Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
 
  33#include <linux/seq_file.h>
  34#include <linux/crash_dump.h>
  35#include <linux/kobject.h>
  36#include <linux/sysfs.h>
  37
  38#include <asm/debugfs.h>
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
 
  43#include <asm/setup.h>
  44
  45static struct fw_dump fw_dump;
  46static struct fadump_mem_struct fdm;
  47static const struct fadump_mem_struct *fdm_active;
  48
  49static DEFINE_MUTEX(fadump_mutex);
  50struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  51int crash_mem_ranges;
  52
  53/* Scan the Firmware Assisted dump configuration details. */
  54int __init early_init_dt_scan_fw_dump(unsigned long node,
  55			const char *uname, int depth, void *data)
  56{
  57	const __be32 *sections;
  58	int i, num_sections;
  59	int size;
  60	const __be32 *token;
  61
  62	if (depth != 1 || strcmp(uname, "rtas") != 0)
  63		return 0;
  64
  65	/*
  66	 * Check if Firmware Assisted dump is supported. if yes, check
  67	 * if dump has been initiated on last reboot.
  68	 */
  69	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  70	if (!token)
  71		return 1;
  72
  73	fw_dump.fadump_supported = 1;
  74	fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
  75
  76	/*
  77	 * The 'ibm,kernel-dump' rtas node is present only if there is
  78	 * dump data waiting for us.
  79	 */
  80	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  81	if (fdm_active)
  82		fw_dump.dump_active = 1;
  83
  84	/* Get the sizes required to store dump data for the firmware provided
  85	 * dump sections.
  86	 * For each dump section type supported, a 32bit cell which defines
  87	 * the ID of a supported section followed by two 32 bit cells which
  88	 * gives teh size of the section in bytes.
  89	 */
  90	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  91					&size);
  92
  93	if (!sections)
  94		return 1;
  95
  96	num_sections = size / (3 * sizeof(u32));
  97
  98	for (i = 0; i < num_sections; i++, sections += 3) {
  99		u32 type = (u32)of_read_number(sections, 1);
 100
 101		switch (type) {
 102		case FADUMP_CPU_STATE_DATA:
 103			fw_dump.cpu_state_data_size =
 104					of_read_ulong(&sections[1], 2);
 105			break;
 106		case FADUMP_HPTE_REGION:
 107			fw_dump.hpte_region_size =
 108					of_read_ulong(&sections[1], 2);
 109			break;
 110		}
 111	}
 112
 113	return 1;
 114}
 115
 116/*
 117 * If fadump is registered, check if the memory provided
 118 * falls within boot memory area.
 119 */
 120int is_fadump_boot_memory_area(u64 addr, ulong size)
 121{
 122	if (!fw_dump.dump_registered)
 123		return 0;
 124
 125	return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 126}
 127
 128int should_fadump_crash(void)
 129{
 130	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 131		return 0;
 132	return 1;
 133}
 134
 135int is_fadump_active(void)
 136{
 137	return fw_dump.dump_active;
 138}
 139
 140/*
 141 * Returns 1, if there are no holes in boot memory area,
 142 * 0 otherwise.
 143 */
 144static int is_boot_memory_area_contiguous(void)
 145{
 146	struct memblock_region *reg;
 147	unsigned long tstart, tend;
 148	unsigned long start_pfn = PHYS_PFN(RMA_START);
 149	unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 150	unsigned int ret = 0;
 151
 152	for_each_memblock(memory, reg) {
 153		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 154		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 155		if (tstart < tend) {
 156			/* Memory hole from start_pfn to tstart */
 157			if (tstart > start_pfn)
 158				break;
 159
 160			if (tend == end_pfn) {
 161				ret = 1;
 162				break;
 163			}
 164
 165			start_pfn = tend + 1;
 166		}
 167	}
 168
 169	return ret;
 170}
 171
 172/* Print firmware assisted dump configurations for debugging purpose. */
 173static void fadump_show_config(void)
 174{
 175	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 176			(fw_dump.fadump_supported ? "present" : "no support"));
 177
 178	if (!fw_dump.fadump_supported)
 179		return;
 180
 181	pr_debug("Fadump enabled    : %s\n",
 182				(fw_dump.fadump_enabled ? "yes" : "no"));
 183	pr_debug("Dump Active       : %s\n",
 184				(fw_dump.dump_active ? "yes" : "no"));
 185	pr_debug("Dump section sizes:\n");
 186	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 187	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 188	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 189}
 190
 191static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 192				unsigned long addr)
 193{
 194	if (!fdm)
 195		return 0;
 196
 197	memset(fdm, 0, sizeof(struct fadump_mem_struct));
 198	addr = addr & PAGE_MASK;
 199
 200	fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 201	fdm->header.dump_num_sections = cpu_to_be16(3);
 202	fdm->header.dump_status_flag = 0;
 203	fdm->header.offset_first_dump_section =
 204		cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 205
 206	/*
 207	 * Fields for disk dump option.
 208	 * We are not using disk dump option, hence set these fields to 0.
 209	 */
 210	fdm->header.dd_block_size = 0;
 211	fdm->header.dd_block_offset = 0;
 212	fdm->header.dd_num_blocks = 0;
 213	fdm->header.dd_offset_disk_path = 0;
 214
 215	/* set 0 to disable an automatic dump-reboot. */
 216	fdm->header.max_time_auto = 0;
 217
 218	/* Kernel dump sections */
 219	/* cpu state data section. */
 220	fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 221	fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 222	fdm->cpu_state_data.source_address = 0;
 223	fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 224	fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 225	addr += fw_dump.cpu_state_data_size;
 226
 227	/* hpte region section */
 228	fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 229	fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 230	fdm->hpte_region.source_address = 0;
 231	fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 232	fdm->hpte_region.destination_address = cpu_to_be64(addr);
 233	addr += fw_dump.hpte_region_size;
 234
 235	/* RMA region section */
 236	fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 237	fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 238	fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 239	fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 240	fdm->rmr_region.destination_address = cpu_to_be64(addr);
 241	addr += fw_dump.boot_memory_size;
 242
 243	return addr;
 244}
 245
 246/**
 247 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 248 *
 249 * Function to find the largest memory size we need to reserve during early
 250 * boot process. This will be the size of the memory that is required for a
 251 * kernel to boot successfully.
 252 *
 253 * This function has been taken from phyp-assisted dump feature implementation.
 254 *
 255 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 256 *
 257 * TODO: Come up with better approach to find out more accurate memory size
 258 * that is required for a kernel to boot successfully.
 259 *
 260 */
 261static inline unsigned long fadump_calculate_reserve_size(void)
 262{
 263	int ret;
 264	unsigned long long base, size;
 265
 266	if (fw_dump.reserve_bootvar)
 267		pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
 268
 269	/*
 270	 * Check if the size is specified through crashkernel= cmdline
 271	 * option. If yes, then use that but ignore base as fadump reserves
 272	 * memory at a predefined offset.
 273	 */
 274	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 275				&size, &base);
 276	if (ret == 0 && size > 0) {
 277		unsigned long max_size;
 278
 279		if (fw_dump.reserve_bootvar)
 280			pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
 281
 282		fw_dump.reserve_bootvar = (unsigned long)size;
 283
 284		/*
 285		 * Adjust if the boot memory size specified is above
 286		 * the upper limit.
 287		 */
 288		max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
 289		if (fw_dump.reserve_bootvar > max_size) {
 290			fw_dump.reserve_bootvar = max_size;
 291			pr_info("Adjusted boot memory size to %luMB\n",
 292				(fw_dump.reserve_bootvar >> 20));
 293		}
 294
 295		return fw_dump.reserve_bootvar;
 296	} else if (fw_dump.reserve_bootvar) {
 297		/*
 298		 * 'fadump_reserve_mem=' is being used to reserve memory
 299		 * for firmware-assisted dump.
 300		 */
 301		return fw_dump.reserve_bootvar;
 302	}
 303
 304	/* divide by 20 to get 5% of value */
 305	size = memblock_phys_mem_size() / 20;
 306
 307	/* round it down in multiples of 256 */
 308	size = size & ~0x0FFFFFFFUL;
 309
 310	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 311	if (memory_limit && size > memory_limit)
 312		size = memory_limit;
 313
 314	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 315}
 316
 317/*
 318 * Calculate the total memory size required to be reserved for
 319 * firmware-assisted dump registration.
 320 */
 321static unsigned long get_fadump_area_size(void)
 322{
 323	unsigned long size = 0;
 324
 325	size += fw_dump.cpu_state_data_size;
 326	size += fw_dump.hpte_region_size;
 327	size += fw_dump.boot_memory_size;
 328	size += sizeof(struct fadump_crash_info_header);
 329	size += sizeof(struct elfhdr); /* ELF core header.*/
 330	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 331	/* Program headers for crash memory regions. */
 332	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 333
 334	size = PAGE_ALIGN(size);
 335	return size;
 336}
 337
 338int __init fadump_reserve_mem(void)
 339{
 340	unsigned long base, size, memory_boundary;
 341
 342	if (!fw_dump.fadump_enabled)
 343		return 0;
 344
 345	if (!fw_dump.fadump_supported) {
 346		printk(KERN_INFO "Firmware-assisted dump is not supported on"
 347				" this hardware\n");
 348		fw_dump.fadump_enabled = 0;
 349		return 0;
 350	}
 351	/*
 352	 * Initialize boot memory size
 353	 * If dump is active then we have already calculated the size during
 354	 * first kernel.
 355	 */
 356	if (fdm_active)
 357		fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 358	else
 359		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 360
 361	/*
 362	 * Calculate the memory boundary.
 363	 * If memory_limit is less than actual memory boundary then reserve
 364	 * the memory for fadump beyond the memory_limit and adjust the
 365	 * memory_limit accordingly, so that the running kernel can run with
 366	 * specified memory_limit.
 367	 */
 368	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 369		size = get_fadump_area_size();
 370		if ((memory_limit + size) < memblock_end_of_DRAM())
 371			memory_limit += size;
 372		else
 373			memory_limit = memblock_end_of_DRAM();
 374		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 375				" dump, now %#016llx\n", memory_limit);
 
 376	}
 377	if (memory_limit)
 378		memory_boundary = memory_limit;
 379	else
 380		memory_boundary = memblock_end_of_DRAM();
 381
 382	if (fw_dump.dump_active) {
 383		printk(KERN_INFO "Firmware-assisted dump is active.\n");
 384		/*
 385		 * If last boot has crashed then reserve all the memory
 386		 * above boot_memory_size so that we don't touch it until
 387		 * dump is written to disk by userspace tool. This memory
 388		 * will be released for general use once the dump is saved.
 389		 */
 390		base = fw_dump.boot_memory_size;
 391		size = memory_boundary - base;
 392		memblock_reserve(base, size);
 393		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 394				"for saving crash dump\n",
 395				(unsigned long)(size >> 20),
 396				(unsigned long)(base >> 20));
 397
 398		fw_dump.fadumphdr_addr =
 399				be64_to_cpu(fdm_active->rmr_region.destination_address) +
 400				be64_to_cpu(fdm_active->rmr_region.source_len);
 401		pr_debug("fadumphdr_addr = %p\n",
 402				(void *) fw_dump.fadumphdr_addr);
 403	} else {
 
 404		size = get_fadump_area_size();
 405
 406		/*
 407		 * Reserve memory at an offset closer to bottom of the RAM to
 408		 * minimize the impact of memory hot-remove operation. We can't
 409		 * use memblock_find_in_range() here since it doesn't allocate
 410		 * from bottom to top.
 411		 */
 412		for (base = fw_dump.boot_memory_size;
 413		     base <= (memory_boundary - size);
 414		     base += size) {
 415			if (memblock_is_region_memory(base, size) &&
 416			    !memblock_is_region_reserved(base, size))
 417				break;
 418		}
 419		if ((base > (memory_boundary - size)) ||
 420		    memblock_reserve(base, size)) {
 421			pr_err("Failed to reserve memory\n");
 422			return 0;
 423		}
 424
 425		pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 426			"assisted dump (System RAM: %ldMB)\n",
 427			(unsigned long)(size >> 20),
 428			(unsigned long)(base >> 20),
 429			(unsigned long)(memblock_phys_mem_size() >> 20));
 430	}
 431
 432	fw_dump.reserve_dump_area_start = base;
 433	fw_dump.reserve_dump_area_size = size;
 434	return 1;
 435}
 436
 437unsigned long __init arch_reserved_kernel_pages(void)
 438{
 439	return memblock_reserved_size() / PAGE_SIZE;
 440}
 441
 442/* Look for fadump= cmdline option. */
 443static int __init early_fadump_param(char *p)
 444{
 445	if (!p)
 446		return 1;
 447
 448	if (strncmp(p, "on", 2) == 0)
 449		fw_dump.fadump_enabled = 1;
 450	else if (strncmp(p, "off", 3) == 0)
 451		fw_dump.fadump_enabled = 0;
 452
 453	return 0;
 454}
 455early_param("fadump", early_fadump_param);
 456
 457/*
 458 * Look for fadump_reserve_mem= cmdline option
 459 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 460 *       the sooner 'crashkernel=' parameter is accustomed to.
 461 */
 462static int __init early_fadump_reserve_mem(char *p)
 463{
 464	if (p)
 465		fw_dump.reserve_bootvar = memparse(p, &p);
 466	return 0;
 467}
 468early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 469
 470static int register_fw_dump(struct fadump_mem_struct *fdm)
 471{
 472	int rc, err;
 473	unsigned int wait_time;
 474
 475	pr_debug("Registering for firmware-assisted kernel dump...\n");
 476
 477	/* TODO: Add upper time limit for the delay */
 478	do {
 479		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 480			FADUMP_REGISTER, fdm,
 481			sizeof(struct fadump_mem_struct));
 482
 483		wait_time = rtas_busy_delay_time(rc);
 484		if (wait_time)
 485			mdelay(wait_time);
 486
 487	} while (wait_time);
 488
 489	err = -EIO;
 490	switch (rc) {
 491	default:
 492		pr_err("Failed to register. Unknown Error(%d).\n", rc);
 493		break;
 494	case -1:
 495		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 496			" dump. Hardware Error(%d).\n", rc);
 497		break;
 498	case -3:
 499		if (!is_boot_memory_area_contiguous())
 500			pr_err("Can't have holes in boot memory area while "
 501			       "registering fadump\n");
 502
 503		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 504			" dump. Parameter Error(%d).\n", rc);
 505		err = -EINVAL;
 506		break;
 507	case -9:
 508		printk(KERN_ERR "firmware-assisted kernel dump is already "
 509			" registered.");
 510		fw_dump.dump_registered = 1;
 511		err = -EEXIST;
 512		break;
 513	case 0:
 514		printk(KERN_INFO "firmware-assisted kernel dump registration"
 515			" is successful\n");
 516		fw_dump.dump_registered = 1;
 517		err = 0;
 518		break;
 519	}
 520	return err;
 521}
 522
 523void crash_fadump(struct pt_regs *regs, const char *str)
 524{
 525	struct fadump_crash_info_header *fdh = NULL;
 526	int old_cpu, this_cpu;
 527
 528	if (!should_fadump_crash())
 529		return;
 530
 531	/*
 532	 * old_cpu == -1 means this is the first CPU which has come here,
 533	 * go ahead and trigger fadump.
 534	 *
 535	 * old_cpu != -1 means some other CPU has already on it's way
 536	 * to trigger fadump, just keep looping here.
 537	 */
 538	this_cpu = smp_processor_id();
 539	old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 540
 541	if (old_cpu != -1) {
 542		/*
 543		 * We can't loop here indefinitely. Wait as long as fadump
 544		 * is in force. If we race with fadump un-registration this
 545		 * loop will break and then we go down to normal panic path
 546		 * and reboot. If fadump is in force the first crashing
 547		 * cpu will definitely trigger fadump.
 548		 */
 549		while (fw_dump.dump_registered)
 550			cpu_relax();
 551		return;
 552	}
 553
 554	fdh = __va(fw_dump.fadumphdr_addr);
 
 555	fdh->crashing_cpu = crashing_cpu;
 556	crash_save_vmcoreinfo();
 557
 558	if (regs)
 559		fdh->regs = *regs;
 560	else
 561		ppc_save_regs(&fdh->regs);
 562
 563	fdh->online_mask = *cpu_online_mask;
 564
 565	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
 566	rtas_os_term((char *)str);
 567}
 568
 569#define GPR_MASK	0xffffff0000000000
 570static inline int fadump_gpr_index(u64 id)
 571{
 572	int i = -1;
 573	char str[3];
 574
 575	if ((id & GPR_MASK) == REG_ID("GPR")) {
 576		/* get the digits at the end */
 577		id &= ~GPR_MASK;
 578		id >>= 24;
 579		str[2] = '\0';
 580		str[1] = id & 0xff;
 581		str[0] = (id >> 8) & 0xff;
 582		sscanf(str, "%d", &i);
 583		if (i > 31)
 584			i = -1;
 585	}
 586	return i;
 587}
 588
 589static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 590								u64 reg_val)
 591{
 592	int i;
 593
 594	i = fadump_gpr_index(reg_id);
 595	if (i >= 0)
 596		regs->gpr[i] = (unsigned long)reg_val;
 597	else if (reg_id == REG_ID("NIA"))
 598		regs->nip = (unsigned long)reg_val;
 599	else if (reg_id == REG_ID("MSR"))
 600		regs->msr = (unsigned long)reg_val;
 601	else if (reg_id == REG_ID("CTR"))
 602		regs->ctr = (unsigned long)reg_val;
 603	else if (reg_id == REG_ID("LR"))
 604		regs->link = (unsigned long)reg_val;
 605	else if (reg_id == REG_ID("XER"))
 606		regs->xer = (unsigned long)reg_val;
 607	else if (reg_id == REG_ID("CR"))
 608		regs->ccr = (unsigned long)reg_val;
 609	else if (reg_id == REG_ID("DAR"))
 610		regs->dar = (unsigned long)reg_val;
 611	else if (reg_id == REG_ID("DSISR"))
 612		regs->dsisr = (unsigned long)reg_val;
 613}
 614
 615static struct fadump_reg_entry*
 616fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 617{
 618	memset(regs, 0, sizeof(struct pt_regs));
 619
 620	while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 621		fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 622					be64_to_cpu(reg_entry->reg_value));
 623		reg_entry++;
 624	}
 625	reg_entry++;
 626	return reg_entry;
 627}
 628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 630{
 631	struct elf_prstatus prstatus;
 632
 633	memset(&prstatus, 0, sizeof(prstatus));
 634	/*
 635	 * FIXME: How do i get PID? Do I really need it?
 636	 * prstatus.pr_pid = ????
 637	 */
 638	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 639	buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 640			      &prstatus, sizeof(prstatus));
 641	return buf;
 642}
 643
 644static void fadump_update_elfcore_header(char *bufp)
 645{
 646	struct elfhdr *elf;
 647	struct elf_phdr *phdr;
 648
 649	elf = (struct elfhdr *)bufp;
 650	bufp += sizeof(struct elfhdr);
 651
 652	/* First note is a place holder for cpu notes info. */
 653	phdr = (struct elf_phdr *)bufp;
 654
 655	if (phdr->p_type == PT_NOTE) {
 656		phdr->p_paddr = fw_dump.cpu_notes_buf;
 657		phdr->p_offset	= phdr->p_paddr;
 658		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 659		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 660	}
 661	return;
 662}
 663
 664static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 665{
 666	void *vaddr;
 667	struct page *page;
 668	unsigned long order, count, i;
 669
 670	order = get_order(size);
 671	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 672	if (!vaddr)
 673		return NULL;
 674
 675	count = 1 << order;
 676	page = virt_to_page(vaddr);
 677	for (i = 0; i < count; i++)
 678		SetPageReserved(page + i);
 679	return vaddr;
 680}
 681
 682static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 683{
 684	struct page *page;
 685	unsigned long order, count, i;
 686
 687	order = get_order(size);
 688	count = 1 << order;
 689	page = virt_to_page(vaddr);
 690	for (i = 0; i < count; i++)
 691		ClearPageReserved(page + i);
 692	__free_pages(page, order);
 693}
 694
 695/*
 696 * Read CPU state dump data and convert it into ELF notes.
 697 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 698 * used to access the data to allow for additional fields to be added without
 699 * affecting compatibility. Each list of registers for a CPU starts with
 700 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 701 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 702 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 703 * of register value. For more details refer to PAPR document.
 704 *
 705 * Only for the crashing cpu we ignore the CPU dump data and get exact
 706 * state from fadump crash info structure populated by first kernel at the
 707 * time of crash.
 708 */
 709static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 710{
 711	struct fadump_reg_save_area_header *reg_header;
 712	struct fadump_reg_entry *reg_entry;
 713	struct fadump_crash_info_header *fdh = NULL;
 714	void *vaddr;
 715	unsigned long addr;
 716	u32 num_cpus, *note_buf;
 717	struct pt_regs regs;
 718	int i, rc = 0, cpu = 0;
 719
 720	if (!fdm->cpu_state_data.bytes_dumped)
 721		return -EINVAL;
 722
 723	addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 724	vaddr = __va(addr);
 725
 726	reg_header = vaddr;
 727	if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 728		printk(KERN_ERR "Unable to read register save area.\n");
 729		return -ENOENT;
 730	}
 731	pr_debug("--------CPU State Data------------\n");
 732	pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 733	pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 734
 735	vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 736	num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 737	pr_debug("NumCpus     : %u\n", num_cpus);
 738	vaddr += sizeof(u32);
 739	reg_entry = (struct fadump_reg_entry *)vaddr;
 740
 741	/* Allocate buffer to hold cpu crash notes. */
 742	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 743	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 744	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 745	if (!note_buf) {
 746		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 747			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 748		return -ENOMEM;
 749	}
 750	fw_dump.cpu_notes_buf = __pa(note_buf);
 751
 752	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 753			(num_cpus * sizeof(note_buf_t)), note_buf);
 754
 755	if (fw_dump.fadumphdr_addr)
 756		fdh = __va(fw_dump.fadumphdr_addr);
 757
 758	for (i = 0; i < num_cpus; i++) {
 759		if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 760			printk(KERN_ERR "Unable to read CPU state data\n");
 761			rc = -ENOENT;
 762			goto error_out;
 763		}
 764		/* Lower 4 bytes of reg_value contains logical cpu id */
 765		cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 766		if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
 767			SKIP_TO_NEXT_CPU(reg_entry);
 768			continue;
 769		}
 770		pr_debug("Reading register data for cpu %d...\n", cpu);
 771		if (fdh && fdh->crashing_cpu == cpu) {
 772			regs = fdh->regs;
 773			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 774			SKIP_TO_NEXT_CPU(reg_entry);
 775		} else {
 776			reg_entry++;
 777			reg_entry = fadump_read_registers(reg_entry, &regs);
 778			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 779		}
 780	}
 781	final_note(note_buf);
 782
 783	if (fdh) {
 784		pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 785							fdh->elfcorehdr_addr);
 786		fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 787	}
 788	return 0;
 789
 790error_out:
 791	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 792					fw_dump.cpu_notes_buf_size);
 793	fw_dump.cpu_notes_buf = 0;
 794	fw_dump.cpu_notes_buf_size = 0;
 795	return rc;
 796
 797}
 798
 799/*
 800 * Validate and process the dump data stored by firmware before exporting
 801 * it through '/proc/vmcore'.
 802 */
 803static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 804{
 805	struct fadump_crash_info_header *fdh;
 806	int rc = 0;
 807
 808	if (!fdm_active || !fw_dump.fadumphdr_addr)
 809		return -EINVAL;
 810
 811	/* Check if the dump data is valid. */
 812	if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 813			(fdm_active->cpu_state_data.error_flags != 0) ||
 814			(fdm_active->rmr_region.error_flags != 0)) {
 815		printk(KERN_ERR "Dump taken by platform is not valid\n");
 816		return -EINVAL;
 817	}
 818	if ((fdm_active->rmr_region.bytes_dumped !=
 819			fdm_active->rmr_region.source_len) ||
 820			!fdm_active->cpu_state_data.bytes_dumped) {
 821		printk(KERN_ERR "Dump taken by platform is incomplete\n");
 822		return -EINVAL;
 823	}
 824
 825	/* Validate the fadump crash info header */
 826	fdh = __va(fw_dump.fadumphdr_addr);
 827	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 828		printk(KERN_ERR "Crash info header is not valid.\n");
 829		return -EINVAL;
 830	}
 831
 832	rc = fadump_build_cpu_notes(fdm_active);
 833	if (rc)
 834		return rc;
 835
 836	/*
 837	 * We are done validating dump info and elfcore header is now ready
 838	 * to be exported. set elfcorehdr_addr so that vmcore module will
 839	 * export the elfcore header through '/proc/vmcore'.
 840	 */
 841	elfcorehdr_addr = fdh->elfcorehdr_addr;
 842
 843	return 0;
 844}
 845
 846static inline void fadump_add_crash_memory(unsigned long long base,
 847					unsigned long long end)
 848{
 849	if (base == end)
 850		return;
 851
 852	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 853		crash_mem_ranges, base, end - 1, (end - base));
 854	crash_memory_ranges[crash_mem_ranges].base = base;
 855	crash_memory_ranges[crash_mem_ranges].size = end - base;
 856	crash_mem_ranges++;
 857}
 858
 859static void fadump_exclude_reserved_area(unsigned long long start,
 860					unsigned long long end)
 861{
 862	unsigned long long ra_start, ra_end;
 863
 864	ra_start = fw_dump.reserve_dump_area_start;
 865	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 866
 867	if ((ra_start < end) && (ra_end > start)) {
 868		if ((start < ra_start) && (end > ra_end)) {
 869			fadump_add_crash_memory(start, ra_start);
 870			fadump_add_crash_memory(ra_end, end);
 871		} else if (start < ra_start) {
 872			fadump_add_crash_memory(start, ra_start);
 873		} else if (ra_end < end) {
 874			fadump_add_crash_memory(ra_end, end);
 875		}
 876	} else
 877		fadump_add_crash_memory(start, end);
 878}
 879
 880static int fadump_init_elfcore_header(char *bufp)
 881{
 882	struct elfhdr *elf;
 883
 884	elf = (struct elfhdr *) bufp;
 885	bufp += sizeof(struct elfhdr);
 886	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 887	elf->e_ident[EI_CLASS] = ELF_CLASS;
 888	elf->e_ident[EI_DATA] = ELF_DATA;
 889	elf->e_ident[EI_VERSION] = EV_CURRENT;
 890	elf->e_ident[EI_OSABI] = ELF_OSABI;
 891	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 892	elf->e_type = ET_CORE;
 893	elf->e_machine = ELF_ARCH;
 894	elf->e_version = EV_CURRENT;
 895	elf->e_entry = 0;
 896	elf->e_phoff = sizeof(struct elfhdr);
 897	elf->e_shoff = 0;
 898#if defined(_CALL_ELF)
 899	elf->e_flags = _CALL_ELF;
 900#else
 901	elf->e_flags = 0;
 902#endif
 903	elf->e_ehsize = sizeof(struct elfhdr);
 904	elf->e_phentsize = sizeof(struct elf_phdr);
 905	elf->e_phnum = 0;
 906	elf->e_shentsize = 0;
 907	elf->e_shnum = 0;
 908	elf->e_shstrndx = 0;
 909
 910	return 0;
 911}
 912
 913/*
 914 * Traverse through memblock structure and setup crash memory ranges. These
 915 * ranges will be used create PT_LOAD program headers in elfcore header.
 916 */
 917static void fadump_setup_crash_memory_ranges(void)
 918{
 919	struct memblock_region *reg;
 920	unsigned long long start, end;
 921
 922	pr_debug("Setup crash memory ranges.\n");
 923	crash_mem_ranges = 0;
 924	/*
 925	 * add the first memory chunk (RMA_START through boot_memory_size) as
 926	 * a separate memory chunk. The reason is, at the time crash firmware
 927	 * will move the content of this memory chunk to different location
 928	 * specified during fadump registration. We need to create a separate
 929	 * program header for this chunk with the correct offset.
 930	 */
 931	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 932
 933	for_each_memblock(memory, reg) {
 934		start = (unsigned long long)reg->base;
 935		end = start + (unsigned long long)reg->size;
 936
 937		/*
 938		 * skip the first memory chunk that is already added (RMA_START
 939		 * through boot_memory_size). This logic needs a relook if and
 940		 * when RMA_START changes to a non-zero value.
 941		 */
 942		BUILD_BUG_ON(RMA_START != 0);
 943		if (start < fw_dump.boot_memory_size) {
 944			if (end > fw_dump.boot_memory_size)
 945				start = fw_dump.boot_memory_size;
 946			else
 947				continue;
 948		}
 949
 950		/* add this range excluding the reserved dump area. */
 951		fadump_exclude_reserved_area(start, end);
 952	}
 953}
 954
 955/*
 956 * If the given physical address falls within the boot memory region then
 957 * return the relocated address that points to the dump region reserved
 958 * for saving initial boot memory contents.
 959 */
 960static inline unsigned long fadump_relocate(unsigned long paddr)
 961{
 962	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 963		return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
 964	else
 965		return paddr;
 966}
 967
 968static int fadump_create_elfcore_headers(char *bufp)
 969{
 970	struct elfhdr *elf;
 971	struct elf_phdr *phdr;
 972	int i;
 973
 974	fadump_init_elfcore_header(bufp);
 975	elf = (struct elfhdr *)bufp;
 976	bufp += sizeof(struct elfhdr);
 977
 978	/*
 979	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 980	 * will be populated during second kernel boot after crash. Hence
 981	 * this PT_NOTE will always be the first elf note.
 982	 *
 983	 * NOTE: Any new ELF note addition should be placed after this note.
 984	 */
 985	phdr = (struct elf_phdr *)bufp;
 986	bufp += sizeof(struct elf_phdr);
 987	phdr->p_type = PT_NOTE;
 988	phdr->p_flags = 0;
 989	phdr->p_vaddr = 0;
 990	phdr->p_align = 0;
 991
 992	phdr->p_offset = 0;
 993	phdr->p_paddr = 0;
 994	phdr->p_filesz = 0;
 995	phdr->p_memsz = 0;
 996
 997	(elf->e_phnum)++;
 998
 999	/* setup ELF PT_NOTE for vmcoreinfo */
1000	phdr = (struct elf_phdr *)bufp;
1001	bufp += sizeof(struct elf_phdr);
1002	phdr->p_type	= PT_NOTE;
1003	phdr->p_flags	= 0;
1004	phdr->p_vaddr	= 0;
1005	phdr->p_align	= 0;
1006
1007	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
1008	phdr->p_offset	= phdr->p_paddr;
1009	phdr->p_memsz	= phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
 
1010
1011	/* Increment number of program headers. */
1012	(elf->e_phnum)++;
1013
1014	/* setup PT_LOAD sections. */
1015
1016	for (i = 0; i < crash_mem_ranges; i++) {
1017		unsigned long long mbase, msize;
1018		mbase = crash_memory_ranges[i].base;
1019		msize = crash_memory_ranges[i].size;
1020
1021		if (!msize)
1022			continue;
1023
1024		phdr = (struct elf_phdr *)bufp;
1025		bufp += sizeof(struct elf_phdr);
1026		phdr->p_type	= PT_LOAD;
1027		phdr->p_flags	= PF_R|PF_W|PF_X;
1028		phdr->p_offset	= mbase;
1029
1030		if (mbase == RMA_START) {
1031			/*
1032			 * The entire RMA region will be moved by firmware
1033			 * to the specified destination_address. Hence set
1034			 * the correct offset.
1035			 */
1036			phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1037		}
1038
1039		phdr->p_paddr = mbase;
1040		phdr->p_vaddr = (unsigned long)__va(mbase);
1041		phdr->p_filesz = msize;
1042		phdr->p_memsz = msize;
1043		phdr->p_align = 0;
1044
1045		/* Increment number of program headers. */
1046		(elf->e_phnum)++;
1047	}
1048	return 0;
1049}
1050
1051static unsigned long init_fadump_header(unsigned long addr)
1052{
1053	struct fadump_crash_info_header *fdh;
1054
1055	if (!addr)
1056		return 0;
1057
1058	fw_dump.fadumphdr_addr = addr;
1059	fdh = __va(addr);
1060	addr += sizeof(struct fadump_crash_info_header);
1061
1062	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1063	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1064	fdh->elfcorehdr_addr = addr;
1065	/* We will set the crashing cpu id in crash_fadump() during crash. */
1066	fdh->crashing_cpu = CPU_UNKNOWN;
1067
1068	return addr;
1069}
1070
1071static int register_fadump(void)
1072{
1073	unsigned long addr;
1074	void *vaddr;
1075
1076	/*
1077	 * If no memory is reserved then we can not register for firmware-
1078	 * assisted dump.
1079	 */
1080	if (!fw_dump.reserve_dump_area_size)
1081		return -ENODEV;
1082
1083	fadump_setup_crash_memory_ranges();
1084
1085	addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1086	/* Initialize fadump crash info header. */
1087	addr = init_fadump_header(addr);
1088	vaddr = __va(addr);
1089
1090	pr_debug("Creating ELF core headers at %#016lx\n", addr);
1091	fadump_create_elfcore_headers(vaddr);
1092
1093	/* register the future kernel dump with firmware. */
1094	return register_fw_dump(&fdm);
1095}
1096
1097static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1098{
1099	int rc = 0;
1100	unsigned int wait_time;
1101
1102	pr_debug("Un-register firmware-assisted dump\n");
1103
1104	/* TODO: Add upper time limit for the delay */
1105	do {
1106		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1107			FADUMP_UNREGISTER, fdm,
1108			sizeof(struct fadump_mem_struct));
1109
1110		wait_time = rtas_busy_delay_time(rc);
1111		if (wait_time)
1112			mdelay(wait_time);
1113	} while (wait_time);
1114
1115	if (rc) {
1116		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1117			" unexpected error(%d).\n", rc);
1118		return rc;
1119	}
1120	fw_dump.dump_registered = 0;
1121	return 0;
1122}
1123
1124static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1125{
1126	int rc = 0;
1127	unsigned int wait_time;
1128
1129	pr_debug("Invalidating firmware-assisted dump registration\n");
1130
1131	/* TODO: Add upper time limit for the delay */
1132	do {
1133		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1134			FADUMP_INVALIDATE, fdm,
1135			sizeof(struct fadump_mem_struct));
1136
1137		wait_time = rtas_busy_delay_time(rc);
1138		if (wait_time)
1139			mdelay(wait_time);
1140	} while (wait_time);
1141
1142	if (rc) {
1143		pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
 
1144		return rc;
1145	}
1146	fw_dump.dump_active = 0;
1147	fdm_active = NULL;
1148	return 0;
1149}
1150
1151void fadump_cleanup(void)
1152{
1153	/* Invalidate the registration only if dump is active. */
1154	if (fw_dump.dump_active) {
1155		init_fadump_mem_struct(&fdm,
1156			be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1157		fadump_invalidate_dump(&fdm);
1158	}
1159}
1160
1161static void fadump_free_reserved_memory(unsigned long start_pfn,
1162					unsigned long end_pfn)
1163{
1164	unsigned long pfn;
1165	unsigned long time_limit = jiffies + HZ;
1166
1167	pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
1168		PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
1169
1170	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1171		free_reserved_page(pfn_to_page(pfn));
1172
1173		if (time_after(jiffies, time_limit)) {
1174			cond_resched();
1175			time_limit = jiffies + HZ;
1176		}
1177	}
1178}
1179
1180/*
1181 * Skip memory holes and free memory that was actually reserved.
1182 */
1183static void fadump_release_reserved_area(unsigned long start, unsigned long end)
1184{
1185	struct memblock_region *reg;
1186	unsigned long tstart, tend;
1187	unsigned long start_pfn = PHYS_PFN(start);
1188	unsigned long end_pfn = PHYS_PFN(end);
1189
1190	for_each_memblock(memory, reg) {
1191		tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
1192		tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
1193		if (tstart < tend) {
1194			fadump_free_reserved_memory(tstart, tend);
1195
1196			if (tend == end_pfn)
1197				break;
1198
1199			start_pfn = tend + 1;
1200		}
1201	}
1202}
1203
1204/*
1205 * Release the memory that was reserved in early boot to preserve the memory
1206 * contents. The released memory will be available for general use.
1207 */
1208static void fadump_release_memory(unsigned long begin, unsigned long end)
1209{
 
1210	unsigned long ra_start, ra_end;
1211
1212	ra_start = fw_dump.reserve_dump_area_start;
1213	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1214
1215	/*
1216	 * exclude the dump reserve area. Will reuse it for next
1217	 * fadump registration.
1218	 */
1219	if (begin < ra_end && end > ra_start) {
1220		if (begin < ra_start)
1221			fadump_release_reserved_area(begin, ra_start);
1222		if (end > ra_end)
1223			fadump_release_reserved_area(ra_end, end);
1224	} else
1225		fadump_release_reserved_area(begin, end);
 
 
1226}
1227
1228static void fadump_invalidate_release_mem(void)
1229{
1230	unsigned long reserved_area_start, reserved_area_end;
1231	unsigned long destination_address;
1232
1233	mutex_lock(&fadump_mutex);
1234	if (!fw_dump.dump_active) {
1235		mutex_unlock(&fadump_mutex);
1236		return;
1237	}
1238
1239	destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1240	fadump_cleanup();
1241	mutex_unlock(&fadump_mutex);
1242
1243	/*
1244	 * Save the current reserved memory bounds we will require them
1245	 * later for releasing the memory for general use.
1246	 */
1247	reserved_area_start = fw_dump.reserve_dump_area_start;
1248	reserved_area_end = reserved_area_start +
1249			fw_dump.reserve_dump_area_size;
1250	/*
1251	 * Setup reserve_dump_area_start and its size so that we can
1252	 * reuse this reserved memory for Re-registration.
1253	 */
1254	fw_dump.reserve_dump_area_start = destination_address;
1255	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1256
1257	fadump_release_memory(reserved_area_start, reserved_area_end);
1258	if (fw_dump.cpu_notes_buf) {
1259		fadump_cpu_notes_buf_free(
1260				(unsigned long)__va(fw_dump.cpu_notes_buf),
1261				fw_dump.cpu_notes_buf_size);
1262		fw_dump.cpu_notes_buf = 0;
1263		fw_dump.cpu_notes_buf_size = 0;
1264	}
1265	/* Initialize the kernel dump memory structure for FAD registration. */
1266	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1267}
1268
1269static ssize_t fadump_release_memory_store(struct kobject *kobj,
1270					struct kobj_attribute *attr,
1271					const char *buf, size_t count)
1272{
1273	int input = -1;
1274
1275	if (!fw_dump.dump_active)
1276		return -EPERM;
1277
1278	if (kstrtoint(buf, 0, &input))
1279		return -EINVAL;
1280
1281	if (input == 1) {
1282		/*
1283		 * Take away the '/proc/vmcore'. We are releasing the dump
1284		 * memory, hence it will not be valid anymore.
1285		 */
1286#ifdef CONFIG_PROC_VMCORE
1287		vmcore_cleanup();
1288#endif
1289		fadump_invalidate_release_mem();
1290
1291	} else
1292		return -EINVAL;
1293	return count;
1294}
1295
1296static ssize_t fadump_enabled_show(struct kobject *kobj,
1297					struct kobj_attribute *attr,
1298					char *buf)
1299{
1300	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1301}
1302
1303static ssize_t fadump_register_show(struct kobject *kobj,
1304					struct kobj_attribute *attr,
1305					char *buf)
1306{
1307	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1308}
1309
1310static ssize_t fadump_register_store(struct kobject *kobj,
1311					struct kobj_attribute *attr,
1312					const char *buf, size_t count)
1313{
1314	int ret = 0;
1315	int input = -1;
1316
1317	if (!fw_dump.fadump_enabled || fdm_active)
1318		return -EPERM;
1319
1320	if (kstrtoint(buf, 0, &input))
1321		return -EINVAL;
1322
1323	mutex_lock(&fadump_mutex);
1324
1325	switch (input) {
1326	case 0:
1327		if (fw_dump.dump_registered == 0) {
 
1328			goto unlock_out;
1329		}
1330		/* Un-register Firmware-assisted dump */
1331		fadump_unregister_dump(&fdm);
1332		break;
1333	case 1:
1334		if (fw_dump.dump_registered == 1) {
1335			ret = -EEXIST;
1336			goto unlock_out;
1337		}
1338		/* Register Firmware-assisted dump */
1339		ret = register_fadump();
1340		break;
1341	default:
1342		ret = -EINVAL;
1343		break;
1344	}
1345
1346unlock_out:
1347	mutex_unlock(&fadump_mutex);
1348	return ret < 0 ? ret : count;
1349}
1350
1351static int fadump_region_show(struct seq_file *m, void *private)
1352{
1353	const struct fadump_mem_struct *fdm_ptr;
1354
1355	if (!fw_dump.fadump_enabled)
1356		return 0;
1357
1358	mutex_lock(&fadump_mutex);
1359	if (fdm_active)
1360		fdm_ptr = fdm_active;
1361	else {
1362		mutex_unlock(&fadump_mutex);
1363		fdm_ptr = &fdm;
1364	}
1365
1366	seq_printf(m,
1367			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1368			"Dumped: %#llx\n",
1369			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1370			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1371			be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1372			be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1373			be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1374	seq_printf(m,
1375			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1376			"Dumped: %#llx\n",
1377			be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1378			be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1379			be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1380			be64_to_cpu(fdm_ptr->hpte_region.source_len),
1381			be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1382	seq_printf(m,
1383			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1384			"Dumped: %#llx\n",
1385			be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1386			be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1387			be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1388			be64_to_cpu(fdm_ptr->rmr_region.source_len),
1389			be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1390
1391	if (!fdm_active ||
1392		(fw_dump.reserve_dump_area_start ==
1393		be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1394		goto out;
1395
1396	/* Dump is active. Show reserved memory region. */
1397	seq_printf(m,
1398			"    : [%#016llx-%#016llx] %#llx bytes, "
1399			"Dumped: %#llx\n",
1400			(unsigned long long)fw_dump.reserve_dump_area_start,
1401			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1402			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1403			fw_dump.reserve_dump_area_start,
1404			be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1405			fw_dump.reserve_dump_area_start);
1406out:
1407	if (fdm_active)
1408		mutex_unlock(&fadump_mutex);
1409	return 0;
1410}
1411
1412static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1413						0200, NULL,
1414						fadump_release_memory_store);
1415static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1416						0444, fadump_enabled_show,
1417						NULL);
1418static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1419						0644, fadump_register_show,
1420						fadump_register_store);
1421
1422static int fadump_region_open(struct inode *inode, struct file *file)
1423{
1424	return single_open(file, fadump_region_show, inode->i_private);
1425}
1426
1427static const struct file_operations fadump_region_fops = {
1428	.open    = fadump_region_open,
1429	.read    = seq_read,
1430	.llseek  = seq_lseek,
1431	.release = single_release,
1432};
1433
1434static void fadump_init_files(void)
1435{
1436	struct dentry *debugfs_file;
1437	int rc = 0;
1438
1439	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1440	if (rc)
1441		printk(KERN_ERR "fadump: unable to create sysfs file"
1442			" fadump_enabled (%d)\n", rc);
1443
1444	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1445	if (rc)
1446		printk(KERN_ERR "fadump: unable to create sysfs file"
1447			" fadump_registered (%d)\n", rc);
1448
1449	debugfs_file = debugfs_create_file("fadump_region", 0444,
1450					powerpc_debugfs_root, NULL,
1451					&fadump_region_fops);
1452	if (!debugfs_file)
1453		printk(KERN_ERR "fadump: unable to create debugfs file"
1454				" fadump_region\n");
1455
1456	if (fw_dump.dump_active) {
1457		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1458		if (rc)
1459			printk(KERN_ERR "fadump: unable to create sysfs file"
1460				" fadump_release_mem (%d)\n", rc);
1461	}
1462	return;
1463}
1464
1465/*
1466 * Prepare for firmware-assisted dump.
1467 */
1468int __init setup_fadump(void)
1469{
1470	if (!fw_dump.fadump_enabled)
1471		return 0;
1472
1473	if (!fw_dump.fadump_supported) {
1474		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1475			" this hardware\n");
1476		return 0;
1477	}
1478
1479	fadump_show_config();
1480	/*
1481	 * If dump data is available then see if it is valid and prepare for
1482	 * saving it to the disk.
1483	 */
1484	if (fw_dump.dump_active) {
1485		/*
1486		 * if dump process fails then invalidate the registration
1487		 * and release memory before proceeding for re-registration.
1488		 */
1489		if (process_fadump(fdm_active) < 0)
1490			fadump_invalidate_release_mem();
1491	}
1492	/* Initialize the kernel dump memory structure for FAD registration. */
1493	else if (fw_dump.reserve_dump_area_size)
1494		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1495	fadump_init_files();
1496
1497	return 1;
1498}
1499subsys_initcall(setup_fadump);
v3.5.6
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/debugfs.h>
  34#include <linux/seq_file.h>
  35#include <linux/crash_dump.h>
  36#include <linux/kobject.h>
  37#include <linux/sysfs.h>
  38
 
  39#include <asm/page.h>
  40#include <asm/prom.h>
  41#include <asm/rtas.h>
  42#include <asm/fadump.h>
  43#include <asm/debug.h>
  44#include <asm/setup.h>
  45
  46static struct fw_dump fw_dump;
  47static struct fadump_mem_struct fdm;
  48static const struct fadump_mem_struct *fdm_active;
  49
  50static DEFINE_MUTEX(fadump_mutex);
  51struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
  52int crash_mem_ranges;
  53
  54/* Scan the Firmware Assisted dump configuration details. */
  55int __init early_init_dt_scan_fw_dump(unsigned long node,
  56			const char *uname, int depth, void *data)
  57{
  58	__be32 *sections;
  59	int i, num_sections;
  60	unsigned long size;
  61	const int *token;
  62
  63	if (depth != 1 || strcmp(uname, "rtas") != 0)
  64		return 0;
  65
  66	/*
  67	 * Check if Firmware Assisted dump is supported. if yes, check
  68	 * if dump has been initiated on last reboot.
  69	 */
  70	token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  71	if (!token)
  72		return 0;
  73
  74	fw_dump.fadump_supported = 1;
  75	fw_dump.ibm_configure_kernel_dump = *token;
  76
  77	/*
  78	 * The 'ibm,kernel-dump' rtas node is present only if there is
  79	 * dump data waiting for us.
  80	 */
  81	fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  82	if (fdm_active)
  83		fw_dump.dump_active = 1;
  84
  85	/* Get the sizes required to store dump data for the firmware provided
  86	 * dump sections.
  87	 * For each dump section type supported, a 32bit cell which defines
  88	 * the ID of a supported section followed by two 32 bit cells which
  89	 * gives teh size of the section in bytes.
  90	 */
  91	sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  92					&size);
  93
  94	if (!sections)
  95		return 0;
  96
  97	num_sections = size / (3 * sizeof(u32));
  98
  99	for (i = 0; i < num_sections; i++, sections += 3) {
 100		u32 type = (u32)of_read_number(sections, 1);
 101
 102		switch (type) {
 103		case FADUMP_CPU_STATE_DATA:
 104			fw_dump.cpu_state_data_size =
 105					of_read_ulong(&sections[1], 2);
 106			break;
 107		case FADUMP_HPTE_REGION:
 108			fw_dump.hpte_region_size =
 109					of_read_ulong(&sections[1], 2);
 110			break;
 111		}
 112	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113	return 1;
 114}
 115
 116int is_fadump_active(void)
 117{
 118	return fw_dump.dump_active;
 119}
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121/* Print firmware assisted dump configurations for debugging purpose. */
 122static void fadump_show_config(void)
 123{
 124	pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 125			(fw_dump.fadump_supported ? "present" : "no support"));
 126
 127	if (!fw_dump.fadump_supported)
 128		return;
 129
 130	pr_debug("Fadump enabled    : %s\n",
 131				(fw_dump.fadump_enabled ? "yes" : "no"));
 132	pr_debug("Dump Active       : %s\n",
 133				(fw_dump.dump_active ? "yes" : "no"));
 134	pr_debug("Dump section sizes:\n");
 135	pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 136	pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 137	pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 138}
 139
 140static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 141				unsigned long addr)
 142{
 143	if (!fdm)
 144		return 0;
 145
 146	memset(fdm, 0, sizeof(struct fadump_mem_struct));
 147	addr = addr & PAGE_MASK;
 148
 149	fdm->header.dump_format_version = 0x00000001;
 150	fdm->header.dump_num_sections = 3;
 151	fdm->header.dump_status_flag = 0;
 152	fdm->header.offset_first_dump_section =
 153		(u32)offsetof(struct fadump_mem_struct, cpu_state_data);
 154
 155	/*
 156	 * Fields for disk dump option.
 157	 * We are not using disk dump option, hence set these fields to 0.
 158	 */
 159	fdm->header.dd_block_size = 0;
 160	fdm->header.dd_block_offset = 0;
 161	fdm->header.dd_num_blocks = 0;
 162	fdm->header.dd_offset_disk_path = 0;
 163
 164	/* set 0 to disable an automatic dump-reboot. */
 165	fdm->header.max_time_auto = 0;
 166
 167	/* Kernel dump sections */
 168	/* cpu state data section. */
 169	fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
 170	fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
 171	fdm->cpu_state_data.source_address = 0;
 172	fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
 173	fdm->cpu_state_data.destination_address = addr;
 174	addr += fw_dump.cpu_state_data_size;
 175
 176	/* hpte region section */
 177	fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
 178	fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
 179	fdm->hpte_region.source_address = 0;
 180	fdm->hpte_region.source_len = fw_dump.hpte_region_size;
 181	fdm->hpte_region.destination_address = addr;
 182	addr += fw_dump.hpte_region_size;
 183
 184	/* RMA region section */
 185	fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
 186	fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
 187	fdm->rmr_region.source_address = RMA_START;
 188	fdm->rmr_region.source_len = fw_dump.boot_memory_size;
 189	fdm->rmr_region.destination_address = addr;
 190	addr += fw_dump.boot_memory_size;
 191
 192	return addr;
 193}
 194
 195/**
 196 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 197 *
 198 * Function to find the largest memory size we need to reserve during early
 199 * boot process. This will be the size of the memory that is required for a
 200 * kernel to boot successfully.
 201 *
 202 * This function has been taken from phyp-assisted dump feature implementation.
 203 *
 204 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 205 *
 206 * TODO: Come up with better approach to find out more accurate memory size
 207 * that is required for a kernel to boot successfully.
 208 *
 209 */
 210static inline unsigned long fadump_calculate_reserve_size(void)
 211{
 212	unsigned long size;
 
 
 
 
 213
 214	/*
 215	 * Check if the size is specified through fadump_reserve_mem= cmdline
 216	 * option. If yes, then use that.
 
 217	 */
 218	if (fw_dump.reserve_bootvar)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219		return fw_dump.reserve_bootvar;
 
 220
 221	/* divide by 20 to get 5% of value */
 222	size = memblock_end_of_DRAM() / 20;
 223
 224	/* round it down in multiples of 256 */
 225	size = size & ~0x0FFFFFFFUL;
 226
 227	/* Truncate to memory_limit. We don't want to over reserve the memory.*/
 228	if (memory_limit && size > memory_limit)
 229		size = memory_limit;
 230
 231	return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 232}
 233
 234/*
 235 * Calculate the total memory size required to be reserved for
 236 * firmware-assisted dump registration.
 237 */
 238static unsigned long get_fadump_area_size(void)
 239{
 240	unsigned long size = 0;
 241
 242	size += fw_dump.cpu_state_data_size;
 243	size += fw_dump.hpte_region_size;
 244	size += fw_dump.boot_memory_size;
 245	size += sizeof(struct fadump_crash_info_header);
 246	size += sizeof(struct elfhdr); /* ELF core header.*/
 247	size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 248	/* Program headers for crash memory regions. */
 249	size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 250
 251	size = PAGE_ALIGN(size);
 252	return size;
 253}
 254
 255int __init fadump_reserve_mem(void)
 256{
 257	unsigned long base, size, memory_boundary;
 258
 259	if (!fw_dump.fadump_enabled)
 260		return 0;
 261
 262	if (!fw_dump.fadump_supported) {
 263		printk(KERN_INFO "Firmware-assisted dump is not supported on"
 264				" this hardware\n");
 265		fw_dump.fadump_enabled = 0;
 266		return 0;
 267	}
 268	/*
 269	 * Initialize boot memory size
 270	 * If dump is active then we have already calculated the size during
 271	 * first kernel.
 272	 */
 273	if (fdm_active)
 274		fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
 275	else
 276		fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 277
 278	/*
 279	 * Calculate the memory boundary.
 280	 * If memory_limit is less than actual memory boundary then reserve
 281	 * the memory for fadump beyond the memory_limit and adjust the
 282	 * memory_limit accordingly, so that the running kernel can run with
 283	 * specified memory_limit.
 284	 */
 285	if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 286		size = get_fadump_area_size();
 287		if ((memory_limit + size) < memblock_end_of_DRAM())
 288			memory_limit += size;
 289		else
 290			memory_limit = memblock_end_of_DRAM();
 291		printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 292				" dump, now %#016llx\n",
 293				(unsigned long long)memory_limit);
 294	}
 295	if (memory_limit)
 296		memory_boundary = memory_limit;
 297	else
 298		memory_boundary = memblock_end_of_DRAM();
 299
 300	if (fw_dump.dump_active) {
 301		printk(KERN_INFO "Firmware-assisted dump is active.\n");
 302		/*
 303		 * If last boot has crashed then reserve all the memory
 304		 * above boot_memory_size so that we don't touch it until
 305		 * dump is written to disk by userspace tool. This memory
 306		 * will be released for general use once the dump is saved.
 307		 */
 308		base = fw_dump.boot_memory_size;
 309		size = memory_boundary - base;
 310		memblock_reserve(base, size);
 311		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 312				"for saving crash dump\n",
 313				(unsigned long)(size >> 20),
 314				(unsigned long)(base >> 20));
 315
 316		fw_dump.fadumphdr_addr =
 317				fdm_active->rmr_region.destination_address +
 318				fdm_active->rmr_region.source_len;
 319		pr_debug("fadumphdr_addr = %p\n",
 320				(void *) fw_dump.fadumphdr_addr);
 321	} else {
 322		/* Reserve the memory at the top of memory. */
 323		size = get_fadump_area_size();
 324		base = memory_boundary - size;
 325		memblock_reserve(base, size);
 326		printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
 327				"for firmware-assisted dump\n",
 328				(unsigned long)(size >> 20),
 329				(unsigned long)(base >> 20));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330	}
 
 331	fw_dump.reserve_dump_area_start = base;
 332	fw_dump.reserve_dump_area_size = size;
 333	return 1;
 334}
 335
 
 
 
 
 
 336/* Look for fadump= cmdline option. */
 337static int __init early_fadump_param(char *p)
 338{
 339	if (!p)
 340		return 1;
 341
 342	if (strncmp(p, "on", 2) == 0)
 343		fw_dump.fadump_enabled = 1;
 344	else if (strncmp(p, "off", 3) == 0)
 345		fw_dump.fadump_enabled = 0;
 346
 347	return 0;
 348}
 349early_param("fadump", early_fadump_param);
 350
 351/* Look for fadump_reserve_mem= cmdline option */
 
 
 
 
 352static int __init early_fadump_reserve_mem(char *p)
 353{
 354	if (p)
 355		fw_dump.reserve_bootvar = memparse(p, &p);
 356	return 0;
 357}
 358early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 359
 360static void register_fw_dump(struct fadump_mem_struct *fdm)
 361{
 362	int rc;
 363	unsigned int wait_time;
 364
 365	pr_debug("Registering for firmware-assisted kernel dump...\n");
 366
 367	/* TODO: Add upper time limit for the delay */
 368	do {
 369		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 370			FADUMP_REGISTER, fdm,
 371			sizeof(struct fadump_mem_struct));
 372
 373		wait_time = rtas_busy_delay_time(rc);
 374		if (wait_time)
 375			mdelay(wait_time);
 376
 377	} while (wait_time);
 378
 
 379	switch (rc) {
 
 
 
 380	case -1:
 381		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 382			" dump. Hardware Error(%d).\n", rc);
 383		break;
 384	case -3:
 
 
 
 
 385		printk(KERN_ERR "Failed to register firmware-assisted kernel"
 386			" dump. Parameter Error(%d).\n", rc);
 
 387		break;
 388	case -9:
 389		printk(KERN_ERR "firmware-assisted kernel dump is already "
 390			" registered.");
 391		fw_dump.dump_registered = 1;
 
 392		break;
 393	case 0:
 394		printk(KERN_INFO "firmware-assisted kernel dump registration"
 395			" is successful\n");
 396		fw_dump.dump_registered = 1;
 
 397		break;
 398	}
 
 399}
 400
 401void crash_fadump(struct pt_regs *regs, const char *str)
 402{
 403	struct fadump_crash_info_header *fdh = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404
 405	if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 
 
 
 
 
 
 
 
 
 406		return;
 
 407
 408	fdh = __va(fw_dump.fadumphdr_addr);
 409	crashing_cpu = smp_processor_id();
 410	fdh->crashing_cpu = crashing_cpu;
 411	crash_save_vmcoreinfo();
 412
 413	if (regs)
 414		fdh->regs = *regs;
 415	else
 416		ppc_save_regs(&fdh->regs);
 417
 418	fdh->cpu_online_mask = *cpu_online_mask;
 419
 420	/* Call ibm,os-term rtas call to trigger firmware assisted dump */
 421	rtas_os_term((char *)str);
 422}
 423
 424#define GPR_MASK	0xffffff0000000000
 425static inline int fadump_gpr_index(u64 id)
 426{
 427	int i = -1;
 428	char str[3];
 429
 430	if ((id & GPR_MASK) == REG_ID("GPR")) {
 431		/* get the digits at the end */
 432		id &= ~GPR_MASK;
 433		id >>= 24;
 434		str[2] = '\0';
 435		str[1] = id & 0xff;
 436		str[0] = (id >> 8) & 0xff;
 437		sscanf(str, "%d", &i);
 438		if (i > 31)
 439			i = -1;
 440	}
 441	return i;
 442}
 443
 444static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 445								u64 reg_val)
 446{
 447	int i;
 448
 449	i = fadump_gpr_index(reg_id);
 450	if (i >= 0)
 451		regs->gpr[i] = (unsigned long)reg_val;
 452	else if (reg_id == REG_ID("NIA"))
 453		regs->nip = (unsigned long)reg_val;
 454	else if (reg_id == REG_ID("MSR"))
 455		regs->msr = (unsigned long)reg_val;
 456	else if (reg_id == REG_ID("CTR"))
 457		regs->ctr = (unsigned long)reg_val;
 458	else if (reg_id == REG_ID("LR"))
 459		regs->link = (unsigned long)reg_val;
 460	else if (reg_id == REG_ID("XER"))
 461		regs->xer = (unsigned long)reg_val;
 462	else if (reg_id == REG_ID("CR"))
 463		regs->ccr = (unsigned long)reg_val;
 464	else if (reg_id == REG_ID("DAR"))
 465		regs->dar = (unsigned long)reg_val;
 466	else if (reg_id == REG_ID("DSISR"))
 467		regs->dsisr = (unsigned long)reg_val;
 468}
 469
 470static struct fadump_reg_entry*
 471fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 472{
 473	memset(regs, 0, sizeof(struct pt_regs));
 474
 475	while (reg_entry->reg_id != REG_ID("CPUEND")) {
 476		fadump_set_regval(regs, reg_entry->reg_id,
 477					reg_entry->reg_value);
 478		reg_entry++;
 479	}
 480	reg_entry++;
 481	return reg_entry;
 482}
 483
 484static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
 485						void *data, size_t data_len)
 486{
 487	struct elf_note note;
 488
 489	note.n_namesz = strlen(name) + 1;
 490	note.n_descsz = data_len;
 491	note.n_type   = type;
 492	memcpy(buf, &note, sizeof(note));
 493	buf += (sizeof(note) + 3)/4;
 494	memcpy(buf, name, note.n_namesz);
 495	buf += (note.n_namesz + 3)/4;
 496	memcpy(buf, data, note.n_descsz);
 497	buf += (note.n_descsz + 3)/4;
 498
 499	return buf;
 500}
 501
 502static void fadump_final_note(u32 *buf)
 503{
 504	struct elf_note note;
 505
 506	note.n_namesz = 0;
 507	note.n_descsz = 0;
 508	note.n_type   = 0;
 509	memcpy(buf, &note, sizeof(note));
 510}
 511
 512static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 513{
 514	struct elf_prstatus prstatus;
 515
 516	memset(&prstatus, 0, sizeof(prstatus));
 517	/*
 518	 * FIXME: How do i get PID? Do I really need it?
 519	 * prstatus.pr_pid = ????
 520	 */
 521	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 522	buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
 523				&prstatus, sizeof(prstatus));
 524	return buf;
 525}
 526
 527static void fadump_update_elfcore_header(char *bufp)
 528{
 529	struct elfhdr *elf;
 530	struct elf_phdr *phdr;
 531
 532	elf = (struct elfhdr *)bufp;
 533	bufp += sizeof(struct elfhdr);
 534
 535	/* First note is a place holder for cpu notes info. */
 536	phdr = (struct elf_phdr *)bufp;
 537
 538	if (phdr->p_type == PT_NOTE) {
 539		phdr->p_paddr = fw_dump.cpu_notes_buf;
 540		phdr->p_offset	= phdr->p_paddr;
 541		phdr->p_filesz	= fw_dump.cpu_notes_buf_size;
 542		phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 543	}
 544	return;
 545}
 546
 547static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 548{
 549	void *vaddr;
 550	struct page *page;
 551	unsigned long order, count, i;
 552
 553	order = get_order(size);
 554	vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 555	if (!vaddr)
 556		return NULL;
 557
 558	count = 1 << order;
 559	page = virt_to_page(vaddr);
 560	for (i = 0; i < count; i++)
 561		SetPageReserved(page + i);
 562	return vaddr;
 563}
 564
 565static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 566{
 567	struct page *page;
 568	unsigned long order, count, i;
 569
 570	order = get_order(size);
 571	count = 1 << order;
 572	page = virt_to_page(vaddr);
 573	for (i = 0; i < count; i++)
 574		ClearPageReserved(page + i);
 575	__free_pages(page, order);
 576}
 577
 578/*
 579 * Read CPU state dump data and convert it into ELF notes.
 580 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 581 * used to access the data to allow for additional fields to be added without
 582 * affecting compatibility. Each list of registers for a CPU starts with
 583 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 584 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 585 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 586 * of register value. For more details refer to PAPR document.
 587 *
 588 * Only for the crashing cpu we ignore the CPU dump data and get exact
 589 * state from fadump crash info structure populated by first kernel at the
 590 * time of crash.
 591 */
 592static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 593{
 594	struct fadump_reg_save_area_header *reg_header;
 595	struct fadump_reg_entry *reg_entry;
 596	struct fadump_crash_info_header *fdh = NULL;
 597	void *vaddr;
 598	unsigned long addr;
 599	u32 num_cpus, *note_buf;
 600	struct pt_regs regs;
 601	int i, rc = 0, cpu = 0;
 602
 603	if (!fdm->cpu_state_data.bytes_dumped)
 604		return -EINVAL;
 605
 606	addr = fdm->cpu_state_data.destination_address;
 607	vaddr = __va(addr);
 608
 609	reg_header = vaddr;
 610	if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
 611		printk(KERN_ERR "Unable to read register save area.\n");
 612		return -ENOENT;
 613	}
 614	pr_debug("--------CPU State Data------------\n");
 615	pr_debug("Magic Number: %llx\n", reg_header->magic_number);
 616	pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
 617
 618	vaddr += reg_header->num_cpu_offset;
 619	num_cpus = *((u32 *)(vaddr));
 620	pr_debug("NumCpus     : %u\n", num_cpus);
 621	vaddr += sizeof(u32);
 622	reg_entry = (struct fadump_reg_entry *)vaddr;
 623
 624	/* Allocate buffer to hold cpu crash notes. */
 625	fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 626	fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 627	note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 628	if (!note_buf) {
 629		printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 630			"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 631		return -ENOMEM;
 632	}
 633	fw_dump.cpu_notes_buf = __pa(note_buf);
 634
 635	pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 636			(num_cpus * sizeof(note_buf_t)), note_buf);
 637
 638	if (fw_dump.fadumphdr_addr)
 639		fdh = __va(fw_dump.fadumphdr_addr);
 640
 641	for (i = 0; i < num_cpus; i++) {
 642		if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
 643			printk(KERN_ERR "Unable to read CPU state data\n");
 644			rc = -ENOENT;
 645			goto error_out;
 646		}
 647		/* Lower 4 bytes of reg_value contains logical cpu id */
 648		cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
 649		if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
 650			SKIP_TO_NEXT_CPU(reg_entry);
 651			continue;
 652		}
 653		pr_debug("Reading register data for cpu %d...\n", cpu);
 654		if (fdh && fdh->crashing_cpu == cpu) {
 655			regs = fdh->regs;
 656			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 657			SKIP_TO_NEXT_CPU(reg_entry);
 658		} else {
 659			reg_entry++;
 660			reg_entry = fadump_read_registers(reg_entry, &regs);
 661			note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 662		}
 663	}
 664	fadump_final_note(note_buf);
 665
 666	pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 
 667							fdh->elfcorehdr_addr);
 668	fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 
 669	return 0;
 670
 671error_out:
 672	fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 673					fw_dump.cpu_notes_buf_size);
 674	fw_dump.cpu_notes_buf = 0;
 675	fw_dump.cpu_notes_buf_size = 0;
 676	return rc;
 677
 678}
 679
 680/*
 681 * Validate and process the dump data stored by firmware before exporting
 682 * it through '/proc/vmcore'.
 683 */
 684static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 685{
 686	struct fadump_crash_info_header *fdh;
 687	int rc = 0;
 688
 689	if (!fdm_active || !fw_dump.fadumphdr_addr)
 690		return -EINVAL;
 691
 692	/* Check if the dump data is valid. */
 693	if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
 694			(fdm_active->cpu_state_data.error_flags != 0) ||
 695			(fdm_active->rmr_region.error_flags != 0)) {
 696		printk(KERN_ERR "Dump taken by platform is not valid\n");
 697		return -EINVAL;
 698	}
 699	if ((fdm_active->rmr_region.bytes_dumped !=
 700			fdm_active->rmr_region.source_len) ||
 701			!fdm_active->cpu_state_data.bytes_dumped) {
 702		printk(KERN_ERR "Dump taken by platform is incomplete\n");
 703		return -EINVAL;
 704	}
 705
 706	/* Validate the fadump crash info header */
 707	fdh = __va(fw_dump.fadumphdr_addr);
 708	if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 709		printk(KERN_ERR "Crash info header is not valid.\n");
 710		return -EINVAL;
 711	}
 712
 713	rc = fadump_build_cpu_notes(fdm_active);
 714	if (rc)
 715		return rc;
 716
 717	/*
 718	 * We are done validating dump info and elfcore header is now ready
 719	 * to be exported. set elfcorehdr_addr so that vmcore module will
 720	 * export the elfcore header through '/proc/vmcore'.
 721	 */
 722	elfcorehdr_addr = fdh->elfcorehdr_addr;
 723
 724	return 0;
 725}
 726
 727static inline void fadump_add_crash_memory(unsigned long long base,
 728					unsigned long long end)
 729{
 730	if (base == end)
 731		return;
 732
 733	pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 734		crash_mem_ranges, base, end - 1, (end - base));
 735	crash_memory_ranges[crash_mem_ranges].base = base;
 736	crash_memory_ranges[crash_mem_ranges].size = end - base;
 737	crash_mem_ranges++;
 738}
 739
 740static void fadump_exclude_reserved_area(unsigned long long start,
 741					unsigned long long end)
 742{
 743	unsigned long long ra_start, ra_end;
 744
 745	ra_start = fw_dump.reserve_dump_area_start;
 746	ra_end = ra_start + fw_dump.reserve_dump_area_size;
 747
 748	if ((ra_start < end) && (ra_end > start)) {
 749		if ((start < ra_start) && (end > ra_end)) {
 750			fadump_add_crash_memory(start, ra_start);
 751			fadump_add_crash_memory(ra_end, end);
 752		} else if (start < ra_start) {
 753			fadump_add_crash_memory(start, ra_start);
 754		} else if (ra_end < end) {
 755			fadump_add_crash_memory(ra_end, end);
 756		}
 757	} else
 758		fadump_add_crash_memory(start, end);
 759}
 760
 761static int fadump_init_elfcore_header(char *bufp)
 762{
 763	struct elfhdr *elf;
 764
 765	elf = (struct elfhdr *) bufp;
 766	bufp += sizeof(struct elfhdr);
 767	memcpy(elf->e_ident, ELFMAG, SELFMAG);
 768	elf->e_ident[EI_CLASS] = ELF_CLASS;
 769	elf->e_ident[EI_DATA] = ELF_DATA;
 770	elf->e_ident[EI_VERSION] = EV_CURRENT;
 771	elf->e_ident[EI_OSABI] = ELF_OSABI;
 772	memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 773	elf->e_type = ET_CORE;
 774	elf->e_machine = ELF_ARCH;
 775	elf->e_version = EV_CURRENT;
 776	elf->e_entry = 0;
 777	elf->e_phoff = sizeof(struct elfhdr);
 778	elf->e_shoff = 0;
 779	elf->e_flags = ELF_CORE_EFLAGS;
 
 
 
 
 780	elf->e_ehsize = sizeof(struct elfhdr);
 781	elf->e_phentsize = sizeof(struct elf_phdr);
 782	elf->e_phnum = 0;
 783	elf->e_shentsize = 0;
 784	elf->e_shnum = 0;
 785	elf->e_shstrndx = 0;
 786
 787	return 0;
 788}
 789
 790/*
 791 * Traverse through memblock structure and setup crash memory ranges. These
 792 * ranges will be used create PT_LOAD program headers in elfcore header.
 793 */
 794static void fadump_setup_crash_memory_ranges(void)
 795{
 796	struct memblock_region *reg;
 797	unsigned long long start, end;
 798
 799	pr_debug("Setup crash memory ranges.\n");
 800	crash_mem_ranges = 0;
 801	/*
 802	 * add the first memory chunk (RMA_START through boot_memory_size) as
 803	 * a separate memory chunk. The reason is, at the time crash firmware
 804	 * will move the content of this memory chunk to different location
 805	 * specified during fadump registration. We need to create a separate
 806	 * program header for this chunk with the correct offset.
 807	 */
 808	fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
 809
 810	for_each_memblock(memory, reg) {
 811		start = (unsigned long long)reg->base;
 812		end = start + (unsigned long long)reg->size;
 813		if (start == RMA_START && end >= fw_dump.boot_memory_size)
 814			start = fw_dump.boot_memory_size;
 
 
 
 
 
 
 
 
 
 
 
 815
 816		/* add this range excluding the reserved dump area. */
 817		fadump_exclude_reserved_area(start, end);
 818	}
 819}
 820
 821/*
 822 * If the given physical address falls within the boot memory region then
 823 * return the relocated address that points to the dump region reserved
 824 * for saving initial boot memory contents.
 825 */
 826static inline unsigned long fadump_relocate(unsigned long paddr)
 827{
 828	if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
 829		return fdm.rmr_region.destination_address + paddr;
 830	else
 831		return paddr;
 832}
 833
 834static int fadump_create_elfcore_headers(char *bufp)
 835{
 836	struct elfhdr *elf;
 837	struct elf_phdr *phdr;
 838	int i;
 839
 840	fadump_init_elfcore_header(bufp);
 841	elf = (struct elfhdr *)bufp;
 842	bufp += sizeof(struct elfhdr);
 843
 844	/*
 845	 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
 846	 * will be populated during second kernel boot after crash. Hence
 847	 * this PT_NOTE will always be the first elf note.
 848	 *
 849	 * NOTE: Any new ELF note addition should be placed after this note.
 850	 */
 851	phdr = (struct elf_phdr *)bufp;
 852	bufp += sizeof(struct elf_phdr);
 853	phdr->p_type = PT_NOTE;
 854	phdr->p_flags = 0;
 855	phdr->p_vaddr = 0;
 856	phdr->p_align = 0;
 857
 858	phdr->p_offset = 0;
 859	phdr->p_paddr = 0;
 860	phdr->p_filesz = 0;
 861	phdr->p_memsz = 0;
 862
 863	(elf->e_phnum)++;
 864
 865	/* setup ELF PT_NOTE for vmcoreinfo */
 866	phdr = (struct elf_phdr *)bufp;
 867	bufp += sizeof(struct elf_phdr);
 868	phdr->p_type	= PT_NOTE;
 869	phdr->p_flags	= 0;
 870	phdr->p_vaddr	= 0;
 871	phdr->p_align	= 0;
 872
 873	phdr->p_paddr	= fadump_relocate(paddr_vmcoreinfo_note());
 874	phdr->p_offset	= phdr->p_paddr;
 875	phdr->p_memsz	= vmcoreinfo_max_size;
 876	phdr->p_filesz	= vmcoreinfo_max_size;
 877
 878	/* Increment number of program headers. */
 879	(elf->e_phnum)++;
 880
 881	/* setup PT_LOAD sections. */
 882
 883	for (i = 0; i < crash_mem_ranges; i++) {
 884		unsigned long long mbase, msize;
 885		mbase = crash_memory_ranges[i].base;
 886		msize = crash_memory_ranges[i].size;
 887
 888		if (!msize)
 889			continue;
 890
 891		phdr = (struct elf_phdr *)bufp;
 892		bufp += sizeof(struct elf_phdr);
 893		phdr->p_type	= PT_LOAD;
 894		phdr->p_flags	= PF_R|PF_W|PF_X;
 895		phdr->p_offset	= mbase;
 896
 897		if (mbase == RMA_START) {
 898			/*
 899			 * The entire RMA region will be moved by firmware
 900			 * to the specified destination_address. Hence set
 901			 * the correct offset.
 902			 */
 903			phdr->p_offset = fdm.rmr_region.destination_address;
 904		}
 905
 906		phdr->p_paddr = mbase;
 907		phdr->p_vaddr = (unsigned long)__va(mbase);
 908		phdr->p_filesz = msize;
 909		phdr->p_memsz = msize;
 910		phdr->p_align = 0;
 911
 912		/* Increment number of program headers. */
 913		(elf->e_phnum)++;
 914	}
 915	return 0;
 916}
 917
 918static unsigned long init_fadump_header(unsigned long addr)
 919{
 920	struct fadump_crash_info_header *fdh;
 921
 922	if (!addr)
 923		return 0;
 924
 925	fw_dump.fadumphdr_addr = addr;
 926	fdh = __va(addr);
 927	addr += sizeof(struct fadump_crash_info_header);
 928
 929	memset(fdh, 0, sizeof(struct fadump_crash_info_header));
 930	fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
 931	fdh->elfcorehdr_addr = addr;
 932	/* We will set the crashing cpu id in crash_fadump() during crash. */
 933	fdh->crashing_cpu = CPU_UNKNOWN;
 934
 935	return addr;
 936}
 937
 938static void register_fadump(void)
 939{
 940	unsigned long addr;
 941	void *vaddr;
 942
 943	/*
 944	 * If no memory is reserved then we can not register for firmware-
 945	 * assisted dump.
 946	 */
 947	if (!fw_dump.reserve_dump_area_size)
 948		return;
 949
 950	fadump_setup_crash_memory_ranges();
 951
 952	addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
 953	/* Initialize fadump crash info header. */
 954	addr = init_fadump_header(addr);
 955	vaddr = __va(addr);
 956
 957	pr_debug("Creating ELF core headers at %#016lx\n", addr);
 958	fadump_create_elfcore_headers(vaddr);
 959
 960	/* register the future kernel dump with firmware. */
 961	register_fw_dump(&fdm);
 962}
 963
 964static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
 965{
 966	int rc = 0;
 967	unsigned int wait_time;
 968
 969	pr_debug("Un-register firmware-assisted dump\n");
 970
 971	/* TODO: Add upper time limit for the delay */
 972	do {
 973		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 974			FADUMP_UNREGISTER, fdm,
 975			sizeof(struct fadump_mem_struct));
 976
 977		wait_time = rtas_busy_delay_time(rc);
 978		if (wait_time)
 979			mdelay(wait_time);
 980	} while (wait_time);
 981
 982	if (rc) {
 983		printk(KERN_ERR "Failed to un-register firmware-assisted dump."
 984			" unexpected error(%d).\n", rc);
 985		return rc;
 986	}
 987	fw_dump.dump_registered = 0;
 988	return 0;
 989}
 990
 991static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
 992{
 993	int rc = 0;
 994	unsigned int wait_time;
 995
 996	pr_debug("Invalidating firmware-assisted dump registration\n");
 997
 998	/* TODO: Add upper time limit for the delay */
 999	do {
1000		rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1001			FADUMP_INVALIDATE, fdm,
1002			sizeof(struct fadump_mem_struct));
1003
1004		wait_time = rtas_busy_delay_time(rc);
1005		if (wait_time)
1006			mdelay(wait_time);
1007	} while (wait_time);
1008
1009	if (rc) {
1010		printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1011			"rgistration. unexpected error(%d).\n", rc);
1012		return rc;
1013	}
1014	fw_dump.dump_active = 0;
1015	fdm_active = NULL;
1016	return 0;
1017}
1018
1019void fadump_cleanup(void)
1020{
1021	/* Invalidate the registration only if dump is active. */
1022	if (fw_dump.dump_active) {
1023		init_fadump_mem_struct(&fdm,
1024			fdm_active->cpu_state_data.destination_address);
1025		fadump_invalidate_dump(&fdm);
1026	}
1027}
1028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029/*
1030 * Release the memory that was reserved in early boot to preserve the memory
1031 * contents. The released memory will be available for general use.
1032 */
1033static void fadump_release_memory(unsigned long begin, unsigned long end)
1034{
1035	unsigned long addr;
1036	unsigned long ra_start, ra_end;
1037
1038	ra_start = fw_dump.reserve_dump_area_start;
1039	ra_end = ra_start + fw_dump.reserve_dump_area_size;
1040
1041	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1042		/*
1043		 * exclude the dump reserve area. Will reuse it for next
1044		 * fadump registration.
1045		 */
1046		if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1047			continue;
1048
1049		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1050		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1051		free_page((unsigned long)__va(addr));
1052		totalram_pages++;
1053	}
1054}
1055
1056static void fadump_invalidate_release_mem(void)
1057{
1058	unsigned long reserved_area_start, reserved_area_end;
1059	unsigned long destination_address;
1060
1061	mutex_lock(&fadump_mutex);
1062	if (!fw_dump.dump_active) {
1063		mutex_unlock(&fadump_mutex);
1064		return;
1065	}
1066
1067	destination_address = fdm_active->cpu_state_data.destination_address;
1068	fadump_cleanup();
1069	mutex_unlock(&fadump_mutex);
1070
1071	/*
1072	 * Save the current reserved memory bounds we will require them
1073	 * later for releasing the memory for general use.
1074	 */
1075	reserved_area_start = fw_dump.reserve_dump_area_start;
1076	reserved_area_end = reserved_area_start +
1077			fw_dump.reserve_dump_area_size;
1078	/*
1079	 * Setup reserve_dump_area_start and its size so that we can
1080	 * reuse this reserved memory for Re-registration.
1081	 */
1082	fw_dump.reserve_dump_area_start = destination_address;
1083	fw_dump.reserve_dump_area_size = get_fadump_area_size();
1084
1085	fadump_release_memory(reserved_area_start, reserved_area_end);
1086	if (fw_dump.cpu_notes_buf) {
1087		fadump_cpu_notes_buf_free(
1088				(unsigned long)__va(fw_dump.cpu_notes_buf),
1089				fw_dump.cpu_notes_buf_size);
1090		fw_dump.cpu_notes_buf = 0;
1091		fw_dump.cpu_notes_buf_size = 0;
1092	}
1093	/* Initialize the kernel dump memory structure for FAD registration. */
1094	init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1095}
1096
1097static ssize_t fadump_release_memory_store(struct kobject *kobj,
1098					struct kobj_attribute *attr,
1099					const char *buf, size_t count)
1100{
 
 
1101	if (!fw_dump.dump_active)
1102		return -EPERM;
1103
1104	if (buf[0] == '1') {
 
 
 
1105		/*
1106		 * Take away the '/proc/vmcore'. We are releasing the dump
1107		 * memory, hence it will not be valid anymore.
1108		 */
 
1109		vmcore_cleanup();
 
1110		fadump_invalidate_release_mem();
1111
1112	} else
1113		return -EINVAL;
1114	return count;
1115}
1116
1117static ssize_t fadump_enabled_show(struct kobject *kobj,
1118					struct kobj_attribute *attr,
1119					char *buf)
1120{
1121	return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1122}
1123
1124static ssize_t fadump_register_show(struct kobject *kobj,
1125					struct kobj_attribute *attr,
1126					char *buf)
1127{
1128	return sprintf(buf, "%d\n", fw_dump.dump_registered);
1129}
1130
1131static ssize_t fadump_register_store(struct kobject *kobj,
1132					struct kobj_attribute *attr,
1133					const char *buf, size_t count)
1134{
1135	int ret = 0;
 
1136
1137	if (!fw_dump.fadump_enabled || fdm_active)
1138		return -EPERM;
1139
 
 
 
1140	mutex_lock(&fadump_mutex);
1141
1142	switch (buf[0]) {
1143	case '0':
1144		if (fw_dump.dump_registered == 0) {
1145			ret = -EINVAL;
1146			goto unlock_out;
1147		}
1148		/* Un-register Firmware-assisted dump */
1149		fadump_unregister_dump(&fdm);
1150		break;
1151	case '1':
1152		if (fw_dump.dump_registered == 1) {
1153			ret = -EINVAL;
1154			goto unlock_out;
1155		}
1156		/* Register Firmware-assisted dump */
1157		register_fadump();
1158		break;
1159	default:
1160		ret = -EINVAL;
1161		break;
1162	}
1163
1164unlock_out:
1165	mutex_unlock(&fadump_mutex);
1166	return ret < 0 ? ret : count;
1167}
1168
1169static int fadump_region_show(struct seq_file *m, void *private)
1170{
1171	const struct fadump_mem_struct *fdm_ptr;
1172
1173	if (!fw_dump.fadump_enabled)
1174		return 0;
1175
1176	mutex_lock(&fadump_mutex);
1177	if (fdm_active)
1178		fdm_ptr = fdm_active;
1179	else {
1180		mutex_unlock(&fadump_mutex);
1181		fdm_ptr = &fdm;
1182	}
1183
1184	seq_printf(m,
1185			"CPU : [%#016llx-%#016llx] %#llx bytes, "
1186			"Dumped: %#llx\n",
1187			fdm_ptr->cpu_state_data.destination_address,
1188			fdm_ptr->cpu_state_data.destination_address +
1189			fdm_ptr->cpu_state_data.source_len - 1,
1190			fdm_ptr->cpu_state_data.source_len,
1191			fdm_ptr->cpu_state_data.bytes_dumped);
1192	seq_printf(m,
1193			"HPTE: [%#016llx-%#016llx] %#llx bytes, "
1194			"Dumped: %#llx\n",
1195			fdm_ptr->hpte_region.destination_address,
1196			fdm_ptr->hpte_region.destination_address +
1197			fdm_ptr->hpte_region.source_len - 1,
1198			fdm_ptr->hpte_region.source_len,
1199			fdm_ptr->hpte_region.bytes_dumped);
1200	seq_printf(m,
1201			"DUMP: [%#016llx-%#016llx] %#llx bytes, "
1202			"Dumped: %#llx\n",
1203			fdm_ptr->rmr_region.destination_address,
1204			fdm_ptr->rmr_region.destination_address +
1205			fdm_ptr->rmr_region.source_len - 1,
1206			fdm_ptr->rmr_region.source_len,
1207			fdm_ptr->rmr_region.bytes_dumped);
1208
1209	if (!fdm_active ||
1210		(fw_dump.reserve_dump_area_start ==
1211		fdm_ptr->cpu_state_data.destination_address))
1212		goto out;
1213
1214	/* Dump is active. Show reserved memory region. */
1215	seq_printf(m,
1216			"    : [%#016llx-%#016llx] %#llx bytes, "
1217			"Dumped: %#llx\n",
1218			(unsigned long long)fw_dump.reserve_dump_area_start,
1219			fdm_ptr->cpu_state_data.destination_address - 1,
1220			fdm_ptr->cpu_state_data.destination_address -
1221			fw_dump.reserve_dump_area_start,
1222			fdm_ptr->cpu_state_data.destination_address -
1223			fw_dump.reserve_dump_area_start);
1224out:
1225	if (fdm_active)
1226		mutex_unlock(&fadump_mutex);
1227	return 0;
1228}
1229
1230static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1231						0200, NULL,
1232						fadump_release_memory_store);
1233static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1234						0444, fadump_enabled_show,
1235						NULL);
1236static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1237						0644, fadump_register_show,
1238						fadump_register_store);
1239
1240static int fadump_region_open(struct inode *inode, struct file *file)
1241{
1242	return single_open(file, fadump_region_show, inode->i_private);
1243}
1244
1245static const struct file_operations fadump_region_fops = {
1246	.open    = fadump_region_open,
1247	.read    = seq_read,
1248	.llseek  = seq_lseek,
1249	.release = single_release,
1250};
1251
1252static void fadump_init_files(void)
1253{
1254	struct dentry *debugfs_file;
1255	int rc = 0;
1256
1257	rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1258	if (rc)
1259		printk(KERN_ERR "fadump: unable to create sysfs file"
1260			" fadump_enabled (%d)\n", rc);
1261
1262	rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1263	if (rc)
1264		printk(KERN_ERR "fadump: unable to create sysfs file"
1265			" fadump_registered (%d)\n", rc);
1266
1267	debugfs_file = debugfs_create_file("fadump_region", 0444,
1268					powerpc_debugfs_root, NULL,
1269					&fadump_region_fops);
1270	if (!debugfs_file)
1271		printk(KERN_ERR "fadump: unable to create debugfs file"
1272				" fadump_region\n");
1273
1274	if (fw_dump.dump_active) {
1275		rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1276		if (rc)
1277			printk(KERN_ERR "fadump: unable to create sysfs file"
1278				" fadump_release_mem (%d)\n", rc);
1279	}
1280	return;
1281}
1282
1283/*
1284 * Prepare for firmware-assisted dump.
1285 */
1286int __init setup_fadump(void)
1287{
1288	if (!fw_dump.fadump_enabled)
1289		return 0;
1290
1291	if (!fw_dump.fadump_supported) {
1292		printk(KERN_ERR "Firmware-assisted dump is not supported on"
1293			" this hardware\n");
1294		return 0;
1295	}
1296
1297	fadump_show_config();
1298	/*
1299	 * If dump data is available then see if it is valid and prepare for
1300	 * saving it to the disk.
1301	 */
1302	if (fw_dump.dump_active) {
1303		/*
1304		 * if dump process fails then invalidate the registration
1305		 * and release memory before proceeding for re-registration.
1306		 */
1307		if (process_fadump(fdm_active) < 0)
1308			fadump_invalidate_release_mem();
1309	}
1310	/* Initialize the kernel dump memory structure for FAD registration. */
1311	else if (fw_dump.reserve_dump_area_size)
1312		init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1313	fadump_init_files();
1314
1315	return 1;
1316}
1317subsys_initcall(setup_fadump);