Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/seq_file.h>
  34#include <linux/crash_dump.h>
  35#include <linux/kobject.h>
  36#include <linux/sysfs.h>
 
 
 
 
 
 
  37
  38#include <asm/debugfs.h>
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
 
  43#include <asm/setup.h>
 
 
 
 
 
 
 
 
 
  44
  45static struct fw_dump fw_dump;
  46static struct fadump_mem_struct fdm;
  47static const struct fadump_mem_struct *fdm_active;
  48
 
 
 
 
 
 
 
  49static DEFINE_MUTEX(fadump_mutex);
  50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  51int crash_mem_ranges;
  52
  53/* Scan the Firmware Assisted dump configuration details. */
  54int __init early_init_dt_scan_fw_dump(unsigned long node,
  55			const char *uname, int depth, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56{
  57	const __be32 *sections;
  58	int i, num_sections;
  59	int size;
  60	const __be32 *token;
  61
  62	if (depth != 1 || strcmp(uname, "rtas") != 0)
  63		return 0;
  64
  65	/*
  66	 * Check if Firmware Assisted dump is supported. if yes, check
  67	 * if dump has been initiated on last reboot.
  68	 */
  69	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  70	if (!token)
  71		return 1;
  72
  73	fw_dump.fadump_supported = 1;
  74	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76	/*
  77	 * The 'ibm,kernel-dump' rtas node is present only if there is
  78	 * dump data waiting for us.
  79	 */
  80	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  81	if (fdm_active)
  82		fw_dump.dump_active = 1;
  83
  84	/* Get the sizes required to store dump data for the firmware provided
  85	 * dump sections.
  86	 * For each dump section type supported, a 32bit cell which defines
  87	 * the ID of a supported section followed by two 32 bit cells which
  88	 * gives teh size of the section in bytes.
  89	 */
  90	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  91					&size);
 
 
 
 
 
 
 
 
  92
  93	if (!sections)
  94		return 1;
 
 
 
 
 
 
  95
  96	num_sections = size / (3 * sizeof(u32));
 
  97
  98	for (i = 0; i < num_sections; i++, sections += 3) {
  99		u32 type = (u32)of_read_number(sections, 1);
 
 
 100
 101		switch (type) {
 102		case FADUMP_CPU_STATE_DATA:
 103			fw_dump.cpu_state_data_size =
 104					of_read_ulong(&sections[1], 2);
 105			break;
 106		case FADUMP_HPTE_REGION:
 107			fw_dump.hpte_region_size =
 108					of_read_ulong(&sections[1], 2);
 109			break;
 110		}
 111	}
 112
 113	return 1;
 114}
 115
 116/*
 117 * If fadump is registered, check if the memory provided
 118 * falls within boot memory area.
 119 */
 120int is_fadump_boot_memory_area(u64 addr, ulong size)
 121{
 
 
 122	if (!fw_dump.dump_registered)
 123		return 0;
 124
 125	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 
 
 
 
 
 
 
 
 126}
 127
 128int should_fadump_crash(void)
 129{
 130	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 131		return 0;
 132	return 1;
 133}
 134
 135int is_fadump_active(void)
 136{
 137	return fw_dump.dump_active;
 138}
 139
 140/*
 141 * Returns 1, if there are no holes in boot memory area,
 142 * 0 otherwise.
 143 */
 144static int is_boot_memory_area_contiguous(void)
 145{
 146	struct memblock_region *reg;
 147	unsigned long tstart, tend;
 148	unsigned long start_pfn = PHYS_PFN(RMA_START);
 149	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 150	unsigned int ret = 0;
 151
 152	for_each_memblock(memory, reg) {
 153		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 154		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 155		if (tstart < tend) {
 156			/* Memory hole from start_pfn to tstart */
 157			if (tstart > start_pfn)
 158				break;
 159
 160			if (tend == end_pfn) {
 161				ret = 1;
 162				break;
 163			}
 164
 165			start_pfn = tend + 1;
 166		}
 167	}
 168
 169	return ret;
 170}
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/* Print firmware assisted dump configurations for debugging purpose. */
 173static void fadump_show_config(void)
 174{
 
 
 175	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 176			(fw_dump.fadump_supported ? "present" : "no support"));
 177
 178	if (!fw_dump.fadump_supported)
 179		return;
 180
 181	pr_debug("Fadump enabled    : %s\n",
 182				(fw_dump.fadump_enabled ? "yes" : "no"));
 183	pr_debug("Dump Active       : %s\n",
 184				(fw_dump.dump_active ? "yes" : "no"));
 185	pr_debug("Dump section sizes:\n");
 186	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 187	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 188	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 189}
 190
 191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 192				unsigned long addr)
 193{
 194	if (!fdm)
 195		return 0;
 196
 197	memset(fdm, 0, sizeof(struct fadump_mem_struct));
 198	addr = addr & PAGE_MASK;
 199
 200	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 201	fdm->header.dump_num_sections = cpu_to_be16(3);
 202	fdm->header.dump_status_flag = 0;
 203	fdm->header.offset_first_dump_section =
 204		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 205
 206	/*
 207	 * Fields for disk dump option.
 208	 * We are not using disk dump option, hence set these fields to 0.
 209	 */
 210	fdm->header.dd_block_size = 0;
 211	fdm->header.dd_block_offset = 0;
 212	fdm->header.dd_num_blocks = 0;
 213	fdm->header.dd_offset_disk_path = 0;
 214
 215	/* set 0 to disable an automatic dump-reboot. */
 216	fdm->header.max_time_auto = 0;
 217
 218	/* Kernel dump sections */
 219	/* cpu state data section. */
 220	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 221	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 222	fdm->cpu_state_data.source_address = 0;
 223	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 224	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 225	addr += fw_dump.cpu_state_data_size;
 226
 227	/* hpte region section */
 228	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 229	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 230	fdm->hpte_region.source_address = 0;
 231	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 232	fdm->hpte_region.destination_address = cpu_to_be64(addr);
 233	addr += fw_dump.hpte_region_size;
 234
 235	/* RMA region section */
 236	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 237	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 238	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 239	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 240	fdm->rmr_region.destination_address = cpu_to_be64(addr);
 241	addr += fw_dump.boot_memory_size;
 242
 243	return addr;
 244}
 245
 246/**
 247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 248 *
 249 * Function to find the largest memory size we need to reserve during early
 250 * boot process. This will be the size of the memory that is required for a
 251 * kernel to boot successfully.
 252 *
 253 * This function has been taken from phyp-assisted dump feature implementation.
 254 *
 255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 256 *
 257 * TODO: Come up with better approach to find out more accurate memory size
 258 * that is required for a kernel to boot successfully.
 259 *
 260 */
 261static inline unsigned long fadump_calculate_reserve_size(void)
 262{
 
 263	int ret;
 264	unsigned long long base, size;
 265
 266	if (fw_dump.reserve_bootvar)
 267		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 268
 269	/*
 270	 * Check if the size is specified through crashkernel= cmdline
 271	 * option. If yes, then use that but ignore base as fadump reserves
 272	 * memory at a predefined offset.
 273	 */
 274	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 275				&size, &base);
 276	if (ret == 0 && size > 0) {
 277		unsigned long max_size;
 278
 279		if (fw_dump.reserve_bootvar)
 280			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 281
 282		fw_dump.reserve_bootvar = (unsigned long)size;
 283
 284		/*
 285		 * Adjust if the boot memory size specified is above
 286		 * the upper limit.
 287		 */
 288		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 289		if (fw_dump.reserve_bootvar > max_size) {
 290			fw_dump.reserve_bootvar = max_size;
 291			pr_info("Adjusted boot memory size to %luMB\n",
 292				(fw_dump.reserve_bootvar >> 20));
 293		}
 294
 295		return fw_dump.reserve_bootvar;
 296	} else if (fw_dump.reserve_bootvar) {
 297		/*
 298		 * 'fadump_reserve_mem=' is being used to reserve memory
 299		 * for firmware-assisted dump.
 300		 */
 301		return fw_dump.reserve_bootvar;
 302	}
 303
 304	/* divide by 20 to get 5% of value */
 305	size = memblock_phys_mem_size() / 20;
 306
 307	/* round it down in multiples of 256 */
 308	size = size & ~0x0FFFFFFFUL;
 309
 310	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 311	if (memory_limit && size > memory_limit)
 312		size = memory_limit;
 313
 314	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 
 315}
 316
 317/*
 318 * Calculate the total memory size required to be reserved for
 319 * firmware-assisted dump registration.
 320 */
 321static unsigned long get_fadump_area_size(void)
 322{
 323	unsigned long size = 0;
 324
 325	size += fw_dump.cpu_state_data_size;
 326	size += fw_dump.hpte_region_size;
 
 
 
 
 
 327	size += fw_dump.boot_memory_size;
 328	size += sizeof(struct fadump_crash_info_header);
 329	size += sizeof(struct elfhdr); /* ELF core header.*/
 330	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 331	/* Program headers for crash memory regions. */
 332	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 333
 334	size = PAGE_ALIGN(size);
 
 
 
 
 335	return size;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338int __init fadump_reserve_mem(void)
 339{
 340	unsigned long base, size, memory_boundary;
 
 341
 342	if (!fw_dump.fadump_enabled)
 343		return 0;
 344
 345	if (!fw_dump.fadump_supported) {
 346		printk(KERN_INFO "Firmware-assisted dump is not supported on"
 347				" this hardware\n");
 348		fw_dump.fadump_enabled = 0;
 349		return 0;
 350	}
 
 351	/*
 352	 * Initialize boot memory size
 353	 * If dump is active then we have already calculated the size during
 354	 * first kernel.
 355	 */
 356	if (fdm_active)
 357		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 358	else
 359		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360
 361	/*
 362	 * Calculate the memory boundary.
 363	 * If memory_limit is less than actual memory boundary then reserve
 364	 * the memory for fadump beyond the memory_limit and adjust the
 365	 * memory_limit accordingly, so that the running kernel can run with
 366	 * specified memory_limit.
 367	 */
 368	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 369		size = get_fadump_area_size();
 370		if ((memory_limit + size) < memblock_end_of_DRAM())
 371			memory_limit += size;
 372		else
 373			memory_limit = memblock_end_of_DRAM();
 374		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 375				" dump, now %#016llx\n", memory_limit);
 376	}
 377	if (memory_limit)
 378		memory_boundary = memory_limit;
 379	else
 380		memory_boundary = memblock_end_of_DRAM();
 381
 
 
 
 382	if (fw_dump.dump_active) {
 383		printk(KERN_INFO "Firmware-assisted dump is active.\n");
 
 
 
 
 
 
 
 
 
 384		/*
 385		 * If last boot has crashed then reserve all the memory
 386		 * above boot_memory_size so that we don't touch it until
 387		 * dump is written to disk by userspace tool. This memory
 388		 * will be released for general use once the dump is saved.
 389		 */
 390		base = fw_dump.boot_memory_size;
 391		size = memory_boundary - base;
 392		memblock_reserve(base, size);
 393		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 394				"for saving crash dump\n",
 395				(unsigned long)(size >> 20),
 396				(unsigned long)(base >> 20));
 397
 398		fw_dump.fadumphdr_addr =
 399				be64_to_cpu(fdm_active->rmr_region.destination_address) +
 400				be64_to_cpu(fdm_active->rmr_region.source_len);
 401		pr_debug("fadumphdr_addr = %p\n",
 402				(void *) fw_dump.fadumphdr_addr);
 403	} else {
 404		size = get_fadump_area_size();
 405
 
 
 
 
 406		/*
 407		 * Reserve memory at an offset closer to bottom of the RAM to
 408		 * minimize the impact of memory hot-remove operation. We can't
 409		 * use memblock_find_in_range() here since it doesn't allocate
 410		 * from bottom to top.
 411		 */
 412		for (base = fw_dump.boot_memory_size;
 413		     base <= (memory_boundary - size);
 414		     base += size) {
 415			if (memblock_is_region_memory(base, size) &&
 416			    !memblock_is_region_reserved(base, size))
 417				break;
 418		}
 419		if ((base > (memory_boundary - size)) ||
 420		    memblock_reserve(base, size)) {
 421			pr_err("Failed to reserve memory\n");
 422			return 0;
 
 
 
 
 
 
 
 
 
 423		}
 424
 425		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 426			"assisted dump (System RAM: %ldMB)\n",
 427			(unsigned long)(size >> 20),
 428			(unsigned long)(base >> 20),
 429			(unsigned long)(memblock_phys_mem_size() >> 20));
 430	}
 431
 432	fw_dump.reserve_dump_area_start = base;
 433	fw_dump.reserve_dump_area_size = size;
 434	return 1;
 435}
 436
 437unsigned long __init arch_reserved_kernel_pages(void)
 438{
 439	return memblock_reserved_size() / PAGE_SIZE;
 
 
 440}
 441
 442/* Look for fadump= cmdline option. */
 443static int __init early_fadump_param(char *p)
 444{
 445	if (!p)
 446		return 1;
 447
 448	if (strncmp(p, "on", 2) == 0)
 449		fw_dump.fadump_enabled = 1;
 450	else if (strncmp(p, "off", 3) == 0)
 451		fw_dump.fadump_enabled = 0;
 
 
 
 
 452
 453	return 0;
 454}
 455early_param("fadump", early_fadump_param);
 456
 457/*
 458 * Look for fadump_reserve_mem= cmdline option
 459 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 460 *       the sooner 'crashkernel=' parameter is accustomed to.
 461 */
 462static int __init early_fadump_reserve_mem(char *p)
 463{
 464	if (p)
 465		fw_dump.reserve_bootvar = memparse(p, &p);
 466	return 0;
 467}
 468early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 469
 470static int register_fw_dump(struct fadump_mem_struct *fdm)
 471{
 472	int rc, err;
 473	unsigned int wait_time;
 474
 475	pr_debug("Registering for firmware-assisted kernel dump...\n");
 476
 477	/* TODO: Add upper time limit for the delay */
 478	do {
 479		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 480			FADUMP_REGISTER, fdm,
 481			sizeof(struct fadump_mem_struct));
 482
 483		wait_time = rtas_busy_delay_time(rc);
 484		if (wait_time)
 485			mdelay(wait_time);
 486
 487	} while (wait_time);
 488
 489	err = -EIO;
 490	switch (rc) {
 491	default:
 492		pr_err("Failed to register. Unknown Error(%d).\n", rc);
 493		break;
 494	case -1:
 495		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 496			" dump. Hardware Error(%d).\n", rc);
 497		break;
 498	case -3:
 499		if (!is_boot_memory_area_contiguous())
 500			pr_err("Can't have holes in boot memory area while "
 501			       "registering fadump\n");
 502
 503		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 504			" dump. Parameter Error(%d).\n", rc);
 505		err = -EINVAL;
 506		break;
 507	case -9:
 508		printk(KERN_ERR "firmware-assisted kernel dump is already "
 509			" registered.");
 510		fw_dump.dump_registered = 1;
 511		err = -EEXIST;
 512		break;
 513	case 0:
 514		printk(KERN_INFO "firmware-assisted kernel dump registration"
 515			" is successful\n");
 516		fw_dump.dump_registered = 1;
 517		err = 0;
 518		break;
 519	}
 520	return err;
 521}
 522
 523void crash_fadump(struct pt_regs *regs, const char *str)
 524{
 
 525	struct fadump_crash_info_header *fdh = NULL;
 526	int old_cpu, this_cpu;
 
 
 527
 528	if (!should_fadump_crash())
 529		return;
 530
 531	/*
 532	 * old_cpu == -1 means this is the first CPU which has come here,
 533	 * go ahead and trigger fadump.
 534	 *
 535	 * old_cpu != -1 means some other CPU has already on it's way
 536	 * to trigger fadump, just keep looping here.
 537	 */
 538	this_cpu = smp_processor_id();
 539	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 540
 541	if (old_cpu != -1) {
 
 
 542		/*
 543		 * We can't loop here indefinitely. Wait as long as fadump
 544		 * is in force. If we race with fadump un-registration this
 545		 * loop will break and then we go down to normal panic path
 546		 * and reboot. If fadump is in force the first crashing
 547		 * cpu will definitely trigger fadump.
 548		 */
 549		while (fw_dump.dump_registered)
 550			cpu_relax();
 551		return;
 552	}
 553
 554	fdh = __va(fw_dump.fadumphdr_addr);
 555	fdh->crashing_cpu = crashing_cpu;
 556	crash_save_vmcoreinfo();
 557
 558	if (regs)
 559		fdh->regs = *regs;
 560	else
 561		ppc_save_regs(&fdh->regs);
 562
 563	fdh->online_mask = *cpu_online_mask;
 564
 565	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
 566	rtas_os_term((char *)str);
 567}
 568
 569#define GPR_MASK	0xffffff0000000000
 570static inline int fadump_gpr_index(u64 id)
 571{
 572	int i = -1;
 573	char str[3];
 574
 575	if ((id & GPR_MASK) == REG_ID("GPR")) {
 576		/* get the digits at the end */
 577		id &= ~GPR_MASK;
 578		id >>= 24;
 579		str[2] = '\0';
 580		str[1] = id & 0xff;
 581		str[0] = (id >> 8) & 0xff;
 582		sscanf(str, "%d", &i);
 583		if (i > 31)
 584			i = -1;
 585	}
 586	return i;
 587}
 588
 589static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 590								u64 reg_val)
 591{
 592	int i;
 593
 594	i = fadump_gpr_index(reg_id);
 595	if (i >= 0)
 596		regs->gpr[i] = (unsigned long)reg_val;
 597	else if (reg_id == REG_ID("NIA"))
 598		regs->nip = (unsigned long)reg_val;
 599	else if (reg_id == REG_ID("MSR"))
 600		regs->msr = (unsigned long)reg_val;
 601	else if (reg_id == REG_ID("CTR"))
 602		regs->ctr = (unsigned long)reg_val;
 603	else if (reg_id == REG_ID("LR"))
 604		regs->link = (unsigned long)reg_val;
 605	else if (reg_id == REG_ID("XER"))
 606		regs->xer = (unsigned long)reg_val;
 607	else if (reg_id == REG_ID("CR"))
 608		regs->ccr = (unsigned long)reg_val;
 609	else if (reg_id == REG_ID("DAR"))
 610		regs->dar = (unsigned long)reg_val;
 611	else if (reg_id == REG_ID("DSISR"))
 612		regs->dsisr = (unsigned long)reg_val;
 613}
 614
 615static struct fadump_reg_entry*
 616fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 617{
 618	memset(regs, 0, sizeof(struct pt_regs));
 619
 620	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 621		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 622					be64_to_cpu(reg_entry->reg_value));
 623		reg_entry++;
 624	}
 625	reg_entry++;
 626	return reg_entry;
 627}
 628
 629static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 630{
 631	struct elf_prstatus prstatus;
 632
 633	memset(&prstatus, 0, sizeof(prstatus));
 634	/*
 635	 * FIXME: How do i get PID? Do I really need it?
 636	 * prstatus.pr_pid = ????
 637	 */
 638	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 639	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 640			      &prstatus, sizeof(prstatus));
 641	return buf;
 642}
 643
 644static void fadump_update_elfcore_header(char *bufp)
 645{
 646	struct elfhdr *elf;
 647	struct elf_phdr *phdr;
 648
 649	elf = (struct elfhdr *)bufp;
 650	bufp += sizeof(struct elfhdr);
 651
 652	/* First note is a place holder for cpu notes info. */
 653	phdr = (struct elf_phdr *)bufp;
 654
 655	if (phdr->p_type == PT_NOTE) {
 656		phdr->p_paddr = fw_dump.cpu_notes_buf;
 657		phdr->p_offset	= phdr->p_paddr;
 658		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 659		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 660	}
 661	return;
 662}
 663
 664static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 665{
 666	void *vaddr;
 667	struct page *page;
 668	unsigned long order, count, i;
 669
 670	order = get_order(size);
 671	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 672	if (!vaddr)
 673		return NULL;
 674
 675	count = 1 << order;
 676	page = virt_to_page(vaddr);
 677	for (i = 0; i < count; i++)
 678		SetPageReserved(page + i);
 679	return vaddr;
 680}
 681
 682static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 683{
 684	struct page *page;
 685	unsigned long order, count, i;
 686
 687	order = get_order(size);
 688	count = 1 << order;
 689	page = virt_to_page(vaddr);
 690	for (i = 0; i < count; i++)
 691		ClearPageReserved(page + i);
 692	__free_pages(page, order);
 693}
 694
 695/*
 696 * Read CPU state dump data and convert it into ELF notes.
 697 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 698 * used to access the data to allow for additional fields to be added without
 699 * affecting compatibility. Each list of registers for a CPU starts with
 700 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 701 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 702 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 703 * of register value. For more details refer to PAPR document.
 704 *
 705 * Only for the crashing cpu we ignore the CPU dump data and get exact
 706 * state from fadump crash info structure populated by first kernel at the
 707 * time of crash.
 708 */
 709static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 710{
 711	struct fadump_reg_save_area_header *reg_header;
 712	struct fadump_reg_entry *reg_entry;
 713	struct fadump_crash_info_header *fdh = NULL;
 714	void *vaddr;
 715	unsigned long addr;
 716	u32 num_cpus, *note_buf;
 717	struct pt_regs regs;
 718	int i, rc = 0, cpu = 0;
 719
 720	if (!fdm->cpu_state_data.bytes_dumped)
 721		return -EINVAL;
 722
 723	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 724	vaddr = __va(addr);
 725
 726	reg_header = vaddr;
 727	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 728		printk(KERN_ERR "Unable to read register save area.\n");
 729		return -ENOENT;
 730	}
 731	pr_debug("--------CPU State Data------------\n");
 732	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 733	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 734
 735	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 736	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 737	pr_debug("NumCpus     : %u\n", num_cpus);
 738	vaddr += sizeof(u32);
 739	reg_entry = (struct fadump_reg_entry *)vaddr;
 740
 741	/* Allocate buffer to hold cpu crash notes. */
 742	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 743	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 744	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 745	if (!note_buf) {
 746		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 747			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 
 748		return -ENOMEM;
 749	}
 750	fw_dump.cpu_notes_buf = __pa(note_buf);
 751
 752	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 753			(num_cpus * sizeof(note_buf_t)), note_buf);
 754
 755	if (fw_dump.fadumphdr_addr)
 756		fdh = __va(fw_dump.fadumphdr_addr);
 757
 758	for (i = 0; i < num_cpus; i++) {
 759		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 760			printk(KERN_ERR "Unable to read CPU state data\n");
 761			rc = -ENOENT;
 762			goto error_out;
 763		}
 764		/* Lower 4 bytes of reg_value contains logical cpu id */
 765		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 766		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
 767			SKIP_TO_NEXT_CPU(reg_entry);
 768			continue;
 769		}
 770		pr_debug("Reading register data for cpu %d...\n", cpu);
 771		if (fdh && fdh->crashing_cpu == cpu) {
 772			regs = fdh->regs;
 773			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 774			SKIP_TO_NEXT_CPU(reg_entry);
 775		} else {
 776			reg_entry++;
 777			reg_entry = fadump_read_registers(reg_entry, &regs);
 778			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 779		}
 780	}
 781	final_note(note_buf);
 782
 783	if (fdh) {
 784		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 785							fdh->elfcorehdr_addr);
 786		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 787	}
 788	return 0;
 
 789
 790error_out:
 791	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 792					fw_dump.cpu_notes_buf_size);
 793	fw_dump.cpu_notes_buf = 0;
 
 
 
 
 794	fw_dump.cpu_notes_buf_size = 0;
 795	return rc;
 
 
 
 
 
 
 
 796
 
 
 
 797}
 798
 799/*
 800 * Validate and process the dump data stored by firmware before exporting
 801 * it through '/proc/vmcore'.
 802 */
 803static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 804{
 805	struct fadump_crash_info_header *fdh;
 806	int rc = 0;
 807
 808	if (!fdm_active || !fw_dump.fadumphdr_addr)
 809		return -EINVAL;
 810
 811	/* Check if the dump data is valid. */
 812	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 813			(fdm_active->cpu_state_data.error_flags != 0) ||
 814			(fdm_active->rmr_region.error_flags != 0)) {
 815		printk(KERN_ERR "Dump taken by platform is not valid\n");
 816		return -EINVAL;
 817	}
 818	if ((fdm_active->rmr_region.bytes_dumped !=
 819			fdm_active->rmr_region.source_len) ||
 820			!fdm_active->cpu_state_data.bytes_dumped) {
 821		printk(KERN_ERR "Dump taken by platform is incomplete\n");
 822		return -EINVAL;
 823	}
 824
 825	/* Validate the fadump crash info header */
 826	fdh = __va(fw_dump.fadumphdr_addr);
 827	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 828		printk(KERN_ERR "Crash info header is not valid.\n");
 829		return -EINVAL;
 830	}
 
 
 
 
 
 
 831
 832	rc = fadump_build_cpu_notes(fdm_active);
 833	if (rc)
 834		return rc;
 835
 836	/*
 837	 * We are done validating dump info and elfcore header is now ready
 838	 * to be exported. set elfcorehdr_addr so that vmcore module will
 839	 * export the elfcore header through '/proc/vmcore'.
 840	 */
 841	elfcorehdr_addr = fdh->elfcorehdr_addr;
 
 
 842
 843	return 0;
 844}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845
 846static inline void fadump_add_crash_memory(unsigned long long base,
 847					unsigned long long end)
 848{
 849	if (base == end)
 850		return;
 
 
 
 
 
 
 
 851
 852	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 853		crash_mem_ranges, base, end - 1, (end - base));
 854	crash_memory_ranges[crash_mem_ranges].base = base;
 855	crash_memory_ranges[crash_mem_ranges].size = end - base;
 856	crash_mem_ranges++;
 857}
 858
 859static void fadump_exclude_reserved_area(unsigned long long start,
 860					unsigned long long end)
 861{
 862	unsigned long long ra_start, ra_end;
 
 863
 864	ra_start = fw_dump.reserve_dump_area_start;
 865	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 866
 867	if ((ra_start < end) && (ra_end > start)) {
 868		if ((start < ra_start) && (end > ra_end)) {
 869			fadump_add_crash_memory(start, ra_start);
 870			fadump_add_crash_memory(ra_end, end);
 
 
 
 
 
 871		} else if (start < ra_start) {
 872			fadump_add_crash_memory(start, ra_start);
 
 873		} else if (ra_end < end) {
 874			fadump_add_crash_memory(ra_end, end);
 
 875		}
 876	} else
 877		fadump_add_crash_memory(start, end);
 
 
 878}
 879
 880static int fadump_init_elfcore_header(char *bufp)
 881{
 882	struct elfhdr *elf;
 883
 884	elf = (struct elfhdr *) bufp;
 885	bufp += sizeof(struct elfhdr);
 886	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 887	elf->e_ident[EI_CLASS] = ELF_CLASS;
 888	elf->e_ident[EI_DATA] = ELF_DATA;
 889	elf->e_ident[EI_VERSION] = EV_CURRENT;
 890	elf->e_ident[EI_OSABI] = ELF_OSABI;
 891	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 892	elf->e_type = ET_CORE;
 893	elf->e_machine = ELF_ARCH;
 894	elf->e_version = EV_CURRENT;
 895	elf->e_entry = 0;
 896	elf->e_phoff = sizeof(struct elfhdr);
 897	elf->e_shoff = 0;
 898#if defined(_CALL_ELF)
 899	elf->e_flags = _CALL_ELF;
 900#else
 901	elf->e_flags = 0;
 902#endif
 
 
 
 903	elf->e_ehsize = sizeof(struct elfhdr);
 904	elf->e_phentsize = sizeof(struct elf_phdr);
 905	elf->e_phnum = 0;
 906	elf->e_shentsize = 0;
 907	elf->e_shnum = 0;
 908	elf->e_shstrndx = 0;
 909
 910	return 0;
 911}
 912
 913/*
 914 * Traverse through memblock structure and setup crash memory ranges. These
 915 * ranges will be used create PT_LOAD program headers in elfcore header.
 916 */
 917static void fadump_setup_crash_memory_ranges(void)
 918{
 919	struct memblock_region *reg;
 920	unsigned long long start, end;
 921
 922	pr_debug("Setup crash memory ranges.\n");
 923	crash_mem_ranges = 0;
 
 924	/*
 925	 * add the first memory chunk (RMA_START through boot_memory_size) as
 926	 * a separate memory chunk. The reason is, at the time crash firmware
 927	 * will move the content of this memory chunk to different location
 928	 * specified during fadump registration. We need to create a separate
 929	 * program header for this chunk with the correct offset.
 930	 */
 931	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 932
 933	for_each_memblock(memory, reg) {
 934		start = (unsigned long long)reg->base;
 935		end = start + (unsigned long long)reg->size;
 936
 
 937		/*
 938		 * skip the first memory chunk that is already added (RMA_START
 939		 * through boot_memory_size). This logic needs a relook if and
 940		 * when RMA_START changes to a non-zero value.
 941		 */
 942		BUILD_BUG_ON(RMA_START != 0);
 943		if (start < fw_dump.boot_memory_size) {
 944			if (end > fw_dump.boot_memory_size)
 945				start = fw_dump.boot_memory_size;
 946			else
 947				continue;
 948		}
 949
 950		/* add this range excluding the reserved dump area. */
 951		fadump_exclude_reserved_area(start, end);
 
 
 952	}
 
 
 953}
 954
 955/*
 956 * If the given physical address falls within the boot memory region then
 957 * return the relocated address that points to the dump region reserved
 958 * for saving initial boot memory contents.
 959 */
 960static inline unsigned long fadump_relocate(unsigned long paddr)
 961{
 962	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 963		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 964	else
 965		return paddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966}
 967
 968static int fadump_create_elfcore_headers(char *bufp)
 969{
 970	struct elfhdr *elf;
 971	struct elf_phdr *phdr;
 972	int i;
 
 973
 974	fadump_init_elfcore_header(bufp);
 975	elf = (struct elfhdr *)bufp;
 976	bufp += sizeof(struct elfhdr);
 977
 978	/*
 979	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 980	 * will be populated during second kernel boot after crash. Hence
 981	 * this PT_NOTE will always be the first elf note.
 982	 *
 983	 * NOTE: Any new ELF note addition should be placed after this note.
 984	 */
 985	phdr = (struct elf_phdr *)bufp;
 986	bufp += sizeof(struct elf_phdr);
 987	phdr->p_type = PT_NOTE;
 988	phdr->p_flags = 0;
 989	phdr->p_vaddr = 0;
 990	phdr->p_align = 0;
 991
 992	phdr->p_offset = 0;
 993	phdr->p_paddr = 0;
 994	phdr->p_filesz = 0;
 995	phdr->p_memsz = 0;
 996
 997	(elf->e_phnum)++;
 998
 999	/* setup ELF PT_NOTE for vmcoreinfo */
1000	phdr = (struct elf_phdr *)bufp;
1001	bufp += sizeof(struct elf_phdr);
1002	phdr->p_type	= PT_NOTE;
1003	phdr->p_flags	= 0;
1004	phdr->p_vaddr	= 0;
1005	phdr->p_align	= 0;
1006
1007	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1008	phdr->p_offset	= phdr->p_paddr;
1009	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1010
1011	/* Increment number of program headers. */
1012	(elf->e_phnum)++;
1013
1014	/* setup PT_LOAD sections. */
 
 
 
 
 
1015
1016	for (i = 0; i < crash_mem_ranges; i++) {
1017		unsigned long long mbase, msize;
1018		mbase = crash_memory_ranges[i].base;
1019		msize = crash_memory_ranges[i].size;
1020
1021		if (!msize)
1022			continue;
1023
1024		phdr = (struct elf_phdr *)bufp;
1025		bufp += sizeof(struct elf_phdr);
1026		phdr->p_type	= PT_LOAD;
1027		phdr->p_flags	= PF_R|PF_W|PF_X;
1028		phdr->p_offset	= mbase;
1029
1030		if (mbase == RMA_START) {
1031			/*
1032			 * The entire RMA region will be moved by firmware
1033			 * to the specified destination_address. Hence set
1034			 * the correct offset.
1035			 */
1036			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
 
 
 
 
1037		}
1038
1039		phdr->p_paddr = mbase;
1040		phdr->p_vaddr = (unsigned long)__va(mbase);
1041		phdr->p_filesz = msize;
1042		phdr->p_memsz = msize;
1043		phdr->p_align = 0;
1044
1045		/* Increment number of program headers. */
1046		(elf->e_phnum)++;
1047	}
1048	return 0;
1049}
1050
1051static unsigned long init_fadump_header(unsigned long addr)
1052{
1053	struct fadump_crash_info_header *fdh;
1054
1055	if (!addr)
1056		return 0;
1057
1058	fw_dump.fadumphdr_addr = addr;
1059	fdh = __va(addr);
1060	addr += sizeof(struct fadump_crash_info_header);
1061
1062	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1063	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1064	fdh->elfcorehdr_addr = addr;
1065	/* We will set the crashing cpu id in crash_fadump() during crash. */
1066	fdh->crashing_cpu = CPU_UNKNOWN;
 
 
 
 
 
1067
1068	return addr;
1069}
1070
1071static int register_fadump(void)
1072{
1073	unsigned long addr;
1074	void *vaddr;
 
1075
1076	/*
1077	 * If no memory is reserved then we can not register for firmware-
1078	 * assisted dump.
1079	 */
1080	if (!fw_dump.reserve_dump_area_size)
1081		return -ENODEV;
1082
1083	fadump_setup_crash_memory_ranges();
 
 
 
 
1084
1085	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1086	/* Initialize fadump crash info header. */
1087	addr = init_fadump_header(addr);
1088	vaddr = __va(addr);
1089
1090	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1091	fadump_create_elfcore_headers(vaddr);
1092
1093	/* register the future kernel dump with firmware. */
1094	return register_fw_dump(&fdm);
1095}
1096
1097static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1098{
1099	int rc = 0;
1100	unsigned int wait_time;
1101
1102	pr_debug("Un-register firmware-assisted dump\n");
1103
1104	/* TODO: Add upper time limit for the delay */
1105	do {
1106		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1107			FADUMP_UNREGISTER, fdm,
1108			sizeof(struct fadump_mem_struct));
1109
1110		wait_time = rtas_busy_delay_time(rc);
1111		if (wait_time)
1112			mdelay(wait_time);
1113	} while (wait_time);
1114
1115	if (rc) {
1116		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1117			" unexpected error(%d).\n", rc);
1118		return rc;
1119	}
1120	fw_dump.dump_registered = 0;
1121	return 0;
1122}
1123
1124static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1125{
1126	int rc = 0;
1127	unsigned int wait_time;
1128
1129	pr_debug("Invalidating firmware-assisted dump registration\n");
1130
1131	/* TODO: Add upper time limit for the delay */
1132	do {
1133		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1134			FADUMP_INVALIDATE, fdm,
1135			sizeof(struct fadump_mem_struct));
1136
1137		wait_time = rtas_busy_delay_time(rc);
1138		if (wait_time)
1139			mdelay(wait_time);
1140	} while (wait_time);
1141
1142	if (rc) {
1143		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1144		return rc;
1145	}
1146	fw_dump.dump_active = 0;
1147	fdm_active = NULL;
1148	return 0;
1149}
1150
1151void fadump_cleanup(void)
1152{
 
 
 
1153	/* Invalidate the registration only if dump is active. */
1154	if (fw_dump.dump_active) {
1155		init_fadump_mem_struct(&fdm,
1156			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1157		fadump_invalidate_dump(&fdm);
 
 
 
1158	}
 
 
 
1159}
1160
1161static void fadump_free_reserved_memory(unsigned long start_pfn,
1162					unsigned long end_pfn)
1163{
1164	unsigned long pfn;
1165	unsigned long time_limit = jiffies + HZ;
1166
1167	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1168		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1169
1170	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1171		free_reserved_page(pfn_to_page(pfn));
1172
1173		if (time_after(jiffies, time_limit)) {
1174			cond_resched();
1175			time_limit = jiffies + HZ;
1176		}
1177	}
1178}
1179
1180/*
1181 * Skip memory holes and free memory that was actually reserved.
1182 */
1183static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1184{
1185	struct memblock_region *reg;
1186	unsigned long tstart, tend;
1187	unsigned long start_pfn = PHYS_PFN(start);
1188	unsigned long end_pfn = PHYS_PFN(end);
1189
1190	for_each_memblock(memory, reg) {
1191		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1192		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 
 
 
1193		if (tstart < tend) {
1194			fadump_free_reserved_memory(tstart, tend);
1195
1196			if (tend == end_pfn)
1197				break;
1198
1199			start_pfn = tend + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200		}
 
 
1201	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202}
1203
1204/*
1205 * Release the memory that was reserved in early boot to preserve the memory
1206 * contents. The released memory will be available for general use.
1207 */
1208static void fadump_release_memory(unsigned long begin, unsigned long end)
1209{
1210	unsigned long ra_start, ra_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212	ra_start = fw_dump.reserve_dump_area_start;
1213	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1214
1215	/*
1216	 * exclude the dump reserve area. Will reuse it for next
1217	 * fadump registration.
 
1218	 */
1219	if (begin < ra_end && end > ra_start) {
1220		if (begin < ra_start)
1221			fadump_release_reserved_area(begin, ra_start);
1222		if (end > ra_end)
1223			fadump_release_reserved_area(ra_end, end);
1224	} else
1225		fadump_release_reserved_area(begin, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226}
1227
1228static void fadump_invalidate_release_mem(void)
1229{
1230	unsigned long reserved_area_start, reserved_area_end;
1231	unsigned long destination_address;
1232
1233	mutex_lock(&fadump_mutex);
1234	if (!fw_dump.dump_active) {
1235		mutex_unlock(&fadump_mutex);
1236		return;
1237	}
1238
1239	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1240	fadump_cleanup();
1241	mutex_unlock(&fadump_mutex);
1242
 
 
 
1243	/*
1244	 * Save the current reserved memory bounds we will require them
1245	 * later for releasing the memory for general use.
1246	 */
1247	reserved_area_start = fw_dump.reserve_dump_area_start;
1248	reserved_area_end = reserved_area_start +
1249			fw_dump.reserve_dump_area_size;
1250	/*
1251	 * Setup reserve_dump_area_start and its size so that we can
1252	 * reuse this reserved memory for Re-registration.
1253	 */
1254	fw_dump.reserve_dump_area_start = destination_address;
1255	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1256
1257	fadump_release_memory(reserved_area_start, reserved_area_end);
1258	if (fw_dump.cpu_notes_buf) {
1259		fadump_cpu_notes_buf_free(
1260				(unsigned long)__va(fw_dump.cpu_notes_buf),
1261				fw_dump.cpu_notes_buf_size);
1262		fw_dump.cpu_notes_buf = 0;
1263		fw_dump.cpu_notes_buf_size = 0;
1264	}
1265	/* Initialize the kernel dump memory structure for FAD registration. */
1266	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1267}
1268
1269static ssize_t fadump_release_memory_store(struct kobject *kobj,
1270					struct kobj_attribute *attr,
1271					const char *buf, size_t count)
1272{
1273	int input = -1;
1274
1275	if (!fw_dump.dump_active)
1276		return -EPERM;
1277
1278	if (kstrtoint(buf, 0, &input))
1279		return -EINVAL;
1280
1281	if (input == 1) {
1282		/*
1283		 * Take away the '/proc/vmcore'. We are releasing the dump
1284		 * memory, hence it will not be valid anymore.
1285		 */
1286#ifdef CONFIG_PROC_VMCORE
1287		vmcore_cleanup();
1288#endif
1289		fadump_invalidate_release_mem();
1290
1291	} else
1292		return -EINVAL;
1293	return count;
1294}
1295
1296static ssize_t fadump_enabled_show(struct kobject *kobj,
1297					struct kobj_attribute *attr,
1298					char *buf)
 
 
 
 
 
 
 
 
 
 
1299{
1300	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1301}
1302
1303static ssize_t fadump_register_show(struct kobject *kobj,
1304					struct kobj_attribute *attr,
1305					char *buf)
 
 
 
 
 
 
 
1306{
1307	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1308}
1309
1310static ssize_t fadump_register_store(struct kobject *kobj,
1311					struct kobj_attribute *attr,
1312					const char *buf, size_t count)
1313{
1314	int ret = 0;
1315	int input = -1;
1316
1317	if (!fw_dump.fadump_enabled || fdm_active)
1318		return -EPERM;
1319
1320	if (kstrtoint(buf, 0, &input))
1321		return -EINVAL;
1322
1323	mutex_lock(&fadump_mutex);
1324
1325	switch (input) {
1326	case 0:
1327		if (fw_dump.dump_registered == 0) {
1328			goto unlock_out;
1329		}
 
1330		/* Un-register Firmware-assisted dump */
1331		fadump_unregister_dump(&fdm);
 
1332		break;
1333	case 1:
1334		if (fw_dump.dump_registered == 1) {
1335			ret = -EEXIST;
1336			goto unlock_out;
1337		}
1338		/* Register Firmware-assisted dump */
1339		ret = register_fadump();
1340		break;
1341	default:
1342		ret = -EINVAL;
1343		break;
1344	}
1345
1346unlock_out:
1347	mutex_unlock(&fadump_mutex);
1348	return ret < 0 ? ret : count;
1349}
1350
1351static int fadump_region_show(struct seq_file *m, void *private)
1352{
1353	const struct fadump_mem_struct *fdm_ptr;
1354
1355	if (!fw_dump.fadump_enabled)
1356		return 0;
1357
1358	mutex_lock(&fadump_mutex);
1359	if (fdm_active)
1360		fdm_ptr = fdm_active;
1361	else {
1362		mutex_unlock(&fadump_mutex);
1363		fdm_ptr = &fdm;
1364	}
1365
1366	seq_printf(m,
1367			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1368			"Dumped: %#llx\n",
1369			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1370			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1371			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1372			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1373			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1374	seq_printf(m,
1375			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1376			"Dumped: %#llx\n",
1377			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1378			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1379			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1380			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1381			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1382	seq_printf(m,
1383			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1384			"Dumped: %#llx\n",
1385			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1386			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1387			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1388			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1389			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1390
1391	if (!fdm_active ||
1392		(fw_dump.reserve_dump_area_start ==
1393		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1394		goto out;
1395
1396	/* Dump is active. Show reserved memory region. */
1397	seq_printf(m,
1398			"    : [%#016llx-%#016llx] %#llx bytes, "
1399			"Dumped: %#llx\n",
1400			(unsigned long long)fw_dump.reserve_dump_area_start,
1401			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1402			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1403			fw_dump.reserve_dump_area_start,
1404			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1405			fw_dump.reserve_dump_area_start);
1406out:
1407	if (fdm_active)
1408		mutex_unlock(&fadump_mutex);
1409	return 0;
1410}
1411
1412static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1413						0200, NULL,
1414						fadump_release_memory_store);
1415static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1416						0444, fadump_enabled_show,
1417						NULL);
1418static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1419						0644, fadump_register_show,
1420						fadump_register_store);
1421
1422static int fadump_region_open(struct inode *inode, struct file *file)
1423{
1424	return single_open(file, fadump_region_show, inode->i_private);
1425}
1426
1427static const struct file_operations fadump_region_fops = {
1428	.open    = fadump_region_open,
1429	.read    = seq_read,
1430	.llseek  = seq_lseek,
1431	.release = single_release,
1432};
1433
1434static void fadump_init_files(void)
 
 
 
 
1435{
1436	struct dentry *debugfs_file;
1437	int rc = 0;
1438
1439	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1440	if (rc)
1441		printk(KERN_ERR "fadump: unable to create sysfs file"
1442			" fadump_enabled (%d)\n", rc);
1443
1444	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1445	if (rc)
1446		printk(KERN_ERR "fadump: unable to create sysfs file"
1447			" fadump_registered (%d)\n", rc);
1448
1449	debugfs_file = debugfs_create_file("fadump_region", 0444,
1450					powerpc_debugfs_root, NULL,
1451					&fadump_region_fops);
1452	if (!debugfs_file)
1453		printk(KERN_ERR "fadump: unable to create debugfs file"
1454				" fadump_region\n");
1455
1456	if (fw_dump.dump_active) {
1457		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1458		if (rc)
1459			printk(KERN_ERR "fadump: unable to create sysfs file"
1460				" fadump_release_mem (%d)\n", rc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461	}
1462	return;
1463}
1464
1465/*
1466 * Prepare for firmware-assisted dump.
1467 */
1468int __init setup_fadump(void)
1469{
1470	if (!fw_dump.fadump_enabled)
1471		return 0;
1472
1473	if (!fw_dump.fadump_supported) {
1474		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1475			" this hardware\n");
1476		return 0;
1477	}
1478
1479	fadump_show_config();
 
 
 
 
1480	/*
1481	 * If dump data is available then see if it is valid and prepare for
1482	 * saving it to the disk.
1483	 */
1484	if (fw_dump.dump_active) {
1485		/*
1486		 * if dump process fails then invalidate the registration
1487		 * and release memory before proceeding for re-registration.
1488		 */
1489		if (process_fadump(fdm_active) < 0)
1490			fadump_invalidate_release_mem();
1491	}
1492	/* Initialize the kernel dump memory structure for FAD registration. */
1493	else if (fw_dump.reserve_dump_area_size)
1494		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1495	fadump_init_files();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496
1497	return 1;
1498}
1499subsys_initcall(setup_fadump);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
  27#include <linux/debugfs.h>
  28#include <linux/of.h>
  29#include <linux/of_fdt.h>
  30
 
  31#include <asm/page.h>
 
 
  32#include <asm/fadump.h>
  33#include <asm/fadump-internal.h>
  34#include <asm/setup.h>
  35#include <asm/interrupt.h>
  36
  37/*
  38 * The CPU who acquired the lock to trigger the fadump crash should
  39 * wait for other CPUs to enter.
  40 *
  41 * The timeout is in milliseconds.
  42 */
  43#define CRASH_TIMEOUT		500
  44
  45static struct fw_dump fw_dump;
 
 
  46
  47static void __init fadump_reserve_crash_area(u64 base);
  48
  49#ifndef CONFIG_PRESERVE_FA_DUMP
  50
  51static struct kobject *fadump_kobj;
  52
  53static atomic_t cpus_in_fadump;
  54static DEFINE_MUTEX(fadump_mutex);
 
 
  55
  56static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
  57
  58#define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
  59#define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
  60				 sizeof(struct fadump_memory_range))
  61static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
  62static struct fadump_mrange_info
  63reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
  64
  65static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
  66
  67#ifdef CONFIG_CMA
  68static struct cma *fadump_cma;
  69
  70/*
  71 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  72 *
  73 * This function initializes CMA area from fadump reserved memory.
  74 * The total size of fadump reserved memory covers for boot memory size
  75 * + cpu data size + hpte size and metadata.
  76 * Initialize only the area equivalent to boot memory size for CMA use.
  77 * The remaining portion of fadump reserved memory will be not given
  78 * to CMA and pages for those will stay reserved. boot memory size is
  79 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  80 * But for some reason even if it fails we still have the memory reservation
  81 * with us and we can still continue doing fadump.
  82 */
  83static int __init fadump_cma_init(void)
  84{
  85	unsigned long long base, size;
  86	int rc;
 
 
  87
  88	if (!fw_dump.fadump_enabled)
  89		return 0;
  90
  91	/*
  92	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  93	 * Return 1 to continue with fadump old behaviour.
  94	 */
  95	if (fw_dump.nocma)
 
  96		return 1;
  97
  98	base = fw_dump.reserve_dump_area_start;
  99	size = fw_dump.boot_memory_size;
 100
 101	if (!size)
 102		return 0;
 103
 104	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
 105	if (rc) {
 106		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
 107		/*
 108		 * Though the CMA init has failed we still have memory
 109		 * reservation with us. The reserved memory will be
 110		 * blocked from production system usage.  Hence return 1,
 111		 * so that we can continue with fadump.
 112		 */
 113		return 1;
 114	}
 115
 116	/*
 117	 *  If CMA activation fails, keep the pages reserved, instead of
 118	 *  exposing them to buddy allocator. Same as 'fadump=nocma' case.
 119	 */
 120	cma_reserve_pages_on_error(fadump_cma);
 
 
 121
 122	/*
 123	 * So we now have successfully initialized cma area for fadump.
 
 
 
 124	 */
 125	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
 126		"bytes of memory reserved for firmware-assisted dump\n",
 127		cma_get_size(fadump_cma),
 128		(unsigned long)cma_get_base(fadump_cma) >> 20,
 129		fw_dump.reserve_dump_area_size);
 130	return 1;
 131}
 132#else
 133static int __init fadump_cma_init(void) { return 1; }
 134#endif /* CONFIG_CMA */
 135
 136/* Scan the Firmware Assisted dump configuration details. */
 137int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 138				      int depth, void *data)
 139{
 140	if (depth == 0) {
 141		early_init_dt_scan_reserved_ranges(node);
 142		return 0;
 143	}
 144
 145	if (depth != 1)
 146		return 0;
 147
 148	if (strcmp(uname, "rtas") == 0) {
 149		rtas_fadump_dt_scan(&fw_dump, node);
 150		return 1;
 151	}
 152
 153	if (strcmp(uname, "ibm,opal") == 0) {
 154		opal_fadump_dt_scan(&fw_dump, node);
 155		return 1;
 
 
 
 
 
 
 
 156	}
 157
 158	return 0;
 159}
 160
 161/*
 162 * If fadump is registered, check if the memory provided
 163 * falls within boot memory area and reserved memory area.
 164 */
 165int is_fadump_memory_area(u64 addr, unsigned long size)
 166{
 167	u64 d_start, d_end;
 168
 169	if (!fw_dump.dump_registered)
 170		return 0;
 171
 172	if (!size)
 173		return 0;
 174
 175	d_start = fw_dump.reserve_dump_area_start;
 176	d_end = d_start + fw_dump.reserve_dump_area_size;
 177	if (((addr + size) > d_start) && (addr <= d_end))
 178		return 1;
 179
 180	return (addr <= fw_dump.boot_mem_top);
 181}
 182
 183int should_fadump_crash(void)
 184{
 185	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 186		return 0;
 187	return 1;
 188}
 189
 190int is_fadump_active(void)
 191{
 192	return fw_dump.dump_active;
 193}
 194
 195/*
 196 * Returns true, if there are no holes in memory area between d_start to d_end,
 197 * false otherwise.
 198 */
 199static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 200{
 201	phys_addr_t reg_start, reg_end;
 202	bool ret = false;
 203	u64 i, start, end;
 204
 205	for_each_mem_range(i, &reg_start, &reg_end) {
 206		start = max_t(u64, d_start, reg_start);
 207		end = min_t(u64, d_end, reg_end);
 208		if (d_start < end) {
 209			/* Memory hole from d_start to start */
 210			if (start > d_start)
 
 
 211				break;
 212
 213			if (end == d_end) {
 214				ret = true;
 215				break;
 216			}
 217
 218			d_start = end + 1;
 219		}
 220	}
 221
 222	return ret;
 223}
 224
 225/*
 226 * Returns true, if there are no holes in boot memory area,
 227 * false otherwise.
 228 */
 229bool is_fadump_boot_mem_contiguous(void)
 230{
 231	unsigned long d_start, d_end;
 232	bool ret = false;
 233	int i;
 234
 235	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 236		d_start = fw_dump.boot_mem_addr[i];
 237		d_end   = d_start + fw_dump.boot_mem_sz[i];
 238
 239		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 240		if (!ret)
 241			break;
 242	}
 243
 244	return ret;
 245}
 246
 247/*
 248 * Returns true, if there are no holes in reserved memory area,
 249 * false otherwise.
 250 */
 251bool is_fadump_reserved_mem_contiguous(void)
 252{
 253	u64 d_start, d_end;
 254
 255	d_start	= fw_dump.reserve_dump_area_start;
 256	d_end	= d_start + fw_dump.reserve_dump_area_size;
 257	return is_fadump_mem_area_contiguous(d_start, d_end);
 258}
 259
 260/* Print firmware assisted dump configurations for debugging purpose. */
 261static void __init fadump_show_config(void)
 262{
 263	int i;
 264
 265	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 266			(fw_dump.fadump_supported ? "present" : "no support"));
 267
 268	if (!fw_dump.fadump_supported)
 269		return;
 270
 271	pr_debug("Fadump enabled    : %s\n",
 272				(fw_dump.fadump_enabled ? "yes" : "no"));
 273	pr_debug("Dump Active       : %s\n",
 274				(fw_dump.dump_active ? "yes" : "no"));
 275	pr_debug("Dump section sizes:\n");
 276	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 277	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 278	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 279	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 280	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 281	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 282		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 283			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 284	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285}
 286
 287/**
 288 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 289 *
 290 * Function to find the largest memory size we need to reserve during early
 291 * boot process. This will be the size of the memory that is required for a
 292 * kernel to boot successfully.
 293 *
 294 * This function has been taken from phyp-assisted dump feature implementation.
 295 *
 296 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 297 *
 298 * TODO: Come up with better approach to find out more accurate memory size
 299 * that is required for a kernel to boot successfully.
 300 *
 301 */
 302static __init u64 fadump_calculate_reserve_size(void)
 303{
 304	u64 base, size, bootmem_min;
 305	int ret;
 
 306
 307	if (fw_dump.reserve_bootvar)
 308		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 309
 310	/*
 311	 * Check if the size is specified through crashkernel= cmdline
 312	 * option. If yes, then use that but ignore base as fadump reserves
 313	 * memory at a predefined offset.
 314	 */
 315	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 316				&size, &base, NULL, NULL);
 317	if (ret == 0 && size > 0) {
 318		unsigned long max_size;
 319
 320		if (fw_dump.reserve_bootvar)
 321			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 322
 323		fw_dump.reserve_bootvar = (unsigned long)size;
 324
 325		/*
 326		 * Adjust if the boot memory size specified is above
 327		 * the upper limit.
 328		 */
 329		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 330		if (fw_dump.reserve_bootvar > max_size) {
 331			fw_dump.reserve_bootvar = max_size;
 332			pr_info("Adjusted boot memory size to %luMB\n",
 333				(fw_dump.reserve_bootvar >> 20));
 334		}
 335
 336		return fw_dump.reserve_bootvar;
 337	} else if (fw_dump.reserve_bootvar) {
 338		/*
 339		 * 'fadump_reserve_mem=' is being used to reserve memory
 340		 * for firmware-assisted dump.
 341		 */
 342		return fw_dump.reserve_bootvar;
 343	}
 344
 345	/* divide by 20 to get 5% of value */
 346	size = memblock_phys_mem_size() / 20;
 347
 348	/* round it down in multiples of 256 */
 349	size = size & ~0x0FFFFFFFUL;
 350
 351	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 352	if (memory_limit && size > memory_limit)
 353		size = memory_limit;
 354
 355	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 356	return (size > bootmem_min ? size : bootmem_min);
 357}
 358
 359/*
 360 * Calculate the total memory size required to be reserved for
 361 * firmware-assisted dump registration.
 362 */
 363static unsigned long __init get_fadump_area_size(void)
 364{
 365	unsigned long size = 0;
 366
 367	size += fw_dump.cpu_state_data_size;
 368	size += fw_dump.hpte_region_size;
 369	/*
 370	 * Account for pagesize alignment of boot memory area destination address.
 371	 * This faciliates in mmap reading of first kernel's memory.
 372	 */
 373	size = PAGE_ALIGN(size);
 374	size += fw_dump.boot_memory_size;
 375	size += sizeof(struct fadump_crash_info_header);
 376	size += sizeof(struct elfhdr); /* ELF core header.*/
 377	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 378	/* Program headers for crash memory regions. */
 379	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 380
 381	size = PAGE_ALIGN(size);
 382
 383	/* This is to hold kernel metadata on platforms that support it */
 384	size += (fw_dump.ops->fadump_get_metadata_size ?
 385		 fw_dump.ops->fadump_get_metadata_size() : 0);
 386	return size;
 387}
 388
 389static int __init add_boot_mem_region(unsigned long rstart,
 390				      unsigned long rsize)
 391{
 392	int i = fw_dump.boot_mem_regs_cnt++;
 393
 394	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 395		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 396		return 0;
 397	}
 398
 399	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 400		 i, rstart, (rstart + rsize));
 401	fw_dump.boot_mem_addr[i] = rstart;
 402	fw_dump.boot_mem_sz[i] = rsize;
 403	return 1;
 404}
 405
 406/*
 407 * Firmware usually has a hard limit on the data it can copy per region.
 408 * Honour that by splitting a memory range into multiple regions.
 409 */
 410static int __init add_boot_mem_regions(unsigned long mstart,
 411				       unsigned long msize)
 412{
 413	unsigned long rstart, rsize, max_size;
 414	int ret = 1;
 415
 416	rstart = mstart;
 417	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 418	while (msize) {
 419		if (msize > max_size)
 420			rsize = max_size;
 421		else
 422			rsize = msize;
 423
 424		ret = add_boot_mem_region(rstart, rsize);
 425		if (!ret)
 426			break;
 427
 428		msize -= rsize;
 429		rstart += rsize;
 430	}
 431
 432	return ret;
 433}
 434
 435static int __init fadump_get_boot_mem_regions(void)
 436{
 437	unsigned long size, cur_size, hole_size, last_end;
 438	unsigned long mem_size = fw_dump.boot_memory_size;
 439	phys_addr_t reg_start, reg_end;
 440	int ret = 1;
 441	u64 i;
 442
 443	fw_dump.boot_mem_regs_cnt = 0;
 444
 445	last_end = 0;
 446	hole_size = 0;
 447	cur_size = 0;
 448	for_each_mem_range(i, &reg_start, &reg_end) {
 449		size = reg_end - reg_start;
 450		hole_size += (reg_start - last_end);
 451
 452		if ((cur_size + size) >= mem_size) {
 453			size = (mem_size - cur_size);
 454			ret = add_boot_mem_regions(reg_start, size);
 455			break;
 456		}
 457
 458		mem_size -= size;
 459		cur_size += size;
 460		ret = add_boot_mem_regions(reg_start, size);
 461		if (!ret)
 462			break;
 463
 464		last_end = reg_end;
 465	}
 466	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 467
 468	return ret;
 469}
 470
 471/*
 472 * Returns true, if the given range overlaps with reserved memory ranges
 473 * starting at idx. Also, updates idx to index of overlapping memory range
 474 * with the given memory range.
 475 * False, otherwise.
 476 */
 477static bool __init overlaps_reserved_ranges(u64 base, u64 end, int *idx)
 478{
 479	bool ret = false;
 480	int i;
 481
 482	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
 483		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
 484		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
 485
 486		if (end <= rbase)
 487			break;
 488
 489		if ((end > rbase) &&  (base < rend)) {
 490			*idx = i;
 491			ret = true;
 492			break;
 493		}
 494	}
 495
 496	return ret;
 497}
 498
 499/*
 500 * Locate a suitable memory area to reserve memory for FADump. While at it,
 501 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
 502 */
 503static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
 504{
 505	struct fadump_memory_range *mrngs;
 506	phys_addr_t mstart, mend;
 507	int idx = 0;
 508	u64 i, ret = 0;
 509
 510	mrngs = reserved_mrange_info.mem_ranges;
 511	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 512				&mstart, &mend, NULL) {
 513		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
 514			 i, mstart, mend, base);
 515
 516		if (mstart > base)
 517			base = PAGE_ALIGN(mstart);
 518
 519		while ((mend > base) && ((mend - base) >= size)) {
 520			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
 521				ret = base;
 522				goto out;
 523			}
 524
 525			base = mrngs[idx].base + mrngs[idx].size;
 526			base = PAGE_ALIGN(base);
 527		}
 528	}
 529
 530out:
 531	return ret;
 532}
 533
 534int __init fadump_reserve_mem(void)
 535{
 536	u64 base, size, mem_boundary, bootmem_min;
 537	int ret = 1;
 538
 539	if (!fw_dump.fadump_enabled)
 540		return 0;
 541
 542	if (!fw_dump.fadump_supported) {
 543		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 544		goto error_out;
 
 
 545	}
 546
 547	/*
 548	 * Initialize boot memory size
 549	 * If dump is active then we have already calculated the size during
 550	 * first kernel.
 551	 */
 552	if (!fw_dump.dump_active) {
 553		fw_dump.boot_memory_size =
 554			PAGE_ALIGN(fadump_calculate_reserve_size());
 555#ifdef CONFIG_CMA
 556		if (!fw_dump.nocma) {
 557			fw_dump.boot_memory_size =
 558				ALIGN(fw_dump.boot_memory_size,
 559				      CMA_MIN_ALIGNMENT_BYTES);
 560		}
 561#endif
 562
 563		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 564		if (fw_dump.boot_memory_size < bootmem_min) {
 565			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 566			       fw_dump.boot_memory_size, bootmem_min);
 567			goto error_out;
 568		}
 569
 570		if (!fadump_get_boot_mem_regions()) {
 571			pr_err("Too many holes in boot memory area to enable fadump\n");
 572			goto error_out;
 573		}
 574	}
 575
 576	/*
 577	 * Calculate the memory boundary.
 578	 * If memory_limit is less than actual memory boundary then reserve
 579	 * the memory for fadump beyond the memory_limit and adjust the
 580	 * memory_limit accordingly, so that the running kernel can run with
 581	 * specified memory_limit.
 582	 */
 583	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 584		size = get_fadump_area_size();
 585		if ((memory_limit + size) < memblock_end_of_DRAM())
 586			memory_limit += size;
 587		else
 588			memory_limit = memblock_end_of_DRAM();
 589		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 590				" dump, now %#016llx\n", memory_limit);
 591	}
 592	if (memory_limit)
 593		mem_boundary = memory_limit;
 594	else
 595		mem_boundary = memblock_end_of_DRAM();
 596
 597	base = fw_dump.boot_mem_top;
 598	size = get_fadump_area_size();
 599	fw_dump.reserve_dump_area_size = size;
 600	if (fw_dump.dump_active) {
 601		pr_info("Firmware-assisted dump is active.\n");
 602
 603#ifdef CONFIG_HUGETLB_PAGE
 604		/*
 605		 * FADump capture kernel doesn't care much about hugepages.
 606		 * In fact, handling hugepages in capture kernel is asking for
 607		 * trouble. So, disable HugeTLB support when fadump is active.
 608		 */
 609		hugetlb_disabled = true;
 610#endif
 611		/*
 612		 * If last boot has crashed then reserve all the memory
 613		 * above boot memory size so that we don't touch it until
 614		 * dump is written to disk by userspace tool. This memory
 615		 * can be released for general use by invalidating fadump.
 616		 */
 617		fadump_reserve_crash_area(base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618
 619		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 620		pr_debug("Reserve dump area start address: 0x%lx\n",
 621			 fw_dump.reserve_dump_area_start);
 622	} else {
 623		/*
 624		 * Reserve memory at an offset closer to bottom of the RAM to
 625		 * minimize the impact of memory hot-remove operation.
 
 
 626		 */
 627		base = fadump_locate_reserve_mem(base, size);
 628
 629		if (!base || (base + size > mem_boundary)) {
 630			pr_err("Failed to find memory chunk for reservation!\n");
 631			goto error_out;
 
 632		}
 633		fw_dump.reserve_dump_area_start = base;
 634
 635		/*
 636		 * Calculate the kernel metadata address and register it with
 637		 * f/w if the platform supports.
 638		 */
 639		if (fw_dump.ops->fadump_setup_metadata &&
 640		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 641			goto error_out;
 642
 643		if (memblock_reserve(base, size)) {
 644			pr_err("Failed to reserve memory!\n");
 645			goto error_out;
 646		}
 647
 648		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 649			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 
 
 
 
 650
 651		ret = fadump_cma_init();
 652	}
 
 
 653
 654	return ret;
 655error_out:
 656	fw_dump.fadump_enabled = 0;
 657	fw_dump.reserve_dump_area_size = 0;
 658	return 0;
 659}
 660
 661/* Look for fadump= cmdline option. */
 662static int __init early_fadump_param(char *p)
 663{
 664	if (!p)
 665		return 1;
 666
 667	if (strncmp(p, "on", 2) == 0)
 668		fw_dump.fadump_enabled = 1;
 669	else if (strncmp(p, "off", 3) == 0)
 670		fw_dump.fadump_enabled = 0;
 671	else if (strncmp(p, "nocma", 5) == 0) {
 672		fw_dump.fadump_enabled = 1;
 673		fw_dump.nocma = 1;
 674	}
 675
 676	return 0;
 677}
 678early_param("fadump", early_fadump_param);
 679
 680/*
 681 * Look for fadump_reserve_mem= cmdline option
 682 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 683 *       the sooner 'crashkernel=' parameter is accustomed to.
 684 */
 685static int __init early_fadump_reserve_mem(char *p)
 686{
 687	if (p)
 688		fw_dump.reserve_bootvar = memparse(p, &p);
 689	return 0;
 690}
 691early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693void crash_fadump(struct pt_regs *regs, const char *str)
 694{
 695	unsigned int msecs;
 696	struct fadump_crash_info_header *fdh = NULL;
 697	int old_cpu, this_cpu;
 698	/* Do not include first CPU */
 699	unsigned int ncpus = num_online_cpus() - 1;
 700
 701	if (!should_fadump_crash())
 702		return;
 703
 704	/*
 705	 * old_cpu == -1 means this is the first CPU which has come here,
 706	 * go ahead and trigger fadump.
 707	 *
 708	 * old_cpu != -1 means some other CPU has already on it's way
 709	 * to trigger fadump, just keep looping here.
 710	 */
 711	this_cpu = smp_processor_id();
 712	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 713
 714	if (old_cpu != -1) {
 715		atomic_inc(&cpus_in_fadump);
 716
 717		/*
 718		 * We can't loop here indefinitely. Wait as long as fadump
 719		 * is in force. If we race with fadump un-registration this
 720		 * loop will break and then we go down to normal panic path
 721		 * and reboot. If fadump is in force the first crashing
 722		 * cpu will definitely trigger fadump.
 723		 */
 724		while (fw_dump.dump_registered)
 725			cpu_relax();
 726		return;
 727	}
 728
 729	fdh = __va(fw_dump.fadumphdr_addr);
 730	fdh->crashing_cpu = crashing_cpu;
 731	crash_save_vmcoreinfo();
 732
 733	if (regs)
 734		fdh->regs = *regs;
 735	else
 736		ppc_save_regs(&fdh->regs);
 737
 738	fdh->cpu_mask = *cpu_online_mask;
 739
 740	/*
 741	 * If we came in via system reset, wait a while for the secondary
 742	 * CPUs to enter.
 743	 */
 744	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
 745		msecs = CRASH_TIMEOUT;
 746		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
 747			mdelay(1);
 
 
 
 
 
 
 
 
 
 
 
 
 748	}
 
 
 749
 750	fw_dump.ops->fadump_trigger(fdh, str);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753u32 *__init fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 754{
 755	struct elf_prstatus prstatus;
 756
 757	memset(&prstatus, 0, sizeof(prstatus));
 758	/*
 759	 * FIXME: How do i get PID? Do I really need it?
 760	 * prstatus.pr_pid = ????
 761	 */
 762	elf_core_copy_regs(&prstatus.pr_reg, regs);
 763	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 764			      &prstatus, sizeof(prstatus));
 765	return buf;
 766}
 767
 768void __init fadump_update_elfcore_header(char *bufp)
 769{
 
 770	struct elf_phdr *phdr;
 771
 
 772	bufp += sizeof(struct elfhdr);
 773
 774	/* First note is a place holder for cpu notes info. */
 775	phdr = (struct elf_phdr *)bufp;
 776
 777	if (phdr->p_type == PT_NOTE) {
 778		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 779		phdr->p_offset	= phdr->p_paddr;
 780		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 781		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 782	}
 783	return;
 784}
 785
 786static void *__init fadump_alloc_buffer(unsigned long size)
 787{
 788	unsigned long count, i;
 789	struct page *page;
 790	void *vaddr;
 791
 792	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 
 793	if (!vaddr)
 794		return NULL;
 795
 796	count = PAGE_ALIGN(size) / PAGE_SIZE;
 797	page = virt_to_page(vaddr);
 798	for (i = 0; i < count; i++)
 799		mark_page_reserved(page + i);
 800	return vaddr;
 801}
 802
 803static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 804{
 805	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 
 
 
 
 
 
 
 
 806}
 807
 808s32 __init fadump_setup_cpu_notes_buf(u32 num_cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	/* Allocate buffer to hold cpu crash notes. */
 811	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 812	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 813	fw_dump.cpu_notes_buf_vaddr =
 814		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 815	if (!fw_dump.cpu_notes_buf_vaddr) {
 816		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 817		       fw_dump.cpu_notes_buf_size);
 818		return -ENOMEM;
 819	}
 
 820
 821	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 822		 fw_dump.cpu_notes_buf_size,
 823		 fw_dump.cpu_notes_buf_vaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824	return 0;
 825}
 826
 827void fadump_free_cpu_notes_buf(void)
 828{
 829	if (!fw_dump.cpu_notes_buf_vaddr)
 830		return;
 831
 832	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 833			   fw_dump.cpu_notes_buf_size);
 834	fw_dump.cpu_notes_buf_vaddr = 0;
 835	fw_dump.cpu_notes_buf_size = 0;
 836}
 837
 838static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 839{
 840	if (mrange_info->is_static) {
 841		mrange_info->mem_range_cnt = 0;
 842		return;
 843	}
 844
 845	kfree(mrange_info->mem_ranges);
 846	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
 847	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
 848}
 849
 850/*
 851 * Allocate or reallocate mem_ranges array in incremental units
 852 * of PAGE_SIZE.
 853 */
 854static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 855{
 856	struct fadump_memory_range *new_array;
 857	u64 new_size;
 858
 859	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 860	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 861		 new_size, mrange_info->name);
 862
 863	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 864	if (new_array == NULL) {
 865		pr_err("Insufficient memory for setting up %s memory ranges\n",
 866		       mrange_info->name);
 867		fadump_free_mem_ranges(mrange_info);
 868		return -ENOMEM;
 
 
 
 
 
 869	}
 870
 871	mrange_info->mem_ranges = new_array;
 872	mrange_info->mem_ranges_sz = new_size;
 873	mrange_info->max_mem_ranges = (new_size /
 874				       sizeof(struct fadump_memory_range));
 875	return 0;
 876}
 877static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 878				       u64 base, u64 end)
 879{
 880	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 881	bool is_adjacent = false;
 882	u64 start, size;
 883
 884	if (base == end)
 885		return 0;
 
 886
 887	/*
 888	 * Fold adjacent memory ranges to bring down the memory ranges/
 889	 * PT_LOAD segments count.
 
 890	 */
 891	if (mrange_info->mem_range_cnt) {
 892		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 893		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 894
 895		/*
 896		 * Boot memory area needs separate PT_LOAD segment(s) as it
 897		 * is moved to a different location at the time of crash.
 898		 * So, fold only if the region is not boot memory area.
 899		 */
 900		if ((start + size) == base && start >= fw_dump.boot_mem_top)
 901			is_adjacent = true;
 902	}
 903	if (!is_adjacent) {
 904		/* resize the array on reaching the limit */
 905		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 906			int ret;
 907
 908			if (mrange_info->is_static) {
 909				pr_err("Reached array size limit for %s memory ranges\n",
 910				       mrange_info->name);
 911				return -ENOSPC;
 912			}
 913
 914			ret = fadump_alloc_mem_ranges(mrange_info);
 915			if (ret)
 916				return ret;
 917
 918			/* Update to the new resized array */
 919			mem_ranges = mrange_info->mem_ranges;
 920		}
 921
 922		start = base;
 923		mem_ranges[mrange_info->mem_range_cnt].base = start;
 924		mrange_info->mem_range_cnt++;
 925	}
 926
 927	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 928	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 929		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 930		 start, end - 1, (end - start));
 931	return 0;
 932}
 933
 934static int fadump_exclude_reserved_area(u64 start, u64 end)
 
 935{
 936	u64 ra_start, ra_end;
 937	int ret = 0;
 938
 939	ra_start = fw_dump.reserve_dump_area_start;
 940	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 941
 942	if ((ra_start < end) && (ra_end > start)) {
 943		if ((start < ra_start) && (end > ra_end)) {
 944			ret = fadump_add_mem_range(&crash_mrange_info,
 945						   start, ra_start);
 946			if (ret)
 947				return ret;
 948
 949			ret = fadump_add_mem_range(&crash_mrange_info,
 950						   ra_end, end);
 951		} else if (start < ra_start) {
 952			ret = fadump_add_mem_range(&crash_mrange_info,
 953						   start, ra_start);
 954		} else if (ra_end < end) {
 955			ret = fadump_add_mem_range(&crash_mrange_info,
 956						   ra_end, end);
 957		}
 958	} else
 959		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 960
 961	return ret;
 962}
 963
 964static int fadump_init_elfcore_header(char *bufp)
 965{
 966	struct elfhdr *elf;
 967
 968	elf = (struct elfhdr *) bufp;
 969	bufp += sizeof(struct elfhdr);
 970	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 971	elf->e_ident[EI_CLASS] = ELF_CLASS;
 972	elf->e_ident[EI_DATA] = ELF_DATA;
 973	elf->e_ident[EI_VERSION] = EV_CURRENT;
 974	elf->e_ident[EI_OSABI] = ELF_OSABI;
 975	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 976	elf->e_type = ET_CORE;
 977	elf->e_machine = ELF_ARCH;
 978	elf->e_version = EV_CURRENT;
 979	elf->e_entry = 0;
 980	elf->e_phoff = sizeof(struct elfhdr);
 981	elf->e_shoff = 0;
 982
 983	if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
 984		elf->e_flags = 2;
 985	else if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1))
 986		elf->e_flags = 1;
 987	else
 988		elf->e_flags = 0;
 989
 990	elf->e_ehsize = sizeof(struct elfhdr);
 991	elf->e_phentsize = sizeof(struct elf_phdr);
 992	elf->e_phnum = 0;
 993	elf->e_shentsize = 0;
 994	elf->e_shnum = 0;
 995	elf->e_shstrndx = 0;
 996
 997	return 0;
 998}
 999
1000/*
1001 * Traverse through memblock structure and setup crash memory ranges. These
1002 * ranges will be used create PT_LOAD program headers in elfcore header.
1003 */
1004static int fadump_setup_crash_memory_ranges(void)
1005{
1006	u64 i, start, end;
1007	int ret;
1008
1009	pr_debug("Setup crash memory ranges.\n");
1010	crash_mrange_info.mem_range_cnt = 0;
1011
1012	/*
1013	 * Boot memory region(s) registered with firmware are moved to
1014	 * different location at the time of crash. Create separate program
1015	 * header(s) for this memory chunk(s) with the correct offset.
1016	 */
1017	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1018		start = fw_dump.boot_mem_addr[i];
1019		end = start + fw_dump.boot_mem_sz[i];
1020		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1021		if (ret)
1022			return ret;
1023	}
1024
1025	for_each_mem_range(i, &start, &end) {
1026		/*
1027		 * skip the memory chunk that is already added
1028		 * (0 through boot_memory_top).
 
1029		 */
1030		if (start < fw_dump.boot_mem_top) {
1031			if (end > fw_dump.boot_mem_top)
1032				start = fw_dump.boot_mem_top;
 
1033			else
1034				continue;
1035		}
1036
1037		/* add this range excluding the reserved dump area. */
1038		ret = fadump_exclude_reserved_area(start, end);
1039		if (ret)
1040			return ret;
1041	}
1042
1043	return 0;
1044}
1045
1046/*
1047 * If the given physical address falls within the boot memory region then
1048 * return the relocated address that points to the dump region reserved
1049 * for saving initial boot memory contents.
1050 */
1051static inline unsigned long fadump_relocate(unsigned long paddr)
1052{
1053	unsigned long raddr, rstart, rend, rlast, hole_size;
1054	int i;
1055
1056	hole_size = 0;
1057	rlast = 0;
1058	raddr = paddr;
1059	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1060		rstart = fw_dump.boot_mem_addr[i];
1061		rend = rstart + fw_dump.boot_mem_sz[i];
1062		hole_size += (rstart - rlast);
1063
1064		if (paddr >= rstart && paddr < rend) {
1065			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1066			break;
1067		}
1068
1069		rlast = rend;
1070	}
1071
1072	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1073	return raddr;
1074}
1075
1076static int fadump_create_elfcore_headers(char *bufp)
1077{
1078	unsigned long long raddr, offset;
1079	struct elf_phdr *phdr;
1080	struct elfhdr *elf;
1081	int i, j;
1082
1083	fadump_init_elfcore_header(bufp);
1084	elf = (struct elfhdr *)bufp;
1085	bufp += sizeof(struct elfhdr);
1086
1087	/*
1088	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1089	 * will be populated during second kernel boot after crash. Hence
1090	 * this PT_NOTE will always be the first elf note.
1091	 *
1092	 * NOTE: Any new ELF note addition should be placed after this note.
1093	 */
1094	phdr = (struct elf_phdr *)bufp;
1095	bufp += sizeof(struct elf_phdr);
1096	phdr->p_type = PT_NOTE;
1097	phdr->p_flags = 0;
1098	phdr->p_vaddr = 0;
1099	phdr->p_align = 0;
1100
1101	phdr->p_offset = 0;
1102	phdr->p_paddr = 0;
1103	phdr->p_filesz = 0;
1104	phdr->p_memsz = 0;
1105
1106	(elf->e_phnum)++;
1107
1108	/* setup ELF PT_NOTE for vmcoreinfo */
1109	phdr = (struct elf_phdr *)bufp;
1110	bufp += sizeof(struct elf_phdr);
1111	phdr->p_type	= PT_NOTE;
1112	phdr->p_flags	= 0;
1113	phdr->p_vaddr	= 0;
1114	phdr->p_align	= 0;
1115
1116	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1117	phdr->p_offset	= phdr->p_paddr;
1118	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1119
1120	/* Increment number of program headers. */
1121	(elf->e_phnum)++;
1122
1123	/* setup PT_LOAD sections. */
1124	j = 0;
1125	offset = 0;
1126	raddr = fw_dump.boot_mem_addr[0];
1127	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1128		u64 mbase, msize;
1129
1130		mbase = crash_mrange_info.mem_ranges[i].base;
1131		msize = crash_mrange_info.mem_ranges[i].size;
 
 
 
1132		if (!msize)
1133			continue;
1134
1135		phdr = (struct elf_phdr *)bufp;
1136		bufp += sizeof(struct elf_phdr);
1137		phdr->p_type	= PT_LOAD;
1138		phdr->p_flags	= PF_R|PF_W|PF_X;
1139		phdr->p_offset	= mbase;
1140
1141		if (mbase == raddr) {
1142			/*
1143			 * The entire real memory region will be moved by
1144			 * firmware to the specified destination_address.
1145			 * Hence set the correct offset.
1146			 */
1147			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1148			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1149				offset += fw_dump.boot_mem_sz[j];
1150				raddr = fw_dump.boot_mem_addr[++j];
1151			}
1152		}
1153
1154		phdr->p_paddr = mbase;
1155		phdr->p_vaddr = (unsigned long)__va(mbase);
1156		phdr->p_filesz = msize;
1157		phdr->p_memsz = msize;
1158		phdr->p_align = 0;
1159
1160		/* Increment number of program headers. */
1161		(elf->e_phnum)++;
1162	}
1163	return 0;
1164}
1165
1166static unsigned long init_fadump_header(unsigned long addr)
1167{
1168	struct fadump_crash_info_header *fdh;
1169
1170	if (!addr)
1171		return 0;
1172
 
1173	fdh = __va(addr);
1174	addr += sizeof(struct fadump_crash_info_header);
1175
1176	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1177	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1178	fdh->elfcorehdr_addr = addr;
1179	/* We will set the crashing cpu id in crash_fadump() during crash. */
1180	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1181	/*
1182	 * When LPAR is terminated by PYHP, ensure all possible CPUs'
1183	 * register data is processed while exporting the vmcore.
1184	 */
1185	fdh->cpu_mask = *cpu_possible_mask;
1186
1187	return addr;
1188}
1189
1190static int register_fadump(void)
1191{
1192	unsigned long addr;
1193	void *vaddr;
1194	int ret;
1195
1196	/*
1197	 * If no memory is reserved then we can not register for firmware-
1198	 * assisted dump.
1199	 */
1200	if (!fw_dump.reserve_dump_area_size)
1201		return -ENODEV;
1202
1203	ret = fadump_setup_crash_memory_ranges();
1204	if (ret)
1205		return ret;
1206
1207	addr = fw_dump.fadumphdr_addr;
1208
 
1209	/* Initialize fadump crash info header. */
1210	addr = init_fadump_header(addr);
1211	vaddr = __va(addr);
1212
1213	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1214	fadump_create_elfcore_headers(vaddr);
1215
1216	/* register the future kernel dump with firmware. */
1217	pr_debug("Registering for firmware-assisted kernel dump...\n");
1218	return fw_dump.ops->fadump_register(&fw_dump);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219}
1220
1221void fadump_cleanup(void)
1222{
1223	if (!fw_dump.fadump_supported)
1224		return;
1225
1226	/* Invalidate the registration only if dump is active. */
1227	if (fw_dump.dump_active) {
1228		pr_debug("Invalidating firmware-assisted dump registration\n");
1229		fw_dump.ops->fadump_invalidate(&fw_dump);
1230	} else if (fw_dump.dump_registered) {
1231		/* Un-register Firmware-assisted dump if it was registered. */
1232		fw_dump.ops->fadump_unregister(&fw_dump);
1233		fadump_free_mem_ranges(&crash_mrange_info);
1234	}
1235
1236	if (fw_dump.ops->fadump_cleanup)
1237		fw_dump.ops->fadump_cleanup(&fw_dump);
1238}
1239
1240static void fadump_free_reserved_memory(unsigned long start_pfn,
1241					unsigned long end_pfn)
1242{
1243	unsigned long pfn;
1244	unsigned long time_limit = jiffies + HZ;
1245
1246	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1247		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1248
1249	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1250		free_reserved_page(pfn_to_page(pfn));
1251
1252		if (time_after(jiffies, time_limit)) {
1253			cond_resched();
1254			time_limit = jiffies + HZ;
1255		}
1256	}
1257}
1258
1259/*
1260 * Skip memory holes and free memory that was actually reserved.
1261 */
1262static void fadump_release_reserved_area(u64 start, u64 end)
1263{
1264	unsigned long reg_spfn, reg_epfn;
1265	u64 tstart, tend, spfn, epfn;
1266	int i;
1267
1268	spfn = PHYS_PFN(start);
1269	epfn = PHYS_PFN(end);
1270
1271	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1272		tstart = max_t(u64, spfn, reg_spfn);
1273		tend   = min_t(u64, epfn, reg_epfn);
1274
1275		if (tstart < tend) {
1276			fadump_free_reserved_memory(tstart, tend);
1277
1278			if (tend == epfn)
1279				break;
1280
1281			spfn = tend;
1282		}
1283	}
1284}
1285
1286/*
1287 * Sort the mem ranges in-place and merge adjacent ranges
1288 * to minimize the memory ranges count.
1289 */
1290static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1291{
1292	struct fadump_memory_range *mem_ranges;
1293	u64 base, size;
1294	int i, j, idx;
1295
1296	if (!reserved_mrange_info.mem_range_cnt)
1297		return;
1298
1299	/* Sort the memory ranges */
1300	mem_ranges = mrange_info->mem_ranges;
1301	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1302		idx = i;
1303		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1304			if (mem_ranges[idx].base > mem_ranges[j].base)
1305				idx = j;
1306		}
1307		if (idx != i)
1308			swap(mem_ranges[idx], mem_ranges[i]);
1309	}
1310
1311	/* Merge adjacent reserved ranges */
1312	idx = 0;
1313	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1314		base = mem_ranges[i-1].base;
1315		size = mem_ranges[i-1].size;
1316		if (mem_ranges[i].base == (base + size))
1317			mem_ranges[idx].size += mem_ranges[i].size;
1318		else {
1319			idx++;
1320			if (i == idx)
1321				continue;
1322
1323			mem_ranges[idx] = mem_ranges[i];
1324		}
1325	}
1326	mrange_info->mem_range_cnt = idx + 1;
1327}
1328
1329/*
1330 * Scan reserved-ranges to consider them while reserving/releasing
1331 * memory for FADump.
1332 */
1333static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1334{
1335	const __be32 *prop;
1336	int len, ret = -1;
1337	unsigned long i;
1338
1339	/* reserved-ranges already scanned */
1340	if (reserved_mrange_info.mem_range_cnt != 0)
1341		return;
1342
1343	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1344	if (!prop)
1345		return;
1346
1347	/*
1348	 * Each reserved range is an (address,size) pair, 2 cells each,
1349	 * totalling 4 cells per range.
1350	 */
1351	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1352		u64 base, size;
1353
1354		base = of_read_number(prop + (i * 4) + 0, 2);
1355		size = of_read_number(prop + (i * 4) + 2, 2);
1356
1357		if (size) {
1358			ret = fadump_add_mem_range(&reserved_mrange_info,
1359						   base, base + size);
1360			if (ret < 0) {
1361				pr_warn("some reserved ranges are ignored!\n");
1362				break;
1363			}
1364		}
1365	}
1366
1367	/* Compact reserved ranges */
1368	sort_and_merge_mem_ranges(&reserved_mrange_info);
1369}
1370
1371/*
1372 * Release the memory that was reserved during early boot to preserve the
1373 * crash'ed kernel's memory contents except reserved dump area (permanent
1374 * reservation) and reserved ranges used by F/W. The released memory will
1375 * be available for general use.
1376 */
1377static void fadump_release_memory(u64 begin, u64 end)
1378{
1379	u64 ra_start, ra_end, tstart;
1380	int i, ret;
1381
1382	ra_start = fw_dump.reserve_dump_area_start;
1383	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1384
1385	/*
1386	 * If reserved ranges array limit is hit, overwrite the last reserved
1387	 * memory range with reserved dump area to ensure it is excluded from
1388	 * the memory being released (reused for next FADump registration).
1389	 */
1390	if (reserved_mrange_info.mem_range_cnt ==
1391	    reserved_mrange_info.max_mem_ranges)
1392		reserved_mrange_info.mem_range_cnt--;
1393
1394	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1395	if (ret != 0)
1396		return;
1397
1398	/* Get the reserved ranges list in order first. */
1399	sort_and_merge_mem_ranges(&reserved_mrange_info);
1400
1401	/* Exclude reserved ranges and release remaining memory */
1402	tstart = begin;
1403	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1404		ra_start = reserved_mrange_info.mem_ranges[i].base;
1405		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1406
1407		if (tstart >= ra_end)
1408			continue;
1409
1410		if (tstart < ra_start)
1411			fadump_release_reserved_area(tstart, ra_start);
1412		tstart = ra_end;
1413	}
1414
1415	if (tstart < end)
1416		fadump_release_reserved_area(tstart, end);
1417}
1418
1419static void fadump_invalidate_release_mem(void)
1420{
 
 
 
1421	mutex_lock(&fadump_mutex);
1422	if (!fw_dump.dump_active) {
1423		mutex_unlock(&fadump_mutex);
1424		return;
1425	}
1426
 
1427	fadump_cleanup();
1428	mutex_unlock(&fadump_mutex);
1429
1430	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1431	fadump_free_cpu_notes_buf();
1432
1433	/*
1434	 * Setup kernel metadata and initialize the kernel dump
1435	 * memory structure for FADump re-registration.
1436	 */
1437	if (fw_dump.ops->fadump_setup_metadata &&
1438	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1439		pr_warn("Failed to setup kernel metadata!\n");
1440	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1441}
1442
1443static ssize_t release_mem_store(struct kobject *kobj,
1444				 struct kobj_attribute *attr,
1445				 const char *buf, size_t count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446{
1447	int input = -1;
1448
1449	if (!fw_dump.dump_active)
1450		return -EPERM;
1451
1452	if (kstrtoint(buf, 0, &input))
1453		return -EINVAL;
1454
1455	if (input == 1) {
1456		/*
1457		 * Take away the '/proc/vmcore'. We are releasing the dump
1458		 * memory, hence it will not be valid anymore.
1459		 */
1460#ifdef CONFIG_PROC_VMCORE
1461		vmcore_cleanup();
1462#endif
1463		fadump_invalidate_release_mem();
1464
1465	} else
1466		return -EINVAL;
1467	return count;
1468}
1469
1470/* Release the reserved memory and disable the FADump */
1471static void __init unregister_fadump(void)
1472{
1473	fadump_cleanup();
1474	fadump_release_memory(fw_dump.reserve_dump_area_start,
1475			      fw_dump.reserve_dump_area_size);
1476	fw_dump.fadump_enabled = 0;
1477	kobject_put(fadump_kobj);
1478}
1479
1480static ssize_t enabled_show(struct kobject *kobj,
1481			    struct kobj_attribute *attr,
1482			    char *buf)
1483{
1484	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1485}
1486
1487static ssize_t mem_reserved_show(struct kobject *kobj,
1488				 struct kobj_attribute *attr,
1489				 char *buf)
1490{
1491	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1492}
1493
1494static ssize_t registered_show(struct kobject *kobj,
1495			       struct kobj_attribute *attr,
1496			       char *buf)
1497{
1498	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1499}
1500
1501static ssize_t registered_store(struct kobject *kobj,
1502				struct kobj_attribute *attr,
1503				const char *buf, size_t count)
1504{
1505	int ret = 0;
1506	int input = -1;
1507
1508	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1509		return -EPERM;
1510
1511	if (kstrtoint(buf, 0, &input))
1512		return -EINVAL;
1513
1514	mutex_lock(&fadump_mutex);
1515
1516	switch (input) {
1517	case 0:
1518		if (fw_dump.dump_registered == 0) {
1519			goto unlock_out;
1520		}
1521
1522		/* Un-register Firmware-assisted dump */
1523		pr_debug("Un-register firmware-assisted dump\n");
1524		fw_dump.ops->fadump_unregister(&fw_dump);
1525		break;
1526	case 1:
1527		if (fw_dump.dump_registered == 1) {
1528			/* Un-register Firmware-assisted dump */
1529			fw_dump.ops->fadump_unregister(&fw_dump);
1530		}
1531		/* Register Firmware-assisted dump */
1532		ret = register_fadump();
1533		break;
1534	default:
1535		ret = -EINVAL;
1536		break;
1537	}
1538
1539unlock_out:
1540	mutex_unlock(&fadump_mutex);
1541	return ret < 0 ? ret : count;
1542}
1543
1544static int fadump_region_show(struct seq_file *m, void *private)
1545{
 
 
1546	if (!fw_dump.fadump_enabled)
1547		return 0;
1548
1549	mutex_lock(&fadump_mutex);
1550	fw_dump.ops->fadump_region_show(&fw_dump, m);
1551	mutex_unlock(&fadump_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1552	return 0;
1553}
1554
1555static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1556static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1557static struct kobj_attribute register_attr = __ATTR_RW(registered);
1558static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1559
1560static struct attribute *fadump_attrs[] = {
1561	&enable_attr.attr,
1562	&register_attr.attr,
1563	&mem_reserved_attr.attr,
1564	NULL,
 
 
 
 
 
 
 
 
 
 
1565};
1566
1567ATTRIBUTE_GROUPS(fadump);
1568
1569DEFINE_SHOW_ATTRIBUTE(fadump_region);
1570
1571static void __init fadump_init_files(void)
1572{
 
1573	int rc = 0;
1574
1575	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1576	if (!fadump_kobj) {
1577		pr_err("failed to create fadump kobject\n");
1578		return;
1579	}
1580
1581	debugfs_create_file("fadump_region", 0444, arch_debugfs_dir, NULL,
1582			    &fadump_region_fops);
 
 
 
 
 
 
 
 
1583
1584	if (fw_dump.dump_active) {
1585		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1586		if (rc)
1587			pr_err("unable to create release_mem sysfs file (%d)\n",
1588			       rc);
1589	}
1590
1591	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1592	if (rc) {
1593		pr_err("sysfs group creation failed (%d), unregistering FADump",
1594		       rc);
1595		unregister_fadump();
1596		return;
1597	}
1598
1599	/*
1600	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1601	 * create symlink at old location to maintain backward compatibility.
1602	 *
1603	 *      - fadump_enabled -> fadump/enabled
1604	 *      - fadump_registered -> fadump/registered
1605	 *      - fadump_release_mem -> fadump/release_mem
1606	 */
1607	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1608						  "enabled", "fadump_enabled");
1609	if (rc) {
1610		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1611		return;
1612	}
1613
1614	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1615						  "registered",
1616						  "fadump_registered");
1617	if (rc) {
1618		pr_err("unable to create fadump_registered symlink (%d)", rc);
1619		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1620		return;
1621	}
1622
1623	if (fw_dump.dump_active) {
1624		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1625							  fadump_kobj,
1626							  "release_mem",
1627							  "fadump_release_mem");
1628		if (rc)
1629			pr_err("unable to create fadump_release_mem symlink (%d)",
1630			       rc);
1631	}
1632	return;
1633}
1634
1635/*
1636 * Prepare for firmware-assisted dump.
1637 */
1638int __init setup_fadump(void)
1639{
1640	if (!fw_dump.fadump_supported)
1641		return 0;
1642
1643	fadump_init_files();
 
 
 
 
 
1644	fadump_show_config();
1645
1646	if (!fw_dump.fadump_enabled)
1647		return 1;
1648
1649	/*
1650	 * If dump data is available then see if it is valid and prepare for
1651	 * saving it to the disk.
1652	 */
1653	if (fw_dump.dump_active) {
1654		/*
1655		 * if dump process fails then invalidate the registration
1656		 * and release memory before proceeding for re-registration.
1657		 */
1658		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1659			fadump_invalidate_release_mem();
1660	}
1661	/* Initialize the kernel dump memory structure and register with f/w */
1662	else if (fw_dump.reserve_dump_area_size) {
1663		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1664		register_fadump();
1665	}
1666
1667	/*
1668	 * In case of panic, fadump is triggered via ppc_panic_event()
1669	 * panic notifier. Setting crash_kexec_post_notifiers to 'true'
1670	 * lets panic() function take crash friendly path before panic
1671	 * notifiers are invoked.
1672	 */
1673	crash_kexec_post_notifiers = true;
1674
1675	return 1;
1676}
1677/*
1678 * Use subsys_initcall_sync() here because there is dependency with
1679 * crash_save_vmcoreinfo_init(), which must run first to ensure vmcoreinfo initialization
1680 * is done before registering with f/w.
1681 */
1682subsys_initcall_sync(setup_fadump);
1683#else /* !CONFIG_PRESERVE_FA_DUMP */
1684
1685/* Scan the Firmware Assisted dump configuration details. */
1686int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1687				      int depth, void *data)
1688{
1689	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1690		return 0;
1691
1692	opal_fadump_dt_scan(&fw_dump, node);
1693	return 1;
1694}
1695
1696/*
1697 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1698 * preserve crash data. The subsequent memory preserving kernel boot
1699 * is likely to process this crash data.
1700 */
1701int __init fadump_reserve_mem(void)
1702{
1703	if (fw_dump.dump_active) {
1704		/*
1705		 * If last boot has crashed then reserve all the memory
1706		 * above boot memory to preserve crash data.
1707		 */
1708		pr_info("Preserving crash data for processing in next boot.\n");
1709		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1710	} else
1711		pr_debug("FADump-aware kernel..\n");
1712
1713	return 1;
1714}
1715#endif /* CONFIG_PRESERVE_FA_DUMP */
1716
1717/* Preserve everything above the base address */
1718static void __init fadump_reserve_crash_area(u64 base)
1719{
1720	u64 i, mstart, mend, msize;
1721
1722	for_each_mem_range(i, &mstart, &mend) {
1723		msize  = mend - mstart;
1724
1725		if ((mstart + msize) < base)
1726			continue;
1727
1728		if (mstart < base) {
1729			msize -= (base - mstart);
1730			mstart = base;
1731		}
1732
1733		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1734			(msize >> 20), mstart);
1735		memblock_reserve(mstart, msize);
1736	}
1737}
1738
1739unsigned long __init arch_reserved_kernel_pages(void)
1740{
1741	return memblock_reserved_size() / PAGE_SIZE;
1742}