Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
 
 
 
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
 
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
 
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
 
 
 
 
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
  84	struct address_space *mapping;
  85	dev_t dev;
  86
  87	if (hwpoison_filter_dev_major == ~0U &&
  88	    hwpoison_filter_dev_minor == ~0U)
  89		return 0;
  90
  91	/*
  92	 * page_mapping() does not accept slab pages.
  93	 */
  94	if (PageSlab(p))
  95		return -EINVAL;
  96
  97	mapping = page_mapping(p);
  98	if (mapping == NULL || mapping->host == NULL)
  99		return -EINVAL;
 100
 101	dev = mapping->host->i_sb->s_dev;
 102	if (hwpoison_filter_dev_major != ~0U &&
 103	    hwpoison_filter_dev_major != MAJOR(dev))
 104		return -EINVAL;
 105	if (hwpoison_filter_dev_minor != ~0U &&
 106	    hwpoison_filter_dev_minor != MINOR(dev))
 107		return -EINVAL;
 108
 109	return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114	if (!hwpoison_filter_flags_mask)
 115		return 0;
 116
 117	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118				    hwpoison_filter_flags_value)
 119		return 0;
 120	else
 121		return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 143		return -EINVAL;
 144
 145	return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153	if (!hwpoison_filter_enable)
 154		return 0;
 155
 156	if (hwpoison_filter_dev(p))
 157		return -EINVAL;
 158
 159	if (hwpoison_filter_flags(p))
 160		return -EINVAL;
 161
 162	if (hwpoison_filter_task(p))
 163		return -EINVAL;
 164
 165	return 0;
 166}
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170	return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr,
 182			unsigned long pfn, struct page *page, int flags)
 183{
 184	short addr_lsb;
 185	int ret;
 186
 187	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 188		pfn, t->comm, t->pid);
 189	addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 190
 191	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 192		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
 193				       addr_lsb, current);
 194	} else {
 195		/*
 
 
 196		 * Don't use force here, it's convenient if the signal
 197		 * can be temporarily blocked.
 198		 * This could cause a loop when the user sets SIGBUS
 199		 * to SIG_IGN, but hopefully no one will do that?
 200		 */
 201		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
 202				      addr_lsb, t);  /* synchronous? */
 203	}
 204	if (ret < 0)
 205		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 206			t->comm, t->pid, ret);
 207	return ret;
 208}
 209
 210/*
 211 * When a unknown page type is encountered drain as many buffers as possible
 212 * in the hope to turn the page into a LRU or free page, which we can handle.
 213 */
 214void shake_page(struct page *p, int access)
 215{
 216	if (PageHuge(p))
 217		return;
 218
 219	if (!PageSlab(p)) {
 220		lru_add_drain_all();
 221		if (PageLRU(p))
 222			return;
 223		drain_all_pages(page_zone(p));
 224		if (PageLRU(p) || is_free_buddy_page(p))
 225			return;
 226	}
 227
 228	/*
 229	 * Only call shrink_node_slabs here (which would also shrink
 230	 * other caches) if access is not potentially fatal.
 231	 */
 232	if (access)
 233		drop_slab_node(page_to_nid(p));
 234}
 235EXPORT_SYMBOL_GPL(shake_page);
 236
 237/*
 238 * Kill all processes that have a poisoned page mapped and then isolate
 239 * the page.
 240 *
 241 * General strategy:
 242 * Find all processes having the page mapped and kill them.
 243 * But we keep a page reference around so that the page is not
 244 * actually freed yet.
 245 * Then stash the page away
 246 *
 247 * There's no convenient way to get back to mapped processes
 248 * from the VMAs. So do a brute-force search over all
 249 * running processes.
 250 *
 251 * Remember that machine checks are not common (or rather
 252 * if they are common you have other problems), so this shouldn't
 253 * be a performance issue.
 254 *
 255 * Also there are some races possible while we get from the
 256 * error detection to actually handle it.
 257 */
 258
 259struct to_kill {
 260	struct list_head nd;
 261	struct task_struct *tsk;
 262	unsigned long addr;
 263	char addr_valid;
 264};
 
 
 
 
 
 265
 266/*
 267 * Failure handling: if we can't find or can't kill a process there's
 268 * not much we can do.	We just print a message and ignore otherwise.
 269 */
 270
 
 
 271/*
 272 * Schedule a process for later kill.
 273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 274 * TBD would GFP_NOIO be enough?
 
 
 
 
 
 275 */
 276static void add_to_kill(struct task_struct *tsk, struct page *p,
 277		       struct vm_area_struct *vma,
 278		       struct list_head *to_kill,
 279		       struct to_kill **tkc)
 280{
 281	struct to_kill *tk;
 282
 283	if (*tkc) {
 284		tk = *tkc;
 285		*tkc = NULL;
 286	} else {
 287		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 288		if (!tk) {
 289			pr_err("Memory failure: Out of memory while machine check handling\n");
 290			return;
 291		}
 292	}
 293	tk->addr = page_address_in_vma(p, vma);
 294	tk->addr_valid = 1;
 295
 296	/*
 297	 * In theory we don't have to kill when the page was
 298	 * munmaped. But it could be also a mremap. Since that's
 299	 * likely very rare kill anyways just out of paranoia, but use
 300	 * a SIGKILL because the error is not contained anymore.
 
 
 
 
 
 
 
 
 
 
 
 
 301	 */
 302	if (tk->addr == -EFAULT) {
 303		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 304			page_to_pfn(p), tsk->comm);
 305		tk->addr_valid = 0;
 
 
 306	}
 
 307	get_task_struct(tsk);
 308	tk->tsk = tsk;
 309	list_add_tail(&tk->nd, to_kill);
 310}
 311
 312/*
 313 * Kill the processes that have been collected earlier.
 314 *
 315 * Only do anything when DOIT is set, otherwise just free the list
 316 * (this is used for clean pages which do not need killing)
 317 * Also when FAIL is set do a force kill because something went
 318 * wrong earlier.
 319 */
 320static void kill_procs(struct list_head *to_kill, int forcekill,
 321			  bool fail, struct page *page, unsigned long pfn,
 322			  int flags)
 323{
 324	struct to_kill *tk, *next;
 325
 326	list_for_each_entry_safe (tk, next, to_kill, nd) {
 327		if (forcekill) {
 328			/*
 329			 * In case something went wrong with munmapping
 330			 * make sure the process doesn't catch the
 331			 * signal and then access the memory. Just kill it.
 332			 */
 333			if (fail || tk->addr_valid == 0) {
 334				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 335				       pfn, tk->tsk->comm, tk->tsk->pid);
 336				force_sig(SIGKILL, tk->tsk);
 
 337			}
 338
 339			/*
 340			 * In theory the process could have mapped
 341			 * something else on the address in-between. We could
 342			 * check for that, but we need to tell the
 343			 * process anyways.
 344			 */
 345			else if (kill_proc(tk->tsk, tk->addr,
 346					      pfn, page, flags) < 0)
 347				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 348				       pfn, tk->tsk->comm, tk->tsk->pid);
 349		}
 
 350		put_task_struct(tk->tsk);
 351		kfree(tk);
 352	}
 353}
 354
 355/*
 356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 357 * on behalf of the thread group. Return task_struct of the (first found)
 358 * dedicated thread if found, and return NULL otherwise.
 359 *
 360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 361 * have to call rcu_read_lock/unlock() in this function.
 362 */
 363static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 364{
 365	struct task_struct *t;
 366
 367	for_each_thread(tsk, t)
 368		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 369			return t;
 
 
 
 
 
 
 370	return NULL;
 371}
 372
 373/*
 374 * Determine whether a given process is "early kill" process which expects
 375 * to be signaled when some page under the process is hwpoisoned.
 376 * Return task_struct of the dedicated thread (main thread unless explicitly
 377 * specified) if the process is "early kill," and otherwise returns NULL.
 
 
 
 
 
 
 378 */
 379static struct task_struct *task_early_kill(struct task_struct *tsk,
 380					   int force_early)
 381{
 382	struct task_struct *t;
 383	if (!tsk->mm)
 384		return NULL;
 385	if (force_early)
 386		return tsk;
 387	t = find_early_kill_thread(tsk);
 388	if (t)
 389		return t;
 390	if (sysctl_memory_failure_early_kill)
 391		return tsk;
 392	return NULL;
 393}
 394
 395/*
 396 * Collect processes when the error hit an anonymous page.
 397 */
 398static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 399			      struct to_kill **tkc, int force_early)
 400{
 
 401	struct vm_area_struct *vma;
 402	struct task_struct *tsk;
 403	struct anon_vma *av;
 404	pgoff_t pgoff;
 405
 406	av = page_lock_anon_vma_read(page);
 407	if (av == NULL)	/* Not actually mapped anymore */
 408		return;
 409
 410	pgoff = page_to_pgoff(page);
 411	read_lock(&tasklist_lock);
 412	for_each_process (tsk) {
 413		struct anon_vma_chain *vmac;
 414		struct task_struct *t = task_early_kill(tsk, force_early);
 415
 416		if (!t)
 417			continue;
 418		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 419					       pgoff, pgoff) {
 420			vma = vmac->vma;
 
 
 421			if (!page_mapped_in_vma(page, vma))
 422				continue;
 423			if (vma->vm_mm == t->mm)
 424				add_to_kill(t, page, vma, to_kill, tkc);
 425		}
 426	}
 427	read_unlock(&tasklist_lock);
 428	page_unlock_anon_vma_read(av);
 429}
 430
 431/*
 432 * Collect processes when the error hit a file mapped page.
 433 */
 434static void collect_procs_file(struct page *page, struct list_head *to_kill,
 435			      struct to_kill **tkc, int force_early)
 436{
 437	struct vm_area_struct *vma;
 438	struct task_struct *tsk;
 439	struct address_space *mapping = page->mapping;
 
 440
 441	i_mmap_lock_read(mapping);
 442	read_lock(&tasklist_lock);
 
 443	for_each_process(tsk) {
 444		pgoff_t pgoff = page_to_pgoff(page);
 445		struct task_struct *t = task_early_kill(tsk, force_early);
 446
 447		if (!t)
 448			continue;
 449		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 450				      pgoff) {
 451			/*
 452			 * Send early kill signal to tasks where a vma covers
 453			 * the page but the corrupted page is not necessarily
 454			 * mapped it in its pte.
 455			 * Assume applications who requested early kill want
 456			 * to be informed of all such data corruptions.
 457			 */
 458			if (vma->vm_mm == t->mm)
 459				add_to_kill(t, page, vma, to_kill, tkc);
 
 460		}
 461	}
 462	read_unlock(&tasklist_lock);
 463	i_mmap_unlock_read(mapping);
 464}
 465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466/*
 467 * Collect the processes who have the corrupted page mapped to kill.
 468 * This is done in two steps for locking reasons.
 469 * First preallocate one tokill structure outside the spin locks,
 470 * so that we can kill at least one process reasonably reliable.
 471 */
 472static void collect_procs(struct page *page, struct list_head *tokill,
 473				int force_early)
 474{
 475	struct to_kill *tk;
 476
 477	if (!page->mapping)
 478		return;
 479
 480	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 481	if (!tk)
 482		return;
 483	if (PageAnon(page))
 484		collect_procs_anon(page, tokill, &tk, force_early);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	else
 486		collect_procs_file(page, tokill, &tk, force_early);
 487	kfree(tk);
 
 488}
 489
 490static const char *action_name[] = {
 491	[MF_IGNORED] = "Ignored",
 492	[MF_FAILED] = "Failed",
 493	[MF_DELAYED] = "Delayed",
 494	[MF_RECOVERED] = "Recovered",
 495};
 496
 497static const char * const action_page_types[] = {
 498	[MF_MSG_KERNEL]			= "reserved kernel page",
 499	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 500	[MF_MSG_SLAB]			= "kernel slab page",
 501	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 502	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
 503	[MF_MSG_HUGE]			= "huge page",
 504	[MF_MSG_FREE_HUGE]		= "free huge page",
 505	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
 506	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 507	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 508	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 509	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 510	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 511	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 512	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 513	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 514	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 515	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 516	[MF_MSG_BUDDY]			= "free buddy page",
 517	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
 
 518	[MF_MSG_UNKNOWN]		= "unknown page",
 519};
 520
 521/*
 522 * XXX: It is possible that a page is isolated from LRU cache,
 523 * and then kept in swap cache or failed to remove from page cache.
 524 * The page count will stop it from being freed by unpoison.
 525 * Stress tests should be aware of this memory leak problem.
 526 */
 527static int delete_from_lru_cache(struct page *p)
 528{
 529	if (!isolate_lru_page(p)) {
 530		/*
 531		 * Clear sensible page flags, so that the buddy system won't
 532		 * complain when the page is unpoison-and-freed.
 533		 */
 534		ClearPageActive(p);
 535		ClearPageUnevictable(p);
 536
 537		/*
 538		 * Poisoned page might never drop its ref count to 0 so we have
 539		 * to uncharge it manually from its memcg.
 540		 */
 541		mem_cgroup_uncharge(p);
 542
 543		/*
 544		 * drop the page count elevated by isolate_lru_page()
 545		 */
 546		put_page(p);
 547		return 0;
 548	}
 549	return -EIO;
 550}
 551
 552static int truncate_error_page(struct page *p, unsigned long pfn,
 553				struct address_space *mapping)
 554{
 555	int ret = MF_FAILED;
 556
 557	if (mapping->a_ops->error_remove_page) {
 
 558		int err = mapping->a_ops->error_remove_page(mapping, p);
 559
 560		if (err != 0) {
 561			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 562				pfn, err);
 563		} else if (page_has_private(p) &&
 564			   !try_to_release_page(p, GFP_NOIO)) {
 565			pr_info("Memory failure: %#lx: failed to release buffers\n",
 566				pfn);
 567		} else {
 568			ret = MF_RECOVERED;
 569		}
 570	} else {
 571		/*
 572		 * If the file system doesn't support it just invalidate
 573		 * This fails on dirty or anything with private pages
 574		 */
 575		if (invalidate_inode_page(p))
 576			ret = MF_RECOVERED;
 577		else
 578			pr_info("Memory failure: %#lx: Failed to invalidate\n",
 579				pfn);
 580	}
 581
 582	return ret;
 583}
 584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585/*
 586 * Error hit kernel page.
 587 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 588 * could be more sophisticated.
 589 */
 590static int me_kernel(struct page *p, unsigned long pfn)
 591{
 
 592	return MF_IGNORED;
 593}
 594
 595/*
 596 * Page in unknown state. Do nothing.
 597 */
 598static int me_unknown(struct page *p, unsigned long pfn)
 599{
 600	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 
 601	return MF_FAILED;
 602}
 603
 604/*
 605 * Clean (or cleaned) page cache page.
 606 */
 607static int me_pagecache_clean(struct page *p, unsigned long pfn)
 608{
 
 609	struct address_space *mapping;
 
 610
 611	delete_from_lru_cache(p);
 612
 613	/*
 614	 * For anonymous pages we're done the only reference left
 615	 * should be the one m_f() holds.
 616	 */
 617	if (PageAnon(p))
 618		return MF_RECOVERED;
 
 
 619
 620	/*
 621	 * Now truncate the page in the page cache. This is really
 622	 * more like a "temporary hole punch"
 623	 * Don't do this for block devices when someone else
 624	 * has a reference, because it could be file system metadata
 625	 * and that's not safe to truncate.
 626	 */
 627	mapping = page_mapping(p);
 628	if (!mapping) {
 629		/*
 630		 * Page has been teared down in the meanwhile
 631		 */
 632		return MF_FAILED;
 
 633	}
 634
 635	/*
 
 
 
 
 
 
 636	 * Truncation is a bit tricky. Enable it per file system for now.
 637	 *
 638	 * Open: to take i_mutex or not for this? Right now we don't.
 639	 */
 640	return truncate_error_page(p, pfn, mapping);
 
 
 
 
 
 
 
 641}
 642
 643/*
 644 * Dirty pagecache page
 645 * Issues: when the error hit a hole page the error is not properly
 646 * propagated.
 647 */
 648static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 649{
 650	struct address_space *mapping = page_mapping(p);
 651
 652	SetPageError(p);
 653	/* TBD: print more information about the file. */
 654	if (mapping) {
 655		/*
 656		 * IO error will be reported by write(), fsync(), etc.
 657		 * who check the mapping.
 658		 * This way the application knows that something went
 659		 * wrong with its dirty file data.
 660		 *
 661		 * There's one open issue:
 662		 *
 663		 * The EIO will be only reported on the next IO
 664		 * operation and then cleared through the IO map.
 665		 * Normally Linux has two mechanisms to pass IO error
 666		 * first through the AS_EIO flag in the address space
 667		 * and then through the PageError flag in the page.
 668		 * Since we drop pages on memory failure handling the
 669		 * only mechanism open to use is through AS_AIO.
 670		 *
 671		 * This has the disadvantage that it gets cleared on
 672		 * the first operation that returns an error, while
 673		 * the PageError bit is more sticky and only cleared
 674		 * when the page is reread or dropped.  If an
 675		 * application assumes it will always get error on
 676		 * fsync, but does other operations on the fd before
 677		 * and the page is dropped between then the error
 678		 * will not be properly reported.
 679		 *
 680		 * This can already happen even without hwpoisoned
 681		 * pages: first on metadata IO errors (which only
 682		 * report through AS_EIO) or when the page is dropped
 683		 * at the wrong time.
 684		 *
 685		 * So right now we assume that the application DTRT on
 686		 * the first EIO, but we're not worse than other parts
 687		 * of the kernel.
 688		 */
 689		mapping_set_error(mapping, -EIO);
 690	}
 691
 692	return me_pagecache_clean(p, pfn);
 693}
 694
 695/*
 696 * Clean and dirty swap cache.
 697 *
 698 * Dirty swap cache page is tricky to handle. The page could live both in page
 699 * cache and swap cache(ie. page is freshly swapped in). So it could be
 700 * referenced concurrently by 2 types of PTEs:
 701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 703 * and then
 704 *      - clear dirty bit to prevent IO
 705 *      - remove from LRU
 706 *      - but keep in the swap cache, so that when we return to it on
 707 *        a later page fault, we know the application is accessing
 708 *        corrupted data and shall be killed (we installed simple
 709 *        interception code in do_swap_page to catch it).
 710 *
 711 * Clean swap cache pages can be directly isolated. A later page fault will
 712 * bring in the known good data from disk.
 713 */
 714static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 715{
 
 
 
 716	ClearPageDirty(p);
 717	/* Trigger EIO in shmem: */
 718	ClearPageUptodate(p);
 719
 720	if (!delete_from_lru_cache(p))
 721		return MF_DELAYED;
 722	else
 723		return MF_FAILED;
 
 
 
 
 
 
 724}
 725
 726static int me_swapcache_clean(struct page *p, unsigned long pfn)
 727{
 728	delete_from_swap_cache(p);
 
 729
 730	if (!delete_from_lru_cache(p))
 731		return MF_RECOVERED;
 732	else
 733		return MF_FAILED;
 
 
 
 
 
 734}
 735
 736/*
 737 * Huge pages. Needs work.
 738 * Issues:
 739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 740 *   To narrow down kill region to one page, we need to break up pmd.
 741 */
 742static int me_huge_page(struct page *p, unsigned long pfn)
 743{
 744	int res = 0;
 745	struct page *hpage = compound_head(p);
 746	struct address_space *mapping;
 
 747
 748	if (!PageHuge(hpage))
 749		return MF_DELAYED;
 750
 751	mapping = page_mapping(hpage);
 752	if (mapping) {
 753		res = truncate_error_page(hpage, pfn, mapping);
 
 
 
 754	} else {
 755		unlock_page(hpage);
 756		/*
 757		 * migration entry prevents later access on error anonymous
 758		 * hugepage, so we can free and dissolve it into buddy to
 759		 * save healthy subpages.
 760		 */
 761		if (PageAnon(hpage))
 762			put_page(hpage);
 763		dissolve_free_huge_page(p);
 764		res = MF_RECOVERED;
 765		lock_page(hpage);
 
 
 766	}
 767
 
 
 
 768	return res;
 769}
 770
 771/*
 772 * Various page states we can handle.
 773 *
 774 * A page state is defined by its current page->flags bits.
 775 * The table matches them in order and calls the right handler.
 776 *
 777 * This is quite tricky because we can access page at any time
 778 * in its live cycle, so all accesses have to be extremely careful.
 779 *
 780 * This is not complete. More states could be added.
 781 * For any missing state don't attempt recovery.
 782 */
 783
 784#define dirty		(1UL << PG_dirty)
 785#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 786#define unevict		(1UL << PG_unevictable)
 787#define mlock		(1UL << PG_mlocked)
 788#define writeback	(1UL << PG_writeback)
 789#define lru		(1UL << PG_lru)
 790#define head		(1UL << PG_head)
 791#define slab		(1UL << PG_slab)
 792#define reserved	(1UL << PG_reserved)
 793
 794static struct page_state {
 795	unsigned long mask;
 796	unsigned long res;
 797	enum mf_action_page_type type;
 798	int (*action)(struct page *p, unsigned long pfn);
 799} error_states[] = {
 800	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 801	/*
 802	 * free pages are specially detected outside this table:
 803	 * PG_buddy pages only make a small fraction of all free pages.
 804	 */
 805
 806	/*
 807	 * Could in theory check if slab page is free or if we can drop
 808	 * currently unused objects without touching them. But just
 809	 * treat it as standard kernel for now.
 810	 */
 811	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
 812
 813	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 814
 815	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
 816	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
 817
 818	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
 819	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
 820
 821	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
 822	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
 823
 824	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
 825	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
 826
 827	/*
 828	 * Catchall entry: must be at end.
 829	 */
 830	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
 831};
 832
 833#undef dirty
 834#undef sc
 835#undef unevict
 836#undef mlock
 837#undef writeback
 838#undef lru
 839#undef head
 840#undef slab
 841#undef reserved
 842
 843/*
 844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 845 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 846 */
 847static void action_result(unsigned long pfn, enum mf_action_page_type type,
 848			  enum mf_result result)
 849{
 850	trace_memory_failure_event(pfn, type, result);
 851
 852	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 
 853		pfn, action_page_types[type], action_name[result]);
 
 
 854}
 855
 856static int page_action(struct page_state *ps, struct page *p,
 857			unsigned long pfn)
 858{
 859	int result;
 860	int count;
 861
 862	result = ps->action(p, pfn);
 863
 864	count = page_count(p) - 1;
 865	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 866		count--;
 867	if (count > 0) {
 868		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 869		       pfn, action_page_types[ps->type], count);
 870		result = MF_FAILED;
 871	}
 872	action_result(pfn, ps->type, result);
 873
 874	/* Could do more checks here if page looks ok */
 875	/*
 876	 * Could adjust zone counters here to correct for the missing page.
 877	 */
 878
 879	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 880}
 881
 882/**
 883 * get_hwpoison_page() - Get refcount for memory error handling:
 884 * @page:	raw error page (hit by memory error)
 885 *
 886 * Return: return 0 if failed to grab the refcount, otherwise true (some
 887 * non-zero value.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888 */
 889int get_hwpoison_page(struct page *page)
 
 
 
 
 
 
 
 
 
 890{
 891	struct page *head = compound_head(page);
 
 
 892
 893	if (!PageHuge(head) && PageTransHuge(head)) {
 894		/*
 895		 * Non anonymous thp exists only in allocation/free time. We
 896		 * can't handle such a case correctly, so let's give it up.
 897		 * This should be better than triggering BUG_ON when kernel
 898		 * tries to touch the "partially handled" page.
 899		 */
 900		if (!PageAnon(head)) {
 901			pr_err("Memory failure: %#lx: non anonymous thp\n",
 902				page_to_pfn(page));
 903			return 0;
 904		}
 905	}
 906
 907	if (get_page_unless_zero(head)) {
 908		if (head == compound_head(page))
 909			return 1;
 910
 911		pr_info("Memory failure: %#lx cannot catch tail\n",
 912			page_to_pfn(page));
 913		put_page(head);
 914	}
 915
 916	return 0;
 917}
 918EXPORT_SYMBOL_GPL(get_hwpoison_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919
 920/*
 921 * Do all that is necessary to remove user space mappings. Unmap
 922 * the pages and send SIGBUS to the processes if the data was dirty.
 923 */
 924static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 925				  int flags, struct page **hpagep)
 926{
 927	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 
 928	struct address_space *mapping;
 929	LIST_HEAD(tokill);
 930	bool unmap_success;
 931	int kill = 1, forcekill;
 932	struct page *hpage = *hpagep;
 933	bool mlocked = PageMlocked(hpage);
 934
 935	/*
 936	 * Here we are interested only in user-mapped pages, so skip any
 937	 * other types of pages.
 938	 */
 939	if (PageReserved(p) || PageSlab(p))
 940		return true;
 941	if (!(PageLRU(hpage) || PageHuge(p)))
 942		return true;
 943
 944	/*
 945	 * This check implies we don't kill processes if their pages
 946	 * are in the swap cache early. Those are always late kills.
 947	 */
 948	if (!page_mapped(hpage))
 949		return true;
 950
 951	if (PageKsm(p)) {
 952		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 953		return false;
 954	}
 955
 956	if (PageSwapCache(p)) {
 957		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 958			pfn);
 959		ttu |= TTU_IGNORE_HWPOISON;
 960	}
 961
 962	/*
 963	 * Propagate the dirty bit from PTEs to struct page first, because we
 964	 * need this to decide if we should kill or just drop the page.
 965	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 966	 * be called inside page lock (it's recommended but not enforced).
 967	 */
 968	mapping = page_mapping(hpage);
 969	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 970	    mapping_cap_writeback_dirty(mapping)) {
 971		if (page_mkclean(hpage)) {
 972			SetPageDirty(hpage);
 973		} else {
 974			kill = 0;
 975			ttu |= TTU_IGNORE_HWPOISON;
 976			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 977				pfn);
 978		}
 979	}
 980
 981	/*
 982	 * First collect all the processes that have the page
 983	 * mapped in dirty form.  This has to be done before try_to_unmap,
 984	 * because ttu takes the rmap data structures down.
 985	 *
 986	 * Error handling: We ignore errors here because
 987	 * there's nothing that can be done.
 988	 */
 989	if (kill)
 990		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 991
 992	unmap_success = try_to_unmap(hpage, ttu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993	if (!unmap_success)
 994		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 995		       pfn, page_mapcount(hpage));
 996
 997	/*
 998	 * try_to_unmap() might put mlocked page in lru cache, so call
 999	 * shake_page() again to ensure that it's flushed.
1000	 */
1001	if (mlocked)
1002		shake_page(hpage, 0);
1003
1004	/*
1005	 * Now that the dirty bit has been propagated to the
1006	 * struct page and all unmaps done we can decide if
1007	 * killing is needed or not.  Only kill when the page
1008	 * was dirty or the process is not restartable,
1009	 * otherwise the tokill list is merely
1010	 * freed.  When there was a problem unmapping earlier
1011	 * use a more force-full uncatchable kill to prevent
1012	 * any accesses to the poisoned memory.
1013	 */
1014	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015	kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
 
1016
1017	return unmap_success;
1018}
1019
1020static int identify_page_state(unsigned long pfn, struct page *p,
1021				unsigned long page_flags)
1022{
1023	struct page_state *ps;
1024
1025	/*
1026	 * The first check uses the current page flags which may not have any
1027	 * relevant information. The second check with the saved page flags is
1028	 * carried out only if the first check can't determine the page status.
1029	 */
1030	for (ps = error_states;; ps++)
1031		if ((p->flags & ps->mask) == ps->res)
1032			break;
1033
1034	page_flags |= (p->flags & (1UL << PG_dirty));
1035
1036	if (!ps->mask)
1037		for (ps = error_states;; ps++)
1038			if ((page_flags & ps->mask) == ps->res)
1039				break;
1040	return page_action(ps, p, pfn);
1041}
1042
1043static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044{
1045	struct page *p = pfn_to_page(pfn);
1046	struct page *head = compound_head(p);
1047	int res;
1048	unsigned long page_flags;
1049
1050	if (TestSetPageHWPoison(head)) {
1051		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052		       pfn);
1053		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055
1056	num_poisoned_pages_inc();
 
 
1057
1058	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
 
 
 
 
 
 
 
1059		/*
1060		 * Check "filter hit" and "race with other subpage."
 
 
1061		 */
1062		lock_page(head);
1063		if (PageHWPoison(head)) {
1064			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065			    || (p != head && TestSetPageHWPoison(head))) {
1066				num_poisoned_pages_dec();
1067				unlock_page(head);
1068				return 0;
1069			}
1070		}
1071		unlock_page(head);
1072		dissolve_free_huge_page(p);
1073		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
 
 
 
 
 
1074		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	}
1076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077	lock_page(head);
1078	page_flags = head->flags;
1079
1080	if (!PageHWPoison(head)) {
1081		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082		num_poisoned_pages_dec();
 
1083		unlock_page(head);
1084		put_hwpoison_page(head);
1085		return 0;
 
1086	}
1087
1088	/*
1089	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090	 * simply disable it. In order to make it work properly, we need
1091	 * make sure that:
1092	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1093	 *    entry properly works, and
1094	 *  - other mm code walking over page table is aware of pud-aligned
1095	 *    hwpoison entries.
1096	 */
1097	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099		res = -EBUSY;
1100		goto out;
 
 
 
 
 
 
 
1101	}
1102
1103	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105		res = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1107	}
1108
1109	res = identify_page_state(pfn, p, page_flags);
1110out:
1111	unlock_page(head);
1112	return res;
 
 
1113}
1114
 
 
1115/**
1116 * memory_failure - Handle memory failure of a page.
1117 * @pfn: Page Number of the corrupted page
1118 * @flags: fine tune action taken
1119 *
1120 * This function is called by the low level machine check code
1121 * of an architecture when it detects hardware memory corruption
1122 * of a page. It tries its best to recover, which includes
1123 * dropping pages, killing processes etc.
1124 *
1125 * The function is primarily of use for corruptions that
1126 * happen outside the current execution context (e.g. when
1127 * detected by a background scrubber)
1128 *
1129 * Must run in process context (e.g. a work queue) with interrupts
1130 * enabled and no spinlocks hold.
 
 
 
 
1131 */
1132int memory_failure(unsigned long pfn, int flags)
1133{
1134	struct page *p;
1135	struct page *hpage;
1136	struct page *orig_head;
1137	int res;
1138	unsigned long page_flags;
 
 
1139
1140	if (!sysctl_memory_failure_recovery)
1141		panic("Memory failure on page %lx", pfn);
1142
1143	if (!pfn_valid(pfn)) {
1144		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145			pfn);
1146		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	}
1148
1149	p = pfn_to_page(pfn);
1150	if (PageHuge(p))
1151		return memory_failure_hugetlb(pfn, flags);
 
 
1152	if (TestSetPageHWPoison(p)) {
1153		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154			pfn);
1155		return 0;
 
 
 
 
1156	}
1157
1158	orig_head = hpage = compound_head(p);
1159	num_poisoned_pages_inc();
1160
1161	/*
1162	 * We need/can do nothing about count=0 pages.
1163	 * 1) it's a free page, and therefore in safe hand:
1164	 *    prep_new_page() will be the gate keeper.
1165	 * 2) it's part of a non-compound high order page.
1166	 *    Implies some kernel user: cannot stop them from
1167	 *    R/W the page; let's pray that the page has been
1168	 *    used and will be freed some time later.
1169	 * In fact it's dangerous to directly bump up page count from 0,
1170	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1171	 */
1172	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173		if (is_free_buddy_page(p)) {
1174			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175			return 0;
1176		} else {
1177			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179		}
1180	}
1181
1182	if (PageTransHuge(hpage)) {
1183		lock_page(p);
1184		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185			unlock_page(p);
1186			if (!PageAnon(p))
1187				pr_err("Memory failure: %#lx: non anonymous thp\n",
1188					pfn);
1189			else
1190				pr_err("Memory failure: %#lx: thp split failed\n",
1191					pfn);
1192			if (TestClearPageHWPoison(p))
1193				num_poisoned_pages_dec();
1194			put_hwpoison_page(p);
1195			return -EBUSY;
 
 
 
 
1196		}
1197		unlock_page(p);
1198		VM_BUG_ON_PAGE(!page_count(p), p);
1199		hpage = compound_head(p);
1200	}
1201
1202	/*
1203	 * We ignore non-LRU pages for good reasons.
1204	 * - PG_locked is only well defined for LRU pages and a few others
1205	 * - to avoid races with __SetPageLocked()
1206	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207	 * The check (unnecessarily) ignores LRU pages being isolated and
1208	 * walked by the page reclaim code, however that's not a big loss.
1209	 */
1210	shake_page(p, 0);
1211	/* shake_page could have turned it free. */
1212	if (!PageLRU(p) && is_free_buddy_page(p)) {
1213		if (flags & MF_COUNT_INCREASED)
1214			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215		else
1216			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217		return 0;
1218	}
1219
1220	lock_page(p);
1221
1222	/*
1223	 * The page could have changed compound pages during the locking.
1224	 * If this happens just bail out.
1225	 */
1226	if (PageCompound(p) && compound_head(p) != orig_head) {
1227		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228		res = -EBUSY;
1229		goto out;
 
 
 
 
 
 
 
 
 
1230	}
1231
1232	/*
1233	 * We use page flags to determine what action should be taken, but
1234	 * the flags can be modified by the error containment action.  One
1235	 * example is an mlocked page, where PG_mlocked is cleared by
1236	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237	 * correctly, we save a copy of the page flags at this time.
1238	 */
1239	if (PageHuge(p))
1240		page_flags = hpage->flags;
1241	else
1242		page_flags = p->flags;
1243
1244	/*
1245	 * unpoison always clear PG_hwpoison inside page lock
1246	 */
1247	if (!PageHWPoison(p)) {
1248		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249		num_poisoned_pages_dec();
1250		unlock_page(p);
1251		put_hwpoison_page(p);
1252		return 0;
1253	}
1254	if (hwpoison_filter(p)) {
1255		if (TestClearPageHWPoison(p))
1256			num_poisoned_pages_dec();
1257		unlock_page(p);
1258		put_hwpoison_page(p);
1259		return 0;
 
1260	}
1261
1262	if (!PageTransTail(p) && !PageLRU(p))
 
 
 
 
 
1263		goto identify_page_state;
1264
1265	/*
1266	 * It's very difficult to mess with pages currently under IO
1267	 * and in many cases impossible, so we just avoid it here.
1268	 */
1269	wait_on_page_writeback(p);
1270
1271	/*
1272	 * Now take care of user space mappings.
1273	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1274	 *
1275	 * When the raw error page is thp tail page, hpage points to the raw
1276	 * page after thp split.
1277	 */
1278	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280		res = -EBUSY;
1281		goto out;
1282	}
1283
1284	/*
1285	 * Torn down by someone else?
1286	 */
1287	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289		res = -EBUSY;
1290		goto out;
1291	}
1292
1293identify_page_state:
1294	res = identify_page_state(pfn, p, page_flags);
1295out:
 
 
1296	unlock_page(p);
 
 
1297	return res;
1298}
1299EXPORT_SYMBOL_GPL(memory_failure);
1300
1301#define MEMORY_FAILURE_FIFO_ORDER	4
1302#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1303
1304struct memory_failure_entry {
1305	unsigned long pfn;
1306	int flags;
1307};
1308
1309struct memory_failure_cpu {
1310	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311		      MEMORY_FAILURE_FIFO_SIZE);
1312	spinlock_t lock;
1313	struct work_struct work;
1314};
1315
1316static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1317
1318/**
1319 * memory_failure_queue - Schedule handling memory failure of a page.
1320 * @pfn: Page Number of the corrupted page
1321 * @flags: Flags for memory failure handling
1322 *
1323 * This function is called by the low level hardware error handler
1324 * when it detects hardware memory corruption of a page. It schedules
1325 * the recovering of error page, including dropping pages, killing
1326 * processes etc.
1327 *
1328 * The function is primarily of use for corruptions that
1329 * happen outside the current execution context (e.g. when
1330 * detected by a background scrubber)
1331 *
1332 * Can run in IRQ context.
1333 */
1334void memory_failure_queue(unsigned long pfn, int flags)
1335{
1336	struct memory_failure_cpu *mf_cpu;
1337	unsigned long proc_flags;
1338	struct memory_failure_entry entry = {
1339		.pfn =		pfn,
1340		.flags =	flags,
1341	};
1342
1343	mf_cpu = &get_cpu_var(memory_failure_cpu);
1344	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345	if (kfifo_put(&mf_cpu->fifo, entry))
1346		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347	else
1348		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349		       pfn);
1350	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351	put_cpu_var(memory_failure_cpu);
1352}
1353EXPORT_SYMBOL_GPL(memory_failure_queue);
1354
1355static void memory_failure_work_func(struct work_struct *work)
1356{
1357	struct memory_failure_cpu *mf_cpu;
1358	struct memory_failure_entry entry = { 0, };
1359	unsigned long proc_flags;
1360	int gotten;
1361
1362	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363	for (;;) {
1364		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367		if (!gotten)
1368			break;
1369		if (entry.flags & MF_SOFT_OFFLINE)
1370			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371		else
1372			memory_failure(entry.pfn, entry.flags);
1373	}
1374}
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
1376static int __init memory_failure_init(void)
1377{
1378	struct memory_failure_cpu *mf_cpu;
1379	int cpu;
1380
1381	for_each_possible_cpu(cpu) {
1382		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383		spin_lock_init(&mf_cpu->lock);
1384		INIT_KFIFO(mf_cpu->fifo);
1385		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386	}
1387
1388	return 0;
1389}
1390core_initcall(memory_failure_init);
1391
 
 
1392#define unpoison_pr_info(fmt, pfn, rs)			\
1393({							\
1394	if (__ratelimit(rs))				\
1395		pr_info(fmt, pfn);			\
1396})
1397
1398/**
1399 * unpoison_memory - Unpoison a previously poisoned page
1400 * @pfn: Page number of the to be unpoisoned page
1401 *
1402 * Software-unpoison a page that has been poisoned by
1403 * memory_failure() earlier.
1404 *
1405 * This is only done on the software-level, so it only works
1406 * for linux injected failures, not real hardware failures
1407 *
1408 * Returns 0 for success, otherwise -errno.
1409 */
1410int unpoison_memory(unsigned long pfn)
1411{
1412	struct page *page;
1413	struct page *p;
1414	int freeit = 0;
 
 
1415	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416					DEFAULT_RATELIMIT_BURST);
1417
1418	if (!pfn_valid(pfn))
1419		return -ENXIO;
1420
1421	p = pfn_to_page(pfn);
1422	page = compound_head(p);
1423
 
 
 
 
 
 
 
 
 
1424	if (!PageHWPoison(p)) {
1425		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426				 pfn, &unpoison_rs);
1427		return 0;
1428	}
1429
1430	if (page_count(page) > 1) {
1431		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432				 pfn, &unpoison_rs);
1433		return 0;
1434	}
1435
1436	if (page_mapped(page)) {
1437		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438				 pfn, &unpoison_rs);
1439		return 0;
1440	}
1441
1442	if (page_mapping(page)) {
1443		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444				 pfn, &unpoison_rs);
1445		return 0;
1446	}
1447
1448	/*
1449	 * unpoison_memory() can encounter thp only when the thp is being
1450	 * worked by memory_failure() and the page lock is not held yet.
1451	 * In such case, we yield to memory_failure() and make unpoison fail.
1452	 */
1453	if (!PageHuge(page) && PageTransHuge(page)) {
1454		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455				 pfn, &unpoison_rs);
1456		return 0;
1457	}
1458
1459	if (!get_hwpoison_page(p)) {
1460		if (TestClearPageHWPoison(p))
1461			num_poisoned_pages_dec();
1462		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463				 pfn, &unpoison_rs);
1464		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1465	}
1466
1467	lock_page(page);
1468	/*
1469	 * This test is racy because PG_hwpoison is set outside of page lock.
1470	 * That's acceptable because that won't trigger kernel panic. Instead,
1471	 * the PG_hwpoison page will be caught and isolated on the entrance to
1472	 * the free buddy page pool.
1473	 */
1474	if (TestClearPageHWPoison(page)) {
1475		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476				 pfn, &unpoison_rs);
1477		num_poisoned_pages_dec();
1478		freeit = 1;
1479	}
1480	unlock_page(page);
1481
1482	put_hwpoison_page(page);
1483	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484		put_hwpoison_page(page);
1485
1486	return 0;
1487}
1488EXPORT_SYMBOL(unpoison_memory);
1489
1490static struct page *new_page(struct page *p, unsigned long private)
1491{
1492	int nid = page_to_nid(p);
1493
1494	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1495}
1496
1497/*
1498 * Safely get reference count of an arbitrary page.
1499 * Returns 0 for a free page, -EIO for a zero refcount page
1500 * that is not free, and 1 for any other page type.
1501 * For 1 the page is returned with increased page count, otherwise not.
1502 */
1503static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1504{
1505	int ret;
1506
1507	if (flags & MF_COUNT_INCREASED)
1508		return 1;
1509
1510	/*
1511	 * When the target page is a free hugepage, just remove it
1512	 * from free hugepage list.
1513	 */
1514	if (!get_hwpoison_page(p)) {
1515		if (PageHuge(p)) {
1516			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517			ret = 0;
1518		} else if (is_free_buddy_page(p)) {
1519			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520			ret = 0;
1521		} else {
1522			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523				__func__, pfn, p->flags);
1524			ret = -EIO;
1525		}
1526	} else {
1527		/* Not a free page */
1528		ret = 1;
1529	}
1530	return ret;
1531}
1532
1533static int get_any_page(struct page *page, unsigned long pfn, int flags)
1534{
1535	int ret = __get_any_page(page, pfn, flags);
1536
1537	if (ret == 1 && !PageHuge(page) &&
1538	    !PageLRU(page) && !__PageMovable(page)) {
1539		/*
1540		 * Try to free it.
1541		 */
1542		put_hwpoison_page(page);
1543		shake_page(page, 1);
1544
1545		/*
1546		 * Did it turn free?
1547		 */
1548		ret = __get_any_page(page, pfn, 0);
1549		if (ret == 1 && !PageLRU(page)) {
1550			/* Drop page reference which is from __get_any_page() */
1551			put_hwpoison_page(page);
1552			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553				pfn, page->flags, &page->flags);
1554			return -EIO;
1555		}
1556	}
1557	return ret;
 
 
 
 
 
 
 
 
 
1558}
1559
1560static int soft_offline_huge_page(struct page *page, int flags)
 
 
 
 
 
1561{
1562	int ret;
1563	unsigned long pfn = page_to_pfn(page);
1564	struct page *hpage = compound_head(page);
 
 
1565	LIST_HEAD(pagelist);
 
 
 
 
1566
1567	/*
1568	 * This double-check of PageHWPoison is to avoid the race with
1569	 * memory_failure(). See also comment in __soft_offline_page().
1570	 */
1571	lock_page(hpage);
1572	if (PageHWPoison(hpage)) {
1573		unlock_page(hpage);
1574		put_hwpoison_page(hpage);
1575		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576		return -EBUSY;
1577	}
1578	unlock_page(hpage);
1579
1580	ret = isolate_huge_page(hpage, &pagelist);
1581	/*
1582	 * get_any_page() and isolate_huge_page() takes a refcount each,
1583	 * so need to drop one here.
1584	 */
1585	put_hwpoison_page(hpage);
1586	if (!ret) {
1587		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588		return -EBUSY;
1589	}
1590
1591	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593	if (ret) {
1594		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595			pfn, ret, page->flags, &page->flags);
1596		if (!list_empty(&pagelist))
1597			putback_movable_pages(&pagelist);
1598		if (ret > 0)
1599			ret = -EIO;
1600	} else {
1601		if (PageHuge(page))
1602			dissolve_free_huge_page(page);
1603	}
1604	return ret;
1605}
1606
1607static int __soft_offline_page(struct page *page, int flags)
1608{
1609	int ret;
1610	unsigned long pfn = page_to_pfn(page);
1611
1612	/*
1613	 * Check PageHWPoison again inside page lock because PageHWPoison
1614	 * is set by memory_failure() outside page lock. Note that
1615	 * memory_failure() also double-checks PageHWPoison inside page lock,
1616	 * so there's no race between soft_offline_page() and memory_failure().
1617	 */
1618	lock_page(page);
1619	wait_on_page_writeback(page);
 
1620	if (PageHWPoison(page)) {
1621		unlock_page(page);
1622		put_hwpoison_page(page);
1623		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624		return -EBUSY;
1625	}
1626	/*
1627	 * Try to invalidate first. This should work for
1628	 * non dirty unmapped page cache pages.
1629	 */
1630	ret = invalidate_inode_page(page);
 
 
1631	unlock_page(page);
1632	/*
1633	 * RED-PEN would be better to keep it isolated here, but we
1634	 * would need to fix isolation locking first.
1635	 */
1636	if (ret == 1) {
1637		put_hwpoison_page(page);
1638		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639		SetPageHWPoison(page);
1640		num_poisoned_pages_inc();
1641		return 0;
1642	}
1643
1644	/*
1645	 * Simple invalidation didn't work.
1646	 * Try to migrate to a new page instead. migrate.c
1647	 * handles a large number of cases for us.
1648	 */
1649	if (PageLRU(page))
1650		ret = isolate_lru_page(page);
1651	else
1652		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1653	/*
1654	 * Drop page reference which is came from get_any_page()
1655	 * successful isolate_lru_page() already took another one.
1656	 */
1657	put_hwpoison_page(page);
1658	if (!ret) {
1659		LIST_HEAD(pagelist);
1660		/*
1661		 * After isolated lru page, the PageLRU will be cleared,
1662		 * so use !__PageMovable instead for LRU page's mapping
1663		 * cannot have PAGE_MAPPING_MOVABLE.
1664		 */
1665		if (!__PageMovable(page))
1666			inc_node_page_state(page, NR_ISOLATED_ANON +
1667						page_is_file_cache(page));
1668		list_add(&page->lru, &pagelist);
1669		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671		if (ret) {
1672			if (!list_empty(&pagelist))
1673				putback_movable_pages(&pagelist);
1674
1675			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676				pfn, ret, page->flags, &page->flags);
1677			if (ret > 0)
1678				ret = -EIO;
1679		}
1680	} else {
1681		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682			pfn, ret, page_count(page), page->flags, &page->flags);
 
1683	}
1684	return ret;
1685}
1686
1687static int soft_offline_in_use_page(struct page *page, int flags)
1688{
1689	int ret;
1690	struct page *hpage = compound_head(page);
1691
1692	if (!PageHuge(page) && PageTransHuge(hpage)) {
1693		lock_page(hpage);
1694		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695			unlock_page(hpage);
1696			if (!PageAnon(hpage))
1697				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698			else
1699				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700			put_hwpoison_page(hpage);
1701			return -EBUSY;
1702		}
1703		unlock_page(hpage);
1704		get_hwpoison_page(page);
1705		put_hwpoison_page(hpage);
1706	}
1707
1708	if (PageHuge(page))
1709		ret = soft_offline_huge_page(page, flags);
1710	else
1711		ret = __soft_offline_page(page, flags);
1712
1713	return ret;
1714}
1715
1716static void soft_offline_free_page(struct page *page)
1717{
1718	struct page *head = compound_head(page);
1719
1720	if (!TestSetPageHWPoison(head)) {
1721		num_poisoned_pages_inc();
1722		if (PageHuge(head))
1723			dissolve_free_huge_page(page);
1724	}
1725}
1726
1727/**
1728 * soft_offline_page - Soft offline a page.
1729 * @page: page to offline
1730 * @flags: flags. Same as memory_failure().
1731 *
1732 * Returns 0 on success, otherwise negated errno.
 
 
1733 *
1734 * Soft offline a page, by migration or invalidation,
1735 * without killing anything. This is for the case when
1736 * a page is not corrupted yet (so it's still valid to access),
1737 * but has had a number of corrected errors and is better taken
1738 * out.
1739 *
1740 * The actual policy on when to do that is maintained by
1741 * user space.
1742 *
1743 * This should never impact any application or cause data loss,
1744 * however it might take some time.
1745 *
1746 * This is not a 100% solution for all memory, but tries to be
1747 * ``good enough'' for the majority of memory.
1748 */
1749int soft_offline_page(struct page *page, int flags)
1750{
1751	int ret;
1752	unsigned long pfn = page_to_pfn(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753
1754	if (PageHWPoison(page)) {
1755		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756		if (flags & MF_COUNT_INCREASED)
1757			put_hwpoison_page(page);
1758		return -EBUSY;
1759	}
1760
 
1761	get_online_mems();
1762	ret = get_any_page(page, pfn, flags);
1763	put_online_mems();
1764
1765	if (ret > 0)
1766		ret = soft_offline_in_use_page(page, flags);
1767	else if (ret == 0)
1768		soft_offline_free_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769
1770	return ret;
1771}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
 
 
 
 
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 * 
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.	The tricky part
  14 * here is that we can access any page asynchronously in respect to 
  15 * other VM users, because memory failures could happen anytime and 
  16 * anywhere. This could violate some of their assumptions. This is why 
  17 * this code has to be extremely careful. Generally it tries to use 
  18 * normal locking rules, as in get the standard locks, even if that means 
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/vm/page-types when running a real workload.
  28 * 
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back 
  31 * from RMAP chains to processes has to walk the complete process list and 
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core 
  34 * VM.
  35 */
  36
  37#define pr_fmt(fmt) "Memory failure: " fmt
  38
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/dax.h>
  46#include <linux/ksm.h>
  47#include <linux/rmap.h>
  48#include <linux/export.h>
  49#include <linux/pagemap.h>
  50#include <linux/swap.h>
  51#include <linux/backing-dev.h>
  52#include <linux/migrate.h>
  53#include <linux/suspend.h>
  54#include <linux/slab.h>
  55#include <linux/swapops.h>
  56#include <linux/hugetlb.h>
  57#include <linux/memory_hotplug.h>
  58#include <linux/mm_inline.h>
  59#include <linux/memremap.h>
  60#include <linux/kfifo.h>
  61#include <linux/ratelimit.h>
  62#include <linux/page-isolation.h>
  63#include <linux/pagewalk.h>
  64#include <linux/shmem_fs.h>
  65#include "swap.h"
  66#include "internal.h"
  67#include "ras/ras_event.h"
  68
  69int sysctl_memory_failure_early_kill __read_mostly = 0;
  70
  71int sysctl_memory_failure_recovery __read_mostly = 1;
  72
  73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  74
  75static bool hw_memory_failure __read_mostly = false;
  76
  77inline void num_poisoned_pages_inc(unsigned long pfn)
  78{
  79	atomic_long_inc(&num_poisoned_pages);
  80	memblk_nr_poison_inc(pfn);
  81}
  82
  83inline void num_poisoned_pages_sub(unsigned long pfn, long i)
  84{
  85	atomic_long_sub(i, &num_poisoned_pages);
  86	if (pfn != -1UL)
  87		memblk_nr_poison_sub(pfn, i);
  88}
  89
  90/*
  91 * Return values:
  92 *   1:   the page is dissolved (if needed) and taken off from buddy,
  93 *   0:   the page is dissolved (if needed) and not taken off from buddy,
  94 *   < 0: failed to dissolve.
  95 */
  96static int __page_handle_poison(struct page *page)
  97{
  98	int ret;
  99
 100	zone_pcp_disable(page_zone(page));
 101	ret = dissolve_free_huge_page(page);
 102	if (!ret)
 103		ret = take_page_off_buddy(page);
 104	zone_pcp_enable(page_zone(page));
 105
 106	return ret;
 107}
 108
 109static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
 110{
 111	if (hugepage_or_freepage) {
 112		/*
 113		 * Doing this check for free pages is also fine since dissolve_free_huge_page
 114		 * returns 0 for non-hugetlb pages as well.
 115		 */
 116		if (__page_handle_poison(page) <= 0)
 117			/*
 118			 * We could fail to take off the target page from buddy
 119			 * for example due to racy page allocation, but that's
 120			 * acceptable because soft-offlined page is not broken
 121			 * and if someone really want to use it, they should
 122			 * take it.
 123			 */
 124			return false;
 125	}
 126
 127	SetPageHWPoison(page);
 128	if (release)
 129		put_page(page);
 130	page_ref_inc(page);
 131	num_poisoned_pages_inc(page_to_pfn(page));
 132
 133	return true;
 134}
 135
 136#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
 137
 138u32 hwpoison_filter_enable = 0;
 139u32 hwpoison_filter_dev_major = ~0U;
 140u32 hwpoison_filter_dev_minor = ~0U;
 141u64 hwpoison_filter_flags_mask;
 142u64 hwpoison_filter_flags_value;
 143EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 144EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 145EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 146EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 147EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 148
 149static int hwpoison_filter_dev(struct page *p)
 150{
 151	struct address_space *mapping;
 152	dev_t dev;
 153
 154	if (hwpoison_filter_dev_major == ~0U &&
 155	    hwpoison_filter_dev_minor == ~0U)
 156		return 0;
 157
 
 
 
 
 
 
 158	mapping = page_mapping(p);
 159	if (mapping == NULL || mapping->host == NULL)
 160		return -EINVAL;
 161
 162	dev = mapping->host->i_sb->s_dev;
 163	if (hwpoison_filter_dev_major != ~0U &&
 164	    hwpoison_filter_dev_major != MAJOR(dev))
 165		return -EINVAL;
 166	if (hwpoison_filter_dev_minor != ~0U &&
 167	    hwpoison_filter_dev_minor != MINOR(dev))
 168		return -EINVAL;
 169
 170	return 0;
 171}
 172
 173static int hwpoison_filter_flags(struct page *p)
 174{
 175	if (!hwpoison_filter_flags_mask)
 176		return 0;
 177
 178	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 179				    hwpoison_filter_flags_value)
 180		return 0;
 181	else
 182		return -EINVAL;
 183}
 184
 185/*
 186 * This allows stress tests to limit test scope to a collection of tasks
 187 * by putting them under some memcg. This prevents killing unrelated/important
 188 * processes such as /sbin/init. Note that the target task may share clean
 189 * pages with init (eg. libc text), which is harmless. If the target task
 190 * share _dirty_ pages with another task B, the test scheme must make sure B
 191 * is also included in the memcg. At last, due to race conditions this filter
 192 * can only guarantee that the page either belongs to the memcg tasks, or is
 193 * a freed page.
 194 */
 195#ifdef CONFIG_MEMCG
 196u64 hwpoison_filter_memcg;
 197EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 198static int hwpoison_filter_task(struct page *p)
 199{
 200	if (!hwpoison_filter_memcg)
 201		return 0;
 202
 203	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 204		return -EINVAL;
 205
 206	return 0;
 207}
 208#else
 209static int hwpoison_filter_task(struct page *p) { return 0; }
 210#endif
 211
 212int hwpoison_filter(struct page *p)
 213{
 214	if (!hwpoison_filter_enable)
 215		return 0;
 216
 217	if (hwpoison_filter_dev(p))
 218		return -EINVAL;
 219
 220	if (hwpoison_filter_flags(p))
 221		return -EINVAL;
 222
 223	if (hwpoison_filter_task(p))
 224		return -EINVAL;
 225
 226	return 0;
 227}
 228#else
 229int hwpoison_filter(struct page *p)
 230{
 231	return 0;
 232}
 233#endif
 234
 235EXPORT_SYMBOL_GPL(hwpoison_filter);
 236
 237/*
 238 * Kill all processes that have a poisoned page mapped and then isolate
 239 * the page.
 240 *
 241 * General strategy:
 242 * Find all processes having the page mapped and kill them.
 243 * But we keep a page reference around so that the page is not
 244 * actually freed yet.
 245 * Then stash the page away
 246 *
 247 * There's no convenient way to get back to mapped processes
 248 * from the VMAs. So do a brute-force search over all
 249 * running processes.
 250 *
 251 * Remember that machine checks are not common (or rather
 252 * if they are common you have other problems), so this shouldn't
 253 * be a performance issue.
 254 *
 255 * Also there are some races possible while we get from the
 256 * error detection to actually handle it.
 257 */
 258
 259struct to_kill {
 260	struct list_head nd;
 261	struct task_struct *tsk;
 262	unsigned long addr;
 263	short size_shift;
 264};
 265
 266/*
 267 * Send all the processes who have the page mapped a signal.
 268 * ``action optional'' if they are not immediately affected by the error
 269 * ``action required'' if error happened in current execution context
 270 */
 271static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 
 272{
 273	struct task_struct *t = tk->tsk;
 274	short addr_lsb = tk->size_shift;
 275	int ret = 0;
 276
 277	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 278			pfn, t->comm, t->pid);
 279
 280	if ((flags & MF_ACTION_REQUIRED) && (t == current))
 281		ret = force_sig_mceerr(BUS_MCEERR_AR,
 282				 (void __user *)tk->addr, addr_lsb);
 283	else
 284		/*
 285		 * Signal other processes sharing the page if they have
 286		 * PF_MCE_EARLY set.
 287		 * Don't use force here, it's convenient if the signal
 288		 * can be temporarily blocked.
 289		 * This could cause a loop when the user sets SIGBUS
 290		 * to SIG_IGN, but hopefully no one will do that?
 291		 */
 292		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 293				      addr_lsb, t);
 
 294	if (ret < 0)
 295		pr_info("Error sending signal to %s:%d: %d\n",
 296			t->comm, t->pid, ret);
 297	return ret;
 298}
 299
 300/*
 301 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 302 * lru_add_drain_all.
 303 */
 304void shake_page(struct page *p)
 305{
 306	if (PageHuge(p))
 307		return;
 308
 309	if (!PageSlab(p)) {
 310		lru_add_drain_all();
 
 
 
 311		if (PageLRU(p) || is_free_buddy_page(p))
 312			return;
 313	}
 314
 315	/*
 316	 * TODO: Could shrink slab caches here if a lightweight range-based
 317	 * shrinker will be available.
 318	 */
 
 
 319}
 320EXPORT_SYMBOL_GPL(shake_page);
 321
 322static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
 323		unsigned long address)
 324{
 325	unsigned long ret = 0;
 326	pgd_t *pgd;
 327	p4d_t *p4d;
 328	pud_t *pud;
 329	pmd_t *pmd;
 330	pte_t *pte;
 331
 332	VM_BUG_ON_VMA(address == -EFAULT, vma);
 333	pgd = pgd_offset(vma->vm_mm, address);
 334	if (!pgd_present(*pgd))
 335		return 0;
 336	p4d = p4d_offset(pgd, address);
 337	if (!p4d_present(*p4d))
 338		return 0;
 339	pud = pud_offset(p4d, address);
 340	if (!pud_present(*pud))
 341		return 0;
 342	if (pud_devmap(*pud))
 343		return PUD_SHIFT;
 344	pmd = pmd_offset(pud, address);
 345	if (!pmd_present(*pmd))
 346		return 0;
 347	if (pmd_devmap(*pmd))
 348		return PMD_SHIFT;
 349	pte = pte_offset_map(pmd, address);
 350	if (pte_present(*pte) && pte_devmap(*pte))
 351		ret = PAGE_SHIFT;
 352	pte_unmap(pte);
 353	return ret;
 354}
 355
 356/*
 357 * Failure handling: if we can't find or can't kill a process there's
 358 * not much we can do.	We just print a message and ignore otherwise.
 359 */
 360
 361#define FSDAX_INVALID_PGOFF ULONG_MAX
 362
 363/*
 364 * Schedule a process for later kill.
 365 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 366 *
 367 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
 368 * filesystem with a memory failure handler has claimed the
 369 * memory_failure event. In all other cases, page->index and
 370 * page->mapping are sufficient for mapping the page back to its
 371 * corresponding user virtual address.
 372 */
 373static void add_to_kill(struct task_struct *tsk, struct page *p,
 374			pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
 375			struct list_head *to_kill)
 
 376{
 377	struct to_kill *tk;
 378
 379	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 380	if (!tk) {
 381		pr_err("Out of memory while machine check handling\n");
 382		return;
 
 
 
 
 
 383	}
 
 
 384
 385	tk->addr = page_address_in_vma(p, vma);
 386	if (is_zone_device_page(p)) {
 387		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
 388			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
 389		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
 390	} else
 391		tk->size_shift = page_shift(compound_head(p));
 392
 393	/*
 394	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 395	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 396	 * so "tk->size_shift == 0" effectively checks no mapping on
 397	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 398	 * to a process' address space, it's possible not all N VMAs
 399	 * contain mappings for the page, but at least one VMA does.
 400	 * Only deliver SIGBUS with payload derived from the VMA that
 401	 * has a mapping for the page.
 402	 */
 403	if (tk->addr == -EFAULT) {
 404		pr_info("Unable to find user space address %lx in %s\n",
 405			page_to_pfn(p), tsk->comm);
 406	} else if (tk->size_shift == 0) {
 407		kfree(tk);
 408		return;
 409	}
 410
 411	get_task_struct(tsk);
 412	tk->tsk = tsk;
 413	list_add_tail(&tk->nd, to_kill);
 414}
 415
 416/*
 417 * Kill the processes that have been collected earlier.
 418 *
 419 * Only do anything when FORCEKILL is set, otherwise just free the
 420 * list (this is used for clean pages which do not need killing)
 421 * Also when FAIL is set do a force kill because something went
 422 * wrong earlier.
 423 */
 424static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 425		unsigned long pfn, int flags)
 
 426{
 427	struct to_kill *tk, *next;
 428
 429	list_for_each_entry_safe(tk, next, to_kill, nd) {
 430		if (forcekill) {
 431			/*
 432			 * In case something went wrong with munmapping
 433			 * make sure the process doesn't catch the
 434			 * signal and then access the memory. Just kill it.
 435			 */
 436			if (fail || tk->addr == -EFAULT) {
 437				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 438				       pfn, tk->tsk->comm, tk->tsk->pid);
 439				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 440						 tk->tsk, PIDTYPE_PID);
 441			}
 442
 443			/*
 444			 * In theory the process could have mapped
 445			 * something else on the address in-between. We could
 446			 * check for that, but we need to tell the
 447			 * process anyways.
 448			 */
 449			else if (kill_proc(tk, pfn, flags) < 0)
 450				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
 
 451				       pfn, tk->tsk->comm, tk->tsk->pid);
 452		}
 453		list_del(&tk->nd);
 454		put_task_struct(tk->tsk);
 455		kfree(tk);
 456	}
 457}
 458
 459/*
 460 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 461 * on behalf of the thread group. Return task_struct of the (first found)
 462 * dedicated thread if found, and return NULL otherwise.
 463 *
 464 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 465 * have to call rcu_read_lock/unlock() in this function.
 466 */
 467static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 468{
 469	struct task_struct *t;
 470
 471	for_each_thread(tsk, t) {
 472		if (t->flags & PF_MCE_PROCESS) {
 473			if (t->flags & PF_MCE_EARLY)
 474				return t;
 475		} else {
 476			if (sysctl_memory_failure_early_kill)
 477				return t;
 478		}
 479	}
 480	return NULL;
 481}
 482
 483/*
 484 * Determine whether a given process is "early kill" process which expects
 485 * to be signaled when some page under the process is hwpoisoned.
 486 * Return task_struct of the dedicated thread (main thread unless explicitly
 487 * specified) if the process is "early kill" and otherwise returns NULL.
 488 *
 489 * Note that the above is true for Action Optional case. For Action Required
 490 * case, it's only meaningful to the current thread which need to be signaled
 491 * with SIGBUS, this error is Action Optional for other non current
 492 * processes sharing the same error page,if the process is "early kill", the
 493 * task_struct of the dedicated thread will also be returned.
 494 */
 495static struct task_struct *task_early_kill(struct task_struct *tsk,
 496					   int force_early)
 497{
 
 498	if (!tsk->mm)
 499		return NULL;
 500	/*
 501	 * Comparing ->mm here because current task might represent
 502	 * a subthread, while tsk always points to the main thread.
 503	 */
 504	if (force_early && tsk->mm == current->mm)
 505		return current;
 506
 507	return find_early_kill_thread(tsk);
 508}
 509
 510/*
 511 * Collect processes when the error hit an anonymous page.
 512 */
 513static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 514				int force_early)
 515{
 516	struct folio *folio = page_folio(page);
 517	struct vm_area_struct *vma;
 518	struct task_struct *tsk;
 519	struct anon_vma *av;
 520	pgoff_t pgoff;
 521
 522	av = folio_lock_anon_vma_read(folio, NULL);
 523	if (av == NULL)	/* Not actually mapped anymore */
 524		return;
 525
 526	pgoff = page_to_pgoff(page);
 527	read_lock(&tasklist_lock);
 528	for_each_process (tsk) {
 529		struct anon_vma_chain *vmac;
 530		struct task_struct *t = task_early_kill(tsk, force_early);
 531
 532		if (!t)
 533			continue;
 534		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 535					       pgoff, pgoff) {
 536			vma = vmac->vma;
 537			if (vma->vm_mm != t->mm)
 538				continue;
 539			if (!page_mapped_in_vma(page, vma))
 540				continue;
 541			add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, to_kill);
 
 542		}
 543	}
 544	read_unlock(&tasklist_lock);
 545	anon_vma_unlock_read(av);
 546}
 547
 548/*
 549 * Collect processes when the error hit a file mapped page.
 550 */
 551static void collect_procs_file(struct page *page, struct list_head *to_kill,
 552				int force_early)
 553{
 554	struct vm_area_struct *vma;
 555	struct task_struct *tsk;
 556	struct address_space *mapping = page->mapping;
 557	pgoff_t pgoff;
 558
 559	i_mmap_lock_read(mapping);
 560	read_lock(&tasklist_lock);
 561	pgoff = page_to_pgoff(page);
 562	for_each_process(tsk) {
 
 563		struct task_struct *t = task_early_kill(tsk, force_early);
 564
 565		if (!t)
 566			continue;
 567		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 568				      pgoff) {
 569			/*
 570			 * Send early kill signal to tasks where a vma covers
 571			 * the page but the corrupted page is not necessarily
 572			 * mapped it in its pte.
 573			 * Assume applications who requested early kill want
 574			 * to be informed of all such data corruptions.
 575			 */
 576			if (vma->vm_mm == t->mm)
 577				add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
 578					    to_kill);
 579		}
 580	}
 581	read_unlock(&tasklist_lock);
 582	i_mmap_unlock_read(mapping);
 583}
 584
 585#ifdef CONFIG_FS_DAX
 586/*
 587 * Collect processes when the error hit a fsdax page.
 588 */
 589static void collect_procs_fsdax(struct page *page,
 590		struct address_space *mapping, pgoff_t pgoff,
 591		struct list_head *to_kill)
 592{
 593	struct vm_area_struct *vma;
 594	struct task_struct *tsk;
 595
 596	i_mmap_lock_read(mapping);
 597	read_lock(&tasklist_lock);
 598	for_each_process(tsk) {
 599		struct task_struct *t = task_early_kill(tsk, true);
 600
 601		if (!t)
 602			continue;
 603		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 604			if (vma->vm_mm == t->mm)
 605				add_to_kill(t, page, pgoff, vma, to_kill);
 606		}
 607	}
 608	read_unlock(&tasklist_lock);
 609	i_mmap_unlock_read(mapping);
 610}
 611#endif /* CONFIG_FS_DAX */
 612
 613/*
 614 * Collect the processes who have the corrupted page mapped to kill.
 
 
 
 615 */
 616static void collect_procs(struct page *page, struct list_head *tokill,
 617				int force_early)
 618{
 
 
 619	if (!page->mapping)
 620		return;
 621
 
 
 
 622	if (PageAnon(page))
 623		collect_procs_anon(page, tokill, force_early);
 624	else
 625		collect_procs_file(page, tokill, force_early);
 626}
 627
 628struct hwp_walk {
 629	struct to_kill tk;
 630	unsigned long pfn;
 631	int flags;
 632};
 633
 634static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
 635{
 636	tk->addr = addr;
 637	tk->size_shift = shift;
 638}
 639
 640static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
 641				unsigned long poisoned_pfn, struct to_kill *tk)
 642{
 643	unsigned long pfn = 0;
 644
 645	if (pte_present(pte)) {
 646		pfn = pte_pfn(pte);
 647	} else {
 648		swp_entry_t swp = pte_to_swp_entry(pte);
 649
 650		if (is_hwpoison_entry(swp))
 651			pfn = swp_offset_pfn(swp);
 652	}
 653
 654	if (!pfn || pfn != poisoned_pfn)
 655		return 0;
 656
 657	set_to_kill(tk, addr, shift);
 658	return 1;
 659}
 660
 661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 662static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 663				      struct hwp_walk *hwp)
 664{
 665	pmd_t pmd = *pmdp;
 666	unsigned long pfn;
 667	unsigned long hwpoison_vaddr;
 668
 669	if (!pmd_present(pmd))
 670		return 0;
 671	pfn = pmd_pfn(pmd);
 672	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
 673		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
 674		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
 675		return 1;
 676	}
 677	return 0;
 678}
 679#else
 680static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 681				      struct hwp_walk *hwp)
 682{
 683	return 0;
 684}
 685#endif
 686
 687static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
 688			      unsigned long end, struct mm_walk *walk)
 689{
 690	struct hwp_walk *hwp = walk->private;
 691	int ret = 0;
 692	pte_t *ptep, *mapped_pte;
 693	spinlock_t *ptl;
 694
 695	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
 696	if (ptl) {
 697		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
 698		spin_unlock(ptl);
 699		goto out;
 700	}
 701
 702	if (pmd_trans_unstable(pmdp))
 703		goto out;
 704
 705	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
 706						addr, &ptl);
 707	for (; addr != end; ptep++, addr += PAGE_SIZE) {
 708		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
 709					     hwp->pfn, &hwp->tk);
 710		if (ret == 1)
 711			break;
 712	}
 713	pte_unmap_unlock(mapped_pte, ptl);
 714out:
 715	cond_resched();
 716	return ret;
 717}
 718
 719#ifdef CONFIG_HUGETLB_PAGE
 720static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
 721			    unsigned long addr, unsigned long end,
 722			    struct mm_walk *walk)
 723{
 724	struct hwp_walk *hwp = walk->private;
 725	pte_t pte = huge_ptep_get(ptep);
 726	struct hstate *h = hstate_vma(walk->vma);
 727
 728	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
 729				      hwp->pfn, &hwp->tk);
 730}
 731#else
 732#define hwpoison_hugetlb_range	NULL
 733#endif
 734
 735static const struct mm_walk_ops hwp_walk_ops = {
 736	.pmd_entry = hwpoison_pte_range,
 737	.hugetlb_entry = hwpoison_hugetlb_range,
 738};
 739
 740/*
 741 * Sends SIGBUS to the current process with error info.
 742 *
 743 * This function is intended to handle "Action Required" MCEs on already
 744 * hardware poisoned pages. They could happen, for example, when
 745 * memory_failure() failed to unmap the error page at the first call, or
 746 * when multiple local machine checks happened on different CPUs.
 747 *
 748 * MCE handler currently has no easy access to the error virtual address,
 749 * so this function walks page table to find it. The returned virtual address
 750 * is proper in most cases, but it could be wrong when the application
 751 * process has multiple entries mapping the error page.
 752 */
 753static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
 754				  int flags)
 755{
 756	int ret;
 757	struct hwp_walk priv = {
 758		.pfn = pfn,
 759	};
 760	priv.tk.tsk = p;
 761
 762	if (!p->mm)
 763		return -EFAULT;
 764
 765	mmap_read_lock(p->mm);
 766	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
 767			      (void *)&priv);
 768	if (ret == 1 && priv.tk.addr)
 769		kill_proc(&priv.tk, pfn, flags);
 770	else
 771		ret = 0;
 772	mmap_read_unlock(p->mm);
 773	return ret > 0 ? -EHWPOISON : -EFAULT;
 774}
 775
 776static const char *action_name[] = {
 777	[MF_IGNORED] = "Ignored",
 778	[MF_FAILED] = "Failed",
 779	[MF_DELAYED] = "Delayed",
 780	[MF_RECOVERED] = "Recovered",
 781};
 782
 783static const char * const action_page_types[] = {
 784	[MF_MSG_KERNEL]			= "reserved kernel page",
 785	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 786	[MF_MSG_SLAB]			= "kernel slab page",
 787	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 
 788	[MF_MSG_HUGE]			= "huge page",
 789	[MF_MSG_FREE_HUGE]		= "free huge page",
 
 790	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 791	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 792	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 793	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 794	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 795	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 796	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 797	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 798	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 799	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 800	[MF_MSG_BUDDY]			= "free buddy page",
 801	[MF_MSG_DAX]			= "dax page",
 802	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
 803	[MF_MSG_UNKNOWN]		= "unknown page",
 804};
 805
 806/*
 807 * XXX: It is possible that a page is isolated from LRU cache,
 808 * and then kept in swap cache or failed to remove from page cache.
 809 * The page count will stop it from being freed by unpoison.
 810 * Stress tests should be aware of this memory leak problem.
 811 */
 812static int delete_from_lru_cache(struct page *p)
 813{
 814	if (!isolate_lru_page(p)) {
 815		/*
 816		 * Clear sensible page flags, so that the buddy system won't
 817		 * complain when the page is unpoison-and-freed.
 818		 */
 819		ClearPageActive(p);
 820		ClearPageUnevictable(p);
 821
 822		/*
 823		 * Poisoned page might never drop its ref count to 0 so we have
 824		 * to uncharge it manually from its memcg.
 825		 */
 826		mem_cgroup_uncharge(page_folio(p));
 827
 828		/*
 829		 * drop the page count elevated by isolate_lru_page()
 830		 */
 831		put_page(p);
 832		return 0;
 833	}
 834	return -EIO;
 835}
 836
 837static int truncate_error_page(struct page *p, unsigned long pfn,
 838				struct address_space *mapping)
 839{
 840	int ret = MF_FAILED;
 841
 842	if (mapping->a_ops->error_remove_page) {
 843		struct folio *folio = page_folio(p);
 844		int err = mapping->a_ops->error_remove_page(mapping, p);
 845
 846		if (err != 0) {
 847			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
 848		} else if (folio_has_private(folio) &&
 849			   !filemap_release_folio(folio, GFP_NOIO)) {
 850			pr_info("%#lx: failed to release buffers\n", pfn);
 
 
 851		} else {
 852			ret = MF_RECOVERED;
 853		}
 854	} else {
 855		/*
 856		 * If the file system doesn't support it just invalidate
 857		 * This fails on dirty or anything with private pages
 858		 */
 859		if (invalidate_inode_page(p))
 860			ret = MF_RECOVERED;
 861		else
 862			pr_info("%#lx: Failed to invalidate\n",	pfn);
 
 863	}
 864
 865	return ret;
 866}
 867
 868struct page_state {
 869	unsigned long mask;
 870	unsigned long res;
 871	enum mf_action_page_type type;
 872
 873	/* Callback ->action() has to unlock the relevant page inside it. */
 874	int (*action)(struct page_state *ps, struct page *p);
 875};
 876
 877/*
 878 * Return true if page is still referenced by others, otherwise return
 879 * false.
 880 *
 881 * The extra_pins is true when one extra refcount is expected.
 882 */
 883static bool has_extra_refcount(struct page_state *ps, struct page *p,
 884			       bool extra_pins)
 885{
 886	int count = page_count(p) - 1;
 887
 888	if (extra_pins)
 889		count -= 1;
 890
 891	if (count > 0) {
 892		pr_err("%#lx: %s still referenced by %d users\n",
 893		       page_to_pfn(p), action_page_types[ps->type], count);
 894		return true;
 895	}
 896
 897	return false;
 898}
 899
 900/*
 901 * Error hit kernel page.
 902 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 903 * could be more sophisticated.
 904 */
 905static int me_kernel(struct page_state *ps, struct page *p)
 906{
 907	unlock_page(p);
 908	return MF_IGNORED;
 909}
 910
 911/*
 912 * Page in unknown state. Do nothing.
 913 */
 914static int me_unknown(struct page_state *ps, struct page *p)
 915{
 916	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
 917	unlock_page(p);
 918	return MF_FAILED;
 919}
 920
 921/*
 922 * Clean (or cleaned) page cache page.
 923 */
 924static int me_pagecache_clean(struct page_state *ps, struct page *p)
 925{
 926	int ret;
 927	struct address_space *mapping;
 928	bool extra_pins;
 929
 930	delete_from_lru_cache(p);
 931
 932	/*
 933	 * For anonymous pages we're done the only reference left
 934	 * should be the one m_f() holds.
 935	 */
 936	if (PageAnon(p)) {
 937		ret = MF_RECOVERED;
 938		goto out;
 939	}
 940
 941	/*
 942	 * Now truncate the page in the page cache. This is really
 943	 * more like a "temporary hole punch"
 944	 * Don't do this for block devices when someone else
 945	 * has a reference, because it could be file system metadata
 946	 * and that's not safe to truncate.
 947	 */
 948	mapping = page_mapping(p);
 949	if (!mapping) {
 950		/*
 951		 * Page has been teared down in the meanwhile
 952		 */
 953		ret = MF_FAILED;
 954		goto out;
 955	}
 956
 957	/*
 958	 * The shmem page is kept in page cache instead of truncating
 959	 * so is expected to have an extra refcount after error-handling.
 960	 */
 961	extra_pins = shmem_mapping(mapping);
 962
 963	/*
 964	 * Truncation is a bit tricky. Enable it per file system for now.
 965	 *
 966	 * Open: to take i_rwsem or not for this? Right now we don't.
 967	 */
 968	ret = truncate_error_page(p, page_to_pfn(p), mapping);
 969	if (has_extra_refcount(ps, p, extra_pins))
 970		ret = MF_FAILED;
 971
 972out:
 973	unlock_page(p);
 974
 975	return ret;
 976}
 977
 978/*
 979 * Dirty pagecache page
 980 * Issues: when the error hit a hole page the error is not properly
 981 * propagated.
 982 */
 983static int me_pagecache_dirty(struct page_state *ps, struct page *p)
 984{
 985	struct address_space *mapping = page_mapping(p);
 986
 987	SetPageError(p);
 988	/* TBD: print more information about the file. */
 989	if (mapping) {
 990		/*
 991		 * IO error will be reported by write(), fsync(), etc.
 992		 * who check the mapping.
 993		 * This way the application knows that something went
 994		 * wrong with its dirty file data.
 995		 *
 996		 * There's one open issue:
 997		 *
 998		 * The EIO will be only reported on the next IO
 999		 * operation and then cleared through the IO map.
1000		 * Normally Linux has two mechanisms to pass IO error
1001		 * first through the AS_EIO flag in the address space
1002		 * and then through the PageError flag in the page.
1003		 * Since we drop pages on memory failure handling the
1004		 * only mechanism open to use is through AS_AIO.
1005		 *
1006		 * This has the disadvantage that it gets cleared on
1007		 * the first operation that returns an error, while
1008		 * the PageError bit is more sticky and only cleared
1009		 * when the page is reread or dropped.  If an
1010		 * application assumes it will always get error on
1011		 * fsync, but does other operations on the fd before
1012		 * and the page is dropped between then the error
1013		 * will not be properly reported.
1014		 *
1015		 * This can already happen even without hwpoisoned
1016		 * pages: first on metadata IO errors (which only
1017		 * report through AS_EIO) or when the page is dropped
1018		 * at the wrong time.
1019		 *
1020		 * So right now we assume that the application DTRT on
1021		 * the first EIO, but we're not worse than other parts
1022		 * of the kernel.
1023		 */
1024		mapping_set_error(mapping, -EIO);
1025	}
1026
1027	return me_pagecache_clean(ps, p);
1028}
1029
1030/*
1031 * Clean and dirty swap cache.
1032 *
1033 * Dirty swap cache page is tricky to handle. The page could live both in page
1034 * cache and swap cache(ie. page is freshly swapped in). So it could be
1035 * referenced concurrently by 2 types of PTEs:
1036 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1037 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1038 * and then
1039 *      - clear dirty bit to prevent IO
1040 *      - remove from LRU
1041 *      - but keep in the swap cache, so that when we return to it on
1042 *        a later page fault, we know the application is accessing
1043 *        corrupted data and shall be killed (we installed simple
1044 *        interception code in do_swap_page to catch it).
1045 *
1046 * Clean swap cache pages can be directly isolated. A later page fault will
1047 * bring in the known good data from disk.
1048 */
1049static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1050{
1051	int ret;
1052	bool extra_pins = false;
1053
1054	ClearPageDirty(p);
1055	/* Trigger EIO in shmem: */
1056	ClearPageUptodate(p);
1057
1058	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1059	unlock_page(p);
1060
1061	if (ret == MF_DELAYED)
1062		extra_pins = true;
1063
1064	if (has_extra_refcount(ps, p, extra_pins))
1065		ret = MF_FAILED;
1066
1067	return ret;
1068}
1069
1070static int me_swapcache_clean(struct page_state *ps, struct page *p)
1071{
1072	struct folio *folio = page_folio(p);
1073	int ret;
1074
1075	delete_from_swap_cache(folio);
1076
1077	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1078	folio_unlock(folio);
1079
1080	if (has_extra_refcount(ps, p, false))
1081		ret = MF_FAILED;
1082
1083	return ret;
1084}
1085
1086/*
1087 * Huge pages. Needs work.
1088 * Issues:
1089 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1090 *   To narrow down kill region to one page, we need to break up pmd.
1091 */
1092static int me_huge_page(struct page_state *ps, struct page *p)
1093{
1094	int res;
1095	struct page *hpage = compound_head(p);
1096	struct address_space *mapping;
1097	bool extra_pins = false;
1098
1099	if (!PageHuge(hpage))
1100		return MF_DELAYED;
1101
1102	mapping = page_mapping(hpage);
1103	if (mapping) {
1104		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1105		/* The page is kept in page cache. */
1106		extra_pins = true;
1107		unlock_page(hpage);
1108	} else {
1109		unlock_page(hpage);
1110		/*
1111		 * migration entry prevents later access on error hugepage,
1112		 * so we can free and dissolve it into buddy to save healthy
1113		 * subpages.
1114		 */
1115		put_page(hpage);
1116		if (__page_handle_poison(p) >= 0) {
1117			page_ref_inc(p);
1118			res = MF_RECOVERED;
1119		} else {
1120			res = MF_FAILED;
1121		}
1122	}
1123
1124	if (has_extra_refcount(ps, p, extra_pins))
1125		res = MF_FAILED;
1126
1127	return res;
1128}
1129
1130/*
1131 * Various page states we can handle.
1132 *
1133 * A page state is defined by its current page->flags bits.
1134 * The table matches them in order and calls the right handler.
1135 *
1136 * This is quite tricky because we can access page at any time
1137 * in its live cycle, so all accesses have to be extremely careful.
1138 *
1139 * This is not complete. More states could be added.
1140 * For any missing state don't attempt recovery.
1141 */
1142
1143#define dirty		(1UL << PG_dirty)
1144#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1145#define unevict		(1UL << PG_unevictable)
1146#define mlock		(1UL << PG_mlocked)
 
1147#define lru		(1UL << PG_lru)
1148#define head		(1UL << PG_head)
1149#define slab		(1UL << PG_slab)
1150#define reserved	(1UL << PG_reserved)
1151
1152static struct page_state error_states[] = {
 
 
 
 
 
1153	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1154	/*
1155	 * free pages are specially detected outside this table:
1156	 * PG_buddy pages only make a small fraction of all free pages.
1157	 */
1158
1159	/*
1160	 * Could in theory check if slab page is free or if we can drop
1161	 * currently unused objects without touching them. But just
1162	 * treat it as standard kernel for now.
1163	 */
1164	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1165
1166	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1167
1168	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1169	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1170
1171	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1172	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1173
1174	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1175	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1176
1177	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1178	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1179
1180	/*
1181	 * Catchall entry: must be at end.
1182	 */
1183	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1184};
1185
1186#undef dirty
1187#undef sc
1188#undef unevict
1189#undef mlock
 
1190#undef lru
1191#undef head
1192#undef slab
1193#undef reserved
1194
1195/*
1196 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1197 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1198 */
1199static int action_result(unsigned long pfn, enum mf_action_page_type type,
1200			 enum mf_result result)
1201{
1202	trace_memory_failure_event(pfn, type, result);
1203
1204	num_poisoned_pages_inc(pfn);
1205	pr_err("%#lx: recovery action for %s: %s\n",
1206		pfn, action_page_types[type], action_name[result]);
1207
1208	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1209}
1210
1211static int page_action(struct page_state *ps, struct page *p,
1212			unsigned long pfn)
1213{
1214	int result;
 
 
 
1215
1216	/* page p should be unlocked after returning from ps->action().  */
1217	result = ps->action(ps, p);
 
 
 
 
 
 
 
1218
1219	/* Could do more checks here if page looks ok */
1220	/*
1221	 * Could adjust zone counters here to correct for the missing page.
1222	 */
1223
1224	return action_result(pfn, ps->type, result);
1225}
1226
1227static inline bool PageHWPoisonTakenOff(struct page *page)
1228{
1229	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1230}
1231
1232void SetPageHWPoisonTakenOff(struct page *page)
1233{
1234	set_page_private(page, MAGIC_HWPOISON);
1235}
1236
1237void ClearPageHWPoisonTakenOff(struct page *page)
1238{
1239	if (PageHWPoison(page))
1240		set_page_private(page, 0);
1241}
1242
1243/*
1244 * Return true if a page type of a given page is supported by hwpoison
1245 * mechanism (while handling could fail), otherwise false.  This function
1246 * does not return true for hugetlb or device memory pages, so it's assumed
1247 * to be called only in the context where we never have such pages.
1248 */
1249static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1250{
1251	/* Soft offline could migrate non-LRU movable pages */
1252	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1253		return true;
1254
1255	return PageLRU(page) || is_free_buddy_page(page);
1256}
1257
1258static int __get_hwpoison_page(struct page *page, unsigned long flags)
1259{
1260	struct page *head = compound_head(page);
1261	int ret = 0;
1262	bool hugetlb = false;
1263
1264	ret = get_hwpoison_huge_page(head, &hugetlb, false);
1265	if (hugetlb)
1266		return ret;
1267
1268	/*
1269	 * This check prevents from calling get_page_unless_zero() for any
1270	 * unsupported type of page in order to reduce the risk of unexpected
1271	 * races caused by taking a page refcount.
1272	 */
1273	if (!HWPoisonHandlable(head, flags))
1274		return -EBUSY;
 
 
1275
1276	if (get_page_unless_zero(head)) {
1277		if (head == compound_head(page))
1278			return 1;
1279
1280		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
 
1281		put_page(head);
1282	}
1283
1284	return 0;
1285}
1286
1287static int get_any_page(struct page *p, unsigned long flags)
1288{
1289	int ret = 0, pass = 0;
1290	bool count_increased = false;
1291
1292	if (flags & MF_COUNT_INCREASED)
1293		count_increased = true;
1294
1295try_again:
1296	if (!count_increased) {
1297		ret = __get_hwpoison_page(p, flags);
1298		if (!ret) {
1299			if (page_count(p)) {
1300				/* We raced with an allocation, retry. */
1301				if (pass++ < 3)
1302					goto try_again;
1303				ret = -EBUSY;
1304			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1305				/* We raced with put_page, retry. */
1306				if (pass++ < 3)
1307					goto try_again;
1308				ret = -EIO;
1309			}
1310			goto out;
1311		} else if (ret == -EBUSY) {
1312			/*
1313			 * We raced with (possibly temporary) unhandlable
1314			 * page, retry.
1315			 */
1316			if (pass++ < 3) {
1317				shake_page(p);
1318				goto try_again;
1319			}
1320			ret = -EIO;
1321			goto out;
1322		}
1323	}
1324
1325	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1326		ret = 1;
1327	} else {
1328		/*
1329		 * A page we cannot handle. Check whether we can turn
1330		 * it into something we can handle.
1331		 */
1332		if (pass++ < 3) {
1333			put_page(p);
1334			shake_page(p);
1335			count_increased = false;
1336			goto try_again;
1337		}
1338		put_page(p);
1339		ret = -EIO;
1340	}
1341out:
1342	if (ret == -EIO)
1343		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1344
1345	return ret;
1346}
1347
1348static int __get_unpoison_page(struct page *page)
1349{
1350	struct page *head = compound_head(page);
1351	int ret = 0;
1352	bool hugetlb = false;
1353
1354	ret = get_hwpoison_huge_page(head, &hugetlb, true);
1355	if (hugetlb)
1356		return ret;
1357
1358	/*
1359	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1360	 * but also isolated from buddy freelist, so need to identify the
1361	 * state and have to cancel both operations to unpoison.
1362	 */
1363	if (PageHWPoisonTakenOff(page))
1364		return -EHWPOISON;
1365
1366	return get_page_unless_zero(page) ? 1 : 0;
1367}
1368
1369/**
1370 * get_hwpoison_page() - Get refcount for memory error handling
1371 * @p:		Raw error page (hit by memory error)
1372 * @flags:	Flags controlling behavior of error handling
1373 *
1374 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1375 * error on it, after checking that the error page is in a well-defined state
1376 * (defined as a page-type we can successfully handle the memory error on it,
1377 * such as LRU page and hugetlb page).
1378 *
1379 * Memory error handling could be triggered at any time on any type of page,
1380 * so it's prone to race with typical memory management lifecycle (like
1381 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1382 * extra care for the error page's state (as done in __get_hwpoison_page()),
1383 * and has some retry logic in get_any_page().
1384 *
1385 * When called from unpoison_memory(), the caller should already ensure that
1386 * the given page has PG_hwpoison. So it's never reused for other page
1387 * allocations, and __get_unpoison_page() never races with them.
1388 *
1389 * Return: 0 on failure,
1390 *         1 on success for in-use pages in a well-defined state,
1391 *         -EIO for pages on which we can not handle memory errors,
1392 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1393 *         operations like allocation and free,
1394 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1395 */
1396static int get_hwpoison_page(struct page *p, unsigned long flags)
1397{
1398	int ret;
1399
1400	zone_pcp_disable(page_zone(p));
1401	if (flags & MF_UNPOISON)
1402		ret = __get_unpoison_page(p);
1403	else
1404		ret = get_any_page(p, flags);
1405	zone_pcp_enable(page_zone(p));
1406
1407	return ret;
1408}
1409
1410/*
1411 * Do all that is necessary to remove user space mappings. Unmap
1412 * the pages and send SIGBUS to the processes if the data was dirty.
1413 */
1414static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1415				  int flags, struct page *hpage)
1416{
1417	struct folio *folio = page_folio(hpage);
1418	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1419	struct address_space *mapping;
1420	LIST_HEAD(tokill);
1421	bool unmap_success;
1422	int forcekill;
 
1423	bool mlocked = PageMlocked(hpage);
1424
1425	/*
1426	 * Here we are interested only in user-mapped pages, so skip any
1427	 * other types of pages.
1428	 */
1429	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1430		return true;
1431	if (!(PageLRU(hpage) || PageHuge(p)))
1432		return true;
1433
1434	/*
1435	 * This check implies we don't kill processes if their pages
1436	 * are in the swap cache early. Those are always late kills.
1437	 */
1438	if (!page_mapped(hpage))
1439		return true;
1440
1441	if (PageKsm(p)) {
1442		pr_err("%#lx: can't handle KSM pages.\n", pfn);
1443		return false;
1444	}
1445
1446	if (PageSwapCache(p)) {
1447		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
 
1448		ttu |= TTU_IGNORE_HWPOISON;
1449	}
1450
1451	/*
1452	 * Propagate the dirty bit from PTEs to struct page first, because we
1453	 * need this to decide if we should kill or just drop the page.
1454	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1455	 * be called inside page lock (it's recommended but not enforced).
1456	 */
1457	mapping = page_mapping(hpage);
1458	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1459	    mapping_can_writeback(mapping)) {
1460		if (page_mkclean(hpage)) {
1461			SetPageDirty(hpage);
1462		} else {
 
1463			ttu |= TTU_IGNORE_HWPOISON;
1464			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1465				pfn);
1466		}
1467	}
1468
1469	/*
1470	 * First collect all the processes that have the page
1471	 * mapped in dirty form.  This has to be done before try_to_unmap,
1472	 * because ttu takes the rmap data structures down.
 
 
 
1473	 */
1474	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 
1475
1476	if (PageHuge(hpage) && !PageAnon(hpage)) {
1477		/*
1478		 * For hugetlb pages in shared mappings, try_to_unmap
1479		 * could potentially call huge_pmd_unshare.  Because of
1480		 * this, take semaphore in write mode here and set
1481		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1482		 * at this higher level.
1483		 */
1484		mapping = hugetlb_page_mapping_lock_write(hpage);
1485		if (mapping) {
1486			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1487			i_mmap_unlock_write(mapping);
1488		} else
1489			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1490	} else {
1491		try_to_unmap(folio, ttu);
1492	}
1493
1494	unmap_success = !page_mapped(hpage);
1495	if (!unmap_success)
1496		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1497		       pfn, page_mapcount(hpage));
1498
1499	/*
1500	 * try_to_unmap() might put mlocked page in lru cache, so call
1501	 * shake_page() again to ensure that it's flushed.
1502	 */
1503	if (mlocked)
1504		shake_page(hpage);
1505
1506	/*
1507	 * Now that the dirty bit has been propagated to the
1508	 * struct page and all unmaps done we can decide if
1509	 * killing is needed or not.  Only kill when the page
1510	 * was dirty or the process is not restartable,
1511	 * otherwise the tokill list is merely
1512	 * freed.  When there was a problem unmapping earlier
1513	 * use a more force-full uncatchable kill to prevent
1514	 * any accesses to the poisoned memory.
1515	 */
1516	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1517		    !unmap_success;
1518	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1519
1520	return unmap_success;
1521}
1522
1523static int identify_page_state(unsigned long pfn, struct page *p,
1524				unsigned long page_flags)
1525{
1526	struct page_state *ps;
1527
1528	/*
1529	 * The first check uses the current page flags which may not have any
1530	 * relevant information. The second check with the saved page flags is
1531	 * carried out only if the first check can't determine the page status.
1532	 */
1533	for (ps = error_states;; ps++)
1534		if ((p->flags & ps->mask) == ps->res)
1535			break;
1536
1537	page_flags |= (p->flags & (1UL << PG_dirty));
1538
1539	if (!ps->mask)
1540		for (ps = error_states;; ps++)
1541			if ((page_flags & ps->mask) == ps->res)
1542				break;
1543	return page_action(ps, p, pfn);
1544}
1545
1546static int try_to_split_thp_page(struct page *page)
1547{
1548	int ret;
 
 
 
1549
1550	lock_page(page);
1551	ret = split_huge_page(page);
1552	unlock_page(page);
1553
1554	if (unlikely(ret))
1555		put_page(page);
1556
1557	return ret;
1558}
1559
1560static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1561		struct address_space *mapping, pgoff_t index, int flags)
1562{
1563	struct to_kill *tk;
1564	unsigned long size = 0;
1565
1566	list_for_each_entry(tk, to_kill, nd)
1567		if (tk->size_shift)
1568			size = max(size, 1UL << tk->size_shift);
1569
1570	if (size) {
1571		/*
1572		 * Unmap the largest mapping to avoid breaking up device-dax
1573		 * mappings which are constant size. The actual size of the
1574		 * mapping being torn down is communicated in siginfo, see
1575		 * kill_proc()
1576		 */
1577		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1578
1579		unmap_mapping_range(mapping, start, size, 0);
1580	}
1581
1582	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1583}
1584
1585static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1586		struct dev_pagemap *pgmap)
1587{
1588	struct page *page = pfn_to_page(pfn);
1589	LIST_HEAD(to_kill);
1590	dax_entry_t cookie;
1591	int rc = 0;
1592
1593	/*
1594	 * Pages instantiated by device-dax (not filesystem-dax)
1595	 * may be compound pages.
1596	 */
1597	page = compound_head(page);
1598
1599	/*
1600	 * Prevent the inode from being freed while we are interrogating
1601	 * the address_space, typically this would be handled by
1602	 * lock_page(), but dax pages do not use the page lock. This
1603	 * also prevents changes to the mapping of this pfn until
1604	 * poison signaling is complete.
1605	 */
1606	cookie = dax_lock_page(page);
1607	if (!cookie)
1608		return -EBUSY;
1609
1610	if (hwpoison_filter(page)) {
1611		rc = -EOPNOTSUPP;
1612		goto unlock;
1613	}
1614
1615	switch (pgmap->type) {
1616	case MEMORY_DEVICE_PRIVATE:
1617	case MEMORY_DEVICE_COHERENT:
1618		/*
1619		 * TODO: Handle device pages which may need coordination
1620		 * with device-side memory.
1621		 */
1622		rc = -ENXIO;
1623		goto unlock;
1624	default:
1625		break;
1626	}
1627
1628	/*
1629	 * Use this flag as an indication that the dax page has been
1630	 * remapped UC to prevent speculative consumption of poison.
1631	 */
1632	SetPageHWPoison(page);
1633
1634	/*
1635	 * Unlike System-RAM there is no possibility to swap in a
1636	 * different physical page at a given virtual address, so all
1637	 * userspace consumption of ZONE_DEVICE memory necessitates
1638	 * SIGBUS (i.e. MF_MUST_KILL)
1639	 */
1640	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1641	collect_procs(page, &to_kill, true);
1642
1643	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1644unlock:
1645	dax_unlock_page(page, cookie);
1646	return rc;
1647}
1648
1649#ifdef CONFIG_FS_DAX
1650/**
1651 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1652 * @mapping:	address_space of the file in use
1653 * @index:	start pgoff of the range within the file
1654 * @count:	length of the range, in unit of PAGE_SIZE
1655 * @mf_flags:	memory failure flags
1656 */
1657int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1658		unsigned long count, int mf_flags)
1659{
1660	LIST_HEAD(to_kill);
1661	dax_entry_t cookie;
1662	struct page *page;
1663	size_t end = index + count;
1664
1665	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1666
1667	for (; index < end; index++) {
1668		page = NULL;
1669		cookie = dax_lock_mapping_entry(mapping, index, &page);
1670		if (!cookie)
1671			return -EBUSY;
1672		if (!page)
1673			goto unlock;
1674
1675		SetPageHWPoison(page);
1676
1677		collect_procs_fsdax(page, mapping, index, &to_kill);
1678		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1679				index, mf_flags);
1680unlock:
1681		dax_unlock_mapping_entry(mapping, index, cookie);
1682	}
1683	return 0;
1684}
1685EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1686#endif /* CONFIG_FS_DAX */
1687
1688#ifdef CONFIG_HUGETLB_PAGE
1689/*
1690 * Struct raw_hwp_page represents information about "raw error page",
1691 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1692 */
1693struct raw_hwp_page {
1694	struct llist_node node;
1695	struct page *page;
1696};
1697
1698static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1699{
1700	return (struct llist_head *)&page_folio(hpage)->_hugetlb_hwpoison;
1701}
1702
1703static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
1704{
1705	struct llist_head *head;
1706	struct llist_node *t, *tnode;
1707	unsigned long count = 0;
1708
1709	head = raw_hwp_list_head(hpage);
1710	llist_for_each_safe(tnode, t, head->first) {
1711		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1712
1713		if (move_flag)
1714			SetPageHWPoison(p->page);
1715		else
1716			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1717		kfree(p);
1718		count++;
1719	}
1720	llist_del_all(head);
1721	return count;
1722}
1723
1724static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1725{
1726	struct llist_head *head;
1727	struct raw_hwp_page *raw_hwp;
1728	struct llist_node *t, *tnode;
1729	int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1730
1731	/*
1732	 * Once the hwpoison hugepage has lost reliable raw error info,
1733	 * there is little meaning to keep additional error info precisely,
1734	 * so skip to add additional raw error info.
1735	 */
1736	if (HPageRawHwpUnreliable(hpage))
1737		return -EHWPOISON;
1738	head = raw_hwp_list_head(hpage);
1739	llist_for_each_safe(tnode, t, head->first) {
1740		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1741
1742		if (p->page == page)
1743			return -EHWPOISON;
1744	}
1745
1746	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1747	if (raw_hwp) {
1748		raw_hwp->page = page;
1749		llist_add(&raw_hwp->node, head);
1750		/* the first error event will be counted in action_result(). */
1751		if (ret)
1752			num_poisoned_pages_inc(page_to_pfn(page));
1753	} else {
1754		/*
1755		 * Failed to save raw error info.  We no longer trace all
1756		 * hwpoisoned subpages, and we need refuse to free/dissolve
1757		 * this hwpoisoned hugepage.
1758		 */
1759		SetHPageRawHwpUnreliable(hpage);
1760		/*
1761		 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1762		 * used any more, so free it.
1763		 */
1764		__free_raw_hwp_pages(hpage, false);
1765	}
1766	return ret;
1767}
1768
1769static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1770{
1771	/*
1772	 * HPageVmemmapOptimized hugepages can't be freed because struct
1773	 * pages for tail pages are required but they don't exist.
1774	 */
1775	if (move_flag && HPageVmemmapOptimized(hpage))
1776		return 0;
1777
1778	/*
1779	 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1780	 * definition.
1781	 */
1782	if (HPageRawHwpUnreliable(hpage))
1783		return 0;
1784
1785	return __free_raw_hwp_pages(hpage, move_flag);
1786}
1787
1788void hugetlb_clear_page_hwpoison(struct page *hpage)
1789{
1790	if (HPageRawHwpUnreliable(hpage))
1791		return;
1792	ClearPageHWPoison(hpage);
1793	free_raw_hwp_pages(hpage, true);
1794}
1795
1796/*
1797 * Called from hugetlb code with hugetlb_lock held.
1798 *
1799 * Return values:
1800 *   0             - free hugepage
1801 *   1             - in-use hugepage
1802 *   2             - not a hugepage
1803 *   -EBUSY        - the hugepage is busy (try to retry)
1804 *   -EHWPOISON    - the hugepage is already hwpoisoned
1805 */
1806int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1807				 bool *migratable_cleared)
1808{
1809	struct page *page = pfn_to_page(pfn);
1810	struct page *head = compound_head(page);
1811	int ret = 2;	/* fallback to normal page handling */
1812	bool count_increased = false;
1813
1814	if (!PageHeadHuge(head))
1815		goto out;
1816
1817	if (flags & MF_COUNT_INCREASED) {
1818		ret = 1;
1819		count_increased = true;
1820	} else if (HPageFreed(head)) {
1821		ret = 0;
1822	} else if (HPageMigratable(head)) {
1823		ret = get_page_unless_zero(head);
1824		if (ret)
1825			count_increased = true;
1826	} else {
1827		ret = -EBUSY;
1828		if (!(flags & MF_NO_RETRY))
1829			goto out;
1830	}
1831
1832	if (hugetlb_set_page_hwpoison(head, page)) {
1833		ret = -EHWPOISON;
1834		goto out;
1835	}
1836
1837	/*
1838	 * Clearing HPageMigratable for hwpoisoned hugepages to prevent them
1839	 * from being migrated by memory hotremove.
1840	 */
1841	if (count_increased && HPageMigratable(head)) {
1842		ClearHPageMigratable(head);
1843		*migratable_cleared = true;
1844	}
1845
1846	return ret;
1847out:
1848	if (count_increased)
1849		put_page(head);
1850	return ret;
1851}
1852
1853/*
1854 * Taking refcount of hugetlb pages needs extra care about race conditions
1855 * with basic operations like hugepage allocation/free/demotion.
1856 * So some of prechecks for hwpoison (pinning, and testing/setting
1857 * PageHWPoison) should be done in single hugetlb_lock range.
1858 */
1859static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1860{
1861	int res;
1862	struct page *p = pfn_to_page(pfn);
1863	struct page *head;
1864	unsigned long page_flags;
1865	bool migratable_cleared = false;
1866
1867	*hugetlb = 1;
1868retry:
1869	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1870	if (res == 2) { /* fallback to normal page handling */
1871		*hugetlb = 0;
1872		return 0;
1873	} else if (res == -EHWPOISON) {
1874		pr_err("%#lx: already hardware poisoned\n", pfn);
1875		if (flags & MF_ACTION_REQUIRED) {
1876			head = compound_head(p);
1877			res = kill_accessing_process(current, page_to_pfn(head), flags);
1878		}
1879		return res;
1880	} else if (res == -EBUSY) {
1881		if (!(flags & MF_NO_RETRY)) {
1882			flags |= MF_NO_RETRY;
1883			goto retry;
1884		}
1885		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1886	}
1887
1888	head = compound_head(p);
1889	lock_page(head);
 
1890
1891	if (hwpoison_filter(p)) {
1892		hugetlb_clear_page_hwpoison(head);
1893		if (migratable_cleared)
1894			SetHPageMigratable(head);
1895		unlock_page(head);
1896		if (res == 1)
1897			put_page(head);
1898		return -EOPNOTSUPP;
1899	}
1900
1901	/*
1902	 * Handling free hugepage.  The possible race with hugepage allocation
1903	 * or demotion can be prevented by PageHWPoison flag.
1904	 */
1905	if (res == 0) {
1906		unlock_page(head);
1907		if (__page_handle_poison(p) >= 0) {
1908			page_ref_inc(p);
1909			res = MF_RECOVERED;
1910		} else {
1911			res = MF_FAILED;
1912		}
1913		return action_result(pfn, MF_MSG_FREE_HUGE, res);
1914	}
1915
1916	page_flags = head->flags;
1917
1918	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1919		unlock_page(head);
1920		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1921	}
1922
1923	return identify_page_state(pfn, p, page_flags);
1924}
1925
1926#else
1927static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1928{
1929	return 0;
1930}
1931
1932static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1933{
1934	return 0;
1935}
1936#endif	/* CONFIG_HUGETLB_PAGE */
1937
1938/* Drop the extra refcount in case we come from madvise() */
1939static void put_ref_page(unsigned long pfn, int flags)
1940{
1941	struct page *page;
1942
1943	if (!(flags & MF_COUNT_INCREASED))
1944		return;
1945
1946	page = pfn_to_page(pfn);
1947	if (page)
1948		put_page(page);
1949}
1950
1951static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1952		struct dev_pagemap *pgmap)
1953{
1954	int rc = -ENXIO;
1955
1956	put_ref_page(pfn, flags);
1957
1958	/* device metadata space is not recoverable */
1959	if (!pgmap_pfn_valid(pgmap, pfn))
1960		goto out;
1961
1962	/*
1963	 * Call driver's implementation to handle the memory failure, otherwise
1964	 * fall back to generic handler.
1965	 */
1966	if (pgmap_has_memory_failure(pgmap)) {
1967		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
1968		/*
1969		 * Fall back to generic handler too if operation is not
1970		 * supported inside the driver/device/filesystem.
1971		 */
1972		if (rc != -EOPNOTSUPP)
1973			goto out;
1974	}
1975
1976	rc = mf_generic_kill_procs(pfn, flags, pgmap);
1977out:
1978	/* drop pgmap ref acquired in caller */
1979	put_dev_pagemap(pgmap);
1980	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1981	return rc;
1982}
1983
1984static DEFINE_MUTEX(mf_mutex);
1985
1986/**
1987 * memory_failure - Handle memory failure of a page.
1988 * @pfn: Page Number of the corrupted page
1989 * @flags: fine tune action taken
1990 *
1991 * This function is called by the low level machine check code
1992 * of an architecture when it detects hardware memory corruption
1993 * of a page. It tries its best to recover, which includes
1994 * dropping pages, killing processes etc.
1995 *
1996 * The function is primarily of use for corruptions that
1997 * happen outside the current execution context (e.g. when
1998 * detected by a background scrubber)
1999 *
2000 * Must run in process context (e.g. a work queue) with interrupts
2001 * enabled and no spinlocks hold.
2002 *
2003 * Return: 0 for successfully handled the memory error,
2004 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2005 *         < 0(except -EOPNOTSUPP) on failure.
2006 */
2007int memory_failure(unsigned long pfn, int flags)
2008{
2009	struct page *p;
2010	struct page *hpage;
2011	struct dev_pagemap *pgmap;
2012	int res = 0;
2013	unsigned long page_flags;
2014	bool retry = true;
2015	int hugetlb = 0;
2016
2017	if (!sysctl_memory_failure_recovery)
2018		panic("Memory failure on page %lx", pfn);
2019
2020	mutex_lock(&mf_mutex);
2021
2022	if (!(flags & MF_SW_SIMULATED))
2023		hw_memory_failure = true;
2024
2025	p = pfn_to_online_page(pfn);
2026	if (!p) {
2027		res = arch_memory_failure(pfn, flags);
2028		if (res == 0)
2029			goto unlock_mutex;
2030
2031		if (pfn_valid(pfn)) {
2032			pgmap = get_dev_pagemap(pfn, NULL);
2033			if (pgmap) {
2034				res = memory_failure_dev_pagemap(pfn, flags,
2035								 pgmap);
2036				goto unlock_mutex;
2037			}
2038		}
2039		pr_err("%#lx: memory outside kernel control\n", pfn);
2040		res = -ENXIO;
2041		goto unlock_mutex;
2042	}
2043
2044try_again:
2045	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2046	if (hugetlb)
2047		goto unlock_mutex;
2048
2049	if (TestSetPageHWPoison(p)) {
2050		pr_err("%#lx: already hardware poisoned\n", pfn);
2051		res = -EHWPOISON;
2052		if (flags & MF_ACTION_REQUIRED)
2053			res = kill_accessing_process(current, pfn, flags);
2054		if (flags & MF_COUNT_INCREASED)
2055			put_page(p);
2056		goto unlock_mutex;
2057	}
2058
2059	hpage = compound_head(p);
 
2060
2061	/*
2062	 * We need/can do nothing about count=0 pages.
2063	 * 1) it's a free page, and therefore in safe hand:
2064	 *    check_new_page() will be the gate keeper.
2065	 * 2) it's part of a non-compound high order page.
2066	 *    Implies some kernel user: cannot stop them from
2067	 *    R/W the page; let's pray that the page has been
2068	 *    used and will be freed some time later.
2069	 * In fact it's dangerous to directly bump up page count from 0,
2070	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2071	 */
2072	if (!(flags & MF_COUNT_INCREASED)) {
2073		res = get_hwpoison_page(p, flags);
2074		if (!res) {
2075			if (is_free_buddy_page(p)) {
2076				if (take_page_off_buddy(p)) {
2077					page_ref_inc(p);
2078					res = MF_RECOVERED;
2079				} else {
2080					/* We lost the race, try again */
2081					if (retry) {
2082						ClearPageHWPoison(p);
2083						retry = false;
2084						goto try_again;
2085					}
2086					res = MF_FAILED;
2087				}
2088				res = action_result(pfn, MF_MSG_BUDDY, res);
2089			} else {
2090				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2091			}
2092			goto unlock_mutex;
2093		} else if (res < 0) {
2094			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2095			goto unlock_mutex;
2096		}
2097	}
2098
2099	if (PageTransHuge(hpage)) {
2100		/*
2101		 * The flag must be set after the refcount is bumped
2102		 * otherwise it may race with THP split.
2103		 * And the flag can't be set in get_hwpoison_page() since
2104		 * it is called by soft offline too and it is just called
2105		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2106		 * place.
2107		 *
2108		 * Don't need care about the above error handling paths for
2109		 * get_hwpoison_page() since they handle either free page
2110		 * or unhandlable page.  The refcount is bumped iff the
2111		 * page is a valid handlable page.
2112		 */
2113		SetPageHasHWPoisoned(hpage);
2114		if (try_to_split_thp_page(p) < 0) {
2115			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2116			goto unlock_mutex;
2117		}
 
2118		VM_BUG_ON_PAGE(!page_count(p), p);
 
2119	}
2120
2121	/*
2122	 * We ignore non-LRU pages for good reasons.
2123	 * - PG_locked is only well defined for LRU pages and a few others
2124	 * - to avoid races with __SetPageLocked()
2125	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2126	 * The check (unnecessarily) ignores LRU pages being isolated and
2127	 * walked by the page reclaim code, however that's not a big loss.
2128	 */
2129	shake_page(p);
 
 
 
 
 
 
 
 
2130
2131	lock_page(p);
2132
2133	/*
2134	 * We're only intended to deal with the non-Compound page here.
2135	 * However, the page could have changed compound pages due to
2136	 * race window. If this happens, we could try again to hopefully
2137	 * handle the page next round.
2138	 */
2139	if (PageCompound(p)) {
2140		if (retry) {
2141			ClearPageHWPoison(p);
2142			unlock_page(p);
2143			put_page(p);
2144			flags &= ~MF_COUNT_INCREASED;
2145			retry = false;
2146			goto try_again;
2147		}
2148		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2149		goto unlock_page;
2150	}
2151
2152	/*
2153	 * We use page flags to determine what action should be taken, but
2154	 * the flags can be modified by the error containment action.  One
2155	 * example is an mlocked page, where PG_mlocked is cleared by
2156	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2157	 * correctly, we save a copy of the page flags at this time.
2158	 */
2159	page_flags = p->flags;
 
 
 
2160
 
 
 
 
 
 
 
 
 
 
2161	if (hwpoison_filter(p)) {
2162		ClearPageHWPoison(p);
 
2163		unlock_page(p);
2164		put_page(p);
2165		res = -EOPNOTSUPP;
2166		goto unlock_mutex;
2167	}
2168
2169	/*
2170	 * __munlock_pagevec may clear a writeback page's LRU flag without
2171	 * page_lock. We need wait writeback completion for this page or it
2172	 * may trigger vfs BUG while evict inode.
2173	 */
2174	if (!PageLRU(p) && !PageWriteback(p))
2175		goto identify_page_state;
2176
2177	/*
2178	 * It's very difficult to mess with pages currently under IO
2179	 * and in many cases impossible, so we just avoid it here.
2180	 */
2181	wait_on_page_writeback(p);
2182
2183	/*
2184	 * Now take care of user space mappings.
2185	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
 
 
 
2186	 */
2187	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2188		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2189		goto unlock_page;
 
2190	}
2191
2192	/*
2193	 * Torn down by someone else?
2194	 */
2195	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2196		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2197		goto unlock_page;
 
2198	}
2199
2200identify_page_state:
2201	res = identify_page_state(pfn, p, page_flags);
2202	mutex_unlock(&mf_mutex);
2203	return res;
2204unlock_page:
2205	unlock_page(p);
2206unlock_mutex:
2207	mutex_unlock(&mf_mutex);
2208	return res;
2209}
2210EXPORT_SYMBOL_GPL(memory_failure);
2211
2212#define MEMORY_FAILURE_FIFO_ORDER	4
2213#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2214
2215struct memory_failure_entry {
2216	unsigned long pfn;
2217	int flags;
2218};
2219
2220struct memory_failure_cpu {
2221	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2222		      MEMORY_FAILURE_FIFO_SIZE);
2223	spinlock_t lock;
2224	struct work_struct work;
2225};
2226
2227static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2228
2229/**
2230 * memory_failure_queue - Schedule handling memory failure of a page.
2231 * @pfn: Page Number of the corrupted page
2232 * @flags: Flags for memory failure handling
2233 *
2234 * This function is called by the low level hardware error handler
2235 * when it detects hardware memory corruption of a page. It schedules
2236 * the recovering of error page, including dropping pages, killing
2237 * processes etc.
2238 *
2239 * The function is primarily of use for corruptions that
2240 * happen outside the current execution context (e.g. when
2241 * detected by a background scrubber)
2242 *
2243 * Can run in IRQ context.
2244 */
2245void memory_failure_queue(unsigned long pfn, int flags)
2246{
2247	struct memory_failure_cpu *mf_cpu;
2248	unsigned long proc_flags;
2249	struct memory_failure_entry entry = {
2250		.pfn =		pfn,
2251		.flags =	flags,
2252	};
2253
2254	mf_cpu = &get_cpu_var(memory_failure_cpu);
2255	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2256	if (kfifo_put(&mf_cpu->fifo, entry))
2257		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2258	else
2259		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2260		       pfn);
2261	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2262	put_cpu_var(memory_failure_cpu);
2263}
2264EXPORT_SYMBOL_GPL(memory_failure_queue);
2265
2266static void memory_failure_work_func(struct work_struct *work)
2267{
2268	struct memory_failure_cpu *mf_cpu;
2269	struct memory_failure_entry entry = { 0, };
2270	unsigned long proc_flags;
2271	int gotten;
2272
2273	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2274	for (;;) {
2275		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2276		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2277		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2278		if (!gotten)
2279			break;
2280		if (entry.flags & MF_SOFT_OFFLINE)
2281			soft_offline_page(entry.pfn, entry.flags);
2282		else
2283			memory_failure(entry.pfn, entry.flags);
2284	}
2285}
2286
2287/*
2288 * Process memory_failure work queued on the specified CPU.
2289 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2290 */
2291void memory_failure_queue_kick(int cpu)
2292{
2293	struct memory_failure_cpu *mf_cpu;
2294
2295	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2296	cancel_work_sync(&mf_cpu->work);
2297	memory_failure_work_func(&mf_cpu->work);
2298}
2299
2300static int __init memory_failure_init(void)
2301{
2302	struct memory_failure_cpu *mf_cpu;
2303	int cpu;
2304
2305	for_each_possible_cpu(cpu) {
2306		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2307		spin_lock_init(&mf_cpu->lock);
2308		INIT_KFIFO(mf_cpu->fifo);
2309		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2310	}
2311
2312	return 0;
2313}
2314core_initcall(memory_failure_init);
2315
2316#undef pr_fmt
2317#define pr_fmt(fmt)	"" fmt
2318#define unpoison_pr_info(fmt, pfn, rs)			\
2319({							\
2320	if (__ratelimit(rs))				\
2321		pr_info(fmt, pfn);			\
2322})
2323
2324/**
2325 * unpoison_memory - Unpoison a previously poisoned page
2326 * @pfn: Page number of the to be unpoisoned page
2327 *
2328 * Software-unpoison a page that has been poisoned by
2329 * memory_failure() earlier.
2330 *
2331 * This is only done on the software-level, so it only works
2332 * for linux injected failures, not real hardware failures
2333 *
2334 * Returns 0 for success, otherwise -errno.
2335 */
2336int unpoison_memory(unsigned long pfn)
2337{
2338	struct page *page;
2339	struct page *p;
2340	int ret = -EBUSY;
2341	unsigned long count = 1;
2342	bool huge = false;
2343	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2344					DEFAULT_RATELIMIT_BURST);
2345
2346	if (!pfn_valid(pfn))
2347		return -ENXIO;
2348
2349	p = pfn_to_page(pfn);
2350	page = compound_head(p);
2351
2352	mutex_lock(&mf_mutex);
2353
2354	if (hw_memory_failure) {
2355		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2356				 pfn, &unpoison_rs);
2357		ret = -EOPNOTSUPP;
2358		goto unlock_mutex;
2359	}
2360
2361	if (!PageHWPoison(p)) {
2362		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2363				 pfn, &unpoison_rs);
2364		goto unlock_mutex;
2365	}
2366
2367	if (page_count(page) > 1) {
2368		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2369				 pfn, &unpoison_rs);
2370		goto unlock_mutex;
2371	}
2372
2373	if (page_mapped(page)) {
2374		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2375				 pfn, &unpoison_rs);
2376		goto unlock_mutex;
2377	}
2378
2379	if (page_mapping(page)) {
2380		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2381				 pfn, &unpoison_rs);
2382		goto unlock_mutex;
2383	}
2384
2385	if (PageSlab(page) || PageTable(page) || PageReserved(page))
2386		goto unlock_mutex;
 
 
 
 
 
 
 
 
2387
2388	ret = get_hwpoison_page(p, MF_UNPOISON);
2389	if (!ret) {
2390		if (PageHuge(p)) {
2391			huge = true;
2392			count = free_raw_hwp_pages(page, false);
2393			if (count == 0) {
2394				ret = -EBUSY;
2395				goto unlock_mutex;
2396			}
2397		}
2398		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2399	} else if (ret < 0) {
2400		if (ret == -EHWPOISON) {
2401			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2402		} else
2403			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2404					 pfn, &unpoison_rs);
2405	} else {
2406		if (PageHuge(p)) {
2407			huge = true;
2408			count = free_raw_hwp_pages(page, false);
2409			if (count == 0) {
2410				ret = -EBUSY;
2411				put_page(page);
2412				goto unlock_mutex;
2413			}
2414		}
2415
2416		put_page(page);
2417		if (TestClearPageHWPoison(p)) {
2418			put_page(page);
2419			ret = 0;
2420		}
2421	}
2422
2423unlock_mutex:
2424	mutex_unlock(&mf_mutex);
2425	if (!ret) {
2426		if (!huge)
2427			num_poisoned_pages_sub(pfn, 1);
 
 
 
2428		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2429				 page_to_pfn(p), &unpoison_rs);
 
 
2430	}
2431	return ret;
 
 
 
 
 
 
2432}
2433EXPORT_SYMBOL(unpoison_memory);
2434
2435static bool isolate_page(struct page *page, struct list_head *pagelist)
 
 
 
 
 
 
 
 
 
 
 
 
 
2436{
2437	bool isolated = false;
 
 
 
2438
2439	if (PageHuge(page)) {
2440		isolated = !isolate_hugetlb(page, pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441	} else {
2442		bool lru = !__PageMovable(page);
 
 
 
 
2443
2444		if (lru)
2445			isolated = !isolate_lru_page(page);
2446		else
2447			isolated = !isolate_movable_page(page,
2448							 ISOLATE_UNEVICTABLE);
 
 
 
 
 
 
2449
2450		if (isolated) {
2451			list_add(&page->lru, pagelist);
2452			if (lru)
2453				inc_node_page_state(page, NR_ISOLATED_ANON +
2454						    page_is_file_lru(page));
 
 
 
 
 
2455		}
2456	}
2457
2458	/*
2459	 * If we succeed to isolate the page, we grabbed another refcount on
2460	 * the page, so we can safely drop the one we got from get_any_pages().
2461	 * If we failed to isolate the page, it means that we cannot go further
2462	 * and we will return an error, so drop the reference we got from
2463	 * get_any_pages() as well.
2464	 */
2465	put_page(page);
2466	return isolated;
2467}
2468
2469/*
2470 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2471 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2472 * If the page is mapped, it migrates the contents over.
2473 */
2474static int soft_offline_in_use_page(struct page *page)
2475{
2476	long ret = 0;
2477	unsigned long pfn = page_to_pfn(page);
2478	struct page *hpage = compound_head(page);
2479	char const *msg_page[] = {"page", "hugepage"};
2480	bool huge = PageHuge(page);
2481	LIST_HEAD(pagelist);
2482	struct migration_target_control mtc = {
2483		.nid = NUMA_NO_NODE,
2484		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2485	};
2486
2487	if (!huge && PageTransHuge(hpage)) {
2488		if (try_to_split_thp_page(page)) {
2489			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2490			return -EBUSY;
2491		}
2492		hpage = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2493	}
 
 
2494
 
 
 
 
 
 
 
 
 
 
 
2495	lock_page(page);
2496	if (!PageHuge(page))
2497		wait_on_page_writeback(page);
2498	if (PageHWPoison(page)) {
2499		unlock_page(page);
2500		put_page(page);
2501		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2502		return 0;
2503	}
2504
2505	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2506		/*
2507		 * Try to invalidate first. This should work for
2508		 * non dirty unmapped page cache pages.
2509		 */
2510		ret = invalidate_inode_page(page);
2511	unlock_page(page);
2512
2513	if (ret) {
 
 
 
 
2514		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2515		page_handle_poison(page, false, true);
 
2516		return 0;
2517	}
2518
2519	if (isolate_page(hpage, &pagelist)) {
2520		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2521			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2522		if (!ret) {
2523			bool release = !huge;
2524
2525			if (!page_handle_poison(page, huge, release))
2526				ret = -EBUSY;
2527		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528			if (!list_empty(&pagelist))
2529				putback_movable_pages(&pagelist);
2530
2531			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2532				pfn, msg_page[huge], ret, &page->flags);
2533			if (ret > 0)
2534				ret = -EBUSY;
2535		}
2536	} else {
2537		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2538			pfn, msg_page[huge], page_count(page), &page->flags);
2539		ret = -EBUSY;
2540	}
2541	return ret;
2542}
2543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2544/**
2545 * soft_offline_page - Soft offline a page.
2546 * @pfn: pfn to soft-offline
2547 * @flags: flags. Same as memory_failure().
2548 *
2549 * Returns 0 on success
2550 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2551 *         < 0 otherwise negated errno.
2552 *
2553 * Soft offline a page, by migration or invalidation,
2554 * without killing anything. This is for the case when
2555 * a page is not corrupted yet (so it's still valid to access),
2556 * but has had a number of corrected errors and is better taken
2557 * out.
2558 *
2559 * The actual policy on when to do that is maintained by
2560 * user space.
2561 *
2562 * This should never impact any application or cause data loss,
2563 * however it might take some time.
2564 *
2565 * This is not a 100% solution for all memory, but tries to be
2566 * ``good enough'' for the majority of memory.
2567 */
2568int soft_offline_page(unsigned long pfn, int flags)
2569{
2570	int ret;
2571	bool try_again = true;
2572	struct page *page;
2573
2574	if (!pfn_valid(pfn)) {
2575		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2576		return -ENXIO;
2577	}
2578
2579	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2580	page = pfn_to_online_page(pfn);
2581	if (!page) {
2582		put_ref_page(pfn, flags);
2583		return -EIO;
2584	}
2585
2586	mutex_lock(&mf_mutex);
2587
2588	if (PageHWPoison(page)) {
2589		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2590		put_ref_page(pfn, flags);
2591		mutex_unlock(&mf_mutex);
2592		return 0;
2593	}
2594
2595retry:
2596	get_online_mems();
2597	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2598	put_online_mems();
2599
2600	if (hwpoison_filter(page)) {
2601		if (ret > 0)
2602			put_page(page);
2603
2604		mutex_unlock(&mf_mutex);
2605		return -EOPNOTSUPP;
2606	}
2607
2608	if (ret > 0) {
2609		ret = soft_offline_in_use_page(page);
2610	} else if (ret == 0) {
2611		if (!page_handle_poison(page, true, false) && try_again) {
2612			try_again = false;
2613			flags &= ~MF_COUNT_INCREASED;
2614			goto retry;
2615		}
2616	}
2617
2618	mutex_unlock(&mf_mutex);
2619
2620	return ret;
2621}