Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v4.17
 
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
 
 
 
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
 
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
 
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
 
 
 
 
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
  84	struct address_space *mapping;
  85	dev_t dev;
  86
  87	if (hwpoison_filter_dev_major == ~0U &&
  88	    hwpoison_filter_dev_minor == ~0U)
  89		return 0;
  90
  91	/*
  92	 * page_mapping() does not accept slab pages.
  93	 */
  94	if (PageSlab(p))
  95		return -EINVAL;
  96
  97	mapping = page_mapping(p);
  98	if (mapping == NULL || mapping->host == NULL)
  99		return -EINVAL;
 100
 101	dev = mapping->host->i_sb->s_dev;
 102	if (hwpoison_filter_dev_major != ~0U &&
 103	    hwpoison_filter_dev_major != MAJOR(dev))
 104		return -EINVAL;
 105	if (hwpoison_filter_dev_minor != ~0U &&
 106	    hwpoison_filter_dev_minor != MINOR(dev))
 107		return -EINVAL;
 108
 109	return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114	if (!hwpoison_filter_flags_mask)
 115		return 0;
 116
 117	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118				    hwpoison_filter_flags_value)
 119		return 0;
 120	else
 121		return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 143		return -EINVAL;
 144
 145	return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153	if (!hwpoison_filter_enable)
 154		return 0;
 155
 156	if (hwpoison_filter_dev(p))
 157		return -EINVAL;
 158
 159	if (hwpoison_filter_flags(p))
 160		return -EINVAL;
 161
 162	if (hwpoison_filter_task(p))
 163		return -EINVAL;
 164
 165	return 0;
 166}
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170	return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr,
 182			unsigned long pfn, struct page *page, int flags)
 183{
 184	short addr_lsb;
 185	int ret;
 186
 187	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 188		pfn, t->comm, t->pid);
 189	addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 190
 191	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 192		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
 193				       addr_lsb, current);
 194	} else {
 195		/*
 196		 * Don't use force here, it's convenient if the signal
 197		 * can be temporarily blocked.
 198		 * This could cause a loop when the user sets SIGBUS
 199		 * to SIG_IGN, but hopefully no one will do that?
 200		 */
 201		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
 202				      addr_lsb, t);  /* synchronous? */
 203	}
 204	if (ret < 0)
 205		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 206			t->comm, t->pid, ret);
 207	return ret;
 208}
 209
 210/*
 211 * When a unknown page type is encountered drain as many buffers as possible
 212 * in the hope to turn the page into a LRU or free page, which we can handle.
 213 */
 214void shake_page(struct page *p, int access)
 215{
 216	if (PageHuge(p))
 217		return;
 218
 219	if (!PageSlab(p)) {
 220		lru_add_drain_all();
 221		if (PageLRU(p))
 222			return;
 223		drain_all_pages(page_zone(p));
 224		if (PageLRU(p) || is_free_buddy_page(p))
 225			return;
 226	}
 227
 228	/*
 229	 * Only call shrink_node_slabs here (which would also shrink
 230	 * other caches) if access is not potentially fatal.
 231	 */
 232	if (access)
 233		drop_slab_node(page_to_nid(p));
 234}
 235EXPORT_SYMBOL_GPL(shake_page);
 236
 237/*
 238 * Kill all processes that have a poisoned page mapped and then isolate
 239 * the page.
 240 *
 241 * General strategy:
 242 * Find all processes having the page mapped and kill them.
 243 * But we keep a page reference around so that the page is not
 244 * actually freed yet.
 245 * Then stash the page away
 246 *
 247 * There's no convenient way to get back to mapped processes
 248 * from the VMAs. So do a brute-force search over all
 249 * running processes.
 250 *
 251 * Remember that machine checks are not common (or rather
 252 * if they are common you have other problems), so this shouldn't
 253 * be a performance issue.
 254 *
 255 * Also there are some races possible while we get from the
 256 * error detection to actually handle it.
 257 */
 258
 259struct to_kill {
 260	struct list_head nd;
 261	struct task_struct *tsk;
 262	unsigned long addr;
 263	char addr_valid;
 264};
 265
 266/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267 * Failure handling: if we can't find or can't kill a process there's
 268 * not much we can do.	We just print a message and ignore otherwise.
 269 */
 270
 
 
 271/*
 272 * Schedule a process for later kill.
 273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 274 * TBD would GFP_NOIO be enough?
 275 */
 276static void add_to_kill(struct task_struct *tsk, struct page *p,
 277		       struct vm_area_struct *vma,
 278		       struct list_head *to_kill,
 279		       struct to_kill **tkc)
 
 
 
 
 280{
 281	struct to_kill *tk;
 282
 283	if (*tkc) {
 284		tk = *tkc;
 285		*tkc = NULL;
 286	} else {
 287		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 288		if (!tk) {
 289			pr_err("Memory failure: Out of memory while machine check handling\n");
 290			return;
 291		}
 292	}
 293	tk->addr = page_address_in_vma(p, vma);
 294	tk->addr_valid = 1;
 295
 296	/*
 297	 * In theory we don't have to kill when the page was
 298	 * munmaped. But it could be also a mremap. Since that's
 299	 * likely very rare kill anyways just out of paranoia, but use
 300	 * a SIGKILL because the error is not contained anymore.
 
 
 
 
 
 
 
 
 
 
 
 
 301	 */
 302	if (tk->addr == -EFAULT) {
 303		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 304			page_to_pfn(p), tsk->comm);
 305		tk->addr_valid = 0;
 
 
 306	}
 
 307	get_task_struct(tsk);
 308	tk->tsk = tsk;
 309	list_add_tail(&tk->nd, to_kill);
 310}
 311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312/*
 313 * Kill the processes that have been collected earlier.
 314 *
 315 * Only do anything when DOIT is set, otherwise just free the list
 316 * (this is used for clean pages which do not need killing)
 317 * Also when FAIL is set do a force kill because something went
 318 * wrong earlier.
 319 */
 320static void kill_procs(struct list_head *to_kill, int forcekill,
 321			  bool fail, struct page *page, unsigned long pfn,
 322			  int flags)
 323{
 324	struct to_kill *tk, *next;
 325
 326	list_for_each_entry_safe (tk, next, to_kill, nd) {
 327		if (forcekill) {
 328			/*
 329			 * In case something went wrong with munmapping
 330			 * make sure the process doesn't catch the
 331			 * signal and then access the memory. Just kill it.
 332			 */
 333			if (fail || tk->addr_valid == 0) {
 334				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 335				       pfn, tk->tsk->comm, tk->tsk->pid);
 336				force_sig(SIGKILL, tk->tsk);
 
 337			}
 338
 339			/*
 340			 * In theory the process could have mapped
 341			 * something else on the address in-between. We could
 342			 * check for that, but we need to tell the
 343			 * process anyways.
 344			 */
 345			else if (kill_proc(tk->tsk, tk->addr,
 346					      pfn, page, flags) < 0)
 347				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 348				       pfn, tk->tsk->comm, tk->tsk->pid);
 349		}
 
 350		put_task_struct(tk->tsk);
 351		kfree(tk);
 352	}
 353}
 354
 355/*
 356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 357 * on behalf of the thread group. Return task_struct of the (first found)
 358 * dedicated thread if found, and return NULL otherwise.
 359 *
 360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 361 * have to call rcu_read_lock/unlock() in this function.
 362 */
 363static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 364{
 365	struct task_struct *t;
 366
 367	for_each_thread(tsk, t)
 368		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 369			return t;
 
 
 
 
 
 
 370	return NULL;
 371}
 372
 373/*
 374 * Determine whether a given process is "early kill" process which expects
 375 * to be signaled when some page under the process is hwpoisoned.
 376 * Return task_struct of the dedicated thread (main thread unless explicitly
 377 * specified) if the process is "early kill," and otherwise returns NULL.
 
 
 
 
 
 
 378 */
 379static struct task_struct *task_early_kill(struct task_struct *tsk,
 380					   int force_early)
 381{
 382	struct task_struct *t;
 383	if (!tsk->mm)
 384		return NULL;
 385	if (force_early)
 386		return tsk;
 387	t = find_early_kill_thread(tsk);
 388	if (t)
 389		return t;
 390	if (sysctl_memory_failure_early_kill)
 391		return tsk;
 392	return NULL;
 393}
 394
 395/*
 396 * Collect processes when the error hit an anonymous page.
 397 */
 398static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 399			      struct to_kill **tkc, int force_early)
 400{
 401	struct vm_area_struct *vma;
 402	struct task_struct *tsk;
 403	struct anon_vma *av;
 404	pgoff_t pgoff;
 405
 406	av = page_lock_anon_vma_read(page);
 407	if (av == NULL)	/* Not actually mapped anymore */
 408		return;
 409
 410	pgoff = page_to_pgoff(page);
 411	read_lock(&tasklist_lock);
 412	for_each_process (tsk) {
 413		struct anon_vma_chain *vmac;
 414		struct task_struct *t = task_early_kill(tsk, force_early);
 415
 416		if (!t)
 417			continue;
 418		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 419					       pgoff, pgoff) {
 420			vma = vmac->vma;
 
 
 421			if (!page_mapped_in_vma(page, vma))
 422				continue;
 423			if (vma->vm_mm == t->mm)
 424				add_to_kill(t, page, vma, to_kill, tkc);
 425		}
 426	}
 427	read_unlock(&tasklist_lock);
 428	page_unlock_anon_vma_read(av);
 429}
 430
 431/*
 432 * Collect processes when the error hit a file mapped page.
 433 */
 434static void collect_procs_file(struct page *page, struct list_head *to_kill,
 435			      struct to_kill **tkc, int force_early)
 436{
 437	struct vm_area_struct *vma;
 438	struct task_struct *tsk;
 439	struct address_space *mapping = page->mapping;
 
 440
 441	i_mmap_lock_read(mapping);
 442	read_lock(&tasklist_lock);
 
 443	for_each_process(tsk) {
 444		pgoff_t pgoff = page_to_pgoff(page);
 445		struct task_struct *t = task_early_kill(tsk, force_early);
 446
 447		if (!t)
 448			continue;
 449		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 450				      pgoff) {
 451			/*
 452			 * Send early kill signal to tasks where a vma covers
 453			 * the page but the corrupted page is not necessarily
 454			 * mapped it in its pte.
 455			 * Assume applications who requested early kill want
 456			 * to be informed of all such data corruptions.
 457			 */
 458			if (vma->vm_mm == t->mm)
 459				add_to_kill(t, page, vma, to_kill, tkc);
 460		}
 461	}
 462	read_unlock(&tasklist_lock);
 463	i_mmap_unlock_read(mapping);
 464}
 465
 
 
 
 
 
 
 
 
 466/*
 467 * Collect the processes who have the corrupted page mapped to kill.
 468 * This is done in two steps for locking reasons.
 469 * First preallocate one tokill structure outside the spin locks,
 470 * so that we can kill at least one process reasonably reliable.
 471 */
 472static void collect_procs(struct page *page, struct list_head *tokill,
 473				int force_early)
 
 474{
 475	struct to_kill *tk;
 
 476
 477	if (!page->mapping)
 478		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 481	if (!tk)
 
 
 
 
 
 482		return;
 483	if (PageAnon(page))
 484		collect_procs_anon(page, tokill, &tk, force_early);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	else
 486		collect_procs_file(page, tokill, &tk, force_early);
 487	kfree(tk);
 
 488}
 489
 490static const char *action_name[] = {
 491	[MF_IGNORED] = "Ignored",
 492	[MF_FAILED] = "Failed",
 493	[MF_DELAYED] = "Delayed",
 494	[MF_RECOVERED] = "Recovered",
 495};
 496
 497static const char * const action_page_types[] = {
 498	[MF_MSG_KERNEL]			= "reserved kernel page",
 499	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 500	[MF_MSG_SLAB]			= "kernel slab page",
 501	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 502	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
 503	[MF_MSG_HUGE]			= "huge page",
 504	[MF_MSG_FREE_HUGE]		= "free huge page",
 505	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
 506	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 507	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 508	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 509	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 510	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 511	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 512	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 513	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 514	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 515	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 516	[MF_MSG_BUDDY]			= "free buddy page",
 517	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
 
 518	[MF_MSG_UNKNOWN]		= "unknown page",
 519};
 520
 521/*
 522 * XXX: It is possible that a page is isolated from LRU cache,
 523 * and then kept in swap cache or failed to remove from page cache.
 524 * The page count will stop it from being freed by unpoison.
 525 * Stress tests should be aware of this memory leak problem.
 526 */
 527static int delete_from_lru_cache(struct page *p)
 528{
 529	if (!isolate_lru_page(p)) {
 530		/*
 531		 * Clear sensible page flags, so that the buddy system won't
 532		 * complain when the page is unpoison-and-freed.
 533		 */
 534		ClearPageActive(p);
 535		ClearPageUnevictable(p);
 536
 537		/*
 538		 * Poisoned page might never drop its ref count to 0 so we have
 539		 * to uncharge it manually from its memcg.
 540		 */
 541		mem_cgroup_uncharge(p);
 542
 543		/*
 544		 * drop the page count elevated by isolate_lru_page()
 545		 */
 546		put_page(p);
 547		return 0;
 548	}
 549	return -EIO;
 550}
 551
 552static int truncate_error_page(struct page *p, unsigned long pfn,
 553				struct address_space *mapping)
 554{
 555	int ret = MF_FAILED;
 556
 557	if (mapping->a_ops->error_remove_page) {
 558		int err = mapping->a_ops->error_remove_page(mapping, p);
 559
 560		if (err != 0) {
 561			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 562				pfn, err);
 563		} else if (page_has_private(p) &&
 564			   !try_to_release_page(p, GFP_NOIO)) {
 565			pr_info("Memory failure: %#lx: failed to release buffers\n",
 566				pfn);
 567		} else {
 568			ret = MF_RECOVERED;
 569		}
 570	} else {
 571		/*
 572		 * If the file system doesn't support it just invalidate
 573		 * This fails on dirty or anything with private pages
 574		 */
 575		if (invalidate_inode_page(p))
 576			ret = MF_RECOVERED;
 577		else
 578			pr_info("Memory failure: %#lx: Failed to invalidate\n",
 579				pfn);
 580	}
 581
 582	return ret;
 583}
 584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585/*
 586 * Error hit kernel page.
 587 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 588 * could be more sophisticated.
 589 */
 590static int me_kernel(struct page *p, unsigned long pfn)
 591{
 
 592	return MF_IGNORED;
 593}
 594
 595/*
 596 * Page in unknown state. Do nothing.
 597 */
 598static int me_unknown(struct page *p, unsigned long pfn)
 599{
 600	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 
 601	return MF_FAILED;
 602}
 603
 604/*
 605 * Clean (or cleaned) page cache page.
 606 */
 607static int me_pagecache_clean(struct page *p, unsigned long pfn)
 608{
 
 
 609	struct address_space *mapping;
 
 610
 611	delete_from_lru_cache(p);
 612
 613	/*
 614	 * For anonymous pages we're done the only reference left
 615	 * should be the one m_f() holds.
 616	 */
 617	if (PageAnon(p))
 618		return MF_RECOVERED;
 
 
 619
 620	/*
 621	 * Now truncate the page in the page cache. This is really
 622	 * more like a "temporary hole punch"
 623	 * Don't do this for block devices when someone else
 624	 * has a reference, because it could be file system metadata
 625	 * and that's not safe to truncate.
 626	 */
 627	mapping = page_mapping(p);
 628	if (!mapping) {
 629		/*
 630		 * Page has been teared down in the meanwhile
 631		 */
 632		return MF_FAILED;
 633	}
 634
 635	/*
 
 
 
 
 
 
 636	 * Truncation is a bit tricky. Enable it per file system for now.
 637	 *
 638	 * Open: to take i_mutex or not for this? Right now we don't.
 639	 */
 640	return truncate_error_page(p, pfn, mapping);
 
 
 
 
 
 
 
 641}
 642
 643/*
 644 * Dirty pagecache page
 645 * Issues: when the error hit a hole page the error is not properly
 646 * propagated.
 647 */
 648static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 649{
 650	struct address_space *mapping = page_mapping(p);
 651
 652	SetPageError(p);
 653	/* TBD: print more information about the file. */
 654	if (mapping) {
 655		/*
 656		 * IO error will be reported by write(), fsync(), etc.
 657		 * who check the mapping.
 658		 * This way the application knows that something went
 659		 * wrong with its dirty file data.
 660		 *
 661		 * There's one open issue:
 662		 *
 663		 * The EIO will be only reported on the next IO
 664		 * operation and then cleared through the IO map.
 665		 * Normally Linux has two mechanisms to pass IO error
 666		 * first through the AS_EIO flag in the address space
 667		 * and then through the PageError flag in the page.
 668		 * Since we drop pages on memory failure handling the
 669		 * only mechanism open to use is through AS_AIO.
 670		 *
 671		 * This has the disadvantage that it gets cleared on
 672		 * the first operation that returns an error, while
 673		 * the PageError bit is more sticky and only cleared
 674		 * when the page is reread or dropped.  If an
 675		 * application assumes it will always get error on
 676		 * fsync, but does other operations on the fd before
 677		 * and the page is dropped between then the error
 678		 * will not be properly reported.
 679		 *
 680		 * This can already happen even without hwpoisoned
 681		 * pages: first on metadata IO errors (which only
 682		 * report through AS_EIO) or when the page is dropped
 683		 * at the wrong time.
 684		 *
 685		 * So right now we assume that the application DTRT on
 686		 * the first EIO, but we're not worse than other parts
 687		 * of the kernel.
 688		 */
 689		mapping_set_error(mapping, -EIO);
 690	}
 691
 692	return me_pagecache_clean(p, pfn);
 693}
 694
 695/*
 696 * Clean and dirty swap cache.
 697 *
 698 * Dirty swap cache page is tricky to handle. The page could live both in page
 699 * cache and swap cache(ie. page is freshly swapped in). So it could be
 700 * referenced concurrently by 2 types of PTEs:
 701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 703 * and then
 704 *      - clear dirty bit to prevent IO
 705 *      - remove from LRU
 706 *      - but keep in the swap cache, so that when we return to it on
 707 *        a later page fault, we know the application is accessing
 708 *        corrupted data and shall be killed (we installed simple
 709 *        interception code in do_swap_page to catch it).
 710 *
 711 * Clean swap cache pages can be directly isolated. A later page fault will
 712 * bring in the known good data from disk.
 713 */
 714static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 715{
 716	ClearPageDirty(p);
 
 
 
 
 717	/* Trigger EIO in shmem: */
 718	ClearPageUptodate(p);
 719
 720	if (!delete_from_lru_cache(p))
 721		return MF_DELAYED;
 722	else
 723		return MF_FAILED;
 
 
 
 
 
 
 724}
 725
 726static int me_swapcache_clean(struct page *p, unsigned long pfn)
 727{
 728	delete_from_swap_cache(p);
 
 729
 730	if (!delete_from_lru_cache(p))
 731		return MF_RECOVERED;
 732	else
 733		return MF_FAILED;
 
 
 
 
 
 734}
 735
 736/*
 737 * Huge pages. Needs work.
 738 * Issues:
 739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 740 *   To narrow down kill region to one page, we need to break up pmd.
 741 */
 742static int me_huge_page(struct page *p, unsigned long pfn)
 743{
 744	int res = 0;
 745	struct page *hpage = compound_head(p);
 746	struct address_space *mapping;
 
 747
 748	if (!PageHuge(hpage))
 749		return MF_DELAYED;
 750
 751	mapping = page_mapping(hpage);
 752	if (mapping) {
 753		res = truncate_error_page(hpage, pfn, mapping);
 
 
 
 754	} else {
 755		unlock_page(hpage);
 756		/*
 757		 * migration entry prevents later access on error anonymous
 758		 * hugepage, so we can free and dissolve it into buddy to
 759		 * save healthy subpages.
 760		 */
 761		if (PageAnon(hpage))
 762			put_page(hpage);
 763		dissolve_free_huge_page(p);
 764		res = MF_RECOVERED;
 765		lock_page(hpage);
 
 
 766	}
 767
 
 
 
 768	return res;
 769}
 770
 771/*
 772 * Various page states we can handle.
 773 *
 774 * A page state is defined by its current page->flags bits.
 775 * The table matches them in order and calls the right handler.
 776 *
 777 * This is quite tricky because we can access page at any time
 778 * in its live cycle, so all accesses have to be extremely careful.
 779 *
 780 * This is not complete. More states could be added.
 781 * For any missing state don't attempt recovery.
 782 */
 783
 784#define dirty		(1UL << PG_dirty)
 785#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 786#define unevict		(1UL << PG_unevictable)
 787#define mlock		(1UL << PG_mlocked)
 788#define writeback	(1UL << PG_writeback)
 789#define lru		(1UL << PG_lru)
 790#define head		(1UL << PG_head)
 791#define slab		(1UL << PG_slab)
 792#define reserved	(1UL << PG_reserved)
 793
 794static struct page_state {
 795	unsigned long mask;
 796	unsigned long res;
 797	enum mf_action_page_type type;
 798	int (*action)(struct page *p, unsigned long pfn);
 799} error_states[] = {
 800	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 801	/*
 802	 * free pages are specially detected outside this table:
 803	 * PG_buddy pages only make a small fraction of all free pages.
 804	 */
 805
 806	/*
 807	 * Could in theory check if slab page is free or if we can drop
 808	 * currently unused objects without touching them. But just
 809	 * treat it as standard kernel for now.
 810	 */
 811	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
 812
 813	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 814
 815	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
 816	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
 817
 818	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
 819	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
 820
 821	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
 822	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
 823
 824	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
 825	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
 826
 827	/*
 828	 * Catchall entry: must be at end.
 829	 */
 830	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
 831};
 832
 833#undef dirty
 834#undef sc
 835#undef unevict
 836#undef mlock
 837#undef writeback
 838#undef lru
 839#undef head
 840#undef slab
 841#undef reserved
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843/*
 844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 845 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 846 */
 847static void action_result(unsigned long pfn, enum mf_action_page_type type,
 848			  enum mf_result result)
 849{
 850	trace_memory_failure_event(pfn, type, result);
 851
 852	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 
 
 
 
 853		pfn, action_page_types[type], action_name[result]);
 
 
 854}
 855
 856static int page_action(struct page_state *ps, struct page *p,
 857			unsigned long pfn)
 858{
 859	int result;
 860	int count;
 861
 862	result = ps->action(p, pfn);
 863
 864	count = page_count(p) - 1;
 865	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 866		count--;
 867	if (count > 0) {
 868		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 869		       pfn, action_page_types[ps->type], count);
 870		result = MF_FAILED;
 871	}
 872	action_result(pfn, ps->type, result);
 873
 874	/* Could do more checks here if page looks ok */
 875	/*
 876	 * Could adjust zone counters here to correct for the missing page.
 877	 */
 878
 879	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 880}
 881
 882/**
 883 * get_hwpoison_page() - Get refcount for memory error handling:
 884 * @page:	raw error page (hit by memory error)
 885 *
 886 * Return: return 0 if failed to grab the refcount, otherwise true (some
 887 * non-zero value.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888 */
 889int get_hwpoison_page(struct page *page)
 890{
 891	struct page *head = compound_head(page);
 
 892
 893	if (!PageHuge(head) && PageTransHuge(head)) {
 894		/*
 895		 * Non anonymous thp exists only in allocation/free time. We
 896		 * can't handle such a case correctly, so let's give it up.
 897		 * This should be better than triggering BUG_ON when kernel
 898		 * tries to touch the "partially handled" page.
 899		 */
 900		if (!PageAnon(head)) {
 901			pr_err("Memory failure: %#lx: non anonymous thp\n",
 902				page_to_pfn(page));
 903			return 0;
 
 
 
 
 
 
 
 
 
 
 904		}
 905	}
 906
 907	if (get_page_unless_zero(head)) {
 908		if (head == compound_head(page))
 
 
 
 
 
 
 
 
 909			return 1;
 910
 911		pr_info("Memory failure: %#lx cannot catch tail\n",
 912			page_to_pfn(page));
 913		put_page(head);
 914	}
 915
 916	return 0;
 917}
 918EXPORT_SYMBOL_GPL(get_hwpoison_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919
 920/*
 921 * Do all that is necessary to remove user space mappings. Unmap
 922 * the pages and send SIGBUS to the processes if the data was dirty.
 923 */
 924static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 925				  int flags, struct page **hpagep)
 926{
 927	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 
 928	struct address_space *mapping;
 929	LIST_HEAD(tokill);
 930	bool unmap_success;
 931	int kill = 1, forcekill;
 932	struct page *hpage = *hpagep;
 933	bool mlocked = PageMlocked(hpage);
 934
 935	/*
 936	 * Here we are interested only in user-mapped pages, so skip any
 937	 * other types of pages.
 938	 */
 939	if (PageReserved(p) || PageSlab(p))
 940		return true;
 941	if (!(PageLRU(hpage) || PageHuge(p)))
 942		return true;
 943
 944	/*
 945	 * This check implies we don't kill processes if their pages
 946	 * are in the swap cache early. Those are always late kills.
 947	 */
 948	if (!page_mapped(hpage))
 949		return true;
 950
 951	if (PageKsm(p)) {
 952		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 953		return false;
 954	}
 955
 956	if (PageSwapCache(p)) {
 957		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 958			pfn);
 959		ttu |= TTU_IGNORE_HWPOISON;
 960	}
 961
 962	/*
 963	 * Propagate the dirty bit from PTEs to struct page first, because we
 964	 * need this to decide if we should kill or just drop the page.
 965	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 966	 * be called inside page lock (it's recommended but not enforced).
 967	 */
 968	mapping = page_mapping(hpage);
 969	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 970	    mapping_cap_writeback_dirty(mapping)) {
 971		if (page_mkclean(hpage)) {
 972			SetPageDirty(hpage);
 973		} else {
 974			kill = 0;
 975			ttu |= TTU_IGNORE_HWPOISON;
 976			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 977				pfn);
 978		}
 979	}
 980
 981	/*
 982	 * First collect all the processes that have the page
 983	 * mapped in dirty form.  This has to be done before try_to_unmap,
 984	 * because ttu takes the rmap data structures down.
 985	 *
 986	 * Error handling: We ignore errors here because
 987	 * there's nothing that can be done.
 988	 */
 989	if (kill)
 990		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	unmap_success = try_to_unmap(hpage, ttu);
 993	if (!unmap_success)
 994		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 995		       pfn, page_mapcount(hpage));
 996
 997	/*
 998	 * try_to_unmap() might put mlocked page in lru cache, so call
 999	 * shake_page() again to ensure that it's flushed.
1000	 */
1001	if (mlocked)
1002		shake_page(hpage, 0);
1003
1004	/*
1005	 * Now that the dirty bit has been propagated to the
1006	 * struct page and all unmaps done we can decide if
1007	 * killing is needed or not.  Only kill when the page
1008	 * was dirty or the process is not restartable,
1009	 * otherwise the tokill list is merely
1010	 * freed.  When there was a problem unmapping earlier
1011	 * use a more force-full uncatchable kill to prevent
1012	 * any accesses to the poisoned memory.
1013	 */
1014	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015	kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
 
1016
1017	return unmap_success;
1018}
1019
1020static int identify_page_state(unsigned long pfn, struct page *p,
1021				unsigned long page_flags)
1022{
1023	struct page_state *ps;
1024
1025	/*
1026	 * The first check uses the current page flags which may not have any
1027	 * relevant information. The second check with the saved page flags is
1028	 * carried out only if the first check can't determine the page status.
1029	 */
1030	for (ps = error_states;; ps++)
1031		if ((p->flags & ps->mask) == ps->res)
1032			break;
1033
1034	page_flags |= (p->flags & (1UL << PG_dirty));
1035
1036	if (!ps->mask)
1037		for (ps = error_states;; ps++)
1038			if ((page_flags & ps->mask) == ps->res)
1039				break;
1040	return page_action(ps, p, pfn);
1041}
1042
1043static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044{
1045	struct page *p = pfn_to_page(pfn);
1046	struct page *head = compound_head(p);
1047	int res;
1048	unsigned long page_flags;
1049
1050	if (TestSetPageHWPoison(head)) {
1051		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052		       pfn);
1053		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054	}
1055
1056	num_poisoned_pages_inc();
 
1057
1058	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059		/*
1060		 * Check "filter hit" and "race with other subpage."
 
1061		 */
1062		lock_page(head);
1063		if (PageHWPoison(head)) {
1064			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065			    || (p != head && TestSetPageHWPoison(head))) {
1066				num_poisoned_pages_dec();
1067				unlock_page(head);
1068				return 0;
1069			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070		}
1071		unlock_page(head);
1072		dissolve_free_huge_page(p);
1073		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1074		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075	}
1076
1077	lock_page(head);
1078	page_flags = head->flags;
 
 
 
 
 
 
1079
1080	if (!PageHWPoison(head)) {
1081		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082		num_poisoned_pages_dec();
1083		unlock_page(head);
1084		put_hwpoison_page(head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086	}
1087
1088	/*
1089	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090	 * simply disable it. In order to make it work properly, we need
1091	 * make sure that:
1092	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1093	 *    entry properly works, and
1094	 *  - other mm code walking over page table is aware of pud-aligned
1095	 *    hwpoison entries.
1096	 */
1097	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099		res = -EBUSY;
1100		goto out;
 
 
 
 
 
 
 
1101	}
1102
1103	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105		res = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1107	}
1108
1109	res = identify_page_state(pfn, p, page_flags);
1110out:
1111	unlock_page(head);
1112	return res;
 
 
 
1113}
1114
1115/**
1116 * memory_failure - Handle memory failure of a page.
1117 * @pfn: Page Number of the corrupted page
1118 * @flags: fine tune action taken
1119 *
1120 * This function is called by the low level machine check code
1121 * of an architecture when it detects hardware memory corruption
1122 * of a page. It tries its best to recover, which includes
1123 * dropping pages, killing processes etc.
1124 *
1125 * The function is primarily of use for corruptions that
1126 * happen outside the current execution context (e.g. when
1127 * detected by a background scrubber)
1128 *
1129 * Must run in process context (e.g. a work queue) with interrupts
1130 * enabled and no spinlocks hold.
 
 
 
 
1131 */
1132int memory_failure(unsigned long pfn, int flags)
1133{
1134	struct page *p;
1135	struct page *hpage;
1136	struct page *orig_head;
1137	int res;
1138	unsigned long page_flags;
 
 
1139
1140	if (!sysctl_memory_failure_recovery)
1141		panic("Memory failure on page %lx", pfn);
1142
1143	if (!pfn_valid(pfn)) {
1144		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145			pfn);
1146		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	}
1148
1149	p = pfn_to_page(pfn);
1150	if (PageHuge(p))
1151		return memory_failure_hugetlb(pfn, flags);
 
 
1152	if (TestSetPageHWPoison(p)) {
1153		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154			pfn);
1155		return 0;
 
 
 
 
1156	}
1157
1158	orig_head = hpage = compound_head(p);
1159	num_poisoned_pages_inc();
1160
1161	/*
1162	 * We need/can do nothing about count=0 pages.
1163	 * 1) it's a free page, and therefore in safe hand:
1164	 *    prep_new_page() will be the gate keeper.
1165	 * 2) it's part of a non-compound high order page.
1166	 *    Implies some kernel user: cannot stop them from
1167	 *    R/W the page; let's pray that the page has been
1168	 *    used and will be freed some time later.
1169	 * In fact it's dangerous to directly bump up page count from 0,
1170	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1171	 */
1172	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173		if (is_free_buddy_page(p)) {
1174			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175			return 0;
1176		} else {
1177			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179		}
1180	}
1181
 
1182	if (PageTransHuge(hpage)) {
1183		lock_page(p);
1184		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185			unlock_page(p);
1186			if (!PageAnon(p))
1187				pr_err("Memory failure: %#lx: non anonymous thp\n",
1188					pfn);
1189			else
1190				pr_err("Memory failure: %#lx: thp split failed\n",
1191					pfn);
1192			if (TestClearPageHWPoison(p))
1193				num_poisoned_pages_dec();
1194			put_hwpoison_page(p);
1195			return -EBUSY;
 
 
 
 
1196		}
1197		unlock_page(p);
1198		VM_BUG_ON_PAGE(!page_count(p), p);
1199		hpage = compound_head(p);
1200	}
1201
1202	/*
1203	 * We ignore non-LRU pages for good reasons.
1204	 * - PG_locked is only well defined for LRU pages and a few others
1205	 * - to avoid races with __SetPageLocked()
1206	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207	 * The check (unnecessarily) ignores LRU pages being isolated and
1208	 * walked by the page reclaim code, however that's not a big loss.
1209	 */
1210	shake_page(p, 0);
1211	/* shake_page could have turned it free. */
1212	if (!PageLRU(p) && is_free_buddy_page(p)) {
1213		if (flags & MF_COUNT_INCREASED)
1214			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215		else
1216			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217		return 0;
1218	}
1219
1220	lock_page(p);
1221
1222	/*
1223	 * The page could have changed compound pages during the locking.
1224	 * If this happens just bail out.
1225	 */
1226	if (PageCompound(p) && compound_head(p) != orig_head) {
1227		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228		res = -EBUSY;
1229		goto out;
 
 
 
 
 
 
 
 
 
1230	}
1231
1232	/*
1233	 * We use page flags to determine what action should be taken, but
1234	 * the flags can be modified by the error containment action.  One
1235	 * example is an mlocked page, where PG_mlocked is cleared by
1236	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237	 * correctly, we save a copy of the page flags at this time.
1238	 */
1239	if (PageHuge(p))
1240		page_flags = hpage->flags;
1241	else
1242		page_flags = p->flags;
1243
1244	/*
1245	 * unpoison always clear PG_hwpoison inside page lock
1246	 */
1247	if (!PageHWPoison(p)) {
1248		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249		num_poisoned_pages_dec();
1250		unlock_page(p);
1251		put_hwpoison_page(p);
1252		return 0;
1253	}
1254	if (hwpoison_filter(p)) {
1255		if (TestClearPageHWPoison(p))
1256			num_poisoned_pages_dec();
1257		unlock_page(p);
1258		put_hwpoison_page(p);
1259		return 0;
 
1260	}
1261
1262	if (!PageTransTail(p) && !PageLRU(p))
 
 
 
 
 
1263		goto identify_page_state;
1264
1265	/*
1266	 * It's very difficult to mess with pages currently under IO
1267	 * and in many cases impossible, so we just avoid it here.
1268	 */
1269	wait_on_page_writeback(p);
1270
1271	/*
1272	 * Now take care of user space mappings.
1273	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1274	 *
1275	 * When the raw error page is thp tail page, hpage points to the raw
1276	 * page after thp split.
1277	 */
1278	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280		res = -EBUSY;
1281		goto out;
1282	}
1283
1284	/*
1285	 * Torn down by someone else?
1286	 */
1287	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289		res = -EBUSY;
1290		goto out;
1291	}
1292
1293identify_page_state:
1294	res = identify_page_state(pfn, p, page_flags);
1295out:
 
 
1296	unlock_page(p);
 
 
1297	return res;
1298}
1299EXPORT_SYMBOL_GPL(memory_failure);
1300
1301#define MEMORY_FAILURE_FIFO_ORDER	4
1302#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1303
1304struct memory_failure_entry {
1305	unsigned long pfn;
1306	int flags;
1307};
1308
1309struct memory_failure_cpu {
1310	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311		      MEMORY_FAILURE_FIFO_SIZE);
1312	spinlock_t lock;
1313	struct work_struct work;
1314};
1315
1316static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1317
1318/**
1319 * memory_failure_queue - Schedule handling memory failure of a page.
1320 * @pfn: Page Number of the corrupted page
1321 * @flags: Flags for memory failure handling
1322 *
1323 * This function is called by the low level hardware error handler
1324 * when it detects hardware memory corruption of a page. It schedules
1325 * the recovering of error page, including dropping pages, killing
1326 * processes etc.
1327 *
1328 * The function is primarily of use for corruptions that
1329 * happen outside the current execution context (e.g. when
1330 * detected by a background scrubber)
1331 *
1332 * Can run in IRQ context.
1333 */
1334void memory_failure_queue(unsigned long pfn, int flags)
1335{
1336	struct memory_failure_cpu *mf_cpu;
1337	unsigned long proc_flags;
1338	struct memory_failure_entry entry = {
1339		.pfn =		pfn,
1340		.flags =	flags,
1341	};
1342
1343	mf_cpu = &get_cpu_var(memory_failure_cpu);
1344	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345	if (kfifo_put(&mf_cpu->fifo, entry))
1346		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347	else
1348		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349		       pfn);
1350	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351	put_cpu_var(memory_failure_cpu);
1352}
1353EXPORT_SYMBOL_GPL(memory_failure_queue);
1354
1355static void memory_failure_work_func(struct work_struct *work)
1356{
1357	struct memory_failure_cpu *mf_cpu;
1358	struct memory_failure_entry entry = { 0, };
1359	unsigned long proc_flags;
1360	int gotten;
1361
1362	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363	for (;;) {
1364		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367		if (!gotten)
1368			break;
1369		if (entry.flags & MF_SOFT_OFFLINE)
1370			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371		else
1372			memory_failure(entry.pfn, entry.flags);
1373	}
1374}
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
1376static int __init memory_failure_init(void)
1377{
1378	struct memory_failure_cpu *mf_cpu;
1379	int cpu;
1380
1381	for_each_possible_cpu(cpu) {
1382		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383		spin_lock_init(&mf_cpu->lock);
1384		INIT_KFIFO(mf_cpu->fifo);
1385		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386	}
1387
 
 
1388	return 0;
1389}
1390core_initcall(memory_failure_init);
1391
 
 
1392#define unpoison_pr_info(fmt, pfn, rs)			\
1393({							\
1394	if (__ratelimit(rs))				\
1395		pr_info(fmt, pfn);			\
1396})
1397
1398/**
1399 * unpoison_memory - Unpoison a previously poisoned page
1400 * @pfn: Page number of the to be unpoisoned page
1401 *
1402 * Software-unpoison a page that has been poisoned by
1403 * memory_failure() earlier.
1404 *
1405 * This is only done on the software-level, so it only works
1406 * for linux injected failures, not real hardware failures
1407 *
1408 * Returns 0 for success, otherwise -errno.
1409 */
1410int unpoison_memory(unsigned long pfn)
1411{
1412	struct page *page;
1413	struct page *p;
1414	int freeit = 0;
 
 
1415	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416					DEFAULT_RATELIMIT_BURST);
1417
1418	if (!pfn_valid(pfn))
1419		return -ENXIO;
1420
1421	p = pfn_to_page(pfn);
1422	page = compound_head(p);
 
 
 
 
 
 
 
 
 
1423
1424	if (!PageHWPoison(p)) {
1425		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426				 pfn, &unpoison_rs);
1427		return 0;
1428	}
1429
1430	if (page_count(page) > 1) {
1431		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432				 pfn, &unpoison_rs);
1433		return 0;
1434	}
1435
1436	if (page_mapped(page)) {
 
 
 
 
 
 
 
 
1437		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438				 pfn, &unpoison_rs);
1439		return 0;
1440	}
1441
1442	if (page_mapping(page)) {
1443		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444				 pfn, &unpoison_rs);
1445		return 0;
1446	}
1447
1448	/*
1449	 * unpoison_memory() can encounter thp only when the thp is being
1450	 * worked by memory_failure() and the page lock is not held yet.
1451	 * In such case, we yield to memory_failure() and make unpoison fail.
1452	 */
1453	if (!PageHuge(page) && PageTransHuge(page)) {
1454		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455				 pfn, &unpoison_rs);
1456		return 0;
1457	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458
1459	if (!get_hwpoison_page(p)) {
1460		if (TestClearPageHWPoison(p))
1461			num_poisoned_pages_dec();
1462		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463				 pfn, &unpoison_rs);
1464		return 0;
1465	}
1466
1467	lock_page(page);
1468	/*
1469	 * This test is racy because PG_hwpoison is set outside of page lock.
1470	 * That's acceptable because that won't trigger kernel panic. Instead,
1471	 * the PG_hwpoison page will be caught and isolated on the entrance to
1472	 * the free buddy page pool.
1473	 */
1474	if (TestClearPageHWPoison(page)) {
1475		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476				 pfn, &unpoison_rs);
1477		num_poisoned_pages_dec();
1478		freeit = 1;
1479	}
1480	unlock_page(page);
1481
1482	put_hwpoison_page(page);
1483	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484		put_hwpoison_page(page);
1485
1486	return 0;
1487}
1488EXPORT_SYMBOL(unpoison_memory);
1489
1490static struct page *new_page(struct page *p, unsigned long private)
1491{
1492	int nid = page_to_nid(p);
1493
1494	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1495}
1496
1497/*
1498 * Safely get reference count of an arbitrary page.
1499 * Returns 0 for a free page, -EIO for a zero refcount page
1500 * that is not free, and 1 for any other page type.
1501 * For 1 the page is returned with increased page count, otherwise not.
1502 */
1503static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1504{
1505	int ret;
1506
1507	if (flags & MF_COUNT_INCREASED)
1508		return 1;
1509
1510	/*
1511	 * When the target page is a free hugepage, just remove it
1512	 * from free hugepage list.
1513	 */
1514	if (!get_hwpoison_page(p)) {
1515		if (PageHuge(p)) {
1516			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517			ret = 0;
1518		} else if (is_free_buddy_page(p)) {
1519			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520			ret = 0;
1521		} else {
1522			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523				__func__, pfn, p->flags);
1524			ret = -EIO;
1525		}
1526	} else {
1527		/* Not a free page */
1528		ret = 1;
1529	}
1530	return ret;
1531}
1532
1533static int get_any_page(struct page *page, unsigned long pfn, int flags)
1534{
1535	int ret = __get_any_page(page, pfn, flags);
1536
1537	if (ret == 1 && !PageHuge(page) &&
1538	    !PageLRU(page) && !__PageMovable(page)) {
1539		/*
1540		 * Try to free it.
1541		 */
1542		put_hwpoison_page(page);
1543		shake_page(page, 1);
1544
1545		/*
1546		 * Did it turn free?
1547		 */
1548		ret = __get_any_page(page, pfn, 0);
1549		if (ret == 1 && !PageLRU(page)) {
1550			/* Drop page reference which is from __get_any_page() */
1551			put_hwpoison_page(page);
1552			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553				pfn, page->flags, &page->flags);
1554			return -EIO;
1555		}
1556	}
1557	return ret;
1558}
1559
1560static int soft_offline_huge_page(struct page *page, int flags)
1561{
1562	int ret;
1563	unsigned long pfn = page_to_pfn(page);
1564	struct page *hpage = compound_head(page);
1565	LIST_HEAD(pagelist);
1566
1567	/*
1568	 * This double-check of PageHWPoison is to avoid the race with
1569	 * memory_failure(). See also comment in __soft_offline_page().
 
 
 
1570	 */
1571	lock_page(hpage);
1572	if (PageHWPoison(hpage)) {
1573		unlock_page(hpage);
1574		put_hwpoison_page(hpage);
1575		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576		return -EBUSY;
1577	}
1578	unlock_page(hpage);
1579
1580	ret = isolate_huge_page(hpage, &pagelist);
1581	/*
1582	 * get_any_page() and isolate_huge_page() takes a refcount each,
1583	 * so need to drop one here.
1584	 */
1585	put_hwpoison_page(hpage);
1586	if (!ret) {
1587		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588		return -EBUSY;
1589	}
1590
1591	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593	if (ret) {
1594		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595			pfn, ret, page->flags, &page->flags);
1596		if (!list_empty(&pagelist))
1597			putback_movable_pages(&pagelist);
1598		if (ret > 0)
1599			ret = -EIO;
1600	} else {
1601		if (PageHuge(page))
1602			dissolve_free_huge_page(page);
1603	}
1604	return ret;
1605}
1606
1607static int __soft_offline_page(struct page *page, int flags)
 
 
 
 
 
1608{
1609	int ret;
1610	unsigned long pfn = page_to_pfn(page);
 
 
 
 
 
 
 
 
1611
1612	/*
1613	 * Check PageHWPoison again inside page lock because PageHWPoison
1614	 * is set by memory_failure() outside page lock. Note that
1615	 * memory_failure() also double-checks PageHWPoison inside page lock,
1616	 * so there's no race between soft_offline_page() and memory_failure().
1617	 */
1618	lock_page(page);
1619	wait_on_page_writeback(page);
 
 
 
1620	if (PageHWPoison(page)) {
1621		unlock_page(page);
1622		put_hwpoison_page(page);
1623		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624		return -EBUSY;
1625	}
1626	/*
1627	 * Try to invalidate first. This should work for
1628	 * non dirty unmapped page cache pages.
1629	 */
1630	ret = invalidate_inode_page(page);
1631	unlock_page(page);
1632	/*
1633	 * RED-PEN would be better to keep it isolated here, but we
1634	 * would need to fix isolation locking first.
1635	 */
1636	if (ret == 1) {
1637		put_hwpoison_page(page);
1638		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639		SetPageHWPoison(page);
1640		num_poisoned_pages_inc();
1641		return 0;
1642	}
1643
1644	/*
1645	 * Simple invalidation didn't work.
1646	 * Try to migrate to a new page instead. migrate.c
1647	 * handles a large number of cases for us.
1648	 */
1649	if (PageLRU(page))
1650		ret = isolate_lru_page(page);
1651	else
1652		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1653	/*
1654	 * Drop page reference which is came from get_any_page()
1655	 * successful isolate_lru_page() already took another one.
1656	 */
1657	put_hwpoison_page(page);
1658	if (!ret) {
1659		LIST_HEAD(pagelist);
1660		/*
1661		 * After isolated lru page, the PageLRU will be cleared,
1662		 * so use !__PageMovable instead for LRU page's mapping
1663		 * cannot have PAGE_MAPPING_MOVABLE.
1664		 */
1665		if (!__PageMovable(page))
1666			inc_node_page_state(page, NR_ISOLATED_ANON +
1667						page_is_file_cache(page));
1668		list_add(&page->lru, &pagelist);
1669		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671		if (ret) {
 
 
 
 
 
 
 
 
 
 
 
1672			if (!list_empty(&pagelist))
1673				putback_movable_pages(&pagelist);
1674
1675			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676				pfn, ret, page->flags, &page->flags);
1677			if (ret > 0)
1678				ret = -EIO;
1679		}
1680	} else {
1681		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682			pfn, ret, page_count(page), page->flags, &page->flags);
 
1683	}
1684	return ret;
1685}
1686
1687static int soft_offline_in_use_page(struct page *page, int flags)
1688{
1689	int ret;
1690	struct page *hpage = compound_head(page);
1691
1692	if (!PageHuge(page) && PageTransHuge(hpage)) {
1693		lock_page(hpage);
1694		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695			unlock_page(hpage);
1696			if (!PageAnon(hpage))
1697				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698			else
1699				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700			put_hwpoison_page(hpage);
1701			return -EBUSY;
1702		}
1703		unlock_page(hpage);
1704		get_hwpoison_page(page);
1705		put_hwpoison_page(hpage);
1706	}
1707
1708	if (PageHuge(page))
1709		ret = soft_offline_huge_page(page, flags);
1710	else
1711		ret = __soft_offline_page(page, flags);
1712
1713	return ret;
1714}
1715
1716static void soft_offline_free_page(struct page *page)
1717{
1718	struct page *head = compound_head(page);
1719
1720	if (!TestSetPageHWPoison(head)) {
1721		num_poisoned_pages_inc();
1722		if (PageHuge(head))
1723			dissolve_free_huge_page(page);
1724	}
1725}
1726
1727/**
1728 * soft_offline_page - Soft offline a page.
1729 * @page: page to offline
1730 * @flags: flags. Same as memory_failure().
1731 *
1732 * Returns 0 on success, otherwise negated errno.
 
 
1733 *
1734 * Soft offline a page, by migration or invalidation,
1735 * without killing anything. This is for the case when
1736 * a page is not corrupted yet (so it's still valid to access),
1737 * but has had a number of corrected errors and is better taken
1738 * out.
1739 *
1740 * The actual policy on when to do that is maintained by
1741 * user space.
1742 *
1743 * This should never impact any application or cause data loss,
1744 * however it might take some time.
1745 *
1746 * This is not a 100% solution for all memory, but tries to be
1747 * ``good enough'' for the majority of memory.
1748 */
1749int soft_offline_page(struct page *page, int flags)
1750{
1751	int ret;
1752	unsigned long pfn = page_to_pfn(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753
1754	if (PageHWPoison(page)) {
1755		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756		if (flags & MF_COUNT_INCREASED)
1757			put_hwpoison_page(page);
1758		return -EBUSY;
1759	}
1760
 
1761	get_online_mems();
1762	ret = get_any_page(page, pfn, flags);
1763	put_online_mems();
1764
1765	if (ret > 0)
1766		ret = soft_offline_in_use_page(page, flags);
1767	else if (ret == 0)
1768		soft_offline_free_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1769
1770	return ret;
1771}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
 
 
 
 
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 *
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.	The tricky part
  14 * here is that we can access any page asynchronously in respect to
  15 * other VM users, because memory failures could happen anytime and
  16 * anywhere. This could violate some of their assumptions. This is why
  17 * this code has to be extremely careful. Generally it tries to use
  18 * normal locking rules, as in get the standard locks, even if that means
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/mm/page-types when running a real workload.
  28 *
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back
  31 * from RMAP chains to processes has to walk the complete process list and
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core
  34 * VM.
  35 */
  36
  37#define pr_fmt(fmt) "Memory failure: " fmt
  38
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
 
  42#include <linux/sched/signal.h>
  43#include <linux/sched/task.h>
  44#include <linux/dax.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
 
  52#include <linux/slab.h>
  53#include <linux/swapops.h>
  54#include <linux/hugetlb.h>
  55#include <linux/memory_hotplug.h>
  56#include <linux/mm_inline.h>
  57#include <linux/memremap.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include <linux/pagewalk.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/sysctl.h>
  63#include "swap.h"
  64#include "internal.h"
  65#include "ras/ras_event.h"
  66
  67static int sysctl_memory_failure_early_kill __read_mostly;
  68
  69static int sysctl_memory_failure_recovery __read_mostly = 1;
  70
  71atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  72
  73static bool hw_memory_failure __read_mostly = false;
  74
  75static DEFINE_MUTEX(mf_mutex);
  76
  77void num_poisoned_pages_inc(unsigned long pfn)
  78{
  79	atomic_long_inc(&num_poisoned_pages);
  80	memblk_nr_poison_inc(pfn);
  81}
  82
  83void num_poisoned_pages_sub(unsigned long pfn, long i)
  84{
  85	atomic_long_sub(i, &num_poisoned_pages);
  86	if (pfn != -1UL)
  87		memblk_nr_poison_sub(pfn, i);
  88}
  89
  90/**
  91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
  92 * @_name: name of the file in the per NUMA sysfs directory.
  93 */
  94#define MF_ATTR_RO(_name)					\
  95static ssize_t _name##_show(struct device *dev,			\
  96			    struct device_attribute *attr,	\
  97			    char *buf)				\
  98{								\
  99	struct memory_failure_stats *mf_stats =			\
 100		&NODE_DATA(dev->id)->mf_stats;			\
 101	return sprintf(buf, "%lu\n", mf_stats->_name);		\
 102}								\
 103static DEVICE_ATTR_RO(_name)
 104
 105MF_ATTR_RO(total);
 106MF_ATTR_RO(ignored);
 107MF_ATTR_RO(failed);
 108MF_ATTR_RO(delayed);
 109MF_ATTR_RO(recovered);
 110
 111static struct attribute *memory_failure_attr[] = {
 112	&dev_attr_total.attr,
 113	&dev_attr_ignored.attr,
 114	&dev_attr_failed.attr,
 115	&dev_attr_delayed.attr,
 116	&dev_attr_recovered.attr,
 117	NULL,
 118};
 119
 120const struct attribute_group memory_failure_attr_group = {
 121	.name = "memory_failure",
 122	.attrs = memory_failure_attr,
 123};
 124
 125static struct ctl_table memory_failure_table[] = {
 126	{
 127		.procname	= "memory_failure_early_kill",
 128		.data		= &sysctl_memory_failure_early_kill,
 129		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
 130		.mode		= 0644,
 131		.proc_handler	= proc_dointvec_minmax,
 132		.extra1		= SYSCTL_ZERO,
 133		.extra2		= SYSCTL_ONE,
 134	},
 135	{
 136		.procname	= "memory_failure_recovery",
 137		.data		= &sysctl_memory_failure_recovery,
 138		.maxlen		= sizeof(sysctl_memory_failure_recovery),
 139		.mode		= 0644,
 140		.proc_handler	= proc_dointvec_minmax,
 141		.extra1		= SYSCTL_ZERO,
 142		.extra2		= SYSCTL_ONE,
 143	},
 144	{ }
 145};
 146
 147/*
 148 * Return values:
 149 *   1:   the page is dissolved (if needed) and taken off from buddy,
 150 *   0:   the page is dissolved (if needed) and not taken off from buddy,
 151 *   < 0: failed to dissolve.
 152 */
 153static int __page_handle_poison(struct page *page)
 154{
 155	int ret;
 156
 157	/*
 158	 * zone_pcp_disable() can't be used here. It will
 159	 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold
 160	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
 161	 * optimization is enabled. This will break current lock dependency
 162	 * chain and leads to deadlock.
 163	 * Disabling pcp before dissolving the page was a deterministic
 164	 * approach because we made sure that those pages cannot end up in any
 165	 * PCP list. Draining PCP lists expels those pages to the buddy system,
 166	 * but nothing guarantees that those pages do not get back to a PCP
 167	 * queue if we need to refill those.
 168	 */
 169	ret = dissolve_free_huge_page(page);
 170	if (!ret) {
 171		drain_all_pages(page_zone(page));
 172		ret = take_page_off_buddy(page);
 173	}
 174
 175	return ret;
 176}
 177
 178static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
 179{
 180	if (hugepage_or_freepage) {
 181		/*
 182		 * Doing this check for free pages is also fine since dissolve_free_huge_page
 183		 * returns 0 for non-hugetlb pages as well.
 184		 */
 185		if (__page_handle_poison(page) <= 0)
 186			/*
 187			 * We could fail to take off the target page from buddy
 188			 * for example due to racy page allocation, but that's
 189			 * acceptable because soft-offlined page is not broken
 190			 * and if someone really want to use it, they should
 191			 * take it.
 192			 */
 193			return false;
 194	}
 195
 196	SetPageHWPoison(page);
 197	if (release)
 198		put_page(page);
 199	page_ref_inc(page);
 200	num_poisoned_pages_inc(page_to_pfn(page));
 201
 202	return true;
 203}
 204
 205#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
 206
 207u32 hwpoison_filter_enable = 0;
 208u32 hwpoison_filter_dev_major = ~0U;
 209u32 hwpoison_filter_dev_minor = ~0U;
 210u64 hwpoison_filter_flags_mask;
 211u64 hwpoison_filter_flags_value;
 212EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 213EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 214EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 215EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 216EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 217
 218static int hwpoison_filter_dev(struct page *p)
 219{
 220	struct address_space *mapping;
 221	dev_t dev;
 222
 223	if (hwpoison_filter_dev_major == ~0U &&
 224	    hwpoison_filter_dev_minor == ~0U)
 225		return 0;
 226
 
 
 
 
 
 
 227	mapping = page_mapping(p);
 228	if (mapping == NULL || mapping->host == NULL)
 229		return -EINVAL;
 230
 231	dev = mapping->host->i_sb->s_dev;
 232	if (hwpoison_filter_dev_major != ~0U &&
 233	    hwpoison_filter_dev_major != MAJOR(dev))
 234		return -EINVAL;
 235	if (hwpoison_filter_dev_minor != ~0U &&
 236	    hwpoison_filter_dev_minor != MINOR(dev))
 237		return -EINVAL;
 238
 239	return 0;
 240}
 241
 242static int hwpoison_filter_flags(struct page *p)
 243{
 244	if (!hwpoison_filter_flags_mask)
 245		return 0;
 246
 247	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 248				    hwpoison_filter_flags_value)
 249		return 0;
 250	else
 251		return -EINVAL;
 252}
 253
 254/*
 255 * This allows stress tests to limit test scope to a collection of tasks
 256 * by putting them under some memcg. This prevents killing unrelated/important
 257 * processes such as /sbin/init. Note that the target task may share clean
 258 * pages with init (eg. libc text), which is harmless. If the target task
 259 * share _dirty_ pages with another task B, the test scheme must make sure B
 260 * is also included in the memcg. At last, due to race conditions this filter
 261 * can only guarantee that the page either belongs to the memcg tasks, or is
 262 * a freed page.
 263 */
 264#ifdef CONFIG_MEMCG
 265u64 hwpoison_filter_memcg;
 266EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 267static int hwpoison_filter_task(struct page *p)
 268{
 269	if (!hwpoison_filter_memcg)
 270		return 0;
 271
 272	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 273		return -EINVAL;
 274
 275	return 0;
 276}
 277#else
 278static int hwpoison_filter_task(struct page *p) { return 0; }
 279#endif
 280
 281int hwpoison_filter(struct page *p)
 282{
 283	if (!hwpoison_filter_enable)
 284		return 0;
 285
 286	if (hwpoison_filter_dev(p))
 287		return -EINVAL;
 288
 289	if (hwpoison_filter_flags(p))
 290		return -EINVAL;
 291
 292	if (hwpoison_filter_task(p))
 293		return -EINVAL;
 294
 295	return 0;
 296}
 297#else
 298int hwpoison_filter(struct page *p)
 299{
 300	return 0;
 301}
 302#endif
 303
 304EXPORT_SYMBOL_GPL(hwpoison_filter);
 305
 306/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307 * Kill all processes that have a poisoned page mapped and then isolate
 308 * the page.
 309 *
 310 * General strategy:
 311 * Find all processes having the page mapped and kill them.
 312 * But we keep a page reference around so that the page is not
 313 * actually freed yet.
 314 * Then stash the page away
 315 *
 316 * There's no convenient way to get back to mapped processes
 317 * from the VMAs. So do a brute-force search over all
 318 * running processes.
 319 *
 320 * Remember that machine checks are not common (or rather
 321 * if they are common you have other problems), so this shouldn't
 322 * be a performance issue.
 323 *
 324 * Also there are some races possible while we get from the
 325 * error detection to actually handle it.
 326 */
 327
 328struct to_kill {
 329	struct list_head nd;
 330	struct task_struct *tsk;
 331	unsigned long addr;
 332	short size_shift;
 333};
 334
 335/*
 336 * Send all the processes who have the page mapped a signal.
 337 * ``action optional'' if they are not immediately affected by the error
 338 * ``action required'' if error happened in current execution context
 339 */
 340static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 341{
 342	struct task_struct *t = tk->tsk;
 343	short addr_lsb = tk->size_shift;
 344	int ret = 0;
 345
 346	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 347			pfn, t->comm, t->pid);
 348
 349	if ((flags & MF_ACTION_REQUIRED) && (t == current))
 350		ret = force_sig_mceerr(BUS_MCEERR_AR,
 351				 (void __user *)tk->addr, addr_lsb);
 352	else
 353		/*
 354		 * Signal other processes sharing the page if they have
 355		 * PF_MCE_EARLY set.
 356		 * Don't use force here, it's convenient if the signal
 357		 * can be temporarily blocked.
 358		 * This could cause a loop when the user sets SIGBUS
 359		 * to SIG_IGN, but hopefully no one will do that?
 360		 */
 361		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 362				      addr_lsb, t);
 363	if (ret < 0)
 364		pr_info("Error sending signal to %s:%d: %d\n",
 365			t->comm, t->pid, ret);
 366	return ret;
 367}
 368
 369/*
 370 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 371 * lru_add_drain_all.
 372 */
 373void shake_page(struct page *p)
 374{
 375	if (PageHuge(p))
 376		return;
 377	/*
 378	 * TODO: Could shrink slab caches here if a lightweight range-based
 379	 * shrinker will be available.
 380	 */
 381	if (PageSlab(p))
 382		return;
 383
 384	lru_add_drain_all();
 385}
 386EXPORT_SYMBOL_GPL(shake_page);
 387
 388static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
 389		unsigned long address)
 390{
 391	unsigned long ret = 0;
 392	pgd_t *pgd;
 393	p4d_t *p4d;
 394	pud_t *pud;
 395	pmd_t *pmd;
 396	pte_t *pte;
 397	pte_t ptent;
 398
 399	VM_BUG_ON_VMA(address == -EFAULT, vma);
 400	pgd = pgd_offset(vma->vm_mm, address);
 401	if (!pgd_present(*pgd))
 402		return 0;
 403	p4d = p4d_offset(pgd, address);
 404	if (!p4d_present(*p4d))
 405		return 0;
 406	pud = pud_offset(p4d, address);
 407	if (!pud_present(*pud))
 408		return 0;
 409	if (pud_devmap(*pud))
 410		return PUD_SHIFT;
 411	pmd = pmd_offset(pud, address);
 412	if (!pmd_present(*pmd))
 413		return 0;
 414	if (pmd_devmap(*pmd))
 415		return PMD_SHIFT;
 416	pte = pte_offset_map(pmd, address);
 417	if (!pte)
 418		return 0;
 419	ptent = ptep_get(pte);
 420	if (pte_present(ptent) && pte_devmap(ptent))
 421		ret = PAGE_SHIFT;
 422	pte_unmap(pte);
 423	return ret;
 424}
 425
 426/*
 427 * Failure handling: if we can't find or can't kill a process there's
 428 * not much we can do.	We just print a message and ignore otherwise.
 429 */
 430
 431#define FSDAX_INVALID_PGOFF ULONG_MAX
 432
 433/*
 434 * Schedule a process for later kill.
 435 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 436 *
 437 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
 438 * filesystem with a memory failure handler has claimed the
 439 * memory_failure event. In all other cases, page->index and
 440 * page->mapping are sufficient for mapping the page back to its
 441 * corresponding user virtual address.
 442 */
 443static void __add_to_kill(struct task_struct *tsk, struct page *p,
 444			  struct vm_area_struct *vma, struct list_head *to_kill,
 445			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
 446{
 447	struct to_kill *tk;
 448
 449	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 450	if (!tk) {
 451		pr_err("Out of memory while machine check handling\n");
 452		return;
 
 
 
 
 
 453	}
 
 
 454
 455	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
 456	if (is_zone_device_page(p)) {
 457		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
 458			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
 459		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
 460	} else
 461		tk->size_shift = page_shift(compound_head(p));
 462
 463	/*
 464	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 465	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 466	 * so "tk->size_shift == 0" effectively checks no mapping on
 467	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 468	 * to a process' address space, it's possible not all N VMAs
 469	 * contain mappings for the page, but at least one VMA does.
 470	 * Only deliver SIGBUS with payload derived from the VMA that
 471	 * has a mapping for the page.
 472	 */
 473	if (tk->addr == -EFAULT) {
 474		pr_info("Unable to find user space address %lx in %s\n",
 475			page_to_pfn(p), tsk->comm);
 476	} else if (tk->size_shift == 0) {
 477		kfree(tk);
 478		return;
 479	}
 480
 481	get_task_struct(tsk);
 482	tk->tsk = tsk;
 483	list_add_tail(&tk->nd, to_kill);
 484}
 485
 486static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
 487				  struct vm_area_struct *vma,
 488				  struct list_head *to_kill)
 489{
 490	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
 491}
 492
 493#ifdef CONFIG_KSM
 494static bool task_in_to_kill_list(struct list_head *to_kill,
 495				 struct task_struct *tsk)
 496{
 497	struct to_kill *tk, *next;
 498
 499	list_for_each_entry_safe(tk, next, to_kill, nd) {
 500		if (tk->tsk == tsk)
 501			return true;
 502	}
 503
 504	return false;
 505}
 506void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
 507		     struct vm_area_struct *vma, struct list_head *to_kill,
 508		     unsigned long ksm_addr)
 509{
 510	if (!task_in_to_kill_list(to_kill, tsk))
 511		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
 512}
 513#endif
 514/*
 515 * Kill the processes that have been collected earlier.
 516 *
 517 * Only do anything when FORCEKILL is set, otherwise just free the
 518 * list (this is used for clean pages which do not need killing)
 519 * Also when FAIL is set do a force kill because something went
 520 * wrong earlier.
 521 */
 522static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 523		unsigned long pfn, int flags)
 
 524{
 525	struct to_kill *tk, *next;
 526
 527	list_for_each_entry_safe(tk, next, to_kill, nd) {
 528		if (forcekill) {
 529			/*
 530			 * In case something went wrong with munmapping
 531			 * make sure the process doesn't catch the
 532			 * signal and then access the memory. Just kill it.
 533			 */
 534			if (fail || tk->addr == -EFAULT) {
 535				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 536				       pfn, tk->tsk->comm, tk->tsk->pid);
 537				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 538						 tk->tsk, PIDTYPE_PID);
 539			}
 540
 541			/*
 542			 * In theory the process could have mapped
 543			 * something else on the address in-between. We could
 544			 * check for that, but we need to tell the
 545			 * process anyways.
 546			 */
 547			else if (kill_proc(tk, pfn, flags) < 0)
 548				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
 
 549				       pfn, tk->tsk->comm, tk->tsk->pid);
 550		}
 551		list_del(&tk->nd);
 552		put_task_struct(tk->tsk);
 553		kfree(tk);
 554	}
 555}
 556
 557/*
 558 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 559 * on behalf of the thread group. Return task_struct of the (first found)
 560 * dedicated thread if found, and return NULL otherwise.
 561 *
 562 * We already hold rcu lock in the caller, so we don't have to call
 563 * rcu_read_lock/unlock() in this function.
 564 */
 565static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 566{
 567	struct task_struct *t;
 568
 569	for_each_thread(tsk, t) {
 570		if (t->flags & PF_MCE_PROCESS) {
 571			if (t->flags & PF_MCE_EARLY)
 572				return t;
 573		} else {
 574			if (sysctl_memory_failure_early_kill)
 575				return t;
 576		}
 577	}
 578	return NULL;
 579}
 580
 581/*
 582 * Determine whether a given process is "early kill" process which expects
 583 * to be signaled when some page under the process is hwpoisoned.
 584 * Return task_struct of the dedicated thread (main thread unless explicitly
 585 * specified) if the process is "early kill" and otherwise returns NULL.
 586 *
 587 * Note that the above is true for Action Optional case. For Action Required
 588 * case, it's only meaningful to the current thread which need to be signaled
 589 * with SIGBUS, this error is Action Optional for other non current
 590 * processes sharing the same error page,if the process is "early kill", the
 591 * task_struct of the dedicated thread will also be returned.
 592 */
 593struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
 
 594{
 
 595	if (!tsk->mm)
 596		return NULL;
 597	/*
 598	 * Comparing ->mm here because current task might represent
 599	 * a subthread, while tsk always points to the main thread.
 600	 */
 601	if (force_early && tsk->mm == current->mm)
 602		return current;
 603
 604	return find_early_kill_thread(tsk);
 605}
 606
 607/*
 608 * Collect processes when the error hit an anonymous page.
 609 */
 610static void collect_procs_anon(struct folio *folio, struct page *page,
 611		struct list_head *to_kill, int force_early)
 612{
 613	struct vm_area_struct *vma;
 614	struct task_struct *tsk;
 615	struct anon_vma *av;
 616	pgoff_t pgoff;
 617
 618	av = folio_lock_anon_vma_read(folio, NULL);
 619	if (av == NULL)	/* Not actually mapped anymore */
 620		return;
 621
 622	pgoff = page_to_pgoff(page);
 623	rcu_read_lock();
 624	for_each_process(tsk) {
 625		struct anon_vma_chain *vmac;
 626		struct task_struct *t = task_early_kill(tsk, force_early);
 627
 628		if (!t)
 629			continue;
 630		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 631					       pgoff, pgoff) {
 632			vma = vmac->vma;
 633			if (vma->vm_mm != t->mm)
 634				continue;
 635			if (!page_mapped_in_vma(page, vma))
 636				continue;
 637			add_to_kill_anon_file(t, page, vma, to_kill);
 
 638		}
 639	}
 640	rcu_read_unlock();
 641	anon_vma_unlock_read(av);
 642}
 643
 644/*
 645 * Collect processes when the error hit a file mapped page.
 646 */
 647static void collect_procs_file(struct folio *folio, struct page *page,
 648		struct list_head *to_kill, int force_early)
 649{
 650	struct vm_area_struct *vma;
 651	struct task_struct *tsk;
 652	struct address_space *mapping = folio->mapping;
 653	pgoff_t pgoff;
 654
 655	i_mmap_lock_read(mapping);
 656	rcu_read_lock();
 657	pgoff = page_to_pgoff(page);
 658	for_each_process(tsk) {
 
 659		struct task_struct *t = task_early_kill(tsk, force_early);
 660
 661		if (!t)
 662			continue;
 663		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 664				      pgoff) {
 665			/*
 666			 * Send early kill signal to tasks where a vma covers
 667			 * the page but the corrupted page is not necessarily
 668			 * mapped in its pte.
 669			 * Assume applications who requested early kill want
 670			 * to be informed of all such data corruptions.
 671			 */
 672			if (vma->vm_mm == t->mm)
 673				add_to_kill_anon_file(t, page, vma, to_kill);
 674		}
 675	}
 676	rcu_read_unlock();
 677	i_mmap_unlock_read(mapping);
 678}
 679
 680#ifdef CONFIG_FS_DAX
 681static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
 682			      struct vm_area_struct *vma,
 683			      struct list_head *to_kill, pgoff_t pgoff)
 684{
 685	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
 686}
 687
 688/*
 689 * Collect processes when the error hit a fsdax page.
 
 
 
 690 */
 691static void collect_procs_fsdax(struct page *page,
 692		struct address_space *mapping, pgoff_t pgoff,
 693		struct list_head *to_kill, bool pre_remove)
 694{
 695	struct vm_area_struct *vma;
 696	struct task_struct *tsk;
 697
 698	i_mmap_lock_read(mapping);
 699	rcu_read_lock();
 700	for_each_process(tsk) {
 701		struct task_struct *t = tsk;
 702
 703		/*
 704		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
 705		 * the current may not be the one accessing the fsdax page.
 706		 * Otherwise, search for the current task.
 707		 */
 708		if (!pre_remove)
 709			t = task_early_kill(tsk, true);
 710		if (!t)
 711			continue;
 712		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 713			if (vma->vm_mm == t->mm)
 714				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
 715		}
 716	}
 717	rcu_read_unlock();
 718	i_mmap_unlock_read(mapping);
 719}
 720#endif /* CONFIG_FS_DAX */
 721
 722/*
 723 * Collect the processes who have the corrupted page mapped to kill.
 724 */
 725static void collect_procs(struct folio *folio, struct page *page,
 726		struct list_head *tokill, int force_early)
 727{
 728	if (!folio->mapping)
 729		return;
 730	if (unlikely(PageKsm(page)))
 731		collect_procs_ksm(page, tokill, force_early);
 732	else if (PageAnon(page))
 733		collect_procs_anon(folio, page, tokill, force_early);
 734	else
 735		collect_procs_file(folio, page, tokill, force_early);
 736}
 737
 738struct hwpoison_walk {
 739	struct to_kill tk;
 740	unsigned long pfn;
 741	int flags;
 742};
 743
 744static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
 745{
 746	tk->addr = addr;
 747	tk->size_shift = shift;
 748}
 749
 750static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
 751				unsigned long poisoned_pfn, struct to_kill *tk)
 752{
 753	unsigned long pfn = 0;
 754
 755	if (pte_present(pte)) {
 756		pfn = pte_pfn(pte);
 757	} else {
 758		swp_entry_t swp = pte_to_swp_entry(pte);
 759
 760		if (is_hwpoison_entry(swp))
 761			pfn = swp_offset_pfn(swp);
 762	}
 763
 764	if (!pfn || pfn != poisoned_pfn)
 765		return 0;
 766
 767	set_to_kill(tk, addr, shift);
 768	return 1;
 769}
 770
 771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 772static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 773				      struct hwpoison_walk *hwp)
 774{
 775	pmd_t pmd = *pmdp;
 776	unsigned long pfn;
 777	unsigned long hwpoison_vaddr;
 778
 779	if (!pmd_present(pmd))
 780		return 0;
 781	pfn = pmd_pfn(pmd);
 782	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
 783		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
 784		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
 785		return 1;
 786	}
 787	return 0;
 788}
 789#else
 790static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 791				      struct hwpoison_walk *hwp)
 792{
 793	return 0;
 794}
 795#endif
 796
 797static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
 798			      unsigned long end, struct mm_walk *walk)
 799{
 800	struct hwpoison_walk *hwp = walk->private;
 801	int ret = 0;
 802	pte_t *ptep, *mapped_pte;
 803	spinlock_t *ptl;
 804
 805	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
 806	if (ptl) {
 807		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
 808		spin_unlock(ptl);
 809		goto out;
 810	}
 811
 812	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
 813						addr, &ptl);
 814	if (!ptep)
 815		goto out;
 816
 817	for (; addr != end; ptep++, addr += PAGE_SIZE) {
 818		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
 819					     hwp->pfn, &hwp->tk);
 820		if (ret == 1)
 821			break;
 822	}
 823	pte_unmap_unlock(mapped_pte, ptl);
 824out:
 825	cond_resched();
 826	return ret;
 827}
 828
 829#ifdef CONFIG_HUGETLB_PAGE
 830static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
 831			    unsigned long addr, unsigned long end,
 832			    struct mm_walk *walk)
 833{
 834	struct hwpoison_walk *hwp = walk->private;
 835	pte_t pte = huge_ptep_get(ptep);
 836	struct hstate *h = hstate_vma(walk->vma);
 837
 838	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
 839				      hwp->pfn, &hwp->tk);
 840}
 841#else
 842#define hwpoison_hugetlb_range	NULL
 843#endif
 844
 845static const struct mm_walk_ops hwpoison_walk_ops = {
 846	.pmd_entry = hwpoison_pte_range,
 847	.hugetlb_entry = hwpoison_hugetlb_range,
 848	.walk_lock = PGWALK_RDLOCK,
 849};
 850
 851/*
 852 * Sends SIGBUS to the current process with error info.
 853 *
 854 * This function is intended to handle "Action Required" MCEs on already
 855 * hardware poisoned pages. They could happen, for example, when
 856 * memory_failure() failed to unmap the error page at the first call, or
 857 * when multiple local machine checks happened on different CPUs.
 858 *
 859 * MCE handler currently has no easy access to the error virtual address,
 860 * so this function walks page table to find it. The returned virtual address
 861 * is proper in most cases, but it could be wrong when the application
 862 * process has multiple entries mapping the error page.
 863 */
 864static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
 865				  int flags)
 866{
 867	int ret;
 868	struct hwpoison_walk priv = {
 869		.pfn = pfn,
 870	};
 871	priv.tk.tsk = p;
 872
 873	if (!p->mm)
 874		return -EFAULT;
 875
 876	mmap_read_lock(p->mm);
 877	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
 878			      (void *)&priv);
 879	if (ret == 1 && priv.tk.addr)
 880		kill_proc(&priv.tk, pfn, flags);
 881	else
 882		ret = 0;
 883	mmap_read_unlock(p->mm);
 884	return ret > 0 ? -EHWPOISON : -EFAULT;
 885}
 886
 887static const char *action_name[] = {
 888	[MF_IGNORED] = "Ignored",
 889	[MF_FAILED] = "Failed",
 890	[MF_DELAYED] = "Delayed",
 891	[MF_RECOVERED] = "Recovered",
 892};
 893
 894static const char * const action_page_types[] = {
 895	[MF_MSG_KERNEL]			= "reserved kernel page",
 896	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 897	[MF_MSG_SLAB]			= "kernel slab page",
 898	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 
 899	[MF_MSG_HUGE]			= "huge page",
 900	[MF_MSG_FREE_HUGE]		= "free huge page",
 
 901	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 902	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 903	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 904	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 905	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 906	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 907	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 908	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 909	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 910	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 911	[MF_MSG_BUDDY]			= "free buddy page",
 912	[MF_MSG_DAX]			= "dax page",
 913	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
 914	[MF_MSG_UNKNOWN]		= "unknown page",
 915};
 916
 917/*
 918 * XXX: It is possible that a page is isolated from LRU cache,
 919 * and then kept in swap cache or failed to remove from page cache.
 920 * The page count will stop it from being freed by unpoison.
 921 * Stress tests should be aware of this memory leak problem.
 922 */
 923static int delete_from_lru_cache(struct folio *folio)
 924{
 925	if (folio_isolate_lru(folio)) {
 926		/*
 927		 * Clear sensible page flags, so that the buddy system won't
 928		 * complain when the folio is unpoison-and-freed.
 929		 */
 930		folio_clear_active(folio);
 931		folio_clear_unevictable(folio);
 932
 933		/*
 934		 * Poisoned page might never drop its ref count to 0 so we have
 935		 * to uncharge it manually from its memcg.
 936		 */
 937		mem_cgroup_uncharge(folio);
 938
 939		/*
 940		 * drop the refcount elevated by folio_isolate_lru()
 941		 */
 942		folio_put(folio);
 943		return 0;
 944	}
 945	return -EIO;
 946}
 947
 948static int truncate_error_folio(struct folio *folio, unsigned long pfn,
 949				struct address_space *mapping)
 950{
 951	int ret = MF_FAILED;
 952
 953	if (mapping->a_ops->error_remove_folio) {
 954		int err = mapping->a_ops->error_remove_folio(mapping, folio);
 955
 956		if (err != 0)
 957			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
 958		else if (!filemap_release_folio(folio, GFP_NOIO))
 959			pr_info("%#lx: failed to release buffers\n", pfn);
 960		else
 
 
 
 961			ret = MF_RECOVERED;
 
 962	} else {
 963		/*
 964		 * If the file system doesn't support it just invalidate
 965		 * This fails on dirty or anything with private pages
 966		 */
 967		if (mapping_evict_folio(mapping, folio))
 968			ret = MF_RECOVERED;
 969		else
 970			pr_info("%#lx: Failed to invalidate\n",	pfn);
 
 971	}
 972
 973	return ret;
 974}
 975
 976struct page_state {
 977	unsigned long mask;
 978	unsigned long res;
 979	enum mf_action_page_type type;
 980
 981	/* Callback ->action() has to unlock the relevant page inside it. */
 982	int (*action)(struct page_state *ps, struct page *p);
 983};
 984
 985/*
 986 * Return true if page is still referenced by others, otherwise return
 987 * false.
 988 *
 989 * The extra_pins is true when one extra refcount is expected.
 990 */
 991static bool has_extra_refcount(struct page_state *ps, struct page *p,
 992			       bool extra_pins)
 993{
 994	int count = page_count(p) - 1;
 995
 996	if (extra_pins)
 997		count -= folio_nr_pages(page_folio(p));
 998
 999	if (count > 0) {
1000		pr_err("%#lx: %s still referenced by %d users\n",
1001		       page_to_pfn(p), action_page_types[ps->type], count);
1002		return true;
1003	}
1004
1005	return false;
1006}
1007
1008/*
1009 * Error hit kernel page.
1010 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1011 * could be more sophisticated.
1012 */
1013static int me_kernel(struct page_state *ps, struct page *p)
1014{
1015	unlock_page(p);
1016	return MF_IGNORED;
1017}
1018
1019/*
1020 * Page in unknown state. Do nothing.
1021 */
1022static int me_unknown(struct page_state *ps, struct page *p)
1023{
1024	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1025	unlock_page(p);
1026	return MF_FAILED;
1027}
1028
1029/*
1030 * Clean (or cleaned) page cache page.
1031 */
1032static int me_pagecache_clean(struct page_state *ps, struct page *p)
1033{
1034	struct folio *folio = page_folio(p);
1035	int ret;
1036	struct address_space *mapping;
1037	bool extra_pins;
1038
1039	delete_from_lru_cache(folio);
1040
1041	/*
1042	 * For anonymous folios the only reference left
1043	 * should be the one m_f() holds.
1044	 */
1045	if (folio_test_anon(folio)) {
1046		ret = MF_RECOVERED;
1047		goto out;
1048	}
1049
1050	/*
1051	 * Now truncate the page in the page cache. This is really
1052	 * more like a "temporary hole punch"
1053	 * Don't do this for block devices when someone else
1054	 * has a reference, because it could be file system metadata
1055	 * and that's not safe to truncate.
1056	 */
1057	mapping = folio_mapping(folio);
1058	if (!mapping) {
1059		/* Folio has been torn down in the meantime */
1060		ret = MF_FAILED;
1061		goto out;
 
1062	}
1063
1064	/*
1065	 * The shmem page is kept in page cache instead of truncating
1066	 * so is expected to have an extra refcount after error-handling.
1067	 */
1068	extra_pins = shmem_mapping(mapping);
1069
1070	/*
1071	 * Truncation is a bit tricky. Enable it per file system for now.
1072	 *
1073	 * Open: to take i_rwsem or not for this? Right now we don't.
1074	 */
1075	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1076	if (has_extra_refcount(ps, p, extra_pins))
1077		ret = MF_FAILED;
1078
1079out:
1080	folio_unlock(folio);
1081
1082	return ret;
1083}
1084
1085/*
1086 * Dirty pagecache page
1087 * Issues: when the error hit a hole page the error is not properly
1088 * propagated.
1089 */
1090static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1091{
1092	struct address_space *mapping = page_mapping(p);
1093
1094	SetPageError(p);
1095	/* TBD: print more information about the file. */
1096	if (mapping) {
1097		/*
1098		 * IO error will be reported by write(), fsync(), etc.
1099		 * who check the mapping.
1100		 * This way the application knows that something went
1101		 * wrong with its dirty file data.
1102		 *
1103		 * There's one open issue:
1104		 *
1105		 * The EIO will be only reported on the next IO
1106		 * operation and then cleared through the IO map.
1107		 * Normally Linux has two mechanisms to pass IO error
1108		 * first through the AS_EIO flag in the address space
1109		 * and then through the PageError flag in the page.
1110		 * Since we drop pages on memory failure handling the
1111		 * only mechanism open to use is through AS_AIO.
1112		 *
1113		 * This has the disadvantage that it gets cleared on
1114		 * the first operation that returns an error, while
1115		 * the PageError bit is more sticky and only cleared
1116		 * when the page is reread or dropped.  If an
1117		 * application assumes it will always get error on
1118		 * fsync, but does other operations on the fd before
1119		 * and the page is dropped between then the error
1120		 * will not be properly reported.
1121		 *
1122		 * This can already happen even without hwpoisoned
1123		 * pages: first on metadata IO errors (which only
1124		 * report through AS_EIO) or when the page is dropped
1125		 * at the wrong time.
1126		 *
1127		 * So right now we assume that the application DTRT on
1128		 * the first EIO, but we're not worse than other parts
1129		 * of the kernel.
1130		 */
1131		mapping_set_error(mapping, -EIO);
1132	}
1133
1134	return me_pagecache_clean(ps, p);
1135}
1136
1137/*
1138 * Clean and dirty swap cache.
1139 *
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * cache and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145 * and then
1146 *      - clear dirty bit to prevent IO
1147 *      - remove from LRU
1148 *      - but keep in the swap cache, so that when we return to it on
1149 *        a later page fault, we know the application is accessing
1150 *        corrupted data and shall be killed (we installed simple
1151 *        interception code in do_swap_page to catch it).
1152 *
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1155 */
1156static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157{
1158	struct folio *folio = page_folio(p);
1159	int ret;
1160	bool extra_pins = false;
1161
1162	folio_clear_dirty(folio);
1163	/* Trigger EIO in shmem: */
1164	folio_clear_uptodate(folio);
1165
1166	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167	folio_unlock(folio);
1168
1169	if (ret == MF_DELAYED)
1170		extra_pins = true;
1171
1172	if (has_extra_refcount(ps, p, extra_pins))
1173		ret = MF_FAILED;
1174
1175	return ret;
1176}
1177
1178static int me_swapcache_clean(struct page_state *ps, struct page *p)
1179{
1180	struct folio *folio = page_folio(p);
1181	int ret;
1182
1183	delete_from_swap_cache(folio);
1184
1185	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186	folio_unlock(folio);
1187
1188	if (has_extra_refcount(ps, p, false))
1189		ret = MF_FAILED;
1190
1191	return ret;
1192}
1193
1194/*
1195 * Huge pages. Needs work.
1196 * Issues:
1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198 *   To narrow down kill region to one page, we need to break up pmd.
1199 */
1200static int me_huge_page(struct page_state *ps, struct page *p)
1201{
1202	struct folio *folio = page_folio(p);
1203	int res;
1204	struct address_space *mapping;
1205	bool extra_pins = false;
1206
1207	mapping = folio_mapping(folio);
 
 
 
1208	if (mapping) {
1209		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210		/* The page is kept in page cache. */
1211		extra_pins = true;
1212		folio_unlock(folio);
1213	} else {
1214		folio_unlock(folio);
1215		/*
1216		 * migration entry prevents later access on error hugepage,
1217		 * so we can free and dissolve it into buddy to save healthy
1218		 * subpages.
1219		 */
1220		folio_put(folio);
1221		if (__page_handle_poison(p) >= 0) {
1222			page_ref_inc(p);
1223			res = MF_RECOVERED;
1224		} else {
1225			res = MF_FAILED;
1226		}
1227	}
1228
1229	if (has_extra_refcount(ps, p, extra_pins))
1230		res = MF_FAILED;
1231
1232	return res;
1233}
1234
1235/*
1236 * Various page states we can handle.
1237 *
1238 * A page state is defined by its current page->flags bits.
1239 * The table matches them in order and calls the right handler.
1240 *
1241 * This is quite tricky because we can access page at any time
1242 * in its live cycle, so all accesses have to be extremely careful.
1243 *
1244 * This is not complete. More states could be added.
1245 * For any missing state don't attempt recovery.
1246 */
1247
1248#define dirty		(1UL << PG_dirty)
1249#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250#define unevict		(1UL << PG_unevictable)
1251#define mlock		(1UL << PG_mlocked)
 
1252#define lru		(1UL << PG_lru)
1253#define head		(1UL << PG_head)
1254#define slab		(1UL << PG_slab)
1255#define reserved	(1UL << PG_reserved)
1256
1257static struct page_state error_states[] = {
 
 
 
 
 
1258	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1259	/*
1260	 * free pages are specially detected outside this table:
1261	 * PG_buddy pages only make a small fraction of all free pages.
1262	 */
1263
1264	/*
1265	 * Could in theory check if slab page is free or if we can drop
1266	 * currently unused objects without touching them. But just
1267	 * treat it as standard kernel for now.
1268	 */
1269	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1270
1271	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1272
1273	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1274	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1275
1276	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1277	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1278
1279	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1280	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1281
1282	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1283	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1284
1285	/*
1286	 * Catchall entry: must be at end.
1287	 */
1288	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1289};
1290
1291#undef dirty
1292#undef sc
1293#undef unevict
1294#undef mlock
 
1295#undef lru
1296#undef head
1297#undef slab
1298#undef reserved
1299
1300static void update_per_node_mf_stats(unsigned long pfn,
1301				     enum mf_result result)
1302{
1303	int nid = MAX_NUMNODES;
1304	struct memory_failure_stats *mf_stats = NULL;
1305
1306	nid = pfn_to_nid(pfn);
1307	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1308		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1309		return;
1310	}
1311
1312	mf_stats = &NODE_DATA(nid)->mf_stats;
1313	switch (result) {
1314	case MF_IGNORED:
1315		++mf_stats->ignored;
1316		break;
1317	case MF_FAILED:
1318		++mf_stats->failed;
1319		break;
1320	case MF_DELAYED:
1321		++mf_stats->delayed;
1322		break;
1323	case MF_RECOVERED:
1324		++mf_stats->recovered;
1325		break;
1326	default:
1327		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1328		break;
1329	}
1330	++mf_stats->total;
1331}
1332
1333/*
1334 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1335 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1336 */
1337static int action_result(unsigned long pfn, enum mf_action_page_type type,
1338			 enum mf_result result)
1339{
1340	trace_memory_failure_event(pfn, type, result);
1341
1342	num_poisoned_pages_inc(pfn);
1343
1344	update_per_node_mf_stats(pfn, result);
1345
1346	pr_err("%#lx: recovery action for %s: %s\n",
1347		pfn, action_page_types[type], action_name[result]);
1348
1349	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1350}
1351
1352static int page_action(struct page_state *ps, struct page *p,
1353			unsigned long pfn)
1354{
1355	int result;
 
 
 
1356
1357	/* page p should be unlocked after returning from ps->action().  */
1358	result = ps->action(ps, p);
 
 
 
 
 
 
 
1359
1360	/* Could do more checks here if page looks ok */
1361	/*
1362	 * Could adjust zone counters here to correct for the missing page.
1363	 */
1364
1365	return action_result(pfn, ps->type, result);
1366}
1367
1368static inline bool PageHWPoisonTakenOff(struct page *page)
1369{
1370	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1371}
1372
1373void SetPageHWPoisonTakenOff(struct page *page)
1374{
1375	set_page_private(page, MAGIC_HWPOISON);
1376}
1377
1378void ClearPageHWPoisonTakenOff(struct page *page)
1379{
1380	if (PageHWPoison(page))
1381		set_page_private(page, 0);
1382}
1383
1384/*
1385 * Return true if a page type of a given page is supported by hwpoison
1386 * mechanism (while handling could fail), otherwise false.  This function
1387 * does not return true for hugetlb or device memory pages, so it's assumed
1388 * to be called only in the context where we never have such pages.
1389 */
1390static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1391{
1392	if (PageSlab(page))
1393		return false;
1394
1395	/* Soft offline could migrate non-LRU movable pages */
1396	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1397		return true;
1398
1399	return PageLRU(page) || is_free_buddy_page(page);
1400}
1401
1402static int __get_hwpoison_page(struct page *page, unsigned long flags)
1403{
1404	struct folio *folio = page_folio(page);
1405	int ret = 0;
1406	bool hugetlb = false;
1407
1408	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1409	if (hugetlb) {
1410		/* Make sure hugetlb demotion did not happen from under us. */
1411		if (folio == page_folio(page))
1412			return ret;
1413		if (ret > 0) {
1414			folio_put(folio);
1415			folio = page_folio(page);
1416		}
1417	}
1418
1419	/*
1420	 * This check prevents from calling folio_try_get() for any
1421	 * unsupported type of folio in order to reduce the risk of unexpected
1422	 * races caused by taking a folio refcount.
1423	 */
1424	if (!HWPoisonHandlable(&folio->page, flags))
1425		return -EBUSY;
1426
1427	if (folio_try_get(folio)) {
1428		if (folio == page_folio(page))
1429			return 1;
1430
1431		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1432		folio_put(folio);
 
1433	}
1434
1435	return 0;
1436}
1437
1438static int get_any_page(struct page *p, unsigned long flags)
1439{
1440	int ret = 0, pass = 0;
1441	bool count_increased = false;
1442
1443	if (flags & MF_COUNT_INCREASED)
1444		count_increased = true;
1445
1446try_again:
1447	if (!count_increased) {
1448		ret = __get_hwpoison_page(p, flags);
1449		if (!ret) {
1450			if (page_count(p)) {
1451				/* We raced with an allocation, retry. */
1452				if (pass++ < 3)
1453					goto try_again;
1454				ret = -EBUSY;
1455			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1456				/* We raced with put_page, retry. */
1457				if (pass++ < 3)
1458					goto try_again;
1459				ret = -EIO;
1460			}
1461			goto out;
1462		} else if (ret == -EBUSY) {
1463			/*
1464			 * We raced with (possibly temporary) unhandlable
1465			 * page, retry.
1466			 */
1467			if (pass++ < 3) {
1468				shake_page(p);
1469				goto try_again;
1470			}
1471			ret = -EIO;
1472			goto out;
1473		}
1474	}
1475
1476	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1477		ret = 1;
1478	} else {
1479		/*
1480		 * A page we cannot handle. Check whether we can turn
1481		 * it into something we can handle.
1482		 */
1483		if (pass++ < 3) {
1484			put_page(p);
1485			shake_page(p);
1486			count_increased = false;
1487			goto try_again;
1488		}
1489		put_page(p);
1490		ret = -EIO;
1491	}
1492out:
1493	if (ret == -EIO)
1494		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1495
1496	return ret;
1497}
1498
1499static int __get_unpoison_page(struct page *page)
1500{
1501	struct folio *folio = page_folio(page);
1502	int ret = 0;
1503	bool hugetlb = false;
1504
1505	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1506	if (hugetlb) {
1507		/* Make sure hugetlb demotion did not happen from under us. */
1508		if (folio == page_folio(page))
1509			return ret;
1510		if (ret > 0)
1511			folio_put(folio);
1512	}
1513
1514	/*
1515	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1516	 * but also isolated from buddy freelist, so need to identify the
1517	 * state and have to cancel both operations to unpoison.
1518	 */
1519	if (PageHWPoisonTakenOff(page))
1520		return -EHWPOISON;
1521
1522	return get_page_unless_zero(page) ? 1 : 0;
1523}
1524
1525/**
1526 * get_hwpoison_page() - Get refcount for memory error handling
1527 * @p:		Raw error page (hit by memory error)
1528 * @flags:	Flags controlling behavior of error handling
1529 *
1530 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1531 * error on it, after checking that the error page is in a well-defined state
1532 * (defined as a page-type we can successfully handle the memory error on it,
1533 * such as LRU page and hugetlb page).
1534 *
1535 * Memory error handling could be triggered at any time on any type of page,
1536 * so it's prone to race with typical memory management lifecycle (like
1537 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1538 * extra care for the error page's state (as done in __get_hwpoison_page()),
1539 * and has some retry logic in get_any_page().
1540 *
1541 * When called from unpoison_memory(), the caller should already ensure that
1542 * the given page has PG_hwpoison. So it's never reused for other page
1543 * allocations, and __get_unpoison_page() never races with them.
1544 *
1545 * Return: 0 on failure,
1546 *         1 on success for in-use pages in a well-defined state,
1547 *         -EIO for pages on which we can not handle memory errors,
1548 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1549 *         operations like allocation and free,
1550 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1551 */
1552static int get_hwpoison_page(struct page *p, unsigned long flags)
1553{
1554	int ret;
1555
1556	zone_pcp_disable(page_zone(p));
1557	if (flags & MF_UNPOISON)
1558		ret = __get_unpoison_page(p);
1559	else
1560		ret = get_any_page(p, flags);
1561	zone_pcp_enable(page_zone(p));
1562
1563	return ret;
1564}
1565
1566/*
1567 * Do all that is necessary to remove user space mappings. Unmap
1568 * the pages and send SIGBUS to the processes if the data was dirty.
1569 */
1570static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1571				  int flags, struct page *hpage)
1572{
1573	struct folio *folio = page_folio(hpage);
1574	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1575	struct address_space *mapping;
1576	LIST_HEAD(tokill);
1577	bool unmap_success;
1578	int forcekill;
 
1579	bool mlocked = PageMlocked(hpage);
1580
1581	/*
1582	 * Here we are interested only in user-mapped pages, so skip any
1583	 * other types of pages.
1584	 */
1585	if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1586		return true;
1587	if (!(PageLRU(hpage) || PageHuge(p)))
1588		return true;
1589
1590	/*
1591	 * This check implies we don't kill processes if their pages
1592	 * are in the swap cache early. Those are always late kills.
1593	 */
1594	if (!page_mapped(p))
1595		return true;
1596
 
 
 
 
 
1597	if (PageSwapCache(p)) {
1598		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1599		ttu &= ~TTU_HWPOISON;
 
1600	}
1601
1602	/*
1603	 * Propagate the dirty bit from PTEs to struct page first, because we
1604	 * need this to decide if we should kill or just drop the page.
1605	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1606	 * be called inside page lock (it's recommended but not enforced).
1607	 */
1608	mapping = page_mapping(hpage);
1609	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1610	    mapping_can_writeback(mapping)) {
1611		if (page_mkclean(hpage)) {
1612			SetPageDirty(hpage);
1613		} else {
1614			ttu &= ~TTU_HWPOISON;
1615			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
 
1616				pfn);
1617		}
1618	}
1619
1620	/*
1621	 * First collect all the processes that have the page
1622	 * mapped in dirty form.  This has to be done before try_to_unmap,
1623	 * because ttu takes the rmap data structures down.
 
 
 
1624	 */
1625	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1626
1627	if (PageHuge(hpage) && !PageAnon(hpage)) {
1628		/*
1629		 * For hugetlb pages in shared mappings, try_to_unmap
1630		 * could potentially call huge_pmd_unshare.  Because of
1631		 * this, take semaphore in write mode here and set
1632		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1633		 * at this higher level.
1634		 */
1635		mapping = hugetlb_page_mapping_lock_write(hpage);
1636		if (mapping) {
1637			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1638			i_mmap_unlock_write(mapping);
1639		} else
1640			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1641	} else {
1642		try_to_unmap(folio, ttu);
1643	}
1644
1645	unmap_success = !page_mapped(p);
1646	if (!unmap_success)
1647		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1648		       pfn, page_mapcount(p));
1649
1650	/*
1651	 * try_to_unmap() might put mlocked page in lru cache, so call
1652	 * shake_page() again to ensure that it's flushed.
1653	 */
1654	if (mlocked)
1655		shake_page(hpage);
1656
1657	/*
1658	 * Now that the dirty bit has been propagated to the
1659	 * struct page and all unmaps done we can decide if
1660	 * killing is needed or not.  Only kill when the page
1661	 * was dirty or the process is not restartable,
1662	 * otherwise the tokill list is merely
1663	 * freed.  When there was a problem unmapping earlier
1664	 * use a more force-full uncatchable kill to prevent
1665	 * any accesses to the poisoned memory.
1666	 */
1667	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1668		    !unmap_success;
1669	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1670
1671	return unmap_success;
1672}
1673
1674static int identify_page_state(unsigned long pfn, struct page *p,
1675				unsigned long page_flags)
1676{
1677	struct page_state *ps;
1678
1679	/*
1680	 * The first check uses the current page flags which may not have any
1681	 * relevant information. The second check with the saved page flags is
1682	 * carried out only if the first check can't determine the page status.
1683	 */
1684	for (ps = error_states;; ps++)
1685		if ((p->flags & ps->mask) == ps->res)
1686			break;
1687
1688	page_flags |= (p->flags & (1UL << PG_dirty));
1689
1690	if (!ps->mask)
1691		for (ps = error_states;; ps++)
1692			if ((page_flags & ps->mask) == ps->res)
1693				break;
1694	return page_action(ps, p, pfn);
1695}
1696
1697static int try_to_split_thp_page(struct page *page)
1698{
1699	int ret;
 
 
 
1700
1701	lock_page(page);
1702	ret = split_huge_page(page);
1703	unlock_page(page);
1704
1705	if (unlikely(ret))
1706		put_page(page);
1707
1708	return ret;
1709}
1710
1711static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1712		struct address_space *mapping, pgoff_t index, int flags)
1713{
1714	struct to_kill *tk;
1715	unsigned long size = 0;
1716
1717	list_for_each_entry(tk, to_kill, nd)
1718		if (tk->size_shift)
1719			size = max(size, 1UL << tk->size_shift);
1720
1721	if (size) {
1722		/*
1723		 * Unmap the largest mapping to avoid breaking up device-dax
1724		 * mappings which are constant size. The actual size of the
1725		 * mapping being torn down is communicated in siginfo, see
1726		 * kill_proc()
1727		 */
1728		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1729
1730		unmap_mapping_range(mapping, start, size, 0);
1731	}
1732
1733	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1734}
1735
1736/*
1737 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1738 * either do not claim or fails to claim a hwpoison event, or devdax.
1739 * The fsdax pages are initialized per base page, and the devdax pages
1740 * could be initialized either as base pages, or as compound pages with
1741 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1742 * hwpoison, such that, if a subpage of a compound page is poisoned,
1743 * simply mark the compound head page is by far sufficient.
1744 */
1745static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1746		struct dev_pagemap *pgmap)
1747{
1748	struct folio *folio = pfn_folio(pfn);
1749	LIST_HEAD(to_kill);
1750	dax_entry_t cookie;
1751	int rc = 0;
1752
1753	/*
1754	 * Prevent the inode from being freed while we are interrogating
1755	 * the address_space, typically this would be handled by
1756	 * lock_page(), but dax pages do not use the page lock. This
1757	 * also prevents changes to the mapping of this pfn until
1758	 * poison signaling is complete.
1759	 */
1760	cookie = dax_lock_folio(folio);
1761	if (!cookie)
1762		return -EBUSY;
1763
1764	if (hwpoison_filter(&folio->page)) {
1765		rc = -EOPNOTSUPP;
1766		goto unlock;
1767	}
1768
1769	switch (pgmap->type) {
1770	case MEMORY_DEVICE_PRIVATE:
1771	case MEMORY_DEVICE_COHERENT:
1772		/*
1773		 * TODO: Handle device pages which may need coordination
1774		 * with device-side memory.
1775		 */
1776		rc = -ENXIO;
1777		goto unlock;
1778	default:
1779		break;
1780	}
1781
1782	/*
1783	 * Use this flag as an indication that the dax page has been
1784	 * remapped UC to prevent speculative consumption of poison.
1785	 */
1786	SetPageHWPoison(&folio->page);
1787
1788	/*
1789	 * Unlike System-RAM there is no possibility to swap in a
1790	 * different physical page at a given virtual address, so all
1791	 * userspace consumption of ZONE_DEVICE memory necessitates
1792	 * SIGBUS (i.e. MF_MUST_KILL)
1793	 */
1794	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1795	collect_procs(folio, &folio->page, &to_kill, true);
1796
1797	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1798unlock:
1799	dax_unlock_folio(folio, cookie);
1800	return rc;
1801}
1802
1803#ifdef CONFIG_FS_DAX
1804/**
1805 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1806 * @mapping:	address_space of the file in use
1807 * @index:	start pgoff of the range within the file
1808 * @count:	length of the range, in unit of PAGE_SIZE
1809 * @mf_flags:	memory failure flags
1810 */
1811int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1812		unsigned long count, int mf_flags)
1813{
1814	LIST_HEAD(to_kill);
1815	dax_entry_t cookie;
1816	struct page *page;
1817	size_t end = index + count;
1818	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1819
1820	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1821
1822	for (; index < end; index++) {
1823		page = NULL;
1824		cookie = dax_lock_mapping_entry(mapping, index, &page);
1825		if (!cookie)
1826			return -EBUSY;
1827		if (!page)
1828			goto unlock;
1829
1830		if (!pre_remove)
1831			SetPageHWPoison(page);
1832
1833		/*
1834		 * The pre_remove case is revoking access, the memory is still
1835		 * good and could theoretically be put back into service.
1836		 */
1837		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1838		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1839				index, mf_flags);
1840unlock:
1841		dax_unlock_mapping_entry(mapping, index, cookie);
1842	}
1843	return 0;
1844}
1845EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1846#endif /* CONFIG_FS_DAX */
1847
1848#ifdef CONFIG_HUGETLB_PAGE
1849
1850/*
1851 * Struct raw_hwp_page represents information about "raw error page",
1852 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1853 */
1854struct raw_hwp_page {
1855	struct llist_node node;
1856	struct page *page;
1857};
1858
1859static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1860{
1861	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1862}
1863
1864bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1865{
1866	struct llist_head *raw_hwp_head;
1867	struct raw_hwp_page *p;
1868	struct folio *folio = page_folio(page);
1869	bool ret = false;
1870
1871	if (!folio_test_hwpoison(folio))
1872		return false;
1873
1874	if (!folio_test_hugetlb(folio))
1875		return PageHWPoison(page);
1876
1877	/*
1878	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1879	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1880	 */
1881	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1882		return true;
1883
1884	mutex_lock(&mf_mutex);
1885
1886	raw_hwp_head = raw_hwp_list_head(folio);
1887	llist_for_each_entry(p, raw_hwp_head->first, node) {
1888		if (page == p->page) {
1889			ret = true;
1890			break;
1891		}
1892	}
1893
1894	mutex_unlock(&mf_mutex);
1895
1896	return ret;
1897}
1898
1899static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1900{
1901	struct llist_node *head;
1902	struct raw_hwp_page *p, *next;
1903	unsigned long count = 0;
1904
1905	head = llist_del_all(raw_hwp_list_head(folio));
1906	llist_for_each_entry_safe(p, next, head, node) {
1907		if (move_flag)
1908			SetPageHWPoison(p->page);
1909		else
1910			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1911		kfree(p);
1912		count++;
1913	}
1914	return count;
1915}
1916
1917static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1918{
1919	struct llist_head *head;
1920	struct raw_hwp_page *raw_hwp;
1921	struct raw_hwp_page *p, *next;
1922	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1923
1924	/*
1925	 * Once the hwpoison hugepage has lost reliable raw error info,
1926	 * there is little meaning to keep additional error info precisely,
1927	 * so skip to add additional raw error info.
1928	 */
1929	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1930		return -EHWPOISON;
1931	head = raw_hwp_list_head(folio);
1932	llist_for_each_entry_safe(p, next, head->first, node) {
1933		if (p->page == page)
1934			return -EHWPOISON;
1935	}
1936
1937	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1938	if (raw_hwp) {
1939		raw_hwp->page = page;
1940		llist_add(&raw_hwp->node, head);
1941		/* the first error event will be counted in action_result(). */
1942		if (ret)
1943			num_poisoned_pages_inc(page_to_pfn(page));
1944	} else {
1945		/*
1946		 * Failed to save raw error info.  We no longer trace all
1947		 * hwpoisoned subpages, and we need refuse to free/dissolve
1948		 * this hwpoisoned hugepage.
1949		 */
1950		folio_set_hugetlb_raw_hwp_unreliable(folio);
1951		/*
1952		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1953		 * used any more, so free it.
1954		 */
1955		__folio_free_raw_hwp(folio, false);
1956	}
1957	return ret;
1958}
1959
1960static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1961{
1962	/*
1963	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1964	 * pages for tail pages are required but they don't exist.
1965	 */
1966	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1967		return 0;
1968
1969	/*
1970	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1971	 * definition.
1972	 */
1973	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1974		return 0;
1975
1976	return __folio_free_raw_hwp(folio, move_flag);
1977}
1978
1979void folio_clear_hugetlb_hwpoison(struct folio *folio)
1980{
1981	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1982		return;
1983	if (folio_test_hugetlb_vmemmap_optimized(folio))
1984		return;
1985	folio_clear_hwpoison(folio);
1986	folio_free_raw_hwp(folio, true);
1987}
1988
1989/*
1990 * Called from hugetlb code with hugetlb_lock held.
1991 *
1992 * Return values:
1993 *   0             - free hugepage
1994 *   1             - in-use hugepage
1995 *   2             - not a hugepage
1996 *   -EBUSY        - the hugepage is busy (try to retry)
1997 *   -EHWPOISON    - the hugepage is already hwpoisoned
1998 */
1999int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2000				 bool *migratable_cleared)
2001{
2002	struct page *page = pfn_to_page(pfn);
2003	struct folio *folio = page_folio(page);
2004	int ret = 2;	/* fallback to normal page handling */
2005	bool count_increased = false;
2006
2007	if (!folio_test_hugetlb(folio))
2008		goto out;
2009
2010	if (flags & MF_COUNT_INCREASED) {
2011		ret = 1;
2012		count_increased = true;
2013	} else if (folio_test_hugetlb_freed(folio)) {
2014		ret = 0;
2015	} else if (folio_test_hugetlb_migratable(folio)) {
2016		ret = folio_try_get(folio);
2017		if (ret)
2018			count_increased = true;
2019	} else {
2020		ret = -EBUSY;
2021		if (!(flags & MF_NO_RETRY))
2022			goto out;
2023	}
2024
2025	if (folio_set_hugetlb_hwpoison(folio, page)) {
2026		ret = -EHWPOISON;
2027		goto out;
2028	}
2029
2030	/*
2031	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2032	 * from being migrated by memory hotremove.
2033	 */
2034	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2035		folio_clear_hugetlb_migratable(folio);
2036		*migratable_cleared = true;
2037	}
2038
2039	return ret;
2040out:
2041	if (count_increased)
2042		folio_put(folio);
2043	return ret;
2044}
2045
2046/*
2047 * Taking refcount of hugetlb pages needs extra care about race conditions
2048 * with basic operations like hugepage allocation/free/demotion.
2049 * So some of prechecks for hwpoison (pinning, and testing/setting
2050 * PageHWPoison) should be done in single hugetlb_lock range.
2051 */
2052static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2053{
2054	int res;
2055	struct page *p = pfn_to_page(pfn);
2056	struct folio *folio;
2057	unsigned long page_flags;
2058	bool migratable_cleared = false;
2059
2060	*hugetlb = 1;
2061retry:
2062	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2063	if (res == 2) { /* fallback to normal page handling */
2064		*hugetlb = 0;
2065		return 0;
2066	} else if (res == -EHWPOISON) {
2067		pr_err("%#lx: already hardware poisoned\n", pfn);
2068		if (flags & MF_ACTION_REQUIRED) {
2069			folio = page_folio(p);
2070			res = kill_accessing_process(current, folio_pfn(folio), flags);
2071		}
2072		return res;
2073	} else if (res == -EBUSY) {
2074		if (!(flags & MF_NO_RETRY)) {
2075			flags |= MF_NO_RETRY;
2076			goto retry;
2077		}
2078		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2079	}
2080
2081	folio = page_folio(p);
2082	folio_lock(folio);
2083
2084	if (hwpoison_filter(p)) {
2085		folio_clear_hugetlb_hwpoison(folio);
2086		if (migratable_cleared)
2087			folio_set_hugetlb_migratable(folio);
2088		folio_unlock(folio);
2089		if (res == 1)
2090			folio_put(folio);
2091		return -EOPNOTSUPP;
2092	}
2093
2094	/*
2095	 * Handling free hugepage.  The possible race with hugepage allocation
2096	 * or demotion can be prevented by PageHWPoison flag.
2097	 */
2098	if (res == 0) {
2099		folio_unlock(folio);
2100		if (__page_handle_poison(p) >= 0) {
2101			page_ref_inc(p);
2102			res = MF_RECOVERED;
2103		} else {
2104			res = MF_FAILED;
2105		}
2106		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2107	}
2108
2109	page_flags = folio->flags;
2110
2111	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2112		folio_unlock(folio);
2113		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2114	}
2115
2116	return identify_page_state(pfn, p, page_flags);
2117}
2118
2119#else
2120static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2121{
2122	return 0;
2123}
2124
2125static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2126{
2127	return 0;
2128}
2129#endif	/* CONFIG_HUGETLB_PAGE */
2130
2131/* Drop the extra refcount in case we come from madvise() */
2132static void put_ref_page(unsigned long pfn, int flags)
2133{
2134	struct page *page;
2135
2136	if (!(flags & MF_COUNT_INCREASED))
2137		return;
2138
2139	page = pfn_to_page(pfn);
2140	if (page)
2141		put_page(page);
2142}
2143
2144static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2145		struct dev_pagemap *pgmap)
2146{
2147	int rc = -ENXIO;
2148
2149	/* device metadata space is not recoverable */
2150	if (!pgmap_pfn_valid(pgmap, pfn))
2151		goto out;
2152
2153	/*
2154	 * Call driver's implementation to handle the memory failure, otherwise
2155	 * fall back to generic handler.
2156	 */
2157	if (pgmap_has_memory_failure(pgmap)) {
2158		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2159		/*
2160		 * Fall back to generic handler too if operation is not
2161		 * supported inside the driver/device/filesystem.
2162		 */
2163		if (rc != -EOPNOTSUPP)
2164			goto out;
2165	}
2166
2167	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2168out:
2169	/* drop pgmap ref acquired in caller */
2170	put_dev_pagemap(pgmap);
2171	if (rc != -EOPNOTSUPP)
2172		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2173	return rc;
2174}
2175
2176/**
2177 * memory_failure - Handle memory failure of a page.
2178 * @pfn: Page Number of the corrupted page
2179 * @flags: fine tune action taken
2180 *
2181 * This function is called by the low level machine check code
2182 * of an architecture when it detects hardware memory corruption
2183 * of a page. It tries its best to recover, which includes
2184 * dropping pages, killing processes etc.
2185 *
2186 * The function is primarily of use for corruptions that
2187 * happen outside the current execution context (e.g. when
2188 * detected by a background scrubber)
2189 *
2190 * Must run in process context (e.g. a work queue) with interrupts
2191 * enabled and no spinlocks held.
2192 *
2193 * Return: 0 for successfully handled the memory error,
2194 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2195 *         < 0(except -EOPNOTSUPP) on failure.
2196 */
2197int memory_failure(unsigned long pfn, int flags)
2198{
2199	struct page *p;
2200	struct page *hpage;
2201	struct dev_pagemap *pgmap;
2202	int res = 0;
2203	unsigned long page_flags;
2204	bool retry = true;
2205	int hugetlb = 0;
2206
2207	if (!sysctl_memory_failure_recovery)
2208		panic("Memory failure on page %lx", pfn);
2209
2210	mutex_lock(&mf_mutex);
2211
2212	if (!(flags & MF_SW_SIMULATED))
2213		hw_memory_failure = true;
2214
2215	p = pfn_to_online_page(pfn);
2216	if (!p) {
2217		res = arch_memory_failure(pfn, flags);
2218		if (res == 0)
2219			goto unlock_mutex;
2220
2221		if (pfn_valid(pfn)) {
2222			pgmap = get_dev_pagemap(pfn, NULL);
2223			put_ref_page(pfn, flags);
2224			if (pgmap) {
2225				res = memory_failure_dev_pagemap(pfn, flags,
2226								 pgmap);
2227				goto unlock_mutex;
2228			}
2229		}
2230		pr_err("%#lx: memory outside kernel control\n", pfn);
2231		res = -ENXIO;
2232		goto unlock_mutex;
2233	}
2234
2235try_again:
2236	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2237	if (hugetlb)
2238		goto unlock_mutex;
2239
2240	if (TestSetPageHWPoison(p)) {
2241		pr_err("%#lx: already hardware poisoned\n", pfn);
2242		res = -EHWPOISON;
2243		if (flags & MF_ACTION_REQUIRED)
2244			res = kill_accessing_process(current, pfn, flags);
2245		if (flags & MF_COUNT_INCREASED)
2246			put_page(p);
2247		goto unlock_mutex;
2248	}
2249
 
 
 
2250	/*
2251	 * We need/can do nothing about count=0 pages.
2252	 * 1) it's a free page, and therefore in safe hand:
2253	 *    check_new_page() will be the gate keeper.
2254	 * 2) it's part of a non-compound high order page.
2255	 *    Implies some kernel user: cannot stop them from
2256	 *    R/W the page; let's pray that the page has been
2257	 *    used and will be freed some time later.
2258	 * In fact it's dangerous to directly bump up page count from 0,
2259	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2260	 */
2261	if (!(flags & MF_COUNT_INCREASED)) {
2262		res = get_hwpoison_page(p, flags);
2263		if (!res) {
2264			if (is_free_buddy_page(p)) {
2265				if (take_page_off_buddy(p)) {
2266					page_ref_inc(p);
2267					res = MF_RECOVERED;
2268				} else {
2269					/* We lost the race, try again */
2270					if (retry) {
2271						ClearPageHWPoison(p);
2272						retry = false;
2273						goto try_again;
2274					}
2275					res = MF_FAILED;
2276				}
2277				res = action_result(pfn, MF_MSG_BUDDY, res);
2278			} else {
2279				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2280			}
2281			goto unlock_mutex;
2282		} else if (res < 0) {
2283			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2284			goto unlock_mutex;
2285		}
2286	}
2287
2288	hpage = compound_head(p);
2289	if (PageTransHuge(hpage)) {
2290		/*
2291		 * The flag must be set after the refcount is bumped
2292		 * otherwise it may race with THP split.
2293		 * And the flag can't be set in get_hwpoison_page() since
2294		 * it is called by soft offline too and it is just called
2295		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2296		 * place.
2297		 *
2298		 * Don't need care about the above error handling paths for
2299		 * get_hwpoison_page() since they handle either free page
2300		 * or unhandlable page.  The refcount is bumped iff the
2301		 * page is a valid handlable page.
2302		 */
2303		SetPageHasHWPoisoned(hpage);
2304		if (try_to_split_thp_page(p) < 0) {
2305			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2306			goto unlock_mutex;
2307		}
 
2308		VM_BUG_ON_PAGE(!page_count(p), p);
 
2309	}
2310
2311	/*
2312	 * We ignore non-LRU pages for good reasons.
2313	 * - PG_locked is only well defined for LRU pages and a few others
2314	 * - to avoid races with __SetPageLocked()
2315	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2316	 * The check (unnecessarily) ignores LRU pages being isolated and
2317	 * walked by the page reclaim code, however that's not a big loss.
2318	 */
2319	shake_page(p);
 
 
 
 
 
 
 
 
2320
2321	lock_page(p);
2322
2323	/*
2324	 * We're only intended to deal with the non-Compound page here.
2325	 * However, the page could have changed compound pages due to
2326	 * race window. If this happens, we could try again to hopefully
2327	 * handle the page next round.
2328	 */
2329	if (PageCompound(p)) {
2330		if (retry) {
2331			ClearPageHWPoison(p);
2332			unlock_page(p);
2333			put_page(p);
2334			flags &= ~MF_COUNT_INCREASED;
2335			retry = false;
2336			goto try_again;
2337		}
2338		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2339		goto unlock_page;
2340	}
2341
2342	/*
2343	 * We use page flags to determine what action should be taken, but
2344	 * the flags can be modified by the error containment action.  One
2345	 * example is an mlocked page, where PG_mlocked is cleared by
2346	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2347	 * status correctly, we save a copy of the page flags at this time.
2348	 */
2349	page_flags = p->flags;
 
 
 
2350
 
 
 
 
 
 
 
 
 
 
2351	if (hwpoison_filter(p)) {
2352		ClearPageHWPoison(p);
 
2353		unlock_page(p);
2354		put_page(p);
2355		res = -EOPNOTSUPP;
2356		goto unlock_mutex;
2357	}
2358
2359	/*
2360	 * __munlock_folio() may clear a writeback page's LRU flag without
2361	 * page_lock. We need wait writeback completion for this page or it
2362	 * may trigger vfs BUG while evict inode.
2363	 */
2364	if (!PageLRU(p) && !PageWriteback(p))
2365		goto identify_page_state;
2366
2367	/*
2368	 * It's very difficult to mess with pages currently under IO
2369	 * and in many cases impossible, so we just avoid it here.
2370	 */
2371	wait_on_page_writeback(p);
2372
2373	/*
2374	 * Now take care of user space mappings.
2375	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
 
 
 
2376	 */
2377	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2378		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2379		goto unlock_page;
 
2380	}
2381
2382	/*
2383	 * Torn down by someone else?
2384	 */
2385	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2386		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2387		goto unlock_page;
 
2388	}
2389
2390identify_page_state:
2391	res = identify_page_state(pfn, p, page_flags);
2392	mutex_unlock(&mf_mutex);
2393	return res;
2394unlock_page:
2395	unlock_page(p);
2396unlock_mutex:
2397	mutex_unlock(&mf_mutex);
2398	return res;
2399}
2400EXPORT_SYMBOL_GPL(memory_failure);
2401
2402#define MEMORY_FAILURE_FIFO_ORDER	4
2403#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2404
2405struct memory_failure_entry {
2406	unsigned long pfn;
2407	int flags;
2408};
2409
2410struct memory_failure_cpu {
2411	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2412		      MEMORY_FAILURE_FIFO_SIZE);
2413	spinlock_t lock;
2414	struct work_struct work;
2415};
2416
2417static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2418
2419/**
2420 * memory_failure_queue - Schedule handling memory failure of a page.
2421 * @pfn: Page Number of the corrupted page
2422 * @flags: Flags for memory failure handling
2423 *
2424 * This function is called by the low level hardware error handler
2425 * when it detects hardware memory corruption of a page. It schedules
2426 * the recovering of error page, including dropping pages, killing
2427 * processes etc.
2428 *
2429 * The function is primarily of use for corruptions that
2430 * happen outside the current execution context (e.g. when
2431 * detected by a background scrubber)
2432 *
2433 * Can run in IRQ context.
2434 */
2435void memory_failure_queue(unsigned long pfn, int flags)
2436{
2437	struct memory_failure_cpu *mf_cpu;
2438	unsigned long proc_flags;
2439	struct memory_failure_entry entry = {
2440		.pfn =		pfn,
2441		.flags =	flags,
2442	};
2443
2444	mf_cpu = &get_cpu_var(memory_failure_cpu);
2445	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2446	if (kfifo_put(&mf_cpu->fifo, entry))
2447		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2448	else
2449		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2450		       pfn);
2451	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2452	put_cpu_var(memory_failure_cpu);
2453}
2454EXPORT_SYMBOL_GPL(memory_failure_queue);
2455
2456static void memory_failure_work_func(struct work_struct *work)
2457{
2458	struct memory_failure_cpu *mf_cpu;
2459	struct memory_failure_entry entry = { 0, };
2460	unsigned long proc_flags;
2461	int gotten;
2462
2463	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2464	for (;;) {
2465		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2466		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2467		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2468		if (!gotten)
2469			break;
2470		if (entry.flags & MF_SOFT_OFFLINE)
2471			soft_offline_page(entry.pfn, entry.flags);
2472		else
2473			memory_failure(entry.pfn, entry.flags);
2474	}
2475}
2476
2477/*
2478 * Process memory_failure work queued on the specified CPU.
2479 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2480 */
2481void memory_failure_queue_kick(int cpu)
2482{
2483	struct memory_failure_cpu *mf_cpu;
2484
2485	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2486	cancel_work_sync(&mf_cpu->work);
2487	memory_failure_work_func(&mf_cpu->work);
2488}
2489
2490static int __init memory_failure_init(void)
2491{
2492	struct memory_failure_cpu *mf_cpu;
2493	int cpu;
2494
2495	for_each_possible_cpu(cpu) {
2496		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2497		spin_lock_init(&mf_cpu->lock);
2498		INIT_KFIFO(mf_cpu->fifo);
2499		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2500	}
2501
2502	register_sysctl_init("vm", memory_failure_table);
2503
2504	return 0;
2505}
2506core_initcall(memory_failure_init);
2507
2508#undef pr_fmt
2509#define pr_fmt(fmt)	"" fmt
2510#define unpoison_pr_info(fmt, pfn, rs)			\
2511({							\
2512	if (__ratelimit(rs))				\
2513		pr_info(fmt, pfn);			\
2514})
2515
2516/**
2517 * unpoison_memory - Unpoison a previously poisoned page
2518 * @pfn: Page number of the to be unpoisoned page
2519 *
2520 * Software-unpoison a page that has been poisoned by
2521 * memory_failure() earlier.
2522 *
2523 * This is only done on the software-level, so it only works
2524 * for linux injected failures, not real hardware failures
2525 *
2526 * Returns 0 for success, otherwise -errno.
2527 */
2528int unpoison_memory(unsigned long pfn)
2529{
2530	struct folio *folio;
2531	struct page *p;
2532	int ret = -EBUSY, ghp;
2533	unsigned long count = 1;
2534	bool huge = false;
2535	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2536					DEFAULT_RATELIMIT_BURST);
2537
2538	if (!pfn_valid(pfn))
2539		return -ENXIO;
2540
2541	p = pfn_to_page(pfn);
2542	folio = page_folio(p);
2543
2544	mutex_lock(&mf_mutex);
2545
2546	if (hw_memory_failure) {
2547		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2548				 pfn, &unpoison_rs);
2549		ret = -EOPNOTSUPP;
2550		goto unlock_mutex;
2551	}
2552
2553	if (!PageHWPoison(p)) {
2554		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2555				 pfn, &unpoison_rs);
2556		goto unlock_mutex;
2557	}
2558
2559	if (folio_ref_count(folio) > 1) {
2560		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2561				 pfn, &unpoison_rs);
2562		goto unlock_mutex;
2563	}
2564
2565	if (folio_test_slab(folio) || PageTable(&folio->page) ||
2566	    folio_test_reserved(folio) || PageOffline(&folio->page))
2567		goto unlock_mutex;
2568
2569	/*
2570	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2571	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2572	 */
2573	if (folio_mapped(folio)) {
2574		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2575				 pfn, &unpoison_rs);
2576		goto unlock_mutex;
2577	}
2578
2579	if (folio_mapping(folio)) {
2580		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2581				 pfn, &unpoison_rs);
2582		goto unlock_mutex;
2583	}
2584
2585	ghp = get_hwpoison_page(p, MF_UNPOISON);
2586	if (!ghp) {
2587		if (PageHuge(p)) {
2588			huge = true;
2589			count = folio_free_raw_hwp(folio, false);
2590			if (count == 0)
2591				goto unlock_mutex;
2592		}
2593		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2594	} else if (ghp < 0) {
2595		if (ghp == -EHWPOISON) {
2596			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2597		} else {
2598			ret = ghp;
2599			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2600					 pfn, &unpoison_rs);
2601		}
2602	} else {
2603		if (PageHuge(p)) {
2604			huge = true;
2605			count = folio_free_raw_hwp(folio, false);
2606			if (count == 0) {
2607				folio_put(folio);
2608				goto unlock_mutex;
2609			}
2610		}
2611
2612		folio_put(folio);
2613		if (TestClearPageHWPoison(p)) {
2614			folio_put(folio);
2615			ret = 0;
2616		}
 
2617	}
2618
2619unlock_mutex:
2620	mutex_unlock(&mf_mutex);
2621	if (!ret) {
2622		if (!huge)
2623			num_poisoned_pages_sub(pfn, 1);
 
 
 
2624		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2625				 page_to_pfn(p), &unpoison_rs);
 
 
2626	}
2627	return ret;
 
 
 
 
 
 
2628}
2629EXPORT_SYMBOL(unpoison_memory);
2630
2631static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2632{
2633	bool isolated = false;
 
 
 
2634
2635	if (folio_test_hugetlb(folio)) {
2636		isolated = isolate_hugetlb(folio, pagelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637	} else {
2638		bool lru = !__folio_test_movable(folio);
 
 
 
 
 
 
 
 
2639
2640		if (lru)
2641			isolated = folio_isolate_lru(folio);
2642		else
2643			isolated = isolate_movable_page(&folio->page,
2644							ISOLATE_UNEVICTABLE);
 
 
2645
2646		if (isolated) {
2647			list_add(&folio->lru, pagelist);
2648			if (lru)
2649				node_stat_add_folio(folio, NR_ISOLATED_ANON +
2650						    folio_is_file_lru(folio));
 
 
 
 
 
2651		}
2652	}
 
 
 
 
 
 
 
 
 
2653
2654	/*
2655	 * If we succeed to isolate the folio, we grabbed another refcount on
2656	 * the folio, so we can safely drop the one we got from get_any_page().
2657	 * If we failed to isolate the folio, it means that we cannot go further
2658	 * and we will return an error, so drop the reference we got from
2659	 * get_any_page() as well.
2660	 */
2661	folio_put(folio);
2662	return isolated;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663}
2664
2665/*
2666 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2667 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2668 * If the page is mapped, it migrates the contents over.
2669 */
2670static int soft_offline_in_use_page(struct page *page)
2671{
2672	long ret = 0;
2673	unsigned long pfn = page_to_pfn(page);
2674	struct folio *folio = page_folio(page);
2675	char const *msg_page[] = {"page", "hugepage"};
2676	bool huge = folio_test_hugetlb(folio);
2677	LIST_HEAD(pagelist);
2678	struct migration_target_control mtc = {
2679		.nid = NUMA_NO_NODE,
2680		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2681	};
2682
2683	if (!huge && folio_test_large(folio)) {
2684		if (try_to_split_thp_page(page)) {
2685			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2686			return -EBUSY;
2687		}
2688		folio = page_folio(page);
2689	}
2690
2691	folio_lock(folio);
2692	if (!huge)
2693		folio_wait_writeback(folio);
2694	if (PageHWPoison(page)) {
2695		folio_unlock(folio);
2696		folio_put(folio);
2697		pr_info("soft offline: %#lx page already poisoned\n", pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698		return 0;
2699	}
2700
2701	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702		/*
2703		 * Try to invalidate first. This should work for
2704		 * non dirty unmapped page cache pages.
 
2705		 */
2706		ret = mapping_evict_folio(folio_mapping(folio), folio);
2707	folio_unlock(folio);
2708
2709	if (ret) {
2710		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2711		page_handle_poison(page, false, true);
2712		return 0;
2713	}
2714
2715	if (mf_isolate_folio(folio, &pagelist)) {
2716		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2717			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2718		if (!ret) {
2719			bool release = !huge;
2720
2721			if (!page_handle_poison(page, huge, release))
2722				ret = -EBUSY;
2723		} else {
2724			if (!list_empty(&pagelist))
2725				putback_movable_pages(&pagelist);
2726
2727			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2728				pfn, msg_page[huge], ret, &page->flags);
2729			if (ret > 0)
2730				ret = -EBUSY;
2731		}
2732	} else {
2733		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2734			pfn, msg_page[huge], page_count(page), &page->flags);
2735		ret = -EBUSY;
2736	}
2737	return ret;
2738}
2739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740/**
2741 * soft_offline_page - Soft offline a page.
2742 * @pfn: pfn to soft-offline
2743 * @flags: flags. Same as memory_failure().
2744 *
2745 * Returns 0 on success
2746 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2747 *         < 0 otherwise negated errno.
2748 *
2749 * Soft offline a page, by migration or invalidation,
2750 * without killing anything. This is for the case when
2751 * a page is not corrupted yet (so it's still valid to access),
2752 * but has had a number of corrected errors and is better taken
2753 * out.
2754 *
2755 * The actual policy on when to do that is maintained by
2756 * user space.
2757 *
2758 * This should never impact any application or cause data loss,
2759 * however it might take some time.
2760 *
2761 * This is not a 100% solution for all memory, but tries to be
2762 * ``good enough'' for the majority of memory.
2763 */
2764int soft_offline_page(unsigned long pfn, int flags)
2765{
2766	int ret;
2767	bool try_again = true;
2768	struct page *page;
2769
2770	if (!pfn_valid(pfn)) {
2771		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2772		return -ENXIO;
2773	}
2774
2775	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2776	page = pfn_to_online_page(pfn);
2777	if (!page) {
2778		put_ref_page(pfn, flags);
2779		return -EIO;
2780	}
2781
2782	mutex_lock(&mf_mutex);
2783
2784	if (PageHWPoison(page)) {
2785		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2786		put_ref_page(pfn, flags);
2787		mutex_unlock(&mf_mutex);
2788		return 0;
2789	}
2790
2791retry:
2792	get_online_mems();
2793	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2794	put_online_mems();
2795
2796	if (hwpoison_filter(page)) {
2797		if (ret > 0)
2798			put_page(page);
2799
2800		mutex_unlock(&mf_mutex);
2801		return -EOPNOTSUPP;
2802	}
2803
2804	if (ret > 0) {
2805		ret = soft_offline_in_use_page(page);
2806	} else if (ret == 0) {
2807		if (!page_handle_poison(page, true, false)) {
2808			if (try_again) {
2809				try_again = false;
2810				flags &= ~MF_COUNT_INCREASED;
2811				goto retry;
2812			}
2813			ret = -EBUSY;
2814		}
2815	}
2816
2817	mutex_unlock(&mf_mutex);
2818
2819	return ret;
2820}