Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/dax.h>
 12#include <linux/gfp.h>
 
 13#include <linux/export.h>
 14#include <linux/blkdev.h>
 15#include <linux/backing-dev.h>
 16#include <linux/task_io_accounting_ops.h>
 17#include <linux/pagevec.h>
 18#include <linux/pagemap.h>
 19#include <linux/syscalls.h>
 20#include <linux/file.h>
 21#include <linux/mm_inline.h>
 22
 23#include "internal.h"
 24
 25/*
 26 * Initialise a struct file's readahead state.  Assumes that the caller has
 27 * memset *ra to zero.
 28 */
 29void
 30file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 31{
 32	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 33	ra->prev_pos = -1;
 34}
 35EXPORT_SYMBOL_GPL(file_ra_state_init);
 36
 
 
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	put_page(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = lru_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = lru_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping, page->index,
 93				readahead_gfp_mask(mapping))) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		put_page(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113{
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = lru_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 
131			mapping->a_ops->readpage(filp, page);
132		put_page(page);
 
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
138
139	return ret;
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 */
150int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
 
151			pgoff_t offset, unsigned long nr_to_read,
152			unsigned long lookahead_size)
153{
154	struct inode *inode = mapping->host;
155	struct page *page;
156	unsigned long end_index;	/* The last page we want to read */
157	LIST_HEAD(page_pool);
158	int page_idx;
159	int ret = 0;
160	loff_t isize = i_size_read(inode);
161	gfp_t gfp_mask = readahead_gfp_mask(mapping);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->i_pages, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
181			continue;
182
183		page = __page_cache_alloc(gfp_mask);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210			       pgoff_t offset, unsigned long nr_to_read)
211{
212	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213	struct file_ra_state *ra = &filp->f_ra;
214	unsigned long max_pages;
215
216	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217		return -EINVAL;
218
219	/*
220	 * If the request exceeds the readahead window, allow the read to
221	 * be up to the optimal hardware IO size
222	 */
223	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224	nr_to_read = min(nr_to_read, max_pages);
225	while (nr_to_read) {
226		int err;
227
228		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229
230		if (this_chunk > nr_to_read)
231			this_chunk = nr_to_read;
232		err = __do_page_cache_readahead(mapping, filp,
233						offset, this_chunk, 0);
234		if (err < 0)
235			return err;
236
 
 
237		offset += this_chunk;
238		nr_to_read -= this_chunk;
239	}
240	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241}
242
243/*
244 * Set the initial window size, round to next power of 2 and square
245 * for small size, x 4 for medium, and x 2 for large
246 * for 128k (32 page) max ra
247 * 1-8 page = 32k initial, > 8 page = 128k initial
248 */
249static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250{
251	unsigned long newsize = roundup_pow_of_two(size);
252
253	if (newsize <= max / 32)
254		newsize = newsize * 4;
255	else if (newsize <= max / 4)
256		newsize = newsize * 2;
257	else
258		newsize = max;
259
260	return newsize;
261}
262
263/*
264 *  Get the previous window size, ramp it up, and
265 *  return it as the new window size.
266 */
267static unsigned long get_next_ra_size(struct file_ra_state *ra,
268						unsigned long max)
269{
270	unsigned long cur = ra->size;
271	unsigned long newsize;
272
273	if (cur < max / 16)
274		newsize = 4 * cur;
275	else
276		newsize = 2 * cur;
277
278	return min(newsize, max);
279}
280
281/*
282 * On-demand readahead design.
283 *
284 * The fields in struct file_ra_state represent the most-recently-executed
285 * readahead attempt:
286 *
287 *                        |<----- async_size ---------|
288 *     |------------------- size -------------------->|
289 *     |==================#===========================|
290 *     ^start             ^page marked with PG_readahead
291 *
292 * To overlap application thinking time and disk I/O time, we do
293 * `readahead pipelining': Do not wait until the application consumed all
294 * readahead pages and stalled on the missing page at readahead_index;
295 * Instead, submit an asynchronous readahead I/O as soon as there are
296 * only async_size pages left in the readahead window. Normally async_size
297 * will be equal to size, for maximum pipelining.
298 *
299 * In interleaved sequential reads, concurrent streams on the same fd can
300 * be invalidating each other's readahead state. So we flag the new readahead
301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
302 * indicator. The flag won't be set on already cached pages, to avoid the
303 * readahead-for-nothing fuss, saving pointless page cache lookups.
304 *
305 * prev_pos tracks the last visited byte in the _previous_ read request.
306 * It should be maintained by the caller, and will be used for detecting
307 * small random reads. Note that the readahead algorithm checks loosely
308 * for sequential patterns. Hence interleaved reads might be served as
309 * sequential ones.
310 *
311 * There is a special-case: if the first page which the application tries to
312 * read happens to be the first page of the file, it is assumed that a linear
313 * read is about to happen and the window is immediately set to the initial size
314 * based on I/O request size and the max_readahead.
315 *
316 * The code ramps up the readahead size aggressively at first, but slow down as
317 * it approaches max_readhead.
318 */
319
320/*
321 * Count contiguously cached pages from @offset-1 to @offset-@max,
322 * this count is a conservative estimation of
323 * 	- length of the sequential read sequence, or
324 * 	- thrashing threshold in memory tight systems
325 */
326static pgoff_t count_history_pages(struct address_space *mapping,
 
327				   pgoff_t offset, unsigned long max)
328{
329	pgoff_t head;
330
331	rcu_read_lock();
332	head = page_cache_prev_hole(mapping, offset - 1, max);
333	rcu_read_unlock();
334
335	return offset - 1 - head;
336}
337
338/*
339 * page cache context based read-ahead
340 */
341static int try_context_readahead(struct address_space *mapping,
342				 struct file_ra_state *ra,
343				 pgoff_t offset,
344				 unsigned long req_size,
345				 unsigned long max)
346{
347	pgoff_t size;
348
349	size = count_history_pages(mapping, offset, max);
350
351	/*
352	 * not enough history pages:
353	 * it could be a random read
354	 */
355	if (size <= req_size)
356		return 0;
357
358	/*
359	 * starts from beginning of file:
360	 * it is a strong indication of long-run stream (or whole-file-read)
361	 */
362	if (size >= offset)
363		size *= 2;
364
365	ra->start = offset;
366	ra->size = min(size + req_size, max);
367	ra->async_size = 1;
368
369	return 1;
370}
371
372/*
373 * A minimal readahead algorithm for trivial sequential/random reads.
374 */
375static unsigned long
376ondemand_readahead(struct address_space *mapping,
377		   struct file_ra_state *ra, struct file *filp,
378		   bool hit_readahead_marker, pgoff_t offset,
379		   unsigned long req_size)
380{
381	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
382	unsigned long max_pages = ra->ra_pages;
383	pgoff_t prev_offset;
384
385	/*
386	 * If the request exceeds the readahead window, allow the read to
387	 * be up to the optimal hardware IO size
388	 */
389	if (req_size > max_pages && bdi->io_pages > max_pages)
390		max_pages = min(req_size, bdi->io_pages);
391
392	/*
393	 * start of file
394	 */
395	if (!offset)
396		goto initial_readahead;
397
398	/*
399	 * It's the expected callback offset, assume sequential access.
400	 * Ramp up sizes, and push forward the readahead window.
401	 */
402	if ((offset == (ra->start + ra->size - ra->async_size) ||
403	     offset == (ra->start + ra->size))) {
404		ra->start += ra->size;
405		ra->size = get_next_ra_size(ra, max_pages);
406		ra->async_size = ra->size;
407		goto readit;
408	}
409
410	/*
411	 * Hit a marked page without valid readahead state.
412	 * E.g. interleaved reads.
413	 * Query the pagecache for async_size, which normally equals to
414	 * readahead size. Ramp it up and use it as the new readahead size.
415	 */
416	if (hit_readahead_marker) {
417		pgoff_t start;
418
419		rcu_read_lock();
420		start = page_cache_next_hole(mapping, offset + 1, max_pages);
421		rcu_read_unlock();
422
423		if (!start || start - offset > max_pages)
424			return 0;
425
426		ra->start = start;
427		ra->size = start - offset;	/* old async_size */
428		ra->size += req_size;
429		ra->size = get_next_ra_size(ra, max_pages);
430		ra->async_size = ra->size;
431		goto readit;
432	}
433
434	/*
435	 * oversize read
436	 */
437	if (req_size > max_pages)
438		goto initial_readahead;
439
440	/*
441	 * sequential cache miss
442	 * trivial case: (offset - prev_offset) == 1
443	 * unaligned reads: (offset - prev_offset) == 0
444	 */
445	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
446	if (offset - prev_offset <= 1UL)
447		goto initial_readahead;
448
449	/*
450	 * Query the page cache and look for the traces(cached history pages)
451	 * that a sequential stream would leave behind.
452	 */
453	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
454		goto readit;
455
456	/*
457	 * standalone, small random read
458	 * Read as is, and do not pollute the readahead state.
459	 */
460	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
461
462initial_readahead:
463	ra->start = offset;
464	ra->size = get_init_ra_size(req_size, max_pages);
465	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
466
467readit:
468	/*
469	 * Will this read hit the readahead marker made by itself?
470	 * If so, trigger the readahead marker hit now, and merge
471	 * the resulted next readahead window into the current one.
472	 */
473	if (offset == ra->start && ra->size == ra->async_size) {
474		ra->async_size = get_next_ra_size(ra, max_pages);
475		ra->size += ra->async_size;
476	}
477
478	return ra_submit(ra, mapping, filp);
479}
480
481/**
482 * page_cache_sync_readahead - generic file readahead
483 * @mapping: address_space which holds the pagecache and I/O vectors
484 * @ra: file_ra_state which holds the readahead state
485 * @filp: passed on to ->readpage() and ->readpages()
486 * @offset: start offset into @mapping, in pagecache page-sized units
487 * @req_size: hint: total size of the read which the caller is performing in
488 *            pagecache pages
489 *
490 * page_cache_sync_readahead() should be called when a cache miss happened:
491 * it will submit the read.  The readahead logic may decide to piggyback more
492 * pages onto the read request if access patterns suggest it will improve
493 * performance.
494 */
495void page_cache_sync_readahead(struct address_space *mapping,
496			       struct file_ra_state *ra, struct file *filp,
497			       pgoff_t offset, unsigned long req_size)
498{
499	/* no read-ahead */
500	if (!ra->ra_pages)
501		return;
502
503	/* be dumb */
504	if (filp && (filp->f_mode & FMODE_RANDOM)) {
505		force_page_cache_readahead(mapping, filp, offset, req_size);
506		return;
507	}
508
509	/* do read-ahead */
510	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
511}
512EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
513
514/**
515 * page_cache_async_readahead - file readahead for marked pages
516 * @mapping: address_space which holds the pagecache and I/O vectors
517 * @ra: file_ra_state which holds the readahead state
518 * @filp: passed on to ->readpage() and ->readpages()
519 * @page: the page at @offset which has the PG_readahead flag set
520 * @offset: start offset into @mapping, in pagecache page-sized units
521 * @req_size: hint: total size of the read which the caller is performing in
522 *            pagecache pages
523 *
524 * page_cache_async_readahead() should be called when a page is used which
525 * has the PG_readahead flag; this is a marker to suggest that the application
526 * has used up enough of the readahead window that we should start pulling in
527 * more pages.
528 */
529void
530page_cache_async_readahead(struct address_space *mapping,
531			   struct file_ra_state *ra, struct file *filp,
532			   struct page *page, pgoff_t offset,
533			   unsigned long req_size)
534{
535	/* no read-ahead */
536	if (!ra->ra_pages)
537		return;
538
539	/*
540	 * Same bit is used for PG_readahead and PG_reclaim.
541	 */
542	if (PageWriteback(page))
543		return;
544
545	ClearPageReadahead(page);
546
547	/*
548	 * Defer asynchronous read-ahead on IO congestion.
549	 */
550	if (inode_read_congested(mapping->host))
551		return;
552
553	/* do read-ahead */
554	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
555}
556EXPORT_SYMBOL_GPL(page_cache_async_readahead);
557
558static ssize_t
559do_readahead(struct address_space *mapping, struct file *filp,
560	     pgoff_t index, unsigned long nr)
561{
562	if (!mapping || !mapping->a_ops)
563		return -EINVAL;
564
565	/*
566	 * Readahead doesn't make sense for DAX inodes, but we don't want it
567	 * to report a failure either.  Instead, we just return success and
568	 * don't do any work.
569	 */
570	if (dax_mapping(mapping))
571		return 0;
572
573	return force_page_cache_readahead(mapping, filp, index, nr);
574}
575
576ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
577{
578	ssize_t ret;
579	struct fd f;
580
581	ret = -EBADF;
582	f = fdget(fd);
583	if (f.file) {
584		if (f.file->f_mode & FMODE_READ) {
585			struct address_space *mapping = f.file->f_mapping;
586			pgoff_t start = offset >> PAGE_SHIFT;
587			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
588			unsigned long len = end - start + 1;
589			ret = do_readahead(mapping, f.file, start, len);
590		}
591		fdput(f);
592	}
593	return ret;
594}
595
596SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
597{
598	return ksys_readahead(fd, offset, count);
599}
v3.5.6
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/fs.h>
 12#include <linux/gfp.h>
 13#include <linux/mm.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 
 
 
 22
 23/*
 24 * Initialise a struct file's readahead state.  Assumes that the caller has
 25 * memset *ra to zero.
 26 */
 27void
 28file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 29{
 30	ra->ra_pages = mapping->backing_dev_info->ra_pages;
 31	ra->prev_pos = -1;
 32}
 33EXPORT_SYMBOL_GPL(file_ra_state_init);
 34
 35#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
 36
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	page_cache_release(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = list_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = list_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping,
 93					page->index, GFP_KERNEL)) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		page_cache_release(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_CACHE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned nr_pages)
113{
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = list_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping,
131					page->index, GFP_KERNEL)) {
132			mapping->a_ops->readpage(filp, page);
133		}
134		page_cache_release(page);
135	}
136	ret = 0;
137
138out:
139	blk_finish_plug(&plug);
140
141	return ret;
142}
143
144/*
145 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
146 * the pages first, then submits them all for I/O. This avoids the very bad
147 * behaviour which would occur if page allocations are causing VM writeback.
148 * We really don't want to intermingle reads and writes like that.
149 *
150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 */
152static int
153__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
154			pgoff_t offset, unsigned long nr_to_read,
155			unsigned long lookahead_size)
156{
157	struct inode *inode = mapping->host;
158	struct page *page;
159	unsigned long end_index;	/* The last page we want to read */
160	LIST_HEAD(page_pool);
161	int page_idx;
162	int ret = 0;
163	loff_t isize = i_size_read(inode);
 
164
165	if (isize == 0)
166		goto out;
167
168	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
169
170	/*
171	 * Preallocate as many pages as we will need.
172	 */
173	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
174		pgoff_t page_offset = offset + page_idx;
175
176		if (page_offset > end_index)
177			break;
178
179		rcu_read_lock();
180		page = radix_tree_lookup(&mapping->page_tree, page_offset);
181		rcu_read_unlock();
182		if (page)
183			continue;
184
185		page = page_cache_alloc_readahead(mapping);
186		if (!page)
187			break;
188		page->index = page_offset;
189		list_add(&page->lru, &page_pool);
190		if (page_idx == nr_to_read - lookahead_size)
191			SetPageReadahead(page);
192		ret++;
193	}
194
195	/*
196	 * Now start the IO.  We ignore I/O errors - if the page is not
197	 * uptodate then the caller will launch readpage again, and
198	 * will then handle the error.
199	 */
200	if (ret)
201		read_pages(mapping, filp, &page_pool, ret);
202	BUG_ON(!list_empty(&page_pool));
203out:
204	return ret;
205}
206
207/*
208 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
209 * memory at once.
210 */
211int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
212		pgoff_t offset, unsigned long nr_to_read)
213{
214	int ret = 0;
 
 
215
216	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217		return -EINVAL;
218
219	nr_to_read = max_sane_readahead(nr_to_read);
 
 
 
 
 
220	while (nr_to_read) {
221		int err;
222
223		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
224
225		if (this_chunk > nr_to_read)
226			this_chunk = nr_to_read;
227		err = __do_page_cache_readahead(mapping, filp,
228						offset, this_chunk, 0);
229		if (err < 0) {
230			ret = err;
231			break;
232		}
233		ret += err;
234		offset += this_chunk;
235		nr_to_read -= this_chunk;
236	}
237	return ret;
238}
239
240/*
241 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
242 * sensible upper limit.
243 */
244unsigned long max_sane_readahead(unsigned long nr)
245{
246	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE_FILE)
247		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
248}
249
250/*
251 * Submit IO for the read-ahead request in file_ra_state.
252 */
253unsigned long ra_submit(struct file_ra_state *ra,
254		       struct address_space *mapping, struct file *filp)
255{
256	int actual;
257
258	actual = __do_page_cache_readahead(mapping, filp,
259					ra->start, ra->size, ra->async_size);
260
261	return actual;
262}
263
264/*
265 * Set the initial window size, round to next power of 2 and square
266 * for small size, x 4 for medium, and x 2 for large
267 * for 128k (32 page) max ra
268 * 1-8 page = 32k initial, > 8 page = 128k initial
269 */
270static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
271{
272	unsigned long newsize = roundup_pow_of_two(size);
273
274	if (newsize <= max / 32)
275		newsize = newsize * 4;
276	else if (newsize <= max / 4)
277		newsize = newsize * 2;
278	else
279		newsize = max;
280
281	return newsize;
282}
283
284/*
285 *  Get the previous window size, ramp it up, and
286 *  return it as the new window size.
287 */
288static unsigned long get_next_ra_size(struct file_ra_state *ra,
289						unsigned long max)
290{
291	unsigned long cur = ra->size;
292	unsigned long newsize;
293
294	if (cur < max / 16)
295		newsize = 4 * cur;
296	else
297		newsize = 2 * cur;
298
299	return min(newsize, max);
300}
301
302/*
303 * On-demand readahead design.
304 *
305 * The fields in struct file_ra_state represent the most-recently-executed
306 * readahead attempt:
307 *
308 *                        |<----- async_size ---------|
309 *     |------------------- size -------------------->|
310 *     |==================#===========================|
311 *     ^start             ^page marked with PG_readahead
312 *
313 * To overlap application thinking time and disk I/O time, we do
314 * `readahead pipelining': Do not wait until the application consumed all
315 * readahead pages and stalled on the missing page at readahead_index;
316 * Instead, submit an asynchronous readahead I/O as soon as there are
317 * only async_size pages left in the readahead window. Normally async_size
318 * will be equal to size, for maximum pipelining.
319 *
320 * In interleaved sequential reads, concurrent streams on the same fd can
321 * be invalidating each other's readahead state. So we flag the new readahead
322 * page at (start+size-async_size) with PG_readahead, and use it as readahead
323 * indicator. The flag won't be set on already cached pages, to avoid the
324 * readahead-for-nothing fuss, saving pointless page cache lookups.
325 *
326 * prev_pos tracks the last visited byte in the _previous_ read request.
327 * It should be maintained by the caller, and will be used for detecting
328 * small random reads. Note that the readahead algorithm checks loosely
329 * for sequential patterns. Hence interleaved reads might be served as
330 * sequential ones.
331 *
332 * There is a special-case: if the first page which the application tries to
333 * read happens to be the first page of the file, it is assumed that a linear
334 * read is about to happen and the window is immediately set to the initial size
335 * based on I/O request size and the max_readahead.
336 *
337 * The code ramps up the readahead size aggressively at first, but slow down as
338 * it approaches max_readhead.
339 */
340
341/*
342 * Count contiguously cached pages from @offset-1 to @offset-@max,
343 * this count is a conservative estimation of
344 * 	- length of the sequential read sequence, or
345 * 	- thrashing threshold in memory tight systems
346 */
347static pgoff_t count_history_pages(struct address_space *mapping,
348				   struct file_ra_state *ra,
349				   pgoff_t offset, unsigned long max)
350{
351	pgoff_t head;
352
353	rcu_read_lock();
354	head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
355	rcu_read_unlock();
356
357	return offset - 1 - head;
358}
359
360/*
361 * page cache context based read-ahead
362 */
363static int try_context_readahead(struct address_space *mapping,
364				 struct file_ra_state *ra,
365				 pgoff_t offset,
366				 unsigned long req_size,
367				 unsigned long max)
368{
369	pgoff_t size;
370
371	size = count_history_pages(mapping, ra, offset, max);
372
373	/*
374	 * no history pages:
375	 * it could be a random read
376	 */
377	if (!size)
378		return 0;
379
380	/*
381	 * starts from beginning of file:
382	 * it is a strong indication of long-run stream (or whole-file-read)
383	 */
384	if (size >= offset)
385		size *= 2;
386
387	ra->start = offset;
388	ra->size = get_init_ra_size(size + req_size, max);
389	ra->async_size = ra->size;
390
391	return 1;
392}
393
394/*
395 * A minimal readahead algorithm for trivial sequential/random reads.
396 */
397static unsigned long
398ondemand_readahead(struct address_space *mapping,
399		   struct file_ra_state *ra, struct file *filp,
400		   bool hit_readahead_marker, pgoff_t offset,
401		   unsigned long req_size)
402{
403	unsigned long max = max_sane_readahead(ra->ra_pages);
 
 
 
 
 
 
 
 
 
404
405	/*
406	 * start of file
407	 */
408	if (!offset)
409		goto initial_readahead;
410
411	/*
412	 * It's the expected callback offset, assume sequential access.
413	 * Ramp up sizes, and push forward the readahead window.
414	 */
415	if ((offset == (ra->start + ra->size - ra->async_size) ||
416	     offset == (ra->start + ra->size))) {
417		ra->start += ra->size;
418		ra->size = get_next_ra_size(ra, max);
419		ra->async_size = ra->size;
420		goto readit;
421	}
422
423	/*
424	 * Hit a marked page without valid readahead state.
425	 * E.g. interleaved reads.
426	 * Query the pagecache for async_size, which normally equals to
427	 * readahead size. Ramp it up and use it as the new readahead size.
428	 */
429	if (hit_readahead_marker) {
430		pgoff_t start;
431
432		rcu_read_lock();
433		start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
434		rcu_read_unlock();
435
436		if (!start || start - offset > max)
437			return 0;
438
439		ra->start = start;
440		ra->size = start - offset;	/* old async_size */
441		ra->size += req_size;
442		ra->size = get_next_ra_size(ra, max);
443		ra->async_size = ra->size;
444		goto readit;
445	}
446
447	/*
448	 * oversize read
449	 */
450	if (req_size > max)
451		goto initial_readahead;
452
453	/*
454	 * sequential cache miss
 
 
455	 */
456	if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
 
457		goto initial_readahead;
458
459	/*
460	 * Query the page cache and look for the traces(cached history pages)
461	 * that a sequential stream would leave behind.
462	 */
463	if (try_context_readahead(mapping, ra, offset, req_size, max))
464		goto readit;
465
466	/*
467	 * standalone, small random read
468	 * Read as is, and do not pollute the readahead state.
469	 */
470	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
471
472initial_readahead:
473	ra->start = offset;
474	ra->size = get_init_ra_size(req_size, max);
475	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
476
477readit:
478	/*
479	 * Will this read hit the readahead marker made by itself?
480	 * If so, trigger the readahead marker hit now, and merge
481	 * the resulted next readahead window into the current one.
482	 */
483	if (offset == ra->start && ra->size == ra->async_size) {
484		ra->async_size = get_next_ra_size(ra, max);
485		ra->size += ra->async_size;
486	}
487
488	return ra_submit(ra, mapping, filp);
489}
490
491/**
492 * page_cache_sync_readahead - generic file readahead
493 * @mapping: address_space which holds the pagecache and I/O vectors
494 * @ra: file_ra_state which holds the readahead state
495 * @filp: passed on to ->readpage() and ->readpages()
496 * @offset: start offset into @mapping, in pagecache page-sized units
497 * @req_size: hint: total size of the read which the caller is performing in
498 *            pagecache pages
499 *
500 * page_cache_sync_readahead() should be called when a cache miss happened:
501 * it will submit the read.  The readahead logic may decide to piggyback more
502 * pages onto the read request if access patterns suggest it will improve
503 * performance.
504 */
505void page_cache_sync_readahead(struct address_space *mapping,
506			       struct file_ra_state *ra, struct file *filp,
507			       pgoff_t offset, unsigned long req_size)
508{
509	/* no read-ahead */
510	if (!ra->ra_pages)
511		return;
512
513	/* be dumb */
514	if (filp && (filp->f_mode & FMODE_RANDOM)) {
515		force_page_cache_readahead(mapping, filp, offset, req_size);
516		return;
517	}
518
519	/* do read-ahead */
520	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
521}
522EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
523
524/**
525 * page_cache_async_readahead - file readahead for marked pages
526 * @mapping: address_space which holds the pagecache and I/O vectors
527 * @ra: file_ra_state which holds the readahead state
528 * @filp: passed on to ->readpage() and ->readpages()
529 * @page: the page at @offset which has the PG_readahead flag set
530 * @offset: start offset into @mapping, in pagecache page-sized units
531 * @req_size: hint: total size of the read which the caller is performing in
532 *            pagecache pages
533 *
534 * page_cache_async_readahead() should be called when a page is used which
535 * has the PG_readahead flag; this is a marker to suggest that the application
536 * has used up enough of the readahead window that we should start pulling in
537 * more pages.
538 */
539void
540page_cache_async_readahead(struct address_space *mapping,
541			   struct file_ra_state *ra, struct file *filp,
542			   struct page *page, pgoff_t offset,
543			   unsigned long req_size)
544{
545	/* no read-ahead */
546	if (!ra->ra_pages)
547		return;
548
549	/*
550	 * Same bit is used for PG_readahead and PG_reclaim.
551	 */
552	if (PageWriteback(page))
553		return;
554
555	ClearPageReadahead(page);
556
557	/*
558	 * Defer asynchronous read-ahead on IO congestion.
559	 */
560	if (bdi_read_congested(mapping->backing_dev_info))
561		return;
562
563	/* do read-ahead */
564	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
565}
566EXPORT_SYMBOL_GPL(page_cache_async_readahead);
567
568static ssize_t
569do_readahead(struct address_space *mapping, struct file *filp,
570	     pgoff_t index, unsigned long nr)
571{
572	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
573		return -EINVAL;
574
575	force_page_cache_readahead(mapping, filp, index, nr);
576	return 0;
 
 
 
 
 
 
 
577}
578
579SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
580{
581	ssize_t ret;
582	struct file *file;
583
584	ret = -EBADF;
585	file = fget(fd);
586	if (file) {
587		if (file->f_mode & FMODE_READ) {
588			struct address_space *mapping = file->f_mapping;
589			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
590			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
591			unsigned long len = end - start + 1;
592			ret = do_readahead(mapping, file, start, len);
593		}
594		fput(file);
595	}
596	return ret;
597}
598#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
599asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
600{
601	return SYSC_readahead((int) fd, offset, (size_t) count);
602}
603SYSCALL_ALIAS(sys_readahead, SyS_readahead);
604#endif