813 return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
1826 struct xfs_defer_ops *dfops)
1827{
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
1833 struct xfs_owner_info oinfo;
1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 mp->m_ialloc_blks, &oinfo);
1841 return;
1842 }
1843
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1847
1848 /*
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1853 */
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1860 /*
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1863 */
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1868 }
1869
1870 /*
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1874 */
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 contigblk, &oinfo);
1885
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1888
1889next:
1890 nextbit++;
1891 }
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
1900 struct xfs_defer_ops *dfops,
1901 struct xfs_icluster *xic,
1902 struct xfs_inobt_rec_incore *orec)
1903{
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1913
1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917 /*
1918 * Initialize the cursor.
1919 */
1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1925
1926 /*
1927 * Look for the entry describing this inode.
1928 */
1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1939 goto error0;
1940 }
1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1942 /*
1943 * Get the offset in the inode chunk.
1944 */
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948 /*
1949 * Mark the inode free & increment the count.
1950 */
1951 rec.ir_free |= XFS_INOBT_MASK(off);
1952 rec.ir_freecount++;
1953
1954 /*
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1958 */
1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 xic->deleted = true;
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981 if ((error = xfs_btree_delete(cur, &i))) {
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1984 goto error0;
1985 }
1986
1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 } else {
1989 xic->deleted = false;
1990
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1995 goto error0;
1996 }
1997
1998 /*
1999 * Change the inode free counts and log the ag/sb changes.
2000 */
2001 be32_add_cpu(&agi->agi_freecount, 1);
2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 }
2008
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
2012
2013 *orec = rec;
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2016
2017error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2032{
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2040
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2047 /*
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2051 */
2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2053
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2061
2062 goto out;
2063 }
2064
2065 /*
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2071 */
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2083
2084 /*
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2091 *
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
2095 */
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120}
2121
2122/*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2132 struct xfs_defer_ops *dfops, /* extents to free */
2133 struct xfs_icluster *xic) /* cluster info if deleted */
2134{
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144 mp = tp->t_mountp;
2145
2146 /*
2147 * Break up inode number into its components.
2148 */
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2154 return -EINVAL;
2155 }
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2162 return -EINVAL;
2163 }
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2169 return -EINVAL;
2170 }
2171 /*
2172 * Get the allocation group header.
2173 */
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2179 }
2180
2181 /*
2182 * Fix up the inode allocation btree.
2183 */
2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 if (error)
2186 goto error0;
2187
2188 /*
2189 * Fix up the free inode btree.
2190 */
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2195 }
2196
2197 return 0;
2198
2199error0:
2200 return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2213{
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
2217 int error;
2218 int i;
2219
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
2225 return error;
2226 }
2227
2228 /*
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2233 */
2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2240 error = -EINVAL;
2241 }
2242
2243 xfs_trans_brelse(tp, agbp);
2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 if (error)
2246 return error;
2247
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 return -EINVAL;
2252
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags & XFS_IGET_UNTRUSTED) &&
2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 return -EINVAL;
2257
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
2270 xfs_ino_t ino, /* inode to locate */
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
2273{
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2280 int error; /* error code */
2281 int offset; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2283
2284 ASSERT(ino != NULLFSINO);
2285
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294#ifdef DEBUG
2295 /*
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2298 */
2299 if (flags & XFS_IGET_UNTRUSTED)
2300 return -EINVAL;
2301 if (agno >= mp->m_sb.sb_agcount) {
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
2305 }
2306 if (agbno >= mp->m_sb.sb_agblocks) {
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
2311 }
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
2317 }
2318 xfs_stack_trace();
2319#endif /* DEBUG */
2320 return -EINVAL;
2321 }
2322
2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2338 }
2339
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
2344 if (blks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 return 0;
2353 }
2354
2355 /*
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2359 */
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
2366 if (error)
2367 return error;
2368 }
2369
2370out_map:
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2405{
2406 uint inodes;
2407
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2430{
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
2448 sizeof(xfs_agi_t)
2449 };
2450#ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2452
2453 agi = XFS_BUF_TO_AGI(bp);
2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457 /*
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
2461 */
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
2468 /*
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2471 */
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2500
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return __this_address;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 return __this_address;
2507 }
2508
2509 /*
2510 * Validate the magic number of the agi block.
2511 */
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return __this_address;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return __this_address;
2516
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 return __this_address;
2520
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 return __this_address;
2525
2526 /*
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2531 */
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return __this_address;
2534
2535 xfs_check_agi_unlinked(agi);
2536 return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541 struct xfs_buf *bp)
2542{
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 xfs_failaddr_t fa;
2545
2546 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 else {
2550 fa = xfs_agi_verify(bp);
2551 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 }
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558 struct xfs_buf *bp)
2559{
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_log_item;
2562 xfs_failaddr_t fa;
2563
2564 fa = xfs_agi_verify(bp);
2565 if (fa) {
2566 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 return;
2568 }
2569
2570 if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 return;
2572
2573 if (bip)
2574 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 .name = "xfs_agi",
2580 .verify_read = xfs_agi_read_verify,
2581 .verify_write = xfs_agi_write_verify,
2582 .verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590 struct xfs_mount *mp, /* file system mount structure */
2591 struct xfs_trans *tp, /* transaction pointer */
2592 xfs_agnumber_t agno, /* allocation group number */
2593 struct xfs_buf **bpp) /* allocation group hdr buf */
2594{
2595 int error;
2596
2597 trace_xfs_read_agi(mp, agno);
2598
2599 ASSERT(agno != NULLAGNUMBER);
2600 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 if (error)
2604 return error;
2605 if (tp)
2606 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 return 0;
2610}
2611
2612int
2613xfs_ialloc_read_agi(
2614 struct xfs_mount *mp, /* file system mount structure */
2615 struct xfs_trans *tp, /* transaction pointer */
2616 xfs_agnumber_t agno, /* allocation group number */
2617 struct xfs_buf **bpp) /* allocation group hdr buf */
2618{
2619 struct xfs_agi *agi; /* allocation group header */
2620 struct xfs_perag *pag; /* per allocation group data */
2621 int error;
2622
2623 trace_xfs_ialloc_read_agi(mp, agno);
2624
2625 error = xfs_read_agi(mp, tp, agno, bpp);
2626 if (error)
2627 return error;
2628
2629 agi = XFS_BUF_TO_AGI(*bpp);
2630 pag = xfs_perag_get(mp, agno);
2631 if (!pag->pagi_init) {
2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 pag->pagi_init = 1;
2635 }
2636
2637 /*
2638 * It's possible for these to be out of sync if
2639 * we are in the middle of a forced shutdown.
2640 */
2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 XFS_FORCED_SHUTDOWN(mp));
2643 xfs_perag_put(pag);
2644 return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652 xfs_mount_t *mp, /* file system mount structure */
2653 xfs_trans_t *tp, /* transaction pointer */
2654 xfs_agnumber_t agno) /* allocation group number */
2655{
2656 xfs_buf_t *bp = NULL;
2657 int error;
2658
2659 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 if (error)
2661 return error;
2662 if (bp)
2663 xfs_trans_brelse(tp, bp);
2664 return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t *first,
2673 xfs_agino_t *last)
2674{
2675 xfs_agblock_t bno;
2676 xfs_agblock_t eoag;
2677
2678 eoag = xfs_ag_block_count(mp, agno);
2679
2680 /*
2681 * Calculate the first inode, which will be in the first
2682 * cluster-aligned block after the AGFL.
2683 */
2684 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 xfs_ialloc_cluster_alignment(mp));
2686 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688 /*
2689 * Calculate the last inode, which will be at the end of the
2690 * last (aligned) cluster that can be allocated in the AG.
2691 */
2692 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702 struct xfs_mount *mp,
2703 xfs_agnumber_t agno,
2704 xfs_agino_t agino)
2705{
2706 xfs_agino_t first;
2707 xfs_agino_t last;
2708
2709 xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719 struct xfs_mount *mp,
2720 xfs_ino_t ino)
2721{
2722 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2723 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725 if (agno >= mp->m_sb.sb_agcount)
2726 return false;
2727 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 return false;
2729 return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735 struct xfs_mount *mp,
2736 xfs_ino_t ino)
2737{
2738 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 (xfs_sb_version_hasquota(&mp->m_sb) &&
2740 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749 struct xfs_mount *mp,
2750 xfs_ino_t ino)
2751{
2752 if (xfs_internal_inum(mp, ino))
2753 return false;
2754 return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760 struct xfs_btree_cur *cur,
2761 xfs_agino_t low,
2762 xfs_agino_t high,
2763 bool *exists)
2764{
2765 struct xfs_inobt_rec_incore irec;
2766 xfs_agino_t agino;
2767 uint16_t holemask;
2768 int has_record;
2769 int i;
2770 int error;
2771
2772 *exists = false;
2773 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 while (error == 0 && has_record) {
2775 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 if (error || irec.ir_startino > high)
2777 break;
2778
2779 agino = irec.ir_startino;
2780 holemask = irec.ir_holemask;
2781 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 if (holemask & 1)
2784 continue;
2785 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 agino <= high) {
2787 *exists = true;
2788 return 0;
2789 }
2790 }
2791
2792 error = xfs_btree_increment(cur, 0, &has_record);
2793 }
2794 return error;
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800 struct xfs_btree_cur *cur,
2801 xfs_agblock_t bno,
2802 xfs_extlen_t len,
2803 bool *exists)
2804{
2805 xfs_agino_t low;
2806 xfs_agino_t high;
2807
2808 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810
2811 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 union xfs_btree_rec *rec,
2824 void *priv)
2825{
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2828
2829 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 ci->count += irec.ir_count;
2831 ci->freecount += irec.ir_freecount;
2832
2833 return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839 struct xfs_btree_cur *cur,
2840 xfs_agino_t *count,
2841 xfs_agino_t *freecount)
2842{
2843 struct xfs_ialloc_count_inodes ci = {0};
2844 int error;
2845
2846 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 if (error)
2849 return error;
2850
2851 *count = ci.count;
2852 *freecount = ci.freecount;
2853 return 0;
2854}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_has_sparseinodes(cur->bc_mp)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 const union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_has_sparseinodes(mp)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/* Compute the freecount of an incore inode record. */
99uint8_t
100xfs_inobt_rec_freecount(
101 const struct xfs_inobt_rec_incore *irec)
102{
103 uint64_t realfree = irec->ir_free;
104
105 if (xfs_inobt_issparse(irec->ir_holemask))
106 realfree &= xfs_inobt_irec_to_allocmask(irec);
107 return hweight64(realfree);
108}
109
110/* Simple checks for inode records. */
111xfs_failaddr_t
112xfs_inobt_check_irec(
113 struct xfs_perag *pag,
114 const struct xfs_inobt_rec_incore *irec)
115{
116 /* Record has to be properly aligned within the AG. */
117 if (!xfs_verify_agino(pag, irec->ir_startino))
118 return __this_address;
119 if (!xfs_verify_agino(pag,
120 irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
121 return __this_address;
122 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
123 irec->ir_count > XFS_INODES_PER_CHUNK)
124 return __this_address;
125 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
126 return __this_address;
127
128 if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
129 return __this_address;
130
131 return NULL;
132}
133
134static inline int
135xfs_inobt_complain_bad_rec(
136 struct xfs_btree_cur *cur,
137 xfs_failaddr_t fa,
138 const struct xfs_inobt_rec_incore *irec)
139{
140 struct xfs_mount *mp = cur->bc_mp;
141
142 xfs_warn(mp,
143 "%s Inode BTree record corruption in AG %d detected at %pS!",
144 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
145 cur->bc_ag.pag->pag_agno, fa);
146 xfs_warn(mp,
147"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 irec->ir_free, irec->ir_holemask);
150 return -EFSCORRUPTED;
151}
152
153/*
154 * Get the data from the pointed-to record.
155 */
156int
157xfs_inobt_get_rec(
158 struct xfs_btree_cur *cur,
159 struct xfs_inobt_rec_incore *irec,
160 int *stat)
161{
162 struct xfs_mount *mp = cur->bc_mp;
163 union xfs_btree_rec *rec;
164 xfs_failaddr_t fa;
165 int error;
166
167 error = xfs_btree_get_rec(cur, &rec, stat);
168 if (error || *stat == 0)
169 return error;
170
171 xfs_inobt_btrec_to_irec(mp, rec, irec);
172 fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
173 if (fa)
174 return xfs_inobt_complain_bad_rec(cur, fa, irec);
175
176 return 0;
177}
178
179/*
180 * Insert a single inobt record. Cursor must already point to desired location.
181 */
182int
183xfs_inobt_insert_rec(
184 struct xfs_btree_cur *cur,
185 uint16_t holemask,
186 uint8_t count,
187 int32_t freecount,
188 xfs_inofree_t free,
189 int *stat)
190{
191 cur->bc_rec.i.ir_holemask = holemask;
192 cur->bc_rec.i.ir_count = count;
193 cur->bc_rec.i.ir_freecount = freecount;
194 cur->bc_rec.i.ir_free = free;
195 return xfs_btree_insert(cur, stat);
196}
197
198/*
199 * Insert records describing a newly allocated inode chunk into the inobt.
200 */
201STATIC int
202xfs_inobt_insert(
203 struct xfs_perag *pag,
204 struct xfs_trans *tp,
205 struct xfs_buf *agbp,
206 xfs_agino_t newino,
207 xfs_agino_t newlen,
208 xfs_btnum_t btnum)
209{
210 struct xfs_btree_cur *cur;
211 xfs_agino_t thisino;
212 int i;
213 int error;
214
215 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
216
217 for (thisino = newino;
218 thisino < newino + newlen;
219 thisino += XFS_INODES_PER_CHUNK) {
220 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
221 if (error) {
222 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
223 return error;
224 }
225 ASSERT(i == 0);
226
227 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
228 XFS_INODES_PER_CHUNK,
229 XFS_INODES_PER_CHUNK,
230 XFS_INOBT_ALL_FREE, &i);
231 if (error) {
232 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
233 return error;
234 }
235 ASSERT(i == 1);
236 }
237
238 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
239
240 return 0;
241}
242
243/*
244 * Verify that the number of free inodes in the AGI is correct.
245 */
246#ifdef DEBUG
247static int
248xfs_check_agi_freecount(
249 struct xfs_btree_cur *cur)
250{
251 if (cur->bc_nlevels == 1) {
252 xfs_inobt_rec_incore_t rec;
253 int freecount = 0;
254 int error;
255 int i;
256
257 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
258 if (error)
259 return error;
260
261 do {
262 error = xfs_inobt_get_rec(cur, &rec, &i);
263 if (error)
264 return error;
265
266 if (i) {
267 freecount += rec.ir_freecount;
268 error = xfs_btree_increment(cur, 0, &i);
269 if (error)
270 return error;
271 }
272 } while (i == 1);
273
274 if (!xfs_is_shutdown(cur->bc_mp))
275 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
276 }
277 return 0;
278}
279#else
280#define xfs_check_agi_freecount(cur) 0
281#endif
282
283/*
284 * Initialise a new set of inodes. When called without a transaction context
285 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
286 * than logging them (which in a transaction context puts them into the AIL
287 * for writeback rather than the xfsbufd queue).
288 */
289int
290xfs_ialloc_inode_init(
291 struct xfs_mount *mp,
292 struct xfs_trans *tp,
293 struct list_head *buffer_list,
294 int icount,
295 xfs_agnumber_t agno,
296 xfs_agblock_t agbno,
297 xfs_agblock_t length,
298 unsigned int gen)
299{
300 struct xfs_buf *fbuf;
301 struct xfs_dinode *free;
302 int nbufs;
303 int version;
304 int i, j;
305 xfs_daddr_t d;
306 xfs_ino_t ino = 0;
307 int error;
308
309 /*
310 * Loop over the new block(s), filling in the inodes. For small block
311 * sizes, manipulate the inodes in buffers which are multiples of the
312 * blocks size.
313 */
314 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
315
316 /*
317 * Figure out what version number to use in the inodes we create. If
318 * the superblock version has caught up to the one that supports the new
319 * inode format, then use the new inode version. Otherwise use the old
320 * version so that old kernels will continue to be able to use the file
321 * system.
322 *
323 * For v3 inodes, we also need to write the inode number into the inode,
324 * so calculate the first inode number of the chunk here as
325 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
326 * across multiple filesystem blocks (such as a cluster) and so cannot
327 * be used in the cluster buffer loop below.
328 *
329 * Further, because we are writing the inode directly into the buffer
330 * and calculating a CRC on the entire inode, we have ot log the entire
331 * inode so that the entire range the CRC covers is present in the log.
332 * That means for v3 inode we log the entire buffer rather than just the
333 * inode cores.
334 */
335 if (xfs_has_v3inodes(mp)) {
336 version = 3;
337 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
338
339 /*
340 * log the initialisation that is about to take place as an
341 * logical operation. This means the transaction does not
342 * need to log the physical changes to the inode buffers as log
343 * recovery will know what initialisation is actually needed.
344 * Hence we only need to log the buffers as "ordered" buffers so
345 * they track in the AIL as if they were physically logged.
346 */
347 if (tp)
348 xfs_icreate_log(tp, agno, agbno, icount,
349 mp->m_sb.sb_inodesize, length, gen);
350 } else
351 version = 2;
352
353 for (j = 0; j < nbufs; j++) {
354 /*
355 * Get the block.
356 */
357 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
358 (j * M_IGEO(mp)->blocks_per_cluster));
359 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
360 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
361 XBF_UNMAPPED, &fbuf);
362 if (error)
363 return error;
364
365 /* Initialize the inode buffers and log them appropriately. */
366 fbuf->b_ops = &xfs_inode_buf_ops;
367 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
368 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
369 int ioffset = i << mp->m_sb.sb_inodelog;
370
371 free = xfs_make_iptr(mp, fbuf, i);
372 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
373 free->di_version = version;
374 free->di_gen = cpu_to_be32(gen);
375 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
376
377 if (version == 3) {
378 free->di_ino = cpu_to_be64(ino);
379 ino++;
380 uuid_copy(&free->di_uuid,
381 &mp->m_sb.sb_meta_uuid);
382 xfs_dinode_calc_crc(mp, free);
383 } else if (tp) {
384 /* just log the inode core */
385 xfs_trans_log_buf(tp, fbuf, ioffset,
386 ioffset + XFS_DINODE_SIZE(mp) - 1);
387 }
388 }
389
390 if (tp) {
391 /*
392 * Mark the buffer as an inode allocation buffer so it
393 * sticks in AIL at the point of this allocation
394 * transaction. This ensures the they are on disk before
395 * the tail of the log can be moved past this
396 * transaction (i.e. by preventing relogging from moving
397 * it forward in the log).
398 */
399 xfs_trans_inode_alloc_buf(tp, fbuf);
400 if (version == 3) {
401 /*
402 * Mark the buffer as ordered so that they are
403 * not physically logged in the transaction but
404 * still tracked in the AIL as part of the
405 * transaction and pin the log appropriately.
406 */
407 xfs_trans_ordered_buf(tp, fbuf);
408 }
409 } else {
410 fbuf->b_flags |= XBF_DONE;
411 xfs_buf_delwri_queue(fbuf, buffer_list);
412 xfs_buf_relse(fbuf);
413 }
414 }
415 return 0;
416}
417
418/*
419 * Align startino and allocmask for a recently allocated sparse chunk such that
420 * they are fit for insertion (or merge) into the on-disk inode btrees.
421 *
422 * Background:
423 *
424 * When enabled, sparse inode support increases the inode alignment from cluster
425 * size to inode chunk size. This means that the minimum range between two
426 * non-adjacent inode records in the inobt is large enough for a full inode
427 * record. This allows for cluster sized, cluster aligned block allocation
428 * without need to worry about whether the resulting inode record overlaps with
429 * another record in the tree. Without this basic rule, we would have to deal
430 * with the consequences of overlap by potentially undoing recent allocations in
431 * the inode allocation codepath.
432 *
433 * Because of this alignment rule (which is enforced on mount), there are two
434 * inobt possibilities for newly allocated sparse chunks. One is that the
435 * aligned inode record for the chunk covers a range of inodes not already
436 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
437 * other is that a record already exists at the aligned startino that considers
438 * the newly allocated range as sparse. In the latter case, record content is
439 * merged in hope that sparse inode chunks fill to full chunks over time.
440 */
441STATIC void
442xfs_align_sparse_ino(
443 struct xfs_mount *mp,
444 xfs_agino_t *startino,
445 uint16_t *allocmask)
446{
447 xfs_agblock_t agbno;
448 xfs_agblock_t mod;
449 int offset;
450
451 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
452 mod = agbno % mp->m_sb.sb_inoalignmt;
453 if (!mod)
454 return;
455
456 /* calculate the inode offset and align startino */
457 offset = XFS_AGB_TO_AGINO(mp, mod);
458 *startino -= offset;
459
460 /*
461 * Since startino has been aligned down, left shift allocmask such that
462 * it continues to represent the same physical inodes relative to the
463 * new startino.
464 */
465 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
466}
467
468/*
469 * Determine whether the source inode record can merge into the target. Both
470 * records must be sparse, the inode ranges must match and there must be no
471 * allocation overlap between the records.
472 */
473STATIC bool
474__xfs_inobt_can_merge(
475 struct xfs_inobt_rec_incore *trec, /* tgt record */
476 struct xfs_inobt_rec_incore *srec) /* src record */
477{
478 uint64_t talloc;
479 uint64_t salloc;
480
481 /* records must cover the same inode range */
482 if (trec->ir_startino != srec->ir_startino)
483 return false;
484
485 /* both records must be sparse */
486 if (!xfs_inobt_issparse(trec->ir_holemask) ||
487 !xfs_inobt_issparse(srec->ir_holemask))
488 return false;
489
490 /* both records must track some inodes */
491 if (!trec->ir_count || !srec->ir_count)
492 return false;
493
494 /* can't exceed capacity of a full record */
495 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
496 return false;
497
498 /* verify there is no allocation overlap */
499 talloc = xfs_inobt_irec_to_allocmask(trec);
500 salloc = xfs_inobt_irec_to_allocmask(srec);
501 if (talloc & salloc)
502 return false;
503
504 return true;
505}
506
507/*
508 * Merge the source inode record into the target. The caller must call
509 * __xfs_inobt_can_merge() to ensure the merge is valid.
510 */
511STATIC void
512__xfs_inobt_rec_merge(
513 struct xfs_inobt_rec_incore *trec, /* target */
514 struct xfs_inobt_rec_incore *srec) /* src */
515{
516 ASSERT(trec->ir_startino == srec->ir_startino);
517
518 /* combine the counts */
519 trec->ir_count += srec->ir_count;
520 trec->ir_freecount += srec->ir_freecount;
521
522 /*
523 * Merge the holemask and free mask. For both fields, 0 bits refer to
524 * allocated inodes. We combine the allocated ranges with bitwise AND.
525 */
526 trec->ir_holemask &= srec->ir_holemask;
527 trec->ir_free &= srec->ir_free;
528}
529
530/*
531 * Insert a new sparse inode chunk into the associated inode btree. The inode
532 * record for the sparse chunk is pre-aligned to a startino that should match
533 * any pre-existing sparse inode record in the tree. This allows sparse chunks
534 * to fill over time.
535 *
536 * This function supports two modes of handling preexisting records depending on
537 * the merge flag. If merge is true, the provided record is merged with the
538 * existing record and updated in place. The merged record is returned in nrec.
539 * If merge is false, an existing record is replaced with the provided record.
540 * If no preexisting record exists, the provided record is always inserted.
541 *
542 * It is considered corruption if a merge is requested and not possible. Given
543 * the sparse inode alignment constraints, this should never happen.
544 */
545STATIC int
546xfs_inobt_insert_sprec(
547 struct xfs_perag *pag,
548 struct xfs_trans *tp,
549 struct xfs_buf *agbp,
550 int btnum,
551 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
552 bool merge) /* merge or replace */
553{
554 struct xfs_mount *mp = pag->pag_mount;
555 struct xfs_btree_cur *cur;
556 int error;
557 int i;
558 struct xfs_inobt_rec_incore rec;
559
560 cur = xfs_inobt_init_cursor(pag, tp, agbp, btnum);
561
562 /* the new record is pre-aligned so we know where to look */
563 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 if (error)
565 goto error;
566 /* if nothing there, insert a new record and return */
567 if (i == 0) {
568 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 nrec->ir_count, nrec->ir_freecount,
570 nrec->ir_free, &i);
571 if (error)
572 goto error;
573 if (XFS_IS_CORRUPT(mp, i != 1)) {
574 error = -EFSCORRUPTED;
575 goto error;
576 }
577
578 goto out;
579 }
580
581 /*
582 * A record exists at this startino. Merge or replace the record
583 * depending on what we've been asked to do.
584 */
585 if (merge) {
586 error = xfs_inobt_get_rec(cur, &rec, &i);
587 if (error)
588 goto error;
589 if (XFS_IS_CORRUPT(mp, i != 1)) {
590 error = -EFSCORRUPTED;
591 goto error;
592 }
593 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 error = -EFSCORRUPTED;
595 goto error;
596 }
597
598 /*
599 * This should never fail. If we have coexisting records that
600 * cannot merge, something is seriously wrong.
601 */
602 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
603 error = -EFSCORRUPTED;
604 goto error;
605 }
606
607 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
608 rec.ir_holemask, nrec->ir_startino,
609 nrec->ir_holemask);
610
611 /* merge to nrec to output the updated record */
612 __xfs_inobt_rec_merge(nrec, &rec);
613
614 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
615 nrec->ir_holemask);
616
617 error = xfs_inobt_rec_check_count(mp, nrec);
618 if (error)
619 goto error;
620 }
621
622 error = xfs_inobt_update(cur, nrec);
623 if (error)
624 goto error;
625
626out:
627 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
628 return 0;
629error:
630 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
631 return error;
632}
633
634/*
635 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
636 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
637 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
638 * inode count threshold, or the usual negative error code for other errors.
639 */
640STATIC int
641xfs_ialloc_ag_alloc(
642 struct xfs_perag *pag,
643 struct xfs_trans *tp,
644 struct xfs_buf *agbp)
645{
646 struct xfs_agi *agi;
647 struct xfs_alloc_arg args;
648 int error;
649 xfs_agino_t newino; /* new first inode's number */
650 xfs_agino_t newlen; /* new number of inodes */
651 int isaligned = 0; /* inode allocation at stripe */
652 /* unit boundary */
653 /* init. to full chunk */
654 struct xfs_inobt_rec_incore rec;
655 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
656 uint16_t allocmask = (uint16_t) -1;
657 int do_sparse = 0;
658
659 memset(&args, 0, sizeof(args));
660 args.tp = tp;
661 args.mp = tp->t_mountp;
662 args.fsbno = NULLFSBLOCK;
663 args.oinfo = XFS_RMAP_OINFO_INODES;
664 args.pag = pag;
665
666#ifdef DEBUG
667 /* randomly do sparse inode allocations */
668 if (xfs_has_sparseinodes(tp->t_mountp) &&
669 igeo->ialloc_min_blks < igeo->ialloc_blks)
670 do_sparse = get_random_u32_below(2);
671#endif
672
673 /*
674 * Locking will ensure that we don't have two callers in here
675 * at one time.
676 */
677 newlen = igeo->ialloc_inos;
678 if (igeo->maxicount &&
679 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
680 igeo->maxicount)
681 return -ENOSPC;
682 args.minlen = args.maxlen = igeo->ialloc_blks;
683 /*
684 * First try to allocate inodes contiguous with the last-allocated
685 * chunk of inodes. If the filesystem is striped, this will fill
686 * an entire stripe unit with inodes.
687 */
688 agi = agbp->b_addr;
689 newino = be32_to_cpu(agi->agi_newino);
690 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
691 igeo->ialloc_blks;
692 if (do_sparse)
693 goto sparse_alloc;
694 if (likely(newino != NULLAGINO &&
695 (args.agbno < be32_to_cpu(agi->agi_length)))) {
696 args.prod = 1;
697
698 /*
699 * We need to take into account alignment here to ensure that
700 * we don't modify the free list if we fail to have an exact
701 * block. If we don't have an exact match, and every oher
702 * attempt allocation attempt fails, we'll end up cancelling
703 * a dirty transaction and shutting down.
704 *
705 * For an exact allocation, alignment must be 1,
706 * however we need to take cluster alignment into account when
707 * fixing up the freelist. Use the minalignslop field to
708 * indicate that extra blocks might be required for alignment,
709 * but not to use them in the actual exact allocation.
710 */
711 args.alignment = 1;
712 args.minalignslop = igeo->cluster_align - 1;
713
714 /* Allow space for the inode btree to split. */
715 args.minleft = igeo->inobt_maxlevels;
716 error = xfs_alloc_vextent_exact_bno(&args,
717 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
718 args.agbno));
719 if (error)
720 return error;
721
722 /*
723 * This request might have dirtied the transaction if the AG can
724 * satisfy the request, but the exact block was not available.
725 * If the allocation did fail, subsequent requests will relax
726 * the exact agbno requirement and increase the alignment
727 * instead. It is critical that the total size of the request
728 * (len + alignment + slop) does not increase from this point
729 * on, so reset minalignslop to ensure it is not included in
730 * subsequent requests.
731 */
732 args.minalignslop = 0;
733 }
734
735 if (unlikely(args.fsbno == NULLFSBLOCK)) {
736 /*
737 * Set the alignment for the allocation.
738 * If stripe alignment is turned on then align at stripe unit
739 * boundary.
740 * If the cluster size is smaller than a filesystem block
741 * then we're doing I/O for inodes in filesystem block size
742 * pieces, so don't need alignment anyway.
743 */
744 isaligned = 0;
745 if (igeo->ialloc_align) {
746 ASSERT(!xfs_has_noalign(args.mp));
747 args.alignment = args.mp->m_dalign;
748 isaligned = 1;
749 } else
750 args.alignment = igeo->cluster_align;
751 /*
752 * Allocate a fixed-size extent of inodes.
753 */
754 args.prod = 1;
755 /*
756 * Allow space for the inode btree to split.
757 */
758 args.minleft = igeo->inobt_maxlevels;
759 error = xfs_alloc_vextent_near_bno(&args,
760 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
761 be32_to_cpu(agi->agi_root)));
762 if (error)
763 return error;
764 }
765
766 /*
767 * If stripe alignment is turned on, then try again with cluster
768 * alignment.
769 */
770 if (isaligned && args.fsbno == NULLFSBLOCK) {
771 args.alignment = igeo->cluster_align;
772 error = xfs_alloc_vextent_near_bno(&args,
773 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
774 be32_to_cpu(agi->agi_root)));
775 if (error)
776 return error;
777 }
778
779 /*
780 * Finally, try a sparse allocation if the filesystem supports it and
781 * the sparse allocation length is smaller than a full chunk.
782 */
783 if (xfs_has_sparseinodes(args.mp) &&
784 igeo->ialloc_min_blks < igeo->ialloc_blks &&
785 args.fsbno == NULLFSBLOCK) {
786sparse_alloc:
787 args.alignment = args.mp->m_sb.sb_spino_align;
788 args.prod = 1;
789
790 args.minlen = igeo->ialloc_min_blks;
791 args.maxlen = args.minlen;
792
793 /*
794 * The inode record will be aligned to full chunk size. We must
795 * prevent sparse allocation from AG boundaries that result in
796 * invalid inode records, such as records that start at agbno 0
797 * or extend beyond the AG.
798 *
799 * Set min agbno to the first aligned, non-zero agbno and max to
800 * the last aligned agbno that is at least one full chunk from
801 * the end of the AG.
802 */
803 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
804 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
805 args.mp->m_sb.sb_inoalignmt) -
806 igeo->ialloc_blks;
807
808 error = xfs_alloc_vextent_near_bno(&args,
809 XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
810 be32_to_cpu(agi->agi_root)));
811 if (error)
812 return error;
813
814 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
815 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
816 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
817 }
818
819 if (args.fsbno == NULLFSBLOCK)
820 return -EAGAIN;
821
822 ASSERT(args.len == args.minlen);
823
824 /*
825 * Stamp and write the inode buffers.
826 *
827 * Seed the new inode cluster with a random generation number. This
828 * prevents short-term reuse of generation numbers if a chunk is
829 * freed and then immediately reallocated. We use random numbers
830 * rather than a linear progression to prevent the next generation
831 * number from being easily guessable.
832 */
833 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
834 args.agbno, args.len, get_random_u32());
835
836 if (error)
837 return error;
838 /*
839 * Convert the results.
840 */
841 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
842
843 if (xfs_inobt_issparse(~allocmask)) {
844 /*
845 * We've allocated a sparse chunk. Align the startino and mask.
846 */
847 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
848
849 rec.ir_startino = newino;
850 rec.ir_holemask = ~allocmask;
851 rec.ir_count = newlen;
852 rec.ir_freecount = newlen;
853 rec.ir_free = XFS_INOBT_ALL_FREE;
854
855 /*
856 * Insert the sparse record into the inobt and allow for a merge
857 * if necessary. If a merge does occur, rec is updated to the
858 * merged record.
859 */
860 error = xfs_inobt_insert_sprec(pag, tp, agbp,
861 XFS_BTNUM_INO, &rec, true);
862 if (error == -EFSCORRUPTED) {
863 xfs_alert(args.mp,
864 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
865 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
866 rec.ir_startino),
867 rec.ir_holemask, rec.ir_count);
868 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
869 }
870 if (error)
871 return error;
872
873 /*
874 * We can't merge the part we've just allocated as for the inobt
875 * due to finobt semantics. The original record may or may not
876 * exist independent of whether physical inodes exist in this
877 * sparse chunk.
878 *
879 * We must update the finobt record based on the inobt record.
880 * rec contains the fully merged and up to date inobt record
881 * from the previous call. Set merge false to replace any
882 * existing record with this one.
883 */
884 if (xfs_has_finobt(args.mp)) {
885 error = xfs_inobt_insert_sprec(pag, tp, agbp,
886 XFS_BTNUM_FINO, &rec, false);
887 if (error)
888 return error;
889 }
890 } else {
891 /* full chunk - insert new records to both btrees */
892 error = xfs_inobt_insert(pag, tp, agbp, newino, newlen,
893 XFS_BTNUM_INO);
894 if (error)
895 return error;
896
897 if (xfs_has_finobt(args.mp)) {
898 error = xfs_inobt_insert(pag, tp, agbp, newino,
899 newlen, XFS_BTNUM_FINO);
900 if (error)
901 return error;
902 }
903 }
904
905 /*
906 * Update AGI counts and newino.
907 */
908 be32_add_cpu(&agi->agi_count, newlen);
909 be32_add_cpu(&agi->agi_freecount, newlen);
910 pag->pagi_freecount += newlen;
911 pag->pagi_count += newlen;
912 agi->agi_newino = cpu_to_be32(newino);
913
914 /*
915 * Log allocation group header fields
916 */
917 xfs_ialloc_log_agi(tp, agbp,
918 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
919 /*
920 * Modify/log superblock values for inode count and inode free count.
921 */
922 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
923 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
924 return 0;
925}
926
927/*
928 * Try to retrieve the next record to the left/right from the current one.
929 */
930STATIC int
931xfs_ialloc_next_rec(
932 struct xfs_btree_cur *cur,
933 xfs_inobt_rec_incore_t *rec,
934 int *done,
935 int left)
936{
937 int error;
938 int i;
939
940 if (left)
941 error = xfs_btree_decrement(cur, 0, &i);
942 else
943 error = xfs_btree_increment(cur, 0, &i);
944
945 if (error)
946 return error;
947 *done = !i;
948 if (i) {
949 error = xfs_inobt_get_rec(cur, rec, &i);
950 if (error)
951 return error;
952 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
953 return -EFSCORRUPTED;
954 }
955
956 return 0;
957}
958
959STATIC int
960xfs_ialloc_get_rec(
961 struct xfs_btree_cur *cur,
962 xfs_agino_t agino,
963 xfs_inobt_rec_incore_t *rec,
964 int *done)
965{
966 int error;
967 int i;
968
969 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
970 if (error)
971 return error;
972 *done = !i;
973 if (i) {
974 error = xfs_inobt_get_rec(cur, rec, &i);
975 if (error)
976 return error;
977 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
978 return -EFSCORRUPTED;
979 }
980
981 return 0;
982}
983
984/*
985 * Return the offset of the first free inode in the record. If the inode chunk
986 * is sparsely allocated, we convert the record holemask to inode granularity
987 * and mask off the unallocated regions from the inode free mask.
988 */
989STATIC int
990xfs_inobt_first_free_inode(
991 struct xfs_inobt_rec_incore *rec)
992{
993 xfs_inofree_t realfree;
994
995 /* if there are no holes, return the first available offset */
996 if (!xfs_inobt_issparse(rec->ir_holemask))
997 return xfs_lowbit64(rec->ir_free);
998
999 realfree = xfs_inobt_irec_to_allocmask(rec);
1000 realfree &= rec->ir_free;
1001
1002 return xfs_lowbit64(realfree);
1003}
1004
1005/*
1006 * Allocate an inode using the inobt-only algorithm.
1007 */
1008STATIC int
1009xfs_dialloc_ag_inobt(
1010 struct xfs_perag *pag,
1011 struct xfs_trans *tp,
1012 struct xfs_buf *agbp,
1013 xfs_ino_t parent,
1014 xfs_ino_t *inop)
1015{
1016 struct xfs_mount *mp = tp->t_mountp;
1017 struct xfs_agi *agi = agbp->b_addr;
1018 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1019 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1020 struct xfs_btree_cur *cur, *tcur;
1021 struct xfs_inobt_rec_incore rec, trec;
1022 xfs_ino_t ino;
1023 int error;
1024 int offset;
1025 int i, j;
1026 int searchdistance = 10;
1027
1028 ASSERT(xfs_perag_initialised_agi(pag));
1029 ASSERT(xfs_perag_allows_inodes(pag));
1030 ASSERT(pag->pagi_freecount > 0);
1031
1032 restart_pagno:
1033 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1034 /*
1035 * If pagino is 0 (this is the root inode allocation) use newino.
1036 * This must work because we've just allocated some.
1037 */
1038 if (!pagino)
1039 pagino = be32_to_cpu(agi->agi_newino);
1040
1041 error = xfs_check_agi_freecount(cur);
1042 if (error)
1043 goto error0;
1044
1045 /*
1046 * If in the same AG as the parent, try to get near the parent.
1047 */
1048 if (pagno == pag->pag_agno) {
1049 int doneleft; /* done, to the left */
1050 int doneright; /* done, to the right */
1051
1052 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1053 if (error)
1054 goto error0;
1055 if (XFS_IS_CORRUPT(mp, i != 1)) {
1056 error = -EFSCORRUPTED;
1057 goto error0;
1058 }
1059
1060 error = xfs_inobt_get_rec(cur, &rec, &j);
1061 if (error)
1062 goto error0;
1063 if (XFS_IS_CORRUPT(mp, j != 1)) {
1064 error = -EFSCORRUPTED;
1065 goto error0;
1066 }
1067
1068 if (rec.ir_freecount > 0) {
1069 /*
1070 * Found a free inode in the same chunk
1071 * as the parent, done.
1072 */
1073 goto alloc_inode;
1074 }
1075
1076
1077 /*
1078 * In the same AG as parent, but parent's chunk is full.
1079 */
1080
1081 /* duplicate the cursor, search left & right simultaneously */
1082 error = xfs_btree_dup_cursor(cur, &tcur);
1083 if (error)
1084 goto error0;
1085
1086 /*
1087 * Skip to last blocks looked up if same parent inode.
1088 */
1089 if (pagino != NULLAGINO &&
1090 pag->pagl_pagino == pagino &&
1091 pag->pagl_leftrec != NULLAGINO &&
1092 pag->pagl_rightrec != NULLAGINO) {
1093 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1094 &trec, &doneleft);
1095 if (error)
1096 goto error1;
1097
1098 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1099 &rec, &doneright);
1100 if (error)
1101 goto error1;
1102 } else {
1103 /* search left with tcur, back up 1 record */
1104 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1105 if (error)
1106 goto error1;
1107
1108 /* search right with cur, go forward 1 record. */
1109 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1110 if (error)
1111 goto error1;
1112 }
1113
1114 /*
1115 * Loop until we find an inode chunk with a free inode.
1116 */
1117 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1118 int useleft; /* using left inode chunk this time */
1119
1120 /* figure out the closer block if both are valid. */
1121 if (!doneleft && !doneright) {
1122 useleft = pagino -
1123 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1124 rec.ir_startino - pagino;
1125 } else {
1126 useleft = !doneleft;
1127 }
1128
1129 /* free inodes to the left? */
1130 if (useleft && trec.ir_freecount) {
1131 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1132 cur = tcur;
1133
1134 pag->pagl_leftrec = trec.ir_startino;
1135 pag->pagl_rightrec = rec.ir_startino;
1136 pag->pagl_pagino = pagino;
1137 rec = trec;
1138 goto alloc_inode;
1139 }
1140
1141 /* free inodes to the right? */
1142 if (!useleft && rec.ir_freecount) {
1143 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1144
1145 pag->pagl_leftrec = trec.ir_startino;
1146 pag->pagl_rightrec = rec.ir_startino;
1147 pag->pagl_pagino = pagino;
1148 goto alloc_inode;
1149 }
1150
1151 /* get next record to check */
1152 if (useleft) {
1153 error = xfs_ialloc_next_rec(tcur, &trec,
1154 &doneleft, 1);
1155 } else {
1156 error = xfs_ialloc_next_rec(cur, &rec,
1157 &doneright, 0);
1158 }
1159 if (error)
1160 goto error1;
1161 }
1162
1163 if (searchdistance <= 0) {
1164 /*
1165 * Not in range - save last search
1166 * location and allocate a new inode
1167 */
1168 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1169 pag->pagl_leftrec = trec.ir_startino;
1170 pag->pagl_rightrec = rec.ir_startino;
1171 pag->pagl_pagino = pagino;
1172
1173 } else {
1174 /*
1175 * We've reached the end of the btree. because
1176 * we are only searching a small chunk of the
1177 * btree each search, there is obviously free
1178 * inodes closer to the parent inode than we
1179 * are now. restart the search again.
1180 */
1181 pag->pagl_pagino = NULLAGINO;
1182 pag->pagl_leftrec = NULLAGINO;
1183 pag->pagl_rightrec = NULLAGINO;
1184 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1185 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1186 goto restart_pagno;
1187 }
1188 }
1189
1190 /*
1191 * In a different AG from the parent.
1192 * See if the most recently allocated block has any free.
1193 */
1194 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1195 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1196 XFS_LOOKUP_EQ, &i);
1197 if (error)
1198 goto error0;
1199
1200 if (i == 1) {
1201 error = xfs_inobt_get_rec(cur, &rec, &j);
1202 if (error)
1203 goto error0;
1204
1205 if (j == 1 && rec.ir_freecount > 0) {
1206 /*
1207 * The last chunk allocated in the group
1208 * still has a free inode.
1209 */
1210 goto alloc_inode;
1211 }
1212 }
1213 }
1214
1215 /*
1216 * None left in the last group, search the whole AG
1217 */
1218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1219 if (error)
1220 goto error0;
1221 if (XFS_IS_CORRUPT(mp, i != 1)) {
1222 error = -EFSCORRUPTED;
1223 goto error0;
1224 }
1225
1226 for (;;) {
1227 error = xfs_inobt_get_rec(cur, &rec, &i);
1228 if (error)
1229 goto error0;
1230 if (XFS_IS_CORRUPT(mp, i != 1)) {
1231 error = -EFSCORRUPTED;
1232 goto error0;
1233 }
1234 if (rec.ir_freecount > 0)
1235 break;
1236 error = xfs_btree_increment(cur, 0, &i);
1237 if (error)
1238 goto error0;
1239 if (XFS_IS_CORRUPT(mp, i != 1)) {
1240 error = -EFSCORRUPTED;
1241 goto error0;
1242 }
1243 }
1244
1245alloc_inode:
1246 offset = xfs_inobt_first_free_inode(&rec);
1247 ASSERT(offset >= 0);
1248 ASSERT(offset < XFS_INODES_PER_CHUNK);
1249 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1250 XFS_INODES_PER_CHUNK) == 0);
1251 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1252 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1253 rec.ir_freecount--;
1254 error = xfs_inobt_update(cur, &rec);
1255 if (error)
1256 goto error0;
1257 be32_add_cpu(&agi->agi_freecount, -1);
1258 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1259 pag->pagi_freecount--;
1260
1261 error = xfs_check_agi_freecount(cur);
1262 if (error)
1263 goto error0;
1264
1265 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1266 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1267 *inop = ino;
1268 return 0;
1269error1:
1270 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1271error0:
1272 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1273 return error;
1274}
1275
1276/*
1277 * Use the free inode btree to allocate an inode based on distance from the
1278 * parent. Note that the provided cursor may be deleted and replaced.
1279 */
1280STATIC int
1281xfs_dialloc_ag_finobt_near(
1282 xfs_agino_t pagino,
1283 struct xfs_btree_cur **ocur,
1284 struct xfs_inobt_rec_incore *rec)
1285{
1286 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1287 struct xfs_btree_cur *rcur; /* right search cursor */
1288 struct xfs_inobt_rec_incore rrec;
1289 int error;
1290 int i, j;
1291
1292 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1293 if (error)
1294 return error;
1295
1296 if (i == 1) {
1297 error = xfs_inobt_get_rec(lcur, rec, &i);
1298 if (error)
1299 return error;
1300 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1301 return -EFSCORRUPTED;
1302
1303 /*
1304 * See if we've landed in the parent inode record. The finobt
1305 * only tracks chunks with at least one free inode, so record
1306 * existence is enough.
1307 */
1308 if (pagino >= rec->ir_startino &&
1309 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1310 return 0;
1311 }
1312
1313 error = xfs_btree_dup_cursor(lcur, &rcur);
1314 if (error)
1315 return error;
1316
1317 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1318 if (error)
1319 goto error_rcur;
1320 if (j == 1) {
1321 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1322 if (error)
1323 goto error_rcur;
1324 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1325 error = -EFSCORRUPTED;
1326 goto error_rcur;
1327 }
1328 }
1329
1330 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1331 error = -EFSCORRUPTED;
1332 goto error_rcur;
1333 }
1334 if (i == 1 && j == 1) {
1335 /*
1336 * Both the left and right records are valid. Choose the closer
1337 * inode chunk to the target.
1338 */
1339 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1340 (rrec.ir_startino - pagino)) {
1341 *rec = rrec;
1342 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1343 *ocur = rcur;
1344 } else {
1345 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1346 }
1347 } else if (j == 1) {
1348 /* only the right record is valid */
1349 *rec = rrec;
1350 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1351 *ocur = rcur;
1352 } else if (i == 1) {
1353 /* only the left record is valid */
1354 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1355 }
1356
1357 return 0;
1358
1359error_rcur:
1360 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1361 return error;
1362}
1363
1364/*
1365 * Use the free inode btree to find a free inode based on a newino hint. If
1366 * the hint is NULL, find the first free inode in the AG.
1367 */
1368STATIC int
1369xfs_dialloc_ag_finobt_newino(
1370 struct xfs_agi *agi,
1371 struct xfs_btree_cur *cur,
1372 struct xfs_inobt_rec_incore *rec)
1373{
1374 int error;
1375 int i;
1376
1377 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1378 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1379 XFS_LOOKUP_EQ, &i);
1380 if (error)
1381 return error;
1382 if (i == 1) {
1383 error = xfs_inobt_get_rec(cur, rec, &i);
1384 if (error)
1385 return error;
1386 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1387 return -EFSCORRUPTED;
1388 return 0;
1389 }
1390 }
1391
1392 /*
1393 * Find the first inode available in the AG.
1394 */
1395 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1396 if (error)
1397 return error;
1398 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1399 return -EFSCORRUPTED;
1400
1401 error = xfs_inobt_get_rec(cur, rec, &i);
1402 if (error)
1403 return error;
1404 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1405 return -EFSCORRUPTED;
1406
1407 return 0;
1408}
1409
1410/*
1411 * Update the inobt based on a modification made to the finobt. Also ensure that
1412 * the records from both trees are equivalent post-modification.
1413 */
1414STATIC int
1415xfs_dialloc_ag_update_inobt(
1416 struct xfs_btree_cur *cur, /* inobt cursor */
1417 struct xfs_inobt_rec_incore *frec, /* finobt record */
1418 int offset) /* inode offset */
1419{
1420 struct xfs_inobt_rec_incore rec;
1421 int error;
1422 int i;
1423
1424 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1425 if (error)
1426 return error;
1427 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1428 return -EFSCORRUPTED;
1429
1430 error = xfs_inobt_get_rec(cur, &rec, &i);
1431 if (error)
1432 return error;
1433 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1434 return -EFSCORRUPTED;
1435 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1436 XFS_INODES_PER_CHUNK) == 0);
1437
1438 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1439 rec.ir_freecount--;
1440
1441 if (XFS_IS_CORRUPT(cur->bc_mp,
1442 rec.ir_free != frec->ir_free ||
1443 rec.ir_freecount != frec->ir_freecount))
1444 return -EFSCORRUPTED;
1445
1446 return xfs_inobt_update(cur, &rec);
1447}
1448
1449/*
1450 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1451 * back to the inobt search algorithm.
1452 *
1453 * The caller selected an AG for us, and made sure that free inodes are
1454 * available.
1455 */
1456static int
1457xfs_dialloc_ag(
1458 struct xfs_perag *pag,
1459 struct xfs_trans *tp,
1460 struct xfs_buf *agbp,
1461 xfs_ino_t parent,
1462 xfs_ino_t *inop)
1463{
1464 struct xfs_mount *mp = tp->t_mountp;
1465 struct xfs_agi *agi = agbp->b_addr;
1466 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1467 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1468 struct xfs_btree_cur *cur; /* finobt cursor */
1469 struct xfs_btree_cur *icur; /* inobt cursor */
1470 struct xfs_inobt_rec_incore rec;
1471 xfs_ino_t ino;
1472 int error;
1473 int offset;
1474 int i;
1475
1476 if (!xfs_has_finobt(mp))
1477 return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1478
1479 /*
1480 * If pagino is 0 (this is the root inode allocation) use newino.
1481 * This must work because we've just allocated some.
1482 */
1483 if (!pagino)
1484 pagino = be32_to_cpu(agi->agi_newino);
1485
1486 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
1487
1488 error = xfs_check_agi_freecount(cur);
1489 if (error)
1490 goto error_cur;
1491
1492 /*
1493 * The search algorithm depends on whether we're in the same AG as the
1494 * parent. If so, find the closest available inode to the parent. If
1495 * not, consider the agi hint or find the first free inode in the AG.
1496 */
1497 if (pag->pag_agno == pagno)
1498 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1499 else
1500 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1501 if (error)
1502 goto error_cur;
1503
1504 offset = xfs_inobt_first_free_inode(&rec);
1505 ASSERT(offset >= 0);
1506 ASSERT(offset < XFS_INODES_PER_CHUNK);
1507 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1508 XFS_INODES_PER_CHUNK) == 0);
1509 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1510
1511 /*
1512 * Modify or remove the finobt record.
1513 */
1514 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1515 rec.ir_freecount--;
1516 if (rec.ir_freecount)
1517 error = xfs_inobt_update(cur, &rec);
1518 else
1519 error = xfs_btree_delete(cur, &i);
1520 if (error)
1521 goto error_cur;
1522
1523 /*
1524 * The finobt has now been updated appropriately. We haven't updated the
1525 * agi and superblock yet, so we can create an inobt cursor and validate
1526 * the original freecount. If all is well, make the equivalent update to
1527 * the inobt using the finobt record and offset information.
1528 */
1529 icur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1530
1531 error = xfs_check_agi_freecount(icur);
1532 if (error)
1533 goto error_icur;
1534
1535 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1536 if (error)
1537 goto error_icur;
1538
1539 /*
1540 * Both trees have now been updated. We must update the perag and
1541 * superblock before we can check the freecount for each btree.
1542 */
1543 be32_add_cpu(&agi->agi_freecount, -1);
1544 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1545 pag->pagi_freecount--;
1546
1547 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1548
1549 error = xfs_check_agi_freecount(icur);
1550 if (error)
1551 goto error_icur;
1552 error = xfs_check_agi_freecount(cur);
1553 if (error)
1554 goto error_icur;
1555
1556 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1557 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1558 *inop = ino;
1559 return 0;
1560
1561error_icur:
1562 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1563error_cur:
1564 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1565 return error;
1566}
1567
1568static int
1569xfs_dialloc_roll(
1570 struct xfs_trans **tpp,
1571 struct xfs_buf *agibp)
1572{
1573 struct xfs_trans *tp = *tpp;
1574 struct xfs_dquot_acct *dqinfo;
1575 int error;
1576
1577 /*
1578 * Hold to on to the agibp across the commit so no other allocation can
1579 * come in and take the free inodes we just allocated for our caller.
1580 */
1581 xfs_trans_bhold(tp, agibp);
1582
1583 /*
1584 * We want the quota changes to be associated with the next transaction,
1585 * NOT this one. So, detach the dqinfo from this and attach it to the
1586 * next transaction.
1587 */
1588 dqinfo = tp->t_dqinfo;
1589 tp->t_dqinfo = NULL;
1590
1591 error = xfs_trans_roll(&tp);
1592
1593 /* Re-attach the quota info that we detached from prev trx. */
1594 tp->t_dqinfo = dqinfo;
1595
1596 /*
1597 * Join the buffer even on commit error so that the buffer is released
1598 * when the caller cancels the transaction and doesn't have to handle
1599 * this error case specially.
1600 */
1601 xfs_trans_bjoin(tp, agibp);
1602 *tpp = tp;
1603 return error;
1604}
1605
1606static bool
1607xfs_dialloc_good_ag(
1608 struct xfs_perag *pag,
1609 struct xfs_trans *tp,
1610 umode_t mode,
1611 int flags,
1612 bool ok_alloc)
1613{
1614 struct xfs_mount *mp = tp->t_mountp;
1615 xfs_extlen_t ineed;
1616 xfs_extlen_t longest = 0;
1617 int needspace;
1618 int error;
1619
1620 if (!pag)
1621 return false;
1622 if (!xfs_perag_allows_inodes(pag))
1623 return false;
1624
1625 if (!xfs_perag_initialised_agi(pag)) {
1626 error = xfs_ialloc_read_agi(pag, tp, NULL);
1627 if (error)
1628 return false;
1629 }
1630
1631 if (pag->pagi_freecount)
1632 return true;
1633 if (!ok_alloc)
1634 return false;
1635
1636 if (!xfs_perag_initialised_agf(pag)) {
1637 error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1638 if (error)
1639 return false;
1640 }
1641
1642 /*
1643 * Check that there is enough free space for the file plus a chunk of
1644 * inodes if we need to allocate some. If this is the first pass across
1645 * the AGs, take into account the potential space needed for alignment
1646 * of inode chunks when checking the longest contiguous free space in
1647 * the AG - this prevents us from getting ENOSPC because we have free
1648 * space larger than ialloc_blks but alignment constraints prevent us
1649 * from using it.
1650 *
1651 * If we can't find an AG with space for full alignment slack to be
1652 * taken into account, we must be near ENOSPC in all AGs. Hence we
1653 * don't include alignment for the second pass and so if we fail
1654 * allocation due to alignment issues then it is most likely a real
1655 * ENOSPC condition.
1656 *
1657 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1658 * reservations that xfs_alloc_fix_freelist() now does via
1659 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1660 * be more than large enough for the check below to succeed, but
1661 * xfs_alloc_space_available() will fail because of the non-zero
1662 * metadata reservation and hence we won't actually be able to allocate
1663 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1664 * because of this.
1665 */
1666 ineed = M_IGEO(mp)->ialloc_min_blks;
1667 if (flags && ineed > 1)
1668 ineed += M_IGEO(mp)->cluster_align;
1669 longest = pag->pagf_longest;
1670 if (!longest)
1671 longest = pag->pagf_flcount > 0;
1672 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1673
1674 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1675 return false;
1676 return true;
1677}
1678
1679static int
1680xfs_dialloc_try_ag(
1681 struct xfs_perag *pag,
1682 struct xfs_trans **tpp,
1683 xfs_ino_t parent,
1684 xfs_ino_t *new_ino,
1685 bool ok_alloc)
1686{
1687 struct xfs_buf *agbp;
1688 xfs_ino_t ino;
1689 int error;
1690
1691 /*
1692 * Then read in the AGI buffer and recheck with the AGI buffer
1693 * lock held.
1694 */
1695 error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1696 if (error)
1697 return error;
1698
1699 if (!pag->pagi_freecount) {
1700 if (!ok_alloc) {
1701 error = -EAGAIN;
1702 goto out_release;
1703 }
1704
1705 error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1706 if (error < 0)
1707 goto out_release;
1708
1709 /*
1710 * We successfully allocated space for an inode cluster in this
1711 * AG. Roll the transaction so that we can allocate one of the
1712 * new inodes.
1713 */
1714 ASSERT(pag->pagi_freecount > 0);
1715 error = xfs_dialloc_roll(tpp, agbp);
1716 if (error)
1717 goto out_release;
1718 }
1719
1720 /* Allocate an inode in the found AG */
1721 error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1722 if (!error)
1723 *new_ino = ino;
1724 return error;
1725
1726out_release:
1727 xfs_trans_brelse(*tpp, agbp);
1728 return error;
1729}
1730
1731/*
1732 * Allocate an on-disk inode.
1733 *
1734 * Mode is used to tell whether the new inode is a directory and hence where to
1735 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1736 * on success, otherwise an error will be set to indicate the failure (e.g.
1737 * -ENOSPC).
1738 */
1739int
1740xfs_dialloc(
1741 struct xfs_trans **tpp,
1742 xfs_ino_t parent,
1743 umode_t mode,
1744 xfs_ino_t *new_ino)
1745{
1746 struct xfs_mount *mp = (*tpp)->t_mountp;
1747 xfs_agnumber_t agno;
1748 int error = 0;
1749 xfs_agnumber_t start_agno;
1750 struct xfs_perag *pag;
1751 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1752 bool ok_alloc = true;
1753 bool low_space = false;
1754 int flags;
1755 xfs_ino_t ino = NULLFSINO;
1756
1757 /*
1758 * Directories, symlinks, and regular files frequently allocate at least
1759 * one block, so factor that potential expansion when we examine whether
1760 * an AG has enough space for file creation.
1761 */
1762 if (S_ISDIR(mode))
1763 start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1764 mp->m_maxagi;
1765 else {
1766 start_agno = XFS_INO_TO_AGNO(mp, parent);
1767 if (start_agno >= mp->m_maxagi)
1768 start_agno = 0;
1769 }
1770
1771 /*
1772 * If we have already hit the ceiling of inode blocks then clear
1773 * ok_alloc so we scan all available agi structures for a free
1774 * inode.
1775 *
1776 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1777 * which will sacrifice the preciseness but improve the performance.
1778 */
1779 if (igeo->maxicount &&
1780 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1781 > igeo->maxicount) {
1782 ok_alloc = false;
1783 }
1784
1785 /*
1786 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1787 * have free inodes in them rather than use up free space allocating new
1788 * inode chunks. Hence we turn off allocation for the first non-blocking
1789 * pass through the AGs if we are near ENOSPC to consume free inodes
1790 * that we can immediately allocate, but then we allow allocation on the
1791 * second pass if we fail to find an AG with free inodes in it.
1792 */
1793 if (percpu_counter_read_positive(&mp->m_fdblocks) <
1794 mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1795 ok_alloc = false;
1796 low_space = true;
1797 }
1798
1799 /*
1800 * Loop until we find an allocation group that either has free inodes
1801 * or in which we can allocate some inodes. Iterate through the
1802 * allocation groups upward, wrapping at the end.
1803 */
1804 flags = XFS_ALLOC_FLAG_TRYLOCK;
1805retry:
1806 for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1807 if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1808 error = xfs_dialloc_try_ag(pag, tpp, parent,
1809 &ino, ok_alloc);
1810 if (error != -EAGAIN)
1811 break;
1812 error = 0;
1813 }
1814
1815 if (xfs_is_shutdown(mp)) {
1816 error = -EFSCORRUPTED;
1817 break;
1818 }
1819 }
1820 if (pag)
1821 xfs_perag_rele(pag);
1822 if (error)
1823 return error;
1824 if (ino == NULLFSINO) {
1825 if (flags) {
1826 flags = 0;
1827 if (low_space)
1828 ok_alloc = true;
1829 goto retry;
1830 }
1831 return -ENOSPC;
1832 }
1833 *new_ino = ino;
1834 return 0;
1835}
1836
1837/*
1838 * Free the blocks of an inode chunk. We must consider that the inode chunk
1839 * might be sparse and only free the regions that are allocated as part of the
1840 * chunk.
1841 */
1842static int
1843xfs_difree_inode_chunk(
1844 struct xfs_trans *tp,
1845 xfs_agnumber_t agno,
1846 struct xfs_inobt_rec_incore *rec)
1847{
1848 struct xfs_mount *mp = tp->t_mountp;
1849 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1850 rec->ir_startino);
1851 int startidx, endidx;
1852 int nextbit;
1853 xfs_agblock_t agbno;
1854 int contigblk;
1855 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1856
1857 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1858 /* not sparse, calculate extent info directly */
1859 return xfs_free_extent_later(tp,
1860 XFS_AGB_TO_FSB(mp, agno, sagbno),
1861 M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1862 XFS_AG_RESV_NONE, false);
1863 }
1864
1865 /* holemask is only 16-bits (fits in an unsigned long) */
1866 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1867 holemask[0] = rec->ir_holemask;
1868
1869 /*
1870 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1871 * holemask and convert the start/end index of each range to an extent.
1872 * We start with the start and end index both pointing at the first 0 in
1873 * the mask.
1874 */
1875 startidx = endidx = find_first_zero_bit(holemask,
1876 XFS_INOBT_HOLEMASK_BITS);
1877 nextbit = startidx + 1;
1878 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1879 int error;
1880
1881 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1882 nextbit);
1883 /*
1884 * If the next zero bit is contiguous, update the end index of
1885 * the current range and continue.
1886 */
1887 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1888 nextbit == endidx + 1) {
1889 endidx = nextbit;
1890 goto next;
1891 }
1892
1893 /*
1894 * nextbit is not contiguous with the current end index. Convert
1895 * the current start/end to an extent and add it to the free
1896 * list.
1897 */
1898 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1899 mp->m_sb.sb_inopblock;
1900 contigblk = ((endidx - startidx + 1) *
1901 XFS_INODES_PER_HOLEMASK_BIT) /
1902 mp->m_sb.sb_inopblock;
1903
1904 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1905 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1906 error = xfs_free_extent_later(tp,
1907 XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
1908 &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE,
1909 false);
1910 if (error)
1911 return error;
1912
1913 /* reset range to current bit and carry on... */
1914 startidx = endidx = nextbit;
1915
1916next:
1917 nextbit++;
1918 }
1919 return 0;
1920}
1921
1922STATIC int
1923xfs_difree_inobt(
1924 struct xfs_perag *pag,
1925 struct xfs_trans *tp,
1926 struct xfs_buf *agbp,
1927 xfs_agino_t agino,
1928 struct xfs_icluster *xic,
1929 struct xfs_inobt_rec_incore *orec)
1930{
1931 struct xfs_mount *mp = pag->pag_mount;
1932 struct xfs_agi *agi = agbp->b_addr;
1933 struct xfs_btree_cur *cur;
1934 struct xfs_inobt_rec_incore rec;
1935 int ilen;
1936 int error;
1937 int i;
1938 int off;
1939
1940 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1941 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1942
1943 /*
1944 * Initialize the cursor.
1945 */
1946 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
1947
1948 error = xfs_check_agi_freecount(cur);
1949 if (error)
1950 goto error0;
1951
1952 /*
1953 * Look for the entry describing this inode.
1954 */
1955 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1956 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1957 __func__, error);
1958 goto error0;
1959 }
1960 if (XFS_IS_CORRUPT(mp, i != 1)) {
1961 error = -EFSCORRUPTED;
1962 goto error0;
1963 }
1964 error = xfs_inobt_get_rec(cur, &rec, &i);
1965 if (error) {
1966 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1967 __func__, error);
1968 goto error0;
1969 }
1970 if (XFS_IS_CORRUPT(mp, i != 1)) {
1971 error = -EFSCORRUPTED;
1972 goto error0;
1973 }
1974 /*
1975 * Get the offset in the inode chunk.
1976 */
1977 off = agino - rec.ir_startino;
1978 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1979 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1980 /*
1981 * Mark the inode free & increment the count.
1982 */
1983 rec.ir_free |= XFS_INOBT_MASK(off);
1984 rec.ir_freecount++;
1985
1986 /*
1987 * When an inode chunk is free, it becomes eligible for removal. Don't
1988 * remove the chunk if the block size is large enough for multiple inode
1989 * chunks (that might not be free).
1990 */
1991 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1992 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1993 xic->deleted = true;
1994 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1995 rec.ir_startino);
1996 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1997
1998 /*
1999 * Remove the inode cluster from the AGI B+Tree, adjust the
2000 * AGI and Superblock inode counts, and mark the disk space
2001 * to be freed when the transaction is committed.
2002 */
2003 ilen = rec.ir_freecount;
2004 be32_add_cpu(&agi->agi_count, -ilen);
2005 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2006 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2007 pag->pagi_freecount -= ilen - 1;
2008 pag->pagi_count -= ilen;
2009 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2010 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2011
2012 if ((error = xfs_btree_delete(cur, &i))) {
2013 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2014 __func__, error);
2015 goto error0;
2016 }
2017
2018 error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2019 if (error)
2020 goto error0;
2021 } else {
2022 xic->deleted = false;
2023
2024 error = xfs_inobt_update(cur, &rec);
2025 if (error) {
2026 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2027 __func__, error);
2028 goto error0;
2029 }
2030
2031 /*
2032 * Change the inode free counts and log the ag/sb changes.
2033 */
2034 be32_add_cpu(&agi->agi_freecount, 1);
2035 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2036 pag->pagi_freecount++;
2037 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2038 }
2039
2040 error = xfs_check_agi_freecount(cur);
2041 if (error)
2042 goto error0;
2043
2044 *orec = rec;
2045 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2046 return 0;
2047
2048error0:
2049 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2050 return error;
2051}
2052
2053/*
2054 * Free an inode in the free inode btree.
2055 */
2056STATIC int
2057xfs_difree_finobt(
2058 struct xfs_perag *pag,
2059 struct xfs_trans *tp,
2060 struct xfs_buf *agbp,
2061 xfs_agino_t agino,
2062 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2063{
2064 struct xfs_mount *mp = pag->pag_mount;
2065 struct xfs_btree_cur *cur;
2066 struct xfs_inobt_rec_incore rec;
2067 int offset = agino - ibtrec->ir_startino;
2068 int error;
2069 int i;
2070
2071 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_FINO);
2072
2073 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2074 if (error)
2075 goto error;
2076 if (i == 0) {
2077 /*
2078 * If the record does not exist in the finobt, we must have just
2079 * freed an inode in a previously fully allocated chunk. If not,
2080 * something is out of sync.
2081 */
2082 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2083 error = -EFSCORRUPTED;
2084 goto error;
2085 }
2086
2087 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2088 ibtrec->ir_count,
2089 ibtrec->ir_freecount,
2090 ibtrec->ir_free, &i);
2091 if (error)
2092 goto error;
2093 ASSERT(i == 1);
2094
2095 goto out;
2096 }
2097
2098 /*
2099 * Read and update the existing record. We could just copy the ibtrec
2100 * across here, but that would defeat the purpose of having redundant
2101 * metadata. By making the modifications independently, we can catch
2102 * corruptions that we wouldn't see if we just copied from one record
2103 * to another.
2104 */
2105 error = xfs_inobt_get_rec(cur, &rec, &i);
2106 if (error)
2107 goto error;
2108 if (XFS_IS_CORRUPT(mp, i != 1)) {
2109 error = -EFSCORRUPTED;
2110 goto error;
2111 }
2112
2113 rec.ir_free |= XFS_INOBT_MASK(offset);
2114 rec.ir_freecount++;
2115
2116 if (XFS_IS_CORRUPT(mp,
2117 rec.ir_free != ibtrec->ir_free ||
2118 rec.ir_freecount != ibtrec->ir_freecount)) {
2119 error = -EFSCORRUPTED;
2120 goto error;
2121 }
2122
2123 /*
2124 * The content of inobt records should always match between the inobt
2125 * and finobt. The lifecycle of records in the finobt is different from
2126 * the inobt in that the finobt only tracks records with at least one
2127 * free inode. Hence, if all of the inodes are free and we aren't
2128 * keeping inode chunks permanently on disk, remove the record.
2129 * Otherwise, update the record with the new information.
2130 *
2131 * Note that we currently can't free chunks when the block size is large
2132 * enough for multiple chunks. Leave the finobt record to remain in sync
2133 * with the inobt.
2134 */
2135 if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2136 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2137 error = xfs_btree_delete(cur, &i);
2138 if (error)
2139 goto error;
2140 ASSERT(i == 1);
2141 } else {
2142 error = xfs_inobt_update(cur, &rec);
2143 if (error)
2144 goto error;
2145 }
2146
2147out:
2148 error = xfs_check_agi_freecount(cur);
2149 if (error)
2150 goto error;
2151
2152 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2153 return 0;
2154
2155error:
2156 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2157 return error;
2158}
2159
2160/*
2161 * Free disk inode. Carefully avoids touching the incore inode, all
2162 * manipulations incore are the caller's responsibility.
2163 * The on-disk inode is not changed by this operation, only the
2164 * btree (free inode mask) is changed.
2165 */
2166int
2167xfs_difree(
2168 struct xfs_trans *tp,
2169 struct xfs_perag *pag,
2170 xfs_ino_t inode,
2171 struct xfs_icluster *xic)
2172{
2173 /* REFERENCED */
2174 xfs_agblock_t agbno; /* block number containing inode */
2175 struct xfs_buf *agbp; /* buffer for allocation group header */
2176 xfs_agino_t agino; /* allocation group inode number */
2177 int error; /* error return value */
2178 struct xfs_mount *mp = tp->t_mountp;
2179 struct xfs_inobt_rec_incore rec;/* btree record */
2180
2181 /*
2182 * Break up inode number into its components.
2183 */
2184 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2185 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2186 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2187 ASSERT(0);
2188 return -EINVAL;
2189 }
2190 agino = XFS_INO_TO_AGINO(mp, inode);
2191 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2192 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2193 __func__, (unsigned long long)inode,
2194 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2195 ASSERT(0);
2196 return -EINVAL;
2197 }
2198 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2199 if (agbno >= mp->m_sb.sb_agblocks) {
2200 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2201 __func__, agbno, mp->m_sb.sb_agblocks);
2202 ASSERT(0);
2203 return -EINVAL;
2204 }
2205 /*
2206 * Get the allocation group header.
2207 */
2208 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2209 if (error) {
2210 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2211 __func__, error);
2212 return error;
2213 }
2214
2215 /*
2216 * Fix up the inode allocation btree.
2217 */
2218 error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2219 if (error)
2220 goto error0;
2221
2222 /*
2223 * Fix up the free inode btree.
2224 */
2225 if (xfs_has_finobt(mp)) {
2226 error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2227 if (error)
2228 goto error0;
2229 }
2230
2231 return 0;
2232
2233error0:
2234 return error;
2235}
2236
2237STATIC int
2238xfs_imap_lookup(
2239 struct xfs_perag *pag,
2240 struct xfs_trans *tp,
2241 xfs_agino_t agino,
2242 xfs_agblock_t agbno,
2243 xfs_agblock_t *chunk_agbno,
2244 xfs_agblock_t *offset_agbno,
2245 int flags)
2246{
2247 struct xfs_mount *mp = pag->pag_mount;
2248 struct xfs_inobt_rec_incore rec;
2249 struct xfs_btree_cur *cur;
2250 struct xfs_buf *agbp;
2251 int error;
2252 int i;
2253
2254 error = xfs_ialloc_read_agi(pag, tp, &agbp);
2255 if (error) {
2256 xfs_alert(mp,
2257 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2258 __func__, error, pag->pag_agno);
2259 return error;
2260 }
2261
2262 /*
2263 * Lookup the inode record for the given agino. If the record cannot be
2264 * found, then it's an invalid inode number and we should abort. Once
2265 * we have a record, we need to ensure it contains the inode number
2266 * we are looking up.
2267 */
2268 cur = xfs_inobt_init_cursor(pag, tp, agbp, XFS_BTNUM_INO);
2269 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2270 if (!error) {
2271 if (i)
2272 error = xfs_inobt_get_rec(cur, &rec, &i);
2273 if (!error && i == 0)
2274 error = -EINVAL;
2275 }
2276
2277 xfs_trans_brelse(tp, agbp);
2278 xfs_btree_del_cursor(cur, error);
2279 if (error)
2280 return error;
2281
2282 /* check that the returned record contains the required inode */
2283 if (rec.ir_startino > agino ||
2284 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2285 return -EINVAL;
2286
2287 /* for untrusted inodes check it is allocated first */
2288 if ((flags & XFS_IGET_UNTRUSTED) &&
2289 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2290 return -EINVAL;
2291
2292 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2293 *offset_agbno = agbno - *chunk_agbno;
2294 return 0;
2295}
2296
2297/*
2298 * Return the location of the inode in imap, for mapping it into a buffer.
2299 */
2300int
2301xfs_imap(
2302 struct xfs_perag *pag,
2303 struct xfs_trans *tp,
2304 xfs_ino_t ino, /* inode to locate */
2305 struct xfs_imap *imap, /* location map structure */
2306 uint flags) /* flags for inode btree lookup */
2307{
2308 struct xfs_mount *mp = pag->pag_mount;
2309 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2310 xfs_agino_t agino; /* inode number within alloc group */
2311 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2312 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2313 int error; /* error code */
2314 int offset; /* index of inode in its buffer */
2315 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2316
2317 ASSERT(ino != NULLFSINO);
2318
2319 /*
2320 * Split up the inode number into its parts.
2321 */
2322 agino = XFS_INO_TO_AGINO(mp, ino);
2323 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2324 if (agbno >= mp->m_sb.sb_agblocks ||
2325 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2326 error = -EINVAL;
2327#ifdef DEBUG
2328 /*
2329 * Don't output diagnostic information for untrusted inodes
2330 * as they can be invalid without implying corruption.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED)
2333 return error;
2334 if (agbno >= mp->m_sb.sb_agblocks) {
2335 xfs_alert(mp,
2336 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2337 __func__, (unsigned long long)agbno,
2338 (unsigned long)mp->m_sb.sb_agblocks);
2339 }
2340 if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2341 xfs_alert(mp,
2342 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2343 __func__, ino,
2344 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2345 }
2346 xfs_stack_trace();
2347#endif /* DEBUG */
2348 return error;
2349 }
2350
2351 /*
2352 * For bulkstat and handle lookups, we have an untrusted inode number
2353 * that we have to verify is valid. We cannot do this just by reading
2354 * the inode buffer as it may have been unlinked and removed leaving
2355 * inodes in stale state on disk. Hence we have to do a btree lookup
2356 * in all cases where an untrusted inode number is passed.
2357 */
2358 if (flags & XFS_IGET_UNTRUSTED) {
2359 error = xfs_imap_lookup(pag, tp, agino, agbno,
2360 &chunk_agbno, &offset_agbno, flags);
2361 if (error)
2362 return error;
2363 goto out_map;
2364 }
2365
2366 /*
2367 * If the inode cluster size is the same as the blocksize or
2368 * smaller we get to the buffer by simple arithmetics.
2369 */
2370 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2371 offset = XFS_INO_TO_OFFSET(mp, ino);
2372 ASSERT(offset < mp->m_sb.sb_inopblock);
2373
2374 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2375 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2376 imap->im_boffset = (unsigned short)(offset <<
2377 mp->m_sb.sb_inodelog);
2378 return 0;
2379 }
2380
2381 /*
2382 * If the inode chunks are aligned then use simple maths to
2383 * find the location. Otherwise we have to do a btree
2384 * lookup to find the location.
2385 */
2386 if (M_IGEO(mp)->inoalign_mask) {
2387 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2388 chunk_agbno = agbno - offset_agbno;
2389 } else {
2390 error = xfs_imap_lookup(pag, tp, agino, agbno,
2391 &chunk_agbno, &offset_agbno, flags);
2392 if (error)
2393 return error;
2394 }
2395
2396out_map:
2397 ASSERT(agbno >= chunk_agbno);
2398 cluster_agbno = chunk_agbno +
2399 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2400 M_IGEO(mp)->blocks_per_cluster);
2401 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2402 XFS_INO_TO_OFFSET(mp, ino);
2403
2404 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2405 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2406 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2407
2408 /*
2409 * If the inode number maps to a block outside the bounds
2410 * of the file system then return NULL rather than calling
2411 * read_buf and panicing when we get an error from the
2412 * driver.
2413 */
2414 if ((imap->im_blkno + imap->im_len) >
2415 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2416 xfs_alert(mp,
2417 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2418 __func__, (unsigned long long) imap->im_blkno,
2419 (unsigned long long) imap->im_len,
2420 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2421 return -EINVAL;
2422 }
2423 return 0;
2424}
2425
2426/*
2427 * Log specified fields for the ag hdr (inode section). The growth of the agi
2428 * structure over time requires that we interpret the buffer as two logical
2429 * regions delineated by the end of the unlinked list. This is due to the size
2430 * of the hash table and its location in the middle of the agi.
2431 *
2432 * For example, a request to log a field before agi_unlinked and a field after
2433 * agi_unlinked could cause us to log the entire hash table and use an excessive
2434 * amount of log space. To avoid this behavior, log the region up through
2435 * agi_unlinked in one call and the region after agi_unlinked through the end of
2436 * the structure in another.
2437 */
2438void
2439xfs_ialloc_log_agi(
2440 struct xfs_trans *tp,
2441 struct xfs_buf *bp,
2442 uint32_t fields)
2443{
2444 int first; /* first byte number */
2445 int last; /* last byte number */
2446 static const short offsets[] = { /* field starting offsets */
2447 /* keep in sync with bit definitions */
2448 offsetof(xfs_agi_t, agi_magicnum),
2449 offsetof(xfs_agi_t, agi_versionnum),
2450 offsetof(xfs_agi_t, agi_seqno),
2451 offsetof(xfs_agi_t, agi_length),
2452 offsetof(xfs_agi_t, agi_count),
2453 offsetof(xfs_agi_t, agi_root),
2454 offsetof(xfs_agi_t, agi_level),
2455 offsetof(xfs_agi_t, agi_freecount),
2456 offsetof(xfs_agi_t, agi_newino),
2457 offsetof(xfs_agi_t, agi_dirino),
2458 offsetof(xfs_agi_t, agi_unlinked),
2459 offsetof(xfs_agi_t, agi_free_root),
2460 offsetof(xfs_agi_t, agi_free_level),
2461 offsetof(xfs_agi_t, agi_iblocks),
2462 sizeof(xfs_agi_t)
2463 };
2464#ifdef DEBUG
2465 struct xfs_agi *agi = bp->b_addr;
2466
2467 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2468#endif
2469
2470 /*
2471 * Compute byte offsets for the first and last fields in the first
2472 * region and log the agi buffer. This only logs up through
2473 * agi_unlinked.
2474 */
2475 if (fields & XFS_AGI_ALL_BITS_R1) {
2476 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2477 &first, &last);
2478 xfs_trans_log_buf(tp, bp, first, last);
2479 }
2480
2481 /*
2482 * Mask off the bits in the first region and calculate the first and
2483 * last field offsets for any bits in the second region.
2484 */
2485 fields &= ~XFS_AGI_ALL_BITS_R1;
2486 if (fields) {
2487 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2488 &first, &last);
2489 xfs_trans_log_buf(tp, bp, first, last);
2490 }
2491}
2492
2493static xfs_failaddr_t
2494xfs_agi_verify(
2495 struct xfs_buf *bp)
2496{
2497 struct xfs_mount *mp = bp->b_mount;
2498 struct xfs_agi *agi = bp->b_addr;
2499 xfs_failaddr_t fa;
2500 uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
2501 uint32_t agi_length = be32_to_cpu(agi->agi_length);
2502 int i;
2503
2504 if (xfs_has_crc(mp)) {
2505 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2506 return __this_address;
2507 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2508 return __this_address;
2509 }
2510
2511 /*
2512 * Validate the magic number of the agi block.
2513 */
2514 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2515 return __this_address;
2516 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2517 return __this_address;
2518
2519 fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2520 if (fa)
2521 return fa;
2522
2523 if (be32_to_cpu(agi->agi_level) < 1 ||
2524 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2525 return __this_address;
2526
2527 if (xfs_has_finobt(mp) &&
2528 (be32_to_cpu(agi->agi_free_level) < 1 ||
2529 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2530 return __this_address;
2531
2532 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2533 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2534 continue;
2535 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2536 return __this_address;
2537 }
2538
2539 return NULL;
2540}
2541
2542static void
2543xfs_agi_read_verify(
2544 struct xfs_buf *bp)
2545{
2546 struct xfs_mount *mp = bp->b_mount;
2547 xfs_failaddr_t fa;
2548
2549 if (xfs_has_crc(mp) &&
2550 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2551 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2552 else {
2553 fa = xfs_agi_verify(bp);
2554 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2555 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2556 }
2557}
2558
2559static void
2560xfs_agi_write_verify(
2561 struct xfs_buf *bp)
2562{
2563 struct xfs_mount *mp = bp->b_mount;
2564 struct xfs_buf_log_item *bip = bp->b_log_item;
2565 struct xfs_agi *agi = bp->b_addr;
2566 xfs_failaddr_t fa;
2567
2568 fa = xfs_agi_verify(bp);
2569 if (fa) {
2570 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2571 return;
2572 }
2573
2574 if (!xfs_has_crc(mp))
2575 return;
2576
2577 if (bip)
2578 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2579 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2580}
2581
2582const struct xfs_buf_ops xfs_agi_buf_ops = {
2583 .name = "xfs_agi",
2584 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2585 .verify_read = xfs_agi_read_verify,
2586 .verify_write = xfs_agi_write_verify,
2587 .verify_struct = xfs_agi_verify,
2588};
2589
2590/*
2591 * Read in the allocation group header (inode allocation section)
2592 */
2593int
2594xfs_read_agi(
2595 struct xfs_perag *pag,
2596 struct xfs_trans *tp,
2597 struct xfs_buf **agibpp)
2598{
2599 struct xfs_mount *mp = pag->pag_mount;
2600 int error;
2601
2602 trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2603
2604 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2605 XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2606 XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2607 if (error)
2608 return error;
2609 if (tp)
2610 xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2611
2612 xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2613 return 0;
2614}
2615
2616/*
2617 * Read in the agi and initialise the per-ag data. If the caller supplies a
2618 * @agibpp, return the locked AGI buffer to them, otherwise release it.
2619 */
2620int
2621xfs_ialloc_read_agi(
2622 struct xfs_perag *pag,
2623 struct xfs_trans *tp,
2624 struct xfs_buf **agibpp)
2625{
2626 struct xfs_buf *agibp;
2627 struct xfs_agi *agi;
2628 int error;
2629
2630 trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2631
2632 error = xfs_read_agi(pag, tp, &agibp);
2633 if (error)
2634 return error;
2635
2636 agi = agibp->b_addr;
2637 if (!xfs_perag_initialised_agi(pag)) {
2638 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2639 pag->pagi_count = be32_to_cpu(agi->agi_count);
2640 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2641 }
2642
2643 /*
2644 * It's possible for these to be out of sync if
2645 * we are in the middle of a forced shutdown.
2646 */
2647 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2648 xfs_is_shutdown(pag->pag_mount));
2649 if (agibpp)
2650 *agibpp = agibp;
2651 else
2652 xfs_trans_brelse(tp, agibp);
2653 return 0;
2654}
2655
2656/* How many inodes are backed by inode clusters ondisk? */
2657STATIC int
2658xfs_ialloc_count_ondisk(
2659 struct xfs_btree_cur *cur,
2660 xfs_agino_t low,
2661 xfs_agino_t high,
2662 unsigned int *allocated)
2663{
2664 struct xfs_inobt_rec_incore irec;
2665 unsigned int ret = 0;
2666 int has_record;
2667 int error;
2668
2669 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2670 if (error)
2671 return error;
2672
2673 while (has_record) {
2674 unsigned int i, hole_idx;
2675
2676 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2677 if (error)
2678 return error;
2679 if (irec.ir_startino > high)
2680 break;
2681
2682 for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2683 if (irec.ir_startino + i < low)
2684 continue;
2685 if (irec.ir_startino + i > high)
2686 break;
2687
2688 hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2689 if (!(irec.ir_holemask & (1U << hole_idx)))
2690 ret++;
2691 }
2692
2693 error = xfs_btree_increment(cur, 0, &has_record);
2694 if (error)
2695 return error;
2696 }
2697
2698 *allocated = ret;
2699 return 0;
2700}
2701
2702/* Is there an inode record covering a given extent? */
2703int
2704xfs_ialloc_has_inodes_at_extent(
2705 struct xfs_btree_cur *cur,
2706 xfs_agblock_t bno,
2707 xfs_extlen_t len,
2708 enum xbtree_recpacking *outcome)
2709{
2710 xfs_agino_t agino;
2711 xfs_agino_t last_agino;
2712 unsigned int allocated;
2713 int error;
2714
2715 agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2716 last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2717
2718 error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2719 if (error)
2720 return error;
2721
2722 if (allocated == 0)
2723 *outcome = XBTREE_RECPACKING_EMPTY;
2724 else if (allocated == last_agino - agino + 1)
2725 *outcome = XBTREE_RECPACKING_FULL;
2726 else
2727 *outcome = XBTREE_RECPACKING_SPARSE;
2728 return 0;
2729}
2730
2731struct xfs_ialloc_count_inodes {
2732 xfs_agino_t count;
2733 xfs_agino_t freecount;
2734};
2735
2736/* Record inode counts across all inobt records. */
2737STATIC int
2738xfs_ialloc_count_inodes_rec(
2739 struct xfs_btree_cur *cur,
2740 const union xfs_btree_rec *rec,
2741 void *priv)
2742{
2743 struct xfs_inobt_rec_incore irec;
2744 struct xfs_ialloc_count_inodes *ci = priv;
2745 xfs_failaddr_t fa;
2746
2747 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2748 fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2749 if (fa)
2750 return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2751
2752 ci->count += irec.ir_count;
2753 ci->freecount += irec.ir_freecount;
2754
2755 return 0;
2756}
2757
2758/* Count allocated and free inodes under an inobt. */
2759int
2760xfs_ialloc_count_inodes(
2761 struct xfs_btree_cur *cur,
2762 xfs_agino_t *count,
2763 xfs_agino_t *freecount)
2764{
2765 struct xfs_ialloc_count_inodes ci = {0};
2766 int error;
2767
2768 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2769 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2770 if (error)
2771 return error;
2772
2773 *count = ci.count;
2774 *freecount = ci.freecount;
2775 return 0;
2776}
2777
2778/*
2779 * Initialize inode-related geometry information.
2780 *
2781 * Compute the inode btree min and max levels and set maxicount.
2782 *
2783 * Set the inode cluster size. This may still be overridden by the file
2784 * system block size if it is larger than the chosen cluster size.
2785 *
2786 * For v5 filesystems, scale the cluster size with the inode size to keep a
2787 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2788 * inode alignment value appropriately for larger cluster sizes.
2789 *
2790 * Then compute the inode cluster alignment information.
2791 */
2792void
2793xfs_ialloc_setup_geometry(
2794 struct xfs_mount *mp)
2795{
2796 struct xfs_sb *sbp = &mp->m_sb;
2797 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2798 uint64_t icount;
2799 uint inodes;
2800
2801 igeo->new_diflags2 = 0;
2802 if (xfs_has_bigtime(mp))
2803 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2804 if (xfs_has_large_extent_counts(mp))
2805 igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2806
2807 /* Compute inode btree geometry. */
2808 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2809 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2810 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2811 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2812 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2813
2814 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2815 sbp->sb_inopblock);
2816 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2817
2818 if (sbp->sb_spino_align)
2819 igeo->ialloc_min_blks = sbp->sb_spino_align;
2820 else
2821 igeo->ialloc_min_blks = igeo->ialloc_blks;
2822
2823 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2824 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2825 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2826 inodes);
2827 ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2828
2829 /*
2830 * Set the maximum inode count for this filesystem, being careful not
2831 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2832 * users should never get here due to failing sb verification, but
2833 * certain users (xfs_db) need to be usable even with corrupt metadata.
2834 */
2835 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2836 /*
2837 * Make sure the maximum inode count is a multiple
2838 * of the units we allocate inodes in.
2839 */
2840 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2841 do_div(icount, 100);
2842 do_div(icount, igeo->ialloc_blks);
2843 igeo->maxicount = XFS_FSB_TO_INO(mp,
2844 icount * igeo->ialloc_blks);
2845 } else {
2846 igeo->maxicount = 0;
2847 }
2848
2849 /*
2850 * Compute the desired size of an inode cluster buffer size, which
2851 * starts at 8K and (on v5 filesystems) scales up with larger inode
2852 * sizes.
2853 *
2854 * Preserve the desired inode cluster size because the sparse inodes
2855 * feature uses that desired size (not the actual size) to compute the
2856 * sparse inode alignment. The mount code validates this value, so we
2857 * cannot change the behavior.
2858 */
2859 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2860 if (xfs_has_v3inodes(mp)) {
2861 int new_size = igeo->inode_cluster_size_raw;
2862
2863 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2864 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2865 igeo->inode_cluster_size_raw = new_size;
2866 }
2867
2868 /* Calculate inode cluster ratios. */
2869 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2870 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2871 igeo->inode_cluster_size_raw);
2872 else
2873 igeo->blocks_per_cluster = 1;
2874 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2875 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2876
2877 /* Calculate inode cluster alignment. */
2878 if (xfs_has_align(mp) &&
2879 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2880 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2881 else
2882 igeo->cluster_align = 1;
2883 igeo->inoalign_mask = igeo->cluster_align - 1;
2884 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2885
2886 /*
2887 * If we are using stripe alignment, check whether
2888 * the stripe unit is a multiple of the inode alignment
2889 */
2890 if (mp->m_dalign && igeo->inoalign_mask &&
2891 !(mp->m_dalign & igeo->inoalign_mask))
2892 igeo->ialloc_align = mp->m_dalign;
2893 else
2894 igeo->ialloc_align = 0;
2895}
2896
2897/* Compute the location of the root directory inode that is laid out by mkfs. */
2898xfs_ino_t
2899xfs_ialloc_calc_rootino(
2900 struct xfs_mount *mp,
2901 int sunit)
2902{
2903 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2904 xfs_agblock_t first_bno;
2905
2906 /*
2907 * Pre-calculate the geometry of AG 0. We know what it looks like
2908 * because libxfs knows how to create allocation groups now.
2909 *
2910 * first_bno is the first block in which mkfs could possibly have
2911 * allocated the root directory inode, once we factor in the metadata
2912 * that mkfs formats before it. Namely, the four AG headers...
2913 */
2914 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2915
2916 /* ...the two free space btree roots... */
2917 first_bno += 2;
2918
2919 /* ...the inode btree root... */
2920 first_bno += 1;
2921
2922 /* ...the initial AGFL... */
2923 first_bno += xfs_alloc_min_freelist(mp, NULL);
2924
2925 /* ...the free inode btree root... */
2926 if (xfs_has_finobt(mp))
2927 first_bno++;
2928
2929 /* ...the reverse mapping btree root... */
2930 if (xfs_has_rmapbt(mp))
2931 first_bno++;
2932
2933 /* ...the reference count btree... */
2934 if (xfs_has_reflink(mp))
2935 first_bno++;
2936
2937 /*
2938 * ...and the log, if it is allocated in the first allocation group.
2939 *
2940 * This can happen with filesystems that only have a single
2941 * allocation group, or very odd geometries created by old mkfs
2942 * versions on very small filesystems.
2943 */
2944 if (xfs_ag_contains_log(mp, 0))
2945 first_bno += mp->m_sb.sb_logblocks;
2946
2947 /*
2948 * Now round first_bno up to whatever allocation alignment is given
2949 * by the filesystem or was passed in.
2950 */
2951 if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2952 first_bno = roundup(first_bno, sunit);
2953 else if (xfs_has_align(mp) &&
2954 mp->m_sb.sb_inoalignmt > 1)
2955 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2956
2957 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2958}
2959
2960/*
2961 * Ensure there are not sparse inode clusters that cross the new EOAG.
2962 *
2963 * This is a no-op for non-spinode filesystems since clusters are always fully
2964 * allocated and checking the bnobt suffices. However, a spinode filesystem
2965 * could have a record where the upper inodes are free blocks. If those blocks
2966 * were removed from the filesystem, the inode record would extend beyond EOAG,
2967 * which will be flagged as corruption.
2968 */
2969int
2970xfs_ialloc_check_shrink(
2971 struct xfs_perag *pag,
2972 struct xfs_trans *tp,
2973 struct xfs_buf *agibp,
2974 xfs_agblock_t new_length)
2975{
2976 struct xfs_inobt_rec_incore rec;
2977 struct xfs_btree_cur *cur;
2978 xfs_agino_t agino;
2979 int has;
2980 int error;
2981
2982 if (!xfs_has_sparseinodes(pag->pag_mount))
2983 return 0;
2984
2985 cur = xfs_inobt_init_cursor(pag, tp, agibp, XFS_BTNUM_INO);
2986
2987 /* Look up the inobt record that would correspond to the new EOFS. */
2988 agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
2989 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2990 if (error || !has)
2991 goto out;
2992
2993 error = xfs_inobt_get_rec(cur, &rec, &has);
2994 if (error)
2995 goto out;
2996
2997 if (!has) {
2998 error = -EFSCORRUPTED;
2999 goto out;
3000 }
3001
3002 /* If the record covers inodes that would be beyond EOFS, bail out. */
3003 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3004 error = -ENOSPC;
3005 goto out;
3006 }
3007out:
3008 xfs_btree_del_cursor(cur, error);
3009 return error;
3010}