Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10#include <linux/kernel.h>
 11#include <linux/dax.h>
 12#include <linux/gfp.h>
 13#include <linux/export.h>
 14#include <linux/blkdev.h>
 15#include <linux/backing-dev.h>
 16#include <linux/task_io_accounting_ops.h>
 17#include <linux/pagevec.h>
 18#include <linux/pagemap.h>
 
 19#include <linux/syscalls.h>
 20#include <linux/file.h>
 21#include <linux/mm_inline.h>
 
 
 
 22
 23#include "internal.h"
 24
 25/*
 26 * Initialise a struct file's readahead state.  Assumes that the caller has
 27 * memset *ra to zero.
 28 */
 29void
 30file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 31{
 32	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 33	ra->prev_pos = -1;
 34}
 35EXPORT_SYMBOL_GPL(file_ra_state_init);
 36
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	put_page(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = lru_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = lru_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping, page->index,
 93				readahead_gfp_mask(mapping))) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		put_page(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113{
 
 
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
117
118	blk_start_plug(&plug);
 
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = lru_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
131			mapping->a_ops->readpage(filp, page);
132		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
 
 
 
138
139	return ret;
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
 
 
 
 
 
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 
149 */
150int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
151			pgoff_t offset, unsigned long nr_to_read,
152			unsigned long lookahead_size)
153{
154	struct inode *inode = mapping->host;
155	struct page *page;
156	unsigned long end_index;	/* The last page we want to read */
157	LIST_HEAD(page_pool);
158	int page_idx;
159	int ret = 0;
160	loff_t isize = i_size_read(inode);
161	gfp_t gfp_mask = readahead_gfp_mask(mapping);
 
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
167
 
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->i_pages, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
 
 
 
 
 
181			continue;
 
182
183		page = __page_cache_alloc(gfp_mask);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
189			SetPageReadahead(page);
190		ret++;
 
 
 
 
 
 
 
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210			       pgoff_t offset, unsigned long nr_to_read)
211{
 
 
212	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213	struct file_ra_state *ra = &filp->f_ra;
214	unsigned long max_pages;
215
216	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217		return -EINVAL;
218
219	/*
220	 * If the request exceeds the readahead window, allow the read to
221	 * be up to the optimal hardware IO size
222	 */
 
223	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224	nr_to_read = min(nr_to_read, max_pages);
225	while (nr_to_read) {
226		int err;
227
228		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229
230		if (this_chunk > nr_to_read)
231			this_chunk = nr_to_read;
232		err = __do_page_cache_readahead(mapping, filp,
233						offset, this_chunk, 0);
234		if (err < 0)
235			return err;
236
237		offset += this_chunk;
238		nr_to_read -= this_chunk;
239	}
240	return 0;
241}
242
243/*
244 * Set the initial window size, round to next power of 2 and square
245 * for small size, x 4 for medium, and x 2 for large
246 * for 128k (32 page) max ra
247 * 1-8 page = 32k initial, > 8 page = 128k initial
248 */
249static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250{
251	unsigned long newsize = roundup_pow_of_two(size);
252
253	if (newsize <= max / 32)
254		newsize = newsize * 4;
255	else if (newsize <= max / 4)
256		newsize = newsize * 2;
257	else
258		newsize = max;
259
260	return newsize;
261}
262
263/*
264 *  Get the previous window size, ramp it up, and
265 *  return it as the new window size.
266 */
267static unsigned long get_next_ra_size(struct file_ra_state *ra,
268						unsigned long max)
269{
270	unsigned long cur = ra->size;
271	unsigned long newsize;
272
273	if (cur < max / 16)
274		newsize = 4 * cur;
275	else
276		newsize = 2 * cur;
277
278	return min(newsize, max);
279}
280
281/*
282 * On-demand readahead design.
283 *
284 * The fields in struct file_ra_state represent the most-recently-executed
285 * readahead attempt:
286 *
287 *                        |<----- async_size ---------|
288 *     |------------------- size -------------------->|
289 *     |==================#===========================|
290 *     ^start             ^page marked with PG_readahead
291 *
292 * To overlap application thinking time and disk I/O time, we do
293 * `readahead pipelining': Do not wait until the application consumed all
294 * readahead pages and stalled on the missing page at readahead_index;
295 * Instead, submit an asynchronous readahead I/O as soon as there are
296 * only async_size pages left in the readahead window. Normally async_size
297 * will be equal to size, for maximum pipelining.
298 *
299 * In interleaved sequential reads, concurrent streams on the same fd can
300 * be invalidating each other's readahead state. So we flag the new readahead
301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
302 * indicator. The flag won't be set on already cached pages, to avoid the
303 * readahead-for-nothing fuss, saving pointless page cache lookups.
304 *
305 * prev_pos tracks the last visited byte in the _previous_ read request.
306 * It should be maintained by the caller, and will be used for detecting
307 * small random reads. Note that the readahead algorithm checks loosely
308 * for sequential patterns. Hence interleaved reads might be served as
309 * sequential ones.
310 *
311 * There is a special-case: if the first page which the application tries to
312 * read happens to be the first page of the file, it is assumed that a linear
313 * read is about to happen and the window is immediately set to the initial size
314 * based on I/O request size and the max_readahead.
315 *
316 * The code ramps up the readahead size aggressively at first, but slow down as
317 * it approaches max_readhead.
318 */
319
320/*
321 * Count contiguously cached pages from @offset-1 to @offset-@max,
322 * this count is a conservative estimation of
323 * 	- length of the sequential read sequence, or
324 * 	- thrashing threshold in memory tight systems
325 */
326static pgoff_t count_history_pages(struct address_space *mapping,
327				   pgoff_t offset, unsigned long max)
328{
329	pgoff_t head;
330
331	rcu_read_lock();
332	head = page_cache_prev_hole(mapping, offset - 1, max);
333	rcu_read_unlock();
334
335	return offset - 1 - head;
336}
337
338/*
339 * page cache context based read-ahead
340 */
341static int try_context_readahead(struct address_space *mapping,
342				 struct file_ra_state *ra,
343				 pgoff_t offset,
344				 unsigned long req_size,
345				 unsigned long max)
346{
347	pgoff_t size;
348
349	size = count_history_pages(mapping, offset, max);
350
351	/*
352	 * not enough history pages:
353	 * it could be a random read
354	 */
355	if (size <= req_size)
356		return 0;
357
358	/*
359	 * starts from beginning of file:
360	 * it is a strong indication of long-run stream (or whole-file-read)
361	 */
362	if (size >= offset)
363		size *= 2;
364
365	ra->start = offset;
366	ra->size = min(size + req_size, max);
367	ra->async_size = 1;
368
369	return 1;
370}
371
372/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
373 * A minimal readahead algorithm for trivial sequential/random reads.
374 */
375static unsigned long
376ondemand_readahead(struct address_space *mapping,
377		   struct file_ra_state *ra, struct file *filp,
378		   bool hit_readahead_marker, pgoff_t offset,
379		   unsigned long req_size)
380{
381	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 
382	unsigned long max_pages = ra->ra_pages;
383	pgoff_t prev_offset;
 
 
 
384
385	/*
386	 * If the request exceeds the readahead window, allow the read to
387	 * be up to the optimal hardware IO size
388	 */
389	if (req_size > max_pages && bdi->io_pages > max_pages)
390		max_pages = min(req_size, bdi->io_pages);
391
392	/*
393	 * start of file
394	 */
395	if (!offset)
396		goto initial_readahead;
397
398	/*
399	 * It's the expected callback offset, assume sequential access.
400	 * Ramp up sizes, and push forward the readahead window.
401	 */
402	if ((offset == (ra->start + ra->size - ra->async_size) ||
403	     offset == (ra->start + ra->size))) {
 
404		ra->start += ra->size;
405		ra->size = get_next_ra_size(ra, max_pages);
406		ra->async_size = ra->size;
407		goto readit;
408	}
409
410	/*
411	 * Hit a marked page without valid readahead state.
412	 * E.g. interleaved reads.
413	 * Query the pagecache for async_size, which normally equals to
414	 * readahead size. Ramp it up and use it as the new readahead size.
415	 */
416	if (hit_readahead_marker) {
417		pgoff_t start;
418
419		rcu_read_lock();
420		start = page_cache_next_hole(mapping, offset + 1, max_pages);
 
421		rcu_read_unlock();
422
423		if (!start || start - offset > max_pages)
424			return 0;
425
426		ra->start = start;
427		ra->size = start - offset;	/* old async_size */
428		ra->size += req_size;
429		ra->size = get_next_ra_size(ra, max_pages);
430		ra->async_size = ra->size;
431		goto readit;
432	}
433
434	/*
435	 * oversize read
436	 */
437	if (req_size > max_pages)
438		goto initial_readahead;
439
440	/*
441	 * sequential cache miss
442	 * trivial case: (offset - prev_offset) == 1
443	 * unaligned reads: (offset - prev_offset) == 0
444	 */
445	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
446	if (offset - prev_offset <= 1UL)
447		goto initial_readahead;
448
449	/*
450	 * Query the page cache and look for the traces(cached history pages)
451	 * that a sequential stream would leave behind.
452	 */
453	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 
454		goto readit;
455
456	/*
457	 * standalone, small random read
458	 * Read as is, and do not pollute the readahead state.
459	 */
460	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
461
462initial_readahead:
463	ra->start = offset;
464	ra->size = get_init_ra_size(req_size, max_pages);
465	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
466
467readit:
468	/*
469	 * Will this read hit the readahead marker made by itself?
470	 * If so, trigger the readahead marker hit now, and merge
471	 * the resulted next readahead window into the current one.
 
472	 */
473	if (offset == ra->start && ra->size == ra->async_size) {
474		ra->async_size = get_next_ra_size(ra, max_pages);
475		ra->size += ra->async_size;
 
 
 
 
 
 
476	}
477
478	return ra_submit(ra, mapping, filp);
 
479}
480
481/**
482 * page_cache_sync_readahead - generic file readahead
483 * @mapping: address_space which holds the pagecache and I/O vectors
484 * @ra: file_ra_state which holds the readahead state
485 * @filp: passed on to ->readpage() and ->readpages()
486 * @offset: start offset into @mapping, in pagecache page-sized units
487 * @req_size: hint: total size of the read which the caller is performing in
488 *            pagecache pages
489 *
490 * page_cache_sync_readahead() should be called when a cache miss happened:
491 * it will submit the read.  The readahead logic may decide to piggyback more
492 * pages onto the read request if access patterns suggest it will improve
493 * performance.
494 */
495void page_cache_sync_readahead(struct address_space *mapping,
496			       struct file_ra_state *ra, struct file *filp,
497			       pgoff_t offset, unsigned long req_size)
498{
499	/* no read-ahead */
500	if (!ra->ra_pages)
501		return;
 
 
 
 
 
 
 
 
 
 
 
502
503	/* be dumb */
504	if (filp && (filp->f_mode & FMODE_RANDOM)) {
505		force_page_cache_readahead(mapping, filp, offset, req_size);
506		return;
507	}
508
509	/* do read-ahead */
510	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
511}
512EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
513
514/**
515 * page_cache_async_readahead - file readahead for marked pages
516 * @mapping: address_space which holds the pagecache and I/O vectors
517 * @ra: file_ra_state which holds the readahead state
518 * @filp: passed on to ->readpage() and ->readpages()
519 * @page: the page at @offset which has the PG_readahead flag set
520 * @offset: start offset into @mapping, in pagecache page-sized units
521 * @req_size: hint: total size of the read which the caller is performing in
522 *            pagecache pages
523 *
524 * page_cache_async_readahead() should be called when a page is used which
525 * has the PG_readahead flag; this is a marker to suggest that the application
526 * has used up enough of the readahead window that we should start pulling in
527 * more pages.
528 */
529void
530page_cache_async_readahead(struct address_space *mapping,
531			   struct file_ra_state *ra, struct file *filp,
532			   struct page *page, pgoff_t offset,
533			   unsigned long req_size)
534{
535	/* no read-ahead */
536	if (!ra->ra_pages)
537		return;
538
539	/*
540	 * Same bit is used for PG_readahead and PG_reclaim.
541	 */
542	if (PageWriteback(page))
543		return;
544
545	ClearPageReadahead(page);
546
547	/*
548	 * Defer asynchronous read-ahead on IO congestion.
549	 */
550	if (inode_read_congested(mapping->host))
551		return;
552
553	/* do read-ahead */
554	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
555}
556EXPORT_SYMBOL_GPL(page_cache_async_readahead);
557
558static ssize_t
559do_readahead(struct address_space *mapping, struct file *filp,
560	     pgoff_t index, unsigned long nr)
561{
562	if (!mapping || !mapping->a_ops)
563		return -EINVAL;
564
565	/*
566	 * Readahead doesn't make sense for DAX inodes, but we don't want it
567	 * to report a failure either.  Instead, we just return success and
568	 * don't do any work.
569	 */
570	if (dax_mapping(mapping))
571		return 0;
572
573	return force_page_cache_readahead(mapping, filp, index, nr);
574}
 
575
576ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
577{
578	ssize_t ret;
579	struct fd f;
580
581	ret = -EBADF;
582	f = fdget(fd);
583	if (f.file) {
584		if (f.file->f_mode & FMODE_READ) {
585			struct address_space *mapping = f.file->f_mapping;
586			pgoff_t start = offset >> PAGE_SHIFT;
587			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
588			unsigned long len = end - start + 1;
589			ret = do_readahead(mapping, f.file, start, len);
590		}
591		fdput(f);
592	}
 
 
 
 
 
 
593	return ret;
594}
595
596SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
597{
598	return ksys_readahead(fd, offset, count);
599}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11/**
 12 * DOC: Readahead Overview
 13 *
 14 * Readahead is used to read content into the page cache before it is
 15 * explicitly requested by the application.  Readahead only ever
 16 * attempts to read folios that are not yet in the page cache.  If a
 17 * folio is present but not up-to-date, readahead will not try to read
 18 * it. In that case a simple ->read_folio() will be requested.
 19 *
 20 * Readahead is triggered when an application read request (whether a
 21 * system call or a page fault) finds that the requested folio is not in
 22 * the page cache, or that it is in the page cache and has the
 23 * readahead flag set.  This flag indicates that the folio was read
 24 * as part of a previous readahead request and now that it has been
 25 * accessed, it is time for the next readahead.
 26 *
 27 * Each readahead request is partly synchronous read, and partly async
 28 * readahead.  This is reflected in the struct file_ra_state which
 29 * contains ->size being the total number of pages, and ->async_size
 30 * which is the number of pages in the async section.  The readahead
 31 * flag will be set on the first folio in this async section to trigger
 32 * a subsequent readahead.  Once a series of sequential reads has been
 33 * established, there should be no need for a synchronous component and
 34 * all readahead request will be fully asynchronous.
 35 *
 36 * When either of the triggers causes a readahead, three numbers need
 37 * to be determined: the start of the region to read, the size of the
 38 * region, and the size of the async tail.
 39 *
 40 * The start of the region is simply the first page address at or after
 41 * the accessed address, which is not currently populated in the page
 42 * cache.  This is found with a simple search in the page cache.
 43 *
 44 * The size of the async tail is determined by subtracting the size that
 45 * was explicitly requested from the determined request size, unless
 46 * this would be less than zero - then zero is used.  NOTE THIS
 47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
 48 * PAGE.  ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
 49 *
 50 * The size of the region is normally determined from the size of the
 51 * previous readahead which loaded the preceding pages.  This may be
 52 * discovered from the struct file_ra_state for simple sequential reads,
 53 * or from examining the state of the page cache when multiple
 54 * sequential reads are interleaved.  Specifically: where the readahead
 55 * was triggered by the readahead flag, the size of the previous
 56 * readahead is assumed to be the number of pages from the triggering
 57 * page to the start of the new readahead.  In these cases, the size of
 58 * the previous readahead is scaled, often doubled, for the new
 59 * readahead, though see get_next_ra_size() for details.
 60 *
 61 * If the size of the previous read cannot be determined, the number of
 62 * preceding pages in the page cache is used to estimate the size of
 63 * a previous read.  This estimate could easily be misled by random
 64 * reads being coincidentally adjacent, so it is ignored unless it is
 65 * larger than the current request, and it is not scaled up, unless it
 66 * is at the start of file.
 67 *
 68 * In general readahead is accelerated at the start of the file, as
 69 * reads from there are often sequential.  There are other minor
 70 * adjustments to the readahead size in various special cases and these
 71 * are best discovered by reading the code.
 72 *
 73 * The above calculation, based on the previous readahead size,
 74 * determines the size of the readahead, to which any requested read
 75 * size may be added.
 76 *
 77 * Readahead requests are sent to the filesystem using the ->readahead()
 78 * address space operation, for which mpage_readahead() is a canonical
 79 * implementation.  ->readahead() should normally initiate reads on all
 80 * folios, but may fail to read any or all folios without causing an I/O
 81 * error.  The page cache reading code will issue a ->read_folio() request
 82 * for any folio which ->readahead() did not read, and only an error
 83 * from this will be final.
 84 *
 85 * ->readahead() will generally call readahead_folio() repeatedly to get
 86 * each folio from those prepared for readahead.  It may fail to read a
 87 * folio by:
 88 *
 89 * * not calling readahead_folio() sufficiently many times, effectively
 90 *   ignoring some folios, as might be appropriate if the path to
 91 *   storage is congested.
 92 *
 93 * * failing to actually submit a read request for a given folio,
 94 *   possibly due to insufficient resources, or
 95 *
 96 * * getting an error during subsequent processing of a request.
 97 *
 98 * In the last two cases, the folio should be unlocked by the filesystem
 99 * to indicate that the read attempt has failed.  In the first case the
100 * folio will be unlocked by the VFS.
101 *
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g.  memory or indexing information) to
106 * become available.  Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio().  This will allow a
111 * subsequent synchronous readahead request to try them again.  If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
114 */
115
116#include <linux/blkdev.h>
117#include <linux/kernel.h>
118#include <linux/dax.h>
119#include <linux/gfp.h>
120#include <linux/export.h>
 
121#include <linux/backing-dev.h>
122#include <linux/task_io_accounting_ops.h>
123#include <linux/pagevec.h>
124#include <linux/pagemap.h>
125#include <linux/psi.h>
126#include <linux/syscalls.h>
127#include <linux/file.h>
128#include <linux/mm_inline.h>
129#include <linux/blk-cgroup.h>
130#include <linux/fadvise.h>
131#include <linux/sched/mm.h>
132
133#include "internal.h"
134
135/*
136 * Initialise a struct file's readahead state.  Assumes that the caller has
137 * memset *ra to zero.
138 */
139void
140file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141{
142	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
143	ra->prev_pos = -1;
144}
145EXPORT_SYMBOL_GPL(file_ra_state_init);
146
147static void read_pages(struct readahead_control *rac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148{
149	const struct address_space_operations *aops = rac->mapping->a_ops;
150	struct folio *folio;
151	struct blk_plug plug;
 
 
152
153	if (!readahead_count(rac))
154		return;
155
156	if (unlikely(rac->_workingset))
157		psi_memstall_enter(&rac->_pflags);
158	blk_start_plug(&plug);
 
 
 
159
160	if (aops->readahead) {
161		aops->readahead(rac);
162		/*
163		 * Clean up the remaining folios.  The sizes in ->ra
164		 * may be used to size the next readahead, so make sure
165		 * they accurately reflect what happened.
166		 */
167		while ((folio = readahead_folio(rac)) != NULL) {
168			unsigned long nr = folio_nr_pages(folio);
169
170			folio_get(folio);
171			rac->ra->size -= nr;
172			if (rac->ra->async_size >= nr) {
173				rac->ra->async_size -= nr;
174				filemap_remove_folio(folio);
175			}
176			folio_unlock(folio);
177			folio_put(folio);
178		}
179	} else {
180		while ((folio = readahead_folio(rac)) != NULL)
181			aops->read_folio(rac->file, folio);
182	}
 
183
 
184	blk_finish_plug(&plug);
185	if (unlikely(rac->_workingset))
186		psi_memstall_leave(&rac->_pflags);
187	rac->_workingset = false;
188
189	BUG_ON(readahead_count(rac));
190}
191
192/**
193 * page_cache_ra_unbounded - Start unchecked readahead.
194 * @ractl: Readahead control.
195 * @nr_to_read: The number of pages to read.
196 * @lookahead_size: Where to start the next readahead.
197 *
198 * This function is for filesystems to call when they want to start
199 * readahead beyond a file's stated i_size.  This is almost certainly
200 * not the function you want to call.  Use page_cache_async_readahead()
201 * or page_cache_sync_readahead() instead.
202 *
203 * Context: File is referenced by caller.  Mutexes may be held by caller.
204 * May sleep, but will not reenter filesystem to reclaim memory.
205 */
206void page_cache_ra_unbounded(struct readahead_control *ractl,
207		unsigned long nr_to_read, unsigned long lookahead_size)
208{
209	struct address_space *mapping = ractl->mapping;
210	unsigned long index = readahead_index(ractl);
 
 
 
 
 
 
211	gfp_t gfp_mask = readahead_gfp_mask(mapping);
212	unsigned long i;
213
214	/*
215	 * Partway through the readahead operation, we will have added
216	 * locked pages to the page cache, but will not yet have submitted
217	 * them for I/O.  Adding another page may need to allocate memory,
218	 * which can trigger memory reclaim.  Telling the VM we're in
219	 * the middle of a filesystem operation will cause it to not
220	 * touch file-backed pages, preventing a deadlock.  Most (all?)
221	 * filesystems already specify __GFP_NOFS in their mapping's
222	 * gfp_mask, but let's be explicit here.
223	 */
224	unsigned int nofs = memalloc_nofs_save();
225
226	filemap_invalidate_lock_shared(mapping);
227	/*
228	 * Preallocate as many pages as we will need.
229	 */
230	for (i = 0; i < nr_to_read; i++) {
231		struct folio *folio = xa_load(&mapping->i_pages, index + i);
232
233		if (folio && !xa_is_value(folio)) {
234			/*
235			 * Page already present?  Kick off the current batch
236			 * of contiguous pages before continuing with the
237			 * next batch.  This page may be the one we would
238			 * have intended to mark as Readahead, but we don't
239			 * have a stable reference to this page, and it's
240			 * not worth getting one just for that.
241			 */
242			read_pages(ractl);
243			ractl->_index++;
244			i = ractl->_index + ractl->_nr_pages - index - 1;
245			continue;
246		}
247
248		folio = filemap_alloc_folio(gfp_mask, 0);
249		if (!folio)
250			break;
251		if (filemap_add_folio(mapping, folio, index + i,
252					gfp_mask) < 0) {
253			folio_put(folio);
254			read_pages(ractl);
255			ractl->_index++;
256			i = ractl->_index + ractl->_nr_pages - index - 1;
257			continue;
258		}
259		if (i == nr_to_read - lookahead_size)
260			folio_set_readahead(folio);
261		ractl->_workingset |= folio_test_workingset(folio);
262		ractl->_nr_pages++;
263	}
264
265	/*
266	 * Now start the IO.  We ignore I/O errors - if the folio is not
267	 * uptodate then the caller will launch read_folio again, and
268	 * will then handle the error.
269	 */
270	read_pages(ractl);
271	filemap_invalidate_unlock_shared(mapping);
272	memalloc_nofs_restore(nofs);
273}
274EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
275
276/*
277 * do_page_cache_ra() actually reads a chunk of disk.  It allocates
278 * the pages first, then submits them for I/O. This avoids the very bad
279 * behaviour which would occur if page allocations are causing VM writeback.
280 * We really don't want to intermingle reads and writes like that.
281 */
282static void do_page_cache_ra(struct readahead_control *ractl,
283		unsigned long nr_to_read, unsigned long lookahead_size)
284{
285	struct inode *inode = ractl->mapping->host;
286	unsigned long index = readahead_index(ractl);
287	loff_t isize = i_size_read(inode);
288	pgoff_t end_index;	/* The last page we want to read */
289
290	if (isize == 0)
291		return;
292
293	end_index = (isize - 1) >> PAGE_SHIFT;
294	if (index > end_index)
295		return;
296	/* Don't read past the page containing the last byte of the file */
297	if (nr_to_read > end_index - index)
298		nr_to_read = end_index - index + 1;
299
300	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
301}
302
303/*
304 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
305 * memory at once.
306 */
307void force_page_cache_ra(struct readahead_control *ractl,
308		unsigned long nr_to_read)
309{
310	struct address_space *mapping = ractl->mapping;
311	struct file_ra_state *ra = ractl->ra;
312	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
313	unsigned long max_pages, index;
 
314
315	if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
316		return;
317
318	/*
319	 * If the request exceeds the readahead window, allow the read to
320	 * be up to the optimal hardware IO size
321	 */
322	index = readahead_index(ractl);
323	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
324	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
325	while (nr_to_read) {
 
 
326		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
327
328		if (this_chunk > nr_to_read)
329			this_chunk = nr_to_read;
330		ractl->_index = index;
331		do_page_cache_ra(ractl, this_chunk, 0);
 
 
332
333		index += this_chunk;
334		nr_to_read -= this_chunk;
335	}
 
336}
337
338/*
339 * Set the initial window size, round to next power of 2 and square
340 * for small size, x 4 for medium, and x 2 for large
341 * for 128k (32 page) max ra
342 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
343 */
344static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
345{
346	unsigned long newsize = roundup_pow_of_two(size);
347
348	if (newsize <= max / 32)
349		newsize = newsize * 4;
350	else if (newsize <= max / 4)
351		newsize = newsize * 2;
352	else
353		newsize = max;
354
355	return newsize;
356}
357
358/*
359 *  Get the previous window size, ramp it up, and
360 *  return it as the new window size.
361 */
362static unsigned long get_next_ra_size(struct file_ra_state *ra,
363				      unsigned long max)
364{
365	unsigned long cur = ra->size;
 
366
367	if (cur < max / 16)
368		return 4 * cur;
369	if (cur <= max / 2)
370		return 2 * cur;
371	return max;
 
372}
373
374/*
375 * On-demand readahead design.
376 *
377 * The fields in struct file_ra_state represent the most-recently-executed
378 * readahead attempt:
379 *
380 *                        |<----- async_size ---------|
381 *     |------------------- size -------------------->|
382 *     |==================#===========================|
383 *     ^start             ^page marked with PG_readahead
384 *
385 * To overlap application thinking time and disk I/O time, we do
386 * `readahead pipelining': Do not wait until the application consumed all
387 * readahead pages and stalled on the missing page at readahead_index;
388 * Instead, submit an asynchronous readahead I/O as soon as there are
389 * only async_size pages left in the readahead window. Normally async_size
390 * will be equal to size, for maximum pipelining.
391 *
392 * In interleaved sequential reads, concurrent streams on the same fd can
393 * be invalidating each other's readahead state. So we flag the new readahead
394 * page at (start+size-async_size) with PG_readahead, and use it as readahead
395 * indicator. The flag won't be set on already cached pages, to avoid the
396 * readahead-for-nothing fuss, saving pointless page cache lookups.
397 *
398 * prev_pos tracks the last visited byte in the _previous_ read request.
399 * It should be maintained by the caller, and will be used for detecting
400 * small random reads. Note that the readahead algorithm checks loosely
401 * for sequential patterns. Hence interleaved reads might be served as
402 * sequential ones.
403 *
404 * There is a special-case: if the first page which the application tries to
405 * read happens to be the first page of the file, it is assumed that a linear
406 * read is about to happen and the window is immediately set to the initial size
407 * based on I/O request size and the max_readahead.
408 *
409 * The code ramps up the readahead size aggressively at first, but slow down as
410 * it approaches max_readhead.
411 */
412
413/*
414 * Count contiguously cached pages from @index-1 to @index-@max,
415 * this count is a conservative estimation of
416 * 	- length of the sequential read sequence, or
417 * 	- thrashing threshold in memory tight systems
418 */
419static pgoff_t count_history_pages(struct address_space *mapping,
420				   pgoff_t index, unsigned long max)
421{
422	pgoff_t head;
423
424	rcu_read_lock();
425	head = page_cache_prev_miss(mapping, index - 1, max);
426	rcu_read_unlock();
427
428	return index - 1 - head;
429}
430
431/*
432 * page cache context based readahead
433 */
434static int try_context_readahead(struct address_space *mapping,
435				 struct file_ra_state *ra,
436				 pgoff_t index,
437				 unsigned long req_size,
438				 unsigned long max)
439{
440	pgoff_t size;
441
442	size = count_history_pages(mapping, index, max);
443
444	/*
445	 * not enough history pages:
446	 * it could be a random read
447	 */
448	if (size <= req_size)
449		return 0;
450
451	/*
452	 * starts from beginning of file:
453	 * it is a strong indication of long-run stream (or whole-file-read)
454	 */
455	if (size >= index)
456		size *= 2;
457
458	ra->start = index;
459	ra->size = min(size + req_size, max);
460	ra->async_size = 1;
461
462	return 1;
463}
464
465/*
466 * There are some parts of the kernel which assume that PMD entries
467 * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
468 * limit the maximum allocation order to PMD size.  I'm not aware of any
469 * assumptions about maximum order if THP are disabled, but 8 seems like
470 * a good order (that's 1MB if you're using 4kB pages)
471 */
472#ifdef CONFIG_TRANSPARENT_HUGEPAGE
473#define MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
474#else
475#define MAX_PAGECACHE_ORDER	8
476#endif
477
478static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
479		pgoff_t mark, unsigned int order, gfp_t gfp)
480{
481	int err;
482	struct folio *folio = filemap_alloc_folio(gfp, order);
483
484	if (!folio)
485		return -ENOMEM;
486	mark = round_up(mark, 1UL << order);
487	if (index == mark)
488		folio_set_readahead(folio);
489	err = filemap_add_folio(ractl->mapping, folio, index, gfp);
490	if (err) {
491		folio_put(folio);
492		return err;
493	}
494
495	ractl->_nr_pages += 1UL << order;
496	ractl->_workingset |= folio_test_workingset(folio);
497	return 0;
498}
499
500void page_cache_ra_order(struct readahead_control *ractl,
501		struct file_ra_state *ra, unsigned int new_order)
502{
503	struct address_space *mapping = ractl->mapping;
504	pgoff_t index = readahead_index(ractl);
505	pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
506	pgoff_t mark = index + ra->size - ra->async_size;
507	int err = 0;
508	gfp_t gfp = readahead_gfp_mask(mapping);
509
510	if (!mapping_large_folio_support(mapping) || ra->size < 4)
511		goto fallback;
512
513	limit = min(limit, index + ra->size - 1);
514
515	if (new_order < MAX_PAGECACHE_ORDER) {
516		new_order += 2;
517		if (new_order > MAX_PAGECACHE_ORDER)
518			new_order = MAX_PAGECACHE_ORDER;
519		while ((1 << new_order) > ra->size)
520			new_order--;
521	}
522
523	filemap_invalidate_lock_shared(mapping);
524	while (index <= limit) {
525		unsigned int order = new_order;
526
527		/* Align with smaller pages if needed */
528		if (index & ((1UL << order) - 1)) {
529			order = __ffs(index);
530			if (order == 1)
531				order = 0;
532		}
533		/* Don't allocate pages past EOF */
534		while (index + (1UL << order) - 1 > limit) {
535			if (--order == 1)
536				order = 0;
537		}
538		err = ra_alloc_folio(ractl, index, mark, order, gfp);
539		if (err)
540			break;
541		index += 1UL << order;
542	}
543
544	if (index > limit) {
545		ra->size += index - limit - 1;
546		ra->async_size += index - limit - 1;
547	}
548
549	read_pages(ractl);
550	filemap_invalidate_unlock_shared(mapping);
551
552	/*
553	 * If there were already pages in the page cache, then we may have
554	 * left some gaps.  Let the regular readahead code take care of this
555	 * situation.
556	 */
557	if (!err)
558		return;
559fallback:
560	do_page_cache_ra(ractl, ra->size, ra->async_size);
561}
562
563/*
564 * A minimal readahead algorithm for trivial sequential/random reads.
565 */
566static void ondemand_readahead(struct readahead_control *ractl,
567		struct folio *folio, unsigned long req_size)
 
 
 
568{
569	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
570	struct file_ra_state *ra = ractl->ra;
571	unsigned long max_pages = ra->ra_pages;
572	unsigned long add_pages;
573	pgoff_t index = readahead_index(ractl);
574	pgoff_t expected, prev_index;
575	unsigned int order = folio ? folio_order(folio) : 0;
576
577	/*
578	 * If the request exceeds the readahead window, allow the read to
579	 * be up to the optimal hardware IO size
580	 */
581	if (req_size > max_pages && bdi->io_pages > max_pages)
582		max_pages = min(req_size, bdi->io_pages);
583
584	/*
585	 * start of file
586	 */
587	if (!index)
588		goto initial_readahead;
589
590	/*
591	 * It's the expected callback index, assume sequential access.
592	 * Ramp up sizes, and push forward the readahead window.
593	 */
594	expected = round_up(ra->start + ra->size - ra->async_size,
595			1UL << order);
596	if (index == expected || index == (ra->start + ra->size)) {
597		ra->start += ra->size;
598		ra->size = get_next_ra_size(ra, max_pages);
599		ra->async_size = ra->size;
600		goto readit;
601	}
602
603	/*
604	 * Hit a marked folio without valid readahead state.
605	 * E.g. interleaved reads.
606	 * Query the pagecache for async_size, which normally equals to
607	 * readahead size. Ramp it up and use it as the new readahead size.
608	 */
609	if (folio) {
610		pgoff_t start;
611
612		rcu_read_lock();
613		start = page_cache_next_miss(ractl->mapping, index + 1,
614				max_pages);
615		rcu_read_unlock();
616
617		if (!start || start - index > max_pages)
618			return;
619
620		ra->start = start;
621		ra->size = start - index;	/* old async_size */
622		ra->size += req_size;
623		ra->size = get_next_ra_size(ra, max_pages);
624		ra->async_size = ra->size;
625		goto readit;
626	}
627
628	/*
629	 * oversize read
630	 */
631	if (req_size > max_pages)
632		goto initial_readahead;
633
634	/*
635	 * sequential cache miss
636	 * trivial case: (index - prev_index) == 1
637	 * unaligned reads: (index - prev_index) == 0
638	 */
639	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
640	if (index - prev_index <= 1UL)
641		goto initial_readahead;
642
643	/*
644	 * Query the page cache and look for the traces(cached history pages)
645	 * that a sequential stream would leave behind.
646	 */
647	if (try_context_readahead(ractl->mapping, ra, index, req_size,
648			max_pages))
649		goto readit;
650
651	/*
652	 * standalone, small random read
653	 * Read as is, and do not pollute the readahead state.
654	 */
655	do_page_cache_ra(ractl, req_size, 0);
656	return;
657
658initial_readahead:
659	ra->start = index;
660	ra->size = get_init_ra_size(req_size, max_pages);
661	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
662
663readit:
664	/*
665	 * Will this read hit the readahead marker made by itself?
666	 * If so, trigger the readahead marker hit now, and merge
667	 * the resulted next readahead window into the current one.
668	 * Take care of maximum IO pages as above.
669	 */
670	if (index == ra->start && ra->size == ra->async_size) {
671		add_pages = get_next_ra_size(ra, max_pages);
672		if (ra->size + add_pages <= max_pages) {
673			ra->async_size = add_pages;
674			ra->size += add_pages;
675		} else {
676			ra->size = max_pages;
677			ra->async_size = max_pages >> 1;
678		}
679	}
680
681	ractl->_index = ra->start;
682	page_cache_ra_order(ractl, ra, order);
683}
684
685void page_cache_sync_ra(struct readahead_control *ractl,
686		unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687{
688	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
689
690	/*
691	 * Even if readahead is disabled, issue this request as readahead
692	 * as we'll need it to satisfy the requested range. The forced
693	 * readahead will do the right thing and limit the read to just the
694	 * requested range, which we'll set to 1 page for this case.
695	 */
696	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
697		if (!ractl->file)
698			return;
699		req_count = 1;
700		do_forced_ra = true;
701	}
702
703	/* be dumb */
704	if (do_forced_ra) {
705		force_page_cache_ra(ractl, req_count);
706		return;
707	}
708
709	ondemand_readahead(ractl, NULL, req_count);
 
710}
711EXPORT_SYMBOL_GPL(page_cache_sync_ra);
712
713void page_cache_async_ra(struct readahead_control *ractl,
714		struct folio *folio, unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715{
716	/* no readahead */
717	if (!ractl->ra->ra_pages)
718		return;
719
720	/*
721	 * Same bit is used for PG_readahead and PG_reclaim.
722	 */
723	if (folio_test_writeback(folio))
724		return;
725
726	folio_clear_readahead(folio);
727
728	if (blk_cgroup_congested())
 
 
 
729		return;
730
731	ondemand_readahead(ractl, folio, req_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732}
733EXPORT_SYMBOL_GPL(page_cache_async_ra);
734
735ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
736{
737	ssize_t ret;
738	struct fd f;
739
740	ret = -EBADF;
741	f = fdget(fd);
742	if (!f.file || !(f.file->f_mode & FMODE_READ))
743		goto out;
744
745	/*
746	 * The readahead() syscall is intended to run only on files
747	 * that can execute readahead. If readahead is not possible
748	 * on this file, then we must return -EINVAL.
749	 */
750	ret = -EINVAL;
751	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
752	    !S_ISREG(file_inode(f.file)->i_mode))
753		goto out;
754
755	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
756out:
757	fdput(f);
758	return ret;
759}
760
761SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
762{
763	return ksys_readahead(fd, offset, count);
764}
765
766#if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
767COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
768{
769	return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
770}
771#endif
772
773/**
774 * readahead_expand - Expand a readahead request
775 * @ractl: The request to be expanded
776 * @new_start: The revised start
777 * @new_len: The revised size of the request
778 *
779 * Attempt to expand a readahead request outwards from the current size to the
780 * specified size by inserting locked pages before and after the current window
781 * to increase the size to the new window.  This may involve the insertion of
782 * THPs, in which case the window may get expanded even beyond what was
783 * requested.
784 *
785 * The algorithm will stop if it encounters a conflicting page already in the
786 * pagecache and leave a smaller expansion than requested.
787 *
788 * The caller must check for this by examining the revised @ractl object for a
789 * different expansion than was requested.
790 */
791void readahead_expand(struct readahead_control *ractl,
792		      loff_t new_start, size_t new_len)
793{
794	struct address_space *mapping = ractl->mapping;
795	struct file_ra_state *ra = ractl->ra;
796	pgoff_t new_index, new_nr_pages;
797	gfp_t gfp_mask = readahead_gfp_mask(mapping);
798
799	new_index = new_start / PAGE_SIZE;
800
801	/* Expand the leading edge downwards */
802	while (ractl->_index > new_index) {
803		unsigned long index = ractl->_index - 1;
804		struct page *page = xa_load(&mapping->i_pages, index);
805
806		if (page && !xa_is_value(page))
807			return; /* Page apparently present */
808
809		page = __page_cache_alloc(gfp_mask);
810		if (!page)
811			return;
812		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
813			put_page(page);
814			return;
815		}
816
817		ractl->_nr_pages++;
818		ractl->_index = page->index;
819	}
820
821	new_len += new_start - readahead_pos(ractl);
822	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
823
824	/* Expand the trailing edge upwards */
825	while (ractl->_nr_pages < new_nr_pages) {
826		unsigned long index = ractl->_index + ractl->_nr_pages;
827		struct page *page = xa_load(&mapping->i_pages, index);
828
829		if (page && !xa_is_value(page))
830			return; /* Page apparently present */
831
832		page = __page_cache_alloc(gfp_mask);
833		if (!page)
834			return;
835		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
836			put_page(page);
837			return;
838		}
839		if (unlikely(PageWorkingset(page)) && !ractl->_workingset) {
840			ractl->_workingset = true;
841			psi_memstall_enter(&ractl->_pflags);
842		}
843		ractl->_nr_pages++;
844		if (ra) {
845			ra->size++;
846			ra->async_size++;
847		}
848	}
849}
850EXPORT_SYMBOL(readahead_expand);