Loading...
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/kernel-page-flags.h>
43#include <linux/sched/signal.h>
44#include <linux/sched/task.h>
45#include <linux/ksm.h>
46#include <linux/rmap.h>
47#include <linux/export.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
51#include <linux/migrate.h>
52#include <linux/suspend.h>
53#include <linux/slab.h>
54#include <linux/swapops.h>
55#include <linux/hugetlb.h>
56#include <linux/memory_hotplug.h>
57#include <linux/mm_inline.h>
58#include <linux/kfifo.h>
59#include <linux/ratelimit.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71u32 hwpoison_filter_enable = 0;
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134#ifdef CONFIG_MEMCG
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
151int hwpoison_filter(struct page *p)
152{
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166}
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176/*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181static int kill_proc(struct task_struct *t, unsigned long addr,
182 unsigned long pfn, struct page *page, int flags)
183{
184 short addr_lsb;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
190
191 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
192 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
193 addr_lsb, current);
194 } else {
195 /*
196 * Don't use force here, it's convenient if the signal
197 * can be temporarily blocked.
198 * This could cause a loop when the user sets SIGBUS
199 * to SIG_IGN, but hopefully no one will do that?
200 */
201 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
202 addr_lsb, t); /* synchronous? */
203 }
204 if (ret < 0)
205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206 t->comm, t->pid, ret);
207 return ret;
208}
209
210/*
211 * When a unknown page type is encountered drain as many buffers as possible
212 * in the hope to turn the page into a LRU or free page, which we can handle.
213 */
214void shake_page(struct page *p, int access)
215{
216 if (PageHuge(p))
217 return;
218
219 if (!PageSlab(p)) {
220 lru_add_drain_all();
221 if (PageLRU(p))
222 return;
223 drain_all_pages(page_zone(p));
224 if (PageLRU(p) || is_free_buddy_page(p))
225 return;
226 }
227
228 /*
229 * Only call shrink_node_slabs here (which would also shrink
230 * other caches) if access is not potentially fatal.
231 */
232 if (access)
233 drop_slab_node(page_to_nid(p));
234}
235EXPORT_SYMBOL_GPL(shake_page);
236
237/*
238 * Kill all processes that have a poisoned page mapped and then isolate
239 * the page.
240 *
241 * General strategy:
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
246 *
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
249 * running processes.
250 *
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
254 *
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
257 */
258
259struct to_kill {
260 struct list_head nd;
261 struct task_struct *tsk;
262 unsigned long addr;
263 char addr_valid;
264};
265
266/*
267 * Failure handling: if we can't find or can't kill a process there's
268 * not much we can do. We just print a message and ignore otherwise.
269 */
270
271/*
272 * Schedule a process for later kill.
273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
274 * TBD would GFP_NOIO be enough?
275 */
276static void add_to_kill(struct task_struct *tsk, struct page *p,
277 struct vm_area_struct *vma,
278 struct list_head *to_kill,
279 struct to_kill **tkc)
280{
281 struct to_kill *tk;
282
283 if (*tkc) {
284 tk = *tkc;
285 *tkc = NULL;
286 } else {
287 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
288 if (!tk) {
289 pr_err("Memory failure: Out of memory while machine check handling\n");
290 return;
291 }
292 }
293 tk->addr = page_address_in_vma(p, vma);
294 tk->addr_valid = 1;
295
296 /*
297 * In theory we don't have to kill when the page was
298 * munmaped. But it could be also a mremap. Since that's
299 * likely very rare kill anyways just out of paranoia, but use
300 * a SIGKILL because the error is not contained anymore.
301 */
302 if (tk->addr == -EFAULT) {
303 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 page_to_pfn(p), tsk->comm);
305 tk->addr_valid = 0;
306 }
307 get_task_struct(tsk);
308 tk->tsk = tsk;
309 list_add_tail(&tk->nd, to_kill);
310}
311
312/*
313 * Kill the processes that have been collected earlier.
314 *
315 * Only do anything when DOIT is set, otherwise just free the list
316 * (this is used for clean pages which do not need killing)
317 * Also when FAIL is set do a force kill because something went
318 * wrong earlier.
319 */
320static void kill_procs(struct list_head *to_kill, int forcekill,
321 bool fail, struct page *page, unsigned long pfn,
322 int flags)
323{
324 struct to_kill *tk, *next;
325
326 list_for_each_entry_safe (tk, next, to_kill, nd) {
327 if (forcekill) {
328 /*
329 * In case something went wrong with munmapping
330 * make sure the process doesn't catch the
331 * signal and then access the memory. Just kill it.
332 */
333 if (fail || tk->addr_valid == 0) {
334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335 pfn, tk->tsk->comm, tk->tsk->pid);
336 force_sig(SIGKILL, tk->tsk);
337 }
338
339 /*
340 * In theory the process could have mapped
341 * something else on the address in-between. We could
342 * check for that, but we need to tell the
343 * process anyways.
344 */
345 else if (kill_proc(tk->tsk, tk->addr,
346 pfn, page, flags) < 0)
347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348 pfn, tk->tsk->comm, tk->tsk->pid);
349 }
350 put_task_struct(tk->tsk);
351 kfree(tk);
352 }
353}
354
355/*
356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
357 * on behalf of the thread group. Return task_struct of the (first found)
358 * dedicated thread if found, and return NULL otherwise.
359 *
360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
361 * have to call rcu_read_lock/unlock() in this function.
362 */
363static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
364{
365 struct task_struct *t;
366
367 for_each_thread(tsk, t)
368 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
369 return t;
370 return NULL;
371}
372
373/*
374 * Determine whether a given process is "early kill" process which expects
375 * to be signaled when some page under the process is hwpoisoned.
376 * Return task_struct of the dedicated thread (main thread unless explicitly
377 * specified) if the process is "early kill," and otherwise returns NULL.
378 */
379static struct task_struct *task_early_kill(struct task_struct *tsk,
380 int force_early)
381{
382 struct task_struct *t;
383 if (!tsk->mm)
384 return NULL;
385 if (force_early)
386 return tsk;
387 t = find_early_kill_thread(tsk);
388 if (t)
389 return t;
390 if (sysctl_memory_failure_early_kill)
391 return tsk;
392 return NULL;
393}
394
395/*
396 * Collect processes when the error hit an anonymous page.
397 */
398static void collect_procs_anon(struct page *page, struct list_head *to_kill,
399 struct to_kill **tkc, int force_early)
400{
401 struct vm_area_struct *vma;
402 struct task_struct *tsk;
403 struct anon_vma *av;
404 pgoff_t pgoff;
405
406 av = page_lock_anon_vma_read(page);
407 if (av == NULL) /* Not actually mapped anymore */
408 return;
409
410 pgoff = page_to_pgoff(page);
411 read_lock(&tasklist_lock);
412 for_each_process (tsk) {
413 struct anon_vma_chain *vmac;
414 struct task_struct *t = task_early_kill(tsk, force_early);
415
416 if (!t)
417 continue;
418 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 pgoff, pgoff) {
420 vma = vmac->vma;
421 if (!page_mapped_in_vma(page, vma))
422 continue;
423 if (vma->vm_mm == t->mm)
424 add_to_kill(t, page, vma, to_kill, tkc);
425 }
426 }
427 read_unlock(&tasklist_lock);
428 page_unlock_anon_vma_read(av);
429}
430
431/*
432 * Collect processes when the error hit a file mapped page.
433 */
434static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 struct to_kill **tkc, int force_early)
436{
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
439 struct address_space *mapping = page->mapping;
440
441 i_mmap_lock_read(mapping);
442 read_lock(&tasklist_lock);
443 for_each_process(tsk) {
444 pgoff_t pgoff = page_to_pgoff(page);
445 struct task_struct *t = task_early_kill(tsk, force_early);
446
447 if (!t)
448 continue;
449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 pgoff) {
451 /*
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
457 */
458 if (vma->vm_mm == t->mm)
459 add_to_kill(t, page, vma, to_kill, tkc);
460 }
461 }
462 read_unlock(&tasklist_lock);
463 i_mmap_unlock_read(mapping);
464}
465
466/*
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
471 */
472static void collect_procs(struct page *page, struct list_head *tokill,
473 int force_early)
474{
475 struct to_kill *tk;
476
477 if (!page->mapping)
478 return;
479
480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 if (!tk)
482 return;
483 if (PageAnon(page))
484 collect_procs_anon(page, tokill, &tk, force_early);
485 else
486 collect_procs_file(page, tokill, &tk, force_early);
487 kfree(tk);
488}
489
490static const char *action_name[] = {
491 [MF_IGNORED] = "Ignored",
492 [MF_FAILED] = "Failed",
493 [MF_DELAYED] = "Delayed",
494 [MF_RECOVERED] = "Recovered",
495};
496
497static const char * const action_page_types[] = {
498 [MF_MSG_KERNEL] = "reserved kernel page",
499 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
500 [MF_MSG_SLAB] = "kernel slab page",
501 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
502 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
503 [MF_MSG_HUGE] = "huge page",
504 [MF_MSG_FREE_HUGE] = "free huge page",
505 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
506 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
507 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
508 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
509 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
510 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
511 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
512 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
513 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
514 [MF_MSG_CLEAN_LRU] = "clean LRU page",
515 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
516 [MF_MSG_BUDDY] = "free buddy page",
517 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
518 [MF_MSG_UNKNOWN] = "unknown page",
519};
520
521/*
522 * XXX: It is possible that a page is isolated from LRU cache,
523 * and then kept in swap cache or failed to remove from page cache.
524 * The page count will stop it from being freed by unpoison.
525 * Stress tests should be aware of this memory leak problem.
526 */
527static int delete_from_lru_cache(struct page *p)
528{
529 if (!isolate_lru_page(p)) {
530 /*
531 * Clear sensible page flags, so that the buddy system won't
532 * complain when the page is unpoison-and-freed.
533 */
534 ClearPageActive(p);
535 ClearPageUnevictable(p);
536
537 /*
538 * Poisoned page might never drop its ref count to 0 so we have
539 * to uncharge it manually from its memcg.
540 */
541 mem_cgroup_uncharge(p);
542
543 /*
544 * drop the page count elevated by isolate_lru_page()
545 */
546 put_page(p);
547 return 0;
548 }
549 return -EIO;
550}
551
552static int truncate_error_page(struct page *p, unsigned long pfn,
553 struct address_space *mapping)
554{
555 int ret = MF_FAILED;
556
557 if (mapping->a_ops->error_remove_page) {
558 int err = mapping->a_ops->error_remove_page(mapping, p);
559
560 if (err != 0) {
561 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
562 pfn, err);
563 } else if (page_has_private(p) &&
564 !try_to_release_page(p, GFP_NOIO)) {
565 pr_info("Memory failure: %#lx: failed to release buffers\n",
566 pfn);
567 } else {
568 ret = MF_RECOVERED;
569 }
570 } else {
571 /*
572 * If the file system doesn't support it just invalidate
573 * This fails on dirty or anything with private pages
574 */
575 if (invalidate_inode_page(p))
576 ret = MF_RECOVERED;
577 else
578 pr_info("Memory failure: %#lx: Failed to invalidate\n",
579 pfn);
580 }
581
582 return ret;
583}
584
585/*
586 * Error hit kernel page.
587 * Do nothing, try to be lucky and not touch this instead. For a few cases we
588 * could be more sophisticated.
589 */
590static int me_kernel(struct page *p, unsigned long pfn)
591{
592 return MF_IGNORED;
593}
594
595/*
596 * Page in unknown state. Do nothing.
597 */
598static int me_unknown(struct page *p, unsigned long pfn)
599{
600 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
601 return MF_FAILED;
602}
603
604/*
605 * Clean (or cleaned) page cache page.
606 */
607static int me_pagecache_clean(struct page *p, unsigned long pfn)
608{
609 struct address_space *mapping;
610
611 delete_from_lru_cache(p);
612
613 /*
614 * For anonymous pages we're done the only reference left
615 * should be the one m_f() holds.
616 */
617 if (PageAnon(p))
618 return MF_RECOVERED;
619
620 /*
621 * Now truncate the page in the page cache. This is really
622 * more like a "temporary hole punch"
623 * Don't do this for block devices when someone else
624 * has a reference, because it could be file system metadata
625 * and that's not safe to truncate.
626 */
627 mapping = page_mapping(p);
628 if (!mapping) {
629 /*
630 * Page has been teared down in the meanwhile
631 */
632 return MF_FAILED;
633 }
634
635 /*
636 * Truncation is a bit tricky. Enable it per file system for now.
637 *
638 * Open: to take i_mutex or not for this? Right now we don't.
639 */
640 return truncate_error_page(p, pfn, mapping);
641}
642
643/*
644 * Dirty pagecache page
645 * Issues: when the error hit a hole page the error is not properly
646 * propagated.
647 */
648static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649{
650 struct address_space *mapping = page_mapping(p);
651
652 SetPageError(p);
653 /* TBD: print more information about the file. */
654 if (mapping) {
655 /*
656 * IO error will be reported by write(), fsync(), etc.
657 * who check the mapping.
658 * This way the application knows that something went
659 * wrong with its dirty file data.
660 *
661 * There's one open issue:
662 *
663 * The EIO will be only reported on the next IO
664 * operation and then cleared through the IO map.
665 * Normally Linux has two mechanisms to pass IO error
666 * first through the AS_EIO flag in the address space
667 * and then through the PageError flag in the page.
668 * Since we drop pages on memory failure handling the
669 * only mechanism open to use is through AS_AIO.
670 *
671 * This has the disadvantage that it gets cleared on
672 * the first operation that returns an error, while
673 * the PageError bit is more sticky and only cleared
674 * when the page is reread or dropped. If an
675 * application assumes it will always get error on
676 * fsync, but does other operations on the fd before
677 * and the page is dropped between then the error
678 * will not be properly reported.
679 *
680 * This can already happen even without hwpoisoned
681 * pages: first on metadata IO errors (which only
682 * report through AS_EIO) or when the page is dropped
683 * at the wrong time.
684 *
685 * So right now we assume that the application DTRT on
686 * the first EIO, but we're not worse than other parts
687 * of the kernel.
688 */
689 mapping_set_error(mapping, -EIO);
690 }
691
692 return me_pagecache_clean(p, pfn);
693}
694
695/*
696 * Clean and dirty swap cache.
697 *
698 * Dirty swap cache page is tricky to handle. The page could live both in page
699 * cache and swap cache(ie. page is freshly swapped in). So it could be
700 * referenced concurrently by 2 types of PTEs:
701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * and then
704 * - clear dirty bit to prevent IO
705 * - remove from LRU
706 * - but keep in the swap cache, so that when we return to it on
707 * a later page fault, we know the application is accessing
708 * corrupted data and shall be killed (we installed simple
709 * interception code in do_swap_page to catch it).
710 *
711 * Clean swap cache pages can be directly isolated. A later page fault will
712 * bring in the known good data from disk.
713 */
714static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715{
716 ClearPageDirty(p);
717 /* Trigger EIO in shmem: */
718 ClearPageUptodate(p);
719
720 if (!delete_from_lru_cache(p))
721 return MF_DELAYED;
722 else
723 return MF_FAILED;
724}
725
726static int me_swapcache_clean(struct page *p, unsigned long pfn)
727{
728 delete_from_swap_cache(p);
729
730 if (!delete_from_lru_cache(p))
731 return MF_RECOVERED;
732 else
733 return MF_FAILED;
734}
735
736/*
737 * Huge pages. Needs work.
738 * Issues:
739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740 * To narrow down kill region to one page, we need to break up pmd.
741 */
742static int me_huge_page(struct page *p, unsigned long pfn)
743{
744 int res = 0;
745 struct page *hpage = compound_head(p);
746 struct address_space *mapping;
747
748 if (!PageHuge(hpage))
749 return MF_DELAYED;
750
751 mapping = page_mapping(hpage);
752 if (mapping) {
753 res = truncate_error_page(hpage, pfn, mapping);
754 } else {
755 unlock_page(hpage);
756 /*
757 * migration entry prevents later access on error anonymous
758 * hugepage, so we can free and dissolve it into buddy to
759 * save healthy subpages.
760 */
761 if (PageAnon(hpage))
762 put_page(hpage);
763 dissolve_free_huge_page(p);
764 res = MF_RECOVERED;
765 lock_page(hpage);
766 }
767
768 return res;
769}
770
771/*
772 * Various page states we can handle.
773 *
774 * A page state is defined by its current page->flags bits.
775 * The table matches them in order and calls the right handler.
776 *
777 * This is quite tricky because we can access page at any time
778 * in its live cycle, so all accesses have to be extremely careful.
779 *
780 * This is not complete. More states could be added.
781 * For any missing state don't attempt recovery.
782 */
783
784#define dirty (1UL << PG_dirty)
785#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
786#define unevict (1UL << PG_unevictable)
787#define mlock (1UL << PG_mlocked)
788#define writeback (1UL << PG_writeback)
789#define lru (1UL << PG_lru)
790#define head (1UL << PG_head)
791#define slab (1UL << PG_slab)
792#define reserved (1UL << PG_reserved)
793
794static struct page_state {
795 unsigned long mask;
796 unsigned long res;
797 enum mf_action_page_type type;
798 int (*action)(struct page *p, unsigned long pfn);
799} error_states[] = {
800 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
801 /*
802 * free pages are specially detected outside this table:
803 * PG_buddy pages only make a small fraction of all free pages.
804 */
805
806 /*
807 * Could in theory check if slab page is free or if we can drop
808 * currently unused objects without touching them. But just
809 * treat it as standard kernel for now.
810 */
811 { slab, slab, MF_MSG_SLAB, me_kernel },
812
813 { head, head, MF_MSG_HUGE, me_huge_page },
814
815 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
816 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
817
818 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
819 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
820
821 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
822 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
823
824 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
825 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
826
827 /*
828 * Catchall entry: must be at end.
829 */
830 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
831};
832
833#undef dirty
834#undef sc
835#undef unevict
836#undef mlock
837#undef writeback
838#undef lru
839#undef head
840#undef slab
841#undef reserved
842
843/*
844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
845 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
846 */
847static void action_result(unsigned long pfn, enum mf_action_page_type type,
848 enum mf_result result)
849{
850 trace_memory_failure_event(pfn, type, result);
851
852 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
853 pfn, action_page_types[type], action_name[result]);
854}
855
856static int page_action(struct page_state *ps, struct page *p,
857 unsigned long pfn)
858{
859 int result;
860 int count;
861
862 result = ps->action(p, pfn);
863
864 count = page_count(p) - 1;
865 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
866 count--;
867 if (count > 0) {
868 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
869 pfn, action_page_types[ps->type], count);
870 result = MF_FAILED;
871 }
872 action_result(pfn, ps->type, result);
873
874 /* Could do more checks here if page looks ok */
875 /*
876 * Could adjust zone counters here to correct for the missing page.
877 */
878
879 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
880}
881
882/**
883 * get_hwpoison_page() - Get refcount for memory error handling:
884 * @page: raw error page (hit by memory error)
885 *
886 * Return: return 0 if failed to grab the refcount, otherwise true (some
887 * non-zero value.)
888 */
889int get_hwpoison_page(struct page *page)
890{
891 struct page *head = compound_head(page);
892
893 if (!PageHuge(head) && PageTransHuge(head)) {
894 /*
895 * Non anonymous thp exists only in allocation/free time. We
896 * can't handle such a case correctly, so let's give it up.
897 * This should be better than triggering BUG_ON when kernel
898 * tries to touch the "partially handled" page.
899 */
900 if (!PageAnon(head)) {
901 pr_err("Memory failure: %#lx: non anonymous thp\n",
902 page_to_pfn(page));
903 return 0;
904 }
905 }
906
907 if (get_page_unless_zero(head)) {
908 if (head == compound_head(page))
909 return 1;
910
911 pr_info("Memory failure: %#lx cannot catch tail\n",
912 page_to_pfn(page));
913 put_page(head);
914 }
915
916 return 0;
917}
918EXPORT_SYMBOL_GPL(get_hwpoison_page);
919
920/*
921 * Do all that is necessary to remove user space mappings. Unmap
922 * the pages and send SIGBUS to the processes if the data was dirty.
923 */
924static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
925 int flags, struct page **hpagep)
926{
927 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
928 struct address_space *mapping;
929 LIST_HEAD(tokill);
930 bool unmap_success;
931 int kill = 1, forcekill;
932 struct page *hpage = *hpagep;
933 bool mlocked = PageMlocked(hpage);
934
935 /*
936 * Here we are interested only in user-mapped pages, so skip any
937 * other types of pages.
938 */
939 if (PageReserved(p) || PageSlab(p))
940 return true;
941 if (!(PageLRU(hpage) || PageHuge(p)))
942 return true;
943
944 /*
945 * This check implies we don't kill processes if their pages
946 * are in the swap cache early. Those are always late kills.
947 */
948 if (!page_mapped(hpage))
949 return true;
950
951 if (PageKsm(p)) {
952 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
953 return false;
954 }
955
956 if (PageSwapCache(p)) {
957 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
958 pfn);
959 ttu |= TTU_IGNORE_HWPOISON;
960 }
961
962 /*
963 * Propagate the dirty bit from PTEs to struct page first, because we
964 * need this to decide if we should kill or just drop the page.
965 * XXX: the dirty test could be racy: set_page_dirty() may not always
966 * be called inside page lock (it's recommended but not enforced).
967 */
968 mapping = page_mapping(hpage);
969 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
970 mapping_cap_writeback_dirty(mapping)) {
971 if (page_mkclean(hpage)) {
972 SetPageDirty(hpage);
973 } else {
974 kill = 0;
975 ttu |= TTU_IGNORE_HWPOISON;
976 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
977 pfn);
978 }
979 }
980
981 /*
982 * First collect all the processes that have the page
983 * mapped in dirty form. This has to be done before try_to_unmap,
984 * because ttu takes the rmap data structures down.
985 *
986 * Error handling: We ignore errors here because
987 * there's nothing that can be done.
988 */
989 if (kill)
990 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
991
992 unmap_success = try_to_unmap(hpage, ttu);
993 if (!unmap_success)
994 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
995 pfn, page_mapcount(hpage));
996
997 /*
998 * try_to_unmap() might put mlocked page in lru cache, so call
999 * shake_page() again to ensure that it's flushed.
1000 */
1001 if (mlocked)
1002 shake_page(hpage, 0);
1003
1004 /*
1005 * Now that the dirty bit has been propagated to the
1006 * struct page and all unmaps done we can decide if
1007 * killing is needed or not. Only kill when the page
1008 * was dirty or the process is not restartable,
1009 * otherwise the tokill list is merely
1010 * freed. When there was a problem unmapping earlier
1011 * use a more force-full uncatchable kill to prevent
1012 * any accesses to the poisoned memory.
1013 */
1014 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1016
1017 return unmap_success;
1018}
1019
1020static int identify_page_state(unsigned long pfn, struct page *p,
1021 unsigned long page_flags)
1022{
1023 struct page_state *ps;
1024
1025 /*
1026 * The first check uses the current page flags which may not have any
1027 * relevant information. The second check with the saved page flags is
1028 * carried out only if the first check can't determine the page status.
1029 */
1030 for (ps = error_states;; ps++)
1031 if ((p->flags & ps->mask) == ps->res)
1032 break;
1033
1034 page_flags |= (p->flags & (1UL << PG_dirty));
1035
1036 if (!ps->mask)
1037 for (ps = error_states;; ps++)
1038 if ((page_flags & ps->mask) == ps->res)
1039 break;
1040 return page_action(ps, p, pfn);
1041}
1042
1043static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044{
1045 struct page *p = pfn_to_page(pfn);
1046 struct page *head = compound_head(p);
1047 int res;
1048 unsigned long page_flags;
1049
1050 if (TestSetPageHWPoison(head)) {
1051 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 pfn);
1053 return 0;
1054 }
1055
1056 num_poisoned_pages_inc();
1057
1058 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1059 /*
1060 * Check "filter hit" and "race with other subpage."
1061 */
1062 lock_page(head);
1063 if (PageHWPoison(head)) {
1064 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065 || (p != head && TestSetPageHWPoison(head))) {
1066 num_poisoned_pages_dec();
1067 unlock_page(head);
1068 return 0;
1069 }
1070 }
1071 unlock_page(head);
1072 dissolve_free_huge_page(p);
1073 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1074 return 0;
1075 }
1076
1077 lock_page(head);
1078 page_flags = head->flags;
1079
1080 if (!PageHWPoison(head)) {
1081 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082 num_poisoned_pages_dec();
1083 unlock_page(head);
1084 put_hwpoison_page(head);
1085 return 0;
1086 }
1087
1088 /*
1089 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090 * simply disable it. In order to make it work properly, we need
1091 * make sure that:
1092 * - conversion of a pud that maps an error hugetlb into hwpoison
1093 * entry properly works, and
1094 * - other mm code walking over page table is aware of pud-aligned
1095 * hwpoison entries.
1096 */
1097 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099 res = -EBUSY;
1100 goto out;
1101 }
1102
1103 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105 res = -EBUSY;
1106 goto out;
1107 }
1108
1109 res = identify_page_state(pfn, p, page_flags);
1110out:
1111 unlock_page(head);
1112 return res;
1113}
1114
1115/**
1116 * memory_failure - Handle memory failure of a page.
1117 * @pfn: Page Number of the corrupted page
1118 * @flags: fine tune action taken
1119 *
1120 * This function is called by the low level machine check code
1121 * of an architecture when it detects hardware memory corruption
1122 * of a page. It tries its best to recover, which includes
1123 * dropping pages, killing processes etc.
1124 *
1125 * The function is primarily of use for corruptions that
1126 * happen outside the current execution context (e.g. when
1127 * detected by a background scrubber)
1128 *
1129 * Must run in process context (e.g. a work queue) with interrupts
1130 * enabled and no spinlocks hold.
1131 */
1132int memory_failure(unsigned long pfn, int flags)
1133{
1134 struct page *p;
1135 struct page *hpage;
1136 struct page *orig_head;
1137 int res;
1138 unsigned long page_flags;
1139
1140 if (!sysctl_memory_failure_recovery)
1141 panic("Memory failure on page %lx", pfn);
1142
1143 if (!pfn_valid(pfn)) {
1144 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145 pfn);
1146 return -ENXIO;
1147 }
1148
1149 p = pfn_to_page(pfn);
1150 if (PageHuge(p))
1151 return memory_failure_hugetlb(pfn, flags);
1152 if (TestSetPageHWPoison(p)) {
1153 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154 pfn);
1155 return 0;
1156 }
1157
1158 orig_head = hpage = compound_head(p);
1159 num_poisoned_pages_inc();
1160
1161 /*
1162 * We need/can do nothing about count=0 pages.
1163 * 1) it's a free page, and therefore in safe hand:
1164 * prep_new_page() will be the gate keeper.
1165 * 2) it's part of a non-compound high order page.
1166 * Implies some kernel user: cannot stop them from
1167 * R/W the page; let's pray that the page has been
1168 * used and will be freed some time later.
1169 * In fact it's dangerous to directly bump up page count from 0,
1170 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1171 */
1172 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173 if (is_free_buddy_page(p)) {
1174 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175 return 0;
1176 } else {
1177 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178 return -EBUSY;
1179 }
1180 }
1181
1182 if (PageTransHuge(hpage)) {
1183 lock_page(p);
1184 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185 unlock_page(p);
1186 if (!PageAnon(p))
1187 pr_err("Memory failure: %#lx: non anonymous thp\n",
1188 pfn);
1189 else
1190 pr_err("Memory failure: %#lx: thp split failed\n",
1191 pfn);
1192 if (TestClearPageHWPoison(p))
1193 num_poisoned_pages_dec();
1194 put_hwpoison_page(p);
1195 return -EBUSY;
1196 }
1197 unlock_page(p);
1198 VM_BUG_ON_PAGE(!page_count(p), p);
1199 hpage = compound_head(p);
1200 }
1201
1202 /*
1203 * We ignore non-LRU pages for good reasons.
1204 * - PG_locked is only well defined for LRU pages and a few others
1205 * - to avoid races with __SetPageLocked()
1206 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207 * The check (unnecessarily) ignores LRU pages being isolated and
1208 * walked by the page reclaim code, however that's not a big loss.
1209 */
1210 shake_page(p, 0);
1211 /* shake_page could have turned it free. */
1212 if (!PageLRU(p) && is_free_buddy_page(p)) {
1213 if (flags & MF_COUNT_INCREASED)
1214 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215 else
1216 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217 return 0;
1218 }
1219
1220 lock_page(p);
1221
1222 /*
1223 * The page could have changed compound pages during the locking.
1224 * If this happens just bail out.
1225 */
1226 if (PageCompound(p) && compound_head(p) != orig_head) {
1227 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228 res = -EBUSY;
1229 goto out;
1230 }
1231
1232 /*
1233 * We use page flags to determine what action should be taken, but
1234 * the flags can be modified by the error containment action. One
1235 * example is an mlocked page, where PG_mlocked is cleared by
1236 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237 * correctly, we save a copy of the page flags at this time.
1238 */
1239 if (PageHuge(p))
1240 page_flags = hpage->flags;
1241 else
1242 page_flags = p->flags;
1243
1244 /*
1245 * unpoison always clear PG_hwpoison inside page lock
1246 */
1247 if (!PageHWPoison(p)) {
1248 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249 num_poisoned_pages_dec();
1250 unlock_page(p);
1251 put_hwpoison_page(p);
1252 return 0;
1253 }
1254 if (hwpoison_filter(p)) {
1255 if (TestClearPageHWPoison(p))
1256 num_poisoned_pages_dec();
1257 unlock_page(p);
1258 put_hwpoison_page(p);
1259 return 0;
1260 }
1261
1262 if (!PageTransTail(p) && !PageLRU(p))
1263 goto identify_page_state;
1264
1265 /*
1266 * It's very difficult to mess with pages currently under IO
1267 * and in many cases impossible, so we just avoid it here.
1268 */
1269 wait_on_page_writeback(p);
1270
1271 /*
1272 * Now take care of user space mappings.
1273 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1274 *
1275 * When the raw error page is thp tail page, hpage points to the raw
1276 * page after thp split.
1277 */
1278 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280 res = -EBUSY;
1281 goto out;
1282 }
1283
1284 /*
1285 * Torn down by someone else?
1286 */
1287 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289 res = -EBUSY;
1290 goto out;
1291 }
1292
1293identify_page_state:
1294 res = identify_page_state(pfn, p, page_flags);
1295out:
1296 unlock_page(p);
1297 return res;
1298}
1299EXPORT_SYMBOL_GPL(memory_failure);
1300
1301#define MEMORY_FAILURE_FIFO_ORDER 4
1302#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1303
1304struct memory_failure_entry {
1305 unsigned long pfn;
1306 int flags;
1307};
1308
1309struct memory_failure_cpu {
1310 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311 MEMORY_FAILURE_FIFO_SIZE);
1312 spinlock_t lock;
1313 struct work_struct work;
1314};
1315
1316static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1317
1318/**
1319 * memory_failure_queue - Schedule handling memory failure of a page.
1320 * @pfn: Page Number of the corrupted page
1321 * @flags: Flags for memory failure handling
1322 *
1323 * This function is called by the low level hardware error handler
1324 * when it detects hardware memory corruption of a page. It schedules
1325 * the recovering of error page, including dropping pages, killing
1326 * processes etc.
1327 *
1328 * The function is primarily of use for corruptions that
1329 * happen outside the current execution context (e.g. when
1330 * detected by a background scrubber)
1331 *
1332 * Can run in IRQ context.
1333 */
1334void memory_failure_queue(unsigned long pfn, int flags)
1335{
1336 struct memory_failure_cpu *mf_cpu;
1337 unsigned long proc_flags;
1338 struct memory_failure_entry entry = {
1339 .pfn = pfn,
1340 .flags = flags,
1341 };
1342
1343 mf_cpu = &get_cpu_var(memory_failure_cpu);
1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 if (kfifo_put(&mf_cpu->fifo, entry))
1346 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347 else
1348 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349 pfn);
1350 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351 put_cpu_var(memory_failure_cpu);
1352}
1353EXPORT_SYMBOL_GPL(memory_failure_queue);
1354
1355static void memory_failure_work_func(struct work_struct *work)
1356{
1357 struct memory_failure_cpu *mf_cpu;
1358 struct memory_failure_entry entry = { 0, };
1359 unsigned long proc_flags;
1360 int gotten;
1361
1362 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363 for (;;) {
1364 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367 if (!gotten)
1368 break;
1369 if (entry.flags & MF_SOFT_OFFLINE)
1370 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371 else
1372 memory_failure(entry.pfn, entry.flags);
1373 }
1374}
1375
1376static int __init memory_failure_init(void)
1377{
1378 struct memory_failure_cpu *mf_cpu;
1379 int cpu;
1380
1381 for_each_possible_cpu(cpu) {
1382 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383 spin_lock_init(&mf_cpu->lock);
1384 INIT_KFIFO(mf_cpu->fifo);
1385 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386 }
1387
1388 return 0;
1389}
1390core_initcall(memory_failure_init);
1391
1392#define unpoison_pr_info(fmt, pfn, rs) \
1393({ \
1394 if (__ratelimit(rs)) \
1395 pr_info(fmt, pfn); \
1396})
1397
1398/**
1399 * unpoison_memory - Unpoison a previously poisoned page
1400 * @pfn: Page number of the to be unpoisoned page
1401 *
1402 * Software-unpoison a page that has been poisoned by
1403 * memory_failure() earlier.
1404 *
1405 * This is only done on the software-level, so it only works
1406 * for linux injected failures, not real hardware failures
1407 *
1408 * Returns 0 for success, otherwise -errno.
1409 */
1410int unpoison_memory(unsigned long pfn)
1411{
1412 struct page *page;
1413 struct page *p;
1414 int freeit = 0;
1415 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416 DEFAULT_RATELIMIT_BURST);
1417
1418 if (!pfn_valid(pfn))
1419 return -ENXIO;
1420
1421 p = pfn_to_page(pfn);
1422 page = compound_head(p);
1423
1424 if (!PageHWPoison(p)) {
1425 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426 pfn, &unpoison_rs);
1427 return 0;
1428 }
1429
1430 if (page_count(page) > 1) {
1431 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432 pfn, &unpoison_rs);
1433 return 0;
1434 }
1435
1436 if (page_mapped(page)) {
1437 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438 pfn, &unpoison_rs);
1439 return 0;
1440 }
1441
1442 if (page_mapping(page)) {
1443 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444 pfn, &unpoison_rs);
1445 return 0;
1446 }
1447
1448 /*
1449 * unpoison_memory() can encounter thp only when the thp is being
1450 * worked by memory_failure() and the page lock is not held yet.
1451 * In such case, we yield to memory_failure() and make unpoison fail.
1452 */
1453 if (!PageHuge(page) && PageTransHuge(page)) {
1454 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455 pfn, &unpoison_rs);
1456 return 0;
1457 }
1458
1459 if (!get_hwpoison_page(p)) {
1460 if (TestClearPageHWPoison(p))
1461 num_poisoned_pages_dec();
1462 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463 pfn, &unpoison_rs);
1464 return 0;
1465 }
1466
1467 lock_page(page);
1468 /*
1469 * This test is racy because PG_hwpoison is set outside of page lock.
1470 * That's acceptable because that won't trigger kernel panic. Instead,
1471 * the PG_hwpoison page will be caught and isolated on the entrance to
1472 * the free buddy page pool.
1473 */
1474 if (TestClearPageHWPoison(page)) {
1475 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476 pfn, &unpoison_rs);
1477 num_poisoned_pages_dec();
1478 freeit = 1;
1479 }
1480 unlock_page(page);
1481
1482 put_hwpoison_page(page);
1483 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484 put_hwpoison_page(page);
1485
1486 return 0;
1487}
1488EXPORT_SYMBOL(unpoison_memory);
1489
1490static struct page *new_page(struct page *p, unsigned long private)
1491{
1492 int nid = page_to_nid(p);
1493
1494 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1495}
1496
1497/*
1498 * Safely get reference count of an arbitrary page.
1499 * Returns 0 for a free page, -EIO for a zero refcount page
1500 * that is not free, and 1 for any other page type.
1501 * For 1 the page is returned with increased page count, otherwise not.
1502 */
1503static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1504{
1505 int ret;
1506
1507 if (flags & MF_COUNT_INCREASED)
1508 return 1;
1509
1510 /*
1511 * When the target page is a free hugepage, just remove it
1512 * from free hugepage list.
1513 */
1514 if (!get_hwpoison_page(p)) {
1515 if (PageHuge(p)) {
1516 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517 ret = 0;
1518 } else if (is_free_buddy_page(p)) {
1519 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520 ret = 0;
1521 } else {
1522 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523 __func__, pfn, p->flags);
1524 ret = -EIO;
1525 }
1526 } else {
1527 /* Not a free page */
1528 ret = 1;
1529 }
1530 return ret;
1531}
1532
1533static int get_any_page(struct page *page, unsigned long pfn, int flags)
1534{
1535 int ret = __get_any_page(page, pfn, flags);
1536
1537 if (ret == 1 && !PageHuge(page) &&
1538 !PageLRU(page) && !__PageMovable(page)) {
1539 /*
1540 * Try to free it.
1541 */
1542 put_hwpoison_page(page);
1543 shake_page(page, 1);
1544
1545 /*
1546 * Did it turn free?
1547 */
1548 ret = __get_any_page(page, pfn, 0);
1549 if (ret == 1 && !PageLRU(page)) {
1550 /* Drop page reference which is from __get_any_page() */
1551 put_hwpoison_page(page);
1552 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553 pfn, page->flags, &page->flags);
1554 return -EIO;
1555 }
1556 }
1557 return ret;
1558}
1559
1560static int soft_offline_huge_page(struct page *page, int flags)
1561{
1562 int ret;
1563 unsigned long pfn = page_to_pfn(page);
1564 struct page *hpage = compound_head(page);
1565 LIST_HEAD(pagelist);
1566
1567 /*
1568 * This double-check of PageHWPoison is to avoid the race with
1569 * memory_failure(). See also comment in __soft_offline_page().
1570 */
1571 lock_page(hpage);
1572 if (PageHWPoison(hpage)) {
1573 unlock_page(hpage);
1574 put_hwpoison_page(hpage);
1575 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576 return -EBUSY;
1577 }
1578 unlock_page(hpage);
1579
1580 ret = isolate_huge_page(hpage, &pagelist);
1581 /*
1582 * get_any_page() and isolate_huge_page() takes a refcount each,
1583 * so need to drop one here.
1584 */
1585 put_hwpoison_page(hpage);
1586 if (!ret) {
1587 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588 return -EBUSY;
1589 }
1590
1591 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593 if (ret) {
1594 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595 pfn, ret, page->flags, &page->flags);
1596 if (!list_empty(&pagelist))
1597 putback_movable_pages(&pagelist);
1598 if (ret > 0)
1599 ret = -EIO;
1600 } else {
1601 if (PageHuge(page))
1602 dissolve_free_huge_page(page);
1603 }
1604 return ret;
1605}
1606
1607static int __soft_offline_page(struct page *page, int flags)
1608{
1609 int ret;
1610 unsigned long pfn = page_to_pfn(page);
1611
1612 /*
1613 * Check PageHWPoison again inside page lock because PageHWPoison
1614 * is set by memory_failure() outside page lock. Note that
1615 * memory_failure() also double-checks PageHWPoison inside page lock,
1616 * so there's no race between soft_offline_page() and memory_failure().
1617 */
1618 lock_page(page);
1619 wait_on_page_writeback(page);
1620 if (PageHWPoison(page)) {
1621 unlock_page(page);
1622 put_hwpoison_page(page);
1623 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624 return -EBUSY;
1625 }
1626 /*
1627 * Try to invalidate first. This should work for
1628 * non dirty unmapped page cache pages.
1629 */
1630 ret = invalidate_inode_page(page);
1631 unlock_page(page);
1632 /*
1633 * RED-PEN would be better to keep it isolated here, but we
1634 * would need to fix isolation locking first.
1635 */
1636 if (ret == 1) {
1637 put_hwpoison_page(page);
1638 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639 SetPageHWPoison(page);
1640 num_poisoned_pages_inc();
1641 return 0;
1642 }
1643
1644 /*
1645 * Simple invalidation didn't work.
1646 * Try to migrate to a new page instead. migrate.c
1647 * handles a large number of cases for us.
1648 */
1649 if (PageLRU(page))
1650 ret = isolate_lru_page(page);
1651 else
1652 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1653 /*
1654 * Drop page reference which is came from get_any_page()
1655 * successful isolate_lru_page() already took another one.
1656 */
1657 put_hwpoison_page(page);
1658 if (!ret) {
1659 LIST_HEAD(pagelist);
1660 /*
1661 * After isolated lru page, the PageLRU will be cleared,
1662 * so use !__PageMovable instead for LRU page's mapping
1663 * cannot have PAGE_MAPPING_MOVABLE.
1664 */
1665 if (!__PageMovable(page))
1666 inc_node_page_state(page, NR_ISOLATED_ANON +
1667 page_is_file_cache(page));
1668 list_add(&page->lru, &pagelist);
1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671 if (ret) {
1672 if (!list_empty(&pagelist))
1673 putback_movable_pages(&pagelist);
1674
1675 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676 pfn, ret, page->flags, &page->flags);
1677 if (ret > 0)
1678 ret = -EIO;
1679 }
1680 } else {
1681 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682 pfn, ret, page_count(page), page->flags, &page->flags);
1683 }
1684 return ret;
1685}
1686
1687static int soft_offline_in_use_page(struct page *page, int flags)
1688{
1689 int ret;
1690 struct page *hpage = compound_head(page);
1691
1692 if (!PageHuge(page) && PageTransHuge(hpage)) {
1693 lock_page(hpage);
1694 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695 unlock_page(hpage);
1696 if (!PageAnon(hpage))
1697 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698 else
1699 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700 put_hwpoison_page(hpage);
1701 return -EBUSY;
1702 }
1703 unlock_page(hpage);
1704 get_hwpoison_page(page);
1705 put_hwpoison_page(hpage);
1706 }
1707
1708 if (PageHuge(page))
1709 ret = soft_offline_huge_page(page, flags);
1710 else
1711 ret = __soft_offline_page(page, flags);
1712
1713 return ret;
1714}
1715
1716static void soft_offline_free_page(struct page *page)
1717{
1718 struct page *head = compound_head(page);
1719
1720 if (!TestSetPageHWPoison(head)) {
1721 num_poisoned_pages_inc();
1722 if (PageHuge(head))
1723 dissolve_free_huge_page(page);
1724 }
1725}
1726
1727/**
1728 * soft_offline_page - Soft offline a page.
1729 * @page: page to offline
1730 * @flags: flags. Same as memory_failure().
1731 *
1732 * Returns 0 on success, otherwise negated errno.
1733 *
1734 * Soft offline a page, by migration or invalidation,
1735 * without killing anything. This is for the case when
1736 * a page is not corrupted yet (so it's still valid to access),
1737 * but has had a number of corrected errors and is better taken
1738 * out.
1739 *
1740 * The actual policy on when to do that is maintained by
1741 * user space.
1742 *
1743 * This should never impact any application or cause data loss,
1744 * however it might take some time.
1745 *
1746 * This is not a 100% solution for all memory, but tries to be
1747 * ``good enough'' for the majority of memory.
1748 */
1749int soft_offline_page(struct page *page, int flags)
1750{
1751 int ret;
1752 unsigned long pfn = page_to_pfn(page);
1753
1754 if (PageHWPoison(page)) {
1755 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756 if (flags & MF_COUNT_INCREASED)
1757 put_hwpoison_page(page);
1758 return -EBUSY;
1759 }
1760
1761 get_online_mems();
1762 ret = get_any_page(page, pfn, flags);
1763 put_online_mems();
1764
1765 if (ret > 0)
1766 ret = soft_offline_in_use_page(page, flags);
1767 else if (ret == 0)
1768 soft_offline_free_page(page);
1769
1770 return ret;
1771}
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/page-flags.h>
41#include <linux/kernel-page-flags.h>
42#include <linux/sched.h>
43#include <linux/ksm.h>
44#include <linux/rmap.h>
45#include <linux/export.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
52#include <linux/slab.h>
53#include <linux/swapops.h>
54#include <linux/hugetlb.h>
55#include <linux/memory_hotplug.h>
56#include <linux/mm_inline.h>
57#include <linux/kfifo.h>
58#include "internal.h"
59
60int sysctl_memory_failure_early_kill __read_mostly = 0;
61
62int sysctl_memory_failure_recovery __read_mostly = 1;
63
64atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65
66#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67
68u32 hwpoison_filter_enable = 0;
69u32 hwpoison_filter_dev_major = ~0U;
70u32 hwpoison_filter_dev_minor = ~0U;
71u64 hwpoison_filter_flags_mask;
72u64 hwpoison_filter_flags_value;
73EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78
79static int hwpoison_filter_dev(struct page *p)
80{
81 struct address_space *mapping;
82 dev_t dev;
83
84 if (hwpoison_filter_dev_major == ~0U &&
85 hwpoison_filter_dev_minor == ~0U)
86 return 0;
87
88 /*
89 * page_mapping() does not accept slab pages.
90 */
91 if (PageSlab(p))
92 return -EINVAL;
93
94 mapping = page_mapping(p);
95 if (mapping == NULL || mapping->host == NULL)
96 return -EINVAL;
97
98 dev = mapping->host->i_sb->s_dev;
99 if (hwpoison_filter_dev_major != ~0U &&
100 hwpoison_filter_dev_major != MAJOR(dev))
101 return -EINVAL;
102 if (hwpoison_filter_dev_minor != ~0U &&
103 hwpoison_filter_dev_minor != MINOR(dev))
104 return -EINVAL;
105
106 return 0;
107}
108
109static int hwpoison_filter_flags(struct page *p)
110{
111 if (!hwpoison_filter_flags_mask)
112 return 0;
113
114 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 hwpoison_filter_flags_value)
116 return 0;
117 else
118 return -EINVAL;
119}
120
121/*
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
129 * a freed page.
130 */
131#ifdef CONFIG_MEMCG_SWAP
132u64 hwpoison_filter_memcg;
133EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134static int hwpoison_filter_task(struct page *p)
135{
136 struct mem_cgroup *mem;
137 struct cgroup_subsys_state *css;
138 unsigned long ino;
139
140 if (!hwpoison_filter_memcg)
141 return 0;
142
143 mem = try_get_mem_cgroup_from_page(p);
144 if (!mem)
145 return -EINVAL;
146
147 css = mem_cgroup_css(mem);
148 ino = cgroup_ino(css->cgroup);
149 css_put(css);
150
151 if (!ino || ino != hwpoison_filter_memcg)
152 return -EINVAL;
153
154 return 0;
155}
156#else
157static int hwpoison_filter_task(struct page *p) { return 0; }
158#endif
159
160int hwpoison_filter(struct page *p)
161{
162 if (!hwpoison_filter_enable)
163 return 0;
164
165 if (hwpoison_filter_dev(p))
166 return -EINVAL;
167
168 if (hwpoison_filter_flags(p))
169 return -EINVAL;
170
171 if (hwpoison_filter_task(p))
172 return -EINVAL;
173
174 return 0;
175}
176#else
177int hwpoison_filter(struct page *p)
178{
179 return 0;
180}
181#endif
182
183EXPORT_SYMBOL_GPL(hwpoison_filter);
184
185/*
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
189 */
190static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 unsigned long pfn, struct page *page, int flags)
192{
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_addr = (void *)addr;
202#ifdef __ARCH_SI_TRAPNO
203 si.si_trapno = trapno;
204#endif
205 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206
207 if ((flags & MF_ACTION_REQUIRED) && t == current) {
208 si.si_code = BUS_MCEERR_AR;
209 ret = force_sig_info(SIGBUS, &si, t);
210 } else {
211 /*
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
216 */
217 si.si_code = BUS_MCEERR_AO;
218 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
219 }
220 if (ret < 0)
221 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 t->comm, t->pid, ret);
223 return ret;
224}
225
226/*
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
229 */
230void shake_page(struct page *p, int access)
231{
232 if (!PageSlab(p)) {
233 lru_add_drain_all();
234 if (PageLRU(p))
235 return;
236 drain_all_pages();
237 if (PageLRU(p) || is_free_buddy_page(p))
238 return;
239 }
240
241 /*
242 * Only call shrink_slab here (which would also shrink other caches) if
243 * access is not potentially fatal.
244 */
245 if (access) {
246 int nr;
247 int nid = page_to_nid(p);
248 do {
249 struct shrink_control shrink = {
250 .gfp_mask = GFP_KERNEL,
251 };
252 node_set(nid, shrink.nodes_to_scan);
253
254 nr = shrink_slab(&shrink, 1000, 1000);
255 if (page_count(p) == 1)
256 break;
257 } while (nr > 10);
258 }
259}
260EXPORT_SYMBOL_GPL(shake_page);
261
262/*
263 * Kill all processes that have a poisoned page mapped and then isolate
264 * the page.
265 *
266 * General strategy:
267 * Find all processes having the page mapped and kill them.
268 * But we keep a page reference around so that the page is not
269 * actually freed yet.
270 * Then stash the page away
271 *
272 * There's no convenient way to get back to mapped processes
273 * from the VMAs. So do a brute-force search over all
274 * running processes.
275 *
276 * Remember that machine checks are not common (or rather
277 * if they are common you have other problems), so this shouldn't
278 * be a performance issue.
279 *
280 * Also there are some races possible while we get from the
281 * error detection to actually handle it.
282 */
283
284struct to_kill {
285 struct list_head nd;
286 struct task_struct *tsk;
287 unsigned long addr;
288 char addr_valid;
289};
290
291/*
292 * Failure handling: if we can't find or can't kill a process there's
293 * not much we can do. We just print a message and ignore otherwise.
294 */
295
296/*
297 * Schedule a process for later kill.
298 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299 * TBD would GFP_NOIO be enough?
300 */
301static void add_to_kill(struct task_struct *tsk, struct page *p,
302 struct vm_area_struct *vma,
303 struct list_head *to_kill,
304 struct to_kill **tkc)
305{
306 struct to_kill *tk;
307
308 if (*tkc) {
309 tk = *tkc;
310 *tkc = NULL;
311 } else {
312 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 if (!tk) {
314 printk(KERN_ERR
315 "MCE: Out of memory while machine check handling\n");
316 return;
317 }
318 }
319 tk->addr = page_address_in_vma(p, vma);
320 tk->addr_valid = 1;
321
322 /*
323 * In theory we don't have to kill when the page was
324 * munmaped. But it could be also a mremap. Since that's
325 * likely very rare kill anyways just out of paranoia, but use
326 * a SIGKILL because the error is not contained anymore.
327 */
328 if (tk->addr == -EFAULT) {
329 pr_info("MCE: Unable to find user space address %lx in %s\n",
330 page_to_pfn(p), tsk->comm);
331 tk->addr_valid = 0;
332 }
333 get_task_struct(tsk);
334 tk->tsk = tsk;
335 list_add_tail(&tk->nd, to_kill);
336}
337
338/*
339 * Kill the processes that have been collected earlier.
340 *
341 * Only do anything when DOIT is set, otherwise just free the list
342 * (this is used for clean pages which do not need killing)
343 * Also when FAIL is set do a force kill because something went
344 * wrong earlier.
345 */
346static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 int fail, struct page *page, unsigned long pfn,
348 int flags)
349{
350 struct to_kill *tk, *next;
351
352 list_for_each_entry_safe (tk, next, to_kill, nd) {
353 if (forcekill) {
354 /*
355 * In case something went wrong with munmapping
356 * make sure the process doesn't catch the
357 * signal and then access the memory. Just kill it.
358 */
359 if (fail || tk->addr_valid == 0) {
360 printk(KERN_ERR
361 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 pfn, tk->tsk->comm, tk->tsk->pid);
363 force_sig(SIGKILL, tk->tsk);
364 }
365
366 /*
367 * In theory the process could have mapped
368 * something else on the address in-between. We could
369 * check for that, but we need to tell the
370 * process anyways.
371 */
372 else if (kill_proc(tk->tsk, tk->addr, trapno,
373 pfn, page, flags) < 0)
374 printk(KERN_ERR
375 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 pfn, tk->tsk->comm, tk->tsk->pid);
377 }
378 put_task_struct(tk->tsk);
379 kfree(tk);
380 }
381}
382
383static int task_early_kill(struct task_struct *tsk)
384{
385 if (!tsk->mm)
386 return 0;
387 if (tsk->flags & PF_MCE_PROCESS)
388 return !!(tsk->flags & PF_MCE_EARLY);
389 return sysctl_memory_failure_early_kill;
390}
391
392/*
393 * Collect processes when the error hit an anonymous page.
394 */
395static void collect_procs_anon(struct page *page, struct list_head *to_kill,
396 struct to_kill **tkc)
397{
398 struct vm_area_struct *vma;
399 struct task_struct *tsk;
400 struct anon_vma *av;
401 pgoff_t pgoff;
402
403 av = page_lock_anon_vma_read(page);
404 if (av == NULL) /* Not actually mapped anymore */
405 return;
406
407 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
408 read_lock(&tasklist_lock);
409 for_each_process (tsk) {
410 struct anon_vma_chain *vmac;
411
412 if (!task_early_kill(tsk))
413 continue;
414 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
415 pgoff, pgoff) {
416 vma = vmac->vma;
417 if (!page_mapped_in_vma(page, vma))
418 continue;
419 if (vma->vm_mm == tsk->mm)
420 add_to_kill(tsk, page, vma, to_kill, tkc);
421 }
422 }
423 read_unlock(&tasklist_lock);
424 page_unlock_anon_vma_read(av);
425}
426
427/*
428 * Collect processes when the error hit a file mapped page.
429 */
430static void collect_procs_file(struct page *page, struct list_head *to_kill,
431 struct to_kill **tkc)
432{
433 struct vm_area_struct *vma;
434 struct task_struct *tsk;
435 struct address_space *mapping = page->mapping;
436
437 mutex_lock(&mapping->i_mmap_mutex);
438 read_lock(&tasklist_lock);
439 for_each_process(tsk) {
440 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
441
442 if (!task_early_kill(tsk))
443 continue;
444
445 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
446 pgoff) {
447 /*
448 * Send early kill signal to tasks where a vma covers
449 * the page but the corrupted page is not necessarily
450 * mapped it in its pte.
451 * Assume applications who requested early kill want
452 * to be informed of all such data corruptions.
453 */
454 if (vma->vm_mm == tsk->mm)
455 add_to_kill(tsk, page, vma, to_kill, tkc);
456 }
457 }
458 read_unlock(&tasklist_lock);
459 mutex_unlock(&mapping->i_mmap_mutex);
460}
461
462/*
463 * Collect the processes who have the corrupted page mapped to kill.
464 * This is done in two steps for locking reasons.
465 * First preallocate one tokill structure outside the spin locks,
466 * so that we can kill at least one process reasonably reliable.
467 */
468static void collect_procs(struct page *page, struct list_head *tokill)
469{
470 struct to_kill *tk;
471
472 if (!page->mapping)
473 return;
474
475 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
476 if (!tk)
477 return;
478 if (PageAnon(page))
479 collect_procs_anon(page, tokill, &tk);
480 else
481 collect_procs_file(page, tokill, &tk);
482 kfree(tk);
483}
484
485/*
486 * Error handlers for various types of pages.
487 */
488
489enum outcome {
490 IGNORED, /* Error: cannot be handled */
491 FAILED, /* Error: handling failed */
492 DELAYED, /* Will be handled later */
493 RECOVERED, /* Successfully recovered */
494};
495
496static const char *action_name[] = {
497 [IGNORED] = "Ignored",
498 [FAILED] = "Failed",
499 [DELAYED] = "Delayed",
500 [RECOVERED] = "Recovered",
501};
502
503/*
504 * XXX: It is possible that a page is isolated from LRU cache,
505 * and then kept in swap cache or failed to remove from page cache.
506 * The page count will stop it from being freed by unpoison.
507 * Stress tests should be aware of this memory leak problem.
508 */
509static int delete_from_lru_cache(struct page *p)
510{
511 if (!isolate_lru_page(p)) {
512 /*
513 * Clear sensible page flags, so that the buddy system won't
514 * complain when the page is unpoison-and-freed.
515 */
516 ClearPageActive(p);
517 ClearPageUnevictable(p);
518 /*
519 * drop the page count elevated by isolate_lru_page()
520 */
521 page_cache_release(p);
522 return 0;
523 }
524 return -EIO;
525}
526
527/*
528 * Error hit kernel page.
529 * Do nothing, try to be lucky and not touch this instead. For a few cases we
530 * could be more sophisticated.
531 */
532static int me_kernel(struct page *p, unsigned long pfn)
533{
534 return IGNORED;
535}
536
537/*
538 * Page in unknown state. Do nothing.
539 */
540static int me_unknown(struct page *p, unsigned long pfn)
541{
542 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
543 return FAILED;
544}
545
546/*
547 * Clean (or cleaned) page cache page.
548 */
549static int me_pagecache_clean(struct page *p, unsigned long pfn)
550{
551 int err;
552 int ret = FAILED;
553 struct address_space *mapping;
554
555 delete_from_lru_cache(p);
556
557 /*
558 * For anonymous pages we're done the only reference left
559 * should be the one m_f() holds.
560 */
561 if (PageAnon(p))
562 return RECOVERED;
563
564 /*
565 * Now truncate the page in the page cache. This is really
566 * more like a "temporary hole punch"
567 * Don't do this for block devices when someone else
568 * has a reference, because it could be file system metadata
569 * and that's not safe to truncate.
570 */
571 mapping = page_mapping(p);
572 if (!mapping) {
573 /*
574 * Page has been teared down in the meanwhile
575 */
576 return FAILED;
577 }
578
579 /*
580 * Truncation is a bit tricky. Enable it per file system for now.
581 *
582 * Open: to take i_mutex or not for this? Right now we don't.
583 */
584 if (mapping->a_ops->error_remove_page) {
585 err = mapping->a_ops->error_remove_page(mapping, p);
586 if (err != 0) {
587 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
588 pfn, err);
589 } else if (page_has_private(p) &&
590 !try_to_release_page(p, GFP_NOIO)) {
591 pr_info("MCE %#lx: failed to release buffers\n", pfn);
592 } else {
593 ret = RECOVERED;
594 }
595 } else {
596 /*
597 * If the file system doesn't support it just invalidate
598 * This fails on dirty or anything with private pages
599 */
600 if (invalidate_inode_page(p))
601 ret = RECOVERED;
602 else
603 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
604 pfn);
605 }
606 return ret;
607}
608
609/*
610 * Dirty pagecache page
611 * Issues: when the error hit a hole page the error is not properly
612 * propagated.
613 */
614static int me_pagecache_dirty(struct page *p, unsigned long pfn)
615{
616 struct address_space *mapping = page_mapping(p);
617
618 SetPageError(p);
619 /* TBD: print more information about the file. */
620 if (mapping) {
621 /*
622 * IO error will be reported by write(), fsync(), etc.
623 * who check the mapping.
624 * This way the application knows that something went
625 * wrong with its dirty file data.
626 *
627 * There's one open issue:
628 *
629 * The EIO will be only reported on the next IO
630 * operation and then cleared through the IO map.
631 * Normally Linux has two mechanisms to pass IO error
632 * first through the AS_EIO flag in the address space
633 * and then through the PageError flag in the page.
634 * Since we drop pages on memory failure handling the
635 * only mechanism open to use is through AS_AIO.
636 *
637 * This has the disadvantage that it gets cleared on
638 * the first operation that returns an error, while
639 * the PageError bit is more sticky and only cleared
640 * when the page is reread or dropped. If an
641 * application assumes it will always get error on
642 * fsync, but does other operations on the fd before
643 * and the page is dropped between then the error
644 * will not be properly reported.
645 *
646 * This can already happen even without hwpoisoned
647 * pages: first on metadata IO errors (which only
648 * report through AS_EIO) or when the page is dropped
649 * at the wrong time.
650 *
651 * So right now we assume that the application DTRT on
652 * the first EIO, but we're not worse than other parts
653 * of the kernel.
654 */
655 mapping_set_error(mapping, EIO);
656 }
657
658 return me_pagecache_clean(p, pfn);
659}
660
661/*
662 * Clean and dirty swap cache.
663 *
664 * Dirty swap cache page is tricky to handle. The page could live both in page
665 * cache and swap cache(ie. page is freshly swapped in). So it could be
666 * referenced concurrently by 2 types of PTEs:
667 * normal PTEs and swap PTEs. We try to handle them consistently by calling
668 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
669 * and then
670 * - clear dirty bit to prevent IO
671 * - remove from LRU
672 * - but keep in the swap cache, so that when we return to it on
673 * a later page fault, we know the application is accessing
674 * corrupted data and shall be killed (we installed simple
675 * interception code in do_swap_page to catch it).
676 *
677 * Clean swap cache pages can be directly isolated. A later page fault will
678 * bring in the known good data from disk.
679 */
680static int me_swapcache_dirty(struct page *p, unsigned long pfn)
681{
682 ClearPageDirty(p);
683 /* Trigger EIO in shmem: */
684 ClearPageUptodate(p);
685
686 if (!delete_from_lru_cache(p))
687 return DELAYED;
688 else
689 return FAILED;
690}
691
692static int me_swapcache_clean(struct page *p, unsigned long pfn)
693{
694 delete_from_swap_cache(p);
695
696 if (!delete_from_lru_cache(p))
697 return RECOVERED;
698 else
699 return FAILED;
700}
701
702/*
703 * Huge pages. Needs work.
704 * Issues:
705 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
706 * To narrow down kill region to one page, we need to break up pmd.
707 */
708static int me_huge_page(struct page *p, unsigned long pfn)
709{
710 int res = 0;
711 struct page *hpage = compound_head(p);
712 /*
713 * We can safely recover from error on free or reserved (i.e.
714 * not in-use) hugepage by dequeuing it from freelist.
715 * To check whether a hugepage is in-use or not, we can't use
716 * page->lru because it can be used in other hugepage operations,
717 * such as __unmap_hugepage_range() and gather_surplus_pages().
718 * So instead we use page_mapping() and PageAnon().
719 * We assume that this function is called with page lock held,
720 * so there is no race between isolation and mapping/unmapping.
721 */
722 if (!(page_mapping(hpage) || PageAnon(hpage))) {
723 res = dequeue_hwpoisoned_huge_page(hpage);
724 if (!res)
725 return RECOVERED;
726 }
727 return DELAYED;
728}
729
730/*
731 * Various page states we can handle.
732 *
733 * A page state is defined by its current page->flags bits.
734 * The table matches them in order and calls the right handler.
735 *
736 * This is quite tricky because we can access page at any time
737 * in its live cycle, so all accesses have to be extremely careful.
738 *
739 * This is not complete. More states could be added.
740 * For any missing state don't attempt recovery.
741 */
742
743#define dirty (1UL << PG_dirty)
744#define sc (1UL << PG_swapcache)
745#define unevict (1UL << PG_unevictable)
746#define mlock (1UL << PG_mlocked)
747#define writeback (1UL << PG_writeback)
748#define lru (1UL << PG_lru)
749#define swapbacked (1UL << PG_swapbacked)
750#define head (1UL << PG_head)
751#define tail (1UL << PG_tail)
752#define compound (1UL << PG_compound)
753#define slab (1UL << PG_slab)
754#define reserved (1UL << PG_reserved)
755
756static struct page_state {
757 unsigned long mask;
758 unsigned long res;
759 char *msg;
760 int (*action)(struct page *p, unsigned long pfn);
761} error_states[] = {
762 { reserved, reserved, "reserved kernel", me_kernel },
763 /*
764 * free pages are specially detected outside this table:
765 * PG_buddy pages only make a small fraction of all free pages.
766 */
767
768 /*
769 * Could in theory check if slab page is free or if we can drop
770 * currently unused objects without touching them. But just
771 * treat it as standard kernel for now.
772 */
773 { slab, slab, "kernel slab", me_kernel },
774
775#ifdef CONFIG_PAGEFLAGS_EXTENDED
776 { head, head, "huge", me_huge_page },
777 { tail, tail, "huge", me_huge_page },
778#else
779 { compound, compound, "huge", me_huge_page },
780#endif
781
782 { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
783 { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
784
785 { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
786 { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
787
788 { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
789 { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
790
791 { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
792 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
793
794 /*
795 * Catchall entry: must be at end.
796 */
797 { 0, 0, "unknown page state", me_unknown },
798};
799
800#undef dirty
801#undef sc
802#undef unevict
803#undef mlock
804#undef writeback
805#undef lru
806#undef swapbacked
807#undef head
808#undef tail
809#undef compound
810#undef slab
811#undef reserved
812
813/*
814 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
815 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
816 */
817static void action_result(unsigned long pfn, char *msg, int result)
818{
819 pr_err("MCE %#lx: %s page recovery: %s\n",
820 pfn, msg, action_name[result]);
821}
822
823static int page_action(struct page_state *ps, struct page *p,
824 unsigned long pfn)
825{
826 int result;
827 int count;
828
829 result = ps->action(p, pfn);
830 action_result(pfn, ps->msg, result);
831
832 count = page_count(p) - 1;
833 if (ps->action == me_swapcache_dirty && result == DELAYED)
834 count--;
835 if (count != 0) {
836 printk(KERN_ERR
837 "MCE %#lx: %s page still referenced by %d users\n",
838 pfn, ps->msg, count);
839 result = FAILED;
840 }
841
842 /* Could do more checks here if page looks ok */
843 /*
844 * Could adjust zone counters here to correct for the missing page.
845 */
846
847 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
848}
849
850/*
851 * Do all that is necessary to remove user space mappings. Unmap
852 * the pages and send SIGBUS to the processes if the data was dirty.
853 */
854static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
855 int trapno, int flags, struct page **hpagep)
856{
857 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
858 struct address_space *mapping;
859 LIST_HEAD(tokill);
860 int ret;
861 int kill = 1, forcekill;
862 struct page *hpage = *hpagep;
863 struct page *ppage;
864
865 if (PageReserved(p) || PageSlab(p))
866 return SWAP_SUCCESS;
867
868 /*
869 * This check implies we don't kill processes if their pages
870 * are in the swap cache early. Those are always late kills.
871 */
872 if (!page_mapped(hpage))
873 return SWAP_SUCCESS;
874
875 if (PageKsm(p))
876 return SWAP_FAIL;
877
878 if (PageSwapCache(p)) {
879 printk(KERN_ERR
880 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
881 ttu |= TTU_IGNORE_HWPOISON;
882 }
883
884 /*
885 * Propagate the dirty bit from PTEs to struct page first, because we
886 * need this to decide if we should kill or just drop the page.
887 * XXX: the dirty test could be racy: set_page_dirty() may not always
888 * be called inside page lock (it's recommended but not enforced).
889 */
890 mapping = page_mapping(hpage);
891 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
892 mapping_cap_writeback_dirty(mapping)) {
893 if (page_mkclean(hpage)) {
894 SetPageDirty(hpage);
895 } else {
896 kill = 0;
897 ttu |= TTU_IGNORE_HWPOISON;
898 printk(KERN_INFO
899 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
900 pfn);
901 }
902 }
903
904 /*
905 * ppage: poisoned page
906 * if p is regular page(4k page)
907 * ppage == real poisoned page;
908 * else p is hugetlb or THP, ppage == head page.
909 */
910 ppage = hpage;
911
912 if (PageTransHuge(hpage)) {
913 /*
914 * Verify that this isn't a hugetlbfs head page, the check for
915 * PageAnon is just for avoid tripping a split_huge_page
916 * internal debug check, as split_huge_page refuses to deal with
917 * anything that isn't an anon page. PageAnon can't go away fro
918 * under us because we hold a refcount on the hpage, without a
919 * refcount on the hpage. split_huge_page can't be safely called
920 * in the first place, having a refcount on the tail isn't
921 * enough * to be safe.
922 */
923 if (!PageHuge(hpage) && PageAnon(hpage)) {
924 if (unlikely(split_huge_page(hpage))) {
925 /*
926 * FIXME: if splitting THP is failed, it is
927 * better to stop the following operation rather
928 * than causing panic by unmapping. System might
929 * survive if the page is freed later.
930 */
931 printk(KERN_INFO
932 "MCE %#lx: failed to split THP\n", pfn);
933
934 BUG_ON(!PageHWPoison(p));
935 return SWAP_FAIL;
936 }
937 /*
938 * We pinned the head page for hwpoison handling,
939 * now we split the thp and we are interested in
940 * the hwpoisoned raw page, so move the refcount
941 * to it. Similarly, page lock is shifted.
942 */
943 if (hpage != p) {
944 if (!(flags & MF_COUNT_INCREASED)) {
945 put_page(hpage);
946 get_page(p);
947 }
948 lock_page(p);
949 unlock_page(hpage);
950 *hpagep = p;
951 }
952 /* THP is split, so ppage should be the real poisoned page. */
953 ppage = p;
954 }
955 }
956
957 /*
958 * First collect all the processes that have the page
959 * mapped in dirty form. This has to be done before try_to_unmap,
960 * because ttu takes the rmap data structures down.
961 *
962 * Error handling: We ignore errors here because
963 * there's nothing that can be done.
964 */
965 if (kill)
966 collect_procs(ppage, &tokill);
967
968 ret = try_to_unmap(ppage, ttu);
969 if (ret != SWAP_SUCCESS)
970 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
971 pfn, page_mapcount(ppage));
972
973 /*
974 * Now that the dirty bit has been propagated to the
975 * struct page and all unmaps done we can decide if
976 * killing is needed or not. Only kill when the page
977 * was dirty or the process is not restartable,
978 * otherwise the tokill list is merely
979 * freed. When there was a problem unmapping earlier
980 * use a more force-full uncatchable kill to prevent
981 * any accesses to the poisoned memory.
982 */
983 forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
984 kill_procs(&tokill, forcekill, trapno,
985 ret != SWAP_SUCCESS, p, pfn, flags);
986
987 return ret;
988}
989
990static void set_page_hwpoison_huge_page(struct page *hpage)
991{
992 int i;
993 int nr_pages = 1 << compound_order(hpage);
994 for (i = 0; i < nr_pages; i++)
995 SetPageHWPoison(hpage + i);
996}
997
998static void clear_page_hwpoison_huge_page(struct page *hpage)
999{
1000 int i;
1001 int nr_pages = 1 << compound_order(hpage);
1002 for (i = 0; i < nr_pages; i++)
1003 ClearPageHWPoison(hpage + i);
1004}
1005
1006/**
1007 * memory_failure - Handle memory failure of a page.
1008 * @pfn: Page Number of the corrupted page
1009 * @trapno: Trap number reported in the signal to user space.
1010 * @flags: fine tune action taken
1011 *
1012 * This function is called by the low level machine check code
1013 * of an architecture when it detects hardware memory corruption
1014 * of a page. It tries its best to recover, which includes
1015 * dropping pages, killing processes etc.
1016 *
1017 * The function is primarily of use for corruptions that
1018 * happen outside the current execution context (e.g. when
1019 * detected by a background scrubber)
1020 *
1021 * Must run in process context (e.g. a work queue) with interrupts
1022 * enabled and no spinlocks hold.
1023 */
1024int memory_failure(unsigned long pfn, int trapno, int flags)
1025{
1026 struct page_state *ps;
1027 struct page *p;
1028 struct page *hpage;
1029 int res;
1030 unsigned int nr_pages;
1031 unsigned long page_flags;
1032
1033 if (!sysctl_memory_failure_recovery)
1034 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1035
1036 if (!pfn_valid(pfn)) {
1037 printk(KERN_ERR
1038 "MCE %#lx: memory outside kernel control\n",
1039 pfn);
1040 return -ENXIO;
1041 }
1042
1043 p = pfn_to_page(pfn);
1044 hpage = compound_head(p);
1045 if (TestSetPageHWPoison(p)) {
1046 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1047 return 0;
1048 }
1049
1050 /*
1051 * Currently errors on hugetlbfs pages are measured in hugepage units,
1052 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1053 * transparent hugepages, they are supposed to be split and error
1054 * measurement is done in normal page units. So nr_pages should be one
1055 * in this case.
1056 */
1057 if (PageHuge(p))
1058 nr_pages = 1 << compound_order(hpage);
1059 else /* normal page or thp */
1060 nr_pages = 1;
1061 atomic_long_add(nr_pages, &num_poisoned_pages);
1062
1063 /*
1064 * We need/can do nothing about count=0 pages.
1065 * 1) it's a free page, and therefore in safe hand:
1066 * prep_new_page() will be the gate keeper.
1067 * 2) it's a free hugepage, which is also safe:
1068 * an affected hugepage will be dequeued from hugepage freelist,
1069 * so there's no concern about reusing it ever after.
1070 * 3) it's part of a non-compound high order page.
1071 * Implies some kernel user: cannot stop them from
1072 * R/W the page; let's pray that the page has been
1073 * used and will be freed some time later.
1074 * In fact it's dangerous to directly bump up page count from 0,
1075 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1076 */
1077 if (!(flags & MF_COUNT_INCREASED) &&
1078 !get_page_unless_zero(hpage)) {
1079 if (is_free_buddy_page(p)) {
1080 action_result(pfn, "free buddy", DELAYED);
1081 return 0;
1082 } else if (PageHuge(hpage)) {
1083 /*
1084 * Check "filter hit" and "race with other subpage."
1085 */
1086 lock_page(hpage);
1087 if (PageHWPoison(hpage)) {
1088 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1089 || (p != hpage && TestSetPageHWPoison(hpage))) {
1090 atomic_long_sub(nr_pages, &num_poisoned_pages);
1091 unlock_page(hpage);
1092 return 0;
1093 }
1094 }
1095 set_page_hwpoison_huge_page(hpage);
1096 res = dequeue_hwpoisoned_huge_page(hpage);
1097 action_result(pfn, "free huge",
1098 res ? IGNORED : DELAYED);
1099 unlock_page(hpage);
1100 return res;
1101 } else {
1102 action_result(pfn, "high order kernel", IGNORED);
1103 return -EBUSY;
1104 }
1105 }
1106
1107 /*
1108 * We ignore non-LRU pages for good reasons.
1109 * - PG_locked is only well defined for LRU pages and a few others
1110 * - to avoid races with __set_page_locked()
1111 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1112 * The check (unnecessarily) ignores LRU pages being isolated and
1113 * walked by the page reclaim code, however that's not a big loss.
1114 */
1115 if (!PageHuge(p) && !PageTransTail(p)) {
1116 if (!PageLRU(p))
1117 shake_page(p, 0);
1118 if (!PageLRU(p)) {
1119 /*
1120 * shake_page could have turned it free.
1121 */
1122 if (is_free_buddy_page(p)) {
1123 if (flags & MF_COUNT_INCREASED)
1124 action_result(pfn, "free buddy", DELAYED);
1125 else
1126 action_result(pfn, "free buddy, 2nd try", DELAYED);
1127 return 0;
1128 }
1129 action_result(pfn, "non LRU", IGNORED);
1130 put_page(p);
1131 return -EBUSY;
1132 }
1133 }
1134
1135 /*
1136 * Lock the page and wait for writeback to finish.
1137 * It's very difficult to mess with pages currently under IO
1138 * and in many cases impossible, so we just avoid it here.
1139 */
1140 lock_page(hpage);
1141
1142 /*
1143 * We use page flags to determine what action should be taken, but
1144 * the flags can be modified by the error containment action. One
1145 * example is an mlocked page, where PG_mlocked is cleared by
1146 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1147 * correctly, we save a copy of the page flags at this time.
1148 */
1149 page_flags = p->flags;
1150
1151 /*
1152 * unpoison always clear PG_hwpoison inside page lock
1153 */
1154 if (!PageHWPoison(p)) {
1155 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1156 atomic_long_sub(nr_pages, &num_poisoned_pages);
1157 put_page(hpage);
1158 res = 0;
1159 goto out;
1160 }
1161 if (hwpoison_filter(p)) {
1162 if (TestClearPageHWPoison(p))
1163 atomic_long_sub(nr_pages, &num_poisoned_pages);
1164 unlock_page(hpage);
1165 put_page(hpage);
1166 return 0;
1167 }
1168
1169 /*
1170 * For error on the tail page, we should set PG_hwpoison
1171 * on the head page to show that the hugepage is hwpoisoned
1172 */
1173 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1174 action_result(pfn, "hugepage already hardware poisoned",
1175 IGNORED);
1176 unlock_page(hpage);
1177 put_page(hpage);
1178 return 0;
1179 }
1180 /*
1181 * Set PG_hwpoison on all pages in an error hugepage,
1182 * because containment is done in hugepage unit for now.
1183 * Since we have done TestSetPageHWPoison() for the head page with
1184 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1185 */
1186 if (PageHuge(p))
1187 set_page_hwpoison_huge_page(hpage);
1188
1189 wait_on_page_writeback(p);
1190
1191 /*
1192 * Now take care of user space mappings.
1193 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1194 *
1195 * When the raw error page is thp tail page, hpage points to the raw
1196 * page after thp split.
1197 */
1198 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1199 != SWAP_SUCCESS) {
1200 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1201 res = -EBUSY;
1202 goto out;
1203 }
1204
1205 /*
1206 * Torn down by someone else?
1207 */
1208 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1209 action_result(pfn, "already truncated LRU", IGNORED);
1210 res = -EBUSY;
1211 goto out;
1212 }
1213
1214 res = -EBUSY;
1215 /*
1216 * The first check uses the current page flags which may not have any
1217 * relevant information. The second check with the saved page flagss is
1218 * carried out only if the first check can't determine the page status.
1219 */
1220 for (ps = error_states;; ps++)
1221 if ((p->flags & ps->mask) == ps->res)
1222 break;
1223
1224 page_flags |= (p->flags & (1UL << PG_dirty));
1225
1226 if (!ps->mask)
1227 for (ps = error_states;; ps++)
1228 if ((page_flags & ps->mask) == ps->res)
1229 break;
1230 res = page_action(ps, p, pfn);
1231out:
1232 unlock_page(hpage);
1233 return res;
1234}
1235EXPORT_SYMBOL_GPL(memory_failure);
1236
1237#define MEMORY_FAILURE_FIFO_ORDER 4
1238#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1239
1240struct memory_failure_entry {
1241 unsigned long pfn;
1242 int trapno;
1243 int flags;
1244};
1245
1246struct memory_failure_cpu {
1247 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1248 MEMORY_FAILURE_FIFO_SIZE);
1249 spinlock_t lock;
1250 struct work_struct work;
1251};
1252
1253static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1254
1255/**
1256 * memory_failure_queue - Schedule handling memory failure of a page.
1257 * @pfn: Page Number of the corrupted page
1258 * @trapno: Trap number reported in the signal to user space.
1259 * @flags: Flags for memory failure handling
1260 *
1261 * This function is called by the low level hardware error handler
1262 * when it detects hardware memory corruption of a page. It schedules
1263 * the recovering of error page, including dropping pages, killing
1264 * processes etc.
1265 *
1266 * The function is primarily of use for corruptions that
1267 * happen outside the current execution context (e.g. when
1268 * detected by a background scrubber)
1269 *
1270 * Can run in IRQ context.
1271 */
1272void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1273{
1274 struct memory_failure_cpu *mf_cpu;
1275 unsigned long proc_flags;
1276 struct memory_failure_entry entry = {
1277 .pfn = pfn,
1278 .trapno = trapno,
1279 .flags = flags,
1280 };
1281
1282 mf_cpu = &get_cpu_var(memory_failure_cpu);
1283 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1284 if (kfifo_put(&mf_cpu->fifo, entry))
1285 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1286 else
1287 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1288 pfn);
1289 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1290 put_cpu_var(memory_failure_cpu);
1291}
1292EXPORT_SYMBOL_GPL(memory_failure_queue);
1293
1294static void memory_failure_work_func(struct work_struct *work)
1295{
1296 struct memory_failure_cpu *mf_cpu;
1297 struct memory_failure_entry entry = { 0, };
1298 unsigned long proc_flags;
1299 int gotten;
1300
1301 mf_cpu = &__get_cpu_var(memory_failure_cpu);
1302 for (;;) {
1303 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1304 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1305 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1306 if (!gotten)
1307 break;
1308 if (entry.flags & MF_SOFT_OFFLINE)
1309 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1310 else
1311 memory_failure(entry.pfn, entry.trapno, entry.flags);
1312 }
1313}
1314
1315static int __init memory_failure_init(void)
1316{
1317 struct memory_failure_cpu *mf_cpu;
1318 int cpu;
1319
1320 for_each_possible_cpu(cpu) {
1321 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1322 spin_lock_init(&mf_cpu->lock);
1323 INIT_KFIFO(mf_cpu->fifo);
1324 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1325 }
1326
1327 return 0;
1328}
1329core_initcall(memory_failure_init);
1330
1331/**
1332 * unpoison_memory - Unpoison a previously poisoned page
1333 * @pfn: Page number of the to be unpoisoned page
1334 *
1335 * Software-unpoison a page that has been poisoned by
1336 * memory_failure() earlier.
1337 *
1338 * This is only done on the software-level, so it only works
1339 * for linux injected failures, not real hardware failures
1340 *
1341 * Returns 0 for success, otherwise -errno.
1342 */
1343int unpoison_memory(unsigned long pfn)
1344{
1345 struct page *page;
1346 struct page *p;
1347 int freeit = 0;
1348 unsigned int nr_pages;
1349
1350 if (!pfn_valid(pfn))
1351 return -ENXIO;
1352
1353 p = pfn_to_page(pfn);
1354 page = compound_head(p);
1355
1356 if (!PageHWPoison(p)) {
1357 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1358 return 0;
1359 }
1360
1361 /*
1362 * unpoison_memory() can encounter thp only when the thp is being
1363 * worked by memory_failure() and the page lock is not held yet.
1364 * In such case, we yield to memory_failure() and make unpoison fail.
1365 */
1366 if (!PageHuge(page) && PageTransHuge(page)) {
1367 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1368 return 0;
1369 }
1370
1371 nr_pages = 1 << compound_order(page);
1372
1373 if (!get_page_unless_zero(page)) {
1374 /*
1375 * Since HWPoisoned hugepage should have non-zero refcount,
1376 * race between memory failure and unpoison seems to happen.
1377 * In such case unpoison fails and memory failure runs
1378 * to the end.
1379 */
1380 if (PageHuge(page)) {
1381 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1382 return 0;
1383 }
1384 if (TestClearPageHWPoison(p))
1385 atomic_long_dec(&num_poisoned_pages);
1386 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1387 return 0;
1388 }
1389
1390 lock_page(page);
1391 /*
1392 * This test is racy because PG_hwpoison is set outside of page lock.
1393 * That's acceptable because that won't trigger kernel panic. Instead,
1394 * the PG_hwpoison page will be caught and isolated on the entrance to
1395 * the free buddy page pool.
1396 */
1397 if (TestClearPageHWPoison(page)) {
1398 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1399 atomic_long_sub(nr_pages, &num_poisoned_pages);
1400 freeit = 1;
1401 if (PageHuge(page))
1402 clear_page_hwpoison_huge_page(page);
1403 }
1404 unlock_page(page);
1405
1406 put_page(page);
1407 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1408 put_page(page);
1409
1410 return 0;
1411}
1412EXPORT_SYMBOL(unpoison_memory);
1413
1414static struct page *new_page(struct page *p, unsigned long private, int **x)
1415{
1416 int nid = page_to_nid(p);
1417 if (PageHuge(p))
1418 return alloc_huge_page_node(page_hstate(compound_head(p)),
1419 nid);
1420 else
1421 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1422}
1423
1424/*
1425 * Safely get reference count of an arbitrary page.
1426 * Returns 0 for a free page, -EIO for a zero refcount page
1427 * that is not free, and 1 for any other page type.
1428 * For 1 the page is returned with increased page count, otherwise not.
1429 */
1430static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1431{
1432 int ret;
1433
1434 if (flags & MF_COUNT_INCREASED)
1435 return 1;
1436
1437 /*
1438 * When the target page is a free hugepage, just remove it
1439 * from free hugepage list.
1440 */
1441 if (!get_page_unless_zero(compound_head(p))) {
1442 if (PageHuge(p)) {
1443 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1444 ret = 0;
1445 } else if (is_free_buddy_page(p)) {
1446 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1447 ret = 0;
1448 } else {
1449 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1450 __func__, pfn, p->flags);
1451 ret = -EIO;
1452 }
1453 } else {
1454 /* Not a free page */
1455 ret = 1;
1456 }
1457 return ret;
1458}
1459
1460static int get_any_page(struct page *page, unsigned long pfn, int flags)
1461{
1462 int ret = __get_any_page(page, pfn, flags);
1463
1464 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1465 /*
1466 * Try to free it.
1467 */
1468 put_page(page);
1469 shake_page(page, 1);
1470
1471 /*
1472 * Did it turn free?
1473 */
1474 ret = __get_any_page(page, pfn, 0);
1475 if (!PageLRU(page)) {
1476 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1477 pfn, page->flags);
1478 return -EIO;
1479 }
1480 }
1481 return ret;
1482}
1483
1484static int soft_offline_huge_page(struct page *page, int flags)
1485{
1486 int ret;
1487 unsigned long pfn = page_to_pfn(page);
1488 struct page *hpage = compound_head(page);
1489 LIST_HEAD(pagelist);
1490
1491 /*
1492 * This double-check of PageHWPoison is to avoid the race with
1493 * memory_failure(). See also comment in __soft_offline_page().
1494 */
1495 lock_page(hpage);
1496 if (PageHWPoison(hpage)) {
1497 unlock_page(hpage);
1498 put_page(hpage);
1499 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1500 return -EBUSY;
1501 }
1502 unlock_page(hpage);
1503
1504 /* Keep page count to indicate a given hugepage is isolated. */
1505 list_move(&hpage->lru, &pagelist);
1506 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1507 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1508 if (ret) {
1509 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1510 pfn, ret, page->flags);
1511 /*
1512 * We know that soft_offline_huge_page() tries to migrate
1513 * only one hugepage pointed to by hpage, so we need not
1514 * run through the pagelist here.
1515 */
1516 putback_active_hugepage(hpage);
1517 if (ret > 0)
1518 ret = -EIO;
1519 } else {
1520 /* overcommit hugetlb page will be freed to buddy */
1521 if (PageHuge(page)) {
1522 set_page_hwpoison_huge_page(hpage);
1523 dequeue_hwpoisoned_huge_page(hpage);
1524 atomic_long_add(1 << compound_order(hpage),
1525 &num_poisoned_pages);
1526 } else {
1527 SetPageHWPoison(page);
1528 atomic_long_inc(&num_poisoned_pages);
1529 }
1530 }
1531 return ret;
1532}
1533
1534static int __soft_offline_page(struct page *page, int flags)
1535{
1536 int ret;
1537 unsigned long pfn = page_to_pfn(page);
1538
1539 /*
1540 * Check PageHWPoison again inside page lock because PageHWPoison
1541 * is set by memory_failure() outside page lock. Note that
1542 * memory_failure() also double-checks PageHWPoison inside page lock,
1543 * so there's no race between soft_offline_page() and memory_failure().
1544 */
1545 lock_page(page);
1546 wait_on_page_writeback(page);
1547 if (PageHWPoison(page)) {
1548 unlock_page(page);
1549 put_page(page);
1550 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1551 return -EBUSY;
1552 }
1553 /*
1554 * Try to invalidate first. This should work for
1555 * non dirty unmapped page cache pages.
1556 */
1557 ret = invalidate_inode_page(page);
1558 unlock_page(page);
1559 /*
1560 * RED-PEN would be better to keep it isolated here, but we
1561 * would need to fix isolation locking first.
1562 */
1563 if (ret == 1) {
1564 put_page(page);
1565 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1566 SetPageHWPoison(page);
1567 atomic_long_inc(&num_poisoned_pages);
1568 return 0;
1569 }
1570
1571 /*
1572 * Simple invalidation didn't work.
1573 * Try to migrate to a new page instead. migrate.c
1574 * handles a large number of cases for us.
1575 */
1576 ret = isolate_lru_page(page);
1577 /*
1578 * Drop page reference which is came from get_any_page()
1579 * successful isolate_lru_page() already took another one.
1580 */
1581 put_page(page);
1582 if (!ret) {
1583 LIST_HEAD(pagelist);
1584 inc_zone_page_state(page, NR_ISOLATED_ANON +
1585 page_is_file_cache(page));
1586 list_add(&page->lru, &pagelist);
1587 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
1588 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1589 if (ret) {
1590 if (!list_empty(&pagelist)) {
1591 list_del(&page->lru);
1592 dec_zone_page_state(page, NR_ISOLATED_ANON +
1593 page_is_file_cache(page));
1594 putback_lru_page(page);
1595 }
1596
1597 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1598 pfn, ret, page->flags);
1599 if (ret > 0)
1600 ret = -EIO;
1601 } else {
1602 /*
1603 * After page migration succeeds, the source page can
1604 * be trapped in pagevec and actual freeing is delayed.
1605 * Freeing code works differently based on PG_hwpoison,
1606 * so there's a race. We need to make sure that the
1607 * source page should be freed back to buddy before
1608 * setting PG_hwpoison.
1609 */
1610 if (!is_free_buddy_page(page))
1611 lru_add_drain_all();
1612 if (!is_free_buddy_page(page))
1613 drain_all_pages();
1614 SetPageHWPoison(page);
1615 if (!is_free_buddy_page(page))
1616 pr_info("soft offline: %#lx: page leaked\n",
1617 pfn);
1618 atomic_long_inc(&num_poisoned_pages);
1619 }
1620 } else {
1621 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1622 pfn, ret, page_count(page), page->flags);
1623 }
1624 return ret;
1625}
1626
1627/**
1628 * soft_offline_page - Soft offline a page.
1629 * @page: page to offline
1630 * @flags: flags. Same as memory_failure().
1631 *
1632 * Returns 0 on success, otherwise negated errno.
1633 *
1634 * Soft offline a page, by migration or invalidation,
1635 * without killing anything. This is for the case when
1636 * a page is not corrupted yet (so it's still valid to access),
1637 * but has had a number of corrected errors and is better taken
1638 * out.
1639 *
1640 * The actual policy on when to do that is maintained by
1641 * user space.
1642 *
1643 * This should never impact any application or cause data loss,
1644 * however it might take some time.
1645 *
1646 * This is not a 100% solution for all memory, but tries to be
1647 * ``good enough'' for the majority of memory.
1648 */
1649int soft_offline_page(struct page *page, int flags)
1650{
1651 int ret;
1652 unsigned long pfn = page_to_pfn(page);
1653 struct page *hpage = compound_head(page);
1654
1655 if (PageHWPoison(page)) {
1656 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1657 return -EBUSY;
1658 }
1659 if (!PageHuge(page) && PageTransHuge(hpage)) {
1660 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1661 pr_info("soft offline: %#lx: failed to split THP\n",
1662 pfn);
1663 return -EBUSY;
1664 }
1665 }
1666
1667 /*
1668 * The lock_memory_hotplug prevents a race with memory hotplug.
1669 * This is a big hammer, a better would be nicer.
1670 */
1671 lock_memory_hotplug();
1672
1673 /*
1674 * Isolate the page, so that it doesn't get reallocated if it
1675 * was free. This flag should be kept set until the source page
1676 * is freed and PG_hwpoison on it is set.
1677 */
1678 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1679 set_migratetype_isolate(page, true);
1680
1681 ret = get_any_page(page, pfn, flags);
1682 unlock_memory_hotplug();
1683 if (ret > 0) { /* for in-use pages */
1684 if (PageHuge(page))
1685 ret = soft_offline_huge_page(page, flags);
1686 else
1687 ret = __soft_offline_page(page, flags);
1688 } else if (ret == 0) { /* for free pages */
1689 if (PageHuge(page)) {
1690 set_page_hwpoison_huge_page(hpage);
1691 dequeue_hwpoisoned_huge_page(hpage);
1692 atomic_long_add(1 << compound_order(hpage),
1693 &num_poisoned_pages);
1694 } else {
1695 SetPageHWPoison(page);
1696 atomic_long_inc(&num_poisoned_pages);
1697 }
1698 }
1699 unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1700 return ret;
1701}