Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/seq_file.h>
  34#include <linux/crash_dump.h>
  35#include <linux/kobject.h>
  36#include <linux/sysfs.h>
 
 
 
  37
  38#include <asm/debugfs.h>
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
 
  43#include <asm/setup.h>
  44
  45static struct fw_dump fw_dump;
  46static struct fadump_mem_struct fdm;
  47static const struct fadump_mem_struct *fdm_active;
  48
 
 
 
  49static DEFINE_MUTEX(fadump_mutex);
  50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  51int crash_mem_ranges;
  52
  53/* Scan the Firmware Assisted dump configuration details. */
  54int __init early_init_dt_scan_fw_dump(unsigned long node,
  55			const char *uname, int depth, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56{
  57	const __be32 *sections;
  58	int i, num_sections;
  59	int size;
  60	const __be32 *token;
  61
  62	if (depth != 1 || strcmp(uname, "rtas") != 0)
  63		return 0;
  64
  65	/*
  66	 * Check if Firmware Assisted dump is supported. if yes, check
  67	 * if dump has been initiated on last reboot.
  68	 */
  69	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  70	if (!token)
  71		return 1;
  72
  73	fw_dump.fadump_supported = 1;
  74	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
  75
  76	/*
  77	 * The 'ibm,kernel-dump' rtas node is present only if there is
  78	 * dump data waiting for us.
  79	 */
  80	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  81	if (fdm_active)
  82		fw_dump.dump_active = 1;
  83
  84	/* Get the sizes required to store dump data for the firmware provided
  85	 * dump sections.
  86	 * For each dump section type supported, a 32bit cell which defines
  87	 * the ID of a supported section followed by two 32 bit cells which
  88	 * gives teh size of the section in bytes.
  89	 */
  90	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  91					&size);
  92
  93	if (!sections)
 
 
 
 
 
 
 
 
  94		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96	num_sections = size / (3 * sizeof(u32));
 
 
 
 
 
  97
  98	for (i = 0; i < num_sections; i++, sections += 3) {
  99		u32 type = (u32)of_read_number(sections, 1);
 
 
 100
 101		switch (type) {
 102		case FADUMP_CPU_STATE_DATA:
 103			fw_dump.cpu_state_data_size =
 104					of_read_ulong(&sections[1], 2);
 105			break;
 106		case FADUMP_HPTE_REGION:
 107			fw_dump.hpte_region_size =
 108					of_read_ulong(&sections[1], 2);
 109			break;
 110		}
 111	}
 112
 113	return 1;
 114}
 115
 116/*
 117 * If fadump is registered, check if the memory provided
 118 * falls within boot memory area.
 119 */
 120int is_fadump_boot_memory_area(u64 addr, ulong size)
 121{
 
 
 122	if (!fw_dump.dump_registered)
 123		return 0;
 124
 125	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 
 
 
 
 
 
 
 
 126}
 127
 128int should_fadump_crash(void)
 129{
 130	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 131		return 0;
 132	return 1;
 133}
 134
 135int is_fadump_active(void)
 136{
 137	return fw_dump.dump_active;
 138}
 139
 140/*
 141 * Returns 1, if there are no holes in boot memory area,
 142 * 0 otherwise.
 143 */
 144static int is_boot_memory_area_contiguous(void)
 145{
 146	struct memblock_region *reg;
 147	unsigned long tstart, tend;
 148	unsigned long start_pfn = PHYS_PFN(RMA_START);
 149	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 150	unsigned int ret = 0;
 151
 152	for_each_memblock(memory, reg) {
 153		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 154		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 155		if (tstart < tend) {
 156			/* Memory hole from start_pfn to tstart */
 157			if (tstart > start_pfn)
 158				break;
 159
 160			if (tend == end_pfn) {
 161				ret = 1;
 162				break;
 163			}
 164
 165			start_pfn = tend + 1;
 166		}
 167	}
 168
 169	return ret;
 170}
 171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172/* Print firmware assisted dump configurations for debugging purpose. */
 173static void fadump_show_config(void)
 174{
 
 
 175	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 176			(fw_dump.fadump_supported ? "present" : "no support"));
 177
 178	if (!fw_dump.fadump_supported)
 179		return;
 180
 181	pr_debug("Fadump enabled    : %s\n",
 182				(fw_dump.fadump_enabled ? "yes" : "no"));
 183	pr_debug("Dump Active       : %s\n",
 184				(fw_dump.dump_active ? "yes" : "no"));
 185	pr_debug("Dump section sizes:\n");
 186	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 187	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 188	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 189}
 190
 191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 192				unsigned long addr)
 193{
 194	if (!fdm)
 195		return 0;
 196
 197	memset(fdm, 0, sizeof(struct fadump_mem_struct));
 198	addr = addr & PAGE_MASK;
 199
 200	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 201	fdm->header.dump_num_sections = cpu_to_be16(3);
 202	fdm->header.dump_status_flag = 0;
 203	fdm->header.offset_first_dump_section =
 204		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 205
 206	/*
 207	 * Fields for disk dump option.
 208	 * We are not using disk dump option, hence set these fields to 0.
 209	 */
 210	fdm->header.dd_block_size = 0;
 211	fdm->header.dd_block_offset = 0;
 212	fdm->header.dd_num_blocks = 0;
 213	fdm->header.dd_offset_disk_path = 0;
 214
 215	/* set 0 to disable an automatic dump-reboot. */
 216	fdm->header.max_time_auto = 0;
 217
 218	/* Kernel dump sections */
 219	/* cpu state data section. */
 220	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 221	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 222	fdm->cpu_state_data.source_address = 0;
 223	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 224	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 225	addr += fw_dump.cpu_state_data_size;
 226
 227	/* hpte region section */
 228	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 229	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 230	fdm->hpte_region.source_address = 0;
 231	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 232	fdm->hpte_region.destination_address = cpu_to_be64(addr);
 233	addr += fw_dump.hpte_region_size;
 234
 235	/* RMA region section */
 236	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 237	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 238	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 239	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 240	fdm->rmr_region.destination_address = cpu_to_be64(addr);
 241	addr += fw_dump.boot_memory_size;
 242
 243	return addr;
 244}
 245
 246/**
 247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 248 *
 249 * Function to find the largest memory size we need to reserve during early
 250 * boot process. This will be the size of the memory that is required for a
 251 * kernel to boot successfully.
 252 *
 253 * This function has been taken from phyp-assisted dump feature implementation.
 254 *
 255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 256 *
 257 * TODO: Come up with better approach to find out more accurate memory size
 258 * that is required for a kernel to boot successfully.
 259 *
 260 */
 261static inline unsigned long fadump_calculate_reserve_size(void)
 262{
 
 263	int ret;
 264	unsigned long long base, size;
 265
 266	if (fw_dump.reserve_bootvar)
 267		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 268
 269	/*
 270	 * Check if the size is specified through crashkernel= cmdline
 271	 * option. If yes, then use that but ignore base as fadump reserves
 272	 * memory at a predefined offset.
 273	 */
 274	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 275				&size, &base);
 276	if (ret == 0 && size > 0) {
 277		unsigned long max_size;
 278
 279		if (fw_dump.reserve_bootvar)
 280			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 281
 282		fw_dump.reserve_bootvar = (unsigned long)size;
 283
 284		/*
 285		 * Adjust if the boot memory size specified is above
 286		 * the upper limit.
 287		 */
 288		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 289		if (fw_dump.reserve_bootvar > max_size) {
 290			fw_dump.reserve_bootvar = max_size;
 291			pr_info("Adjusted boot memory size to %luMB\n",
 292				(fw_dump.reserve_bootvar >> 20));
 293		}
 294
 295		return fw_dump.reserve_bootvar;
 296	} else if (fw_dump.reserve_bootvar) {
 297		/*
 298		 * 'fadump_reserve_mem=' is being used to reserve memory
 299		 * for firmware-assisted dump.
 300		 */
 301		return fw_dump.reserve_bootvar;
 302	}
 303
 304	/* divide by 20 to get 5% of value */
 305	size = memblock_phys_mem_size() / 20;
 306
 307	/* round it down in multiples of 256 */
 308	size = size & ~0x0FFFFFFFUL;
 309
 310	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 311	if (memory_limit && size > memory_limit)
 312		size = memory_limit;
 313
 314	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 
 315}
 316
 317/*
 318 * Calculate the total memory size required to be reserved for
 319 * firmware-assisted dump registration.
 320 */
 321static unsigned long get_fadump_area_size(void)
 322{
 323	unsigned long size = 0;
 324
 325	size += fw_dump.cpu_state_data_size;
 326	size += fw_dump.hpte_region_size;
 327	size += fw_dump.boot_memory_size;
 328	size += sizeof(struct fadump_crash_info_header);
 329	size += sizeof(struct elfhdr); /* ELF core header.*/
 330	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 331	/* Program headers for crash memory regions. */
 332	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 333
 334	size = PAGE_ALIGN(size);
 
 
 
 
 335	return size;
 336}
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338int __init fadump_reserve_mem(void)
 339{
 340	unsigned long base, size, memory_boundary;
 
 
 341
 342	if (!fw_dump.fadump_enabled)
 343		return 0;
 344
 345	if (!fw_dump.fadump_supported) {
 346		printk(KERN_INFO "Firmware-assisted dump is not supported on"
 347				" this hardware\n");
 348		fw_dump.fadump_enabled = 0;
 349		return 0;
 350	}
 
 351	/*
 352	 * Initialize boot memory size
 353	 * If dump is active then we have already calculated the size during
 354	 * first kernel.
 355	 */
 356	if (fdm_active)
 357		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 358	else
 359		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360
 361	/*
 362	 * Calculate the memory boundary.
 363	 * If memory_limit is less than actual memory boundary then reserve
 364	 * the memory for fadump beyond the memory_limit and adjust the
 365	 * memory_limit accordingly, so that the running kernel can run with
 366	 * specified memory_limit.
 367	 */
 368	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 369		size = get_fadump_area_size();
 370		if ((memory_limit + size) < memblock_end_of_DRAM())
 371			memory_limit += size;
 372		else
 373			memory_limit = memblock_end_of_DRAM();
 374		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 375				" dump, now %#016llx\n", memory_limit);
 376	}
 377	if (memory_limit)
 378		memory_boundary = memory_limit;
 379	else
 380		memory_boundary = memblock_end_of_DRAM();
 381
 
 
 
 382	if (fw_dump.dump_active) {
 383		printk(KERN_INFO "Firmware-assisted dump is active.\n");
 
 
 
 
 
 
 
 
 
 384		/*
 385		 * If last boot has crashed then reserve all the memory
 386		 * above boot_memory_size so that we don't touch it until
 387		 * dump is written to disk by userspace tool. This memory
 388		 * will be released for general use once the dump is saved.
 389		 */
 390		base = fw_dump.boot_memory_size;
 391		size = memory_boundary - base;
 392		memblock_reserve(base, size);
 393		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 394				"for saving crash dump\n",
 395				(unsigned long)(size >> 20),
 396				(unsigned long)(base >> 20));
 397
 398		fw_dump.fadumphdr_addr =
 399				be64_to_cpu(fdm_active->rmr_region.destination_address) +
 400				be64_to_cpu(fdm_active->rmr_region.source_len);
 401		pr_debug("fadumphdr_addr = %p\n",
 402				(void *) fw_dump.fadumphdr_addr);
 403	} else {
 404		size = get_fadump_area_size();
 405
 
 
 
 
 406		/*
 407		 * Reserve memory at an offset closer to bottom of the RAM to
 408		 * minimize the impact of memory hot-remove operation. We can't
 409		 * use memblock_find_in_range() here since it doesn't allocate
 410		 * from bottom to top.
 411		 */
 412		for (base = fw_dump.boot_memory_size;
 413		     base <= (memory_boundary - size);
 414		     base += size) {
 415			if (memblock_is_region_memory(base, size) &&
 416			    !memblock_is_region_reserved(base, size))
 417				break;
 
 
 
 418		}
 419		if ((base > (memory_boundary - size)) ||
 420		    memblock_reserve(base, size)) {
 421			pr_err("Failed to reserve memory\n");
 422			return 0;
 
 
 
 
 
 
 
 
 
 423		}
 424
 425		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 426			"assisted dump (System RAM: %ldMB)\n",
 427			(unsigned long)(size >> 20),
 428			(unsigned long)(base >> 20),
 429			(unsigned long)(memblock_phys_mem_size() >> 20));
 430	}
 431
 432	fw_dump.reserve_dump_area_start = base;
 433	fw_dump.reserve_dump_area_size = size;
 434	return 1;
 435}
 436
 437unsigned long __init arch_reserved_kernel_pages(void)
 438{
 439	return memblock_reserved_size() / PAGE_SIZE;
 
 440}
 441
 442/* Look for fadump= cmdline option. */
 443static int __init early_fadump_param(char *p)
 444{
 445	if (!p)
 446		return 1;
 447
 448	if (strncmp(p, "on", 2) == 0)
 449		fw_dump.fadump_enabled = 1;
 450	else if (strncmp(p, "off", 3) == 0)
 451		fw_dump.fadump_enabled = 0;
 
 
 
 
 452
 453	return 0;
 454}
 455early_param("fadump", early_fadump_param);
 456
 457/*
 458 * Look for fadump_reserve_mem= cmdline option
 459 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 460 *       the sooner 'crashkernel=' parameter is accustomed to.
 461 */
 462static int __init early_fadump_reserve_mem(char *p)
 463{
 464	if (p)
 465		fw_dump.reserve_bootvar = memparse(p, &p);
 466	return 0;
 467}
 468early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 469
 470static int register_fw_dump(struct fadump_mem_struct *fdm)
 471{
 472	int rc, err;
 473	unsigned int wait_time;
 474
 475	pr_debug("Registering for firmware-assisted kernel dump...\n");
 476
 477	/* TODO: Add upper time limit for the delay */
 478	do {
 479		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 480			FADUMP_REGISTER, fdm,
 481			sizeof(struct fadump_mem_struct));
 482
 483		wait_time = rtas_busy_delay_time(rc);
 484		if (wait_time)
 485			mdelay(wait_time);
 486
 487	} while (wait_time);
 488
 489	err = -EIO;
 490	switch (rc) {
 491	default:
 492		pr_err("Failed to register. Unknown Error(%d).\n", rc);
 493		break;
 494	case -1:
 495		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 496			" dump. Hardware Error(%d).\n", rc);
 497		break;
 498	case -3:
 499		if (!is_boot_memory_area_contiguous())
 500			pr_err("Can't have holes in boot memory area while "
 501			       "registering fadump\n");
 502
 503		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 504			" dump. Parameter Error(%d).\n", rc);
 505		err = -EINVAL;
 506		break;
 507	case -9:
 508		printk(KERN_ERR "firmware-assisted kernel dump is already "
 509			" registered.");
 510		fw_dump.dump_registered = 1;
 511		err = -EEXIST;
 512		break;
 513	case 0:
 514		printk(KERN_INFO "firmware-assisted kernel dump registration"
 515			" is successful\n");
 516		fw_dump.dump_registered = 1;
 517		err = 0;
 518		break;
 519	}
 520	return err;
 521}
 522
 523void crash_fadump(struct pt_regs *regs, const char *str)
 524{
 525	struct fadump_crash_info_header *fdh = NULL;
 526	int old_cpu, this_cpu;
 527
 528	if (!should_fadump_crash())
 529		return;
 530
 531	/*
 532	 * old_cpu == -1 means this is the first CPU which has come here,
 533	 * go ahead and trigger fadump.
 534	 *
 535	 * old_cpu != -1 means some other CPU has already on it's way
 536	 * to trigger fadump, just keep looping here.
 537	 */
 538	this_cpu = smp_processor_id();
 539	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 540
 541	if (old_cpu != -1) {
 542		/*
 543		 * We can't loop here indefinitely. Wait as long as fadump
 544		 * is in force. If we race with fadump un-registration this
 545		 * loop will break and then we go down to normal panic path
 546		 * and reboot. If fadump is in force the first crashing
 547		 * cpu will definitely trigger fadump.
 548		 */
 549		while (fw_dump.dump_registered)
 550			cpu_relax();
 551		return;
 552	}
 553
 554	fdh = __va(fw_dump.fadumphdr_addr);
 555	fdh->crashing_cpu = crashing_cpu;
 556	crash_save_vmcoreinfo();
 557
 558	if (regs)
 559		fdh->regs = *regs;
 560	else
 561		ppc_save_regs(&fdh->regs);
 562
 563	fdh->online_mask = *cpu_online_mask;
 564
 565	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
 566	rtas_os_term((char *)str);
 567}
 568
 569#define GPR_MASK	0xffffff0000000000
 570static inline int fadump_gpr_index(u64 id)
 571{
 572	int i = -1;
 573	char str[3];
 574
 575	if ((id & GPR_MASK) == REG_ID("GPR")) {
 576		/* get the digits at the end */
 577		id &= ~GPR_MASK;
 578		id >>= 24;
 579		str[2] = '\0';
 580		str[1] = id & 0xff;
 581		str[0] = (id >> 8) & 0xff;
 582		sscanf(str, "%d", &i);
 583		if (i > 31)
 584			i = -1;
 585	}
 586	return i;
 587}
 588
 589static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 590								u64 reg_val)
 591{
 592	int i;
 593
 594	i = fadump_gpr_index(reg_id);
 595	if (i >= 0)
 596		regs->gpr[i] = (unsigned long)reg_val;
 597	else if (reg_id == REG_ID("NIA"))
 598		regs->nip = (unsigned long)reg_val;
 599	else if (reg_id == REG_ID("MSR"))
 600		regs->msr = (unsigned long)reg_val;
 601	else if (reg_id == REG_ID("CTR"))
 602		regs->ctr = (unsigned long)reg_val;
 603	else if (reg_id == REG_ID("LR"))
 604		regs->link = (unsigned long)reg_val;
 605	else if (reg_id == REG_ID("XER"))
 606		regs->xer = (unsigned long)reg_val;
 607	else if (reg_id == REG_ID("CR"))
 608		regs->ccr = (unsigned long)reg_val;
 609	else if (reg_id == REG_ID("DAR"))
 610		regs->dar = (unsigned long)reg_val;
 611	else if (reg_id == REG_ID("DSISR"))
 612		regs->dsisr = (unsigned long)reg_val;
 613}
 614
 615static struct fadump_reg_entry*
 616fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 617{
 618	memset(regs, 0, sizeof(struct pt_regs));
 619
 620	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 621		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 622					be64_to_cpu(reg_entry->reg_value));
 623		reg_entry++;
 624	}
 625	reg_entry++;
 626	return reg_entry;
 627}
 628
 629static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 630{
 631	struct elf_prstatus prstatus;
 632
 633	memset(&prstatus, 0, sizeof(prstatus));
 634	/*
 635	 * FIXME: How do i get PID? Do I really need it?
 636	 * prstatus.pr_pid = ????
 637	 */
 638	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 639	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 640			      &prstatus, sizeof(prstatus));
 641	return buf;
 642}
 643
 644static void fadump_update_elfcore_header(char *bufp)
 645{
 646	struct elfhdr *elf;
 647	struct elf_phdr *phdr;
 648
 649	elf = (struct elfhdr *)bufp;
 650	bufp += sizeof(struct elfhdr);
 651
 652	/* First note is a place holder for cpu notes info. */
 653	phdr = (struct elf_phdr *)bufp;
 654
 655	if (phdr->p_type == PT_NOTE) {
 656		phdr->p_paddr = fw_dump.cpu_notes_buf;
 657		phdr->p_offset	= phdr->p_paddr;
 658		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 659		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 660	}
 661	return;
 662}
 663
 664static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 665{
 666	void *vaddr;
 667	struct page *page;
 668	unsigned long order, count, i;
 669
 670	order = get_order(size);
 671	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 672	if (!vaddr)
 673		return NULL;
 674
 675	count = 1 << order;
 676	page = virt_to_page(vaddr);
 677	for (i = 0; i < count; i++)
 678		SetPageReserved(page + i);
 679	return vaddr;
 680}
 681
 682static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 683{
 684	struct page *page;
 685	unsigned long order, count, i;
 686
 687	order = get_order(size);
 688	count = 1 << order;
 689	page = virt_to_page(vaddr);
 690	for (i = 0; i < count; i++)
 691		ClearPageReserved(page + i);
 692	__free_pages(page, order);
 693}
 694
 695/*
 696 * Read CPU state dump data and convert it into ELF notes.
 697 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 698 * used to access the data to allow for additional fields to be added without
 699 * affecting compatibility. Each list of registers for a CPU starts with
 700 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 701 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 702 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 703 * of register value. For more details refer to PAPR document.
 704 *
 705 * Only for the crashing cpu we ignore the CPU dump data and get exact
 706 * state from fadump crash info structure populated by first kernel at the
 707 * time of crash.
 708 */
 709static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 710{
 711	struct fadump_reg_save_area_header *reg_header;
 712	struct fadump_reg_entry *reg_entry;
 713	struct fadump_crash_info_header *fdh = NULL;
 714	void *vaddr;
 715	unsigned long addr;
 716	u32 num_cpus, *note_buf;
 717	struct pt_regs regs;
 718	int i, rc = 0, cpu = 0;
 719
 720	if (!fdm->cpu_state_data.bytes_dumped)
 721		return -EINVAL;
 722
 723	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 724	vaddr = __va(addr);
 725
 726	reg_header = vaddr;
 727	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 728		printk(KERN_ERR "Unable to read register save area.\n");
 729		return -ENOENT;
 730	}
 731	pr_debug("--------CPU State Data------------\n");
 732	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 733	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 734
 735	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 736	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 737	pr_debug("NumCpus     : %u\n", num_cpus);
 738	vaddr += sizeof(u32);
 739	reg_entry = (struct fadump_reg_entry *)vaddr;
 740
 741	/* Allocate buffer to hold cpu crash notes. */
 742	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 743	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 744	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 745	if (!note_buf) {
 746		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 747			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 
 748		return -ENOMEM;
 749	}
 750	fw_dump.cpu_notes_buf = __pa(note_buf);
 751
 752	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 753			(num_cpus * sizeof(note_buf_t)), note_buf);
 754
 755	if (fw_dump.fadumphdr_addr)
 756		fdh = __va(fw_dump.fadumphdr_addr);
 757
 758	for (i = 0; i < num_cpus; i++) {
 759		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 760			printk(KERN_ERR "Unable to read CPU state data\n");
 761			rc = -ENOENT;
 762			goto error_out;
 763		}
 764		/* Lower 4 bytes of reg_value contains logical cpu id */
 765		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 766		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
 767			SKIP_TO_NEXT_CPU(reg_entry);
 768			continue;
 769		}
 770		pr_debug("Reading register data for cpu %d...\n", cpu);
 771		if (fdh && fdh->crashing_cpu == cpu) {
 772			regs = fdh->regs;
 773			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 774			SKIP_TO_NEXT_CPU(reg_entry);
 775		} else {
 776			reg_entry++;
 777			reg_entry = fadump_read_registers(reg_entry, &regs);
 778			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 779		}
 780	}
 781	final_note(note_buf);
 782
 783	if (fdh) {
 784		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 785							fdh->elfcorehdr_addr);
 786		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 787	}
 788	return 0;
 
 789
 790error_out:
 791	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 792					fw_dump.cpu_notes_buf_size);
 793	fw_dump.cpu_notes_buf = 0;
 
 
 
 
 794	fw_dump.cpu_notes_buf_size = 0;
 795	return rc;
 796
 
 
 
 
 
 
 797}
 798
 799/*
 800 * Validate and process the dump data stored by firmware before exporting
 801 * it through '/proc/vmcore'.
 802 */
 803static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 804{
 805	struct fadump_crash_info_header *fdh;
 806	int rc = 0;
 807
 808	if (!fdm_active || !fw_dump.fadumphdr_addr)
 809		return -EINVAL;
 810
 811	/* Check if the dump data is valid. */
 812	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 813			(fdm_active->cpu_state_data.error_flags != 0) ||
 814			(fdm_active->rmr_region.error_flags != 0)) {
 815		printk(KERN_ERR "Dump taken by platform is not valid\n");
 816		return -EINVAL;
 817	}
 818	if ((fdm_active->rmr_region.bytes_dumped !=
 819			fdm_active->rmr_region.source_len) ||
 820			!fdm_active->cpu_state_data.bytes_dumped) {
 821		printk(KERN_ERR "Dump taken by platform is incomplete\n");
 822		return -EINVAL;
 823	}
 824
 825	/* Validate the fadump crash info header */
 826	fdh = __va(fw_dump.fadumphdr_addr);
 827	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 828		printk(KERN_ERR "Crash info header is not valid.\n");
 829		return -EINVAL;
 830	}
 831
 832	rc = fadump_build_cpu_notes(fdm_active);
 833	if (rc)
 834		return rc;
 
 
 
 
 
 
 835
 836	/*
 837	 * We are done validating dump info and elfcore header is now ready
 838	 * to be exported. set elfcorehdr_addr so that vmcore module will
 839	 * export the elfcore header through '/proc/vmcore'.
 840	 */
 841	elfcorehdr_addr = fdh->elfcorehdr_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842
 843	return 0;
 844}
 
 845
 846static inline void fadump_add_crash_memory(unsigned long long base,
 847					unsigned long long end)
 848{
 849	if (base == end)
 850		return;
 851
 852	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 853		crash_mem_ranges, base, end - 1, (end - base));
 854	crash_memory_ranges[crash_mem_ranges].base = base;
 855	crash_memory_ranges[crash_mem_ranges].size = end - base;
 856	crash_mem_ranges++;
 857}
 858
 859static void fadump_exclude_reserved_area(unsigned long long start,
 860					unsigned long long end)
 861{
 862	unsigned long long ra_start, ra_end;
 
 863
 864	ra_start = fw_dump.reserve_dump_area_start;
 865	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 866
 867	if ((ra_start < end) && (ra_end > start)) {
 868		if ((start < ra_start) && (end > ra_end)) {
 869			fadump_add_crash_memory(start, ra_start);
 870			fadump_add_crash_memory(ra_end, end);
 
 
 
 
 
 871		} else if (start < ra_start) {
 872			fadump_add_crash_memory(start, ra_start);
 
 873		} else if (ra_end < end) {
 874			fadump_add_crash_memory(ra_end, end);
 
 875		}
 876	} else
 877		fadump_add_crash_memory(start, end);
 
 
 878}
 879
 880static int fadump_init_elfcore_header(char *bufp)
 881{
 882	struct elfhdr *elf;
 883
 884	elf = (struct elfhdr *) bufp;
 885	bufp += sizeof(struct elfhdr);
 886	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 887	elf->e_ident[EI_CLASS] = ELF_CLASS;
 888	elf->e_ident[EI_DATA] = ELF_DATA;
 889	elf->e_ident[EI_VERSION] = EV_CURRENT;
 890	elf->e_ident[EI_OSABI] = ELF_OSABI;
 891	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 892	elf->e_type = ET_CORE;
 893	elf->e_machine = ELF_ARCH;
 894	elf->e_version = EV_CURRENT;
 895	elf->e_entry = 0;
 896	elf->e_phoff = sizeof(struct elfhdr);
 897	elf->e_shoff = 0;
 898#if defined(_CALL_ELF)
 899	elf->e_flags = _CALL_ELF;
 900#else
 901	elf->e_flags = 0;
 902#endif
 903	elf->e_ehsize = sizeof(struct elfhdr);
 904	elf->e_phentsize = sizeof(struct elf_phdr);
 905	elf->e_phnum = 0;
 906	elf->e_shentsize = 0;
 907	elf->e_shnum = 0;
 908	elf->e_shstrndx = 0;
 909
 910	return 0;
 911}
 912
 913/*
 914 * Traverse through memblock structure and setup crash memory ranges. These
 915 * ranges will be used create PT_LOAD program headers in elfcore header.
 916 */
 917static void fadump_setup_crash_memory_ranges(void)
 918{
 919	struct memblock_region *reg;
 920	unsigned long long start, end;
 
 921
 922	pr_debug("Setup crash memory ranges.\n");
 923	crash_mem_ranges = 0;
 
 924	/*
 925	 * add the first memory chunk (RMA_START through boot_memory_size) as
 926	 * a separate memory chunk. The reason is, at the time crash firmware
 927	 * will move the content of this memory chunk to different location
 928	 * specified during fadump registration. We need to create a separate
 929	 * program header for this chunk with the correct offset.
 930	 */
 931	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 
 
 
 
 
 
 932
 933	for_each_memblock(memory, reg) {
 934		start = (unsigned long long)reg->base;
 935		end = start + (unsigned long long)reg->size;
 936
 937		/*
 938		 * skip the first memory chunk that is already added (RMA_START
 939		 * through boot_memory_size). This logic needs a relook if and
 940		 * when RMA_START changes to a non-zero value.
 941		 */
 942		BUILD_BUG_ON(RMA_START != 0);
 943		if (start < fw_dump.boot_memory_size) {
 944			if (end > fw_dump.boot_memory_size)
 945				start = fw_dump.boot_memory_size;
 946			else
 947				continue;
 948		}
 949
 950		/* add this range excluding the reserved dump area. */
 951		fadump_exclude_reserved_area(start, end);
 
 
 952	}
 
 
 953}
 954
 955/*
 956 * If the given physical address falls within the boot memory region then
 957 * return the relocated address that points to the dump region reserved
 958 * for saving initial boot memory contents.
 959 */
 960static inline unsigned long fadump_relocate(unsigned long paddr)
 961{
 962	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 963		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 964	else
 965		return paddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966}
 967
 968static int fadump_create_elfcore_headers(char *bufp)
 969{
 970	struct elfhdr *elf;
 971	struct elf_phdr *phdr;
 972	int i;
 
 973
 974	fadump_init_elfcore_header(bufp);
 975	elf = (struct elfhdr *)bufp;
 976	bufp += sizeof(struct elfhdr);
 977
 978	/*
 979	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 980	 * will be populated during second kernel boot after crash. Hence
 981	 * this PT_NOTE will always be the first elf note.
 982	 *
 983	 * NOTE: Any new ELF note addition should be placed after this note.
 984	 */
 985	phdr = (struct elf_phdr *)bufp;
 986	bufp += sizeof(struct elf_phdr);
 987	phdr->p_type = PT_NOTE;
 988	phdr->p_flags = 0;
 989	phdr->p_vaddr = 0;
 990	phdr->p_align = 0;
 991
 992	phdr->p_offset = 0;
 993	phdr->p_paddr = 0;
 994	phdr->p_filesz = 0;
 995	phdr->p_memsz = 0;
 996
 997	(elf->e_phnum)++;
 998
 999	/* setup ELF PT_NOTE for vmcoreinfo */
1000	phdr = (struct elf_phdr *)bufp;
1001	bufp += sizeof(struct elf_phdr);
1002	phdr->p_type	= PT_NOTE;
1003	phdr->p_flags	= 0;
1004	phdr->p_vaddr	= 0;
1005	phdr->p_align	= 0;
1006
1007	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1008	phdr->p_offset	= phdr->p_paddr;
1009	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
1010
1011	/* Increment number of program headers. */
1012	(elf->e_phnum)++;
1013
1014	/* setup PT_LOAD sections. */
 
 
 
 
 
1015
1016	for (i = 0; i < crash_mem_ranges; i++) {
1017		unsigned long long mbase, msize;
1018		mbase = crash_memory_ranges[i].base;
1019		msize = crash_memory_ranges[i].size;
1020
1021		if (!msize)
1022			continue;
1023
1024		phdr = (struct elf_phdr *)bufp;
1025		bufp += sizeof(struct elf_phdr);
1026		phdr->p_type	= PT_LOAD;
1027		phdr->p_flags	= PF_R|PF_W|PF_X;
1028		phdr->p_offset	= mbase;
1029
1030		if (mbase == RMA_START) {
1031			/*
1032			 * The entire RMA region will be moved by firmware
1033			 * to the specified destination_address. Hence set
1034			 * the correct offset.
1035			 */
1036			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
 
 
 
 
1037		}
1038
1039		phdr->p_paddr = mbase;
1040		phdr->p_vaddr = (unsigned long)__va(mbase);
1041		phdr->p_filesz = msize;
1042		phdr->p_memsz = msize;
1043		phdr->p_align = 0;
1044
1045		/* Increment number of program headers. */
1046		(elf->e_phnum)++;
1047	}
1048	return 0;
1049}
1050
1051static unsigned long init_fadump_header(unsigned long addr)
1052{
1053	struct fadump_crash_info_header *fdh;
1054
1055	if (!addr)
1056		return 0;
1057
1058	fw_dump.fadumphdr_addr = addr;
1059	fdh = __va(addr);
1060	addr += sizeof(struct fadump_crash_info_header);
1061
1062	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1063	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1064	fdh->elfcorehdr_addr = addr;
1065	/* We will set the crashing cpu id in crash_fadump() during crash. */
1066	fdh->crashing_cpu = CPU_UNKNOWN;
1067
1068	return addr;
1069}
1070
1071static int register_fadump(void)
1072{
1073	unsigned long addr;
1074	void *vaddr;
 
1075
1076	/*
1077	 * If no memory is reserved then we can not register for firmware-
1078	 * assisted dump.
1079	 */
1080	if (!fw_dump.reserve_dump_area_size)
1081		return -ENODEV;
1082
1083	fadump_setup_crash_memory_ranges();
 
 
 
 
1084
1085	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1086	/* Initialize fadump crash info header. */
1087	addr = init_fadump_header(addr);
1088	vaddr = __va(addr);
1089
1090	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1091	fadump_create_elfcore_headers(vaddr);
1092
1093	/* register the future kernel dump with firmware. */
1094	return register_fw_dump(&fdm);
1095}
1096
1097static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1098{
1099	int rc = 0;
1100	unsigned int wait_time;
1101
1102	pr_debug("Un-register firmware-assisted dump\n");
1103
1104	/* TODO: Add upper time limit for the delay */
1105	do {
1106		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1107			FADUMP_UNREGISTER, fdm,
1108			sizeof(struct fadump_mem_struct));
1109
1110		wait_time = rtas_busy_delay_time(rc);
1111		if (wait_time)
1112			mdelay(wait_time);
1113	} while (wait_time);
1114
1115	if (rc) {
1116		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1117			" unexpected error(%d).\n", rc);
1118		return rc;
1119	}
1120	fw_dump.dump_registered = 0;
1121	return 0;
1122}
1123
1124static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1125{
1126	int rc = 0;
1127	unsigned int wait_time;
1128
1129	pr_debug("Invalidating firmware-assisted dump registration\n");
1130
1131	/* TODO: Add upper time limit for the delay */
1132	do {
1133		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1134			FADUMP_INVALIDATE, fdm,
1135			sizeof(struct fadump_mem_struct));
1136
1137		wait_time = rtas_busy_delay_time(rc);
1138		if (wait_time)
1139			mdelay(wait_time);
1140	} while (wait_time);
1141
1142	if (rc) {
1143		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1144		return rc;
1145	}
1146	fw_dump.dump_active = 0;
1147	fdm_active = NULL;
1148	return 0;
1149}
1150
1151void fadump_cleanup(void)
1152{
 
 
 
1153	/* Invalidate the registration only if dump is active. */
1154	if (fw_dump.dump_active) {
1155		init_fadump_mem_struct(&fdm,
1156			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1157		fadump_invalidate_dump(&fdm);
 
 
 
1158	}
 
 
 
1159}
1160
1161static void fadump_free_reserved_memory(unsigned long start_pfn,
1162					unsigned long end_pfn)
1163{
1164	unsigned long pfn;
1165	unsigned long time_limit = jiffies + HZ;
1166
1167	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1168		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1169
1170	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1171		free_reserved_page(pfn_to_page(pfn));
1172
1173		if (time_after(jiffies, time_limit)) {
1174			cond_resched();
1175			time_limit = jiffies + HZ;
1176		}
1177	}
1178}
1179
1180/*
1181 * Skip memory holes and free memory that was actually reserved.
1182 */
1183static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1184{
 
1185	struct memblock_region *reg;
1186	unsigned long tstart, tend;
1187	unsigned long start_pfn = PHYS_PFN(start);
1188	unsigned long end_pfn = PHYS_PFN(end);
1189
 
 
1190	for_each_memblock(memory, reg) {
1191		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1192		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1193		if (tstart < tend) {
1194			fadump_free_reserved_memory(tstart, tend);
1195
1196			if (tend == end_pfn)
1197				break;
1198
1199			start_pfn = tend + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1200		}
1201	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202}
1203
1204/*
1205 * Release the memory that was reserved in early boot to preserve the memory
1206 * contents. The released memory will be available for general use.
1207 */
1208static void fadump_release_memory(unsigned long begin, unsigned long end)
1209{
1210	unsigned long ra_start, ra_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1211
1212	ra_start = fw_dump.reserve_dump_area_start;
1213	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1214
1215	/*
1216	 * exclude the dump reserve area. Will reuse it for next
1217	 * fadump registration.
1218	 */
1219	if (begin < ra_end && end > ra_start) {
1220		if (begin < ra_start)
1221			fadump_release_reserved_area(begin, ra_start);
1222		if (end > ra_end)
1223			fadump_release_reserved_area(ra_end, end);
1224	} else
1225		fadump_release_reserved_area(begin, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226}
1227
1228static void fadump_invalidate_release_mem(void)
1229{
1230	unsigned long reserved_area_start, reserved_area_end;
1231	unsigned long destination_address;
1232
1233	mutex_lock(&fadump_mutex);
1234	if (!fw_dump.dump_active) {
1235		mutex_unlock(&fadump_mutex);
1236		return;
1237	}
1238
1239	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1240	fadump_cleanup();
1241	mutex_unlock(&fadump_mutex);
1242
 
 
 
1243	/*
1244	 * Save the current reserved memory bounds we will require them
1245	 * later for releasing the memory for general use.
1246	 */
1247	reserved_area_start = fw_dump.reserve_dump_area_start;
1248	reserved_area_end = reserved_area_start +
1249			fw_dump.reserve_dump_area_size;
1250	/*
1251	 * Setup reserve_dump_area_start and its size so that we can
1252	 * reuse this reserved memory for Re-registration.
1253	 */
1254	fw_dump.reserve_dump_area_start = destination_address;
1255	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1256
1257	fadump_release_memory(reserved_area_start, reserved_area_end);
1258	if (fw_dump.cpu_notes_buf) {
1259		fadump_cpu_notes_buf_free(
1260				(unsigned long)__va(fw_dump.cpu_notes_buf),
1261				fw_dump.cpu_notes_buf_size);
1262		fw_dump.cpu_notes_buf = 0;
1263		fw_dump.cpu_notes_buf_size = 0;
1264	}
1265	/* Initialize the kernel dump memory structure for FAD registration. */
1266	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1267}
1268
1269static ssize_t fadump_release_memory_store(struct kobject *kobj,
1270					struct kobj_attribute *attr,
1271					const char *buf, size_t count)
1272{
1273	int input = -1;
1274
1275	if (!fw_dump.dump_active)
1276		return -EPERM;
1277
1278	if (kstrtoint(buf, 0, &input))
1279		return -EINVAL;
1280
1281	if (input == 1) {
1282		/*
1283		 * Take away the '/proc/vmcore'. We are releasing the dump
1284		 * memory, hence it will not be valid anymore.
1285		 */
1286#ifdef CONFIG_PROC_VMCORE
1287		vmcore_cleanup();
1288#endif
1289		fadump_invalidate_release_mem();
1290
1291	} else
1292		return -EINVAL;
1293	return count;
1294}
1295
1296static ssize_t fadump_enabled_show(struct kobject *kobj,
1297					struct kobj_attribute *attr,
1298					char *buf)
1299{
1300	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1301}
1302
1303static ssize_t fadump_register_show(struct kobject *kobj,
1304					struct kobj_attribute *attr,
1305					char *buf)
1306{
1307	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1308}
1309
1310static ssize_t fadump_register_store(struct kobject *kobj,
1311					struct kobj_attribute *attr,
1312					const char *buf, size_t count)
1313{
1314	int ret = 0;
1315	int input = -1;
1316
1317	if (!fw_dump.fadump_enabled || fdm_active)
1318		return -EPERM;
1319
1320	if (kstrtoint(buf, 0, &input))
1321		return -EINVAL;
1322
1323	mutex_lock(&fadump_mutex);
1324
1325	switch (input) {
1326	case 0:
1327		if (fw_dump.dump_registered == 0) {
1328			goto unlock_out;
1329		}
 
1330		/* Un-register Firmware-assisted dump */
1331		fadump_unregister_dump(&fdm);
 
1332		break;
1333	case 1:
1334		if (fw_dump.dump_registered == 1) {
1335			ret = -EEXIST;
1336			goto unlock_out;
1337		}
1338		/* Register Firmware-assisted dump */
1339		ret = register_fadump();
1340		break;
1341	default:
1342		ret = -EINVAL;
1343		break;
1344	}
1345
1346unlock_out:
1347	mutex_unlock(&fadump_mutex);
1348	return ret < 0 ? ret : count;
1349}
1350
1351static int fadump_region_show(struct seq_file *m, void *private)
1352{
1353	const struct fadump_mem_struct *fdm_ptr;
1354
1355	if (!fw_dump.fadump_enabled)
1356		return 0;
1357
1358	mutex_lock(&fadump_mutex);
1359	if (fdm_active)
1360		fdm_ptr = fdm_active;
1361	else {
1362		mutex_unlock(&fadump_mutex);
1363		fdm_ptr = &fdm;
1364	}
1365
1366	seq_printf(m,
1367			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1368			"Dumped: %#llx\n",
1369			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1370			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1371			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1372			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1373			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1374	seq_printf(m,
1375			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1376			"Dumped: %#llx\n",
1377			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1378			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1379			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1380			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1381			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1382	seq_printf(m,
1383			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1384			"Dumped: %#llx\n",
1385			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1386			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1387			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1388			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1389			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1390
1391	if (!fdm_active ||
1392		(fw_dump.reserve_dump_area_start ==
1393		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1394		goto out;
1395
1396	/* Dump is active. Show reserved memory region. */
1397	seq_printf(m,
1398			"    : [%#016llx-%#016llx] %#llx bytes, "
1399			"Dumped: %#llx\n",
1400			(unsigned long long)fw_dump.reserve_dump_area_start,
1401			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1402			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1403			fw_dump.reserve_dump_area_start,
1404			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1405			fw_dump.reserve_dump_area_start);
1406out:
1407	if (fdm_active)
1408		mutex_unlock(&fadump_mutex);
1409	return 0;
1410}
1411
1412static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1413						0200, NULL,
1414						fadump_release_memory_store);
1415static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1416						0444, fadump_enabled_show,
1417						NULL);
1418static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1419						0644, fadump_register_show,
1420						fadump_register_store);
1421
1422static int fadump_region_open(struct inode *inode, struct file *file)
1423{
1424	return single_open(file, fadump_region_show, inode->i_private);
1425}
1426
1427static const struct file_operations fadump_region_fops = {
1428	.open    = fadump_region_open,
1429	.read    = seq_read,
1430	.llseek  = seq_lseek,
1431	.release = single_release,
1432};
1433
1434static void fadump_init_files(void)
1435{
1436	struct dentry *debugfs_file;
1437	int rc = 0;
1438
1439	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1440	if (rc)
1441		printk(KERN_ERR "fadump: unable to create sysfs file"
1442			" fadump_enabled (%d)\n", rc);
1443
1444	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1445	if (rc)
1446		printk(KERN_ERR "fadump: unable to create sysfs file"
1447			" fadump_registered (%d)\n", rc);
1448
1449	debugfs_file = debugfs_create_file("fadump_region", 0444,
1450					powerpc_debugfs_root, NULL,
1451					&fadump_region_fops);
1452	if (!debugfs_file)
1453		printk(KERN_ERR "fadump: unable to create debugfs file"
1454				" fadump_region\n");
1455
1456	if (fw_dump.dump_active) {
1457		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1458		if (rc)
1459			printk(KERN_ERR "fadump: unable to create sysfs file"
1460				" fadump_release_mem (%d)\n", rc);
1461	}
1462	return;
1463}
1464
1465/*
1466 * Prepare for firmware-assisted dump.
1467 */
1468int __init setup_fadump(void)
1469{
1470	if (!fw_dump.fadump_enabled)
1471		return 0;
1472
1473	if (!fw_dump.fadump_supported) {
1474		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1475			" this hardware\n");
1476		return 0;
1477	}
1478
1479	fadump_show_config();
1480	/*
1481	 * If dump data is available then see if it is valid and prepare for
1482	 * saving it to the disk.
1483	 */
1484	if (fw_dump.dump_active) {
1485		/*
1486		 * if dump process fails then invalidate the registration
1487		 * and release memory before proceeding for re-registration.
1488		 */
1489		if (process_fadump(fdm_active) < 0)
1490			fadump_invalidate_release_mem();
1491	}
1492	/* Initialize the kernel dump memory structure for FAD registration. */
1493	else if (fw_dump.reserve_dump_area_size)
1494		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
 
1495	fadump_init_files();
1496
1497	return 1;
1498}
1499subsys_initcall(setup_fadump);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   4 * dump with assistance from firmware. This approach does not use kexec,
   5 * instead firmware assists in booting the kdump kernel while preserving
   6 * memory contents. The most of the code implementation has been adapted
   7 * from phyp assisted dump implementation written by Linas Vepstas and
   8 * Manish Ahuja
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Copyright 2011 IBM Corporation
  11 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  12 */
  13
  14#undef DEBUG
  15#define pr_fmt(fmt) "fadump: " fmt
  16
  17#include <linux/string.h>
  18#include <linux/memblock.h>
  19#include <linux/delay.h>
  20#include <linux/seq_file.h>
  21#include <linux/crash_dump.h>
  22#include <linux/kobject.h>
  23#include <linux/sysfs.h>
  24#include <linux/slab.h>
  25#include <linux/cma.h>
  26#include <linux/hugetlb.h>
  27
  28#include <asm/debugfs.h>
  29#include <asm/page.h>
  30#include <asm/prom.h>
 
  31#include <asm/fadump.h>
  32#include <asm/fadump-internal.h>
  33#include <asm/setup.h>
  34
  35static struct fw_dump fw_dump;
 
 
  36
  37static void __init fadump_reserve_crash_area(u64 base);
  38
  39#ifndef CONFIG_PRESERVE_FA_DUMP
  40static DEFINE_MUTEX(fadump_mutex);
  41struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 };
  42struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 };
  43
  44#ifdef CONFIG_CMA
  45static struct cma *fadump_cma;
  46
  47/*
  48 * fadump_cma_init() - Initialize CMA area from a fadump reserved memory
  49 *
  50 * This function initializes CMA area from fadump reserved memory.
  51 * The total size of fadump reserved memory covers for boot memory size
  52 * + cpu data size + hpte size and metadata.
  53 * Initialize only the area equivalent to boot memory size for CMA use.
  54 * The reamining portion of fadump reserved memory will be not given
  55 * to CMA and pages for thoes will stay reserved. boot memory size is
  56 * aligned per CMA requirement to satisy cma_init_reserved_mem() call.
  57 * But for some reason even if it fails we still have the memory reservation
  58 * with us and we can still continue doing fadump.
  59 */
  60int __init fadump_cma_init(void)
  61{
  62	unsigned long long base, size;
  63	int rc;
 
 
  64
  65	if (!fw_dump.fadump_enabled)
  66		return 0;
  67
  68	/*
  69	 * Do not use CMA if user has provided fadump=nocma kernel parameter.
  70	 * Return 1 to continue with fadump old behaviour.
  71	 */
  72	if (fw_dump.nocma)
 
  73		return 1;
  74
  75	base = fw_dump.reserve_dump_area_start;
  76	size = fw_dump.boot_memory_size;
  77
  78	if (!size)
  79		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81	rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
  82	if (rc) {
  83		pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
  84		/*
  85		 * Though the CMA init has failed we still have memory
  86		 * reservation with us. The reserved memory will be
  87		 * blocked from production system usage.  Hence return 1,
  88		 * so that we can continue with fadump.
  89		 */
  90		return 1;
  91	}
  92
  93	/*
  94	 * So we now have successfully initialized cma area for fadump.
  95	 */
  96	pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
  97		"bytes of memory reserved for firmware-assisted dump\n",
  98		cma_get_size(fadump_cma),
  99		(unsigned long)cma_get_base(fadump_cma) >> 20,
 100		fw_dump.reserve_dump_area_size);
 101	return 1;
 102}
 103#else
 104static int __init fadump_cma_init(void) { return 1; }
 105#endif /* CONFIG_CMA */
 106
 107/* Scan the Firmware Assisted dump configuration details. */
 108int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
 109				      int depth, void *data)
 110{
 111	if (depth != 1)
 112		return 0;
 113
 114	if (strcmp(uname, "rtas") == 0) {
 115		rtas_fadump_dt_scan(&fw_dump, node);
 116		return 1;
 117	}
 118
 119	if (strcmp(uname, "ibm,opal") == 0) {
 120		opal_fadump_dt_scan(&fw_dump, node);
 121		return 1;
 
 
 
 
 
 
 
 122	}
 123
 124	return 0;
 125}
 126
 127/*
 128 * If fadump is registered, check if the memory provided
 129 * falls within boot memory area and reserved memory area.
 130 */
 131int is_fadump_memory_area(u64 addr, unsigned long size)
 132{
 133	u64 d_start, d_end;
 134
 135	if (!fw_dump.dump_registered)
 136		return 0;
 137
 138	if (!size)
 139		return 0;
 140
 141	d_start = fw_dump.reserve_dump_area_start;
 142	d_end = d_start + fw_dump.reserve_dump_area_size;
 143	if (((addr + size) > d_start) && (addr <= d_end))
 144		return 1;
 145
 146	return (addr <= fw_dump.boot_mem_top);
 147}
 148
 149int should_fadump_crash(void)
 150{
 151	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 152		return 0;
 153	return 1;
 154}
 155
 156int is_fadump_active(void)
 157{
 158	return fw_dump.dump_active;
 159}
 160
 161/*
 162 * Returns true, if there are no holes in memory area between d_start to d_end,
 163 * false otherwise.
 164 */
 165static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
 166{
 167	struct memblock_region *reg;
 168	bool ret = false;
 169	u64 start, end;
 
 
 170
 171	for_each_memblock(memory, reg) {
 172		start = max_t(u64, d_start, reg->base);
 173		end = min_t(u64, d_end, (reg->base + reg->size));
 174		if (d_start < end) {
 175			/* Memory hole from d_start to start */
 176			if (start > d_start)
 177				break;
 178
 179			if (end == d_end) {
 180				ret = true;
 181				break;
 182			}
 183
 184			d_start = end + 1;
 185		}
 186	}
 187
 188	return ret;
 189}
 190
 191/*
 192 * Returns true, if there are no holes in boot memory area,
 193 * false otherwise.
 194 */
 195bool is_fadump_boot_mem_contiguous(void)
 196{
 197	unsigned long d_start, d_end;
 198	bool ret = false;
 199	int i;
 200
 201	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 202		d_start = fw_dump.boot_mem_addr[i];
 203		d_end   = d_start + fw_dump.boot_mem_sz[i];
 204
 205		ret = is_fadump_mem_area_contiguous(d_start, d_end);
 206		if (!ret)
 207			break;
 208	}
 209
 210	return ret;
 211}
 212
 213/*
 214 * Returns true, if there are no holes in reserved memory area,
 215 * false otherwise.
 216 */
 217bool is_fadump_reserved_mem_contiguous(void)
 218{
 219	u64 d_start, d_end;
 220
 221	d_start	= fw_dump.reserve_dump_area_start;
 222	d_end	= d_start + fw_dump.reserve_dump_area_size;
 223	return is_fadump_mem_area_contiguous(d_start, d_end);
 224}
 225
 226/* Print firmware assisted dump configurations for debugging purpose. */
 227static void fadump_show_config(void)
 228{
 229	int i;
 230
 231	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 232			(fw_dump.fadump_supported ? "present" : "no support"));
 233
 234	if (!fw_dump.fadump_supported)
 235		return;
 236
 237	pr_debug("Fadump enabled    : %s\n",
 238				(fw_dump.fadump_enabled ? "yes" : "no"));
 239	pr_debug("Dump Active       : %s\n",
 240				(fw_dump.dump_active ? "yes" : "no"));
 241	pr_debug("Dump section sizes:\n");
 242	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 243	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 244	pr_debug("    Boot memory size   : %lx\n", fw_dump.boot_memory_size);
 245	pr_debug("    Boot memory top    : %llx\n", fw_dump.boot_mem_top);
 246	pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
 247	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 248		pr_debug("[%03d] base = %llx, size = %llx\n", i,
 249			 fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
 250	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251}
 252
 253/**
 254 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 255 *
 256 * Function to find the largest memory size we need to reserve during early
 257 * boot process. This will be the size of the memory that is required for a
 258 * kernel to boot successfully.
 259 *
 260 * This function has been taken from phyp-assisted dump feature implementation.
 261 *
 262 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 263 *
 264 * TODO: Come up with better approach to find out more accurate memory size
 265 * that is required for a kernel to boot successfully.
 266 *
 267 */
 268static inline u64 fadump_calculate_reserve_size(void)
 269{
 270	u64 base, size, bootmem_min;
 271	int ret;
 
 272
 273	if (fw_dump.reserve_bootvar)
 274		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 275
 276	/*
 277	 * Check if the size is specified through crashkernel= cmdline
 278	 * option. If yes, then use that but ignore base as fadump reserves
 279	 * memory at a predefined offset.
 280	 */
 281	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 282				&size, &base);
 283	if (ret == 0 && size > 0) {
 284		unsigned long max_size;
 285
 286		if (fw_dump.reserve_bootvar)
 287			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 288
 289		fw_dump.reserve_bootvar = (unsigned long)size;
 290
 291		/*
 292		 * Adjust if the boot memory size specified is above
 293		 * the upper limit.
 294		 */
 295		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 296		if (fw_dump.reserve_bootvar > max_size) {
 297			fw_dump.reserve_bootvar = max_size;
 298			pr_info("Adjusted boot memory size to %luMB\n",
 299				(fw_dump.reserve_bootvar >> 20));
 300		}
 301
 302		return fw_dump.reserve_bootvar;
 303	} else if (fw_dump.reserve_bootvar) {
 304		/*
 305		 * 'fadump_reserve_mem=' is being used to reserve memory
 306		 * for firmware-assisted dump.
 307		 */
 308		return fw_dump.reserve_bootvar;
 309	}
 310
 311	/* divide by 20 to get 5% of value */
 312	size = memblock_phys_mem_size() / 20;
 313
 314	/* round it down in multiples of 256 */
 315	size = size & ~0x0FFFFFFFUL;
 316
 317	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 318	if (memory_limit && size > memory_limit)
 319		size = memory_limit;
 320
 321	bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 322	return (size > bootmem_min ? size : bootmem_min);
 323}
 324
 325/*
 326 * Calculate the total memory size required to be reserved for
 327 * firmware-assisted dump registration.
 328 */
 329static unsigned long get_fadump_area_size(void)
 330{
 331	unsigned long size = 0;
 332
 333	size += fw_dump.cpu_state_data_size;
 334	size += fw_dump.hpte_region_size;
 335	size += fw_dump.boot_memory_size;
 336	size += sizeof(struct fadump_crash_info_header);
 337	size += sizeof(struct elfhdr); /* ELF core header.*/
 338	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 339	/* Program headers for crash memory regions. */
 340	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 341
 342	size = PAGE_ALIGN(size);
 343
 344	/* This is to hold kernel metadata on platforms that support it */
 345	size += (fw_dump.ops->fadump_get_metadata_size ?
 346		 fw_dump.ops->fadump_get_metadata_size() : 0);
 347	return size;
 348}
 349
 350static int __init add_boot_mem_region(unsigned long rstart,
 351				      unsigned long rsize)
 352{
 353	int i = fw_dump.boot_mem_regs_cnt++;
 354
 355	if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
 356		fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
 357		return 0;
 358	}
 359
 360	pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
 361		 i, rstart, (rstart + rsize));
 362	fw_dump.boot_mem_addr[i] = rstart;
 363	fw_dump.boot_mem_sz[i] = rsize;
 364	return 1;
 365}
 366
 367/*
 368 * Firmware usually has a hard limit on the data it can copy per region.
 369 * Honour that by splitting a memory range into multiple regions.
 370 */
 371static int __init add_boot_mem_regions(unsigned long mstart,
 372				       unsigned long msize)
 373{
 374	unsigned long rstart, rsize, max_size;
 375	int ret = 1;
 376
 377	rstart = mstart;
 378	max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
 379	while (msize) {
 380		if (msize > max_size)
 381			rsize = max_size;
 382		else
 383			rsize = msize;
 384
 385		ret = add_boot_mem_region(rstart, rsize);
 386		if (!ret)
 387			break;
 388
 389		msize -= rsize;
 390		rstart += rsize;
 391	}
 392
 393	return ret;
 394}
 395
 396static int __init fadump_get_boot_mem_regions(void)
 397{
 398	unsigned long base, size, cur_size, hole_size, last_end;
 399	unsigned long mem_size = fw_dump.boot_memory_size;
 400	struct memblock_region *reg;
 401	int ret = 1;
 402
 403	fw_dump.boot_mem_regs_cnt = 0;
 404
 405	last_end = 0;
 406	hole_size = 0;
 407	cur_size = 0;
 408	for_each_memblock(memory, reg) {
 409		base = reg->base;
 410		size = reg->size;
 411		hole_size += (base - last_end);
 412
 413		if ((cur_size + size) >= mem_size) {
 414			size = (mem_size - cur_size);
 415			ret = add_boot_mem_regions(base, size);
 416			break;
 417		}
 418
 419		mem_size -= size;
 420		cur_size += size;
 421		ret = add_boot_mem_regions(base, size);
 422		if (!ret)
 423			break;
 424
 425		last_end = base + size;
 426	}
 427	fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
 428
 429	return ret;
 430}
 431
 432int __init fadump_reserve_mem(void)
 433{
 434	u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE;
 435	bool is_memblock_bottom_up = memblock_bottom_up();
 436	int ret = 1;
 437
 438	if (!fw_dump.fadump_enabled)
 439		return 0;
 440
 441	if (!fw_dump.fadump_supported) {
 442		pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
 443		goto error_out;
 
 
 444	}
 445
 446	/*
 447	 * Initialize boot memory size
 448	 * If dump is active then we have already calculated the size during
 449	 * first kernel.
 450	 */
 451	if (!fw_dump.dump_active) {
 452		fw_dump.boot_memory_size =
 453			PAGE_ALIGN(fadump_calculate_reserve_size());
 454#ifdef CONFIG_CMA
 455		if (!fw_dump.nocma) {
 456			align = FADUMP_CMA_ALIGNMENT;
 457			fw_dump.boot_memory_size =
 458				ALIGN(fw_dump.boot_memory_size, align);
 459		}
 460#endif
 461
 462		bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
 463		if (fw_dump.boot_memory_size < bootmem_min) {
 464			pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
 465			       fw_dump.boot_memory_size, bootmem_min);
 466			goto error_out;
 467		}
 468
 469		if (!fadump_get_boot_mem_regions()) {
 470			pr_err("Too many holes in boot memory area to enable fadump\n");
 471			goto error_out;
 472		}
 473	}
 474
 475	/*
 476	 * Calculate the memory boundary.
 477	 * If memory_limit is less than actual memory boundary then reserve
 478	 * the memory for fadump beyond the memory_limit and adjust the
 479	 * memory_limit accordingly, so that the running kernel can run with
 480	 * specified memory_limit.
 481	 */
 482	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 483		size = get_fadump_area_size();
 484		if ((memory_limit + size) < memblock_end_of_DRAM())
 485			memory_limit += size;
 486		else
 487			memory_limit = memblock_end_of_DRAM();
 488		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 489				" dump, now %#016llx\n", memory_limit);
 490	}
 491	if (memory_limit)
 492		mem_boundary = memory_limit;
 493	else
 494		mem_boundary = memblock_end_of_DRAM();
 495
 496	base = fw_dump.boot_mem_top;
 497	size = get_fadump_area_size();
 498	fw_dump.reserve_dump_area_size = size;
 499	if (fw_dump.dump_active) {
 500		pr_info("Firmware-assisted dump is active.\n");
 501
 502#ifdef CONFIG_HUGETLB_PAGE
 503		/*
 504		 * FADump capture kernel doesn't care much about hugepages.
 505		 * In fact, handling hugepages in capture kernel is asking for
 506		 * trouble. So, disable HugeTLB support when fadump is active.
 507		 */
 508		hugetlb_disabled = true;
 509#endif
 510		/*
 511		 * If last boot has crashed then reserve all the memory
 512		 * above boot memory size so that we don't touch it until
 513		 * dump is written to disk by userspace tool. This memory
 514		 * can be released for general use by invalidating fadump.
 515		 */
 516		fadump_reserve_crash_area(base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517
 518		pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
 519		pr_debug("Reserve dump area start address: 0x%lx\n",
 520			 fw_dump.reserve_dump_area_start);
 521	} else {
 522		/*
 523		 * Reserve memory at an offset closer to bottom of the RAM to
 524		 * minimize the impact of memory hot-remove operation.
 
 
 525		 */
 526		memblock_set_bottom_up(true);
 527		base = memblock_find_in_range(base, mem_boundary, size, align);
 528
 529		/* Restore the previous allocation mode */
 530		memblock_set_bottom_up(is_memblock_bottom_up);
 531
 532		if (!base) {
 533			pr_err("Failed to find memory chunk for reservation!\n");
 534			goto error_out;
 535		}
 536		fw_dump.reserve_dump_area_start = base;
 537
 538		/*
 539		 * Calculate the kernel metadata address and register it with
 540		 * f/w if the platform supports.
 541		 */
 542		if (fw_dump.ops->fadump_setup_metadata &&
 543		    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
 544			goto error_out;
 545
 546		if (memblock_reserve(base, size)) {
 547			pr_err("Failed to reserve memory!\n");
 548			goto error_out;
 549		}
 550
 551		pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
 552			(size >> 20), base, (memblock_phys_mem_size() >> 20));
 
 
 
 
 553
 554		ret = fadump_cma_init();
 555	}
 
 
 556
 557	return ret;
 558error_out:
 559	fw_dump.fadump_enabled = 0;
 560	return 0;
 561}
 562
 563/* Look for fadump= cmdline option. */
 564static int __init early_fadump_param(char *p)
 565{
 566	if (!p)
 567		return 1;
 568
 569	if (strncmp(p, "on", 2) == 0)
 570		fw_dump.fadump_enabled = 1;
 571	else if (strncmp(p, "off", 3) == 0)
 572		fw_dump.fadump_enabled = 0;
 573	else if (strncmp(p, "nocma", 5) == 0) {
 574		fw_dump.fadump_enabled = 1;
 575		fw_dump.nocma = 1;
 576	}
 577
 578	return 0;
 579}
 580early_param("fadump", early_fadump_param);
 581
 582/*
 583 * Look for fadump_reserve_mem= cmdline option
 584 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 585 *       the sooner 'crashkernel=' parameter is accustomed to.
 586 */
 587static int __init early_fadump_reserve_mem(char *p)
 588{
 589	if (p)
 590		fw_dump.reserve_bootvar = memparse(p, &p);
 591	return 0;
 592}
 593early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595void crash_fadump(struct pt_regs *regs, const char *str)
 596{
 597	struct fadump_crash_info_header *fdh = NULL;
 598	int old_cpu, this_cpu;
 599
 600	if (!should_fadump_crash())
 601		return;
 602
 603	/*
 604	 * old_cpu == -1 means this is the first CPU which has come here,
 605	 * go ahead and trigger fadump.
 606	 *
 607	 * old_cpu != -1 means some other CPU has already on it's way
 608	 * to trigger fadump, just keep looping here.
 609	 */
 610	this_cpu = smp_processor_id();
 611	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 612
 613	if (old_cpu != -1) {
 614		/*
 615		 * We can't loop here indefinitely. Wait as long as fadump
 616		 * is in force. If we race with fadump un-registration this
 617		 * loop will break and then we go down to normal panic path
 618		 * and reboot. If fadump is in force the first crashing
 619		 * cpu will definitely trigger fadump.
 620		 */
 621		while (fw_dump.dump_registered)
 622			cpu_relax();
 623		return;
 624	}
 625
 626	fdh = __va(fw_dump.fadumphdr_addr);
 627	fdh->crashing_cpu = crashing_cpu;
 628	crash_save_vmcoreinfo();
 629
 630	if (regs)
 631		fdh->regs = *regs;
 632	else
 633		ppc_save_regs(&fdh->regs);
 634
 635	fdh->online_mask = *cpu_online_mask;
 636
 637	fw_dump.ops->fadump_trigger(fdh, str);
 
 638}
 639
 640u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641{
 642	struct elf_prstatus prstatus;
 643
 644	memset(&prstatus, 0, sizeof(prstatus));
 645	/*
 646	 * FIXME: How do i get PID? Do I really need it?
 647	 * prstatus.pr_pid = ????
 648	 */
 649	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 650	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 651			      &prstatus, sizeof(prstatus));
 652	return buf;
 653}
 654
 655void fadump_update_elfcore_header(char *bufp)
 656{
 657	struct elfhdr *elf;
 658	struct elf_phdr *phdr;
 659
 660	elf = (struct elfhdr *)bufp;
 661	bufp += sizeof(struct elfhdr);
 662
 663	/* First note is a place holder for cpu notes info. */
 664	phdr = (struct elf_phdr *)bufp;
 665
 666	if (phdr->p_type == PT_NOTE) {
 667		phdr->p_paddr	= __pa(fw_dump.cpu_notes_buf_vaddr);
 668		phdr->p_offset	= phdr->p_paddr;
 669		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 670		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 671	}
 672	return;
 673}
 674
 675static void *fadump_alloc_buffer(unsigned long size)
 676{
 677	unsigned long count, i;
 678	struct page *page;
 679	void *vaddr;
 680
 681	vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 
 682	if (!vaddr)
 683		return NULL;
 684
 685	count = PAGE_ALIGN(size) / PAGE_SIZE;
 686	page = virt_to_page(vaddr);
 687	for (i = 0; i < count; i++)
 688		mark_page_reserved(page + i);
 689	return vaddr;
 690}
 691
 692static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
 693{
 694	free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
 
 
 
 
 
 
 
 
 695}
 696
 697s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	/* Allocate buffer to hold cpu crash notes. */
 700	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 701	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 702	fw_dump.cpu_notes_buf_vaddr =
 703		(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
 704	if (!fw_dump.cpu_notes_buf_vaddr) {
 705		pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
 706		       fw_dump.cpu_notes_buf_size);
 707		return -ENOMEM;
 708	}
 
 
 
 
 
 
 
 709
 710	pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
 711		 fw_dump.cpu_notes_buf_size,
 712		 fw_dump.cpu_notes_buf_vaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713	return 0;
 714}
 715
 716void fadump_free_cpu_notes_buf(void)
 717{
 718	if (!fw_dump.cpu_notes_buf_vaddr)
 719		return;
 720
 721	fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
 722			   fw_dump.cpu_notes_buf_size);
 723	fw_dump.cpu_notes_buf_vaddr = 0;
 724	fw_dump.cpu_notes_buf_size = 0;
 725}
 726
 727static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
 728{
 729	kfree(mrange_info->mem_ranges);
 730	mrange_info->mem_ranges = NULL;
 731	mrange_info->mem_ranges_sz = 0;
 732	mrange_info->max_mem_ranges = 0;
 733}
 734
 735/*
 736 * Allocate or reallocate mem_ranges array in incremental units
 737 * of PAGE_SIZE.
 738 */
 739static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
 740{
 741	struct fadump_memory_range *new_array;
 742	u64 new_size;
 
 
 
 743
 744	new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
 745	pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
 746		 new_size, mrange_info->name);
 747
 748	new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
 749	if (new_array == NULL) {
 750		pr_err("Insufficient memory for setting up %s memory ranges\n",
 751		       mrange_info->name);
 752		fadump_free_mem_ranges(mrange_info);
 753		return -ENOMEM;
 
 
 754	}
 755
 756	mrange_info->mem_ranges = new_array;
 757	mrange_info->mem_ranges_sz = new_size;
 758	mrange_info->max_mem_ranges = (new_size /
 759				       sizeof(struct fadump_memory_range));
 760	return 0;
 761}
 762
 763static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
 764				       u64 base, u64 end)
 765{
 766	struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
 767	bool is_adjacent = false;
 768	u64 start, size;
 769
 770	if (base == end)
 771		return 0;
 772
 773	/*
 774	 * Fold adjacent memory ranges to bring down the memory ranges/
 775	 * PT_LOAD segments count.
 
 776	 */
 777	if (mrange_info->mem_range_cnt) {
 778		start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
 779		size  = mem_ranges[mrange_info->mem_range_cnt - 1].size;
 780
 781		if ((start + size) == base)
 782			is_adjacent = true;
 783	}
 784	if (!is_adjacent) {
 785		/* resize the array on reaching the limit */
 786		if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
 787			int ret;
 788
 789			ret = fadump_alloc_mem_ranges(mrange_info);
 790			if (ret)
 791				return ret;
 792
 793			/* Update to the new resized array */
 794			mem_ranges = mrange_info->mem_ranges;
 795		}
 796
 797		start = base;
 798		mem_ranges[mrange_info->mem_range_cnt].base = start;
 799		mrange_info->mem_range_cnt++;
 800	}
 
 801
 802	mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
 803	pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 804		 mrange_info->name, (mrange_info->mem_range_cnt - 1),
 805		 start, end - 1, (end - start));
 806	return 0;
 807}
 808
 809static int fadump_exclude_reserved_area(u64 start, u64 end)
 
 810{
 811	u64 ra_start, ra_end;
 812	int ret = 0;
 813
 814	ra_start = fw_dump.reserve_dump_area_start;
 815	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 816
 817	if ((ra_start < end) && (ra_end > start)) {
 818		if ((start < ra_start) && (end > ra_end)) {
 819			ret = fadump_add_mem_range(&crash_mrange_info,
 820						   start, ra_start);
 821			if (ret)
 822				return ret;
 823
 824			ret = fadump_add_mem_range(&crash_mrange_info,
 825						   ra_end, end);
 826		} else if (start < ra_start) {
 827			ret = fadump_add_mem_range(&crash_mrange_info,
 828						   start, ra_start);
 829		} else if (ra_end < end) {
 830			ret = fadump_add_mem_range(&crash_mrange_info,
 831						   ra_end, end);
 832		}
 833	} else
 834		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 835
 836	return ret;
 837}
 838
 839static int fadump_init_elfcore_header(char *bufp)
 840{
 841	struct elfhdr *elf;
 842
 843	elf = (struct elfhdr *) bufp;
 844	bufp += sizeof(struct elfhdr);
 845	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 846	elf->e_ident[EI_CLASS] = ELF_CLASS;
 847	elf->e_ident[EI_DATA] = ELF_DATA;
 848	elf->e_ident[EI_VERSION] = EV_CURRENT;
 849	elf->e_ident[EI_OSABI] = ELF_OSABI;
 850	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 851	elf->e_type = ET_CORE;
 852	elf->e_machine = ELF_ARCH;
 853	elf->e_version = EV_CURRENT;
 854	elf->e_entry = 0;
 855	elf->e_phoff = sizeof(struct elfhdr);
 856	elf->e_shoff = 0;
 857#if defined(_CALL_ELF)
 858	elf->e_flags = _CALL_ELF;
 859#else
 860	elf->e_flags = 0;
 861#endif
 862	elf->e_ehsize = sizeof(struct elfhdr);
 863	elf->e_phentsize = sizeof(struct elf_phdr);
 864	elf->e_phnum = 0;
 865	elf->e_shentsize = 0;
 866	elf->e_shnum = 0;
 867	elf->e_shstrndx = 0;
 868
 869	return 0;
 870}
 871
 872/*
 873 * Traverse through memblock structure and setup crash memory ranges. These
 874 * ranges will be used create PT_LOAD program headers in elfcore header.
 875 */
 876static int fadump_setup_crash_memory_ranges(void)
 877{
 878	struct memblock_region *reg;
 879	u64 start, end;
 880	int i, ret;
 881
 882	pr_debug("Setup crash memory ranges.\n");
 883	crash_mrange_info.mem_range_cnt = 0;
 884
 885	/*
 886	 * Boot memory region(s) registered with firmware are moved to
 887	 * different location at the time of crash. Create separate program
 888	 * header(s) for this memory chunk(s) with the correct offset.
 
 
 889	 */
 890	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 891		start = fw_dump.boot_mem_addr[i];
 892		end = start + fw_dump.boot_mem_sz[i];
 893		ret = fadump_add_mem_range(&crash_mrange_info, start, end);
 894		if (ret)
 895			return ret;
 896	}
 897
 898	for_each_memblock(memory, reg) {
 899		start = (u64)reg->base;
 900		end = start + (u64)reg->size;
 901
 902		/*
 903		 * skip the memory chunk that is already added
 904		 * (0 through boot_memory_top).
 
 905		 */
 906		if (start < fw_dump.boot_mem_top) {
 907			if (end > fw_dump.boot_mem_top)
 908				start = fw_dump.boot_mem_top;
 
 909			else
 910				continue;
 911		}
 912
 913		/* add this range excluding the reserved dump area. */
 914		ret = fadump_exclude_reserved_area(start, end);
 915		if (ret)
 916			return ret;
 917	}
 918
 919	return 0;
 920}
 921
 922/*
 923 * If the given physical address falls within the boot memory region then
 924 * return the relocated address that points to the dump region reserved
 925 * for saving initial boot memory contents.
 926 */
 927static inline unsigned long fadump_relocate(unsigned long paddr)
 928{
 929	unsigned long raddr, rstart, rend, rlast, hole_size;
 930	int i;
 931
 932	hole_size = 0;
 933	rlast = 0;
 934	raddr = paddr;
 935	for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
 936		rstart = fw_dump.boot_mem_addr[i];
 937		rend = rstart + fw_dump.boot_mem_sz[i];
 938		hole_size += (rstart - rlast);
 939
 940		if (paddr >= rstart && paddr < rend) {
 941			raddr += fw_dump.boot_mem_dest_addr - hole_size;
 942			break;
 943		}
 944
 945		rlast = rend;
 946	}
 947
 948	pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
 949	return raddr;
 950}
 951
 952static int fadump_create_elfcore_headers(char *bufp)
 953{
 954	unsigned long long raddr, offset;
 955	struct elf_phdr *phdr;
 956	struct elfhdr *elf;
 957	int i, j;
 958
 959	fadump_init_elfcore_header(bufp);
 960	elf = (struct elfhdr *)bufp;
 961	bufp += sizeof(struct elfhdr);
 962
 963	/*
 964	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 965	 * will be populated during second kernel boot after crash. Hence
 966	 * this PT_NOTE will always be the first elf note.
 967	 *
 968	 * NOTE: Any new ELF note addition should be placed after this note.
 969	 */
 970	phdr = (struct elf_phdr *)bufp;
 971	bufp += sizeof(struct elf_phdr);
 972	phdr->p_type = PT_NOTE;
 973	phdr->p_flags = 0;
 974	phdr->p_vaddr = 0;
 975	phdr->p_align = 0;
 976
 977	phdr->p_offset = 0;
 978	phdr->p_paddr = 0;
 979	phdr->p_filesz = 0;
 980	phdr->p_memsz = 0;
 981
 982	(elf->e_phnum)++;
 983
 984	/* setup ELF PT_NOTE for vmcoreinfo */
 985	phdr = (struct elf_phdr *)bufp;
 986	bufp += sizeof(struct elf_phdr);
 987	phdr->p_type	= PT_NOTE;
 988	phdr->p_flags	= 0;
 989	phdr->p_vaddr	= 0;
 990	phdr->p_align	= 0;
 991
 992	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
 993	phdr->p_offset	= phdr->p_paddr;
 994	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
 995
 996	/* Increment number of program headers. */
 997	(elf->e_phnum)++;
 998
 999	/* setup PT_LOAD sections. */
1000	j = 0;
1001	offset = 0;
1002	raddr = fw_dump.boot_mem_addr[0];
1003	for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
1004		u64 mbase, msize;
1005
1006		mbase = crash_mrange_info.mem_ranges[i].base;
1007		msize = crash_mrange_info.mem_ranges[i].size;
 
 
 
1008		if (!msize)
1009			continue;
1010
1011		phdr = (struct elf_phdr *)bufp;
1012		bufp += sizeof(struct elf_phdr);
1013		phdr->p_type	= PT_LOAD;
1014		phdr->p_flags	= PF_R|PF_W|PF_X;
1015		phdr->p_offset	= mbase;
1016
1017		if (mbase == raddr) {
1018			/*
1019			 * The entire real memory region will be moved by
1020			 * firmware to the specified destination_address.
1021			 * Hence set the correct offset.
1022			 */
1023			phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
1024			if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
1025				offset += fw_dump.boot_mem_sz[j];
1026				raddr = fw_dump.boot_mem_addr[++j];
1027			}
1028		}
1029
1030		phdr->p_paddr = mbase;
1031		phdr->p_vaddr = (unsigned long)__va(mbase);
1032		phdr->p_filesz = msize;
1033		phdr->p_memsz = msize;
1034		phdr->p_align = 0;
1035
1036		/* Increment number of program headers. */
1037		(elf->e_phnum)++;
1038	}
1039	return 0;
1040}
1041
1042static unsigned long init_fadump_header(unsigned long addr)
1043{
1044	struct fadump_crash_info_header *fdh;
1045
1046	if (!addr)
1047		return 0;
1048
 
1049	fdh = __va(addr);
1050	addr += sizeof(struct fadump_crash_info_header);
1051
1052	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1053	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1054	fdh->elfcorehdr_addr = addr;
1055	/* We will set the crashing cpu id in crash_fadump() during crash. */
1056	fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
1057
1058	return addr;
1059}
1060
1061static int register_fadump(void)
1062{
1063	unsigned long addr;
1064	void *vaddr;
1065	int ret;
1066
1067	/*
1068	 * If no memory is reserved then we can not register for firmware-
1069	 * assisted dump.
1070	 */
1071	if (!fw_dump.reserve_dump_area_size)
1072		return -ENODEV;
1073
1074	ret = fadump_setup_crash_memory_ranges();
1075	if (ret)
1076		return ret;
1077
1078	addr = fw_dump.fadumphdr_addr;
1079
 
1080	/* Initialize fadump crash info header. */
1081	addr = init_fadump_header(addr);
1082	vaddr = __va(addr);
1083
1084	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1085	fadump_create_elfcore_headers(vaddr);
1086
1087	/* register the future kernel dump with firmware. */
1088	pr_debug("Registering for firmware-assisted kernel dump...\n");
1089	return fw_dump.ops->fadump_register(&fw_dump);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090}
1091
1092void fadump_cleanup(void)
1093{
1094	if (!fw_dump.fadump_supported)
1095		return;
1096
1097	/* Invalidate the registration only if dump is active. */
1098	if (fw_dump.dump_active) {
1099		pr_debug("Invalidating firmware-assisted dump registration\n");
1100		fw_dump.ops->fadump_invalidate(&fw_dump);
1101	} else if (fw_dump.dump_registered) {
1102		/* Un-register Firmware-assisted dump if it was registered. */
1103		fw_dump.ops->fadump_unregister(&fw_dump);
1104		fadump_free_mem_ranges(&crash_mrange_info);
1105	}
1106
1107	if (fw_dump.ops->fadump_cleanup)
1108		fw_dump.ops->fadump_cleanup(&fw_dump);
1109}
1110
1111static void fadump_free_reserved_memory(unsigned long start_pfn,
1112					unsigned long end_pfn)
1113{
1114	unsigned long pfn;
1115	unsigned long time_limit = jiffies + HZ;
1116
1117	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1118		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1119
1120	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1121		free_reserved_page(pfn_to_page(pfn));
1122
1123		if (time_after(jiffies, time_limit)) {
1124			cond_resched();
1125			time_limit = jiffies + HZ;
1126		}
1127	}
1128}
1129
1130/*
1131 * Skip memory holes and free memory that was actually reserved.
1132 */
1133static void fadump_release_reserved_area(u64 start, u64 end)
1134{
1135	u64 tstart, tend, spfn, epfn;
1136	struct memblock_region *reg;
 
 
 
1137
1138	spfn = PHYS_PFN(start);
1139	epfn = PHYS_PFN(end);
1140	for_each_memblock(memory, reg) {
1141		tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
1142		tend   = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
1143		if (tstart < tend) {
1144			fadump_free_reserved_memory(tstart, tend);
1145
1146			if (tend == epfn)
1147				break;
1148
1149			spfn = tend;
1150		}
1151	}
1152}
1153
1154/*
1155 * Sort the mem ranges in-place and merge adjacent ranges
1156 * to minimize the memory ranges count.
1157 */
1158static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
1159{
1160	struct fadump_memory_range *mem_ranges;
1161	struct fadump_memory_range tmp_range;
1162	u64 base, size;
1163	int i, j, idx;
1164
1165	if (!reserved_mrange_info.mem_range_cnt)
1166		return;
1167
1168	/* Sort the memory ranges */
1169	mem_ranges = mrange_info->mem_ranges;
1170	for (i = 0; i < mrange_info->mem_range_cnt; i++) {
1171		idx = i;
1172		for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
1173			if (mem_ranges[idx].base > mem_ranges[j].base)
1174				idx = j;
1175		}
1176		if (idx != i) {
1177			tmp_range = mem_ranges[idx];
1178			mem_ranges[idx] = mem_ranges[i];
1179			mem_ranges[i] = tmp_range;
1180		}
1181	}
1182
1183	/* Merge adjacent reserved ranges */
1184	idx = 0;
1185	for (i = 1; i < mrange_info->mem_range_cnt; i++) {
1186		base = mem_ranges[i-1].base;
1187		size = mem_ranges[i-1].size;
1188		if (mem_ranges[i].base == (base + size))
1189			mem_ranges[idx].size += mem_ranges[i].size;
1190		else {
1191			idx++;
1192			if (i == idx)
1193				continue;
1194
1195			mem_ranges[idx] = mem_ranges[i];
1196		}
1197	}
1198	mrange_info->mem_range_cnt = idx + 1;
1199}
1200
1201/*
1202 * Scan reserved-ranges to consider them while reserving/releasing
1203 * memory for FADump.
1204 */
1205static inline int fadump_scan_reserved_mem_ranges(void)
1206{
1207	struct device_node *root;
1208	const __be32 *prop;
1209	int len, ret = -1;
1210	unsigned long i;
1211
1212	root = of_find_node_by_path("/");
1213	if (!root)
1214		return ret;
1215
1216	prop = of_get_property(root, "reserved-ranges", &len);
1217	if (!prop)
1218		return ret;
1219
1220	/*
1221	 * Each reserved range is an (address,size) pair, 2 cells each,
1222	 * totalling 4 cells per range.
1223	 */
1224	for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
1225		u64 base, size;
1226
1227		base = of_read_number(prop + (i * 4) + 0, 2);
1228		size = of_read_number(prop + (i * 4) + 2, 2);
1229
1230		if (size) {
1231			ret = fadump_add_mem_range(&reserved_mrange_info,
1232						   base, base + size);
1233			if (ret < 0) {
1234				pr_warn("some reserved ranges are ignored!\n");
1235				break;
1236			}
1237		}
1238	}
1239
1240	return ret;
1241}
1242
1243/*
1244 * Release the memory that was reserved during early boot to preserve the
1245 * crash'ed kernel's memory contents except reserved dump area (permanent
1246 * reservation) and reserved ranges used by F/W. The released memory will
1247 * be available for general use.
1248 */
1249static void fadump_release_memory(u64 begin, u64 end)
1250{
1251	u64 ra_start, ra_end, tstart;
1252	int i, ret;
1253
1254	fadump_scan_reserved_mem_ranges();
1255
1256	ra_start = fw_dump.reserve_dump_area_start;
1257	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1258
1259	/*
1260	 * Add reserved dump area to reserved ranges list
1261	 * and exclude all these ranges while releasing memory.
1262	 */
1263	ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
1264	if (ret != 0) {
1265		/*
1266		 * Not enough memory to setup reserved ranges but the system is
1267		 * running shortage of memory. So, release all the memory except
1268		 * Reserved dump area (reused for next fadump registration).
1269		 */
1270		if (begin < ra_end && end > ra_start) {
1271			if (begin < ra_start)
1272				fadump_release_reserved_area(begin, ra_start);
1273			if (end > ra_end)
1274				fadump_release_reserved_area(ra_end, end);
1275		} else
1276			fadump_release_reserved_area(begin, end);
1277
1278		return;
1279	}
1280
1281	/* Get the reserved ranges list in order first. */
1282	sort_and_merge_mem_ranges(&reserved_mrange_info);
1283
1284	/* Exclude reserved ranges and release remaining memory */
1285	tstart = begin;
1286	for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
1287		ra_start = reserved_mrange_info.mem_ranges[i].base;
1288		ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
1289
1290		if (tstart >= ra_end)
1291			continue;
1292
1293		if (tstart < ra_start)
1294			fadump_release_reserved_area(tstart, ra_start);
1295		tstart = ra_end;
1296	}
1297
1298	if (tstart < end)
1299		fadump_release_reserved_area(tstart, end);
1300}
1301
1302static void fadump_invalidate_release_mem(void)
1303{
 
 
 
1304	mutex_lock(&fadump_mutex);
1305	if (!fw_dump.dump_active) {
1306		mutex_unlock(&fadump_mutex);
1307		return;
1308	}
1309
 
1310	fadump_cleanup();
1311	mutex_unlock(&fadump_mutex);
1312
1313	fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
1314	fadump_free_cpu_notes_buf();
1315
1316	/*
1317	 * Setup kernel metadata and initialize the kernel dump
1318	 * memory structure for FADump re-registration.
 
 
 
 
 
 
 
1319	 */
1320	if (fw_dump.ops->fadump_setup_metadata &&
1321	    (fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
1322		pr_warn("Failed to setup kernel metadata!\n");
1323	fw_dump.ops->fadump_init_mem_struct(&fw_dump);
 
 
 
 
 
 
 
 
 
1324}
1325
1326static ssize_t fadump_release_memory_store(struct kobject *kobj,
1327					struct kobj_attribute *attr,
1328					const char *buf, size_t count)
1329{
1330	int input = -1;
1331
1332	if (!fw_dump.dump_active)
1333		return -EPERM;
1334
1335	if (kstrtoint(buf, 0, &input))
1336		return -EINVAL;
1337
1338	if (input == 1) {
1339		/*
1340		 * Take away the '/proc/vmcore'. We are releasing the dump
1341		 * memory, hence it will not be valid anymore.
1342		 */
1343#ifdef CONFIG_PROC_VMCORE
1344		vmcore_cleanup();
1345#endif
1346		fadump_invalidate_release_mem();
1347
1348	} else
1349		return -EINVAL;
1350	return count;
1351}
1352
1353static ssize_t fadump_enabled_show(struct kobject *kobj,
1354					struct kobj_attribute *attr,
1355					char *buf)
1356{
1357	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1358}
1359
1360static ssize_t fadump_register_show(struct kobject *kobj,
1361					struct kobj_attribute *attr,
1362					char *buf)
1363{
1364	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1365}
1366
1367static ssize_t fadump_register_store(struct kobject *kobj,
1368					struct kobj_attribute *attr,
1369					const char *buf, size_t count)
1370{
1371	int ret = 0;
1372	int input = -1;
1373
1374	if (!fw_dump.fadump_enabled || fw_dump.dump_active)
1375		return -EPERM;
1376
1377	if (kstrtoint(buf, 0, &input))
1378		return -EINVAL;
1379
1380	mutex_lock(&fadump_mutex);
1381
1382	switch (input) {
1383	case 0:
1384		if (fw_dump.dump_registered == 0) {
1385			goto unlock_out;
1386		}
1387
1388		/* Un-register Firmware-assisted dump */
1389		pr_debug("Un-register firmware-assisted dump\n");
1390		fw_dump.ops->fadump_unregister(&fw_dump);
1391		break;
1392	case 1:
1393		if (fw_dump.dump_registered == 1) {
1394			/* Un-register Firmware-assisted dump */
1395			fw_dump.ops->fadump_unregister(&fw_dump);
1396		}
1397		/* Register Firmware-assisted dump */
1398		ret = register_fadump();
1399		break;
1400	default:
1401		ret = -EINVAL;
1402		break;
1403	}
1404
1405unlock_out:
1406	mutex_unlock(&fadump_mutex);
1407	return ret < 0 ? ret : count;
1408}
1409
1410static int fadump_region_show(struct seq_file *m, void *private)
1411{
 
 
1412	if (!fw_dump.fadump_enabled)
1413		return 0;
1414
1415	mutex_lock(&fadump_mutex);
1416	fw_dump.ops->fadump_region_show(&fw_dump, m);
1417	mutex_unlock(&fadump_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418	return 0;
1419}
1420
1421static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1422						0200, NULL,
1423						fadump_release_memory_store);
1424static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1425						0444, fadump_enabled_show,
1426						NULL);
1427static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1428						0644, fadump_register_show,
1429						fadump_register_store);
1430
1431DEFINE_SHOW_ATTRIBUTE(fadump_region);
 
 
 
 
 
 
 
 
 
 
1432
1433static void fadump_init_files(void)
1434{
1435	struct dentry *debugfs_file;
1436	int rc = 0;
1437
1438	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1439	if (rc)
1440		printk(KERN_ERR "fadump: unable to create sysfs file"
1441			" fadump_enabled (%d)\n", rc);
1442
1443	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1444	if (rc)
1445		printk(KERN_ERR "fadump: unable to create sysfs file"
1446			" fadump_registered (%d)\n", rc);
1447
1448	debugfs_file = debugfs_create_file("fadump_region", 0444,
1449					powerpc_debugfs_root, NULL,
1450					&fadump_region_fops);
1451	if (!debugfs_file)
1452		printk(KERN_ERR "fadump: unable to create debugfs file"
1453				" fadump_region\n");
1454
1455	if (fw_dump.dump_active) {
1456		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1457		if (rc)
1458			printk(KERN_ERR "fadump: unable to create sysfs file"
1459				" fadump_release_mem (%d)\n", rc);
1460	}
1461	return;
1462}
1463
1464/*
1465 * Prepare for firmware-assisted dump.
1466 */
1467int __init setup_fadump(void)
1468{
1469	if (!fw_dump.fadump_enabled)
1470		return 0;
1471
1472	if (!fw_dump.fadump_supported) {
1473		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1474			" this hardware\n");
1475		return 0;
1476	}
1477
1478	fadump_show_config();
1479	/*
1480	 * If dump data is available then see if it is valid and prepare for
1481	 * saving it to the disk.
1482	 */
1483	if (fw_dump.dump_active) {
1484		/*
1485		 * if dump process fails then invalidate the registration
1486		 * and release memory before proceeding for re-registration.
1487		 */
1488		if (fw_dump.ops->fadump_process(&fw_dump) < 0)
1489			fadump_invalidate_release_mem();
1490	}
1491	/* Initialize the kernel dump memory structure for FAD registration. */
1492	else if (fw_dump.reserve_dump_area_size)
1493		fw_dump.ops->fadump_init_mem_struct(&fw_dump);
1494
1495	fadump_init_files();
1496
1497	return 1;
1498}
1499subsys_initcall(setup_fadump);
1500#else /* !CONFIG_PRESERVE_FA_DUMP */
1501
1502/* Scan the Firmware Assisted dump configuration details. */
1503int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
1504				      int depth, void *data)
1505{
1506	if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
1507		return 0;
1508
1509	opal_fadump_dt_scan(&fw_dump, node);
1510	return 1;
1511}
1512
1513/*
1514 * When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
1515 * preserve crash data. The subsequent memory preserving kernel boot
1516 * is likely to process this crash data.
1517 */
1518int __init fadump_reserve_mem(void)
1519{
1520	if (fw_dump.dump_active) {
1521		/*
1522		 * If last boot has crashed then reserve all the memory
1523		 * above boot memory to preserve crash data.
1524		 */
1525		pr_info("Preserving crash data for processing in next boot.\n");
1526		fadump_reserve_crash_area(fw_dump.boot_mem_top);
1527	} else
1528		pr_debug("FADump-aware kernel..\n");
1529
1530	return 1;
1531}
1532#endif /* CONFIG_PRESERVE_FA_DUMP */
1533
1534/* Preserve everything above the base address */
1535static void __init fadump_reserve_crash_area(u64 base)
1536{
1537	struct memblock_region *reg;
1538	u64 mstart, msize;
1539
1540	for_each_memblock(memory, reg) {
1541		mstart = reg->base;
1542		msize  = reg->size;
1543
1544		if ((mstart + msize) < base)
1545			continue;
1546
1547		if (mstart < base) {
1548			msize -= (base - mstart);
1549			mstart = base;
1550		}
1551
1552		pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
1553			(msize >> 20), mstart);
1554		memblock_reserve(mstart, msize);
1555	}
1556}
1557
1558unsigned long __init arch_reserved_kernel_pages(void)
1559{
1560	return memblock_reserved_size() / PAGE_SIZE;
1561}