Linux Audio

Check our new training course

Loading...
v4.17
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/dax.h>
 12#include <linux/gfp.h>
 13#include <linux/export.h>
 14#include <linux/blkdev.h>
 15#include <linux/backing-dev.h>
 16#include <linux/task_io_accounting_ops.h>
 17#include <linux/pagevec.h>
 18#include <linux/pagemap.h>
 19#include <linux/syscalls.h>
 20#include <linux/file.h>
 21#include <linux/mm_inline.h>
 22
 23#include "internal.h"
 24
 25/*
 26 * Initialise a struct file's readahead state.  Assumes that the caller has
 27 * memset *ra to zero.
 28 */
 29void
 30file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 31{
 32	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 33	ra->prev_pos = -1;
 34}
 35EXPORT_SYMBOL_GPL(file_ra_state_init);
 36
 
 
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	put_page(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = lru_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = lru_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping, page->index,
 93				readahead_gfp_mask(mapping))) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		put_page(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113{
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = lru_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 
131			mapping->a_ops->readpage(filp, page);
132		put_page(page);
 
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
138
139	return ret;
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 */
150int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
151			pgoff_t offset, unsigned long nr_to_read,
152			unsigned long lookahead_size)
153{
154	struct inode *inode = mapping->host;
155	struct page *page;
156	unsigned long end_index;	/* The last page we want to read */
157	LIST_HEAD(page_pool);
158	int page_idx;
159	int ret = 0;
160	loff_t isize = i_size_read(inode);
161	gfp_t gfp_mask = readahead_gfp_mask(mapping);
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->i_pages, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
181			continue;
182
183		page = __page_cache_alloc(gfp_mask);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210			       pgoff_t offset, unsigned long nr_to_read)
211{
212	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213	struct file_ra_state *ra = &filp->f_ra;
214	unsigned long max_pages;
215
216	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217		return -EINVAL;
218
219	/*
220	 * If the request exceeds the readahead window, allow the read to
221	 * be up to the optimal hardware IO size
222	 */
223	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224	nr_to_read = min(nr_to_read, max_pages);
225	while (nr_to_read) {
226		int err;
227
228		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229
230		if (this_chunk > nr_to_read)
231			this_chunk = nr_to_read;
232		err = __do_page_cache_readahead(mapping, filp,
233						offset, this_chunk, 0);
234		if (err < 0)
235			return err;
236
237		offset += this_chunk;
238		nr_to_read -= this_chunk;
239	}
240	return 0;
241}
242
 
 
 
 
 
 
 
 
 
 
243/*
244 * Set the initial window size, round to next power of 2 and square
245 * for small size, x 4 for medium, and x 2 for large
246 * for 128k (32 page) max ra
247 * 1-8 page = 32k initial, > 8 page = 128k initial
248 */
249static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250{
251	unsigned long newsize = roundup_pow_of_two(size);
252
253	if (newsize <= max / 32)
254		newsize = newsize * 4;
255	else if (newsize <= max / 4)
256		newsize = newsize * 2;
257	else
258		newsize = max;
259
260	return newsize;
261}
262
263/*
264 *  Get the previous window size, ramp it up, and
265 *  return it as the new window size.
266 */
267static unsigned long get_next_ra_size(struct file_ra_state *ra,
268						unsigned long max)
269{
270	unsigned long cur = ra->size;
271	unsigned long newsize;
272
273	if (cur < max / 16)
274		newsize = 4 * cur;
275	else
276		newsize = 2 * cur;
277
278	return min(newsize, max);
279}
280
281/*
282 * On-demand readahead design.
283 *
284 * The fields in struct file_ra_state represent the most-recently-executed
285 * readahead attempt:
286 *
287 *                        |<----- async_size ---------|
288 *     |------------------- size -------------------->|
289 *     |==================#===========================|
290 *     ^start             ^page marked with PG_readahead
291 *
292 * To overlap application thinking time and disk I/O time, we do
293 * `readahead pipelining': Do not wait until the application consumed all
294 * readahead pages and stalled on the missing page at readahead_index;
295 * Instead, submit an asynchronous readahead I/O as soon as there are
296 * only async_size pages left in the readahead window. Normally async_size
297 * will be equal to size, for maximum pipelining.
298 *
299 * In interleaved sequential reads, concurrent streams on the same fd can
300 * be invalidating each other's readahead state. So we flag the new readahead
301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
302 * indicator. The flag won't be set on already cached pages, to avoid the
303 * readahead-for-nothing fuss, saving pointless page cache lookups.
304 *
305 * prev_pos tracks the last visited byte in the _previous_ read request.
306 * It should be maintained by the caller, and will be used for detecting
307 * small random reads. Note that the readahead algorithm checks loosely
308 * for sequential patterns. Hence interleaved reads might be served as
309 * sequential ones.
310 *
311 * There is a special-case: if the first page which the application tries to
312 * read happens to be the first page of the file, it is assumed that a linear
313 * read is about to happen and the window is immediately set to the initial size
314 * based on I/O request size and the max_readahead.
315 *
316 * The code ramps up the readahead size aggressively at first, but slow down as
317 * it approaches max_readhead.
318 */
319
320/*
321 * Count contiguously cached pages from @offset-1 to @offset-@max,
322 * this count is a conservative estimation of
323 * 	- length of the sequential read sequence, or
324 * 	- thrashing threshold in memory tight systems
325 */
326static pgoff_t count_history_pages(struct address_space *mapping,
 
327				   pgoff_t offset, unsigned long max)
328{
329	pgoff_t head;
330
331	rcu_read_lock();
332	head = page_cache_prev_hole(mapping, offset - 1, max);
333	rcu_read_unlock();
334
335	return offset - 1 - head;
336}
337
338/*
339 * page cache context based read-ahead
340 */
341static int try_context_readahead(struct address_space *mapping,
342				 struct file_ra_state *ra,
343				 pgoff_t offset,
344				 unsigned long req_size,
345				 unsigned long max)
346{
347	pgoff_t size;
348
349	size = count_history_pages(mapping, offset, max);
350
351	/*
352	 * not enough history pages:
353	 * it could be a random read
354	 */
355	if (size <= req_size)
356		return 0;
357
358	/*
359	 * starts from beginning of file:
360	 * it is a strong indication of long-run stream (or whole-file-read)
361	 */
362	if (size >= offset)
363		size *= 2;
364
365	ra->start = offset;
366	ra->size = min(size + req_size, max);
367	ra->async_size = 1;
368
369	return 1;
370}
371
372/*
373 * A minimal readahead algorithm for trivial sequential/random reads.
374 */
375static unsigned long
376ondemand_readahead(struct address_space *mapping,
377		   struct file_ra_state *ra, struct file *filp,
378		   bool hit_readahead_marker, pgoff_t offset,
379		   unsigned long req_size)
380{
381	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
382	unsigned long max_pages = ra->ra_pages;
383	pgoff_t prev_offset;
384
385	/*
386	 * If the request exceeds the readahead window, allow the read to
387	 * be up to the optimal hardware IO size
388	 */
389	if (req_size > max_pages && bdi->io_pages > max_pages)
390		max_pages = min(req_size, bdi->io_pages);
391
392	/*
393	 * start of file
394	 */
395	if (!offset)
396		goto initial_readahead;
397
398	/*
399	 * It's the expected callback offset, assume sequential access.
400	 * Ramp up sizes, and push forward the readahead window.
401	 */
402	if ((offset == (ra->start + ra->size - ra->async_size) ||
403	     offset == (ra->start + ra->size))) {
404		ra->start += ra->size;
405		ra->size = get_next_ra_size(ra, max_pages);
406		ra->async_size = ra->size;
407		goto readit;
408	}
409
410	/*
411	 * Hit a marked page without valid readahead state.
412	 * E.g. interleaved reads.
413	 * Query the pagecache for async_size, which normally equals to
414	 * readahead size. Ramp it up and use it as the new readahead size.
415	 */
416	if (hit_readahead_marker) {
417		pgoff_t start;
418
419		rcu_read_lock();
420		start = page_cache_next_hole(mapping, offset + 1, max_pages);
421		rcu_read_unlock();
422
423		if (!start || start - offset > max_pages)
424			return 0;
425
426		ra->start = start;
427		ra->size = start - offset;	/* old async_size */
428		ra->size += req_size;
429		ra->size = get_next_ra_size(ra, max_pages);
430		ra->async_size = ra->size;
431		goto readit;
432	}
433
434	/*
435	 * oversize read
436	 */
437	if (req_size > max_pages)
438		goto initial_readahead;
439
440	/*
441	 * sequential cache miss
442	 * trivial case: (offset - prev_offset) == 1
443	 * unaligned reads: (offset - prev_offset) == 0
444	 */
445	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
446	if (offset - prev_offset <= 1UL)
447		goto initial_readahead;
448
449	/*
450	 * Query the page cache and look for the traces(cached history pages)
451	 * that a sequential stream would leave behind.
452	 */
453	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
454		goto readit;
455
456	/*
457	 * standalone, small random read
458	 * Read as is, and do not pollute the readahead state.
459	 */
460	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
461
462initial_readahead:
463	ra->start = offset;
464	ra->size = get_init_ra_size(req_size, max_pages);
465	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
466
467readit:
468	/*
469	 * Will this read hit the readahead marker made by itself?
470	 * If so, trigger the readahead marker hit now, and merge
471	 * the resulted next readahead window into the current one.
472	 */
473	if (offset == ra->start && ra->size == ra->async_size) {
474		ra->async_size = get_next_ra_size(ra, max_pages);
475		ra->size += ra->async_size;
476	}
477
478	return ra_submit(ra, mapping, filp);
479}
480
481/**
482 * page_cache_sync_readahead - generic file readahead
483 * @mapping: address_space which holds the pagecache and I/O vectors
484 * @ra: file_ra_state which holds the readahead state
485 * @filp: passed on to ->readpage() and ->readpages()
486 * @offset: start offset into @mapping, in pagecache page-sized units
487 * @req_size: hint: total size of the read which the caller is performing in
488 *            pagecache pages
489 *
490 * page_cache_sync_readahead() should be called when a cache miss happened:
491 * it will submit the read.  The readahead logic may decide to piggyback more
492 * pages onto the read request if access patterns suggest it will improve
493 * performance.
494 */
495void page_cache_sync_readahead(struct address_space *mapping,
496			       struct file_ra_state *ra, struct file *filp,
497			       pgoff_t offset, unsigned long req_size)
498{
499	/* no read-ahead */
500	if (!ra->ra_pages)
501		return;
502
503	/* be dumb */
504	if (filp && (filp->f_mode & FMODE_RANDOM)) {
505		force_page_cache_readahead(mapping, filp, offset, req_size);
506		return;
507	}
508
509	/* do read-ahead */
510	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
511}
512EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
513
514/**
515 * page_cache_async_readahead - file readahead for marked pages
516 * @mapping: address_space which holds the pagecache and I/O vectors
517 * @ra: file_ra_state which holds the readahead state
518 * @filp: passed on to ->readpage() and ->readpages()
519 * @page: the page at @offset which has the PG_readahead flag set
520 * @offset: start offset into @mapping, in pagecache page-sized units
521 * @req_size: hint: total size of the read which the caller is performing in
522 *            pagecache pages
523 *
524 * page_cache_async_readahead() should be called when a page is used which
525 * has the PG_readahead flag; this is a marker to suggest that the application
526 * has used up enough of the readahead window that we should start pulling in
527 * more pages.
528 */
529void
530page_cache_async_readahead(struct address_space *mapping,
531			   struct file_ra_state *ra, struct file *filp,
532			   struct page *page, pgoff_t offset,
533			   unsigned long req_size)
534{
535	/* no read-ahead */
536	if (!ra->ra_pages)
537		return;
538
539	/*
540	 * Same bit is used for PG_readahead and PG_reclaim.
541	 */
542	if (PageWriteback(page))
543		return;
544
545	ClearPageReadahead(page);
546
547	/*
548	 * Defer asynchronous read-ahead on IO congestion.
549	 */
550	if (inode_read_congested(mapping->host))
551		return;
552
553	/* do read-ahead */
554	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
555}
556EXPORT_SYMBOL_GPL(page_cache_async_readahead);
557
558static ssize_t
559do_readahead(struct address_space *mapping, struct file *filp,
560	     pgoff_t index, unsigned long nr)
561{
562	if (!mapping || !mapping->a_ops)
563		return -EINVAL;
564
565	/*
566	 * Readahead doesn't make sense for DAX inodes, but we don't want it
567	 * to report a failure either.  Instead, we just return success and
568	 * don't do any work.
569	 */
570	if (dax_mapping(mapping))
571		return 0;
572
573	return force_page_cache_readahead(mapping, filp, index, nr);
574}
575
576ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
577{
578	ssize_t ret;
579	struct fd f;
580
581	ret = -EBADF;
582	f = fdget(fd);
583	if (f.file) {
584		if (f.file->f_mode & FMODE_READ) {
585			struct address_space *mapping = f.file->f_mapping;
586			pgoff_t start = offset >> PAGE_SHIFT;
587			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
588			unsigned long len = end - start + 1;
589			ret = do_readahead(mapping, f.file, start, len);
590		}
591		fdput(f);
592	}
593	return ret;
594}
595
596SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
597{
598	return ksys_readahead(fd, offset, count);
599}
v3.15
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 
 11#include <linux/gfp.h>
 12#include <linux/export.h>
 13#include <linux/blkdev.h>
 14#include <linux/backing-dev.h>
 15#include <linux/task_io_accounting_ops.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagemap.h>
 18#include <linux/syscalls.h>
 19#include <linux/file.h>
 
 20
 21#include "internal.h"
 22
 23/*
 24 * Initialise a struct file's readahead state.  Assumes that the caller has
 25 * memset *ra to zero.
 26 */
 27void
 28file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 29{
 30	ra->ra_pages = mapping->backing_dev_info->ra_pages;
 31	ra->prev_pos = -1;
 32}
 33EXPORT_SYMBOL_GPL(file_ra_state_init);
 34
 35#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
 36
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	page_cache_release(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = list_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = list_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping,
 93					page->index, GFP_KERNEL)) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		page_cache_release(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_CACHE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned nr_pages)
113{
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = list_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping,
131					page->index, GFP_KERNEL)) {
132			mapping->a_ops->readpage(filp, page);
133		}
134		page_cache_release(page);
135	}
136	ret = 0;
137
138out:
139	blk_finish_plug(&plug);
140
141	return ret;
142}
143
144/*
145 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
146 * the pages first, then submits them all for I/O. This avoids the very bad
147 * behaviour which would occur if page allocations are causing VM writeback.
148 * We really don't want to intermingle reads and writes like that.
149 *
150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
151 */
152int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
153			pgoff_t offset, unsigned long nr_to_read,
154			unsigned long lookahead_size)
155{
156	struct inode *inode = mapping->host;
157	struct page *page;
158	unsigned long end_index;	/* The last page we want to read */
159	LIST_HEAD(page_pool);
160	int page_idx;
161	int ret = 0;
162	loff_t isize = i_size_read(inode);
 
163
164	if (isize == 0)
165		goto out;
166
167	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
168
169	/*
170	 * Preallocate as many pages as we will need.
171	 */
172	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
173		pgoff_t page_offset = offset + page_idx;
174
175		if (page_offset > end_index)
176			break;
177
178		rcu_read_lock();
179		page = radix_tree_lookup(&mapping->page_tree, page_offset);
180		rcu_read_unlock();
181		if (page && !radix_tree_exceptional_entry(page))
182			continue;
183
184		page = page_cache_alloc_readahead(mapping);
185		if (!page)
186			break;
187		page->index = page_offset;
188		list_add(&page->lru, &page_pool);
189		if (page_idx == nr_to_read - lookahead_size)
190			SetPageReadahead(page);
191		ret++;
192	}
193
194	/*
195	 * Now start the IO.  We ignore I/O errors - if the page is not
196	 * uptodate then the caller will launch readpage again, and
197	 * will then handle the error.
198	 */
199	if (ret)
200		read_pages(mapping, filp, &page_pool, ret);
201	BUG_ON(!list_empty(&page_pool));
202out:
203	return ret;
204}
205
206/*
207 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
208 * memory at once.
209 */
210int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
211		pgoff_t offset, unsigned long nr_to_read)
212{
 
 
 
 
213	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
214		return -EINVAL;
215
216	nr_to_read = max_sane_readahead(nr_to_read);
 
 
 
 
 
217	while (nr_to_read) {
218		int err;
219
220		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
221
222		if (this_chunk > nr_to_read)
223			this_chunk = nr_to_read;
224		err = __do_page_cache_readahead(mapping, filp,
225						offset, this_chunk, 0);
226		if (err < 0)
227			return err;
228
229		offset += this_chunk;
230		nr_to_read -= this_chunk;
231	}
232	return 0;
233}
234
235#define MAX_READAHEAD   ((512*4096)/PAGE_CACHE_SIZE)
236/*
237 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
238 * sensible upper limit.
239 */
240unsigned long max_sane_readahead(unsigned long nr)
241{
242	return min(nr, MAX_READAHEAD);
243}
244
245/*
246 * Set the initial window size, round to next power of 2 and square
247 * for small size, x 4 for medium, and x 2 for large
248 * for 128k (32 page) max ra
249 * 1-8 page = 32k initial, > 8 page = 128k initial
250 */
251static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
252{
253	unsigned long newsize = roundup_pow_of_two(size);
254
255	if (newsize <= max / 32)
256		newsize = newsize * 4;
257	else if (newsize <= max / 4)
258		newsize = newsize * 2;
259	else
260		newsize = max;
261
262	return newsize;
263}
264
265/*
266 *  Get the previous window size, ramp it up, and
267 *  return it as the new window size.
268 */
269static unsigned long get_next_ra_size(struct file_ra_state *ra,
270						unsigned long max)
271{
272	unsigned long cur = ra->size;
273	unsigned long newsize;
274
275	if (cur < max / 16)
276		newsize = 4 * cur;
277	else
278		newsize = 2 * cur;
279
280	return min(newsize, max);
281}
282
283/*
284 * On-demand readahead design.
285 *
286 * The fields in struct file_ra_state represent the most-recently-executed
287 * readahead attempt:
288 *
289 *                        |<----- async_size ---------|
290 *     |------------------- size -------------------->|
291 *     |==================#===========================|
292 *     ^start             ^page marked with PG_readahead
293 *
294 * To overlap application thinking time and disk I/O time, we do
295 * `readahead pipelining': Do not wait until the application consumed all
296 * readahead pages and stalled on the missing page at readahead_index;
297 * Instead, submit an asynchronous readahead I/O as soon as there are
298 * only async_size pages left in the readahead window. Normally async_size
299 * will be equal to size, for maximum pipelining.
300 *
301 * In interleaved sequential reads, concurrent streams on the same fd can
302 * be invalidating each other's readahead state. So we flag the new readahead
303 * page at (start+size-async_size) with PG_readahead, and use it as readahead
304 * indicator. The flag won't be set on already cached pages, to avoid the
305 * readahead-for-nothing fuss, saving pointless page cache lookups.
306 *
307 * prev_pos tracks the last visited byte in the _previous_ read request.
308 * It should be maintained by the caller, and will be used for detecting
309 * small random reads. Note that the readahead algorithm checks loosely
310 * for sequential patterns. Hence interleaved reads might be served as
311 * sequential ones.
312 *
313 * There is a special-case: if the first page which the application tries to
314 * read happens to be the first page of the file, it is assumed that a linear
315 * read is about to happen and the window is immediately set to the initial size
316 * based on I/O request size and the max_readahead.
317 *
318 * The code ramps up the readahead size aggressively at first, but slow down as
319 * it approaches max_readhead.
320 */
321
322/*
323 * Count contiguously cached pages from @offset-1 to @offset-@max,
324 * this count is a conservative estimation of
325 * 	- length of the sequential read sequence, or
326 * 	- thrashing threshold in memory tight systems
327 */
328static pgoff_t count_history_pages(struct address_space *mapping,
329				   struct file_ra_state *ra,
330				   pgoff_t offset, unsigned long max)
331{
332	pgoff_t head;
333
334	rcu_read_lock();
335	head = page_cache_prev_hole(mapping, offset - 1, max);
336	rcu_read_unlock();
337
338	return offset - 1 - head;
339}
340
341/*
342 * page cache context based read-ahead
343 */
344static int try_context_readahead(struct address_space *mapping,
345				 struct file_ra_state *ra,
346				 pgoff_t offset,
347				 unsigned long req_size,
348				 unsigned long max)
349{
350	pgoff_t size;
351
352	size = count_history_pages(mapping, ra, offset, max);
353
354	/*
355	 * not enough history pages:
356	 * it could be a random read
357	 */
358	if (size <= req_size)
359		return 0;
360
361	/*
362	 * starts from beginning of file:
363	 * it is a strong indication of long-run stream (or whole-file-read)
364	 */
365	if (size >= offset)
366		size *= 2;
367
368	ra->start = offset;
369	ra->size = min(size + req_size, max);
370	ra->async_size = 1;
371
372	return 1;
373}
374
375/*
376 * A minimal readahead algorithm for trivial sequential/random reads.
377 */
378static unsigned long
379ondemand_readahead(struct address_space *mapping,
380		   struct file_ra_state *ra, struct file *filp,
381		   bool hit_readahead_marker, pgoff_t offset,
382		   unsigned long req_size)
383{
384	unsigned long max = max_sane_readahead(ra->ra_pages);
 
385	pgoff_t prev_offset;
386
387	/*
 
 
 
 
 
 
 
388	 * start of file
389	 */
390	if (!offset)
391		goto initial_readahead;
392
393	/*
394	 * It's the expected callback offset, assume sequential access.
395	 * Ramp up sizes, and push forward the readahead window.
396	 */
397	if ((offset == (ra->start + ra->size - ra->async_size) ||
398	     offset == (ra->start + ra->size))) {
399		ra->start += ra->size;
400		ra->size = get_next_ra_size(ra, max);
401		ra->async_size = ra->size;
402		goto readit;
403	}
404
405	/*
406	 * Hit a marked page without valid readahead state.
407	 * E.g. interleaved reads.
408	 * Query the pagecache for async_size, which normally equals to
409	 * readahead size. Ramp it up and use it as the new readahead size.
410	 */
411	if (hit_readahead_marker) {
412		pgoff_t start;
413
414		rcu_read_lock();
415		start = page_cache_next_hole(mapping, offset + 1, max);
416		rcu_read_unlock();
417
418		if (!start || start - offset > max)
419			return 0;
420
421		ra->start = start;
422		ra->size = start - offset;	/* old async_size */
423		ra->size += req_size;
424		ra->size = get_next_ra_size(ra, max);
425		ra->async_size = ra->size;
426		goto readit;
427	}
428
429	/*
430	 * oversize read
431	 */
432	if (req_size > max)
433		goto initial_readahead;
434
435	/*
436	 * sequential cache miss
437	 * trivial case: (offset - prev_offset) == 1
438	 * unaligned reads: (offset - prev_offset) == 0
439	 */
440	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_CACHE_SHIFT;
441	if (offset - prev_offset <= 1UL)
442		goto initial_readahead;
443
444	/*
445	 * Query the page cache and look for the traces(cached history pages)
446	 * that a sequential stream would leave behind.
447	 */
448	if (try_context_readahead(mapping, ra, offset, req_size, max))
449		goto readit;
450
451	/*
452	 * standalone, small random read
453	 * Read as is, and do not pollute the readahead state.
454	 */
455	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
456
457initial_readahead:
458	ra->start = offset;
459	ra->size = get_init_ra_size(req_size, max);
460	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
461
462readit:
463	/*
464	 * Will this read hit the readahead marker made by itself?
465	 * If so, trigger the readahead marker hit now, and merge
466	 * the resulted next readahead window into the current one.
467	 */
468	if (offset == ra->start && ra->size == ra->async_size) {
469		ra->async_size = get_next_ra_size(ra, max);
470		ra->size += ra->async_size;
471	}
472
473	return ra_submit(ra, mapping, filp);
474}
475
476/**
477 * page_cache_sync_readahead - generic file readahead
478 * @mapping: address_space which holds the pagecache and I/O vectors
479 * @ra: file_ra_state which holds the readahead state
480 * @filp: passed on to ->readpage() and ->readpages()
481 * @offset: start offset into @mapping, in pagecache page-sized units
482 * @req_size: hint: total size of the read which the caller is performing in
483 *            pagecache pages
484 *
485 * page_cache_sync_readahead() should be called when a cache miss happened:
486 * it will submit the read.  The readahead logic may decide to piggyback more
487 * pages onto the read request if access patterns suggest it will improve
488 * performance.
489 */
490void page_cache_sync_readahead(struct address_space *mapping,
491			       struct file_ra_state *ra, struct file *filp,
492			       pgoff_t offset, unsigned long req_size)
493{
494	/* no read-ahead */
495	if (!ra->ra_pages)
496		return;
497
498	/* be dumb */
499	if (filp && (filp->f_mode & FMODE_RANDOM)) {
500		force_page_cache_readahead(mapping, filp, offset, req_size);
501		return;
502	}
503
504	/* do read-ahead */
505	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
506}
507EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
508
509/**
510 * page_cache_async_readahead - file readahead for marked pages
511 * @mapping: address_space which holds the pagecache and I/O vectors
512 * @ra: file_ra_state which holds the readahead state
513 * @filp: passed on to ->readpage() and ->readpages()
514 * @page: the page at @offset which has the PG_readahead flag set
515 * @offset: start offset into @mapping, in pagecache page-sized units
516 * @req_size: hint: total size of the read which the caller is performing in
517 *            pagecache pages
518 *
519 * page_cache_async_readahead() should be called when a page is used which
520 * has the PG_readahead flag; this is a marker to suggest that the application
521 * has used up enough of the readahead window that we should start pulling in
522 * more pages.
523 */
524void
525page_cache_async_readahead(struct address_space *mapping,
526			   struct file_ra_state *ra, struct file *filp,
527			   struct page *page, pgoff_t offset,
528			   unsigned long req_size)
529{
530	/* no read-ahead */
531	if (!ra->ra_pages)
532		return;
533
534	/*
535	 * Same bit is used for PG_readahead and PG_reclaim.
536	 */
537	if (PageWriteback(page))
538		return;
539
540	ClearPageReadahead(page);
541
542	/*
543	 * Defer asynchronous read-ahead on IO congestion.
544	 */
545	if (bdi_read_congested(mapping->backing_dev_info))
546		return;
547
548	/* do read-ahead */
549	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
550}
551EXPORT_SYMBOL_GPL(page_cache_async_readahead);
552
553static ssize_t
554do_readahead(struct address_space *mapping, struct file *filp,
555	     pgoff_t index, unsigned long nr)
556{
557	if (!mapping || !mapping->a_ops)
558		return -EINVAL;
559
 
 
 
 
 
 
 
 
560	return force_page_cache_readahead(mapping, filp, index, nr);
561}
562
563SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
564{
565	ssize_t ret;
566	struct fd f;
567
568	ret = -EBADF;
569	f = fdget(fd);
570	if (f.file) {
571		if (f.file->f_mode & FMODE_READ) {
572			struct address_space *mapping = f.file->f_mapping;
573			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
574			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
575			unsigned long len = end - start + 1;
576			ret = do_readahead(mapping, f.file, start, len);
577		}
578		fdput(f);
579	}
580	return ret;
 
 
 
 
 
581}