Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/seq_file.h>
  34#include <linux/crash_dump.h>
  35#include <linux/kobject.h>
  36#include <linux/sysfs.h>
 
 
 
  37
  38#include <asm/debugfs.h>
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
 
  43#include <asm/setup.h>
 
 
 
 
 
 
 
 
 
  44
  45static struct fw_dump fw_dump;
  46static struct fadump_mem_struct fdm;
  47static const struct fadump_mem_struct *fdm_active;
  48
 
 
 
 
 
 
 
  49static DEFINE_MUTEX(fadump_mutex);
  50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  51int crash_mem_ranges;
  52
  53/* Scan the Firmware Assisted dump configuration details. */
  54int __init early_init_dt_scan_fw_dump(unsigned long node,
  55			const char *uname, int depth, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56{
  57	const __be32 *sections;
  58	int i, num_sections;
  59	int size;
  60	const __be32 *token;
  61
  62	if (depth != 1 || strcmp(uname, "rtas") != 0)
  63		return 0;
  64
  65	/*
  66	 * Check if Firmware Assisted dump is supported. if yes, check
  67	 * if dump has been initiated on last reboot.
  68	 */
  69	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  70	if (!token)
  71		return 1;
  72
  73	fw_dump.fadump_supported = 1;
  74	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76	/*
  77	 * The 'ibm,kernel-dump' rtas node is present only if there is
  78	 * dump data waiting for us.
  79	 */
  80	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  81	if (fdm_active)
  82		fw_dump.dump_active = 1;
  83
  84	/* Get the sizes required to store dump data for the firmware provided
  85	 * dump sections.
  86	 * For each dump section type supported, a 32bit cell which defines
  87	 * the ID of a supported section followed by two 32 bit cells which
  88	 * gives teh size of the section in bytes.
  89	 */
  90	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  91					&size);
 
 
 
 
 
 
 
 
  92
  93	if (!sections)
  94		return 1;
 
 
 
 
 
 
  95
  96	num_sections = size / (3 * sizeof(u32));
 
  97
  98	for (i = 0; i < num_sections; i++, sections += 3) {
  99		u32 type = (u32)of_read_number(sections, 1);
 
 
 100
 101		switch (type) {
 102		case FADUMP_CPU_STATE_DATA:
 103			fw_dump.cpu_state_data_size =
 104					of_read_ulong(&sections[1], 2);
 105			break;
 106		case FADUMP_HPTE_REGION:
 107			fw_dump.hpte_region_size =
 108					of_read_ulong(&sections[1], 2);
 109			break;
 110		}
 111	}
 112
 113	return 1;
 114}
 115
 116/*
 117 * If fadump is registered, check if the memory provided
 118 * falls within boot memory area.
 119 */
 120int is_fadump_boot_memory_area(u64 addr, ulong size)
 121{
 
 
 122	if (!fw_dump.dump_registered)
 123		return 0;
 124
 125	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 
 
 
 
 
 
 
 
 126}
 127
 128int should_fadump_crash(void)
 129{
 130	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 131		return 0;
 132	return 1;
 133}
 134
 135int is_fadump_active(void)
 136{
 137	return fw_dump.dump_active;
 138}
 139
 140/*
 141 * Returns 1, if there are no holes in boot memory area,
 142 * 0 otherwise.
 143 */
 144static int is_boot_memory_area_contiguous(void)
 145{
 146	struct memblock_region *reg;
 147	unsigned long tstart, tend;
 148	unsigned long start_pfn = PHYS_PFN(RMA_START);
 149	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 150	unsigned int ret = 0;
 151
 152	for_each_memblock(memory, reg) {
 153		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 154		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 155		if (tstart < tend) {
 156			/* Memory hole from start_pfn to tstart */
 157			if (tstart > start_pfn)
 158				break;
 159
 160			if (tend == end_pfn) {
 161				ret = 1;
 162				break;
 163			}
 164
 165			start_pfn = tend + 1;
 166		}
 167	}
 168
 169	return ret;
 170}
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/* Print firmware assisted dump configurations for debugging purpose. */
 173static void fadump_show_config(void)
 174{
 
 
 175	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 176			(fw_dump.fadump_supported ? "present" : "no support"));
 177
 178	if (!fw_dump.fadump_supported)
 179		return;
 180
 181	pr_debug("Fadump enabled    : %s\n",
 182				(fw_dump.fadump_enabled ? "yes" : "no"));
 183	pr_debug("Dump Active       : %s\n",
 184				(fw_dump.dump_active ? "yes" : "no"));
 185	pr_debug("Dump section sizes:\n");
 186	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 187	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 188	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 189}
 190
 191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 192				unsigned long addr)
 193{
 194	if (!fdm)
 195		return 0;
 196
 197	memset(fdm, 0, sizeof(struct fadump_mem_struct));
 198	addr = addr & PAGE_MASK;
 199
 200	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 201	fdm->header.dump_num_sections = cpu_to_be16(3);
 202	fdm->header.dump_status_flag = 0;
 203	fdm->header.offset_first_dump_section =
 204		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 205
 206	/*
 207	 * Fields for disk dump option.
 208	 * We are not using disk dump option, hence set these fields to 0.
 209	 */
 210	fdm->header.dd_block_size = 0;
 211	fdm->header.dd_block_offset = 0;
 212	fdm->header.dd_num_blocks = 0;
 213	fdm->header.dd_offset_disk_path = 0;
 214
 215	/* set 0 to disable an automatic dump-reboot. */
 216	fdm->header.max_time_auto = 0;
 217
 218	/* Kernel dump sections */
 219	/* cpu state data section. */
 220	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 221	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 222	fdm->cpu_state_data.source_address = 0;
 223	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 224	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 225	addr += fw_dump.cpu_state_data_size;
 226
 227	/* hpte region section */
 228	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 229	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 230	fdm->hpte_region.source_address = 0;
 231	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 232	fdm->hpte_region.destination_address = cpu_to_be64(addr);
 233	addr += fw_dump.hpte_region_size;
 234
 235	/* RMA region section */
 236	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 237	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 238	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 239	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 240	fdm->rmr_region.destination_address = cpu_to_be64(addr);
 241	addr += fw_dump.boot_memory_size;
 242
 243	return addr;
 244}
 245
 246/**
 247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 248 *
 249 * Function to find the largest memory size we need to reserve during early
 250 * boot process. This will be the size of the memory that is required for a
 251 * kernel to boot successfully.
 252 *
 253 * This function has been taken from phyp-assisted dump feature implementation.
 254 *
 255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 256 *
 257 * TODO: Come up with better approach to find out more accurate memory size
 258 * that is required for a kernel to boot successfully.
 259 *
 260 */
 261static inline unsigned long fadump_calculate_reserve_size(void)
 262{
 
 263	int ret;
 264	unsigned long long base, size;
 265
 266	if (fw_dump.reserve_bootvar)
 267		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 268
 269	/*
 270	 * Check if the size is specified through crashkernel= cmdline
 271	 * option. If yes, then use that but ignore base as fadump reserves
 272	 * memory at a predefined offset.
 273	 */
 274	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 275				&size, &base);
 276	if (ret == 0 && size > 0) {
 277		unsigned long max_size;
 278
 279		if (fw_dump.reserve_bootvar)
 280			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 281
 282		fw_dump.reserve_bootvar = (unsigned long)size;
 283
 284		/*
 285		 * Adjust if the boot memory size specified is above
 286		 * the upper limit.
 287		 */
 288		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 289		if (fw_dump.reserve_bootvar > max_size) {
 290			fw_dump.reserve_bootvar = max_size;
 291			pr_info("Adjusted boot memory size to %luMB\n",
 292				(fw_dump.reserve_bootvar >> 20));
 293		}
 294
 295		return fw_dump.reserve_bootvar;
 296	} else if (fw_dump.reserve_bootvar) {
 297		/*
 298		 * 'fadump_reserve_mem=' is being used to reserve memory
 299		 * for firmware-assisted dump.
 300		 */
 301		return fw_dump.reserve_bootvar;
 302	}
 303
 304	/* divide by 20 to get 5% of value */
 305	size = memblock_phys_mem_size() / 20;
 306
 307	/* round it down in multiples of 256 */
 308	size = size & ~0x0FFFFFFFUL;
 309
 310	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 311	if (memory_limit && size > memory_limit)
 312		size = memory_limit;
 313
 314	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 
 315}
 316
 317/*
 318 * Calculate the total memory size required to be reserved for
 319 * firmware-assisted dump registration.
 320 */
 321static unsigned long get_fadump_area_size(void)
 322{
 323	unsigned long size = 0;
 324
 325	size += fw_dump.cpu_state_data_size;
 326	size += fw_dump.hpte_region_size;
 327	size += fw_dump.boot_memory_size;
 328	size += sizeof(struct fadump_crash_info_header);
 329	size += sizeof(struct elfhdr); /* ELF core header.*/
 330	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 331	/* Program headers for crash memory regions. */
 332	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 333
 334	size = PAGE_ALIGN(size);
 
 
 
 
 335	return size;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338int __init fadump_reserve_mem(void)
 339{
 340	unsigned long base, size, memory_boundary;
 
 341
 342	if (!fw_dump.fadump_enabled)
 343		return 0;
 344
 345	if (!fw_dump.fadump_supported) {
 346		printk(KERN_INFO "Firmware-assisted dump is not supported on"
 347				" this hardware\n");
 348		fw_dump.fadump_enabled = 0;
 349		return 0;
 350	}
 
 351	/*
 352	 * Initialize boot memory size
 353	 * If dump is active then we have already calculated the size during
 354	 * first kernel.
 355	 */
 356	if (fdm_active)
 357		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 358	else
 359		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360
 361	/*
 362	 * Calculate the memory boundary.
 363	 * If memory_limit is less than actual memory boundary then reserve
 364	 * the memory for fadump beyond the memory_limit and adjust the
 365	 * memory_limit accordingly, so that the running kernel can run with
 366	 * specified memory_limit.
 367	 */
 368	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 369		size = get_fadump_area_size();
 370		if ((memory_limit + size) < memblock_end_of_DRAM())
 371			memory_limit += size;
 372		else
 373			memory_limit = memblock_end_of_DRAM();
 374		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 375				" dump, now %#016llx\n", memory_limit);
 376	}
 377	if (memory_limit)
 378		memory_boundary = memory_limit;
 379	else
 380		memory_boundary = memblock_end_of_DRAM();
 381
 
 
 
 382	if (fw_dump.dump_active) {
 383		printk(KERN_INFO "Firmware-assisted dump is active.\n");
 
 
 
 
 
 
 
 
 
 384		/*
 385		 * If last boot has crashed then reserve all the memory
 386		 * above boot_memory_size so that we don't touch it until
 387		 * dump is written to disk by userspace tool. This memory
 388		 * will be released for general use once the dump is saved.
 389		 */
 390		base = fw_dump.boot_memory_size;
 391		size = memory_boundary - base;
 392		memblock_reserve(base, size);
 393		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 394				"for saving crash dump\n",
 395				(unsigned long)(size >> 20),
 396				(unsigned long)(base >> 20));
 397
 398		fw_dump.fadumphdr_addr =
 399				be64_to_cpu(fdm_active->rmr_region.destination_address) +
 400				be64_to_cpu(fdm_active->rmr_region.source_len);
 401		pr_debug("fadumphdr_addr = %p\n",
 402				(void *) fw_dump.fadumphdr_addr);
 403	} else {
 404		size = get_fadump_area_size();
 405
 
 
 
 
 406		/*
 407		 * Reserve memory at an offset closer to bottom of the RAM to
 408		 * minimize the impact of memory hot-remove operation. We can't
 409		 * use memblock_find_in_range() here since it doesn't allocate
 410		 * from bottom to top.
 411		 */
 412		for (base = fw_dump.boot_memory_size;
 413		     base <= (memory_boundary - size);
 414		     base += size) {
 415			if (memblock_is_region_memory(base, size) &&
 416			    !memblock_is_region_reserved(base, size))
 417				break;
 418		}
 419		if ((base > (memory_boundary - size)) ||
 420		    memblock_reserve(base, size)) {
 421			pr_err("Failed to reserve memory\n");
 422			return 0;
 
 
 
 
 
 
 
 
 
 423		}
 424
 425		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 426			"assisted dump (System RAM: %ldMB)\n",
 427			(unsigned long)(size >> 20),
 428			(unsigned long)(base >> 20),
 429			(unsigned long)(memblock_phys_mem_size() >> 20));
 430	}
 431
 432	fw_dump.reserve_dump_area_start = base;
 433	fw_dump.reserve_dump_area_size = size;
 434	return 1;
 435}
 436
 437unsigned long __init arch_reserved_kernel_pages(void)
 438{
 439	return memblock_reserved_size() / PAGE_SIZE;
 
 440}
 441
 442/* Look for fadump= cmdline option. */
 443static int __init early_fadump_param(char *p)
 444{
 445	if (!p)
 446		return 1;
 447
 448	if (strncmp(p, "on", 2) == 0)
 449		fw_dump.fadump_enabled = 1;
 450	else if (strncmp(p, "off", 3) == 0)
 451		fw_dump.fadump_enabled = 0;
 
 
 
 
 452
 453	return 0;
 454}
 455early_param("fadump", early_fadump_param);
 456
 457/*
 458 * Look for fadump_reserve_mem= cmdline option
 459 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 460 *       the sooner 'crashkernel=' parameter is accustomed to.
 461 */
 462static int __init early_fadump_reserve_mem(char *p)
 463{
 464	if (p)
 465		fw_dump.reserve_bootvar = memparse(p, &p);
 466	return 0;
 467}
 468early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 469
 470static int register_fw_dump(struct fadump_mem_struct *fdm)
 471{
 472	int rc, err;
 473	unsigned int wait_time;
 474
 475	pr_debug("Registering for firmware-assisted kernel dump...\n");
 476
 477	/* TODO: Add upper time limit for the delay */
 478	do {
 479		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 480			FADUMP_REGISTER, fdm,
 481			sizeof(struct fadump_mem_struct));
 482
 483		wait_time = rtas_busy_delay_time(rc);
 484		if (wait_time)
 485			mdelay(wait_time);
 486
 487	} while (wait_time);
 488
 489	err = -EIO;
 490	switch (rc) {
 491	default:
 492		pr_err("Failed to register. Unknown Error(%d).\n", rc);
 493		break;
 494	case -1:
 495		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 496			" dump. Hardware Error(%d).\n", rc);
 497		break;
 498	case -3:
 499		if (!is_boot_memory_area_contiguous())
 500			pr_err("Can't have holes in boot memory area while "
 501			       "registering fadump\n");
 502
 503		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 504			" dump. Parameter Error(%d).\n", rc);
 505		err = -EINVAL;
 506		break;
 507	case -9:
 508		printk(KERN_ERR "firmware-assisted kernel dump is already "
 509			" registered.");
 510		fw_dump.dump_registered = 1;
 511		err = -EEXIST;
 512		break;
 513	case 0:
 514		printk(KERN_INFO "firmware-assisted kernel dump registration"
 515			" is successful\n");
 516		fw_dump.dump_registered = 1;
 517		err = 0;
 518		break;
 519	}
 520	return err;
 521}
 522
 523void crash_fadump(struct pt_regs *regs, const char *str)
 524{
 
 525	struct fadump_crash_info_header *fdh = NULL;
 526	int old_cpu, this_cpu;
 
 
 527
 528	if (!should_fadump_crash())
 529		return;
 530
 531	/*
 532	 * old_cpu == -1 means this is the first CPU which has come here,
 533	 * go ahead and trigger fadump.
 534	 *
 535	 * old_cpu != -1 means some other CPU has already on it's way
 536	 * to trigger fadump, just keep looping here.
 537	 */
 538	this_cpu = smp_processor_id();
 539	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 540
 541	if (old_cpu != -1) {
 
 
 542		/*
 543		 * We can't loop here indefinitely. Wait as long as fadump
 544		 * is in force. If we race with fadump un-registration this
 545		 * loop will break and then we go down to normal panic path
 546		 * and reboot. If fadump is in force the first crashing
 547		 * cpu will definitely trigger fadump.
 548		 */
 549		while (fw_dump.dump_registered)
 550			cpu_relax();
 551		return;
 552	}
 553
 554	fdh = __va(fw_dump.fadumphdr_addr);
 555	fdh->crashing_cpu = crashing_cpu;
 556	crash_save_vmcoreinfo();
 557
 558	if (regs)
 559		fdh->regs = *regs;
 560	else
 561		ppc_save_regs(&fdh->regs);
 562
 563	fdh->online_mask = *cpu_online_mask;
 564
 565	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
 566	rtas_os_term((char *)str);
 567}
 568
 569#define GPR_MASK	0xffffff0000000000
 570static inline int fadump_gpr_index(u64 id)
 571{
 572	int i = -1;
 573	char str[3];
 574
 575	if ((id & GPR_MASK) == REG_ID("GPR")) {
 576		/* get the digits at the end */
 577		id &= ~GPR_MASK;
 578		id >>= 24;
 579		str[2] = '\0';
 580		str[1] = id & 0xff;
 581		str[0] = (id >> 8) & 0xff;
 582		sscanf(str, "%d", &i);
 583		if (i > 31)
 584			i = -1;
 585	}
 586	return i;
 587}
 588
 589static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 590								u64 reg_val)
 591{
 592	int i;
 593
 594	i = fadump_gpr_index(reg_id);
 595	if (i >= 0)
 596		regs->gpr[i] = (unsigned long)reg_val;
 597	else if (reg_id == REG_ID("NIA"))
 598		regs->nip = (unsigned long)reg_val;
 599	else if (reg_id == REG_ID("MSR"))
 600		regs->msr = (unsigned long)reg_val;
 601	else if (reg_id == REG_ID("CTR"))
 602		regs->ctr = (unsigned long)reg_val;
 603	else if (reg_id == REG_ID("LR"))
 604		regs->link = (unsigned long)reg_val;
 605	else if (reg_id == REG_ID("XER"))
 606		regs->xer = (unsigned long)reg_val;
 607	else if (reg_id == REG_ID("CR"))
 608		regs->ccr = (unsigned long)reg_val;
 609	else if (reg_id == REG_ID("DAR"))
 610		regs->dar = (unsigned long)reg_val;
 611	else if (reg_id == REG_ID("DSISR"))
 612		regs->dsisr = (unsigned long)reg_val;
 613}
 614
 615static struct fadump_reg_entry*
 616fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 617{
 618	memset(regs, 0, sizeof(struct pt_regs));
 619
 620	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 621		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 622					be64_to_cpu(reg_entry->reg_value));
 623		reg_entry++;
 624	}
 625	reg_entry++;
 626	return reg_entry;
 627}
 628
 629static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 630{
 631	struct elf_prstatus prstatus;
 632
 633	memset(&prstatus, 0, sizeof(prstatus));
 634	/*
 635	 * FIXME: How do i get PID? Do I really need it?
 636	 * prstatus.pr_pid = ????
 637	 */
 638	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 639	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 640			      &prstatus, sizeof(prstatus));
 641	return buf;
 642}
 643
 644static void fadump_update_elfcore_header(char *bufp)
 645{
 646	struct elfhdr *elf;
 647	struct elf_phdr *phdr;
 648
 649	elf = (struct elfhdr *)bufp;
 650	bufp += sizeof(struct elfhdr);
 651
 652	/* First note is a place holder for cpu notes info. */
 653	phdr = (struct elf_phdr *)bufp;
 654
 655	if (phdr->p_type == PT_NOTE) {
 656		phdr->p_paddr = fw_dump.cpu_notes_buf;
 657		phdr->p_offset	= phdr->p_paddr;
 658		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 659		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 660	}
 661	return;
 662}
 663
 664static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 665{
 666	void *vaddr;
 667	struct page *page;
 668	unsigned long order, count, i;
 669
 670	order = get_order(size);
 671	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 672	if (!vaddr)
 673		return NULL;
 674
 675	count = 1 << order;
 676	page = virt_to_page(vaddr);
 677	for (i = 0; i < count; i++)
 678		SetPageReserved(page + i);
 679	return vaddr;
 680}
 681
 682static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 683{
 684	struct page *page;
 685	unsigned long order, count, i;
 686
 687	order = get_order(size);
 688	count = 1 << order;
 689	page = virt_to_page(vaddr);
 690	for (i = 0; i < count; i++)
 691		ClearPageReserved(page + i);
 692	__free_pages(page, order);
 693}
 694
 695/*
 696 * Read CPU state dump data and convert it into ELF notes.
 697 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 698 * used to access the data to allow for additional fields to be added without
 699 * affecting compatibility. Each list of registers for a CPU starts with
 700 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 701 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 702 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 703 * of register value. For more details refer to PAPR document.
 704 *
 705 * Only for the crashing cpu we ignore the CPU dump data and get exact
 706 * state from fadump crash info structure populated by first kernel at the
 707 * time of crash.
 708 */
 709static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 710{
 711	struct fadump_reg_save_area_header *reg_header;
 712	struct fadump_reg_entry *reg_entry;
 713	struct fadump_crash_info_header *fdh = NULL;
 714	void *vaddr;
 715	unsigned long addr;
 716	u32 num_cpus, *note_buf;
 717	struct pt_regs regs;
 718	int i, rc = 0, cpu = 0;
 719
 720	if (!fdm->cpu_state_data.bytes_dumped)
 721		return -EINVAL;
 722
 723	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 724	vaddr = __va(addr);
 725
 726	reg_header = vaddr;
 727	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 728		printk(KERN_ERR "Unable to read register save area.\n");
 729		return -ENOENT;
 730	}
 731	pr_debug("--------CPU State Data------------\n");
 732	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 733	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 734
 735	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 736	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 737	pr_debug("NumCpus     : %u\n", num_cpus);
 738	vaddr += sizeof(u32);
 739	reg_entry = (struct fadump_reg_entry *)vaddr;
 740
 741	/* Allocate buffer to hold cpu crash notes. */
 742	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 743	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 744	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 745	if (!note_buf) {
 746		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 747			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 
 748		return -ENOMEM;
 749	}
 750	fw_dump.cpu_notes_buf = __pa(note_buf);
 751
 752	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 753			(num_cpus * sizeof(note_buf_t)), note_buf);
 754
 755	if (fw_dump.fadumphdr_addr)
 756		fdh = __va(fw_dump.fadumphdr_addr);
 757
 758	for (i = 0; i < num_cpus; i++) {
 759		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 760			printk(KERN_ERR "Unable to read CPU state data\n");
 761			rc = -ENOENT;
 762			goto error_out;
 763		}
 764		/* Lower 4 bytes of reg_value contains logical cpu id */
 765		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 766		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
 767			SKIP_TO_NEXT_CPU(reg_entry);
 768			continue;
 769		}
 770		pr_debug("Reading register data for cpu %d...\n", cpu);
 771		if (fdh && fdh->crashing_cpu == cpu) {
 772			regs = fdh->regs;
 773			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 774			SKIP_TO_NEXT_CPU(reg_entry);
 775		} else {
 776			reg_entry++;
 777			reg_entry = fadump_read_registers(reg_entry, &regs);
 778			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 779		}
 780	}
 781	final_note(note_buf);
 782
 783	if (fdh) {
 784		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 785							fdh->elfcorehdr_addr);
 786		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 787	}
 788	return 0;
 
 789
 790error_out:
 791	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 792					fw_dump.cpu_notes_buf_size);
 793	fw_dump.cpu_notes_buf = 0;
 
 
 
 
 794	fw_dump.cpu_notes_buf_size = 0;
 795	return rc;
 
 
 
 
 
 
 
 796
 
 
 
 797}
 798
 799/*
 800 * Validate and process the dump data stored by firmware before exporting
 801 * it through '/proc/vmcore'.
 802 */
 803static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 804{
 805	struct fadump_crash_info_header *fdh;
 806	int rc = 0;
 807
 808	if (!fdm_active || !fw_dump.fadumphdr_addr)
 809		return -EINVAL;
 810
 811	/* Check if the dump data is valid. */
 812	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 813			(fdm_active->cpu_state_data.error_flags != 0) ||
 814			(fdm_active->rmr_region.error_flags != 0)) {
 815		printk(KERN_ERR "Dump taken by platform is not valid\n");
 816		return -EINVAL;
 817	}
 818	if ((fdm_active->rmr_region.bytes_dumped !=
 819			fdm_active->rmr_region.source_len) ||
 820			!fdm_active->cpu_state_data.bytes_dumped) {
 821		printk(KERN_ERR "Dump taken by platform is incomplete\n");
 822		return -EINVAL;
 823	}
 824
 825	/* Validate the fadump crash info header */
 826	fdh = __va(fw_dump.fadumphdr_addr);
 827	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 828		printk(KERN_ERR "Crash info header is not valid.\n");
 829		return -EINVAL;
 830	}
 
 
 
 
 
 
 
 831
 832	rc = fadump_build_cpu_notes(fdm_active);
 833	if (rc)
 834		return rc;
 835
 836	/*
 837	 * We are done validating dump info and elfcore header is now ready
 838	 * to be exported. set elfcorehdr_addr so that vmcore module will
 839	 * export the elfcore header through '/proc/vmcore'.
 840	 */
 841	elfcorehdr_addr = fdh->elfcorehdr_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842
 843	return 0;
 844}
 
 845
 846static inline void fadump_add_crash_memory(unsigned long long base,
 847					unsigned long long end)
 848{
 849	if (base == end)
 850		return;
 
 
 
 851
 852	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 853		crash_mem_ranges, base, end - 1, (end - base));
 854	crash_memory_ranges[crash_mem_ranges].base = base;
 855	crash_memory_ranges[crash_mem_ranges].size = end - base;
 856	crash_mem_ranges++;
 857}
 858
 859static void fadump_exclude_reserved_area(unsigned long long start,
 860					unsigned long long end)
 861{
 862	unsigned long long ra_start, ra_end;
 
 863
 864	ra_start = fw_dump.reserve_dump_area_start;
 865	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 866
 867	if ((ra_start < end) && (ra_end > start)) {
 868		if ((start < ra_start) && (end > ra_end)) {
 869			fadump_add_crash_memory(start, ra_start);
 870			fadump_add_crash_memory(ra_end, end);
 
 
 
 
 
 871		} else if (start < ra_start) {
 872			fadump_add_crash_memory(start, ra_start);
 
 873		} else if (ra_end < end) {
 874			fadump_add_crash_memory(ra_end, end);
 
 875		}
 876	} else
 877		fadump_add_crash_memory(start, end);
 
 
 878}
 879
 880static int fadump_init_elfcore_header(char *bufp)
 881{
 882	struct elfhdr *elf;
 883
 884	elf = (struct elfhdr *) bufp;
 885	bufp += sizeof(struct elfhdr);
 886	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 887	elf->e_ident[EI_CLASS] = ELF_CLASS;
 888	elf->e_ident[EI_DATA] = ELF_DATA;
 889	elf->e_ident[EI_VERSION] = EV_CURRENT;
 890	elf->e_ident[EI_OSABI] = ELF_OSABI;
 891	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 892	elf->e_type = ET_CORE;
 893	elf->e_machine = ELF_ARCH;
 894	elf->e_version = EV_CURRENT;
 895	elf->e_entry = 0;
 896	elf->e_phoff = sizeof(struct elfhdr);
 897	elf->e_shoff = 0;
 898#if defined(_CALL_ELF)
 899	elf->e_flags = _CALL_ELF;
 900#else
 901	elf->e_flags = 0;
 902#endif
 903	elf->e_ehsize = sizeof(struct elfhdr);
 904	elf->e_phentsize = sizeof(struct elf_phdr);
 905	elf->e_phnum = 0;
 906	elf->e_shentsize = 0;
 907	elf->e_shnum = 0;
 908	elf->e_shstrndx = 0;
 909
 910	return 0;
 911}
 912
 913/*
 914 * Traverse through memblock structure and setup crash memory ranges. These
 915 * ranges will be used create PT_LOAD program headers in elfcore header.
 916 */
 917static void fadump_setup_crash_memory_ranges(void)
 918{
 919	struct memblock_region *reg;
 920	unsigned long long start, end;
 921
 922	pr_debug("Setup crash memory ranges.\n");
 923	crash_mem_ranges = 0;
 
 924	/*
 925	 * add the first memory chunk (RMA_START through boot_memory_size) as
 926	 * a separate memory chunk. The reason is, at the time crash firmware
 927	 * will move the content of this memory chunk to different location
 928	 * specified during fadump registration. We need to create a separate
 929	 * program header for this chunk with the correct offset.
 930	 */
 931	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 932
 933	for_each_memblock(memory, reg) {
 934		start = (unsigned long long)reg->base;
 935		end = start + (unsigned long long)reg->size;
 
 
 936
 
 937		/*
 938		 * skip the first memory chunk that is already added (RMA_START
 939		 * through boot_memory_size). This logic needs a relook if and
 940		 * when RMA_START changes to a non-zero value.
 941		 */
 942		BUILD_BUG_ON(RMA_START != 0);
 943		if (start < fw_dump.boot_memory_size) {
 944			if (end > fw_dump.boot_memory_size)
 945				start = fw_dump.boot_memory_size;
 946			else
 947				continue;
 948		}
 949
 950		/* add this range excluding the reserved dump area. */
 951		fadump_exclude_reserved_area(start, end);
 
 
 952	}
 
 
 953}
 954
 955/*
 956 * If the given physical address falls within the boot memory region then
 957 * return the relocated address that points to the dump region reserved
 958 * for saving initial boot memory contents.
 959 */
 960static inline unsigned long fadump_relocate(unsigned long paddr)
 961{
 962	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 963		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 964	else
 965		return paddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966}
 967
 968static int fadump_create_elfcore_headers(char *bufp)
 969{
 970	struct elfhdr *elf;
 971	struct elf_phdr *phdr;
 972	int i;
 
 973
 974	fadump_init_elfcore_header(bufp);
 975	elf = (struct elfhdr *)bufp;
 976	bufp += sizeof(struct elfhdr);
 977
 978	/*
 979	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 980	 * will be populated during second kernel boot after crash. Hence
 981	 * this PT_NOTE will always be the first elf note.
 982	 *
 983	 * NOTE: Any new ELF note addition should be placed after this note.
 984	 */
 985	phdr = (struct elf_phdr *)bufp;
 986	bufp += sizeof(struct elf_phdr);
 987	phdr->p_type = PT_NOTE;
 988	phdr->p_flags = 0;
 989	phdr->p_vaddr = 0;
 990	phdr->p_align = 0;
 991
 992	phdr->p_offset = 0;
 993	phdr->p_paddr = 0;
 994	phdr->p_filesz = 0;
 995	phdr->p_memsz = 0;
 996
 997	(elf->e_phnum)++;
 998
 999	/* setup ELF PT_NOTE for vmcoreinfo */
1000	phdr = (struct elf_phdr *)bufp;
1001	bufp += sizeof(struct elf_phdr);
1002	phdr->p_type	= PT_NOTE;
1003	phdr->p_flags	= 0;
1004	phdr->p_vaddr	= 0;
1005	phdr->p_align	= 0;
1006
1007	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1008	phdr->p_offset	= phdr->p_paddr;
1009	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1010
1011	/* Increment number of program headers. */
1012	(elf->e_phnum)++;
1013
1014	/* setup PT_LOAD sections. */
 
 
 
 
 
1015
1016	for (i = 0; i < crash_mem_ranges; i++) {
1017		unsigned long long mbase, msize;
1018		mbase = crash_memory_ranges[i].base;
1019		msize = crash_memory_ranges[i].size;
1020
1021		if (!msize)
1022			continue;
1023
1024		phdr = (struct elf_phdr *)bufp;
1025		bufp += sizeof(struct elf_phdr);
1026		phdr->p_type	= PT_LOAD;
1027		phdr->p_flags	= PF_R|PF_W|PF_X;
1028		phdr->p_offset	= mbase;
1029
1030		if (mbase == RMA_START) {
1031			/*
1032			 * The entire RMA region will be moved by firmware
1033			 * to the specified destination_address. Hence set
1034			 * the correct offset.
1035			 */
1036			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
 
 
 
 
1037		}
1038
1039		phdr->p_paddr = mbase;
1040		phdr->p_vaddr = (unsigned long)__va(mbase);
1041		phdr->p_filesz = msize;
1042		phdr->p_memsz = msize;
1043		phdr->p_align = 0;
1044
1045		/* Increment number of program headers. */
1046		(elf->e_phnum)++;
1047	}
1048	return 0;
1049}
1050
1051static unsigned long init_fadump_header(unsigned long addr)
1052{
1053	struct fadump_crash_info_header *fdh;
1054
1055	if (!addr)
1056		return 0;
1057
1058	fw_dump.fadumphdr_addr = addr;
1059	fdh = __va(addr);
1060	addr += sizeof(struct fadump_crash_info_header);
1061
1062	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1063	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1064	fdh->elfcorehdr_addr = addr;
1065	/* We will set the crashing cpu id in crash_fadump() during crash. */
1066	fdh->crashing_cpu = CPU_UNKNOWN;
1067
1068	return addr;
1069}
1070
1071static int register_fadump(void)
1072{
1073	unsigned long addr;
1074	void *vaddr;
 
1075
1076	/*
1077	 * If no memory is reserved then we can not register for firmware-
1078	 * assisted dump.
1079	 */
1080	if (!fw_dump.reserve_dump_area_size)
1081		return -ENODEV;
1082
1083	fadump_setup_crash_memory_ranges();
 
 
 
 
1084
1085	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1086	/* Initialize fadump crash info header. */
1087	addr = init_fadump_header(addr);
1088	vaddr = __va(addr);
1089
1090	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1091	fadump_create_elfcore_headers(vaddr);
1092
1093	/* register the future kernel dump with firmware. */
1094	return register_fw_dump(&fdm);
1095}
1096
1097static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1098{
1099	int rc = 0;
1100	unsigned int wait_time;
1101
1102	pr_debug("Un-register firmware-assisted dump\n");
1103
1104	/* TODO: Add upper time limit for the delay */
1105	do {
1106		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1107			FADUMP_UNREGISTER, fdm,
1108			sizeof(struct fadump_mem_struct));
1109
1110		wait_time = rtas_busy_delay_time(rc);
1111		if (wait_time)
1112			mdelay(wait_time);
1113	} while (wait_time);
1114
1115	if (rc) {
1116		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1117			" unexpected error(%d).\n", rc);
1118		return rc;
1119	}
1120	fw_dump.dump_registered = 0;
1121	return 0;
1122}
1123
1124static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1125{
1126	int rc = 0;
1127	unsigned int wait_time;
1128
1129	pr_debug("Invalidating firmware-assisted dump registration\n");
1130
1131	/* TODO: Add upper time limit for the delay */
1132	do {
1133		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1134			FADUMP_INVALIDATE, fdm,
1135			sizeof(struct fadump_mem_struct));
1136
1137		wait_time = rtas_busy_delay_time(rc);
1138		if (wait_time)
1139			mdelay(wait_time);
1140	} while (wait_time);
1141
1142	if (rc) {
1143		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1144		return rc;
1145	}
1146	fw_dump.dump_active = 0;
1147	fdm_active = NULL;
1148	return 0;
1149}
1150
1151void fadump_cleanup(void)
1152{
 
 
 
1153	/* Invalidate the registration only if dump is active. */
1154	if (fw_dump.dump_active) {
1155		init_fadump_mem_struct(&fdm,
1156			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1157		fadump_invalidate_dump(&fdm);
 
 
 
1158	}
 
 
 
1159}
1160
1161static void fadump_free_reserved_memory(unsigned long start_pfn,
1162					unsigned long end_pfn)
1163{
1164	unsigned long pfn;
1165	unsigned long time_limit = jiffies + HZ;
1166
1167	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1168		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1169
1170	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1171		free_reserved_page(pfn_to_page(pfn));
1172
1173		if (time_after(jiffies, time_limit)) {
1174			cond_resched();
1175			time_limit = jiffies + HZ;
1176		}
1177	}
1178}
1179
1180/*
1181 * Skip memory holes and free memory that was actually reserved.
1182 */
1183static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1184{
1185	struct memblock_region *reg;
1186	unsigned long tstart, tend;
1187	unsigned long start_pfn = PHYS_PFN(start);
1188	unsigned long end_pfn = PHYS_PFN(end);
1189
1190	for_each_memblock(memory, reg) {
1191		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1192		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 
 
 
1193		if (tstart < tend) {
1194			fadump_free_reserved_memory(tstart, tend);
1195
1196			if (tend == end_pfn)
1197				break;
1198
1199			start_pfn = tend + 1;
1200		}
1201	}
1202}
1203
1204/*
1205 * Release the memory that was reserved in early boot to preserve the memory
1206 * contents. The released memory will be available for general use.
1207 */
1208static void fadump_release_memory(unsigned long begin, unsigned long end)
1209{
1210	unsigned long ra_start, ra_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212	ra_start = fw_dump.reserve_dump_area_start;
1213	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1214
1215	/*
1216	 * exclude the dump reserve area. Will reuse it for next
1217	 * fadump registration.
 
1218	 */
1219	if (begin < ra_end && end > ra_start) {
1220		if (begin < ra_start)
1221			fadump_release_reserved_area(begin, ra_start);
1222		if (end > ra_end)
1223			fadump_release_reserved_area(ra_end, end);
1224	} else
1225		fadump_release_reserved_area(begin, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226}
1227
1228static void fadump_invalidate_release_mem(void)
1229{
1230	unsigned long reserved_area_start, reserved_area_end;
1231	unsigned long destination_address;
1232
1233	mutex_lock(&fadump_mutex);
1234	if (!fw_dump.dump_active) {
1235		mutex_unlock(&fadump_mutex);
1236		return;
1237	}
1238
1239	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1240	fadump_cleanup();
1241	mutex_unlock(&fadump_mutex);
1242
 
 
 
1243	/*
1244	 * Save the current reserved memory bounds we will require them
1245	 * later for releasing the memory for general use.
1246	 */
1247	reserved_area_start = fw_dump.reserve_dump_area_start;
1248	reserved_area_end = reserved_area_start +
1249			fw_dump.reserve_dump_area_size;
1250	/*
1251	 * Setup reserve_dump_area_start and its size so that we can
1252	 * reuse this reserved memory for Re-registration.
1253	 */
1254	fw_dump.reserve_dump_area_start = destination_address;
1255	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1256
1257	fadump_release_memory(reserved_area_start, reserved_area_end);
1258	if (fw_dump.cpu_notes_buf) {
1259		fadump_cpu_notes_buf_free(
1260				(unsigned long)__va(fw_dump.cpu_notes_buf),
1261				fw_dump.cpu_notes_buf_size);
1262		fw_dump.cpu_notes_buf = 0;
1263		fw_dump.cpu_notes_buf_size = 0;
1264	}
1265	/* Initialize the kernel dump memory structure for FAD registration. */
1266	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1267}
1268
1269static ssize_t fadump_release_memory_store(struct kobject *kobj,
1270					struct kobj_attribute *attr,
1271					const char *buf, size_t count)
1272{
1273	int input = -1;
1274
1275	if (!fw_dump.dump_active)
1276		return -EPERM;
1277
1278	if (kstrtoint(buf, 0, &input))
1279		return -EINVAL;
1280
1281	if (input == 1) {
1282		/*
1283		 * Take away the '/proc/vmcore'. We are releasing the dump
1284		 * memory, hence it will not be valid anymore.
1285		 */
1286#ifdef CONFIG_PROC_VMCORE
1287		vmcore_cleanup();
1288#endif
1289		fadump_invalidate_release_mem();
1290
1291	} else
1292		return -EINVAL;
1293	return count;
1294}
1295
1296static ssize_t fadump_enabled_show(struct kobject *kobj,
1297					struct kobj_attribute *attr,
1298					char *buf)
 
 
 
 
 
 
 
 
 
 
1299{
1300	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1301}
1302
1303static ssize_t fadump_register_show(struct kobject *kobj,
1304					struct kobj_attribute *attr,
1305					char *buf)
 
 
 
 
 
 
 
1306{
1307	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1308}
1309
1310static ssize_t fadump_register_store(struct kobject *kobj,
1311					struct kobj_attribute *attr,
1312					const char *buf, size_t count)
1313{
1314	int ret = 0;
1315	int input = -1;
1316
1317	if (!fw_dump.fadump_enabled || fdm_active)
1318		return -EPERM;
1319
1320	if (kstrtoint(buf, 0, &input))
1321		return -EINVAL;
1322
1323	mutex_lock(&fadump_mutex);
1324
1325	switch (input) {
1326	case 0:
1327		if (fw_dump.dump_registered == 0) {
1328			goto unlock_out;
1329		}
 
1330		/* Un-register Firmware-assisted dump */
1331		fadump_unregister_dump(&fdm);
 
1332		break;
1333	case 1:
1334		if (fw_dump.dump_registered == 1) {
1335			ret = -EEXIST;
1336			goto unlock_out;
1337		}
1338		/* Register Firmware-assisted dump */
1339		ret = register_fadump();
1340		break;
1341	default:
1342		ret = -EINVAL;
1343		break;
1344	}
1345
1346unlock_out:
1347	mutex_unlock(&fadump_mutex);
1348	return ret < 0 ? ret : count;
1349}
1350
1351static int fadump_region_show(struct seq_file *m, void *private)
1352{
1353	const struct fadump_mem_struct *fdm_ptr;
1354
1355	if (!fw_dump.fadump_enabled)
1356		return 0;
1357
1358	mutex_lock(&fadump_mutex);
1359	if (fdm_active)
1360		fdm_ptr = fdm_active;
1361	else {
1362		mutex_unlock(&fadump_mutex);
1363		fdm_ptr = &fdm;
1364	}
1365
1366	seq_printf(m,
1367			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1368			"Dumped: %#llx\n",
1369			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1370			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1371			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1372			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1373			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1374	seq_printf(m,
1375			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1376			"Dumped: %#llx\n",
1377			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1378			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1379			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1380			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1381			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1382	seq_printf(m,
1383			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1384			"Dumped: %#llx\n",
1385			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1386			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1387			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1388			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1389			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1390
1391	if (!fdm_active ||
1392		(fw_dump.reserve_dump_area_start ==
1393		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1394		goto out;
1395
1396	/* Dump is active. Show reserved memory region. */
1397	seq_printf(m,
1398			"    : [%#016llx-%#016llx] %#llx bytes, "
1399			"Dumped: %#llx\n",
1400			(unsigned long long)fw_dump.reserve_dump_area_start,
1401			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1402			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1403			fw_dump.reserve_dump_area_start,
1404			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1405			fw_dump.reserve_dump_area_start);
1406out:
1407	if (fdm_active)
1408		mutex_unlock(&fadump_mutex);
1409	return 0;
1410}
1411
1412static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1413						0200, NULL,
1414						fadump_release_memory_store);
1415static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1416						0444, fadump_enabled_show,
1417						NULL);
1418static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1419						0644, fadump_register_show,
1420						fadump_register_store);
1421
1422static int fadump_region_open(struct inode *inode, struct file *file)
1423{
1424	return single_open(file, fadump_region_show, inode->i_private);
1425}
1426
1427static const struct file_operations fadump_region_fops = {
1428	.open    = fadump_region_open,
1429	.read    = seq_read,
1430	.llseek  = seq_lseek,
1431	.release = single_release,
1432};
1433
 
 
 
 
1434static void fadump_init_files(void)
1435{
1436	struct dentry *debugfs_file;
1437	int rc = 0;
1438
1439	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1440	if (rc)
1441		printk(KERN_ERR "fadump: unable to create sysfs file"
1442			" fadump_enabled (%d)\n", rc);
1443
1444	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1445	if (rc)
1446		printk(KERN_ERR "fadump: unable to create sysfs file"
1447			" fadump_registered (%d)\n", rc);
1448
1449	debugfs_file = debugfs_create_file("fadump_region", 0444,
1450					powerpc_debugfs_root, NULL,
1451					&fadump_region_fops);
1452	if (!debugfs_file)
1453		printk(KERN_ERR "fadump: unable to create debugfs file"
1454				" fadump_region\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455
1456	if (fw_dump.dump_active) {
1457		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
 
 
 
1458		if (rc)
1459			printk(KERN_ERR "fadump: unable to create sysfs file"
1460				" fadump_release_mem (%d)\n", rc);
1461	}
1462	return;
1463}
1464
1465/*
1466 * Prepare for firmware-assisted dump.
1467 */
1468int __init setup_fadump(void)
1469{
1470	if (!fw_dump.fadump_enabled)
1471		return 0;
1472
1473	if (!fw_dump.fadump_supported) {
1474		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1475			" this hardware\n");
1476		return 0;
1477	}
1478
 
1479	fadump_show_config();
 
 
 
 
1480	/*
1481	 * If dump data is available then see if it is valid and prepare for
1482	 * saving it to the disk.
1483	 */
1484	if (fw_dump.dump_active) {
1485		/*
1486		 * if dump process fails then invalidate the registration
1487		 * and release memory before proceeding for re-registration.
1488		 */
1489		if (process_fadump(fdm_active) < 0)
1490			fadump_invalidate_release_mem();
1491	}
1492	/* Initialize the kernel dump memory structure for FAD registration. */
1493	else if (fw_dump.reserve_dump_area_size)
1494		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1495	fadump_init_files();
1496
1497	return 1;
1498}
1499subsys_initcall(setup_fadump);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
  27
  28#include <asm/debugfs.h>
  29#include <asm/page.h>
  30#include <asm/prom.h>
 
  31#include <asm/fadump.h>
  32#include <asm/fadump-internal.h>
  33#include <asm/setup.h>
  34#include <asm/interrupt.h>
  35
  36/*
  37 * The CPU who acquired the lock to trigger the fadump crash should
  38 * wait for other CPUs to enter.
  39 *
  40 * The timeout is in milliseconds.
  41 */
  42#define CRASH_TIMEOUT		500
  43
  44static struct fw_dump fw_dump;
 
 
  45
  46static void __init fadump_reserve_crash_area(u64 base);
  47
  48#ifndef CONFIG_PRESERVE_FA_DUMP
  49
  50static struct kobject *fadump_kobj;
  51
  52static atomic_t cpus_in_fadump;
  53static DEFINE_MUTEX(fadump_mutex);
 
 
  54
  55static struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0, false };
  56
  57#define RESERVED_RNGS_SZ	16384 /* 16K - 128 entries */
  58#define RESERVED_RNGS_CNT	(RESERVED_RNGS_SZ / \
  59				 sizeof(struct fadump_memory_range))
  60static struct fadump_memory_range rngs[RESERVED_RNGS_CNT];
  61static struct fadump_mrange_info
  62reserved_mrange_info = { "reserved", rngs, RESERVED_RNGS_SZ, 0, RESERVED_RNGS_CNT, true };
  63
  64static void __init early_init_dt_scan_reserved_ranges(unsigned long node);
  65
  66#ifdef CONFIG_CMA
  67static struct cma *fadump_cma;
  68
  69/*
  70 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  71 *
  72 * This function initializes CMA area from fadump reserved memory.
  73 * The total size of fadump reserved memory covers for boot memory size
  74 * + cpu data size + hpte size and metadata.
  75 * Initialize only the area equivalent to boot memory size for CMA use.
  76 * The reamining portion of fadump reserved memory will be not given
  77 * to CMA and pages for thoes will stay reserved. boot memory size is
  78 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  79 * But for some reason even if it fails we still have the memory reservation
  80 * with us and we can still continue doing fadump.
  81 */
  82static int __init fadump_cma_init(void)
  83{
  84	unsigned long long base, size;
  85	int rc;
 
 
  86
  87	if (!fw_dump.fadump_enabled)
  88		return 0;
  89
  90	/*
  91	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  92	 * Return 1 to continue with fadump old behaviour.
  93	 */
  94	if (fw_dump.nocma)
 
  95		return 1;
  96
  97	base = fw_dump.reserve_dump_area_start;
  98	size = fw_dump.boot_memory_size;
  99
 100	if (!size)
 101		return 0;
 102
 103	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
 104	if (rc) {
 105		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
 106		/*
 107		 * Though the CMA init has failed we still have memory
 108		 * reservation with us. The reserved memory will be
 109		 * blocked from production system usage.  Hence return 1,
 110		 * so that we can continue with fadump.
 111		 */
 112		return 1;
 113	}
 114
 115	/*
 116	 * So we now have successfully initialized cma area for fadump.
 
 
 
 
 
 
 
 
 
 
 
 117	 */
 118	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
 119		"bytes of memory reserved for firmware-assisted dump\n",
 120		cma_get_size(fadump_cma),
 121		(unsigned long)cma_get_base(fadump_cma) >> 20,
 122		fw_dump.reserve_dump_area_size);
 123	return 1;
 124}
 125#else
 126static int __init fadump_cma_init(void) { return 1; }
 127#endif /* CONFIG_CMA */
 128
 129/* Scan the Firmware Assisted dump configuration details. */
 130int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 131				      int depth, void *data)
 132{
 133	if (depth == 0) {
 134		early_init_dt_scan_reserved_ranges(node);
 135		return 0;
 136	}
 137
 138	if (depth != 1)
 139		return 0;
 140
 141	if (strcmp(uname, "rtas") == 0) {
 142		rtas_fadump_dt_scan(&fw_dump, node);
 143		return 1;
 144	}
 145
 146	if (strcmp(uname, "ibm,opal") == 0) {
 147		opal_fadump_dt_scan(&fw_dump, node);
 148		return 1;
 
 
 
 
 
 
 
 149	}
 150
 151	return 0;
 152}
 153
 154/*
 155 * If fadump is registered, check if the memory provided
 156 * falls within boot memory area and reserved memory area.
 157 */
 158int is_fadump_memory_area(u64 addr, unsigned long size)
 159{
 160	u64 d_start, d_end;
 161
 162	if (!fw_dump.dump_registered)
 163		return 0;
 164
 165	if (!size)
 166		return 0;
 167
 168	d_start = fw_dump.reserve_dump_area_start;
 169	d_end = d_start + fw_dump.reserve_dump_area_size;
 170	if (((addr + size) > d_start) && (addr <= d_end))
 171		return 1;
 172
 173	return (addr <= fw_dump.boot_mem_top);
 174}
 175
 176int should_fadump_crash(void)
 177{
 178	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 179		return 0;
 180	return 1;
 181}
 182
 183int is_fadump_active(void)
 184{
 185	return fw_dump.dump_active;
 186}
 187
 188/*
 189 * Returns true, if there are no holes in memory area between d_start to d_end,
 190 * false otherwise.
 191 */
 192static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 193{
 194	phys_addr_t reg_start, reg_end;
 195	bool ret = false;
 196	u64 i, start, end;
 197
 198	for_each_mem_range(i, &reg_start, &reg_end) {
 199		start = max_t(u64, d_start, reg_start);
 200		end = min_t(u64, d_end, reg_end);
 201		if (d_start < end) {
 202			/* Memory hole from d_start to start */
 203			if (start > d_start)
 
 
 204				break;
 205
 206			if (end == d_end) {
 207				ret = true;
 208				break;
 209			}
 210
 211			d_start = end + 1;
 212		}
 213	}
 214
 215	return ret;
 216}
 217
 218/*
 219 * Returns true, if there are no holes in boot memory area,
 220 * false otherwise.
 221 */
 222bool is_fadump_boot_mem_contiguous(void)
 223{
 224	unsigned long d_start, d_end;
 225	bool ret = false;
 226	int i;
 227
 228	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 229		d_start = fw_dump.boot_mem_addr[i];
 230		d_end   = d_start + fw_dump.boot_mem_sz[i];
 231
 232		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 233		if (!ret)
 234			break;
 235	}
 236
 237	return ret;
 238}
 239
 240/*
 241 * Returns true, if there are no holes in reserved memory area,
 242 * false otherwise.
 243 */
 244bool is_fadump_reserved_mem_contiguous(void)
 245{
 246	u64 d_start, d_end;
 247
 248	d_start	= fw_dump.reserve_dump_area_start;
 249	d_end	= d_start + fw_dump.reserve_dump_area_size;
 250	return is_fadump_mem_area_contiguous(d_start, d_end);
 251}
 252
 253/* Print firmware assisted dump configurations for debugging purpose. */
 254static void fadump_show_config(void)
 255{
 256	int i;
 257
 258	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 259			(fw_dump.fadump_supported ? "present" : "no support"));
 260
 261	if (!fw_dump.fadump_supported)
 262		return;
 263
 264	pr_debug("Fadump enabled    : %s\n",
 265				(fw_dump.fadump_enabled ? "yes" : "no"));
 266	pr_debug("Dump Active       : %s\n",
 267				(fw_dump.dump_active ? "yes" : "no"));
 268	pr_debug("Dump section sizes:\n");
 269	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 270	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 271	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 272	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 273	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 274	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 275		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 276			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 277	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280/**
 281 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 282 *
 283 * Function to find the largest memory size we need to reserve during early
 284 * boot process. This will be the size of the memory that is required for a
 285 * kernel to boot successfully.
 286 *
 287 * This function has been taken from phyp-assisted dump feature implementation.
 288 *
 289 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 290 *
 291 * TODO: Come up with better approach to find out more accurate memory size
 292 * that is required for a kernel to boot successfully.
 293 *
 294 */
 295static __init u64 fadump_calculate_reserve_size(void)
 296{
 297	u64 base, size, bootmem_min;
 298	int ret;
 
 299
 300	if (fw_dump.reserve_bootvar)
 301		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 302
 303	/*
 304	 * Check if the size is specified through crashkernel= cmdline
 305	 * option. If yes, then use that but ignore base as fadump reserves
 306	 * memory at a predefined offset.
 307	 */
 308	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 309				&size, &base);
 310	if (ret == 0 && size > 0) {
 311		unsigned long max_size;
 312
 313		if (fw_dump.reserve_bootvar)
 314			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 315
 316		fw_dump.reserve_bootvar = (unsigned long)size;
 317
 318		/*
 319		 * Adjust if the boot memory size specified is above
 320		 * the upper limit.
 321		 */
 322		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 323		if (fw_dump.reserve_bootvar > max_size) {
 324			fw_dump.reserve_bootvar = max_size;
 325			pr_info("Adjusted boot memory size to %luMB\n",
 326				(fw_dump.reserve_bootvar >> 20));
 327		}
 328
 329		return fw_dump.reserve_bootvar;
 330	} else if (fw_dump.reserve_bootvar) {
 331		/*
 332		 * 'fadump_reserve_mem=' is being used to reserve memory
 333		 * for firmware-assisted dump.
 334		 */
 335		return fw_dump.reserve_bootvar;
 336	}
 337
 338	/* divide by 20 to get 5% of value */
 339	size = memblock_phys_mem_size() / 20;
 340
 341	/* round it down in multiples of 256 */
 342	size = size & ~0x0FFFFFFFUL;
 343
 344	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 345	if (memory_limit && size > memory_limit)
 346		size = memory_limit;
 347
 348	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 349	return (size > bootmem_min ? size : bootmem_min);
 350}
 351
 352/*
 353 * Calculate the total memory size required to be reserved for
 354 * firmware-assisted dump registration.
 355 */
 356static unsigned long get_fadump_area_size(void)
 357{
 358	unsigned long size = 0;
 359
 360	size += fw_dump.cpu_state_data_size;
 361	size += fw_dump.hpte_region_size;
 362	size += fw_dump.boot_memory_size;
 363	size += sizeof(struct fadump_crash_info_header);
 364	size += sizeof(struct elfhdr); /* ELF core header.*/
 365	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 366	/* Program headers for crash memory regions. */
 367	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 368
 369	size = PAGE_ALIGN(size);
 370
 371	/* This is to hold kernel metadata on platforms that support it */
 372	size += (fw_dump.ops->fadump_get_metadata_size ?
 373		 fw_dump.ops->fadump_get_metadata_size() : 0);
 374	return size;
 375}
 376
 377static int __init add_boot_mem_region(unsigned long rstart,
 378				      unsigned long rsize)
 379{
 380	int i = fw_dump.boot_mem_regs_cnt++;
 381
 382	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 383		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 384		return 0;
 385	}
 386
 387	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 388		 i, rstart, (rstart + rsize));
 389	fw_dump.boot_mem_addr[i] = rstart;
 390	fw_dump.boot_mem_sz[i] = rsize;
 391	return 1;
 392}
 393
 394/*
 395 * Firmware usually has a hard limit on the data it can copy per region.
 396 * Honour that by splitting a memory range into multiple regions.
 397 */
 398static int __init add_boot_mem_regions(unsigned long mstart,
 399				       unsigned long msize)
 400{
 401	unsigned long rstart, rsize, max_size;
 402	int ret = 1;
 403
 404	rstart = mstart;
 405	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 406	while (msize) {
 407		if (msize > max_size)
 408			rsize = max_size;
 409		else
 410			rsize = msize;
 411
 412		ret = add_boot_mem_region(rstart, rsize);
 413		if (!ret)
 414			break;
 415
 416		msize -= rsize;
 417		rstart += rsize;
 418	}
 419
 420	return ret;
 421}
 422
 423static int __init fadump_get_boot_mem_regions(void)
 424{
 425	unsigned long size, cur_size, hole_size, last_end;
 426	unsigned long mem_size = fw_dump.boot_memory_size;
 427	phys_addr_t reg_start, reg_end;
 428	int ret = 1;
 429	u64 i;
 430
 431	fw_dump.boot_mem_regs_cnt = 0;
 432
 433	last_end = 0;
 434	hole_size = 0;
 435	cur_size = 0;
 436	for_each_mem_range(i, &reg_start, &reg_end) {
 437		size = reg_end - reg_start;
 438		hole_size += (reg_start - last_end);
 439
 440		if ((cur_size + size) >= mem_size) {
 441			size = (mem_size - cur_size);
 442			ret = add_boot_mem_regions(reg_start, size);
 443			break;
 444		}
 445
 446		mem_size -= size;
 447		cur_size += size;
 448		ret = add_boot_mem_regions(reg_start, size);
 449		if (!ret)
 450			break;
 451
 452		last_end = reg_end;
 453	}
 454	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 455
 456	return ret;
 457}
 458
 459/*
 460 * Returns true, if the given range overlaps with reserved memory ranges
 461 * starting at idx. Also, updates idx to index of overlapping memory range
 462 * with the given memory range.
 463 * False, otherwise.
 464 */
 465static bool overlaps_reserved_ranges(u64 base, u64 end, int *idx)
 466{
 467	bool ret = false;
 468	int i;
 469
 470	for (i = *idx; i < reserved_mrange_info.mem_range_cnt; i++) {
 471		u64 rbase = reserved_mrange_info.mem_ranges[i].base;
 472		u64 rend = rbase + reserved_mrange_info.mem_ranges[i].size;
 473
 474		if (end <= rbase)
 475			break;
 476
 477		if ((end > rbase) &&  (base < rend)) {
 478			*idx = i;
 479			ret = true;
 480			break;
 481		}
 482	}
 483
 484	return ret;
 485}
 486
 487/*
 488 * Locate a suitable memory area to reserve memory for FADump. While at it,
 489 * lookup reserved-ranges & avoid overlap with them, as they are used by F/W.
 490 */
 491static u64 __init fadump_locate_reserve_mem(u64 base, u64 size)
 492{
 493	struct fadump_memory_range *mrngs;
 494	phys_addr_t mstart, mend;
 495	int idx = 0;
 496	u64 i, ret = 0;
 497
 498	mrngs = reserved_mrange_info.mem_ranges;
 499	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 500				&mstart, &mend, NULL) {
 501		pr_debug("%llu) mstart: %llx, mend: %llx, base: %llx\n",
 502			 i, mstart, mend, base);
 503
 504		if (mstart > base)
 505			base = PAGE_ALIGN(mstart);
 506
 507		while ((mend > base) && ((mend - base) >= size)) {
 508			if (!overlaps_reserved_ranges(base, base+size, &idx)) {
 509				ret = base;
 510				goto out;
 511			}
 512
 513			base = mrngs[idx].base + mrngs[idx].size;
 514			base = PAGE_ALIGN(base);
 515		}
 516	}
 517
 518out:
 519	return ret;
 520}
 521
 522int __init fadump_reserve_mem(void)
 523{
 524	u64 base, size, mem_boundary, bootmem_min;
 525	int ret = 1;
 526
 527	if (!fw_dump.fadump_enabled)
 528		return 0;
 529
 530	if (!fw_dump.fadump_supported) {
 531		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 532		goto error_out;
 
 
 533	}
 534
 535	/*
 536	 * Initialize boot memory size
 537	 * If dump is active then we have already calculated the size during
 538	 * first kernel.
 539	 */
 540	if (!fw_dump.dump_active) {
 541		fw_dump.boot_memory_size =
 542			PAGE_ALIGN(fadump_calculate_reserve_size());
 543#ifdef CONFIG_CMA
 544		if (!fw_dump.nocma) {
 545			fw_dump.boot_memory_size =
 546				ALIGN(fw_dump.boot_memory_size,
 547				      FADUMP_CMA_ALIGNMENT);
 548		}
 549#endif
 550
 551		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 552		if (fw_dump.boot_memory_size < bootmem_min) {
 553			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 554			       fw_dump.boot_memory_size, bootmem_min);
 555			goto error_out;
 556		}
 557
 558		if (!fadump_get_boot_mem_regions()) {
 559			pr_err("Too many holes in boot memory area to enable fadump\n");
 560			goto error_out;
 561		}
 562	}
 563
 564	/*
 565	 * Calculate the memory boundary.
 566	 * If memory_limit is less than actual memory boundary then reserve
 567	 * the memory for fadump beyond the memory_limit and adjust the
 568	 * memory_limit accordingly, so that the running kernel can run with
 569	 * specified memory_limit.
 570	 */
 571	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 572		size = get_fadump_area_size();
 573		if ((memory_limit + size) < memblock_end_of_DRAM())
 574			memory_limit += size;
 575		else
 576			memory_limit = memblock_end_of_DRAM();
 577		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 578				" dump, now %#016llx\n", memory_limit);
 579	}
 580	if (memory_limit)
 581		mem_boundary = memory_limit;
 582	else
 583		mem_boundary = memblock_end_of_DRAM();
 584
 585	base = fw_dump.boot_mem_top;
 586	size = get_fadump_area_size();
 587	fw_dump.reserve_dump_area_size = size;
 588	if (fw_dump.dump_active) {
 589		pr_info("Firmware-assisted dump is active.\n");
 590
 591#ifdef CONFIG_HUGETLB_PAGE
 592		/*
 593		 * FADump capture kernel doesn't care much about hugepages.
 594		 * In fact, handling hugepages in capture kernel is asking for
 595		 * trouble. So, disable HugeTLB support when fadump is active.
 596		 */
 597		hugetlb_disabled = true;
 598#endif
 599		/*
 600		 * If last boot has crashed then reserve all the memory
 601		 * above boot memory size so that we don't touch it until
 602		 * dump is written to disk by userspace tool. This memory
 603		 * can be released for general use by invalidating fadump.
 604		 */
 605		fadump_reserve_crash_area(base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606
 607		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 608		pr_debug("Reserve dump area start address: 0x%lx\n",
 609			 fw_dump.reserve_dump_area_start);
 610	} else {
 611		/*
 612		 * Reserve memory at an offset closer to bottom of the RAM to
 613		 * minimize the impact of memory hot-remove operation.
 
 
 614		 */
 615		base = fadump_locate_reserve_mem(base, size);
 616
 617		if (!base || (base + size > mem_boundary)) {
 618			pr_err("Failed to find memory chunk for reservation!\n");
 619			goto error_out;
 
 620		}
 621		fw_dump.reserve_dump_area_start = base;
 622
 623		/*
 624		 * Calculate the kernel metadata address and register it with
 625		 * f/w if the platform supports.
 626		 */
 627		if (fw_dump.ops->fadump_setup_metadata &&
 628		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 629			goto error_out;
 630
 631		if (memblock_reserve(base, size)) {
 632			pr_err("Failed to reserve memory!\n");
 633			goto error_out;
 634		}
 635
 636		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 637			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 
 
 
 
 638
 639		ret = fadump_cma_init();
 640	}
 
 
 641
 642	return ret;
 643error_out:
 644	fw_dump.fadump_enabled = 0;
 645	return 0;
 646}
 647
 648/* Look for fadump= cmdline option. */
 649static int __init early_fadump_param(char *p)
 650{
 651	if (!p)
 652		return 1;
 653
 654	if (strncmp(p, "on", 2) == 0)
 655		fw_dump.fadump_enabled = 1;
 656	else if (strncmp(p, "off", 3) == 0)
 657		fw_dump.fadump_enabled = 0;
 658	else if (strncmp(p, "nocma", 5) == 0) {
 659		fw_dump.fadump_enabled = 1;
 660		fw_dump.nocma = 1;
 661	}
 662
 663	return 0;
 664}
 665early_param("fadump", early_fadump_param);
 666
 667/*
 668 * Look for fadump_reserve_mem= cmdline option
 669 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 670 *       the sooner 'crashkernel=' parameter is accustomed to.
 671 */
 672static int __init early_fadump_reserve_mem(char *p)
 673{
 674	if (p)
 675		fw_dump.reserve_bootvar = memparse(p, &p);
 676	return 0;
 677}
 678early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680void crash_fadump(struct pt_regs *regs, const char *str)
 681{
 682	unsigned int msecs;
 683	struct fadump_crash_info_header *fdh = NULL;
 684	int old_cpu, this_cpu;
 685	/* Do not include first CPU */
 686	unsigned int ncpus = num_online_cpus() - 1;
 687
 688	if (!should_fadump_crash())
 689		return;
 690
 691	/*
 692	 * old_cpu == -1 means this is the first CPU which has come here,
 693	 * go ahead and trigger fadump.
 694	 *
 695	 * old_cpu != -1 means some other CPU has already on it's way
 696	 * to trigger fadump, just keep looping here.
 697	 */
 698	this_cpu = smp_processor_id();
 699	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 700
 701	if (old_cpu != -1) {
 702		atomic_inc(&cpus_in_fadump);
 703
 704		/*
 705		 * We can't loop here indefinitely. Wait as long as fadump
 706		 * is in force. If we race with fadump un-registration this
 707		 * loop will break and then we go down to normal panic path
 708		 * and reboot. If fadump is in force the first crashing
 709		 * cpu will definitely trigger fadump.
 710		 */
 711		while (fw_dump.dump_registered)
 712			cpu_relax();
 713		return;
 714	}
 715
 716	fdh = __va(fw_dump.fadumphdr_addr);
 717	fdh->crashing_cpu = crashing_cpu;
 718	crash_save_vmcoreinfo();
 719
 720	if (regs)
 721		fdh->regs = *regs;
 722	else
 723		ppc_save_regs(&fdh->regs);
 724
 725	fdh->online_mask = *cpu_online_mask;
 726
 727	/*
 728	 * If we came in via system reset, wait a while for the secondary
 729	 * CPUs to enter.
 730	 */
 731	if (TRAP(&(fdh->regs)) == INTERRUPT_SYSTEM_RESET) {
 732		msecs = CRASH_TIMEOUT;
 733		while ((atomic_read(&cpus_in_fadump) < ncpus) && (--msecs > 0))
 734			mdelay(1);
 
 
 
 
 
 
 
 
 
 
 
 
 735	}
 
 
 736
 737	fw_dump.ops->fadump_trigger(fdh, str);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738}
 739
 740u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 741{
 742	struct elf_prstatus prstatus;
 743
 744	memset(&prstatus, 0, sizeof(prstatus));
 745	/*
 746	 * FIXME: How do i get PID? Do I really need it?
 747	 * prstatus.pr_pid = ????
 748	 */
 749	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 750	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 751			      &prstatus, sizeof(prstatus));
 752	return buf;
 753}
 754
 755void fadump_update_elfcore_header(char *bufp)
 756{
 
 757	struct elf_phdr *phdr;
 758
 
 759	bufp += sizeof(struct elfhdr);
 760
 761	/* First note is a place holder for cpu notes info. */
 762	phdr = (struct elf_phdr *)bufp;
 763
 764	if (phdr->p_type == PT_NOTE) {
 765		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 766		phdr->p_offset	= phdr->p_paddr;
 767		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 768		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 769	}
 770	return;
 771}
 772
 773static void *fadump_alloc_buffer(unsigned long size)
 774{
 775	unsigned long count, i;
 776	struct page *page;
 777	void *vaddr;
 778
 779	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 
 780	if (!vaddr)
 781		return NULL;
 782
 783	count = PAGE_ALIGN(size) / PAGE_SIZE;
 784	page = virt_to_page(vaddr);
 785	for (i = 0; i < count; i++)
 786		mark_page_reserved(page + i);
 787	return vaddr;
 788}
 789
 790static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 791{
 792	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 
 
 
 
 
 
 
 
 793}
 794
 795s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797	/* Allocate buffer to hold cpu crash notes. */
 798	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 799	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 800	fw_dump.cpu_notes_buf_vaddr =
 801		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 802	if (!fw_dump.cpu_notes_buf_vaddr) {
 803		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 804		       fw_dump.cpu_notes_buf_size);
 805		return -ENOMEM;
 806	}
 
 
 
 
 807
 808	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 809		 fw_dump.cpu_notes_buf_size,
 810		 fw_dump.cpu_notes_buf_vaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811	return 0;
 812}
 813
 814void fadump_free_cpu_notes_buf(void)
 815{
 816	if (!fw_dump.cpu_notes_buf_vaddr)
 817		return;
 818
 819	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 820			   fw_dump.cpu_notes_buf_size);
 821	fw_dump.cpu_notes_buf_vaddr = 0;
 822	fw_dump.cpu_notes_buf_size = 0;
 823}
 824
 825static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 826{
 827	if (mrange_info->is_static) {
 828		mrange_info->mem_range_cnt = 0;
 829		return;
 830	}
 831
 832	kfree(mrange_info->mem_ranges);
 833	memset((void *)((u64)mrange_info + RNG_NAME_SZ), 0,
 834	       (sizeof(struct fadump_mrange_info) - RNG_NAME_SZ));
 835}
 836
 837/*
 838 * Allocate or reallocate mem_ranges array in incremental units
 839 * of PAGE_SIZE.
 840 */
 841static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 842{
 843	struct fadump_memory_range *new_array;
 844	u64 new_size;
 
 
 
 845
 846	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 847	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 848		 new_size, mrange_info->name);
 849
 850	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 851	if (new_array == NULL) {
 852		pr_err("Insufficient memory for setting up %s memory ranges\n",
 853		       mrange_info->name);
 854		fadump_free_mem_ranges(mrange_info);
 855		return -ENOMEM;
 
 
 856	}
 857
 858	mrange_info->mem_ranges = new_array;
 859	mrange_info->mem_ranges_sz = new_size;
 860	mrange_info->max_mem_ranges = (new_size /
 861				       sizeof(struct fadump_memory_range));
 862	return 0;
 863}
 864
 865static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 866				       u64 base, u64 end)
 867{
 868	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 869	bool is_adjacent = false;
 870	u64 start, size;
 871
 872	if (base == end)
 873		return 0;
 
 874
 875	/*
 876	 * Fold adjacent memory ranges to bring down the memory ranges/
 877	 * PT_LOAD segments count.
 
 878	 */
 879	if (mrange_info->mem_range_cnt) {
 880		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 881		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 882
 883		if ((start + size) == base)
 884			is_adjacent = true;
 885	}
 886	if (!is_adjacent) {
 887		/* resize the array on reaching the limit */
 888		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 889			int ret;
 890
 891			if (mrange_info->is_static) {
 892				pr_err("Reached array size limit for %s memory ranges\n",
 893				       mrange_info->name);
 894				return -ENOSPC;
 895			}
 896
 897			ret = fadump_alloc_mem_ranges(mrange_info);
 898			if (ret)
 899				return ret;
 900
 901			/* Update to the new resized array */
 902			mem_ranges = mrange_info->mem_ranges;
 903		}
 904
 905		start = base;
 906		mem_ranges[mrange_info->mem_range_cnt].base = start;
 907		mrange_info->mem_range_cnt++;
 908	}
 909
 910	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 911	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 912		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 913		 start, end - 1, (end - start));
 914	return 0;
 915}
 916
 917static int fadump_exclude_reserved_area(u64 start, u64 end)
 
 918{
 919	u64 ra_start, ra_end;
 920	int ret = 0;
 921
 922	ra_start = fw_dump.reserve_dump_area_start;
 923	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 924
 925	if ((ra_start < end) && (ra_end > start)) {
 926		if ((start < ra_start) && (end > ra_end)) {
 927			ret = fadump_add_mem_range(&crash_mrange_info,
 928						   start, ra_start);
 929			if (ret)
 930				return ret;
 931
 932			ret = fadump_add_mem_range(&crash_mrange_info,
 933						   ra_end, end);
 934		} else if (start < ra_start) {
 935			ret = fadump_add_mem_range(&crash_mrange_info,
 936						   start, ra_start);
 937		} else if (ra_end < end) {
 938			ret = fadump_add_mem_range(&crash_mrange_info,
 939						   ra_end, end);
 940		}
 941	} else
 942		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 943
 944	return ret;
 945}
 946
 947static int fadump_init_elfcore_header(char *bufp)
 948{
 949	struct elfhdr *elf;
 950
 951	elf = (struct elfhdr *) bufp;
 952	bufp += sizeof(struct elfhdr);
 953	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 954	elf->e_ident[EI_CLASS] = ELF_CLASS;
 955	elf->e_ident[EI_DATA] = ELF_DATA;
 956	elf->e_ident[EI_VERSION] = EV_CURRENT;
 957	elf->e_ident[EI_OSABI] = ELF_OSABI;
 958	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 959	elf->e_type = ET_CORE;
 960	elf->e_machine = ELF_ARCH;
 961	elf->e_version = EV_CURRENT;
 962	elf->e_entry = 0;
 963	elf->e_phoff = sizeof(struct elfhdr);
 964	elf->e_shoff = 0;
 965#if defined(_CALL_ELF)
 966	elf->e_flags = _CALL_ELF;
 967#else
 968	elf->e_flags = 0;
 969#endif
 970	elf->e_ehsize = sizeof(struct elfhdr);
 971	elf->e_phentsize = sizeof(struct elf_phdr);
 972	elf->e_phnum = 0;
 973	elf->e_shentsize = 0;
 974	elf->e_shnum = 0;
 975	elf->e_shstrndx = 0;
 976
 977	return 0;
 978}
 979
 980/*
 981 * Traverse through memblock structure and setup crash memory ranges. These
 982 * ranges will be used create PT_LOAD program headers in elfcore header.
 983 */
 984static int fadump_setup_crash_memory_ranges(void)
 985{
 986	u64 i, start, end;
 987	int ret;
 988
 989	pr_debug("Setup crash memory ranges.\n");
 990	crash_mrange_info.mem_range_cnt = 0;
 991
 992	/*
 993	 * Boot memory region(s) registered with firmware are moved to
 994	 * different location at the time of crash. Create separate program
 995	 * header(s) for this memory chunk(s) with the correct offset.
 
 
 996	 */
 997	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 998		start = fw_dump.boot_mem_addr[i];
 999		end = start + fw_dump.boot_mem_sz[i];
1000		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
1001		if (ret)
1002			return ret;
1003	}
1004
1005	for_each_mem_range(i, &start, &end) {
1006		/*
1007		 * skip the memory chunk that is already added
1008		 * (0 through boot_memory_top).
 
1009		 */
1010		if (start < fw_dump.boot_mem_top) {
1011			if (end > fw_dump.boot_mem_top)
1012				start = fw_dump.boot_mem_top;
 
1013			else
1014				continue;
1015		}
1016
1017		/* add this range excluding the reserved dump area. */
1018		ret = fadump_exclude_reserved_area(start, end);
1019		if (ret)
1020			return ret;
1021	}
1022
1023	return 0;
1024}
1025
1026/*
1027 * If the given physical address falls within the boot memory region then
1028 * return the relocated address that points to the dump region reserved
1029 * for saving initial boot memory contents.
1030 */
1031static inline unsigned long fadump_relocate(unsigned long paddr)
1032{
1033	unsigned long raddr, rstart, rend, rlast, hole_size;
1034	int i;
1035
1036	hole_size = 0;
1037	rlast = 0;
1038	raddr = paddr;
1039	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
1040		rstart = fw_dump.boot_mem_addr[i];
1041		rend = rstart + fw_dump.boot_mem_sz[i];
1042		hole_size += (rstart - rlast);
1043
1044		if (paddr >= rstart && paddr < rend) {
1045			raddr += fw_dump.boot_mem_dest_addr - hole_size;
1046			break;
1047		}
1048
1049		rlast = rend;
1050	}
1051
1052	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
1053	return raddr;
1054}
1055
1056static int fadump_create_elfcore_headers(char *bufp)
1057{
1058	unsigned long long raddr, offset;
1059	struct elf_phdr *phdr;
1060	struct elfhdr *elf;
1061	int i, j;
1062
1063	fadump_init_elfcore_header(bufp);
1064	elf = (struct elfhdr *)bufp;
1065	bufp += sizeof(struct elfhdr);
1066
1067	/*
1068	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1069	 * will be populated during second kernel boot after crash. Hence
1070	 * this PT_NOTE will always be the first elf note.
1071	 *
1072	 * NOTE: Any new ELF note addition should be placed after this note.
1073	 */
1074	phdr = (struct elf_phdr *)bufp;
1075	bufp += sizeof(struct elf_phdr);
1076	phdr->p_type = PT_NOTE;
1077	phdr->p_flags = 0;
1078	phdr->p_vaddr = 0;
1079	phdr->p_align = 0;
1080
1081	phdr->p_offset = 0;
1082	phdr->p_paddr = 0;
1083	phdr->p_filesz = 0;
1084	phdr->p_memsz = 0;
1085
1086	(elf->e_phnum)++;
1087
1088	/* setup ELF PT_NOTE for vmcoreinfo */
1089	phdr = (struct elf_phdr *)bufp;
1090	bufp += sizeof(struct elf_phdr);
1091	phdr->p_type	= PT_NOTE;
1092	phdr->p_flags	= 0;
1093	phdr->p_vaddr	= 0;
1094	phdr->p_align	= 0;
1095
1096	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1097	phdr->p_offset	= phdr->p_paddr;
1098	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1099
1100	/* Increment number of program headers. */
1101	(elf->e_phnum)++;
1102
1103	/* setup PT_LOAD sections. */
1104	j = 0;
1105	offset = 0;
1106	raddr = fw_dump.boot_mem_addr[0];
1107	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1108		u64 mbase, msize;
1109
1110		mbase = crash_mrange_info.mem_ranges[i].base;
1111		msize = crash_mrange_info.mem_ranges[i].size;
 
 
 
1112		if (!msize)
1113			continue;
1114
1115		phdr = (struct elf_phdr *)bufp;
1116		bufp += sizeof(struct elf_phdr);
1117		phdr->p_type	= PT_LOAD;
1118		phdr->p_flags	= PF_R|PF_W|PF_X;
1119		phdr->p_offset	= mbase;
1120
1121		if (mbase == raddr) {
1122			/*
1123			 * The entire real memory region will be moved by
1124			 * firmware to the specified destination_address.
1125			 * Hence set the correct offset.
1126			 */
1127			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1128			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1129				offset += fw_dump.boot_mem_sz[j];
1130				raddr = fw_dump.boot_mem_addr[++j];
1131			}
1132		}
1133
1134		phdr->p_paddr = mbase;
1135		phdr->p_vaddr = (unsigned long)__va(mbase);
1136		phdr->p_filesz = msize;
1137		phdr->p_memsz = msize;
1138		phdr->p_align = 0;
1139
1140		/* Increment number of program headers. */
1141		(elf->e_phnum)++;
1142	}
1143	return 0;
1144}
1145
1146static unsigned long init_fadump_header(unsigned long addr)
1147{
1148	struct fadump_crash_info_header *fdh;
1149
1150	if (!addr)
1151		return 0;
1152
 
1153	fdh = __va(addr);
1154	addr += sizeof(struct fadump_crash_info_header);
1155
1156	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1157	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1158	fdh->elfcorehdr_addr = addr;
1159	/* We will set the crashing cpu id in crash_fadump() during crash. */
1160	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1161
1162	return addr;
1163}
1164
1165static int register_fadump(void)
1166{
1167	unsigned long addr;
1168	void *vaddr;
1169	int ret;
1170
1171	/*
1172	 * If no memory is reserved then we can not register for firmware-
1173	 * assisted dump.
1174	 */
1175	if (!fw_dump.reserve_dump_area_size)
1176		return -ENODEV;
1177
1178	ret = fadump_setup_crash_memory_ranges();
1179	if (ret)
1180		return ret;
1181
1182	addr = fw_dump.fadumphdr_addr;
1183
 
1184	/* Initialize fadump crash info header. */
1185	addr = init_fadump_header(addr);
1186	vaddr = __va(addr);
1187
1188	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1189	fadump_create_elfcore_headers(vaddr);
1190
1191	/* register the future kernel dump with firmware. */
1192	pr_debug("Registering for firmware-assisted kernel dump...\n");
1193	return fw_dump.ops->fadump_register(&fw_dump);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1194}
1195
1196void fadump_cleanup(void)
1197{
1198	if (!fw_dump.fadump_supported)
1199		return;
1200
1201	/* Invalidate the registration only if dump is active. */
1202	if (fw_dump.dump_active) {
1203		pr_debug("Invalidating firmware-assisted dump registration\n");
1204		fw_dump.ops->fadump_invalidate(&fw_dump);
1205	} else if (fw_dump.dump_registered) {
1206		/* Un-register Firmware-assisted dump if it was registered. */
1207		fw_dump.ops->fadump_unregister(&fw_dump);
1208		fadump_free_mem_ranges(&crash_mrange_info);
1209	}
1210
1211	if (fw_dump.ops->fadump_cleanup)
1212		fw_dump.ops->fadump_cleanup(&fw_dump);
1213}
1214
1215static void fadump_free_reserved_memory(unsigned long start_pfn,
1216					unsigned long end_pfn)
1217{
1218	unsigned long pfn;
1219	unsigned long time_limit = jiffies + HZ;
1220
1221	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1222		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1223
1224	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1225		free_reserved_page(pfn_to_page(pfn));
1226
1227		if (time_after(jiffies, time_limit)) {
1228			cond_resched();
1229			time_limit = jiffies + HZ;
1230		}
1231	}
1232}
1233
1234/*
1235 * Skip memory holes and free memory that was actually reserved.
1236 */
1237static void fadump_release_reserved_area(u64 start, u64 end)
1238{
1239	unsigned long reg_spfn, reg_epfn;
1240	u64 tstart, tend, spfn, epfn;
1241	int i;
1242
1243	spfn = PHYS_PFN(start);
1244	epfn = PHYS_PFN(end);
1245
1246	for_each_mem_pfn_range(i, MAX_NUMNODES, &reg_spfn, &reg_epfn, NULL) {
1247		tstart = max_t(u64, spfn, reg_spfn);
1248		tend   = min_t(u64, epfn, reg_epfn);
1249
1250		if (tstart < tend) {
1251			fadump_free_reserved_memory(tstart, tend);
1252
1253			if (tend == epfn)
1254				break;
1255
1256			spfn = tend;
1257		}
1258	}
1259}
1260
1261/*
1262 * Sort the mem ranges in-place and merge adjacent ranges
1263 * to minimize the memory ranges count.
1264 */
1265static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1266{
1267	struct fadump_memory_range *mem_ranges;
1268	struct fadump_memory_range tmp_range;
1269	u64 base, size;
1270	int i, j, idx;
1271
1272	if (!reserved_mrange_info.mem_range_cnt)
1273		return;
1274
1275	/* Sort the memory ranges */
1276	mem_ranges = mrange_info->mem_ranges;
1277	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1278		idx = i;
1279		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1280			if (mem_ranges[idx].base > mem_ranges[j].base)
1281				idx = j;
1282		}
1283		if (idx != i) {
1284			tmp_range = mem_ranges[idx];
1285			mem_ranges[idx] = mem_ranges[i];
1286			mem_ranges[i] = tmp_range;
1287		}
1288	}
1289
1290	/* Merge adjacent reserved ranges */
1291	idx = 0;
1292	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1293		base = mem_ranges[i-1].base;
1294		size = mem_ranges[i-1].size;
1295		if (mem_ranges[i].base == (base + size))
1296			mem_ranges[idx].size += mem_ranges[i].size;
1297		else {
1298			idx++;
1299			if (i == idx)
1300				continue;
1301
1302			mem_ranges[idx] = mem_ranges[i];
1303		}
1304	}
1305	mrange_info->mem_range_cnt = idx + 1;
1306}
1307
1308/*
1309 * Scan reserved-ranges to consider them while reserving/releasing
1310 * memory for FADump.
1311 */
1312static void __init early_init_dt_scan_reserved_ranges(unsigned long node)
1313{
1314	const __be32 *prop;
1315	int len, ret = -1;
1316	unsigned long i;
1317
1318	/* reserved-ranges already scanned */
1319	if (reserved_mrange_info.mem_range_cnt != 0)
1320		return;
1321
1322	prop = of_get_flat_dt_prop(node, "reserved-ranges", &len);
1323	if (!prop)
1324		return;
1325
1326	/*
1327	 * Each reserved range is an (address,size) pair, 2 cells each,
1328	 * totalling 4 cells per range.
1329	 */
1330	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1331		u64 base, size;
1332
1333		base = of_read_number(prop + (i * 4) + 0, 2);
1334		size = of_read_number(prop + (i * 4) + 2, 2);
1335
1336		if (size) {
1337			ret = fadump_add_mem_range(&reserved_mrange_info,
1338						   base, base + size);
1339			if (ret < 0) {
1340				pr_warn("some reserved ranges are ignored!\n");
1341				break;
1342			}
1343		}
1344	}
1345
1346	/* Compact reserved ranges */
1347	sort_and_merge_mem_ranges(&reserved_mrange_info);
1348}
1349
1350/*
1351 * Release the memory that was reserved during early boot to preserve the
1352 * crash'ed kernel's memory contents except reserved dump area (permanent
1353 * reservation) and reserved ranges used by F/W. The released memory will
1354 * be available for general use.
1355 */
1356static void fadump_release_memory(u64 begin, u64 end)
1357{
1358	u64 ra_start, ra_end, tstart;
1359	int i, ret;
1360
1361	ra_start = fw_dump.reserve_dump_area_start;
1362	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1363
1364	/*
1365	 * If reserved ranges array limit is hit, overwrite the last reserved
1366	 * memory range with reserved dump area to ensure it is excluded from
1367	 * the memory being released (reused for next FADump registration).
1368	 */
1369	if (reserved_mrange_info.mem_range_cnt ==
1370	    reserved_mrange_info.max_mem_ranges)
1371		reserved_mrange_info.mem_range_cnt--;
1372
1373	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1374	if (ret != 0)
1375		return;
1376
1377	/* Get the reserved ranges list in order first. */
1378	sort_and_merge_mem_ranges(&reserved_mrange_info);
1379
1380	/* Exclude reserved ranges and release remaining memory */
1381	tstart = begin;
1382	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1383		ra_start = reserved_mrange_info.mem_ranges[i].base;
1384		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1385
1386		if (tstart >= ra_end)
1387			continue;
1388
1389		if (tstart < ra_start)
1390			fadump_release_reserved_area(tstart, ra_start);
1391		tstart = ra_end;
1392	}
1393
1394	if (tstart < end)
1395		fadump_release_reserved_area(tstart, end);
1396}
1397
1398static void fadump_invalidate_release_mem(void)
1399{
 
 
 
1400	mutex_lock(&fadump_mutex);
1401	if (!fw_dump.dump_active) {
1402		mutex_unlock(&fadump_mutex);
1403		return;
1404	}
1405
 
1406	fadump_cleanup();
1407	mutex_unlock(&fadump_mutex);
1408
1409	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1410	fadump_free_cpu_notes_buf();
1411
1412	/*
1413	 * Setup kernel metadata and initialize the kernel dump
1414	 * memory structure for FADump re-registration.
 
 
 
 
 
 
 
1415	 */
1416	if (fw_dump.ops->fadump_setup_metadata &&
1417	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1418		pr_warn("Failed to setup kernel metadata!\n");
1419	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
 
 
 
 
 
 
 
 
 
1420}
1421
1422static ssize_t release_mem_store(struct kobject *kobj,
1423				 struct kobj_attribute *attr,
1424				 const char *buf, size_t count)
1425{
1426	int input = -1;
1427
1428	if (!fw_dump.dump_active)
1429		return -EPERM;
1430
1431	if (kstrtoint(buf, 0, &input))
1432		return -EINVAL;
1433
1434	if (input == 1) {
1435		/*
1436		 * Take away the '/proc/vmcore'. We are releasing the dump
1437		 * memory, hence it will not be valid anymore.
1438		 */
1439#ifdef CONFIG_PROC_VMCORE
1440		vmcore_cleanup();
1441#endif
1442		fadump_invalidate_release_mem();
1443
1444	} else
1445		return -EINVAL;
1446	return count;
1447}
1448
1449/* Release the reserved memory and disable the FADump */
1450static void unregister_fadump(void)
1451{
1452	fadump_cleanup();
1453	fadump_release_memory(fw_dump.reserve_dump_area_start,
1454			      fw_dump.reserve_dump_area_size);
1455	fw_dump.fadump_enabled = 0;
1456	kobject_put(fadump_kobj);
1457}
1458
1459static ssize_t enabled_show(struct kobject *kobj,
1460			    struct kobj_attribute *attr,
1461			    char *buf)
1462{
1463	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1464}
1465
1466static ssize_t mem_reserved_show(struct kobject *kobj,
1467				 struct kobj_attribute *attr,
1468				 char *buf)
1469{
1470	return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
1471}
1472
1473static ssize_t registered_show(struct kobject *kobj,
1474			       struct kobj_attribute *attr,
1475			       char *buf)
1476{
1477	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1478}
1479
1480static ssize_t registered_store(struct kobject *kobj,
1481				struct kobj_attribute *attr,
1482				const char *buf, size_t count)
1483{
1484	int ret = 0;
1485	int input = -1;
1486
1487	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1488		return -EPERM;
1489
1490	if (kstrtoint(buf, 0, &input))
1491		return -EINVAL;
1492
1493	mutex_lock(&fadump_mutex);
1494
1495	switch (input) {
1496	case 0:
1497		if (fw_dump.dump_registered == 0) {
1498			goto unlock_out;
1499		}
1500
1501		/* Un-register Firmware-assisted dump */
1502		pr_debug("Un-register firmware-assisted dump\n");
1503		fw_dump.ops->fadump_unregister(&fw_dump);
1504		break;
1505	case 1:
1506		if (fw_dump.dump_registered == 1) {
1507			/* Un-register Firmware-assisted dump */
1508			fw_dump.ops->fadump_unregister(&fw_dump);
1509		}
1510		/* Register Firmware-assisted dump */
1511		ret = register_fadump();
1512		break;
1513	default:
1514		ret = -EINVAL;
1515		break;
1516	}
1517
1518unlock_out:
1519	mutex_unlock(&fadump_mutex);
1520	return ret < 0 ? ret : count;
1521}
1522
1523static int fadump_region_show(struct seq_file *m, void *private)
1524{
 
 
1525	if (!fw_dump.fadump_enabled)
1526		return 0;
1527
1528	mutex_lock(&fadump_mutex);
1529	fw_dump.ops->fadump_region_show(&fw_dump, m);
1530	mutex_unlock(&fadump_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	return 0;
1532}
1533
1534static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
1535static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
1536static struct kobj_attribute register_attr = __ATTR_RW(registered);
1537static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
1538
1539static struct attribute *fadump_attrs[] = {
1540	&enable_attr.attr,
1541	&register_attr.attr,
1542	&mem_reserved_attr.attr,
1543	NULL,
 
 
 
 
 
 
 
 
 
 
1544};
1545
1546ATTRIBUTE_GROUPS(fadump);
1547
1548DEFINE_SHOW_ATTRIBUTE(fadump_region);
1549
1550static void fadump_init_files(void)
1551{
 
1552	int rc = 0;
1553
1554	fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
1555	if (!fadump_kobj) {
1556		pr_err("failed to create fadump kobject\n");
1557		return;
1558	}
1559
1560	debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
1561			    &fadump_region_fops);
1562
1563	if (fw_dump.dump_active) {
1564		rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
1565		if (rc)
1566			pr_err("unable to create release_mem sysfs file (%d)\n",
1567			       rc);
1568	}
1569
1570	rc = sysfs_create_groups(fadump_kobj, fadump_groups);
1571	if (rc) {
1572		pr_err("sysfs group creation failed (%d), unregistering FADump",
1573		       rc);
1574		unregister_fadump();
1575		return;
1576	}
1577
1578	/*
1579	 * The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
1580	 * create symlink at old location to maintain backward compatibility.
1581	 *
1582	 *      - fadump_enabled -> fadump/enabled
1583	 *      - fadump_registered -> fadump/registered
1584	 *      - fadump_release_mem -> fadump/release_mem
1585	 */
1586	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1587						  "enabled", "fadump_enabled");
1588	if (rc) {
1589		pr_err("unable to create fadump_enabled symlink (%d)", rc);
1590		return;
1591	}
1592
1593	rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
1594						  "registered",
1595						  "fadump_registered");
1596	if (rc) {
1597		pr_err("unable to create fadump_registered symlink (%d)", rc);
1598		sysfs_remove_link(kernel_kobj, "fadump_enabled");
1599		return;
1600	}
1601
1602	if (fw_dump.dump_active) {
1603		rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
1604							  fadump_kobj,
1605							  "release_mem",
1606							  "fadump_release_mem");
1607		if (rc)
1608			pr_err("unable to create fadump_release_mem symlink (%d)",
1609			       rc);
1610	}
1611	return;
1612}
1613
1614/*
1615 * Prepare for firmware-assisted dump.
1616 */
1617int __init setup_fadump(void)
1618{
1619	if (!fw_dump.fadump_supported)
 
 
 
 
 
1620		return 0;
 
1621
1622	fadump_init_files();
1623	fadump_show_config();
1624
1625	if (!fw_dump.fadump_enabled)
1626		return 1;
1627
1628	/*
1629	 * If dump data is available then see if it is valid and prepare for
1630	 * saving it to the disk.
1631	 */
1632	if (fw_dump.dump_active) {
1633		/*
1634		 * if dump process fails then invalidate the registration
1635		 * and release memory before proceeding for re-registration.
1636		 */
1637		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1638			fadump_invalidate_release_mem();
1639	}
1640	/* Initialize the kernel dump memory structure for FAD registration. */
1641	else if (fw_dump.reserve_dump_area_size)
1642		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
 
1643
1644	return 1;
1645}
1646subsys_initcall(setup_fadump);
1647#else /* !CONFIG_PRESERVE_FA_DUMP */
1648
1649/* Scan the Firmware Assisted dump configuration details. */
1650int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1651				      int depth, void *data)
1652{
1653	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1654		return 0;
1655
1656	opal_fadump_dt_scan(&fw_dump, node);
1657	return 1;
1658}
1659
1660/*
1661 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1662 * preserve crash data. The subsequent memory preserving kernel boot
1663 * is likely to process this crash data.
1664 */
1665int __init fadump_reserve_mem(void)
1666{
1667	if (fw_dump.dump_active) {
1668		/*
1669		 * If last boot has crashed then reserve all the memory
1670		 * above boot memory to preserve crash data.
1671		 */
1672		pr_info("Preserving crash data for processing in next boot.\n");
1673		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1674	} else
1675		pr_debug("FADump-aware kernel..\n");
1676
1677	return 1;
1678}
1679#endif /* CONFIG_PRESERVE_FA_DUMP */
1680
1681/* Preserve everything above the base address */
1682static void __init fadump_reserve_crash_area(u64 base)
1683{
1684	u64 i, mstart, mend, msize;
1685
1686	for_each_mem_range(i, &mstart, &mend) {
1687		msize  = mend - mstart;
1688
1689		if ((mstart + msize) < base)
1690			continue;
1691
1692		if (mstart < base) {
1693			msize -= (base - mstart);
1694			mstart = base;
1695		}
1696
1697		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1698			(msize >> 20), mstart);
1699		memblock_reserve(mstart, msize);
1700	}
1701}
1702
1703unsigned long __init arch_reserved_kernel_pages(void)
1704{
1705	return memblock_reserved_size() / PAGE_SIZE;
1706}