Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/dax.h>
 12#include <linux/gfp.h>
 13#include <linux/export.h>
 14#include <linux/blkdev.h>
 15#include <linux/backing-dev.h>
 16#include <linux/task_io_accounting_ops.h>
 17#include <linux/pagevec.h>
 18#include <linux/pagemap.h>
 19#include <linux/syscalls.h>
 20#include <linux/file.h>
 21#include <linux/mm_inline.h>
 
 
 
 22
 23#include "internal.h"
 24
 25/*
 26 * Initialise a struct file's readahead state.  Assumes that the caller has
 27 * memset *ra to zero.
 28 */
 29void
 30file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 31{
 32	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 33	ra->prev_pos = -1;
 34}
 35EXPORT_SYMBOL_GPL(file_ra_state_init);
 36
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	put_page(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = lru_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 
 
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = lru_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping, page->index,
 93				readahead_gfp_mask(mapping))) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		put_page(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113{
 
 
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
 
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 
 
 
 
 
 
 
 
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = lru_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
131			mapping->a_ops->readpage(filp, page);
132		put_page(page);
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
138
139	return ret;
 
 
 
 
 
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 */
150int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
151			pgoff_t offset, unsigned long nr_to_read,
152			unsigned long lookahead_size)
 
 
 
 
 
 
 
 
153{
154	struct inode *inode = mapping->host;
155	struct page *page;
156	unsigned long end_index;	/* The last page we want to read */
157	LIST_HEAD(page_pool);
158	int page_idx;
159	int ret = 0;
160	loff_t isize = i_size_read(inode);
161	gfp_t gfp_mask = readahead_gfp_mask(mapping);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->i_pages, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
 
 
 
 
 
 
181			continue;
 
182
183		page = __page_cache_alloc(gfp_mask);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
 
 
 
 
 
 
 
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210			       pgoff_t offset, unsigned long nr_to_read)
211{
212	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213	struct file_ra_state *ra = &filp->f_ra;
214	unsigned long max_pages;
215
216	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217		return -EINVAL;
 
218
219	/*
220	 * If the request exceeds the readahead window, allow the read to
221	 * be up to the optimal hardware IO size
222	 */
223	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224	nr_to_read = min(nr_to_read, max_pages);
225	while (nr_to_read) {
226		int err;
227
228		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229
230		if (this_chunk > nr_to_read)
231			this_chunk = nr_to_read;
232		err = __do_page_cache_readahead(mapping, filp,
233						offset, this_chunk, 0);
234		if (err < 0)
235			return err;
236
237		offset += this_chunk;
238		nr_to_read -= this_chunk;
239	}
240	return 0;
241}
242
243/*
244 * Set the initial window size, round to next power of 2 and square
245 * for small size, x 4 for medium, and x 2 for large
246 * for 128k (32 page) max ra
247 * 1-8 page = 32k initial, > 8 page = 128k initial
248 */
249static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250{
251	unsigned long newsize = roundup_pow_of_two(size);
252
253	if (newsize <= max / 32)
254		newsize = newsize * 4;
255	else if (newsize <= max / 4)
256		newsize = newsize * 2;
257	else
258		newsize = max;
259
260	return newsize;
261}
262
263/*
264 *  Get the previous window size, ramp it up, and
265 *  return it as the new window size.
266 */
267static unsigned long get_next_ra_size(struct file_ra_state *ra,
268						unsigned long max)
269{
270	unsigned long cur = ra->size;
271	unsigned long newsize;
272
273	if (cur < max / 16)
274		newsize = 4 * cur;
275	else
276		newsize = 2 * cur;
277
278	return min(newsize, max);
279}
280
281/*
282 * On-demand readahead design.
283 *
284 * The fields in struct file_ra_state represent the most-recently-executed
285 * readahead attempt:
286 *
287 *                        |<----- async_size ---------|
288 *     |------------------- size -------------------->|
289 *     |==================#===========================|
290 *     ^start             ^page marked with PG_readahead
291 *
292 * To overlap application thinking time and disk I/O time, we do
293 * `readahead pipelining': Do not wait until the application consumed all
294 * readahead pages and stalled on the missing page at readahead_index;
295 * Instead, submit an asynchronous readahead I/O as soon as there are
296 * only async_size pages left in the readahead window. Normally async_size
297 * will be equal to size, for maximum pipelining.
298 *
299 * In interleaved sequential reads, concurrent streams on the same fd can
300 * be invalidating each other's readahead state. So we flag the new readahead
301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
302 * indicator. The flag won't be set on already cached pages, to avoid the
303 * readahead-for-nothing fuss, saving pointless page cache lookups.
304 *
305 * prev_pos tracks the last visited byte in the _previous_ read request.
306 * It should be maintained by the caller, and will be used for detecting
307 * small random reads. Note that the readahead algorithm checks loosely
308 * for sequential patterns. Hence interleaved reads might be served as
309 * sequential ones.
310 *
311 * There is a special-case: if the first page which the application tries to
312 * read happens to be the first page of the file, it is assumed that a linear
313 * read is about to happen and the window is immediately set to the initial size
314 * based on I/O request size and the max_readahead.
315 *
316 * The code ramps up the readahead size aggressively at first, but slow down as
317 * it approaches max_readhead.
318 */
319
320/*
321 * Count contiguously cached pages from @offset-1 to @offset-@max,
322 * this count is a conservative estimation of
323 * 	- length of the sequential read sequence, or
324 * 	- thrashing threshold in memory tight systems
325 */
326static pgoff_t count_history_pages(struct address_space *mapping,
327				   pgoff_t offset, unsigned long max)
328{
329	pgoff_t head;
330
331	rcu_read_lock();
332	head = page_cache_prev_hole(mapping, offset - 1, max);
333	rcu_read_unlock();
334
335	return offset - 1 - head;
336}
337
338/*
339 * page cache context based read-ahead
340 */
341static int try_context_readahead(struct address_space *mapping,
342				 struct file_ra_state *ra,
343				 pgoff_t offset,
344				 unsigned long req_size,
345				 unsigned long max)
346{
347	pgoff_t size;
348
349	size = count_history_pages(mapping, offset, max);
350
351	/*
352	 * not enough history pages:
353	 * it could be a random read
354	 */
355	if (size <= req_size)
356		return 0;
357
358	/*
359	 * starts from beginning of file:
360	 * it is a strong indication of long-run stream (or whole-file-read)
361	 */
362	if (size >= offset)
363		size *= 2;
364
365	ra->start = offset;
366	ra->size = min(size + req_size, max);
367	ra->async_size = 1;
368
369	return 1;
370}
371
372/*
373 * A minimal readahead algorithm for trivial sequential/random reads.
374 */
375static unsigned long
376ondemand_readahead(struct address_space *mapping,
377		   struct file_ra_state *ra, struct file *filp,
378		   bool hit_readahead_marker, pgoff_t offset,
379		   unsigned long req_size)
380{
381	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
382	unsigned long max_pages = ra->ra_pages;
383	pgoff_t prev_offset;
 
384
385	/*
386	 * If the request exceeds the readahead window, allow the read to
387	 * be up to the optimal hardware IO size
388	 */
389	if (req_size > max_pages && bdi->io_pages > max_pages)
390		max_pages = min(req_size, bdi->io_pages);
391
392	/*
393	 * start of file
394	 */
395	if (!offset)
396		goto initial_readahead;
397
398	/*
399	 * It's the expected callback offset, assume sequential access.
400	 * Ramp up sizes, and push forward the readahead window.
401	 */
402	if ((offset == (ra->start + ra->size - ra->async_size) ||
403	     offset == (ra->start + ra->size))) {
404		ra->start += ra->size;
405		ra->size = get_next_ra_size(ra, max_pages);
406		ra->async_size = ra->size;
407		goto readit;
408	}
409
410	/*
411	 * Hit a marked page without valid readahead state.
412	 * E.g. interleaved reads.
413	 * Query the pagecache for async_size, which normally equals to
414	 * readahead size. Ramp it up and use it as the new readahead size.
415	 */
416	if (hit_readahead_marker) {
417		pgoff_t start;
418
419		rcu_read_lock();
420		start = page_cache_next_hole(mapping, offset + 1, max_pages);
421		rcu_read_unlock();
422
423		if (!start || start - offset > max_pages)
424			return 0;
425
426		ra->start = start;
427		ra->size = start - offset;	/* old async_size */
428		ra->size += req_size;
429		ra->size = get_next_ra_size(ra, max_pages);
430		ra->async_size = ra->size;
431		goto readit;
432	}
433
434	/*
435	 * oversize read
436	 */
437	if (req_size > max_pages)
438		goto initial_readahead;
439
440	/*
441	 * sequential cache miss
442	 * trivial case: (offset - prev_offset) == 1
443	 * unaligned reads: (offset - prev_offset) == 0
444	 */
445	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
446	if (offset - prev_offset <= 1UL)
447		goto initial_readahead;
448
449	/*
450	 * Query the page cache and look for the traces(cached history pages)
451	 * that a sequential stream would leave behind.
452	 */
453	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
454		goto readit;
455
456	/*
457	 * standalone, small random read
458	 * Read as is, and do not pollute the readahead state.
459	 */
460	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
461
462initial_readahead:
463	ra->start = offset;
464	ra->size = get_init_ra_size(req_size, max_pages);
465	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
466
467readit:
468	/*
469	 * Will this read hit the readahead marker made by itself?
470	 * If so, trigger the readahead marker hit now, and merge
471	 * the resulted next readahead window into the current one.
 
472	 */
473	if (offset == ra->start && ra->size == ra->async_size) {
474		ra->async_size = get_next_ra_size(ra, max_pages);
475		ra->size += ra->async_size;
 
 
 
 
 
 
476	}
477
478	return ra_submit(ra, mapping, filp);
479}
480
481/**
482 * page_cache_sync_readahead - generic file readahead
483 * @mapping: address_space which holds the pagecache and I/O vectors
484 * @ra: file_ra_state which holds the readahead state
485 * @filp: passed on to ->readpage() and ->readpages()
486 * @offset: start offset into @mapping, in pagecache page-sized units
487 * @req_size: hint: total size of the read which the caller is performing in
488 *            pagecache pages
489 *
490 * page_cache_sync_readahead() should be called when a cache miss happened:
491 * it will submit the read.  The readahead logic may decide to piggyback more
492 * pages onto the read request if access patterns suggest it will improve
493 * performance.
494 */
495void page_cache_sync_readahead(struct address_space *mapping,
496			       struct file_ra_state *ra, struct file *filp,
497			       pgoff_t offset, unsigned long req_size)
498{
499	/* no read-ahead */
500	if (!ra->ra_pages)
501		return;
502
 
 
 
503	/* be dumb */
504	if (filp && (filp->f_mode & FMODE_RANDOM)) {
505		force_page_cache_readahead(mapping, filp, offset, req_size);
506		return;
507	}
508
509	/* do read-ahead */
510	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
511}
512EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
513
514/**
515 * page_cache_async_readahead - file readahead for marked pages
516 * @mapping: address_space which holds the pagecache and I/O vectors
517 * @ra: file_ra_state which holds the readahead state
518 * @filp: passed on to ->readpage() and ->readpages()
519 * @page: the page at @offset which has the PG_readahead flag set
520 * @offset: start offset into @mapping, in pagecache page-sized units
521 * @req_size: hint: total size of the read which the caller is performing in
522 *            pagecache pages
523 *
524 * page_cache_async_readahead() should be called when a page is used which
525 * has the PG_readahead flag; this is a marker to suggest that the application
526 * has used up enough of the readahead window that we should start pulling in
527 * more pages.
528 */
529void
530page_cache_async_readahead(struct address_space *mapping,
531			   struct file_ra_state *ra, struct file *filp,
532			   struct page *page, pgoff_t offset,
533			   unsigned long req_size)
534{
535	/* no read-ahead */
536	if (!ra->ra_pages)
537		return;
538
539	/*
540	 * Same bit is used for PG_readahead and PG_reclaim.
541	 */
542	if (PageWriteback(page))
543		return;
544
545	ClearPageReadahead(page);
546
547	/*
548	 * Defer asynchronous read-ahead on IO congestion.
549	 */
550	if (inode_read_congested(mapping->host))
551		return;
552
 
 
 
553	/* do read-ahead */
554	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
555}
556EXPORT_SYMBOL_GPL(page_cache_async_readahead);
557
558static ssize_t
559do_readahead(struct address_space *mapping, struct file *filp,
560	     pgoff_t index, unsigned long nr)
561{
562	if (!mapping || !mapping->a_ops)
563		return -EINVAL;
564
565	/*
566	 * Readahead doesn't make sense for DAX inodes, but we don't want it
567	 * to report a failure either.  Instead, we just return success and
568	 * don't do any work.
569	 */
570	if (dax_mapping(mapping))
571		return 0;
572
573	return force_page_cache_readahead(mapping, filp, index, nr);
574}
575
576ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
577{
578	ssize_t ret;
579	struct fd f;
580
581	ret = -EBADF;
582	f = fdget(fd);
583	if (f.file) {
584		if (f.file->f_mode & FMODE_READ) {
585			struct address_space *mapping = f.file->f_mapping;
586			pgoff_t start = offset >> PAGE_SHIFT;
587			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
588			unsigned long len = end - start + 1;
589			ret = do_readahead(mapping, f.file, start, len);
590		}
591		fdput(f);
592	}
 
 
 
 
 
 
593	return ret;
594}
595
596SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
597{
598	return ksys_readahead(fd, offset, count);
599}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 25#include <linux/sched/mm.h>
 26
 27#include "internal.h"
 28
 29/*
 30 * Initialise a struct file's readahead state.  Assumes that the caller has
 31 * memset *ra to zero.
 32 */
 33void
 34file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 35{
 36	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 37	ra->prev_pos = -1;
 38}
 39EXPORT_SYMBOL_GPL(file_ra_state_init);
 40
 41/*
 42 * see if a page needs releasing upon read_cache_pages() failure
 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 44 *   before calling, such as the NFS fs marking pages that are cached locally
 45 *   on disk, thus we need to give the fs a chance to clean up in the event of
 46 *   an error
 47 */
 48static void read_cache_pages_invalidate_page(struct address_space *mapping,
 49					     struct page *page)
 50{
 51	if (page_has_private(page)) {
 52		if (!trylock_page(page))
 53			BUG();
 54		page->mapping = mapping;
 55		do_invalidatepage(page, 0, PAGE_SIZE);
 56		page->mapping = NULL;
 57		unlock_page(page);
 58	}
 59	put_page(page);
 60}
 61
 62/*
 63 * release a list of pages, invalidating them first if need be
 64 */
 65static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 66					      struct list_head *pages)
 67{
 68	struct page *victim;
 69
 70	while (!list_empty(pages)) {
 71		victim = lru_to_page(pages);
 72		list_del(&victim->lru);
 73		read_cache_pages_invalidate_page(mapping, victim);
 74	}
 75}
 76
 77/**
 78 * read_cache_pages - populate an address space with some pages & start reads against them
 79 * @mapping: the address_space
 80 * @pages: The address of a list_head which contains the target pages.  These
 81 *   pages have their ->index populated and are otherwise uninitialised.
 82 * @filler: callback routine for filling a single page.
 83 * @data: private data for the callback routine.
 84 *
 85 * Hides the details of the LRU cache etc from the filesystems.
 86 *
 87 * Returns: %0 on success, error return by @filler otherwise
 88 */
 89int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 90			int (*filler)(void *, struct page *), void *data)
 91{
 92	struct page *page;
 93	int ret = 0;
 94
 95	while (!list_empty(pages)) {
 96		page = lru_to_page(pages);
 97		list_del(&page->lru);
 98		if (add_to_page_cache_lru(page, mapping, page->index,
 99				readahead_gfp_mask(mapping))) {
100			read_cache_pages_invalidate_page(mapping, page);
101			continue;
102		}
103		put_page(page);
104
105		ret = filler(data, page);
106		if (unlikely(ret)) {
107			read_cache_pages_invalidate_pages(mapping, pages);
108			break;
109		}
110		task_io_account_read(PAGE_SIZE);
111	}
112	return ret;
113}
114
115EXPORT_SYMBOL(read_cache_pages);
116
117static void read_pages(struct readahead_control *rac, struct list_head *pages,
118		bool skip_page)
119{
120	const struct address_space_operations *aops = rac->mapping->a_ops;
121	struct page *page;
122	struct blk_plug plug;
123
124	if (!readahead_count(rac))
125		goto out;
126
127	blk_start_plug(&plug);
128
129	if (aops->readahead) {
130		aops->readahead(rac);
131		/* Clean up the remaining pages */
132		while ((page = readahead_page(rac))) {
133			unlock_page(page);
134			put_page(page);
135		}
136	} else if (aops->readpages) {
137		aops->readpages(rac->file, rac->mapping, pages,
138				readahead_count(rac));
139		/* Clean up the remaining pages */
140		put_pages_list(pages);
141		rac->_index += rac->_nr_pages;
142		rac->_nr_pages = 0;
143	} else {
144		while ((page = readahead_page(rac))) {
145			aops->readpage(rac->file, page);
146			put_page(page);
147		}
 
 
148	}
 
149
 
150	blk_finish_plug(&plug);
151
152	BUG_ON(!list_empty(pages));
153	BUG_ON(readahead_count(rac));
154
155out:
156	if (skip_page)
157		rac->_index++;
158}
159
160/**
161 * page_cache_readahead_unbounded - Start unchecked readahead.
162 * @mapping: File address space.
163 * @file: This instance of the open file; used for authentication.
164 * @index: First page index to read.
165 * @nr_to_read: The number of pages to read.
166 * @lookahead_size: Where to start the next readahead.
167 *
168 * This function is for filesystems to call when they want to start
169 * readahead beyond a file's stated i_size.  This is almost certainly
170 * not the function you want to call.  Use page_cache_async_readahead()
171 * or page_cache_sync_readahead() instead.
172 *
173 * Context: File is referenced by caller.  Mutexes may be held by caller.
174 * May sleep, but will not reenter filesystem to reclaim memory.
175 */
176void page_cache_readahead_unbounded(struct address_space *mapping,
177		struct file *file, pgoff_t index, unsigned long nr_to_read,
178		unsigned long lookahead_size)
179{
 
 
 
180	LIST_HEAD(page_pool);
 
 
 
181	gfp_t gfp_mask = readahead_gfp_mask(mapping);
182	struct readahead_control rac = {
183		.mapping = mapping,
184		.file = file,
185		._index = index,
186	};
187	unsigned long i;
188
189	/*
190	 * Partway through the readahead operation, we will have added
191	 * locked pages to the page cache, but will not yet have submitted
192	 * them for I/O.  Adding another page may need to allocate memory,
193	 * which can trigger memory reclaim.  Telling the VM we're in
194	 * the middle of a filesystem operation will cause it to not
195	 * touch file-backed pages, preventing a deadlock.  Most (all?)
196	 * filesystems already specify __GFP_NOFS in their mapping's
197	 * gfp_mask, but let's be explicit here.
198	 */
199	unsigned int nofs = memalloc_nofs_save();
200
201	/*
202	 * Preallocate as many pages as we will need.
203	 */
204	for (i = 0; i < nr_to_read; i++) {
205		struct page *page = xa_load(&mapping->i_pages, index + i);
206
207		BUG_ON(index + i != rac._index + rac._nr_pages);
 
208
209		if (page && !xa_is_value(page)) {
210			/*
211			 * Page already present?  Kick off the current batch
212			 * of contiguous pages before continuing with the
213			 * next batch.  This page may be the one we would
214			 * have intended to mark as Readahead, but we don't
215			 * have a stable reference to this page, and it's
216			 * not worth getting one just for that.
217			 */
218			read_pages(&rac, &page_pool, true);
219			continue;
220		}
221
222		page = __page_cache_alloc(gfp_mask);
223		if (!page)
224			break;
225		if (mapping->a_ops->readpages) {
226			page->index = index + i;
227			list_add(&page->lru, &page_pool);
228		} else if (add_to_page_cache_lru(page, mapping, index + i,
229					gfp_mask) < 0) {
230			put_page(page);
231			read_pages(&rac, &page_pool, true);
232			continue;
233		}
234		if (i == nr_to_read - lookahead_size)
235			SetPageReadahead(page);
236		rac._nr_pages++;
237	}
238
239	/*
240	 * Now start the IO.  We ignore I/O errors - if the page is not
241	 * uptodate then the caller will launch readpage again, and
242	 * will then handle the error.
243	 */
244	read_pages(&rac, &page_pool, false);
245	memalloc_nofs_restore(nofs);
246}
247EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded);
248
249/*
250 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
251 * the pages first, then submits them for I/O. This avoids the very bad
252 * behaviour which would occur if page allocations are causing VM writeback.
253 * We really don't want to intermingle reads and writes like that.
254 */
255void __do_page_cache_readahead(struct address_space *mapping,
256		struct file *file, pgoff_t index, unsigned long nr_to_read,
257		unsigned long lookahead_size)
258{
259	struct inode *inode = mapping->host;
260	loff_t isize = i_size_read(inode);
261	pgoff_t end_index;	/* The last page we want to read */
262
263	if (isize == 0)
264		return;
265
266	end_index = (isize - 1) >> PAGE_SHIFT;
267	if (index > end_index)
268		return;
269	/* Don't read past the page containing the last byte of the file */
270	if (nr_to_read > end_index - index)
271		nr_to_read = end_index - index + 1;
272
273	page_cache_readahead_unbounded(mapping, file, index, nr_to_read,
274			lookahead_size);
275}
276
277/*
278 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
279 * memory at once.
280 */
281void force_page_cache_readahead(struct address_space *mapping,
282		struct file *filp, pgoff_t index, unsigned long nr_to_read)
283{
284	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
285	struct file_ra_state *ra = &filp->f_ra;
286	unsigned long max_pages;
287
288	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
289			!mapping->a_ops->readahead))
290		return;
291
292	/*
293	 * If the request exceeds the readahead window, allow the read to
294	 * be up to the optimal hardware IO size
295	 */
296	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
297	nr_to_read = min(nr_to_read, max_pages);
298	while (nr_to_read) {
 
 
299		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
300
301		if (this_chunk > nr_to_read)
302			this_chunk = nr_to_read;
303		__do_page_cache_readahead(mapping, filp, index, this_chunk, 0);
 
 
 
304
305		index += this_chunk;
306		nr_to_read -= this_chunk;
307	}
 
308}
309
310/*
311 * Set the initial window size, round to next power of 2 and square
312 * for small size, x 4 for medium, and x 2 for large
313 * for 128k (32 page) max ra
314 * 1-8 page = 32k initial, > 8 page = 128k initial
315 */
316static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
317{
318	unsigned long newsize = roundup_pow_of_two(size);
319
320	if (newsize <= max / 32)
321		newsize = newsize * 4;
322	else if (newsize <= max / 4)
323		newsize = newsize * 2;
324	else
325		newsize = max;
326
327	return newsize;
328}
329
330/*
331 *  Get the previous window size, ramp it up, and
332 *  return it as the new window size.
333 */
334static unsigned long get_next_ra_size(struct file_ra_state *ra,
335				      unsigned long max)
336{
337	unsigned long cur = ra->size;
 
338
339	if (cur < max / 16)
340		return 4 * cur;
341	if (cur <= max / 2)
342		return 2 * cur;
343	return max;
 
344}
345
346/*
347 * On-demand readahead design.
348 *
349 * The fields in struct file_ra_state represent the most-recently-executed
350 * readahead attempt:
351 *
352 *                        |<----- async_size ---------|
353 *     |------------------- size -------------------->|
354 *     |==================#===========================|
355 *     ^start             ^page marked with PG_readahead
356 *
357 * To overlap application thinking time and disk I/O time, we do
358 * `readahead pipelining': Do not wait until the application consumed all
359 * readahead pages and stalled on the missing page at readahead_index;
360 * Instead, submit an asynchronous readahead I/O as soon as there are
361 * only async_size pages left in the readahead window. Normally async_size
362 * will be equal to size, for maximum pipelining.
363 *
364 * In interleaved sequential reads, concurrent streams on the same fd can
365 * be invalidating each other's readahead state. So we flag the new readahead
366 * page at (start+size-async_size) with PG_readahead, and use it as readahead
367 * indicator. The flag won't be set on already cached pages, to avoid the
368 * readahead-for-nothing fuss, saving pointless page cache lookups.
369 *
370 * prev_pos tracks the last visited byte in the _previous_ read request.
371 * It should be maintained by the caller, and will be used for detecting
372 * small random reads. Note that the readahead algorithm checks loosely
373 * for sequential patterns. Hence interleaved reads might be served as
374 * sequential ones.
375 *
376 * There is a special-case: if the first page which the application tries to
377 * read happens to be the first page of the file, it is assumed that a linear
378 * read is about to happen and the window is immediately set to the initial size
379 * based on I/O request size and the max_readahead.
380 *
381 * The code ramps up the readahead size aggressively at first, but slow down as
382 * it approaches max_readhead.
383 */
384
385/*
386 * Count contiguously cached pages from @index-1 to @index-@max,
387 * this count is a conservative estimation of
388 * 	- length of the sequential read sequence, or
389 * 	- thrashing threshold in memory tight systems
390 */
391static pgoff_t count_history_pages(struct address_space *mapping,
392				   pgoff_t index, unsigned long max)
393{
394	pgoff_t head;
395
396	rcu_read_lock();
397	head = page_cache_prev_miss(mapping, index - 1, max);
398	rcu_read_unlock();
399
400	return index - 1 - head;
401}
402
403/*
404 * page cache context based read-ahead
405 */
406static int try_context_readahead(struct address_space *mapping,
407				 struct file_ra_state *ra,
408				 pgoff_t index,
409				 unsigned long req_size,
410				 unsigned long max)
411{
412	pgoff_t size;
413
414	size = count_history_pages(mapping, index, max);
415
416	/*
417	 * not enough history pages:
418	 * it could be a random read
419	 */
420	if (size <= req_size)
421		return 0;
422
423	/*
424	 * starts from beginning of file:
425	 * it is a strong indication of long-run stream (or whole-file-read)
426	 */
427	if (size >= index)
428		size *= 2;
429
430	ra->start = index;
431	ra->size = min(size + req_size, max);
432	ra->async_size = 1;
433
434	return 1;
435}
436
437/*
438 * A minimal readahead algorithm for trivial sequential/random reads.
439 */
440static void ondemand_readahead(struct address_space *mapping,
441		struct file_ra_state *ra, struct file *filp,
442		bool hit_readahead_marker, pgoff_t index,
443		unsigned long req_size)
 
444{
445	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
446	unsigned long max_pages = ra->ra_pages;
447	unsigned long add_pages;
448	pgoff_t prev_index;
449
450	/*
451	 * If the request exceeds the readahead window, allow the read to
452	 * be up to the optimal hardware IO size
453	 */
454	if (req_size > max_pages && bdi->io_pages > max_pages)
455		max_pages = min(req_size, bdi->io_pages);
456
457	/*
458	 * start of file
459	 */
460	if (!index)
461		goto initial_readahead;
462
463	/*
464	 * It's the expected callback index, assume sequential access.
465	 * Ramp up sizes, and push forward the readahead window.
466	 */
467	if ((index == (ra->start + ra->size - ra->async_size) ||
468	     index == (ra->start + ra->size))) {
469		ra->start += ra->size;
470		ra->size = get_next_ra_size(ra, max_pages);
471		ra->async_size = ra->size;
472		goto readit;
473	}
474
475	/*
476	 * Hit a marked page without valid readahead state.
477	 * E.g. interleaved reads.
478	 * Query the pagecache for async_size, which normally equals to
479	 * readahead size. Ramp it up and use it as the new readahead size.
480	 */
481	if (hit_readahead_marker) {
482		pgoff_t start;
483
484		rcu_read_lock();
485		start = page_cache_next_miss(mapping, index + 1, max_pages);
486		rcu_read_unlock();
487
488		if (!start || start - index > max_pages)
489			return;
490
491		ra->start = start;
492		ra->size = start - index;	/* old async_size */
493		ra->size += req_size;
494		ra->size = get_next_ra_size(ra, max_pages);
495		ra->async_size = ra->size;
496		goto readit;
497	}
498
499	/*
500	 * oversize read
501	 */
502	if (req_size > max_pages)
503		goto initial_readahead;
504
505	/*
506	 * sequential cache miss
507	 * trivial case: (index - prev_index) == 1
508	 * unaligned reads: (index - prev_index) == 0
509	 */
510	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
511	if (index - prev_index <= 1UL)
512		goto initial_readahead;
513
514	/*
515	 * Query the page cache and look for the traces(cached history pages)
516	 * that a sequential stream would leave behind.
517	 */
518	if (try_context_readahead(mapping, ra, index, req_size, max_pages))
519		goto readit;
520
521	/*
522	 * standalone, small random read
523	 * Read as is, and do not pollute the readahead state.
524	 */
525	__do_page_cache_readahead(mapping, filp, index, req_size, 0);
526	return;
527
528initial_readahead:
529	ra->start = index;
530	ra->size = get_init_ra_size(req_size, max_pages);
531	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
532
533readit:
534	/*
535	 * Will this read hit the readahead marker made by itself?
536	 * If so, trigger the readahead marker hit now, and merge
537	 * the resulted next readahead window into the current one.
538	 * Take care of maximum IO pages as above.
539	 */
540	if (index == ra->start && ra->size == ra->async_size) {
541		add_pages = get_next_ra_size(ra, max_pages);
542		if (ra->size + add_pages <= max_pages) {
543			ra->async_size = add_pages;
544			ra->size += add_pages;
545		} else {
546			ra->size = max_pages;
547			ra->async_size = max_pages >> 1;
548		}
549	}
550
551	ra_submit(ra, mapping, filp);
552}
553
554/**
555 * page_cache_sync_readahead - generic file readahead
556 * @mapping: address_space which holds the pagecache and I/O vectors
557 * @ra: file_ra_state which holds the readahead state
558 * @filp: passed on to ->readpage() and ->readpages()
559 * @index: Index of first page to be read.
560 * @req_count: Total number of pages being read by the caller.
 
561 *
562 * page_cache_sync_readahead() should be called when a cache miss happened:
563 * it will submit the read.  The readahead logic may decide to piggyback more
564 * pages onto the read request if access patterns suggest it will improve
565 * performance.
566 */
567void page_cache_sync_readahead(struct address_space *mapping,
568			       struct file_ra_state *ra, struct file *filp,
569			       pgoff_t index, unsigned long req_count)
570{
571	/* no read-ahead */
572	if (!ra->ra_pages)
573		return;
574
575	if (blk_cgroup_congested())
576		return;
577
578	/* be dumb */
579	if (filp && (filp->f_mode & FMODE_RANDOM)) {
580		force_page_cache_readahead(mapping, filp, index, req_count);
581		return;
582	}
583
584	/* do read-ahead */
585	ondemand_readahead(mapping, ra, filp, false, index, req_count);
586}
587EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
588
589/**
590 * page_cache_async_readahead - file readahead for marked pages
591 * @mapping: address_space which holds the pagecache and I/O vectors
592 * @ra: file_ra_state which holds the readahead state
593 * @filp: passed on to ->readpage() and ->readpages()
594 * @page: The page at @index which triggered the readahead call.
595 * @index: Index of first page to be read.
596 * @req_count: Total number of pages being read by the caller.
 
597 *
598 * page_cache_async_readahead() should be called when a page is used which
599 * is marked as PageReadahead; this is a marker to suggest that the application
600 * has used up enough of the readahead window that we should start pulling in
601 * more pages.
602 */
603void
604page_cache_async_readahead(struct address_space *mapping,
605			   struct file_ra_state *ra, struct file *filp,
606			   struct page *page, pgoff_t index,
607			   unsigned long req_count)
608{
609	/* no read-ahead */
610	if (!ra->ra_pages)
611		return;
612
613	/*
614	 * Same bit is used for PG_readahead and PG_reclaim.
615	 */
616	if (PageWriteback(page))
617		return;
618
619	ClearPageReadahead(page);
620
621	/*
622	 * Defer asynchronous read-ahead on IO congestion.
623	 */
624	if (inode_read_congested(mapping->host))
625		return;
626
627	if (blk_cgroup_congested())
628		return;
629
630	/* do read-ahead */
631	ondemand_readahead(mapping, ra, filp, true, index, req_count);
632}
633EXPORT_SYMBOL_GPL(page_cache_async_readahead);
634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
635ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
636{
637	ssize_t ret;
638	struct fd f;
639
640	ret = -EBADF;
641	f = fdget(fd);
642	if (!f.file || !(f.file->f_mode & FMODE_READ))
643		goto out;
644
645	/*
646	 * The readahead() syscall is intended to run only on files
647	 * that can execute readahead. If readahead is not possible
648	 * on this file, then we must return -EINVAL.
649	 */
650	ret = -EINVAL;
651	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
652	    !S_ISREG(file_inode(f.file)->i_mode))
653		goto out;
654
655	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
656out:
657	fdput(f);
658	return ret;
659}
660
661SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
662{
663	return ksys_readahead(fd, offset, count);
664}