Loading...
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/kernel-page-flags.h>
43#include <linux/sched/signal.h>
44#include <linux/sched/task.h>
45#include <linux/ksm.h>
46#include <linux/rmap.h>
47#include <linux/export.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
51#include <linux/migrate.h>
52#include <linux/suspend.h>
53#include <linux/slab.h>
54#include <linux/swapops.h>
55#include <linux/hugetlb.h>
56#include <linux/memory_hotplug.h>
57#include <linux/mm_inline.h>
58#include <linux/kfifo.h>
59#include <linux/ratelimit.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71u32 hwpoison_filter_enable = 0;
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134#ifdef CONFIG_MEMCG
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
151int hwpoison_filter(struct page *p)
152{
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166}
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176/*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181static int kill_proc(struct task_struct *t, unsigned long addr,
182 unsigned long pfn, struct page *page, int flags)
183{
184 short addr_lsb;
185 int ret;
186
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
189 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
190
191 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
192 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
193 addr_lsb, current);
194 } else {
195 /*
196 * Don't use force here, it's convenient if the signal
197 * can be temporarily blocked.
198 * This could cause a loop when the user sets SIGBUS
199 * to SIG_IGN, but hopefully no one will do that?
200 */
201 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
202 addr_lsb, t); /* synchronous? */
203 }
204 if (ret < 0)
205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
206 t->comm, t->pid, ret);
207 return ret;
208}
209
210/*
211 * When a unknown page type is encountered drain as many buffers as possible
212 * in the hope to turn the page into a LRU or free page, which we can handle.
213 */
214void shake_page(struct page *p, int access)
215{
216 if (PageHuge(p))
217 return;
218
219 if (!PageSlab(p)) {
220 lru_add_drain_all();
221 if (PageLRU(p))
222 return;
223 drain_all_pages(page_zone(p));
224 if (PageLRU(p) || is_free_buddy_page(p))
225 return;
226 }
227
228 /*
229 * Only call shrink_node_slabs here (which would also shrink
230 * other caches) if access is not potentially fatal.
231 */
232 if (access)
233 drop_slab_node(page_to_nid(p));
234}
235EXPORT_SYMBOL_GPL(shake_page);
236
237/*
238 * Kill all processes that have a poisoned page mapped and then isolate
239 * the page.
240 *
241 * General strategy:
242 * Find all processes having the page mapped and kill them.
243 * But we keep a page reference around so that the page is not
244 * actually freed yet.
245 * Then stash the page away
246 *
247 * There's no convenient way to get back to mapped processes
248 * from the VMAs. So do a brute-force search over all
249 * running processes.
250 *
251 * Remember that machine checks are not common (or rather
252 * if they are common you have other problems), so this shouldn't
253 * be a performance issue.
254 *
255 * Also there are some races possible while we get from the
256 * error detection to actually handle it.
257 */
258
259struct to_kill {
260 struct list_head nd;
261 struct task_struct *tsk;
262 unsigned long addr;
263 char addr_valid;
264};
265
266/*
267 * Failure handling: if we can't find or can't kill a process there's
268 * not much we can do. We just print a message and ignore otherwise.
269 */
270
271/*
272 * Schedule a process for later kill.
273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
274 * TBD would GFP_NOIO be enough?
275 */
276static void add_to_kill(struct task_struct *tsk, struct page *p,
277 struct vm_area_struct *vma,
278 struct list_head *to_kill,
279 struct to_kill **tkc)
280{
281 struct to_kill *tk;
282
283 if (*tkc) {
284 tk = *tkc;
285 *tkc = NULL;
286 } else {
287 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
288 if (!tk) {
289 pr_err("Memory failure: Out of memory while machine check handling\n");
290 return;
291 }
292 }
293 tk->addr = page_address_in_vma(p, vma);
294 tk->addr_valid = 1;
295
296 /*
297 * In theory we don't have to kill when the page was
298 * munmaped. But it could be also a mremap. Since that's
299 * likely very rare kill anyways just out of paranoia, but use
300 * a SIGKILL because the error is not contained anymore.
301 */
302 if (tk->addr == -EFAULT) {
303 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
304 page_to_pfn(p), tsk->comm);
305 tk->addr_valid = 0;
306 }
307 get_task_struct(tsk);
308 tk->tsk = tsk;
309 list_add_tail(&tk->nd, to_kill);
310}
311
312/*
313 * Kill the processes that have been collected earlier.
314 *
315 * Only do anything when DOIT is set, otherwise just free the list
316 * (this is used for clean pages which do not need killing)
317 * Also when FAIL is set do a force kill because something went
318 * wrong earlier.
319 */
320static void kill_procs(struct list_head *to_kill, int forcekill,
321 bool fail, struct page *page, unsigned long pfn,
322 int flags)
323{
324 struct to_kill *tk, *next;
325
326 list_for_each_entry_safe (tk, next, to_kill, nd) {
327 if (forcekill) {
328 /*
329 * In case something went wrong with munmapping
330 * make sure the process doesn't catch the
331 * signal and then access the memory. Just kill it.
332 */
333 if (fail || tk->addr_valid == 0) {
334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
335 pfn, tk->tsk->comm, tk->tsk->pid);
336 force_sig(SIGKILL, tk->tsk);
337 }
338
339 /*
340 * In theory the process could have mapped
341 * something else on the address in-between. We could
342 * check for that, but we need to tell the
343 * process anyways.
344 */
345 else if (kill_proc(tk->tsk, tk->addr,
346 pfn, page, flags) < 0)
347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
348 pfn, tk->tsk->comm, tk->tsk->pid);
349 }
350 put_task_struct(tk->tsk);
351 kfree(tk);
352 }
353}
354
355/*
356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
357 * on behalf of the thread group. Return task_struct of the (first found)
358 * dedicated thread if found, and return NULL otherwise.
359 *
360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
361 * have to call rcu_read_lock/unlock() in this function.
362 */
363static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
364{
365 struct task_struct *t;
366
367 for_each_thread(tsk, t)
368 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
369 return t;
370 return NULL;
371}
372
373/*
374 * Determine whether a given process is "early kill" process which expects
375 * to be signaled when some page under the process is hwpoisoned.
376 * Return task_struct of the dedicated thread (main thread unless explicitly
377 * specified) if the process is "early kill," and otherwise returns NULL.
378 */
379static struct task_struct *task_early_kill(struct task_struct *tsk,
380 int force_early)
381{
382 struct task_struct *t;
383 if (!tsk->mm)
384 return NULL;
385 if (force_early)
386 return tsk;
387 t = find_early_kill_thread(tsk);
388 if (t)
389 return t;
390 if (sysctl_memory_failure_early_kill)
391 return tsk;
392 return NULL;
393}
394
395/*
396 * Collect processes when the error hit an anonymous page.
397 */
398static void collect_procs_anon(struct page *page, struct list_head *to_kill,
399 struct to_kill **tkc, int force_early)
400{
401 struct vm_area_struct *vma;
402 struct task_struct *tsk;
403 struct anon_vma *av;
404 pgoff_t pgoff;
405
406 av = page_lock_anon_vma_read(page);
407 if (av == NULL) /* Not actually mapped anymore */
408 return;
409
410 pgoff = page_to_pgoff(page);
411 read_lock(&tasklist_lock);
412 for_each_process (tsk) {
413 struct anon_vma_chain *vmac;
414 struct task_struct *t = task_early_kill(tsk, force_early);
415
416 if (!t)
417 continue;
418 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
419 pgoff, pgoff) {
420 vma = vmac->vma;
421 if (!page_mapped_in_vma(page, vma))
422 continue;
423 if (vma->vm_mm == t->mm)
424 add_to_kill(t, page, vma, to_kill, tkc);
425 }
426 }
427 read_unlock(&tasklist_lock);
428 page_unlock_anon_vma_read(av);
429}
430
431/*
432 * Collect processes when the error hit a file mapped page.
433 */
434static void collect_procs_file(struct page *page, struct list_head *to_kill,
435 struct to_kill **tkc, int force_early)
436{
437 struct vm_area_struct *vma;
438 struct task_struct *tsk;
439 struct address_space *mapping = page->mapping;
440
441 i_mmap_lock_read(mapping);
442 read_lock(&tasklist_lock);
443 for_each_process(tsk) {
444 pgoff_t pgoff = page_to_pgoff(page);
445 struct task_struct *t = task_early_kill(tsk, force_early);
446
447 if (!t)
448 continue;
449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
450 pgoff) {
451 /*
452 * Send early kill signal to tasks where a vma covers
453 * the page but the corrupted page is not necessarily
454 * mapped it in its pte.
455 * Assume applications who requested early kill want
456 * to be informed of all such data corruptions.
457 */
458 if (vma->vm_mm == t->mm)
459 add_to_kill(t, page, vma, to_kill, tkc);
460 }
461 }
462 read_unlock(&tasklist_lock);
463 i_mmap_unlock_read(mapping);
464}
465
466/*
467 * Collect the processes who have the corrupted page mapped to kill.
468 * This is done in two steps for locking reasons.
469 * First preallocate one tokill structure outside the spin locks,
470 * so that we can kill at least one process reasonably reliable.
471 */
472static void collect_procs(struct page *page, struct list_head *tokill,
473 int force_early)
474{
475 struct to_kill *tk;
476
477 if (!page->mapping)
478 return;
479
480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
481 if (!tk)
482 return;
483 if (PageAnon(page))
484 collect_procs_anon(page, tokill, &tk, force_early);
485 else
486 collect_procs_file(page, tokill, &tk, force_early);
487 kfree(tk);
488}
489
490static const char *action_name[] = {
491 [MF_IGNORED] = "Ignored",
492 [MF_FAILED] = "Failed",
493 [MF_DELAYED] = "Delayed",
494 [MF_RECOVERED] = "Recovered",
495};
496
497static const char * const action_page_types[] = {
498 [MF_MSG_KERNEL] = "reserved kernel page",
499 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
500 [MF_MSG_SLAB] = "kernel slab page",
501 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
502 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
503 [MF_MSG_HUGE] = "huge page",
504 [MF_MSG_FREE_HUGE] = "free huge page",
505 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
506 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
507 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
508 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
509 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
510 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
511 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
512 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
513 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
514 [MF_MSG_CLEAN_LRU] = "clean LRU page",
515 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
516 [MF_MSG_BUDDY] = "free buddy page",
517 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
518 [MF_MSG_UNKNOWN] = "unknown page",
519};
520
521/*
522 * XXX: It is possible that a page is isolated from LRU cache,
523 * and then kept in swap cache or failed to remove from page cache.
524 * The page count will stop it from being freed by unpoison.
525 * Stress tests should be aware of this memory leak problem.
526 */
527static int delete_from_lru_cache(struct page *p)
528{
529 if (!isolate_lru_page(p)) {
530 /*
531 * Clear sensible page flags, so that the buddy system won't
532 * complain when the page is unpoison-and-freed.
533 */
534 ClearPageActive(p);
535 ClearPageUnevictable(p);
536
537 /*
538 * Poisoned page might never drop its ref count to 0 so we have
539 * to uncharge it manually from its memcg.
540 */
541 mem_cgroup_uncharge(p);
542
543 /*
544 * drop the page count elevated by isolate_lru_page()
545 */
546 put_page(p);
547 return 0;
548 }
549 return -EIO;
550}
551
552static int truncate_error_page(struct page *p, unsigned long pfn,
553 struct address_space *mapping)
554{
555 int ret = MF_FAILED;
556
557 if (mapping->a_ops->error_remove_page) {
558 int err = mapping->a_ops->error_remove_page(mapping, p);
559
560 if (err != 0) {
561 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
562 pfn, err);
563 } else if (page_has_private(p) &&
564 !try_to_release_page(p, GFP_NOIO)) {
565 pr_info("Memory failure: %#lx: failed to release buffers\n",
566 pfn);
567 } else {
568 ret = MF_RECOVERED;
569 }
570 } else {
571 /*
572 * If the file system doesn't support it just invalidate
573 * This fails on dirty or anything with private pages
574 */
575 if (invalidate_inode_page(p))
576 ret = MF_RECOVERED;
577 else
578 pr_info("Memory failure: %#lx: Failed to invalidate\n",
579 pfn);
580 }
581
582 return ret;
583}
584
585/*
586 * Error hit kernel page.
587 * Do nothing, try to be lucky and not touch this instead. For a few cases we
588 * could be more sophisticated.
589 */
590static int me_kernel(struct page *p, unsigned long pfn)
591{
592 return MF_IGNORED;
593}
594
595/*
596 * Page in unknown state. Do nothing.
597 */
598static int me_unknown(struct page *p, unsigned long pfn)
599{
600 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
601 return MF_FAILED;
602}
603
604/*
605 * Clean (or cleaned) page cache page.
606 */
607static int me_pagecache_clean(struct page *p, unsigned long pfn)
608{
609 struct address_space *mapping;
610
611 delete_from_lru_cache(p);
612
613 /*
614 * For anonymous pages we're done the only reference left
615 * should be the one m_f() holds.
616 */
617 if (PageAnon(p))
618 return MF_RECOVERED;
619
620 /*
621 * Now truncate the page in the page cache. This is really
622 * more like a "temporary hole punch"
623 * Don't do this for block devices when someone else
624 * has a reference, because it could be file system metadata
625 * and that's not safe to truncate.
626 */
627 mapping = page_mapping(p);
628 if (!mapping) {
629 /*
630 * Page has been teared down in the meanwhile
631 */
632 return MF_FAILED;
633 }
634
635 /*
636 * Truncation is a bit tricky. Enable it per file system for now.
637 *
638 * Open: to take i_mutex or not for this? Right now we don't.
639 */
640 return truncate_error_page(p, pfn, mapping);
641}
642
643/*
644 * Dirty pagecache page
645 * Issues: when the error hit a hole page the error is not properly
646 * propagated.
647 */
648static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649{
650 struct address_space *mapping = page_mapping(p);
651
652 SetPageError(p);
653 /* TBD: print more information about the file. */
654 if (mapping) {
655 /*
656 * IO error will be reported by write(), fsync(), etc.
657 * who check the mapping.
658 * This way the application knows that something went
659 * wrong with its dirty file data.
660 *
661 * There's one open issue:
662 *
663 * The EIO will be only reported on the next IO
664 * operation and then cleared through the IO map.
665 * Normally Linux has two mechanisms to pass IO error
666 * first through the AS_EIO flag in the address space
667 * and then through the PageError flag in the page.
668 * Since we drop pages on memory failure handling the
669 * only mechanism open to use is through AS_AIO.
670 *
671 * This has the disadvantage that it gets cleared on
672 * the first operation that returns an error, while
673 * the PageError bit is more sticky and only cleared
674 * when the page is reread or dropped. If an
675 * application assumes it will always get error on
676 * fsync, but does other operations on the fd before
677 * and the page is dropped between then the error
678 * will not be properly reported.
679 *
680 * This can already happen even without hwpoisoned
681 * pages: first on metadata IO errors (which only
682 * report through AS_EIO) or when the page is dropped
683 * at the wrong time.
684 *
685 * So right now we assume that the application DTRT on
686 * the first EIO, but we're not worse than other parts
687 * of the kernel.
688 */
689 mapping_set_error(mapping, -EIO);
690 }
691
692 return me_pagecache_clean(p, pfn);
693}
694
695/*
696 * Clean and dirty swap cache.
697 *
698 * Dirty swap cache page is tricky to handle. The page could live both in page
699 * cache and swap cache(ie. page is freshly swapped in). So it could be
700 * referenced concurrently by 2 types of PTEs:
701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * and then
704 * - clear dirty bit to prevent IO
705 * - remove from LRU
706 * - but keep in the swap cache, so that when we return to it on
707 * a later page fault, we know the application is accessing
708 * corrupted data and shall be killed (we installed simple
709 * interception code in do_swap_page to catch it).
710 *
711 * Clean swap cache pages can be directly isolated. A later page fault will
712 * bring in the known good data from disk.
713 */
714static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715{
716 ClearPageDirty(p);
717 /* Trigger EIO in shmem: */
718 ClearPageUptodate(p);
719
720 if (!delete_from_lru_cache(p))
721 return MF_DELAYED;
722 else
723 return MF_FAILED;
724}
725
726static int me_swapcache_clean(struct page *p, unsigned long pfn)
727{
728 delete_from_swap_cache(p);
729
730 if (!delete_from_lru_cache(p))
731 return MF_RECOVERED;
732 else
733 return MF_FAILED;
734}
735
736/*
737 * Huge pages. Needs work.
738 * Issues:
739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740 * To narrow down kill region to one page, we need to break up pmd.
741 */
742static int me_huge_page(struct page *p, unsigned long pfn)
743{
744 int res = 0;
745 struct page *hpage = compound_head(p);
746 struct address_space *mapping;
747
748 if (!PageHuge(hpage))
749 return MF_DELAYED;
750
751 mapping = page_mapping(hpage);
752 if (mapping) {
753 res = truncate_error_page(hpage, pfn, mapping);
754 } else {
755 unlock_page(hpage);
756 /*
757 * migration entry prevents later access on error anonymous
758 * hugepage, so we can free and dissolve it into buddy to
759 * save healthy subpages.
760 */
761 if (PageAnon(hpage))
762 put_page(hpage);
763 dissolve_free_huge_page(p);
764 res = MF_RECOVERED;
765 lock_page(hpage);
766 }
767
768 return res;
769}
770
771/*
772 * Various page states we can handle.
773 *
774 * A page state is defined by its current page->flags bits.
775 * The table matches them in order and calls the right handler.
776 *
777 * This is quite tricky because we can access page at any time
778 * in its live cycle, so all accesses have to be extremely careful.
779 *
780 * This is not complete. More states could be added.
781 * For any missing state don't attempt recovery.
782 */
783
784#define dirty (1UL << PG_dirty)
785#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
786#define unevict (1UL << PG_unevictable)
787#define mlock (1UL << PG_mlocked)
788#define writeback (1UL << PG_writeback)
789#define lru (1UL << PG_lru)
790#define head (1UL << PG_head)
791#define slab (1UL << PG_slab)
792#define reserved (1UL << PG_reserved)
793
794static struct page_state {
795 unsigned long mask;
796 unsigned long res;
797 enum mf_action_page_type type;
798 int (*action)(struct page *p, unsigned long pfn);
799} error_states[] = {
800 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
801 /*
802 * free pages are specially detected outside this table:
803 * PG_buddy pages only make a small fraction of all free pages.
804 */
805
806 /*
807 * Could in theory check if slab page is free or if we can drop
808 * currently unused objects without touching them. But just
809 * treat it as standard kernel for now.
810 */
811 { slab, slab, MF_MSG_SLAB, me_kernel },
812
813 { head, head, MF_MSG_HUGE, me_huge_page },
814
815 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
816 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
817
818 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
819 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
820
821 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
822 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
823
824 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
825 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
826
827 /*
828 * Catchall entry: must be at end.
829 */
830 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
831};
832
833#undef dirty
834#undef sc
835#undef unevict
836#undef mlock
837#undef writeback
838#undef lru
839#undef head
840#undef slab
841#undef reserved
842
843/*
844 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
845 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
846 */
847static void action_result(unsigned long pfn, enum mf_action_page_type type,
848 enum mf_result result)
849{
850 trace_memory_failure_event(pfn, type, result);
851
852 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
853 pfn, action_page_types[type], action_name[result]);
854}
855
856static int page_action(struct page_state *ps, struct page *p,
857 unsigned long pfn)
858{
859 int result;
860 int count;
861
862 result = ps->action(p, pfn);
863
864 count = page_count(p) - 1;
865 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
866 count--;
867 if (count > 0) {
868 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
869 pfn, action_page_types[ps->type], count);
870 result = MF_FAILED;
871 }
872 action_result(pfn, ps->type, result);
873
874 /* Could do more checks here if page looks ok */
875 /*
876 * Could adjust zone counters here to correct for the missing page.
877 */
878
879 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
880}
881
882/**
883 * get_hwpoison_page() - Get refcount for memory error handling:
884 * @page: raw error page (hit by memory error)
885 *
886 * Return: return 0 if failed to grab the refcount, otherwise true (some
887 * non-zero value.)
888 */
889int get_hwpoison_page(struct page *page)
890{
891 struct page *head = compound_head(page);
892
893 if (!PageHuge(head) && PageTransHuge(head)) {
894 /*
895 * Non anonymous thp exists only in allocation/free time. We
896 * can't handle such a case correctly, so let's give it up.
897 * This should be better than triggering BUG_ON when kernel
898 * tries to touch the "partially handled" page.
899 */
900 if (!PageAnon(head)) {
901 pr_err("Memory failure: %#lx: non anonymous thp\n",
902 page_to_pfn(page));
903 return 0;
904 }
905 }
906
907 if (get_page_unless_zero(head)) {
908 if (head == compound_head(page))
909 return 1;
910
911 pr_info("Memory failure: %#lx cannot catch tail\n",
912 page_to_pfn(page));
913 put_page(head);
914 }
915
916 return 0;
917}
918EXPORT_SYMBOL_GPL(get_hwpoison_page);
919
920/*
921 * Do all that is necessary to remove user space mappings. Unmap
922 * the pages and send SIGBUS to the processes if the data was dirty.
923 */
924static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
925 int flags, struct page **hpagep)
926{
927 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
928 struct address_space *mapping;
929 LIST_HEAD(tokill);
930 bool unmap_success;
931 int kill = 1, forcekill;
932 struct page *hpage = *hpagep;
933 bool mlocked = PageMlocked(hpage);
934
935 /*
936 * Here we are interested only in user-mapped pages, so skip any
937 * other types of pages.
938 */
939 if (PageReserved(p) || PageSlab(p))
940 return true;
941 if (!(PageLRU(hpage) || PageHuge(p)))
942 return true;
943
944 /*
945 * This check implies we don't kill processes if their pages
946 * are in the swap cache early. Those are always late kills.
947 */
948 if (!page_mapped(hpage))
949 return true;
950
951 if (PageKsm(p)) {
952 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
953 return false;
954 }
955
956 if (PageSwapCache(p)) {
957 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
958 pfn);
959 ttu |= TTU_IGNORE_HWPOISON;
960 }
961
962 /*
963 * Propagate the dirty bit from PTEs to struct page first, because we
964 * need this to decide if we should kill or just drop the page.
965 * XXX: the dirty test could be racy: set_page_dirty() may not always
966 * be called inside page lock (it's recommended but not enforced).
967 */
968 mapping = page_mapping(hpage);
969 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
970 mapping_cap_writeback_dirty(mapping)) {
971 if (page_mkclean(hpage)) {
972 SetPageDirty(hpage);
973 } else {
974 kill = 0;
975 ttu |= TTU_IGNORE_HWPOISON;
976 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
977 pfn);
978 }
979 }
980
981 /*
982 * First collect all the processes that have the page
983 * mapped in dirty form. This has to be done before try_to_unmap,
984 * because ttu takes the rmap data structures down.
985 *
986 * Error handling: We ignore errors here because
987 * there's nothing that can be done.
988 */
989 if (kill)
990 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
991
992 unmap_success = try_to_unmap(hpage, ttu);
993 if (!unmap_success)
994 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
995 pfn, page_mapcount(hpage));
996
997 /*
998 * try_to_unmap() might put mlocked page in lru cache, so call
999 * shake_page() again to ensure that it's flushed.
1000 */
1001 if (mlocked)
1002 shake_page(hpage, 0);
1003
1004 /*
1005 * Now that the dirty bit has been propagated to the
1006 * struct page and all unmaps done we can decide if
1007 * killing is needed or not. Only kill when the page
1008 * was dirty or the process is not restartable,
1009 * otherwise the tokill list is merely
1010 * freed. When there was a problem unmapping earlier
1011 * use a more force-full uncatchable kill to prevent
1012 * any accesses to the poisoned memory.
1013 */
1014 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1015 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1016
1017 return unmap_success;
1018}
1019
1020static int identify_page_state(unsigned long pfn, struct page *p,
1021 unsigned long page_flags)
1022{
1023 struct page_state *ps;
1024
1025 /*
1026 * The first check uses the current page flags which may not have any
1027 * relevant information. The second check with the saved page flags is
1028 * carried out only if the first check can't determine the page status.
1029 */
1030 for (ps = error_states;; ps++)
1031 if ((p->flags & ps->mask) == ps->res)
1032 break;
1033
1034 page_flags |= (p->flags & (1UL << PG_dirty));
1035
1036 if (!ps->mask)
1037 for (ps = error_states;; ps++)
1038 if ((page_flags & ps->mask) == ps->res)
1039 break;
1040 return page_action(ps, p, pfn);
1041}
1042
1043static int memory_failure_hugetlb(unsigned long pfn, int flags)
1044{
1045 struct page *p = pfn_to_page(pfn);
1046 struct page *head = compound_head(p);
1047 int res;
1048 unsigned long page_flags;
1049
1050 if (TestSetPageHWPoison(head)) {
1051 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 pfn);
1053 return 0;
1054 }
1055
1056 num_poisoned_pages_inc();
1057
1058 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1059 /*
1060 * Check "filter hit" and "race with other subpage."
1061 */
1062 lock_page(head);
1063 if (PageHWPoison(head)) {
1064 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1065 || (p != head && TestSetPageHWPoison(head))) {
1066 num_poisoned_pages_dec();
1067 unlock_page(head);
1068 return 0;
1069 }
1070 }
1071 unlock_page(head);
1072 dissolve_free_huge_page(p);
1073 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1074 return 0;
1075 }
1076
1077 lock_page(head);
1078 page_flags = head->flags;
1079
1080 if (!PageHWPoison(head)) {
1081 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1082 num_poisoned_pages_dec();
1083 unlock_page(head);
1084 put_hwpoison_page(head);
1085 return 0;
1086 }
1087
1088 /*
1089 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1090 * simply disable it. In order to make it work properly, we need
1091 * make sure that:
1092 * - conversion of a pud that maps an error hugetlb into hwpoison
1093 * entry properly works, and
1094 * - other mm code walking over page table is aware of pud-aligned
1095 * hwpoison entries.
1096 */
1097 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1098 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1099 res = -EBUSY;
1100 goto out;
1101 }
1102
1103 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1104 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1105 res = -EBUSY;
1106 goto out;
1107 }
1108
1109 res = identify_page_state(pfn, p, page_flags);
1110out:
1111 unlock_page(head);
1112 return res;
1113}
1114
1115/**
1116 * memory_failure - Handle memory failure of a page.
1117 * @pfn: Page Number of the corrupted page
1118 * @flags: fine tune action taken
1119 *
1120 * This function is called by the low level machine check code
1121 * of an architecture when it detects hardware memory corruption
1122 * of a page. It tries its best to recover, which includes
1123 * dropping pages, killing processes etc.
1124 *
1125 * The function is primarily of use for corruptions that
1126 * happen outside the current execution context (e.g. when
1127 * detected by a background scrubber)
1128 *
1129 * Must run in process context (e.g. a work queue) with interrupts
1130 * enabled and no spinlocks hold.
1131 */
1132int memory_failure(unsigned long pfn, int flags)
1133{
1134 struct page *p;
1135 struct page *hpage;
1136 struct page *orig_head;
1137 int res;
1138 unsigned long page_flags;
1139
1140 if (!sysctl_memory_failure_recovery)
1141 panic("Memory failure on page %lx", pfn);
1142
1143 if (!pfn_valid(pfn)) {
1144 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1145 pfn);
1146 return -ENXIO;
1147 }
1148
1149 p = pfn_to_page(pfn);
1150 if (PageHuge(p))
1151 return memory_failure_hugetlb(pfn, flags);
1152 if (TestSetPageHWPoison(p)) {
1153 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1154 pfn);
1155 return 0;
1156 }
1157
1158 orig_head = hpage = compound_head(p);
1159 num_poisoned_pages_inc();
1160
1161 /*
1162 * We need/can do nothing about count=0 pages.
1163 * 1) it's a free page, and therefore in safe hand:
1164 * prep_new_page() will be the gate keeper.
1165 * 2) it's part of a non-compound high order page.
1166 * Implies some kernel user: cannot stop them from
1167 * R/W the page; let's pray that the page has been
1168 * used and will be freed some time later.
1169 * In fact it's dangerous to directly bump up page count from 0,
1170 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1171 */
1172 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1173 if (is_free_buddy_page(p)) {
1174 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1175 return 0;
1176 } else {
1177 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1178 return -EBUSY;
1179 }
1180 }
1181
1182 if (PageTransHuge(hpage)) {
1183 lock_page(p);
1184 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1185 unlock_page(p);
1186 if (!PageAnon(p))
1187 pr_err("Memory failure: %#lx: non anonymous thp\n",
1188 pfn);
1189 else
1190 pr_err("Memory failure: %#lx: thp split failed\n",
1191 pfn);
1192 if (TestClearPageHWPoison(p))
1193 num_poisoned_pages_dec();
1194 put_hwpoison_page(p);
1195 return -EBUSY;
1196 }
1197 unlock_page(p);
1198 VM_BUG_ON_PAGE(!page_count(p), p);
1199 hpage = compound_head(p);
1200 }
1201
1202 /*
1203 * We ignore non-LRU pages for good reasons.
1204 * - PG_locked is only well defined for LRU pages and a few others
1205 * - to avoid races with __SetPageLocked()
1206 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1207 * The check (unnecessarily) ignores LRU pages being isolated and
1208 * walked by the page reclaim code, however that's not a big loss.
1209 */
1210 shake_page(p, 0);
1211 /* shake_page could have turned it free. */
1212 if (!PageLRU(p) && is_free_buddy_page(p)) {
1213 if (flags & MF_COUNT_INCREASED)
1214 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1215 else
1216 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1217 return 0;
1218 }
1219
1220 lock_page(p);
1221
1222 /*
1223 * The page could have changed compound pages during the locking.
1224 * If this happens just bail out.
1225 */
1226 if (PageCompound(p) && compound_head(p) != orig_head) {
1227 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1228 res = -EBUSY;
1229 goto out;
1230 }
1231
1232 /*
1233 * We use page flags to determine what action should be taken, but
1234 * the flags can be modified by the error containment action. One
1235 * example is an mlocked page, where PG_mlocked is cleared by
1236 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1237 * correctly, we save a copy of the page flags at this time.
1238 */
1239 if (PageHuge(p))
1240 page_flags = hpage->flags;
1241 else
1242 page_flags = p->flags;
1243
1244 /*
1245 * unpoison always clear PG_hwpoison inside page lock
1246 */
1247 if (!PageHWPoison(p)) {
1248 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1249 num_poisoned_pages_dec();
1250 unlock_page(p);
1251 put_hwpoison_page(p);
1252 return 0;
1253 }
1254 if (hwpoison_filter(p)) {
1255 if (TestClearPageHWPoison(p))
1256 num_poisoned_pages_dec();
1257 unlock_page(p);
1258 put_hwpoison_page(p);
1259 return 0;
1260 }
1261
1262 if (!PageTransTail(p) && !PageLRU(p))
1263 goto identify_page_state;
1264
1265 /*
1266 * It's very difficult to mess with pages currently under IO
1267 * and in many cases impossible, so we just avoid it here.
1268 */
1269 wait_on_page_writeback(p);
1270
1271 /*
1272 * Now take care of user space mappings.
1273 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1274 *
1275 * When the raw error page is thp tail page, hpage points to the raw
1276 * page after thp split.
1277 */
1278 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1279 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1280 res = -EBUSY;
1281 goto out;
1282 }
1283
1284 /*
1285 * Torn down by someone else?
1286 */
1287 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1288 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1289 res = -EBUSY;
1290 goto out;
1291 }
1292
1293identify_page_state:
1294 res = identify_page_state(pfn, p, page_flags);
1295out:
1296 unlock_page(p);
1297 return res;
1298}
1299EXPORT_SYMBOL_GPL(memory_failure);
1300
1301#define MEMORY_FAILURE_FIFO_ORDER 4
1302#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1303
1304struct memory_failure_entry {
1305 unsigned long pfn;
1306 int flags;
1307};
1308
1309struct memory_failure_cpu {
1310 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1311 MEMORY_FAILURE_FIFO_SIZE);
1312 spinlock_t lock;
1313 struct work_struct work;
1314};
1315
1316static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1317
1318/**
1319 * memory_failure_queue - Schedule handling memory failure of a page.
1320 * @pfn: Page Number of the corrupted page
1321 * @flags: Flags for memory failure handling
1322 *
1323 * This function is called by the low level hardware error handler
1324 * when it detects hardware memory corruption of a page. It schedules
1325 * the recovering of error page, including dropping pages, killing
1326 * processes etc.
1327 *
1328 * The function is primarily of use for corruptions that
1329 * happen outside the current execution context (e.g. when
1330 * detected by a background scrubber)
1331 *
1332 * Can run in IRQ context.
1333 */
1334void memory_failure_queue(unsigned long pfn, int flags)
1335{
1336 struct memory_failure_cpu *mf_cpu;
1337 unsigned long proc_flags;
1338 struct memory_failure_entry entry = {
1339 .pfn = pfn,
1340 .flags = flags,
1341 };
1342
1343 mf_cpu = &get_cpu_var(memory_failure_cpu);
1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 if (kfifo_put(&mf_cpu->fifo, entry))
1346 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1347 else
1348 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1349 pfn);
1350 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1351 put_cpu_var(memory_failure_cpu);
1352}
1353EXPORT_SYMBOL_GPL(memory_failure_queue);
1354
1355static void memory_failure_work_func(struct work_struct *work)
1356{
1357 struct memory_failure_cpu *mf_cpu;
1358 struct memory_failure_entry entry = { 0, };
1359 unsigned long proc_flags;
1360 int gotten;
1361
1362 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1363 for (;;) {
1364 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1365 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1366 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1367 if (!gotten)
1368 break;
1369 if (entry.flags & MF_SOFT_OFFLINE)
1370 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1371 else
1372 memory_failure(entry.pfn, entry.flags);
1373 }
1374}
1375
1376static int __init memory_failure_init(void)
1377{
1378 struct memory_failure_cpu *mf_cpu;
1379 int cpu;
1380
1381 for_each_possible_cpu(cpu) {
1382 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1383 spin_lock_init(&mf_cpu->lock);
1384 INIT_KFIFO(mf_cpu->fifo);
1385 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1386 }
1387
1388 return 0;
1389}
1390core_initcall(memory_failure_init);
1391
1392#define unpoison_pr_info(fmt, pfn, rs) \
1393({ \
1394 if (__ratelimit(rs)) \
1395 pr_info(fmt, pfn); \
1396})
1397
1398/**
1399 * unpoison_memory - Unpoison a previously poisoned page
1400 * @pfn: Page number of the to be unpoisoned page
1401 *
1402 * Software-unpoison a page that has been poisoned by
1403 * memory_failure() earlier.
1404 *
1405 * This is only done on the software-level, so it only works
1406 * for linux injected failures, not real hardware failures
1407 *
1408 * Returns 0 for success, otherwise -errno.
1409 */
1410int unpoison_memory(unsigned long pfn)
1411{
1412 struct page *page;
1413 struct page *p;
1414 int freeit = 0;
1415 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1416 DEFAULT_RATELIMIT_BURST);
1417
1418 if (!pfn_valid(pfn))
1419 return -ENXIO;
1420
1421 p = pfn_to_page(pfn);
1422 page = compound_head(p);
1423
1424 if (!PageHWPoison(p)) {
1425 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1426 pfn, &unpoison_rs);
1427 return 0;
1428 }
1429
1430 if (page_count(page) > 1) {
1431 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1432 pfn, &unpoison_rs);
1433 return 0;
1434 }
1435
1436 if (page_mapped(page)) {
1437 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1438 pfn, &unpoison_rs);
1439 return 0;
1440 }
1441
1442 if (page_mapping(page)) {
1443 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1444 pfn, &unpoison_rs);
1445 return 0;
1446 }
1447
1448 /*
1449 * unpoison_memory() can encounter thp only when the thp is being
1450 * worked by memory_failure() and the page lock is not held yet.
1451 * In such case, we yield to memory_failure() and make unpoison fail.
1452 */
1453 if (!PageHuge(page) && PageTransHuge(page)) {
1454 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1455 pfn, &unpoison_rs);
1456 return 0;
1457 }
1458
1459 if (!get_hwpoison_page(p)) {
1460 if (TestClearPageHWPoison(p))
1461 num_poisoned_pages_dec();
1462 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1463 pfn, &unpoison_rs);
1464 return 0;
1465 }
1466
1467 lock_page(page);
1468 /*
1469 * This test is racy because PG_hwpoison is set outside of page lock.
1470 * That's acceptable because that won't trigger kernel panic. Instead,
1471 * the PG_hwpoison page will be caught and isolated on the entrance to
1472 * the free buddy page pool.
1473 */
1474 if (TestClearPageHWPoison(page)) {
1475 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1476 pfn, &unpoison_rs);
1477 num_poisoned_pages_dec();
1478 freeit = 1;
1479 }
1480 unlock_page(page);
1481
1482 put_hwpoison_page(page);
1483 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1484 put_hwpoison_page(page);
1485
1486 return 0;
1487}
1488EXPORT_SYMBOL(unpoison_memory);
1489
1490static struct page *new_page(struct page *p, unsigned long private)
1491{
1492 int nid = page_to_nid(p);
1493
1494 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1495}
1496
1497/*
1498 * Safely get reference count of an arbitrary page.
1499 * Returns 0 for a free page, -EIO for a zero refcount page
1500 * that is not free, and 1 for any other page type.
1501 * For 1 the page is returned with increased page count, otherwise not.
1502 */
1503static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1504{
1505 int ret;
1506
1507 if (flags & MF_COUNT_INCREASED)
1508 return 1;
1509
1510 /*
1511 * When the target page is a free hugepage, just remove it
1512 * from free hugepage list.
1513 */
1514 if (!get_hwpoison_page(p)) {
1515 if (PageHuge(p)) {
1516 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1517 ret = 0;
1518 } else if (is_free_buddy_page(p)) {
1519 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1520 ret = 0;
1521 } else {
1522 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1523 __func__, pfn, p->flags);
1524 ret = -EIO;
1525 }
1526 } else {
1527 /* Not a free page */
1528 ret = 1;
1529 }
1530 return ret;
1531}
1532
1533static int get_any_page(struct page *page, unsigned long pfn, int flags)
1534{
1535 int ret = __get_any_page(page, pfn, flags);
1536
1537 if (ret == 1 && !PageHuge(page) &&
1538 !PageLRU(page) && !__PageMovable(page)) {
1539 /*
1540 * Try to free it.
1541 */
1542 put_hwpoison_page(page);
1543 shake_page(page, 1);
1544
1545 /*
1546 * Did it turn free?
1547 */
1548 ret = __get_any_page(page, pfn, 0);
1549 if (ret == 1 && !PageLRU(page)) {
1550 /* Drop page reference which is from __get_any_page() */
1551 put_hwpoison_page(page);
1552 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1553 pfn, page->flags, &page->flags);
1554 return -EIO;
1555 }
1556 }
1557 return ret;
1558}
1559
1560static int soft_offline_huge_page(struct page *page, int flags)
1561{
1562 int ret;
1563 unsigned long pfn = page_to_pfn(page);
1564 struct page *hpage = compound_head(page);
1565 LIST_HEAD(pagelist);
1566
1567 /*
1568 * This double-check of PageHWPoison is to avoid the race with
1569 * memory_failure(). See also comment in __soft_offline_page().
1570 */
1571 lock_page(hpage);
1572 if (PageHWPoison(hpage)) {
1573 unlock_page(hpage);
1574 put_hwpoison_page(hpage);
1575 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1576 return -EBUSY;
1577 }
1578 unlock_page(hpage);
1579
1580 ret = isolate_huge_page(hpage, &pagelist);
1581 /*
1582 * get_any_page() and isolate_huge_page() takes a refcount each,
1583 * so need to drop one here.
1584 */
1585 put_hwpoison_page(hpage);
1586 if (!ret) {
1587 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1588 return -EBUSY;
1589 }
1590
1591 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1592 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1593 if (ret) {
1594 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1595 pfn, ret, page->flags, &page->flags);
1596 if (!list_empty(&pagelist))
1597 putback_movable_pages(&pagelist);
1598 if (ret > 0)
1599 ret = -EIO;
1600 } else {
1601 if (PageHuge(page))
1602 dissolve_free_huge_page(page);
1603 }
1604 return ret;
1605}
1606
1607static int __soft_offline_page(struct page *page, int flags)
1608{
1609 int ret;
1610 unsigned long pfn = page_to_pfn(page);
1611
1612 /*
1613 * Check PageHWPoison again inside page lock because PageHWPoison
1614 * is set by memory_failure() outside page lock. Note that
1615 * memory_failure() also double-checks PageHWPoison inside page lock,
1616 * so there's no race between soft_offline_page() and memory_failure().
1617 */
1618 lock_page(page);
1619 wait_on_page_writeback(page);
1620 if (PageHWPoison(page)) {
1621 unlock_page(page);
1622 put_hwpoison_page(page);
1623 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1624 return -EBUSY;
1625 }
1626 /*
1627 * Try to invalidate first. This should work for
1628 * non dirty unmapped page cache pages.
1629 */
1630 ret = invalidate_inode_page(page);
1631 unlock_page(page);
1632 /*
1633 * RED-PEN would be better to keep it isolated here, but we
1634 * would need to fix isolation locking first.
1635 */
1636 if (ret == 1) {
1637 put_hwpoison_page(page);
1638 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1639 SetPageHWPoison(page);
1640 num_poisoned_pages_inc();
1641 return 0;
1642 }
1643
1644 /*
1645 * Simple invalidation didn't work.
1646 * Try to migrate to a new page instead. migrate.c
1647 * handles a large number of cases for us.
1648 */
1649 if (PageLRU(page))
1650 ret = isolate_lru_page(page);
1651 else
1652 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1653 /*
1654 * Drop page reference which is came from get_any_page()
1655 * successful isolate_lru_page() already took another one.
1656 */
1657 put_hwpoison_page(page);
1658 if (!ret) {
1659 LIST_HEAD(pagelist);
1660 /*
1661 * After isolated lru page, the PageLRU will be cleared,
1662 * so use !__PageMovable instead for LRU page's mapping
1663 * cannot have PAGE_MAPPING_MOVABLE.
1664 */
1665 if (!__PageMovable(page))
1666 inc_node_page_state(page, NR_ISOLATED_ANON +
1667 page_is_file_cache(page));
1668 list_add(&page->lru, &pagelist);
1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671 if (ret) {
1672 if (!list_empty(&pagelist))
1673 putback_movable_pages(&pagelist);
1674
1675 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1676 pfn, ret, page->flags, &page->flags);
1677 if (ret > 0)
1678 ret = -EIO;
1679 }
1680 } else {
1681 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1682 pfn, ret, page_count(page), page->flags, &page->flags);
1683 }
1684 return ret;
1685}
1686
1687static int soft_offline_in_use_page(struct page *page, int flags)
1688{
1689 int ret;
1690 struct page *hpage = compound_head(page);
1691
1692 if (!PageHuge(page) && PageTransHuge(hpage)) {
1693 lock_page(hpage);
1694 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695 unlock_page(hpage);
1696 if (!PageAnon(hpage))
1697 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698 else
1699 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700 put_hwpoison_page(hpage);
1701 return -EBUSY;
1702 }
1703 unlock_page(hpage);
1704 get_hwpoison_page(page);
1705 put_hwpoison_page(hpage);
1706 }
1707
1708 if (PageHuge(page))
1709 ret = soft_offline_huge_page(page, flags);
1710 else
1711 ret = __soft_offline_page(page, flags);
1712
1713 return ret;
1714}
1715
1716static void soft_offline_free_page(struct page *page)
1717{
1718 struct page *head = compound_head(page);
1719
1720 if (!TestSetPageHWPoison(head)) {
1721 num_poisoned_pages_inc();
1722 if (PageHuge(head))
1723 dissolve_free_huge_page(page);
1724 }
1725}
1726
1727/**
1728 * soft_offline_page - Soft offline a page.
1729 * @page: page to offline
1730 * @flags: flags. Same as memory_failure().
1731 *
1732 * Returns 0 on success, otherwise negated errno.
1733 *
1734 * Soft offline a page, by migration or invalidation,
1735 * without killing anything. This is for the case when
1736 * a page is not corrupted yet (so it's still valid to access),
1737 * but has had a number of corrected errors and is better taken
1738 * out.
1739 *
1740 * The actual policy on when to do that is maintained by
1741 * user space.
1742 *
1743 * This should never impact any application or cause data loss,
1744 * however it might take some time.
1745 *
1746 * This is not a 100% solution for all memory, but tries to be
1747 * ``good enough'' for the majority of memory.
1748 */
1749int soft_offline_page(struct page *page, int flags)
1750{
1751 int ret;
1752 unsigned long pfn = page_to_pfn(page);
1753
1754 if (PageHWPoison(page)) {
1755 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1756 if (flags & MF_COUNT_INCREASED)
1757 put_hwpoison_page(page);
1758 return -EBUSY;
1759 }
1760
1761 get_online_mems();
1762 ret = get_any_page(page, pfn, flags);
1763 put_online_mems();
1764
1765 if (ret > 0)
1766 ret = soft_offline_in_use_page(page, flags);
1767 else if (ret == 0)
1768 soft_offline_free_page(page);
1769
1770 return ret;
1771}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
39#include <linux/kernel-page-flags.h>
40#include <linux/sched/signal.h>
41#include <linux/sched/task.h>
42#include <linux/ksm.h>
43#include <linux/rmap.h>
44#include <linux/export.h>
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
48#include <linux/migrate.h>
49#include <linux/suspend.h>
50#include <linux/slab.h>
51#include <linux/swapops.h>
52#include <linux/hugetlb.h>
53#include <linux/memory_hotplug.h>
54#include <linux/mm_inline.h>
55#include <linux/memremap.h>
56#include <linux/kfifo.h>
57#include <linux/ratelimit.h>
58#include <linux/page-isolation.h>
59#include <linux/pagewalk.h>
60#include "internal.h"
61#include "ras/ras_event.h"
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69static bool __page_handle_poison(struct page *page)
70{
71 int ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret > 0;
80}
81
82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
83{
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
89 if (!__page_handle_poison(page))
90 /*
91 * We could fail to take off the target page from buddy
92 * for example due to racy page allocation, but that's
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
100 SetPageHWPoison(page);
101 if (release)
102 put_page(page);
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
105
106 return true;
107}
108
109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
111u32 hwpoison_filter_enable = 0;
112u32 hwpoison_filter_dev_major = ~0U;
113u32 hwpoison_filter_dev_minor = ~0U;
114u64 hwpoison_filter_flags_mask;
115u64 hwpoison_filter_flags_value;
116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
121
122static int hwpoison_filter_dev(struct page *p)
123{
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
132 * page_mapping() does not accept slab pages.
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150}
151
152static int hwpoison_filter_flags(struct page *p)
153{
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162}
163
164/*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
174#ifdef CONFIG_MEMCG
175u64 hwpoison_filter_memcg;
176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177static int hwpoison_filter_task(struct page *p)
178{
179 if (!hwpoison_filter_memcg)
180 return 0;
181
182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
183 return -EINVAL;
184
185 return 0;
186}
187#else
188static int hwpoison_filter_task(struct page *p) { return 0; }
189#endif
190
191int hwpoison_filter(struct page *p)
192{
193 if (!hwpoison_filter_enable)
194 return 0;
195
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
205 return 0;
206}
207#else
208int hwpoison_filter(struct page *p)
209{
210 return 0;
211}
212#endif
213
214EXPORT_SYMBOL_GPL(hwpoison_filter);
215
216/*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
243};
244
245/*
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
249 */
250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
251{
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
254 int ret = 0;
255
256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
257 pfn, t->comm, t->pid);
258
259 if (flags & MF_ACTION_REQUIRED) {
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
262 (void __user *)tk->addr, addr_lsb);
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
275 addr_lsb, t); /* synchronous? */
276 }
277 if (ret < 0)
278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
279 t->comm, t->pid, ret);
280 return ret;
281}
282
283/*
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
286 */
287void shake_page(struct page *p, int access)
288{
289 if (PageHuge(p))
290 return;
291
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
297
298 /*
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
301 */
302 if (access)
303 drop_slab_node(page_to_nid(p));
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339}
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
352 struct list_head *to_kill)
353{
354 struct to_kill *tk;
355
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
360 }
361
362 tk->addr = page_address_in_vma(p, vma);
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
366 tk->size_shift = page_shift(compound_head(p));
367
368 /*
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
377 */
378 if (tk->addr == -EFAULT) {
379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
380 page_to_pfn(p), tsk->comm);
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
384 }
385
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
405 if (forcekill) {
406 /*
407 * In case something went wrong with munmapping
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
410 */
411 if (fail || tk->addr == -EFAULT) {
412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
413 pfn, tk->tsk->comm, tk->tsk->pid);
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
424 else if (kill_proc(tk, pfn, flags) < 0)
425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
426 pfn, tk->tsk->comm, tk->tsk->pid);
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
442{
443 struct task_struct *t;
444
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
461 * specified) if the process is "early kill" and otherwise returns NULL.
462 *
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
472 if (!tsk->mm)
473 return NULL;
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
481 return find_early_kill_thread(tsk);
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
488 int force_early)
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
493 pgoff_t pgoff;
494
495 av = page_lock_anon_vma_read(page);
496 if (av == NULL) /* Not actually mapped anymore */
497 return;
498
499 pgoff = page_to_pgoff(page);
500 read_lock(&tasklist_lock);
501 for_each_process (tsk) {
502 struct anon_vma_chain *vmac;
503 struct task_struct *t = task_early_kill(tsk, force_early);
504
505 if (!t)
506 continue;
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
509 vma = vmac->vma;
510 if (!page_mapped_in_vma(page, vma))
511 continue;
512 if (vma->vm_mm == t->mm)
513 add_to_kill(t, page, vma, to_kill);
514 }
515 }
516 read_unlock(&tasklist_lock);
517 page_unlock_anon_vma_read(av);
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
524 int force_early)
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
528 struct address_space *mapping = page->mapping;
529 pgoff_t pgoff;
530
531 i_mmap_lock_read(mapping);
532 read_lock(&tasklist_lock);
533 pgoff = page_to_pgoff(page);
534 for_each_process(tsk) {
535 struct task_struct *t = task_early_kill(tsk, force_early);
536
537 if (!t)
538 continue;
539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
548 if (vma->vm_mm == t->mm)
549 add_to_kill(t, page, vma, to_kill);
550 }
551 }
552 read_unlock(&tasklist_lock);
553 i_mmap_unlock_read(mapping);
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
558 */
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
561{
562 if (!page->mapping)
563 return;
564
565 if (PageAnon(page))
566 collect_procs_anon(page, tokill, force_early);
567 else
568 collect_procs_file(page, tokill, force_early);
569}
570
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
635 pte_t *ptep;
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
648 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
649 for (; addr != end; ptep++, addr += PAGE_SIZE) {
650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
651 hwp->pfn, &hwp->tk);
652 if (ret == 1)
653 break;
654 }
655 pte_unmap_unlock(ptep - 1, ptl);
656out:
657 cond_resched();
658 return ret;
659}
660
661#ifdef CONFIG_HUGETLB_PAGE
662static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
663 unsigned long addr, unsigned long end,
664 struct mm_walk *walk)
665{
666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
667 pte_t pte = huge_ptep_get(ptep);
668 struct hstate *h = hstate_vma(walk->vma);
669
670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
671 hwp->pfn, &hwp->tk);
672}
673#else
674#define hwpoison_hugetlb_range NULL
675#endif
676
677static struct mm_walk_ops hwp_walk_ops = {
678 .pmd_entry = hwpoison_pte_range,
679 .hugetlb_entry = hwpoison_hugetlb_range,
680};
681
682/*
683 * Sends SIGBUS to the current process with error info.
684 *
685 * This function is intended to handle "Action Required" MCEs on already
686 * hardware poisoned pages. They could happen, for example, when
687 * memory_failure() failed to unmap the error page at the first call, or
688 * when multiple local machine checks happened on different CPUs.
689 *
690 * MCE handler currently has no easy access to the error virtual address,
691 * so this function walks page table to find it. The returned virtual address
692 * is proper in most cases, but it could be wrong when the application
693 * process has multiple entries mapping the error page.
694 */
695static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
696 int flags)
697{
698 int ret;
699 struct hwp_walk priv = {
700 .pfn = pfn,
701 };
702 priv.tk.tsk = p;
703
704 mmap_read_lock(p->mm);
705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
706 (void *)&priv);
707 if (ret == 1 && priv.tk.addr)
708 kill_proc(&priv.tk, pfn, flags);
709 mmap_read_unlock(p->mm);
710 return ret ? -EFAULT : -EHWPOISON;
711}
712
713static const char *action_name[] = {
714 [MF_IGNORED] = "Ignored",
715 [MF_FAILED] = "Failed",
716 [MF_DELAYED] = "Delayed",
717 [MF_RECOVERED] = "Recovered",
718};
719
720static const char * const action_page_types[] = {
721 [MF_MSG_KERNEL] = "reserved kernel page",
722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
723 [MF_MSG_SLAB] = "kernel slab page",
724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
741 [MF_MSG_DAX] = "dax page",
742 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
743 [MF_MSG_UNKNOWN] = "unknown page",
744};
745
746/*
747 * XXX: It is possible that a page is isolated from LRU cache,
748 * and then kept in swap cache or failed to remove from page cache.
749 * The page count will stop it from being freed by unpoison.
750 * Stress tests should be aware of this memory leak problem.
751 */
752static int delete_from_lru_cache(struct page *p)
753{
754 if (!isolate_lru_page(p)) {
755 /*
756 * Clear sensible page flags, so that the buddy system won't
757 * complain when the page is unpoison-and-freed.
758 */
759 ClearPageActive(p);
760 ClearPageUnevictable(p);
761
762 /*
763 * Poisoned page might never drop its ref count to 0 so we have
764 * to uncharge it manually from its memcg.
765 */
766 mem_cgroup_uncharge(p);
767
768 /*
769 * drop the page count elevated by isolate_lru_page()
770 */
771 put_page(p);
772 return 0;
773 }
774 return -EIO;
775}
776
777static int truncate_error_page(struct page *p, unsigned long pfn,
778 struct address_space *mapping)
779{
780 int ret = MF_FAILED;
781
782 if (mapping->a_ops->error_remove_page) {
783 int err = mapping->a_ops->error_remove_page(mapping, p);
784
785 if (err != 0) {
786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
787 pfn, err);
788 } else if (page_has_private(p) &&
789 !try_to_release_page(p, GFP_NOIO)) {
790 pr_info("Memory failure: %#lx: failed to release buffers\n",
791 pfn);
792 } else {
793 ret = MF_RECOVERED;
794 }
795 } else {
796 /*
797 * If the file system doesn't support it just invalidate
798 * This fails on dirty or anything with private pages
799 */
800 if (invalidate_inode_page(p))
801 ret = MF_RECOVERED;
802 else
803 pr_info("Memory failure: %#lx: Failed to invalidate\n",
804 pfn);
805 }
806
807 return ret;
808}
809
810/*
811 * Error hit kernel page.
812 * Do nothing, try to be lucky and not touch this instead. For a few cases we
813 * could be more sophisticated.
814 */
815static int me_kernel(struct page *p, unsigned long pfn)
816{
817 unlock_page(p);
818 return MF_IGNORED;
819}
820
821/*
822 * Page in unknown state. Do nothing.
823 */
824static int me_unknown(struct page *p, unsigned long pfn)
825{
826 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
827 unlock_page(p);
828 return MF_FAILED;
829}
830
831/*
832 * Clean (or cleaned) page cache page.
833 */
834static int me_pagecache_clean(struct page *p, unsigned long pfn)
835{
836 int ret;
837 struct address_space *mapping;
838
839 delete_from_lru_cache(p);
840
841 /*
842 * For anonymous pages we're done the only reference left
843 * should be the one m_f() holds.
844 */
845 if (PageAnon(p)) {
846 ret = MF_RECOVERED;
847 goto out;
848 }
849
850 /*
851 * Now truncate the page in the page cache. This is really
852 * more like a "temporary hole punch"
853 * Don't do this for block devices when someone else
854 * has a reference, because it could be file system metadata
855 * and that's not safe to truncate.
856 */
857 mapping = page_mapping(p);
858 if (!mapping) {
859 /*
860 * Page has been teared down in the meanwhile
861 */
862 ret = MF_FAILED;
863 goto out;
864 }
865
866 /*
867 * Truncation is a bit tricky. Enable it per file system for now.
868 *
869 * Open: to take i_mutex or not for this? Right now we don't.
870 */
871 ret = truncate_error_page(p, pfn, mapping);
872out:
873 unlock_page(p);
874 return ret;
875}
876
877/*
878 * Dirty pagecache page
879 * Issues: when the error hit a hole page the error is not properly
880 * propagated.
881 */
882static int me_pagecache_dirty(struct page *p, unsigned long pfn)
883{
884 struct address_space *mapping = page_mapping(p);
885
886 SetPageError(p);
887 /* TBD: print more information about the file. */
888 if (mapping) {
889 /*
890 * IO error will be reported by write(), fsync(), etc.
891 * who check the mapping.
892 * This way the application knows that something went
893 * wrong with its dirty file data.
894 *
895 * There's one open issue:
896 *
897 * The EIO will be only reported on the next IO
898 * operation and then cleared through the IO map.
899 * Normally Linux has two mechanisms to pass IO error
900 * first through the AS_EIO flag in the address space
901 * and then through the PageError flag in the page.
902 * Since we drop pages on memory failure handling the
903 * only mechanism open to use is through AS_AIO.
904 *
905 * This has the disadvantage that it gets cleared on
906 * the first operation that returns an error, while
907 * the PageError bit is more sticky and only cleared
908 * when the page is reread or dropped. If an
909 * application assumes it will always get error on
910 * fsync, but does other operations on the fd before
911 * and the page is dropped between then the error
912 * will not be properly reported.
913 *
914 * This can already happen even without hwpoisoned
915 * pages: first on metadata IO errors (which only
916 * report through AS_EIO) or when the page is dropped
917 * at the wrong time.
918 *
919 * So right now we assume that the application DTRT on
920 * the first EIO, but we're not worse than other parts
921 * of the kernel.
922 */
923 mapping_set_error(mapping, -EIO);
924 }
925
926 return me_pagecache_clean(p, pfn);
927}
928
929/*
930 * Clean and dirty swap cache.
931 *
932 * Dirty swap cache page is tricky to handle. The page could live both in page
933 * cache and swap cache(ie. page is freshly swapped in). So it could be
934 * referenced concurrently by 2 types of PTEs:
935 * normal PTEs and swap PTEs. We try to handle them consistently by calling
936 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
937 * and then
938 * - clear dirty bit to prevent IO
939 * - remove from LRU
940 * - but keep in the swap cache, so that when we return to it on
941 * a later page fault, we know the application is accessing
942 * corrupted data and shall be killed (we installed simple
943 * interception code in do_swap_page to catch it).
944 *
945 * Clean swap cache pages can be directly isolated. A later page fault will
946 * bring in the known good data from disk.
947 */
948static int me_swapcache_dirty(struct page *p, unsigned long pfn)
949{
950 int ret;
951
952 ClearPageDirty(p);
953 /* Trigger EIO in shmem: */
954 ClearPageUptodate(p);
955
956 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
957 unlock_page(p);
958 return ret;
959}
960
961static int me_swapcache_clean(struct page *p, unsigned long pfn)
962{
963 int ret;
964
965 delete_from_swap_cache(p);
966
967 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
968 unlock_page(p);
969 return ret;
970}
971
972/*
973 * Huge pages. Needs work.
974 * Issues:
975 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
976 * To narrow down kill region to one page, we need to break up pmd.
977 */
978static int me_huge_page(struct page *p, unsigned long pfn)
979{
980 int res;
981 struct page *hpage = compound_head(p);
982 struct address_space *mapping;
983
984 if (!PageHuge(hpage))
985 return MF_DELAYED;
986
987 mapping = page_mapping(hpage);
988 if (mapping) {
989 res = truncate_error_page(hpage, pfn, mapping);
990 unlock_page(hpage);
991 } else {
992 res = MF_FAILED;
993 unlock_page(hpage);
994 /*
995 * migration entry prevents later access on error anonymous
996 * hugepage, so we can free and dissolve it into buddy to
997 * save healthy subpages.
998 */
999 if (PageAnon(hpage))
1000 put_page(hpage);
1001 if (__page_handle_poison(p)) {
1002 page_ref_inc(p);
1003 res = MF_RECOVERED;
1004 }
1005 }
1006
1007 return res;
1008}
1009
1010/*
1011 * Various page states we can handle.
1012 *
1013 * A page state is defined by its current page->flags bits.
1014 * The table matches them in order and calls the right handler.
1015 *
1016 * This is quite tricky because we can access page at any time
1017 * in its live cycle, so all accesses have to be extremely careful.
1018 *
1019 * This is not complete. More states could be added.
1020 * For any missing state don't attempt recovery.
1021 */
1022
1023#define dirty (1UL << PG_dirty)
1024#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1025#define unevict (1UL << PG_unevictable)
1026#define mlock (1UL << PG_mlocked)
1027#define lru (1UL << PG_lru)
1028#define head (1UL << PG_head)
1029#define slab (1UL << PG_slab)
1030#define reserved (1UL << PG_reserved)
1031
1032static struct page_state {
1033 unsigned long mask;
1034 unsigned long res;
1035 enum mf_action_page_type type;
1036
1037 /* Callback ->action() has to unlock the relevant page inside it. */
1038 int (*action)(struct page *p, unsigned long pfn);
1039} error_states[] = {
1040 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1041 /*
1042 * free pages are specially detected outside this table:
1043 * PG_buddy pages only make a small fraction of all free pages.
1044 */
1045
1046 /*
1047 * Could in theory check if slab page is free or if we can drop
1048 * currently unused objects without touching them. But just
1049 * treat it as standard kernel for now.
1050 */
1051 { slab, slab, MF_MSG_SLAB, me_kernel },
1052
1053 { head, head, MF_MSG_HUGE, me_huge_page },
1054
1055 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1056 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1057
1058 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1059 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1060
1061 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1062 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1063
1064 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1065 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1066
1067 /*
1068 * Catchall entry: must be at end.
1069 */
1070 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1071};
1072
1073#undef dirty
1074#undef sc
1075#undef unevict
1076#undef mlock
1077#undef lru
1078#undef head
1079#undef slab
1080#undef reserved
1081
1082/*
1083 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1084 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1085 */
1086static void action_result(unsigned long pfn, enum mf_action_page_type type,
1087 enum mf_result result)
1088{
1089 trace_memory_failure_event(pfn, type, result);
1090
1091 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1092 pfn, action_page_types[type], action_name[result]);
1093}
1094
1095static int page_action(struct page_state *ps, struct page *p,
1096 unsigned long pfn)
1097{
1098 int result;
1099 int count;
1100
1101 /* page p should be unlocked after returning from ps->action(). */
1102 result = ps->action(p, pfn);
1103
1104 count = page_count(p) - 1;
1105 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
1106 count--;
1107 if (count > 0) {
1108 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
1109 pfn, action_page_types[ps->type], count);
1110 result = MF_FAILED;
1111 }
1112 action_result(pfn, ps->type, result);
1113
1114 /* Could do more checks here if page looks ok */
1115 /*
1116 * Could adjust zone counters here to correct for the missing page.
1117 */
1118
1119 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1120}
1121
1122/*
1123 * Return true if a page type of a given page is supported by hwpoison
1124 * mechanism (while handling could fail), otherwise false. This function
1125 * does not return true for hugetlb or device memory pages, so it's assumed
1126 * to be called only in the context where we never have such pages.
1127 */
1128static inline bool HWPoisonHandlable(struct page *page)
1129{
1130 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
1131}
1132
1133static int __get_hwpoison_page(struct page *page)
1134{
1135 struct page *head = compound_head(page);
1136 int ret = 0;
1137 bool hugetlb = false;
1138
1139 ret = get_hwpoison_huge_page(head, &hugetlb);
1140 if (hugetlb)
1141 return ret;
1142
1143 /*
1144 * This check prevents from calling get_hwpoison_unless_zero()
1145 * for any unsupported type of page in order to reduce the risk of
1146 * unexpected races caused by taking a page refcount.
1147 */
1148 if (!HWPoisonHandlable(head))
1149 return -EBUSY;
1150
1151 if (PageTransHuge(head)) {
1152 /*
1153 * Non anonymous thp exists only in allocation/free time. We
1154 * can't handle such a case correctly, so let's give it up.
1155 * This should be better than triggering BUG_ON when kernel
1156 * tries to touch the "partially handled" page.
1157 */
1158 if (!PageAnon(head)) {
1159 pr_err("Memory failure: %#lx: non anonymous thp\n",
1160 page_to_pfn(page));
1161 return 0;
1162 }
1163 }
1164
1165 if (get_page_unless_zero(head)) {
1166 if (head == compound_head(page))
1167 return 1;
1168
1169 pr_info("Memory failure: %#lx cannot catch tail\n",
1170 page_to_pfn(page));
1171 put_page(head);
1172 }
1173
1174 return 0;
1175}
1176
1177static int get_any_page(struct page *p, unsigned long flags)
1178{
1179 int ret = 0, pass = 0;
1180 bool count_increased = false;
1181
1182 if (flags & MF_COUNT_INCREASED)
1183 count_increased = true;
1184
1185try_again:
1186 if (!count_increased) {
1187 ret = __get_hwpoison_page(p);
1188 if (!ret) {
1189 if (page_count(p)) {
1190 /* We raced with an allocation, retry. */
1191 if (pass++ < 3)
1192 goto try_again;
1193 ret = -EBUSY;
1194 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1195 /* We raced with put_page, retry. */
1196 if (pass++ < 3)
1197 goto try_again;
1198 ret = -EIO;
1199 }
1200 goto out;
1201 } else if (ret == -EBUSY) {
1202 /*
1203 * We raced with (possibly temporary) unhandlable
1204 * page, retry.
1205 */
1206 if (pass++ < 3) {
1207 shake_page(p, 1);
1208 goto try_again;
1209 }
1210 ret = -EIO;
1211 goto out;
1212 }
1213 }
1214
1215 if (PageHuge(p) || HWPoisonHandlable(p)) {
1216 ret = 1;
1217 } else {
1218 /*
1219 * A page we cannot handle. Check whether we can turn
1220 * it into something we can handle.
1221 */
1222 if (pass++ < 3) {
1223 put_page(p);
1224 shake_page(p, 1);
1225 count_increased = false;
1226 goto try_again;
1227 }
1228 put_page(p);
1229 ret = -EIO;
1230 }
1231out:
1232 return ret;
1233}
1234
1235/**
1236 * get_hwpoison_page() - Get refcount for memory error handling
1237 * @p: Raw error page (hit by memory error)
1238 * @flags: Flags controlling behavior of error handling
1239 *
1240 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1241 * error on it, after checking that the error page is in a well-defined state
1242 * (defined as a page-type we can successfully handle the memor error on it,
1243 * such as LRU page and hugetlb page).
1244 *
1245 * Memory error handling could be triggered at any time on any type of page,
1246 * so it's prone to race with typical memory management lifecycle (like
1247 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1248 * extra care for the error page's state (as done in __get_hwpoison_page()),
1249 * and has some retry logic in get_any_page().
1250 *
1251 * Return: 0 on failure,
1252 * 1 on success for in-use pages in a well-defined state,
1253 * -EIO for pages on which we can not handle memory errors,
1254 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1255 * operations like allocation and free.
1256 */
1257static int get_hwpoison_page(struct page *p, unsigned long flags)
1258{
1259 int ret;
1260
1261 zone_pcp_disable(page_zone(p));
1262 ret = get_any_page(p, flags);
1263 zone_pcp_enable(page_zone(p));
1264
1265 return ret;
1266}
1267
1268/*
1269 * Do all that is necessary to remove user space mappings. Unmap
1270 * the pages and send SIGBUS to the processes if the data was dirty.
1271 */
1272static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1273 int flags, struct page **hpagep)
1274{
1275 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1276 struct address_space *mapping;
1277 LIST_HEAD(tokill);
1278 bool unmap_success;
1279 int kill = 1, forcekill;
1280 struct page *hpage = *hpagep;
1281 bool mlocked = PageMlocked(hpage);
1282
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
1288 return true;
1289 if (!(PageLRU(hpage) || PageHuge(p)))
1290 return true;
1291
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
1296 if (!page_mapped(hpage))
1297 return true;
1298
1299 if (PageKsm(p)) {
1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1301 return false;
1302 }
1303
1304 if (PageSwapCache(p)) {
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
1315 */
1316 mapping = page_mapping(hpage);
1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1318 mapping_can_writeback(mapping)) {
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1339
1340 if (!PageHuge(hpage)) {
1341 try_to_unmap(hpage, ttu);
1342 } else {
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
1349 * at this higher level.
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1354 i_mmap_unlock_write(mapping);
1355 } else
1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1357 } else {
1358 try_to_unmap(hpage, ttu);
1359 }
1360 }
1361
1362 unmap_success = !page_mapped(hpage);
1363 if (!unmap_success)
1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1365 pfn, page_mapcount(hpage));
1366
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1386
1387 return unmap_success;
1388}
1389
1390static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
1392{
1393 struct page_state *ps;
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411}
1412
1413static int try_to_split_thp_page(struct page *page, const char *msg)
1414{
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430}
1431
1432static int memory_failure_hugetlb(unsigned long pfn, int flags)
1433{
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
1446 }
1447
1448 num_poisoned_pages_inc();
1449
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
1464 }
1465 unlock_page(head);
1466 res = MF_FAILED;
1467 if (__page_handle_poison(p)) {
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
1476 }
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
1486 put_page(head);
1487 return 0;
1488 }
1489
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
1505 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
1511 return identify_page_state(pfn, p, page_flags);
1512out:
1513 unlock_page(head);
1514 return res;
1515}
1516
1517static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519{
1520 struct page *page = pfn_to_page(pfn);
1521 const bool unmap_success = true;
1522 unsigned long size = 0;
1523 struct to_kill *tk;
1524 LIST_HEAD(tokill);
1525 int rc = -EBUSY;
1526 loff_t start;
1527 dax_entry_t cookie;
1528
1529 if (flags & MF_COUNT_INCREASED)
1530 /*
1531 * Drop the extra refcount in case we come from madvise().
1532 */
1533 put_page(page);
1534
1535 /* device metadata space is not recoverable */
1536 if (!pgmap_pfn_valid(pgmap, pfn)) {
1537 rc = -ENXIO;
1538 goto out;
1539 }
1540
1541 /*
1542 * Prevent the inode from being freed while we are interrogating
1543 * the address_space, typically this would be handled by
1544 * lock_page(), but dax pages do not use the page lock. This
1545 * also prevents changes to the mapping of this pfn until
1546 * poison signaling is complete.
1547 */
1548 cookie = dax_lock_page(page);
1549 if (!cookie)
1550 goto out;
1551
1552 if (hwpoison_filter(page)) {
1553 rc = 0;
1554 goto unlock;
1555 }
1556
1557 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1558 /*
1559 * TODO: Handle HMM pages which may need coordination
1560 * with device-side memory.
1561 */
1562 goto unlock;
1563 }
1564
1565 /*
1566 * Use this flag as an indication that the dax page has been
1567 * remapped UC to prevent speculative consumption of poison.
1568 */
1569 SetPageHWPoison(page);
1570
1571 /*
1572 * Unlike System-RAM there is no possibility to swap in a
1573 * different physical page at a given virtual address, so all
1574 * userspace consumption of ZONE_DEVICE memory necessitates
1575 * SIGBUS (i.e. MF_MUST_KILL)
1576 */
1577 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1578 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1579
1580 list_for_each_entry(tk, &tokill, nd)
1581 if (tk->size_shift)
1582 size = max(size, 1UL << tk->size_shift);
1583 if (size) {
1584 /*
1585 * Unmap the largest mapping to avoid breaking up
1586 * device-dax mappings which are constant size. The
1587 * actual size of the mapping being torn down is
1588 * communicated in siginfo, see kill_proc()
1589 */
1590 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1591 unmap_mapping_range(page->mapping, start, size, 0);
1592 }
1593 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1594 rc = 0;
1595unlock:
1596 dax_unlock_page(page, cookie);
1597out:
1598 /* drop pgmap ref acquired in caller */
1599 put_dev_pagemap(pgmap);
1600 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1601 return rc;
1602}
1603
1604/**
1605 * memory_failure - Handle memory failure of a page.
1606 * @pfn: Page Number of the corrupted page
1607 * @flags: fine tune action taken
1608 *
1609 * This function is called by the low level machine check code
1610 * of an architecture when it detects hardware memory corruption
1611 * of a page. It tries its best to recover, which includes
1612 * dropping pages, killing processes etc.
1613 *
1614 * The function is primarily of use for corruptions that
1615 * happen outside the current execution context (e.g. when
1616 * detected by a background scrubber)
1617 *
1618 * Must run in process context (e.g. a work queue) with interrupts
1619 * enabled and no spinlocks hold.
1620 */
1621int memory_failure(unsigned long pfn, int flags)
1622{
1623 struct page *p;
1624 struct page *hpage;
1625 struct page *orig_head;
1626 struct dev_pagemap *pgmap;
1627 int res = 0;
1628 unsigned long page_flags;
1629 bool retry = true;
1630 static DEFINE_MUTEX(mf_mutex);
1631
1632 if (!sysctl_memory_failure_recovery)
1633 panic("Memory failure on page %lx", pfn);
1634
1635 p = pfn_to_online_page(pfn);
1636 if (!p) {
1637 if (pfn_valid(pfn)) {
1638 pgmap = get_dev_pagemap(pfn, NULL);
1639 if (pgmap)
1640 return memory_failure_dev_pagemap(pfn, flags,
1641 pgmap);
1642 }
1643 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1644 pfn);
1645 return -ENXIO;
1646 }
1647
1648 mutex_lock(&mf_mutex);
1649
1650try_again:
1651 if (PageHuge(p)) {
1652 res = memory_failure_hugetlb(pfn, flags);
1653 goto unlock_mutex;
1654 }
1655
1656 if (TestSetPageHWPoison(p)) {
1657 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1658 pfn);
1659 res = -EHWPOISON;
1660 if (flags & MF_ACTION_REQUIRED)
1661 res = kill_accessing_process(current, pfn, flags);
1662 goto unlock_mutex;
1663 }
1664
1665 orig_head = hpage = compound_head(p);
1666 num_poisoned_pages_inc();
1667
1668 /*
1669 * We need/can do nothing about count=0 pages.
1670 * 1) it's a free page, and therefore in safe hand:
1671 * prep_new_page() will be the gate keeper.
1672 * 2) it's part of a non-compound high order page.
1673 * Implies some kernel user: cannot stop them from
1674 * R/W the page; let's pray that the page has been
1675 * used and will be freed some time later.
1676 * In fact it's dangerous to directly bump up page count from 0,
1677 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1678 */
1679 if (!(flags & MF_COUNT_INCREASED)) {
1680 res = get_hwpoison_page(p, flags);
1681 if (!res) {
1682 if (is_free_buddy_page(p)) {
1683 if (take_page_off_buddy(p)) {
1684 page_ref_inc(p);
1685 res = MF_RECOVERED;
1686 } else {
1687 /* We lost the race, try again */
1688 if (retry) {
1689 ClearPageHWPoison(p);
1690 num_poisoned_pages_dec();
1691 retry = false;
1692 goto try_again;
1693 }
1694 res = MF_FAILED;
1695 }
1696 action_result(pfn, MF_MSG_BUDDY, res);
1697 res = res == MF_RECOVERED ? 0 : -EBUSY;
1698 } else {
1699 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1700 res = -EBUSY;
1701 }
1702 goto unlock_mutex;
1703 } else if (res < 0) {
1704 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1705 res = -EBUSY;
1706 goto unlock_mutex;
1707 }
1708 }
1709
1710 if (PageTransHuge(hpage)) {
1711 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1712 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1713 res = -EBUSY;
1714 goto unlock_mutex;
1715 }
1716 VM_BUG_ON_PAGE(!page_count(p), p);
1717 }
1718
1719 /*
1720 * We ignore non-LRU pages for good reasons.
1721 * - PG_locked is only well defined for LRU pages and a few others
1722 * - to avoid races with __SetPageLocked()
1723 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1724 * The check (unnecessarily) ignores LRU pages being isolated and
1725 * walked by the page reclaim code, however that's not a big loss.
1726 */
1727 shake_page(p, 0);
1728
1729 lock_page(p);
1730
1731 /*
1732 * The page could have changed compound pages during the locking.
1733 * If this happens just bail out.
1734 */
1735 if (PageCompound(p) && compound_head(p) != orig_head) {
1736 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1737 res = -EBUSY;
1738 goto unlock_page;
1739 }
1740
1741 /*
1742 * We use page flags to determine what action should be taken, but
1743 * the flags can be modified by the error containment action. One
1744 * example is an mlocked page, where PG_mlocked is cleared by
1745 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1746 * correctly, we save a copy of the page flags at this time.
1747 */
1748 page_flags = p->flags;
1749
1750 /*
1751 * unpoison always clear PG_hwpoison inside page lock
1752 */
1753 if (!PageHWPoison(p)) {
1754 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1755 num_poisoned_pages_dec();
1756 unlock_page(p);
1757 put_page(p);
1758 goto unlock_mutex;
1759 }
1760 if (hwpoison_filter(p)) {
1761 if (TestClearPageHWPoison(p))
1762 num_poisoned_pages_dec();
1763 unlock_page(p);
1764 put_page(p);
1765 goto unlock_mutex;
1766 }
1767
1768 /*
1769 * __munlock_pagevec may clear a writeback page's LRU flag without
1770 * page_lock. We need wait writeback completion for this page or it
1771 * may trigger vfs BUG while evict inode.
1772 */
1773 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
1774 goto identify_page_state;
1775
1776 /*
1777 * It's very difficult to mess with pages currently under IO
1778 * and in many cases impossible, so we just avoid it here.
1779 */
1780 wait_on_page_writeback(p);
1781
1782 /*
1783 * Now take care of user space mappings.
1784 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1785 */
1786 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
1787 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1788 res = -EBUSY;
1789 goto unlock_page;
1790 }
1791
1792 /*
1793 * Torn down by someone else?
1794 */
1795 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1796 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1797 res = -EBUSY;
1798 goto unlock_page;
1799 }
1800
1801identify_page_state:
1802 res = identify_page_state(pfn, p, page_flags);
1803 mutex_unlock(&mf_mutex);
1804 return res;
1805unlock_page:
1806 unlock_page(p);
1807unlock_mutex:
1808 mutex_unlock(&mf_mutex);
1809 return res;
1810}
1811EXPORT_SYMBOL_GPL(memory_failure);
1812
1813#define MEMORY_FAILURE_FIFO_ORDER 4
1814#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1815
1816struct memory_failure_entry {
1817 unsigned long pfn;
1818 int flags;
1819};
1820
1821struct memory_failure_cpu {
1822 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1823 MEMORY_FAILURE_FIFO_SIZE);
1824 spinlock_t lock;
1825 struct work_struct work;
1826};
1827
1828static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1829
1830/**
1831 * memory_failure_queue - Schedule handling memory failure of a page.
1832 * @pfn: Page Number of the corrupted page
1833 * @flags: Flags for memory failure handling
1834 *
1835 * This function is called by the low level hardware error handler
1836 * when it detects hardware memory corruption of a page. It schedules
1837 * the recovering of error page, including dropping pages, killing
1838 * processes etc.
1839 *
1840 * The function is primarily of use for corruptions that
1841 * happen outside the current execution context (e.g. when
1842 * detected by a background scrubber)
1843 *
1844 * Can run in IRQ context.
1845 */
1846void memory_failure_queue(unsigned long pfn, int flags)
1847{
1848 struct memory_failure_cpu *mf_cpu;
1849 unsigned long proc_flags;
1850 struct memory_failure_entry entry = {
1851 .pfn = pfn,
1852 .flags = flags,
1853 };
1854
1855 mf_cpu = &get_cpu_var(memory_failure_cpu);
1856 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1857 if (kfifo_put(&mf_cpu->fifo, entry))
1858 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1859 else
1860 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1861 pfn);
1862 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1863 put_cpu_var(memory_failure_cpu);
1864}
1865EXPORT_SYMBOL_GPL(memory_failure_queue);
1866
1867static void memory_failure_work_func(struct work_struct *work)
1868{
1869 struct memory_failure_cpu *mf_cpu;
1870 struct memory_failure_entry entry = { 0, };
1871 unsigned long proc_flags;
1872 int gotten;
1873
1874 mf_cpu = container_of(work, struct memory_failure_cpu, work);
1875 for (;;) {
1876 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1877 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1878 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1879 if (!gotten)
1880 break;
1881 if (entry.flags & MF_SOFT_OFFLINE)
1882 soft_offline_page(entry.pfn, entry.flags);
1883 else
1884 memory_failure(entry.pfn, entry.flags);
1885 }
1886}
1887
1888/*
1889 * Process memory_failure work queued on the specified CPU.
1890 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1891 */
1892void memory_failure_queue_kick(int cpu)
1893{
1894 struct memory_failure_cpu *mf_cpu;
1895
1896 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1897 cancel_work_sync(&mf_cpu->work);
1898 memory_failure_work_func(&mf_cpu->work);
1899}
1900
1901static int __init memory_failure_init(void)
1902{
1903 struct memory_failure_cpu *mf_cpu;
1904 int cpu;
1905
1906 for_each_possible_cpu(cpu) {
1907 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1908 spin_lock_init(&mf_cpu->lock);
1909 INIT_KFIFO(mf_cpu->fifo);
1910 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1911 }
1912
1913 return 0;
1914}
1915core_initcall(memory_failure_init);
1916
1917#define unpoison_pr_info(fmt, pfn, rs) \
1918({ \
1919 if (__ratelimit(rs)) \
1920 pr_info(fmt, pfn); \
1921})
1922
1923/**
1924 * unpoison_memory - Unpoison a previously poisoned page
1925 * @pfn: Page number of the to be unpoisoned page
1926 *
1927 * Software-unpoison a page that has been poisoned by
1928 * memory_failure() earlier.
1929 *
1930 * This is only done on the software-level, so it only works
1931 * for linux injected failures, not real hardware failures
1932 *
1933 * Returns 0 for success, otherwise -errno.
1934 */
1935int unpoison_memory(unsigned long pfn)
1936{
1937 struct page *page;
1938 struct page *p;
1939 int freeit = 0;
1940 unsigned long flags = 0;
1941 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1942 DEFAULT_RATELIMIT_BURST);
1943
1944 if (!pfn_valid(pfn))
1945 return -ENXIO;
1946
1947 p = pfn_to_page(pfn);
1948 page = compound_head(p);
1949
1950 if (!PageHWPoison(p)) {
1951 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1952 pfn, &unpoison_rs);
1953 return 0;
1954 }
1955
1956 if (page_count(page) > 1) {
1957 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1958 pfn, &unpoison_rs);
1959 return 0;
1960 }
1961
1962 if (page_mapped(page)) {
1963 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1964 pfn, &unpoison_rs);
1965 return 0;
1966 }
1967
1968 if (page_mapping(page)) {
1969 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1970 pfn, &unpoison_rs);
1971 return 0;
1972 }
1973
1974 /*
1975 * unpoison_memory() can encounter thp only when the thp is being
1976 * worked by memory_failure() and the page lock is not held yet.
1977 * In such case, we yield to memory_failure() and make unpoison fail.
1978 */
1979 if (!PageHuge(page) && PageTransHuge(page)) {
1980 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1981 pfn, &unpoison_rs);
1982 return 0;
1983 }
1984
1985 if (!get_hwpoison_page(p, flags)) {
1986 if (TestClearPageHWPoison(p))
1987 num_poisoned_pages_dec();
1988 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1989 pfn, &unpoison_rs);
1990 return 0;
1991 }
1992
1993 lock_page(page);
1994 /*
1995 * This test is racy because PG_hwpoison is set outside of page lock.
1996 * That's acceptable because that won't trigger kernel panic. Instead,
1997 * the PG_hwpoison page will be caught and isolated on the entrance to
1998 * the free buddy page pool.
1999 */
2000 if (TestClearPageHWPoison(page)) {
2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 pfn, &unpoison_rs);
2003 num_poisoned_pages_dec();
2004 freeit = 1;
2005 }
2006 unlock_page(page);
2007
2008 put_page(page);
2009 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
2010 put_page(page);
2011
2012 return 0;
2013}
2014EXPORT_SYMBOL(unpoison_memory);
2015
2016static bool isolate_page(struct page *page, struct list_head *pagelist)
2017{
2018 bool isolated = false;
2019 bool lru = PageLRU(page);
2020
2021 if (PageHuge(page)) {
2022 isolated = isolate_huge_page(page, pagelist);
2023 } else {
2024 if (lru)
2025 isolated = !isolate_lru_page(page);
2026 else
2027 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2028
2029 if (isolated)
2030 list_add(&page->lru, pagelist);
2031 }
2032
2033 if (isolated && lru)
2034 inc_node_page_state(page, NR_ISOLATED_ANON +
2035 page_is_file_lru(page));
2036
2037 /*
2038 * If we succeed to isolate the page, we grabbed another refcount on
2039 * the page, so we can safely drop the one we got from get_any_pages().
2040 * If we failed to isolate the page, it means that we cannot go further
2041 * and we will return an error, so drop the reference we got from
2042 * get_any_pages() as well.
2043 */
2044 put_page(page);
2045 return isolated;
2046}
2047
2048/*
2049 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2050 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2051 * If the page is mapped, it migrates the contents over.
2052 */
2053static int __soft_offline_page(struct page *page)
2054{
2055 int ret = 0;
2056 unsigned long pfn = page_to_pfn(page);
2057 struct page *hpage = compound_head(page);
2058 char const *msg_page[] = {"page", "hugepage"};
2059 bool huge = PageHuge(page);
2060 LIST_HEAD(pagelist);
2061 struct migration_target_control mtc = {
2062 .nid = NUMA_NO_NODE,
2063 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2064 };
2065
2066 /*
2067 * Check PageHWPoison again inside page lock because PageHWPoison
2068 * is set by memory_failure() outside page lock. Note that
2069 * memory_failure() also double-checks PageHWPoison inside page lock,
2070 * so there's no race between soft_offline_page() and memory_failure().
2071 */
2072 lock_page(page);
2073 if (!PageHuge(page))
2074 wait_on_page_writeback(page);
2075 if (PageHWPoison(page)) {
2076 unlock_page(page);
2077 put_page(page);
2078 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2079 return 0;
2080 }
2081
2082 if (!PageHuge(page))
2083 /*
2084 * Try to invalidate first. This should work for
2085 * non dirty unmapped page cache pages.
2086 */
2087 ret = invalidate_inode_page(page);
2088 unlock_page(page);
2089
2090 /*
2091 * RED-PEN would be better to keep it isolated here, but we
2092 * would need to fix isolation locking first.
2093 */
2094 if (ret) {
2095 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2096 page_handle_poison(page, false, true);
2097 return 0;
2098 }
2099
2100 if (isolate_page(hpage, &pagelist)) {
2101 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2102 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
2103 if (!ret) {
2104 bool release = !huge;
2105
2106 if (!page_handle_poison(page, huge, release))
2107 ret = -EBUSY;
2108 } else {
2109 if (!list_empty(&pagelist))
2110 putback_movable_pages(&pagelist);
2111
2112 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2113 pfn, msg_page[huge], ret, page->flags, &page->flags);
2114 if (ret > 0)
2115 ret = -EBUSY;
2116 }
2117 } else {
2118 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2119 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
2120 ret = -EBUSY;
2121 }
2122 return ret;
2123}
2124
2125static int soft_offline_in_use_page(struct page *page)
2126{
2127 struct page *hpage = compound_head(page);
2128
2129 if (!PageHuge(page) && PageTransHuge(hpage))
2130 if (try_to_split_thp_page(page, "soft offline") < 0)
2131 return -EBUSY;
2132 return __soft_offline_page(page);
2133}
2134
2135static int soft_offline_free_page(struct page *page)
2136{
2137 int rc = 0;
2138
2139 if (!page_handle_poison(page, true, false))
2140 rc = -EBUSY;
2141
2142 return rc;
2143}
2144
2145static void put_ref_page(struct page *page)
2146{
2147 if (page)
2148 put_page(page);
2149}
2150
2151/**
2152 * soft_offline_page - Soft offline a page.
2153 * @pfn: pfn to soft-offline
2154 * @flags: flags. Same as memory_failure().
2155 *
2156 * Returns 0 on success, otherwise negated errno.
2157 *
2158 * Soft offline a page, by migration or invalidation,
2159 * without killing anything. This is for the case when
2160 * a page is not corrupted yet (so it's still valid to access),
2161 * but has had a number of corrected errors and is better taken
2162 * out.
2163 *
2164 * The actual policy on when to do that is maintained by
2165 * user space.
2166 *
2167 * This should never impact any application or cause data loss,
2168 * however it might take some time.
2169 *
2170 * This is not a 100% solution for all memory, but tries to be
2171 * ``good enough'' for the majority of memory.
2172 */
2173int soft_offline_page(unsigned long pfn, int flags)
2174{
2175 int ret;
2176 bool try_again = true;
2177 struct page *page, *ref_page = NULL;
2178
2179 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2180
2181 if (!pfn_valid(pfn))
2182 return -ENXIO;
2183 if (flags & MF_COUNT_INCREASED)
2184 ref_page = pfn_to_page(pfn);
2185
2186 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2187 page = pfn_to_online_page(pfn);
2188 if (!page) {
2189 put_ref_page(ref_page);
2190 return -EIO;
2191 }
2192
2193 if (PageHWPoison(page)) {
2194 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2195 put_ref_page(ref_page);
2196 return 0;
2197 }
2198
2199retry:
2200 get_online_mems();
2201 ret = get_hwpoison_page(page, flags);
2202 put_online_mems();
2203
2204 if (ret > 0) {
2205 ret = soft_offline_in_use_page(page);
2206 } else if (ret == 0) {
2207 if (soft_offline_free_page(page) && try_again) {
2208 try_again = false;
2209 goto retry;
2210 }
2211 } else if (ret == -EIO) {
2212 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
2213 __func__, pfn, page->flags, &page->flags);
2214 }
2215
2216 return ret;
2217}