Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_da_format.h"
  26#include "xfs_da_btree.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_bmap_util.h"
  32#include "xfs_error.h"
  33#include "xfs_dir2.h"
  34#include "xfs_dir2_priv.h"
  35#include "xfs_ioctl.h"
  36#include "xfs_trace.h"
  37#include "xfs_log.h"
  38#include "xfs_icache.h"
  39#include "xfs_pnfs.h"
  40#include "xfs_iomap.h"
  41#include "xfs_reflink.h"
  42
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
  46#include <linux/backing-dev.h>
  47#include <linux/mman.h>
 
 
  48
  49static const struct vm_operations_struct xfs_file_vm_ops;
  50
  51int
  52xfs_update_prealloc_flags(
 
 
 
 
  53	struct xfs_inode	*ip,
  54	enum xfs_prealloc_flags	flags)
 
  55{
  56	struct xfs_trans	*tp;
  57	int			error;
  58
  59	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  60			0, 0, 0, &tp);
  61	if (error)
  62		return error;
  63
  64	xfs_ilock(ip, XFS_ILOCK_EXCL);
  65	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66
  67	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  68		VFS_I(ip)->i_mode &= ~S_ISUID;
  69		if (VFS_I(ip)->i_mode & S_IXGRP)
  70			VFS_I(ip)->i_mode &= ~S_ISGID;
  71		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  72	}
  73
  74	if (flags & XFS_PREALLOC_SET)
  75		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  76	if (flags & XFS_PREALLOC_CLEAR)
  77		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  78
  79	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  80	if (flags & XFS_PREALLOC_SYNC)
  81		xfs_trans_set_sync(tp);
  82	return xfs_trans_commit(tp);
  83}
  84
  85/*
  86 * Fsync operations on directories are much simpler than on regular files,
  87 * as there is no file data to flush, and thus also no need for explicit
  88 * cache flush operations, and there are no non-transaction metadata updates
  89 * on directories either.
  90 */
  91STATIC int
  92xfs_dir_fsync(
  93	struct file		*file,
  94	loff_t			start,
  95	loff_t			end,
  96	int			datasync)
  97{
  98	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  99	struct xfs_mount	*mp = ip->i_mount;
 100	xfs_lsn_t		lsn = 0;
 101
 102	trace_xfs_dir_fsync(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103
 104	xfs_ilock(ip, XFS_ILOCK_SHARED);
 105	if (xfs_ipincount(ip))
 106		lsn = ip->i_itemp->ili_last_lsn;
 107	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 108
 109	if (!lsn)
 110		return 0;
 111	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 
 
 
 112}
 113
 114STATIC int
 115xfs_file_fsync(
 116	struct file		*file,
 117	loff_t			start,
 118	loff_t			end,
 119	int			datasync)
 120{
 121	struct inode		*inode = file->f_mapping->host;
 122	struct xfs_inode	*ip = XFS_I(inode);
 123	struct xfs_mount	*mp = ip->i_mount;
 124	int			error = 0;
 125	int			log_flushed = 0;
 126	xfs_lsn_t		lsn = 0;
 127
 128	trace_xfs_file_fsync(ip);
 129
 130	error = file_write_and_wait_range(file, start, end);
 131	if (error)
 132		return error;
 133
 134	if (XFS_FORCED_SHUTDOWN(mp))
 135		return -EIO;
 136
 137	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 138
 139	/*
 140	 * If we have an RT and/or log subvolume we need to make sure to flush
 141	 * the write cache the device used for file data first.  This is to
 142	 * ensure newly written file data make it to disk before logging the new
 143	 * inode size in case of an extending write.
 144	 */
 145	if (XFS_IS_REALTIME_INODE(ip))
 146		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 147	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 148		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 149
 150	/*
 151	 * All metadata updates are logged, which means that we just have to
 152	 * flush the log up to the latest LSN that touched the inode. If we have
 153	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 154	 * log force before we clear the ili_fsync_fields field. This ensures
 155	 * that we don't get a racing sync operation that does not wait for the
 156	 * metadata to hit the journal before returning. If we race with
 157	 * clearing the ili_fsync_fields, then all that will happen is the log
 158	 * force will do nothing as the lsn will already be on disk. We can't
 159	 * race with setting ili_fsync_fields because that is done under
 160	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 161	 * until after the ili_fsync_fields is cleared.
 162	 */
 163	xfs_ilock(ip, XFS_ILOCK_SHARED);
 164	if (xfs_ipincount(ip)) {
 165		if (!datasync ||
 166		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 167			lsn = ip->i_itemp->ili_last_lsn;
 168	}
 169
 170	if (lsn) {
 171		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 172		ip->i_itemp->ili_fsync_fields = 0;
 173	}
 174	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 175
 176	/*
 177	 * If we only have a single device, and the log force about was
 178	 * a no-op we might have to flush the data device cache here.
 179	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 180	 * an already allocated file and thus do not have any metadata to
 181	 * commit.
 182	 */
 183	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 184	    mp->m_logdev_targp == mp->m_ddev_targp)
 185		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 
 
 186
 187	return error;
 188}
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190STATIC ssize_t
 191xfs_file_dio_aio_read(
 192	struct kiocb		*iocb,
 193	struct iov_iter		*to)
 194{
 195	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 196	size_t			count = iov_iter_count(to);
 197	ssize_t			ret;
 198
 199	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 200
 201	if (!count)
 202		return 0; /* skip atime */
 203
 204	file_accessed(iocb->ki_filp);
 205
 206	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 207	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 
 
 208	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 209
 210	return ret;
 211}
 212
 213static noinline ssize_t
 214xfs_file_dax_read(
 215	struct kiocb		*iocb,
 216	struct iov_iter		*to)
 217{
 218	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 219	size_t			count = iov_iter_count(to);
 220	ssize_t			ret = 0;
 221
 222	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 223
 224	if (!count)
 225		return 0; /* skip atime */
 226
 227	if (iocb->ki_flags & IOCB_NOWAIT) {
 228		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 229			return -EAGAIN;
 230	} else {
 231		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 232	}
 233
 234	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 235	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 236
 237	file_accessed(iocb->ki_filp);
 238	return ret;
 239}
 240
 241STATIC ssize_t
 242xfs_file_buffered_aio_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 245{
 246	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 247	ssize_t			ret;
 248
 249	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 250
 251	if (iocb->ki_flags & IOCB_NOWAIT) {
 252		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 253			return -EAGAIN;
 254	} else {
 255		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 256	}
 257	ret = generic_file_read_iter(iocb, to);
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 259
 260	return ret;
 261}
 262
 263STATIC ssize_t
 264xfs_file_read_iter(
 265	struct kiocb		*iocb,
 266	struct iov_iter		*to)
 267{
 268	struct inode		*inode = file_inode(iocb->ki_filp);
 269	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 270	ssize_t			ret = 0;
 271
 272	XFS_STATS_INC(mp, xs_read_calls);
 273
 274	if (XFS_FORCED_SHUTDOWN(mp))
 275		return -EIO;
 276
 277	if (IS_DAX(inode))
 278		ret = xfs_file_dax_read(iocb, to);
 279	else if (iocb->ki_flags & IOCB_DIRECT)
 280		ret = xfs_file_dio_aio_read(iocb, to);
 281	else
 282		ret = xfs_file_buffered_aio_read(iocb, to);
 283
 284	if (ret > 0)
 285		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 286	return ret;
 287}
 288
 289/*
 290 * Common pre-write limit and setup checks.
 291 *
 292 * Called with the iolocked held either shared and exclusive according to
 293 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 294 * if called for a direct write beyond i_size.
 295 */
 296STATIC ssize_t
 297xfs_file_aio_write_checks(
 298	struct kiocb		*iocb,
 299	struct iov_iter		*from,
 300	int			*iolock)
 301{
 302	struct file		*file = iocb->ki_filp;
 303	struct inode		*inode = file->f_mapping->host;
 304	struct xfs_inode	*ip = XFS_I(inode);
 305	ssize_t			error = 0;
 306	size_t			count = iov_iter_count(from);
 307	bool			drained_dio = false;
 308	loff_t			isize;
 309
 310restart:
 311	error = generic_write_checks(iocb, from);
 312	if (error <= 0)
 313		return error;
 314
 315	error = xfs_break_layouts(inode, iolock);
 
 
 
 
 
 
 
 316	if (error)
 317		return error;
 318
 319	/*
 320	 * For changing security info in file_remove_privs() we need i_rwsem
 321	 * exclusively.
 322	 */
 323	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 324		xfs_iunlock(ip, *iolock);
 325		*iolock = XFS_IOLOCK_EXCL;
 326		xfs_ilock(ip, *iolock);
 
 
 
 
 327		goto restart;
 328	}
 
 329	/*
 330	 * If the offset is beyond the size of the file, we need to zero any
 331	 * blocks that fall between the existing EOF and the start of this
 332	 * write.  If zeroing is needed and we are currently holding the
 333	 * iolock shared, we need to update it to exclusive which implies
 334	 * having to redo all checks before.
 335	 *
 336	 * We need to serialise against EOF updates that occur in IO
 337	 * completions here. We want to make sure that nobody is changing the
 338	 * size while we do this check until we have placed an IO barrier (i.e.
 339	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 340	 * The spinlock effectively forms a memory barrier once we have the
 341	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 342	 * and hence be able to correctly determine if we need to run zeroing.
 
 
 
 
 
 343	 */
 
 
 
 344	spin_lock(&ip->i_flags_lock);
 345	isize = i_size_read(inode);
 346	if (iocb->ki_pos > isize) {
 347		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 348		if (!drained_dio) {
 349			if (*iolock == XFS_IOLOCK_SHARED) {
 350				xfs_iunlock(ip, *iolock);
 351				*iolock = XFS_IOLOCK_EXCL;
 352				xfs_ilock(ip, *iolock);
 353				iov_iter_reexpand(from, count);
 354			}
 355			/*
 356			 * We now have an IO submission barrier in place, but
 357			 * AIO can do EOF updates during IO completion and hence
 358			 * we now need to wait for all of them to drain. Non-AIO
 359			 * DIO will have drained before we are given the
 360			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 361			 * no-op.
 362			 */
 363			inode_dio_wait(inode);
 364			drained_dio = true;
 365			goto restart;
 366		}
 367	
 368		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 369		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 370				NULL, &xfs_iomap_ops);
 371		if (error)
 372			return error;
 373	} else
 374		spin_unlock(&ip->i_flags_lock);
 375
 376	/*
 377	 * Updating the timestamps will grab the ilock again from
 378	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 379	 * lock above.  Eventually we should look into a way to avoid
 380	 * the pointless lock roundtrip.
 381	 */
 382	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 383		error = file_update_time(file);
 384		if (error)
 385			return error;
 386	}
 387
 388	/*
 389	 * If we're writing the file then make sure to clear the setuid and
 390	 * setgid bits if the process is not being run by root.  This keeps
 391	 * people from modifying setuid and setgid binaries.
 392	 */
 393	if (!IS_NOSEC(inode))
 394		return file_remove_privs(file);
 395	return 0;
 396}
 397
 398static int
 399xfs_dio_write_end_io(
 400	struct kiocb		*iocb,
 401	ssize_t			size,
 
 402	unsigned		flags)
 403{
 404	struct inode		*inode = file_inode(iocb->ki_filp);
 405	struct xfs_inode	*ip = XFS_I(inode);
 406	loff_t			offset = iocb->ki_pos;
 407	int			error = 0;
 408
 409	trace_xfs_end_io_direct_write(ip, offset, size);
 410
 411	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 412		return -EIO;
 413
 414	if (size <= 0)
 415		return size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416
 417	if (flags & IOMAP_DIO_COW) {
 418		error = xfs_reflink_end_cow(ip, offset, size);
 419		if (error)
 420			return error;
 421	}
 422
 423	/*
 424	 * Unwritten conversion updates the in-core isize after extent
 425	 * conversion but before updating the on-disk size. Updating isize any
 426	 * earlier allows a racing dio read to find unwritten extents before
 427	 * they are converted.
 428	 */
 429	if (flags & IOMAP_DIO_UNWRITTEN)
 430		return xfs_iomap_write_unwritten(ip, offset, size, true);
 
 
 431
 432	/*
 433	 * We need to update the in-core inode size here so that we don't end up
 434	 * with the on-disk inode size being outside the in-core inode size. We
 435	 * have no other method of updating EOF for AIO, so always do it here
 436	 * if necessary.
 437	 *
 438	 * We need to lock the test/set EOF update as we can be racing with
 439	 * other IO completions here to update the EOF. Failing to serialise
 440	 * here can result in EOF moving backwards and Bad Things Happen when
 441	 * that occurs.
 
 
 
 
 
 
 
 442	 */
 
 
 
 443	spin_lock(&ip->i_flags_lock);
 444	if (offset + size > i_size_read(inode)) {
 445		i_size_write(inode, offset + size);
 446		spin_unlock(&ip->i_flags_lock);
 447		error = xfs_setfilesize(ip, offset, size);
 448	} else {
 449		spin_unlock(&ip->i_flags_lock);
 450	}
 451
 
 
 452	return error;
 453}
 454
 
 
 
 
 455/*
 456 * xfs_file_dio_aio_write - handle direct IO writes
 457 *
 458 * Lock the inode appropriately to prepare for and issue a direct IO write.
 459 * By separating it from the buffered write path we remove all the tricky to
 460 * follow locking changes and looping.
 461 *
 462 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 463 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 464 * pages are flushed out.
 465 *
 466 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 467 * allowing them to be done in parallel with reads and other direct IO writes.
 468 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 469 * needs to do sub-block zeroing and that requires serialisation against other
 470 * direct IOs to the same block. In this case we need to serialise the
 471 * submission of the unaligned IOs so that we don't get racing block zeroing in
 472 * the dio layer.  To avoid the problem with aio, we also need to wait for
 473 * outstanding IOs to complete so that unwritten extent conversion is completed
 474 * before we try to map the overlapping block. This is currently implemented by
 475 * hitting it with a big hammer (i.e. inode_dio_wait()).
 476 *
 477 * Returns with locks held indicated by @iolock and errors indicated by
 478 * negative return values.
 479 */
 480STATIC ssize_t
 481xfs_file_dio_aio_write(
 
 482	struct kiocb		*iocb,
 483	struct iov_iter		*from)
 484{
 485	struct file		*file = iocb->ki_filp;
 486	struct address_space	*mapping = file->f_mapping;
 487	struct inode		*inode = mapping->host;
 488	struct xfs_inode	*ip = XFS_I(inode);
 489	struct xfs_mount	*mp = ip->i_mount;
 490	ssize_t			ret = 0;
 491	int			unaligned_io = 0;
 492	int			iolock;
 493	size_t			count = iov_iter_count(from);
 494	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 495					mp->m_rtdev_targp : mp->m_ddev_targp;
 496
 497	/* DIO must be aligned to device logical sector size */
 498	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 499		return -EINVAL;
 
 
 
 500
 501	/*
 502	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 503	 * the file system block size.  We don't need to consider the EOF
 504	 * extension case here because xfs_file_aio_write_checks() will relock
 505	 * the inode as necessary for EOF zeroing cases and fill out the new
 506	 * inode size as appropriate.
 507	 */
 508	if ((iocb->ki_pos & mp->m_blockmask) ||
 509	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 510		unaligned_io = 1;
 511
 512		/*
 513		 * We can't properly handle unaligned direct I/O to reflink
 514		 * files yet, as we can't unshare a partial block.
 515		 */
 516		if (xfs_is_reflink_inode(ip)) {
 517			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 518			return -EREMCHG;
 519		}
 520		iolock = XFS_IOLOCK_EXCL;
 521	} else {
 522		iolock = XFS_IOLOCK_SHARED;
 523	}
 
 
 
 
 
 
 
 
 524
 525	if (iocb->ki_flags & IOCB_NOWAIT) {
 526		if (!xfs_ilock_nowait(ip, iolock))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527			return -EAGAIN;
 528	} else {
 529		xfs_ilock(ip, iolock);
 
 530	}
 531
 532	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 533	if (ret)
 534		goto out;
 535	count = iov_iter_count(from);
 536
 537	/*
 538	 * If we are doing unaligned IO, wait for all other IO to drain,
 539	 * otherwise demote the lock if we had to take the exclusive lock
 540	 * for other reasons in xfs_file_aio_write_checks.
 541	 */
 542	if (unaligned_io) {
 543		/* If we are going to wait for other DIO to finish, bail */
 544		if (iocb->ki_flags & IOCB_NOWAIT) {
 545			if (atomic_read(&inode->i_dio_count))
 546				return -EAGAIN;
 547		} else {
 548			inode_dio_wait(inode);
 549		}
 550	} else if (iolock == XFS_IOLOCK_EXCL) {
 551		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 552		iolock = XFS_IOLOCK_SHARED;
 553	}
 554
 555	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 556	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 557out:
 558	xfs_iunlock(ip, iolock);
 559
 560	/*
 561	 * No fallback to buffered IO on errors for XFS, direct IO will either
 562	 * complete fully or fail.
 
 
 563	 */
 564	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565	return ret;
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568static noinline ssize_t
 569xfs_file_dax_write(
 570	struct kiocb		*iocb,
 571	struct iov_iter		*from)
 572{
 573	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 574	struct xfs_inode	*ip = XFS_I(inode);
 575	int			iolock = XFS_IOLOCK_EXCL;
 576	ssize_t			ret, error = 0;
 577	size_t			count;
 578	loff_t			pos;
 579
 580	if (iocb->ki_flags & IOCB_NOWAIT) {
 581		if (!xfs_ilock_nowait(ip, iolock))
 582			return -EAGAIN;
 583	} else {
 584		xfs_ilock(ip, iolock);
 585	}
 586
 587	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 588	if (ret)
 589		goto out;
 590
 591	pos = iocb->ki_pos;
 592	count = iov_iter_count(from);
 593
 594	trace_xfs_file_dax_write(ip, count, pos);
 595	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 596	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 597		i_size_write(inode, iocb->ki_pos);
 598		error = xfs_setfilesize(ip, pos, ret);
 599	}
 600out:
 601	xfs_iunlock(ip, iolock);
 602	return error ? error : ret;
 
 
 
 
 
 
 
 
 
 
 603}
 604
 605STATIC ssize_t
 606xfs_file_buffered_aio_write(
 607	struct kiocb		*iocb,
 608	struct iov_iter		*from)
 609{
 610	struct file		*file = iocb->ki_filp;
 611	struct address_space	*mapping = file->f_mapping;
 612	struct inode		*inode = mapping->host;
 613	struct xfs_inode	*ip = XFS_I(inode);
 614	ssize_t			ret;
 615	int			enospc = 0;
 616	int			iolock;
 617
 618	if (iocb->ki_flags & IOCB_NOWAIT)
 619		return -EOPNOTSUPP;
 620
 621write_retry:
 622	iolock = XFS_IOLOCK_EXCL;
 623	xfs_ilock(ip, iolock);
 
 
 624
 625	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 626	if (ret)
 627		goto out;
 628
 629	/* We can write back this queue in page reclaim */
 630	current->backing_dev_info = inode_to_bdi(inode);
 631
 632	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 633	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 
 634	if (likely(ret >= 0))
 635		iocb->ki_pos += ret;
 636
 637	/*
 638	 * If we hit a space limit, try to free up some lingering preallocated
 639	 * space before returning an error. In the case of ENOSPC, first try to
 640	 * write back all dirty inodes to free up some of the excess reserved
 641	 * metadata space. This reduces the chances that the eofblocks scan
 642	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 643	 * also behaves as a filter to prevent too many eofblocks scans from
 644	 * running at the same time.
 
 645	 */
 646	if (ret == -EDQUOT && !enospc) {
 647		xfs_iunlock(ip, iolock);
 648		enospc = xfs_inode_free_quota_eofblocks(ip);
 649		if (enospc)
 650			goto write_retry;
 651		enospc = xfs_inode_free_quota_cowblocks(ip);
 652		if (enospc)
 653			goto write_retry;
 654		iolock = 0;
 655	} else if (ret == -ENOSPC && !enospc) {
 656		struct xfs_eofblocks eofb = {0};
 657
 658		enospc = 1;
 659		xfs_flush_inodes(ip->i_mount);
 660
 661		xfs_iunlock(ip, iolock);
 662		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 663		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 664		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 665		goto write_retry;
 666	}
 667
 668	current->backing_dev_info = NULL;
 669out:
 670	if (iolock)
 671		xfs_iunlock(ip, iolock);
 
 
 
 
 
 
 672	return ret;
 673}
 674
 675STATIC ssize_t
 676xfs_file_write_iter(
 677	struct kiocb		*iocb,
 678	struct iov_iter		*from)
 679{
 680	struct file		*file = iocb->ki_filp;
 681	struct address_space	*mapping = file->f_mapping;
 682	struct inode		*inode = mapping->host;
 683	struct xfs_inode	*ip = XFS_I(inode);
 684	ssize_t			ret;
 685	size_t			ocount = iov_iter_count(from);
 686
 687	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 688
 689	if (ocount == 0)
 690		return 0;
 691
 692	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 693		return -EIO;
 694
 695	if (IS_DAX(inode))
 696		ret = xfs_file_dax_write(iocb, from);
 697	else if (iocb->ki_flags & IOCB_DIRECT) {
 
 698		/*
 699		 * Allow a directio write to fall back to a buffered
 700		 * write *only* in the case that we're doing a reflink
 701		 * CoW.  In all other directio scenarios we do not
 702		 * allow an operation to fall back to buffered mode.
 703		 */
 704		ret = xfs_file_dio_aio_write(iocb, from);
 705		if (ret == -EREMCHG)
 706			goto buffered;
 707	} else {
 708buffered:
 709		ret = xfs_file_buffered_aio_write(iocb, from);
 710	}
 711
 712	if (ret > 0) {
 713		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 714
 715		/* Handle various SYNC-type writes */
 716		ret = generic_write_sync(iocb, ret);
 717	}
 718	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721#define	XFS_FALLOC_FL_SUPPORTED						\
 722		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 723		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 724		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 725
 726STATIC long
 727xfs_file_fallocate(
 728	struct file		*file,
 729	int			mode,
 730	loff_t			offset,
 731	loff_t			len)
 732{
 733	struct inode		*inode = file_inode(file);
 734	struct xfs_inode	*ip = XFS_I(inode);
 735	long			error;
 736	enum xfs_prealloc_flags	flags = 0;
 737	uint			iolock = XFS_IOLOCK_EXCL;
 738	loff_t			new_size = 0;
 739	bool			do_file_insert = false;
 740
 741	if (!S_ISREG(inode->i_mode))
 742		return -EINVAL;
 743	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 744		return -EOPNOTSUPP;
 745
 746	xfs_ilock(ip, iolock);
 747	error = xfs_break_layouts(inode, &iolock);
 748	if (error)
 749		goto out_unlock;
 750
 751	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 752	iolock |= XFS_MMAPLOCK_EXCL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	if (mode & FALLOC_FL_PUNCH_HOLE) {
 755		error = xfs_free_file_space(ip, offset, len);
 756		if (error)
 757			goto out_unlock;
 758	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 759		unsigned int blksize_mask = i_blocksize(inode) - 1;
 760
 761		if (offset & blksize_mask || len & blksize_mask) {
 762			error = -EINVAL;
 763			goto out_unlock;
 764		}
 765
 766		/*
 767		 * There is no need to overlap collapse range with EOF,
 768		 * in which case it is effectively a truncate operation
 769		 */
 770		if (offset + len >= i_size_read(inode)) {
 771			error = -EINVAL;
 772			goto out_unlock;
 773		}
 774
 775		new_size = i_size_read(inode) - len;
 776
 777		error = xfs_collapse_file_space(ip, offset, len);
 778		if (error)
 779			goto out_unlock;
 780	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 781		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 782		loff_t		isize = i_size_read(inode);
 783
 784		if (offset & blksize_mask || len & blksize_mask) {
 785			error = -EINVAL;
 786			goto out_unlock;
 787		}
 788
 789		/*
 790		 * New inode size must not exceed ->s_maxbytes, accounting for
 791		 * possible signed overflow.
 792		 */
 793		if (inode->i_sb->s_maxbytes - isize < len) {
 794			error = -EFBIG;
 795			goto out_unlock;
 796		}
 797		new_size = isize + len;
 798
 799		/* Offset should be less than i_size */
 800		if (offset >= isize) {
 801			error = -EINVAL;
 802			goto out_unlock;
 803		}
 804		do_file_insert = true;
 805	} else {
 806		flags |= XFS_PREALLOC_SET;
 807
 808		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 809		    offset + len > i_size_read(inode)) {
 810			new_size = offset + len;
 811			error = inode_newsize_ok(inode, new_size);
 812			if (error)
 813				goto out_unlock;
 814		}
 815
 816		if (mode & FALLOC_FL_ZERO_RANGE)
 817			error = xfs_zero_file_space(ip, offset, len);
 818		else {
 819			if (mode & FALLOC_FL_UNSHARE_RANGE) {
 820				error = xfs_reflink_unshare(ip, offset, len);
 821				if (error)
 822					goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823			}
 824			error = xfs_alloc_file_space(ip, offset, len,
 825						     XFS_BMAPI_PREALLOC);
 826		}
 827		if (error)
 828			goto out_unlock;
 829	}
 830
 831	if (file->f_flags & O_DSYNC)
 832		flags |= XFS_PREALLOC_SYNC;
 833
 834	error = xfs_update_prealloc_flags(ip, flags);
 835	if (error)
 836		goto out_unlock;
 
 
 
 837
 838	/* Change file size if needed */
 839	if (new_size) {
 840		struct iattr iattr;
 841
 842		iattr.ia_valid = ATTR_SIZE;
 843		iattr.ia_size = new_size;
 844		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 
 845		if (error)
 846			goto out_unlock;
 847	}
 848
 849	/*
 850	 * Perform hole insertion now that the file size has been
 851	 * updated so that if we crash during the operation we don't
 852	 * leave shifted extents past EOF and hence losing access to
 853	 * the data that is contained within them.
 854	 */
 855	if (do_file_insert)
 856		error = xfs_insert_file_space(ip, offset, len);
 
 
 
 
 
 
 857
 858out_unlock:
 859	xfs_iunlock(ip, iolock);
 860	return error;
 861}
 862
 863STATIC int
 864xfs_file_clone_range(
 865	struct file	*file_in,
 866	loff_t		pos_in,
 867	struct file	*file_out,
 868	loff_t		pos_out,
 869	u64		len)
 870{
 871	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
 872				     len, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 873}
 874
 875STATIC ssize_t
 876xfs_file_dedupe_range(
 877	struct file	*src_file,
 878	u64		loff,
 879	u64		len,
 880	struct file	*dst_file,
 881	u64		dst_loff)
 882{
 883	struct inode	*srci = file_inode(src_file);
 884	u64		max_dedupe;
 885	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	/*
 888	 * Since we have to read all these pages in to compare them, cut
 889	 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
 890	 * That means we won't do more than MAX_RW_COUNT IO per request.
 891	 */
 892	max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
 893	if (len > max_dedupe)
 894		len = max_dedupe;
 895	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
 896				     len, true);
 897	if (error)
 898		return error;
 899	return len;
 
 
 
 
 
 
 
 
 
 
 
 900}
 901
 902STATIC int
 903xfs_file_open(
 904	struct inode	*inode,
 905	struct file	*file)
 906{
 907	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 908		return -EFBIG;
 909	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 910		return -EIO;
 911	file->f_mode |= FMODE_NOWAIT;
 912	return 0;
 913}
 914
 915STATIC int
 916xfs_dir_open(
 917	struct inode	*inode,
 918	struct file	*file)
 919{
 920	struct xfs_inode *ip = XFS_I(inode);
 921	int		mode;
 922	int		error;
 923
 924	error = xfs_file_open(inode, file);
 925	if (error)
 926		return error;
 927
 928	/*
 929	 * If there are any blocks, read-ahead block 0 as we're almost
 930	 * certain to have the next operation be a read there.
 931	 */
 932	mode = xfs_ilock_data_map_shared(ip);
 933	if (ip->i_d.di_nextents > 0)
 934		error = xfs_dir3_data_readahead(ip, 0, -1);
 935	xfs_iunlock(ip, mode);
 936	return error;
 937}
 938
 939STATIC int
 940xfs_file_release(
 941	struct inode	*inode,
 942	struct file	*filp)
 943{
 944	return xfs_release(XFS_I(inode));
 945}
 946
 947STATIC int
 948xfs_file_readdir(
 949	struct file	*file,
 950	struct dir_context *ctx)
 951{
 952	struct inode	*inode = file_inode(file);
 953	xfs_inode_t	*ip = XFS_I(inode);
 954	size_t		bufsize;
 955
 956	/*
 957	 * The Linux API doesn't pass down the total size of the buffer
 958	 * we read into down to the filesystem.  With the filldir concept
 959	 * it's not needed for correct information, but the XFS dir2 leaf
 960	 * code wants an estimate of the buffer size to calculate it's
 961	 * readahead window and size the buffers used for mapping to
 962	 * physical blocks.
 963	 *
 964	 * Try to give it an estimate that's good enough, maybe at some
 965	 * point we can change the ->readdir prototype to include the
 966	 * buffer size.  For now we use the current glibc buffer size.
 967	 */
 968	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
 969
 970	return xfs_readdir(NULL, ip, ctx, bufsize);
 971}
 972
 973STATIC loff_t
 974xfs_file_llseek(
 975	struct file	*file,
 976	loff_t		offset,
 977	int		whence)
 978{
 979	struct inode		*inode = file->f_mapping->host;
 980
 981	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
 982		return -EIO;
 983
 984	switch (whence) {
 985	default:
 986		return generic_file_llseek(file, offset, whence);
 987	case SEEK_HOLE:
 988		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
 989		break;
 990	case SEEK_DATA:
 991		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
 992		break;
 993	}
 994
 995	if (offset < 0)
 996		return offset;
 997	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 998}
 999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000/*
1001 * Locking for serialisation of IO during page faults. This results in a lock
1002 * ordering of:
1003 *
1004 * mmap_sem (MM)
1005 *   sb_start_pagefault(vfs, freeze)
1006 *     i_mmaplock (XFS - truncate serialisation)
1007 *       page_lock (MM)
1008 *         i_lock (XFS - extent map serialisation)
1009 */
1010static int
1011__xfs_filemap_fault(
1012	struct vm_fault		*vmf,
1013	enum page_entry_size	pe_size,
1014	bool			write_fault)
1015{
1016	struct inode		*inode = file_inode(vmf->vma->vm_file);
1017	struct xfs_inode	*ip = XFS_I(inode);
1018	int			ret;
1019
1020	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1021
1022	if (write_fault) {
1023		sb_start_pagefault(inode->i_sb);
1024		file_update_time(vmf->vma->vm_file);
1025	}
1026
1027	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1028	if (IS_DAX(inode)) {
1029		pfn_t pfn;
1030
1031		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
 
1032		if (ret & VM_FAULT_NEEDDSYNC)
1033			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
 
1034	} else {
1035		if (write_fault)
1036			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1037		else
 
 
 
1038			ret = filemap_fault(vmf);
 
1039	}
1040	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1041
1042	if (write_fault)
1043		sb_end_pagefault(inode->i_sb);
1044	return ret;
1045}
1046
1047static int
 
 
 
 
 
 
 
 
1048xfs_filemap_fault(
1049	struct vm_fault		*vmf)
1050{
1051	/* DAX can shortcut the normal fault path on write faults! */
1052	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1053			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1054			(vmf->flags & FAULT_FLAG_WRITE));
1055}
1056
1057static int
1058xfs_filemap_huge_fault(
1059	struct vm_fault		*vmf,
1060	enum page_entry_size	pe_size)
1061{
1062	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1063		return VM_FAULT_FALLBACK;
1064
1065	/* DAX can shortcut the normal fault path on write faults! */
1066	return __xfs_filemap_fault(vmf, pe_size,
1067			(vmf->flags & FAULT_FLAG_WRITE));
1068}
1069
1070static int
1071xfs_filemap_page_mkwrite(
1072	struct vm_fault		*vmf)
1073{
1074	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1075}
1076
1077/*
1078 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1079 * on write faults. In reality, it needs to serialise against truncate and
1080 * prepare memory for writing so handle is as standard write fault.
1081 */
1082static int
1083xfs_filemap_pfn_mkwrite(
1084	struct vm_fault		*vmf)
1085{
1086
1087	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1088}
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090static const struct vm_operations_struct xfs_file_vm_ops = {
1091	.fault		= xfs_filemap_fault,
1092	.huge_fault	= xfs_filemap_huge_fault,
1093	.map_pages	= filemap_map_pages,
1094	.page_mkwrite	= xfs_filemap_page_mkwrite,
1095	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1096};
1097
1098STATIC int
1099xfs_file_mmap(
1100	struct file	*filp,
1101	struct vm_area_struct *vma)
1102{
 
 
 
1103	/*
1104	 * We don't support synchronous mappings for non-DAX files. At least
1105	 * until someone comes with a sensible use case.
1106	 */
1107	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1108		return -EOPNOTSUPP;
1109
1110	file_accessed(filp);
1111	vma->vm_ops = &xfs_file_vm_ops;
1112	if (IS_DAX(file_inode(filp)))
1113		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1114	return 0;
1115}
1116
1117const struct file_operations xfs_file_operations = {
1118	.llseek		= xfs_file_llseek,
1119	.read_iter	= xfs_file_read_iter,
1120	.write_iter	= xfs_file_write_iter,
1121	.splice_read	= generic_file_splice_read,
1122	.splice_write	= iter_file_splice_write,
 
1123	.unlocked_ioctl	= xfs_file_ioctl,
1124#ifdef CONFIG_COMPAT
1125	.compat_ioctl	= xfs_file_compat_ioctl,
1126#endif
1127	.mmap		= xfs_file_mmap,
1128	.mmap_supported_flags = MAP_SYNC,
1129	.open		= xfs_file_open,
1130	.release	= xfs_file_release,
1131	.fsync		= xfs_file_fsync,
1132	.get_unmapped_area = thp_get_unmapped_area,
1133	.fallocate	= xfs_file_fallocate,
1134	.clone_file_range = xfs_file_clone_range,
1135	.dedupe_file_range = xfs_file_dedupe_range,
1136};
1137
1138const struct file_operations xfs_dir_file_operations = {
1139	.open		= xfs_dir_open,
1140	.read		= generic_read_dir,
1141	.iterate_shared	= xfs_file_readdir,
1142	.llseek		= generic_file_llseek,
1143	.unlocked_ioctl	= xfs_file_ioctl,
1144#ifdef CONFIG_COMPAT
1145	.compat_ioctl	= xfs_file_compat_ioctl,
1146#endif
1147	.fsync		= xfs_dir_fsync,
1148};
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
 
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
  28#include <linux/dax.h>
  29#include <linux/falloc.h>
 
  30#include <linux/backing-dev.h>
  31#include <linux/mman.h>
  32#include <linux/fadvise.h>
  33#include <linux/mount.h>
  34
  35static const struct vm_operations_struct xfs_file_vm_ops;
  36
  37/*
  38 * Decide if the given file range is aligned to the size of the fundamental
  39 * allocation unit for the file.
  40 */
  41static bool
  42xfs_is_falloc_aligned(
  43	struct xfs_inode	*ip,
  44	loff_t			pos,
  45	long long int		len)
  46{
  47	struct xfs_mount	*mp = ip->i_mount;
  48	uint64_t		mask;
 
 
 
 
 
  49
  50	if (XFS_IS_REALTIME_INODE(ip)) {
  51		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  52			u64	rextbytes;
  53			u32	mod;
  54
  55			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  56			div_u64_rem(pos, rextbytes, &mod);
  57			if (mod)
  58				return false;
  59			div_u64_rem(len, rextbytes, &mod);
  60			return mod == 0;
  61		}
  62		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  63	} else {
  64		mask = mp->m_sb.sb_blocksize - 1;
  65	}
  66
  67	return !((pos | len) & mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68}
  69
  70/*
  71 * Fsync operations on directories are much simpler than on regular files,
  72 * as there is no file data to flush, and thus also no need for explicit
  73 * cache flush operations, and there are no non-transaction metadata updates
  74 * on directories either.
  75 */
  76STATIC int
  77xfs_dir_fsync(
  78	struct file		*file,
  79	loff_t			start,
  80	loff_t			end,
  81	int			datasync)
  82{
  83	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
  84
  85	trace_xfs_dir_fsync(ip);
  86	return xfs_log_force_inode(ip);
  87}
  88
  89static xfs_csn_t
  90xfs_fsync_seq(
  91	struct xfs_inode	*ip,
  92	bool			datasync)
  93{
  94	if (!xfs_ipincount(ip))
  95		return 0;
  96	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
  97		return 0;
  98	return ip->i_itemp->ili_commit_seq;
  99}
 100
 101/*
 102 * All metadata updates are logged, which means that we just have to flush the
 103 * log up to the latest LSN that touched the inode.
 104 *
 105 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 106 * the log force before we clear the ili_fsync_fields field. This ensures that
 107 * we don't get a racing sync operation that does not wait for the metadata to
 108 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 109 * then all that will happen is the log force will do nothing as the lsn will
 110 * already be on disk.  We can't race with setting ili_fsync_fields because that
 111 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 112 * shared until after the ili_fsync_fields is cleared.
 113 */
 114static  int
 115xfs_fsync_flush_log(
 116	struct xfs_inode	*ip,
 117	bool			datasync,
 118	int			*log_flushed)
 119{
 120	int			error = 0;
 121	xfs_csn_t		seq;
 122
 123	xfs_ilock(ip, XFS_ILOCK_SHARED);
 124	seq = xfs_fsync_seq(ip, datasync);
 125	if (seq) {
 126		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 127					  log_flushed);
 128
 129		spin_lock(&ip->i_itemp->ili_lock);
 130		ip->i_itemp->ili_fsync_fields = 0;
 131		spin_unlock(&ip->i_itemp->ili_lock);
 132	}
 133	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 134	return error;
 135}
 136
 137STATIC int
 138xfs_file_fsync(
 139	struct file		*file,
 140	loff_t			start,
 141	loff_t			end,
 142	int			datasync)
 143{
 144	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 145	struct xfs_mount	*mp = ip->i_mount;
 146	int			error, err2;
 147	int			log_flushed = 0;
 
 148
 149	trace_xfs_file_fsync(ip);
 150
 151	error = file_write_and_wait_range(file, start, end);
 152	if (error)
 153		return error;
 154
 155	if (xfs_is_shutdown(mp))
 156		return -EIO;
 157
 158	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 159
 160	/*
 161	 * If we have an RT and/or log subvolume we need to make sure to flush
 162	 * the write cache the device used for file data first.  This is to
 163	 * ensure newly written file data make it to disk before logging the new
 164	 * inode size in case of an extending write.
 165	 */
 166	if (XFS_IS_REALTIME_INODE(ip))
 167		error = blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 168	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 169		error = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 170
 171	/*
 172	 * Any inode that has dirty modifications in the log is pinned.  The
 173	 * racy check here for a pinned inode will not catch modifications
 174	 * that happen concurrently to the fsync call, but fsync semantics
 175	 * only require to sync previously completed I/O.
 
 
 
 
 
 
 
 176	 */
 
 177	if (xfs_ipincount(ip)) {
 178		err2 = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 179		if (err2 && !error)
 180			error = err2;
 181	}
 182
 
 
 
 
 
 
 183	/*
 184	 * If we only have a single device, and the log force about was
 185	 * a no-op we might have to flush the data device cache here.
 186	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 187	 * an already allocated file and thus do not have any metadata to
 188	 * commit.
 189	 */
 190	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 191	    mp->m_logdev_targp == mp->m_ddev_targp) {
 192		err2 = blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 193		if (err2 && !error)
 194			error = err2;
 195	}
 196
 197	return error;
 198}
 199
 200static int
 201xfs_ilock_iocb(
 202	struct kiocb		*iocb,
 203	unsigned int		lock_mode)
 204{
 205	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 206
 207	if (iocb->ki_flags & IOCB_NOWAIT) {
 208		if (!xfs_ilock_nowait(ip, lock_mode))
 209			return -EAGAIN;
 210	} else {
 211		xfs_ilock(ip, lock_mode);
 212	}
 213
 214	return 0;
 215}
 216
 217STATIC ssize_t
 218xfs_file_dio_read(
 219	struct kiocb		*iocb,
 220	struct iov_iter		*to)
 221{
 222	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 223	ssize_t			ret;
 224
 225	trace_xfs_file_direct_read(iocb, to);
 226
 227	if (!iov_iter_count(to))
 228		return 0; /* skip atime */
 229
 230	file_accessed(iocb->ki_filp);
 231
 232	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 233	if (ret)
 234		return ret;
 235	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
 236	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 237
 238	return ret;
 239}
 240
 241static noinline ssize_t
 242xfs_file_dax_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 245{
 246	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 
 247	ssize_t			ret = 0;
 248
 249	trace_xfs_file_dax_read(iocb, to);
 250
 251	if (!iov_iter_count(to))
 252		return 0; /* skip atime */
 253
 254	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 255	if (ret)
 256		return ret;
 257	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 
 
 
 
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 259
 260	file_accessed(iocb->ki_filp);
 261	return ret;
 262}
 263
 264STATIC ssize_t
 265xfs_file_buffered_read(
 266	struct kiocb		*iocb,
 267	struct iov_iter		*to)
 268{
 269	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 270	ssize_t			ret;
 271
 272	trace_xfs_file_buffered_read(iocb, to);
 273
 274	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 275	if (ret)
 276		return ret;
 
 
 
 277	ret = generic_file_read_iter(iocb, to);
 278	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 279
 280	return ret;
 281}
 282
 283STATIC ssize_t
 284xfs_file_read_iter(
 285	struct kiocb		*iocb,
 286	struct iov_iter		*to)
 287{
 288	struct inode		*inode = file_inode(iocb->ki_filp);
 289	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 290	ssize_t			ret = 0;
 291
 292	XFS_STATS_INC(mp, xs_read_calls);
 293
 294	if (xfs_is_shutdown(mp))
 295		return -EIO;
 296
 297	if (IS_DAX(inode))
 298		ret = xfs_file_dax_read(iocb, to);
 299	else if (iocb->ki_flags & IOCB_DIRECT)
 300		ret = xfs_file_dio_read(iocb, to);
 301	else
 302		ret = xfs_file_buffered_read(iocb, to);
 303
 304	if (ret > 0)
 305		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 306	return ret;
 307}
 308
 309/*
 310 * Common pre-write limit and setup checks.
 311 *
 312 * Called with the iolocked held either shared and exclusive according to
 313 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 314 * if called for a direct write beyond i_size.
 315 */
 316STATIC ssize_t
 317xfs_file_write_checks(
 318	struct kiocb		*iocb,
 319	struct iov_iter		*from,
 320	unsigned int		*iolock)
 321{
 322	struct file		*file = iocb->ki_filp;
 323	struct inode		*inode = file->f_mapping->host;
 324	struct xfs_inode	*ip = XFS_I(inode);
 325	ssize_t			error = 0;
 326	size_t			count = iov_iter_count(from);
 327	bool			drained_dio = false;
 328	loff_t			isize;
 329
 330restart:
 331	error = generic_write_checks(iocb, from);
 332	if (error <= 0)
 333		return error;
 334
 335	if (iocb->ki_flags & IOCB_NOWAIT) {
 336		error = break_layout(inode, false);
 337		if (error == -EWOULDBLOCK)
 338			error = -EAGAIN;
 339	} else {
 340		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 341	}
 342
 343	if (error)
 344		return error;
 345
 346	/*
 347	 * For changing security info in file_remove_privs() we need i_rwsem
 348	 * exclusively.
 349	 */
 350	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 351		xfs_iunlock(ip, *iolock);
 352		*iolock = XFS_IOLOCK_EXCL;
 353		error = xfs_ilock_iocb(iocb, *iolock);
 354		if (error) {
 355			*iolock = 0;
 356			return error;
 357		}
 358		goto restart;
 359	}
 360
 361	/*
 362	 * If the offset is beyond the size of the file, we need to zero any
 363	 * blocks that fall between the existing EOF and the start of this
 364	 * write.  If zeroing is needed and we are currently holding the iolock
 365	 * shared, we need to update it to exclusive which implies having to
 366	 * redo all checks before.
 367	 *
 368	 * We need to serialise against EOF updates that occur in IO completions
 369	 * here. We want to make sure that nobody is changing the size while we
 370	 * do this check until we have placed an IO barrier (i.e.  hold the
 371	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 372	 * spinlock effectively forms a memory barrier once we have the
 373	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 374	 * hence be able to correctly determine if we need to run zeroing.
 375	 *
 376	 * We can do an unlocked check here safely as IO completion can only
 377	 * extend EOF. Truncate is locked out at this point, so the EOF can
 378	 * not move backwards, only forwards. Hence we only need to take the
 379	 * slow path and spin locks when we are at or beyond the current EOF.
 380	 */
 381	if (iocb->ki_pos <= i_size_read(inode))
 382		goto out;
 383
 384	spin_lock(&ip->i_flags_lock);
 385	isize = i_size_read(inode);
 386	if (iocb->ki_pos > isize) {
 387		spin_unlock(&ip->i_flags_lock);
 388
 389		if (iocb->ki_flags & IOCB_NOWAIT)
 390			return -EAGAIN;
 391
 392		if (!drained_dio) {
 393			if (*iolock == XFS_IOLOCK_SHARED) {
 394				xfs_iunlock(ip, *iolock);
 395				*iolock = XFS_IOLOCK_EXCL;
 396				xfs_ilock(ip, *iolock);
 397				iov_iter_reexpand(from, count);
 398			}
 399			/*
 400			 * We now have an IO submission barrier in place, but
 401			 * AIO can do EOF updates during IO completion and hence
 402			 * we now need to wait for all of them to drain. Non-AIO
 403			 * DIO will have drained before we are given the
 404			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 405			 * no-op.
 406			 */
 407			inode_dio_wait(inode);
 408			drained_dio = true;
 409			goto restart;
 410		}
 411
 412		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 413		error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
 
 414		if (error)
 415			return error;
 416	} else
 417		spin_unlock(&ip->i_flags_lock);
 418
 419out:
 420	return kiocb_modified(iocb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421}
 422
 423static int
 424xfs_dio_write_end_io(
 425	struct kiocb		*iocb,
 426	ssize_t			size,
 427	int			error,
 428	unsigned		flags)
 429{
 430	struct inode		*inode = file_inode(iocb->ki_filp);
 431	struct xfs_inode	*ip = XFS_I(inode);
 432	loff_t			offset = iocb->ki_pos;
 433	unsigned int		nofs_flag;
 434
 435	trace_xfs_end_io_direct_write(ip, offset, size);
 436
 437	if (xfs_is_shutdown(ip->i_mount))
 438		return -EIO;
 439
 440	if (error)
 441		return error;
 442	if (!size)
 443		return 0;
 444
 445	/*
 446	 * Capture amount written on completion as we can't reliably account
 447	 * for it on submission.
 448	 */
 449	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 450
 451	/*
 452	 * We can allocate memory here while doing writeback on behalf of
 453	 * memory reclaim.  To avoid memory allocation deadlocks set the
 454	 * task-wide nofs context for the following operations.
 455	 */
 456	nofs_flag = memalloc_nofs_save();
 457
 458	if (flags & IOMAP_DIO_COW) {
 459		error = xfs_reflink_end_cow(ip, offset, size);
 460		if (error)
 461			goto out;
 462	}
 463
 464	/*
 465	 * Unwritten conversion updates the in-core isize after extent
 466	 * conversion but before updating the on-disk size. Updating isize any
 467	 * earlier allows a racing dio read to find unwritten extents before
 468	 * they are converted.
 469	 */
 470	if (flags & IOMAP_DIO_UNWRITTEN) {
 471		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 472		goto out;
 473	}
 474
 475	/*
 476	 * We need to update the in-core inode size here so that we don't end up
 477	 * with the on-disk inode size being outside the in-core inode size. We
 478	 * have no other method of updating EOF for AIO, so always do it here
 479	 * if necessary.
 480	 *
 481	 * We need to lock the test/set EOF update as we can be racing with
 482	 * other IO completions here to update the EOF. Failing to serialise
 483	 * here can result in EOF moving backwards and Bad Things Happen when
 484	 * that occurs.
 485	 *
 486	 * As IO completion only ever extends EOF, we can do an unlocked check
 487	 * here to avoid taking the spinlock. If we land within the current EOF,
 488	 * then we do not need to do an extending update at all, and we don't
 489	 * need to take the lock to check this. If we race with an update moving
 490	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 491	 * or we'll be within EOF and we don't need to take it at all.
 492	 */
 493	if (offset + size <= i_size_read(inode))
 494		goto out;
 495
 496	spin_lock(&ip->i_flags_lock);
 497	if (offset + size > i_size_read(inode)) {
 498		i_size_write(inode, offset + size);
 499		spin_unlock(&ip->i_flags_lock);
 500		error = xfs_setfilesize(ip, offset, size);
 501	} else {
 502		spin_unlock(&ip->i_flags_lock);
 503	}
 504
 505out:
 506	memalloc_nofs_restore(nofs_flag);
 507	return error;
 508}
 509
 510static const struct iomap_dio_ops xfs_dio_write_ops = {
 511	.end_io		= xfs_dio_write_end_io,
 512};
 513
 514/*
 515 * Handle block aligned direct I/O writes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516 */
 517static noinline ssize_t
 518xfs_file_dio_write_aligned(
 519	struct xfs_inode	*ip,
 520	struct kiocb		*iocb,
 521	struct iov_iter		*from)
 522{
 523	unsigned int		iolock = XFS_IOLOCK_SHARED;
 524	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 525
 526	ret = xfs_ilock_iocb(iocb, iolock);
 527	if (ret)
 528		return ret;
 529	ret = xfs_file_write_checks(iocb, from, &iolock);
 530	if (ret)
 531		goto out_unlock;
 532
 533	/*
 534	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 535	 * the iolock back to shared if we had to take the exclusive lock in
 536	 * xfs_file_write_checks() for other reasons.
 537	 */
 538	if (iolock == XFS_IOLOCK_EXCL) {
 539		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540		iolock = XFS_IOLOCK_SHARED;
 541	}
 542	trace_xfs_file_direct_write(iocb, from);
 543	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 544			   &xfs_dio_write_ops, 0, NULL, 0);
 545out_unlock:
 546	if (iolock)
 547		xfs_iunlock(ip, iolock);
 548	return ret;
 549}
 550
 551/*
 552 * Handle block unaligned direct I/O writes
 553 *
 554 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 555 * them to be done in parallel with reads and other direct I/O writes.  However,
 556 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 557 * to do sub-block zeroing and that requires serialisation against other direct
 558 * I/O to the same block.  In this case we need to serialise the submission of
 559 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 560 * In the case where sub-block zeroing is not required, we can do concurrent
 561 * sub-block dios to the same block successfully.
 562 *
 563 * Optimistically submit the I/O using the shared lock first, but use the
 564 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 565 * if block allocation or partial block zeroing would be required.  In that case
 566 * we try again with the exclusive lock.
 567 */
 568static noinline ssize_t
 569xfs_file_dio_write_unaligned(
 570	struct xfs_inode	*ip,
 571	struct kiocb		*iocb,
 572	struct iov_iter		*from)
 573{
 574	size_t			isize = i_size_read(VFS_I(ip));
 575	size_t			count = iov_iter_count(from);
 576	unsigned int		iolock = XFS_IOLOCK_SHARED;
 577	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 578	ssize_t			ret;
 579
 580	/*
 581	 * Extending writes need exclusivity because of the sub-block zeroing
 582	 * that the DIO code always does for partial tail blocks beyond EOF, so
 583	 * don't even bother trying the fast path in this case.
 584	 */
 585	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 586		if (iocb->ki_flags & IOCB_NOWAIT)
 587			return -EAGAIN;
 588retry_exclusive:
 589		iolock = XFS_IOLOCK_EXCL;
 590		flags = IOMAP_DIO_FORCE_WAIT;
 591	}
 592
 593	ret = xfs_ilock_iocb(iocb, iolock);
 594	if (ret)
 595		return ret;
 
 596
 597	/*
 598	 * We can't properly handle unaligned direct I/O to reflink files yet,
 599	 * as we can't unshare a partial block.
 600	 */
 601	if (xfs_is_cow_inode(ip)) {
 602		trace_xfs_reflink_bounce_dio_write(iocb, from);
 603		ret = -ENOTBLK;
 604		goto out_unlock;
 
 
 
 
 
 
 
 
 605	}
 606
 607	ret = xfs_file_write_checks(iocb, from, &iolock);
 608	if (ret)
 609		goto out_unlock;
 
 610
 611	/*
 612	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 613	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 614	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 615	 * drain first.
 616	 */
 617	if (flags & IOMAP_DIO_FORCE_WAIT)
 618		inode_dio_wait(VFS_I(ip));
 619
 620	trace_xfs_file_direct_write(iocb, from);
 621	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 622			   &xfs_dio_write_ops, flags, NULL, 0);
 623
 624	/*
 625	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 626	 * layer rejected it for mapping or locking reasons. If we are doing
 627	 * nonblocking user I/O, propagate the error.
 628	 */
 629	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 630		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 631		xfs_iunlock(ip, iolock);
 632		goto retry_exclusive;
 633	}
 634
 635out_unlock:
 636	if (iolock)
 637		xfs_iunlock(ip, iolock);
 638	return ret;
 639}
 640
 641static ssize_t
 642xfs_file_dio_write(
 643	struct kiocb		*iocb,
 644	struct iov_iter		*from)
 645{
 646	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 647	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 648	size_t			count = iov_iter_count(from);
 649
 650	/* direct I/O must be aligned to device logical sector size */
 651	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 652		return -EINVAL;
 653	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 654		return xfs_file_dio_write_unaligned(ip, iocb, from);
 655	return xfs_file_dio_write_aligned(ip, iocb, from);
 656}
 657
 658static noinline ssize_t
 659xfs_file_dax_write(
 660	struct kiocb		*iocb,
 661	struct iov_iter		*from)
 662{
 663	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 664	struct xfs_inode	*ip = XFS_I(inode);
 665	unsigned int		iolock = XFS_IOLOCK_EXCL;
 666	ssize_t			ret, error = 0;
 
 667	loff_t			pos;
 668
 669	ret = xfs_ilock_iocb(iocb, iolock);
 670	if (ret)
 671		return ret;
 672	ret = xfs_file_write_checks(iocb, from, &iolock);
 
 
 
 
 673	if (ret)
 674		goto out;
 675
 676	pos = iocb->ki_pos;
 
 677
 678	trace_xfs_file_dax_write(iocb, from);
 679	ret = dax_iomap_rw(iocb, from, &xfs_dax_write_iomap_ops);
 680	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 681		i_size_write(inode, iocb->ki_pos);
 682		error = xfs_setfilesize(ip, pos, ret);
 683	}
 684out:
 685	if (iolock)
 686		xfs_iunlock(ip, iolock);
 687	if (error)
 688		return error;
 689
 690	if (ret > 0) {
 691		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 692
 693		/* Handle various SYNC-type writes */
 694		ret = generic_write_sync(iocb, ret);
 695	}
 696	return ret;
 697}
 698
 699STATIC ssize_t
 700xfs_file_buffered_write(
 701	struct kiocb		*iocb,
 702	struct iov_iter		*from)
 703{
 704	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 705	struct xfs_inode	*ip = XFS_I(inode);
 706	ssize_t			ret;
 707	bool			cleared_space = false;
 708	unsigned int		iolock;
 
 
 
 709
 710write_retry:
 711	iolock = XFS_IOLOCK_EXCL;
 712	ret = xfs_ilock_iocb(iocb, iolock);
 713	if (ret)
 714		return ret;
 715
 716	ret = xfs_file_write_checks(iocb, from, &iolock);
 717	if (ret)
 718		goto out;
 719
 720	/* We can write back this queue in page reclaim */
 721	current->backing_dev_info = inode_to_bdi(inode);
 722
 723	trace_xfs_file_buffered_write(iocb, from);
 724	ret = iomap_file_buffered_write(iocb, from,
 725			&xfs_buffered_write_iomap_ops);
 726	if (likely(ret >= 0))
 727		iocb->ki_pos += ret;
 728
 729	/*
 730	 * If we hit a space limit, try to free up some lingering preallocated
 731	 * space before returning an error. In the case of ENOSPC, first try to
 732	 * write back all dirty inodes to free up some of the excess reserved
 733	 * metadata space. This reduces the chances that the eofblocks scan
 734	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 735	 * also behaves as a filter to prevent too many eofblocks scans from
 736	 * running at the same time.  Use a synchronous scan to increase the
 737	 * effectiveness of the scan.
 738	 */
 739	if (ret == -EDQUOT && !cleared_space) {
 740		xfs_iunlock(ip, iolock);
 741		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 742		cleared_space = true;
 743		goto write_retry;
 744	} else if (ret == -ENOSPC && !cleared_space) {
 745		struct xfs_icwalk	icw = {0};
 
 
 
 
 746
 747		cleared_space = true;
 748		xfs_flush_inodes(ip->i_mount);
 749
 750		xfs_iunlock(ip, iolock);
 751		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 752		xfs_blockgc_free_space(ip->i_mount, &icw);
 
 753		goto write_retry;
 754	}
 755
 756	current->backing_dev_info = NULL;
 757out:
 758	if (iolock)
 759		xfs_iunlock(ip, iolock);
 760
 761	if (ret > 0) {
 762		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 763		/* Handle various SYNC-type writes */
 764		ret = generic_write_sync(iocb, ret);
 765	}
 766	return ret;
 767}
 768
 769STATIC ssize_t
 770xfs_file_write_iter(
 771	struct kiocb		*iocb,
 772	struct iov_iter		*from)
 773{
 774	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 
 
 775	struct xfs_inode	*ip = XFS_I(inode);
 776	ssize_t			ret;
 777	size_t			ocount = iov_iter_count(from);
 778
 779	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 780
 781	if (ocount == 0)
 782		return 0;
 783
 784	if (xfs_is_shutdown(ip->i_mount))
 785		return -EIO;
 786
 787	if (IS_DAX(inode))
 788		return xfs_file_dax_write(iocb, from);
 789
 790	if (iocb->ki_flags & IOCB_DIRECT) {
 791		/*
 792		 * Allow a directio write to fall back to a buffered
 793		 * write *only* in the case that we're doing a reflink
 794		 * CoW.  In all other directio scenarios we do not
 795		 * allow an operation to fall back to buffered mode.
 796		 */
 797		ret = xfs_file_dio_write(iocb, from);
 798		if (ret != -ENOTBLK)
 799			return ret;
 
 
 
 800	}
 801
 802	return xfs_file_buffered_write(iocb, from);
 803}
 804
 805static void
 806xfs_wait_dax_page(
 807	struct inode		*inode)
 808{
 809	struct xfs_inode        *ip = XFS_I(inode);
 810
 811	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 812	schedule();
 813	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 814}
 815
 816int
 817xfs_break_dax_layouts(
 818	struct inode		*inode,
 819	bool			*retry)
 820{
 821	struct page		*page;
 822
 823	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 824
 825	page = dax_layout_busy_page(inode->i_mapping);
 826	if (!page)
 827		return 0;
 828
 829	*retry = true;
 830	return ___wait_var_event(&page->_refcount,
 831			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 832			0, 0, xfs_wait_dax_page(inode));
 833}
 834
 835int
 836xfs_break_layouts(
 837	struct inode		*inode,
 838	uint			*iolock,
 839	enum layout_break_reason reason)
 840{
 841	bool			retry;
 842	int			error;
 843
 844	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 845
 846	do {
 847		retry = false;
 848		switch (reason) {
 849		case BREAK_UNMAP:
 850			error = xfs_break_dax_layouts(inode, &retry);
 851			if (error || retry)
 852				break;
 853			fallthrough;
 854		case BREAK_WRITE:
 855			error = xfs_break_leased_layouts(inode, iolock, &retry);
 856			break;
 857		default:
 858			WARN_ON_ONCE(1);
 859			error = -EINVAL;
 860		}
 861	} while (error == 0 && retry);
 862
 863	return error;
 864}
 865
 866/* Does this file, inode, or mount want synchronous writes? */
 867static inline bool xfs_file_sync_writes(struct file *filp)
 868{
 869	struct xfs_inode	*ip = XFS_I(file_inode(filp));
 870
 871	if (xfs_has_wsync(ip->i_mount))
 872		return true;
 873	if (filp->f_flags & (__O_SYNC | O_DSYNC))
 874		return true;
 875	if (IS_SYNC(file_inode(filp)))
 876		return true;
 877
 878	return false;
 879}
 880
 881#define	XFS_FALLOC_FL_SUPPORTED						\
 882		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 883		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 884		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 885
 886STATIC long
 887xfs_file_fallocate(
 888	struct file		*file,
 889	int			mode,
 890	loff_t			offset,
 891	loff_t			len)
 892{
 893	struct inode		*inode = file_inode(file);
 894	struct xfs_inode	*ip = XFS_I(inode);
 895	long			error;
 896	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 
 897	loff_t			new_size = 0;
 898	bool			do_file_insert = false;
 899
 900	if (!S_ISREG(inode->i_mode))
 901		return -EINVAL;
 902	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 903		return -EOPNOTSUPP;
 904
 905	xfs_ilock(ip, iolock);
 906	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 907	if (error)
 908		goto out_unlock;
 909
 910	/*
 911	 * Must wait for all AIO to complete before we continue as AIO can
 912	 * change the file size on completion without holding any locks we
 913	 * currently hold. We must do this first because AIO can update both
 914	 * the on disk and in memory inode sizes, and the operations that follow
 915	 * require the in-memory size to be fully up-to-date.
 916	 */
 917	inode_dio_wait(inode);
 918
 919	/*
 920	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 921	 * the cached range over the first operation we are about to run.
 922	 *
 923	 * We care about zero and collapse here because they both run a hole
 924	 * punch over the range first. Because that can zero data, and the range
 925	 * of invalidation for the shift operations is much larger, we still do
 926	 * the required flush for collapse in xfs_prepare_shift().
 927	 *
 928	 * Insert has the same range requirements as collapse, and we extend the
 929	 * file first which can zero data. Hence insert has the same
 930	 * flush/invalidate requirements as collapse and so they are both
 931	 * handled at the right time by xfs_prepare_shift().
 932	 */
 933	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 934		    FALLOC_FL_COLLAPSE_RANGE)) {
 935		error = xfs_flush_unmap_range(ip, offset, len);
 936		if (error)
 937			goto out_unlock;
 938	}
 939
 940	error = file_modified(file);
 941	if (error)
 942		goto out_unlock;
 943
 944	if (mode & FALLOC_FL_PUNCH_HOLE) {
 945		error = xfs_free_file_space(ip, offset, len);
 946		if (error)
 947			goto out_unlock;
 948	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 949		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 
 
 950			error = -EINVAL;
 951			goto out_unlock;
 952		}
 953
 954		/*
 955		 * There is no need to overlap collapse range with EOF,
 956		 * in which case it is effectively a truncate operation
 957		 */
 958		if (offset + len >= i_size_read(inode)) {
 959			error = -EINVAL;
 960			goto out_unlock;
 961		}
 962
 963		new_size = i_size_read(inode) - len;
 964
 965		error = xfs_collapse_file_space(ip, offset, len);
 966		if (error)
 967			goto out_unlock;
 968	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 
 969		loff_t		isize = i_size_read(inode);
 970
 971		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 972			error = -EINVAL;
 973			goto out_unlock;
 974		}
 975
 976		/*
 977		 * New inode size must not exceed ->s_maxbytes, accounting for
 978		 * possible signed overflow.
 979		 */
 980		if (inode->i_sb->s_maxbytes - isize < len) {
 981			error = -EFBIG;
 982			goto out_unlock;
 983		}
 984		new_size = isize + len;
 985
 986		/* Offset should be less than i_size */
 987		if (offset >= isize) {
 988			error = -EINVAL;
 989			goto out_unlock;
 990		}
 991		do_file_insert = true;
 992	} else {
 
 
 993		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 994		    offset + len > i_size_read(inode)) {
 995			new_size = offset + len;
 996			error = inode_newsize_ok(inode, new_size);
 997			if (error)
 998				goto out_unlock;
 999		}
1000
1001		if (mode & FALLOC_FL_ZERO_RANGE) {
1002			/*
1003			 * Punch a hole and prealloc the range.  We use a hole
1004			 * punch rather than unwritten extent conversion for two
1005			 * reasons:
1006			 *
1007			 *   1.) Hole punch handles partial block zeroing for us.
1008			 *   2.) If prealloc returns ENOSPC, the file range is
1009			 *       still zero-valued by virtue of the hole punch.
1010			 */
1011			unsigned int blksize = i_blocksize(inode);
1012
1013			trace_xfs_zero_file_space(ip);
1014
1015			error = xfs_free_file_space(ip, offset, len);
1016			if (error)
1017				goto out_unlock;
1018
1019			len = round_up(offset + len, blksize) -
1020			      round_down(offset, blksize);
1021			offset = round_down(offset, blksize);
1022		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1023			error = xfs_reflink_unshare(ip, offset, len);
1024			if (error)
1025				goto out_unlock;
1026		} else {
1027			/*
1028			 * If always_cow mode we can't use preallocations and
1029			 * thus should not create them.
1030			 */
1031			if (xfs_is_always_cow_inode(ip)) {
1032				error = -EOPNOTSUPP;
1033				goto out_unlock;
1034			}
 
 
1035		}
 
 
 
 
 
 
1036
1037		if (!xfs_is_always_cow_inode(ip)) {
1038			error = xfs_alloc_file_space(ip, offset, len);
1039			if (error)
1040				goto out_unlock;
1041		}
1042	}
1043
1044	/* Change file size if needed */
1045	if (new_size) {
1046		struct iattr iattr;
1047
1048		iattr.ia_valid = ATTR_SIZE;
1049		iattr.ia_size = new_size;
1050		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1051					    file_dentry(file), &iattr);
1052		if (error)
1053			goto out_unlock;
1054	}
1055
1056	/*
1057	 * Perform hole insertion now that the file size has been
1058	 * updated so that if we crash during the operation we don't
1059	 * leave shifted extents past EOF and hence losing access to
1060	 * the data that is contained within them.
1061	 */
1062	if (do_file_insert) {
1063		error = xfs_insert_file_space(ip, offset, len);
1064		if (error)
1065			goto out_unlock;
1066	}
1067
1068	if (xfs_file_sync_writes(file))
1069		error = xfs_log_force_inode(ip);
1070
1071out_unlock:
1072	xfs_iunlock(ip, iolock);
1073	return error;
1074}
1075
1076STATIC int
1077xfs_file_fadvise(
1078	struct file	*file,
1079	loff_t		start,
1080	loff_t		end,
1081	int		advice)
1082{
1083	struct xfs_inode *ip = XFS_I(file_inode(file));
1084	int ret;
1085	int lockflags = 0;
1086
1087	/*
1088	 * Operations creating pages in page cache need protection from hole
1089	 * punching and similar ops
1090	 */
1091	if (advice == POSIX_FADV_WILLNEED) {
1092		lockflags = XFS_IOLOCK_SHARED;
1093		xfs_ilock(ip, lockflags);
1094	}
1095	ret = generic_fadvise(file, start, end, advice);
1096	if (lockflags)
1097		xfs_iunlock(ip, lockflags);
1098	return ret;
1099}
1100
1101STATIC loff_t
1102xfs_file_remap_range(
1103	struct file		*file_in,
1104	loff_t			pos_in,
1105	struct file		*file_out,
1106	loff_t			pos_out,
1107	loff_t			len,
1108	unsigned int		remap_flags)
1109{
1110	struct inode		*inode_in = file_inode(file_in);
1111	struct xfs_inode	*src = XFS_I(inode_in);
1112	struct inode		*inode_out = file_inode(file_out);
1113	struct xfs_inode	*dest = XFS_I(inode_out);
1114	struct xfs_mount	*mp = src->i_mount;
1115	loff_t			remapped = 0;
1116	xfs_extlen_t		cowextsize;
1117	int			ret;
1118
1119	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1120		return -EINVAL;
1121
1122	if (!xfs_has_reflink(mp))
1123		return -EOPNOTSUPP;
1124
1125	if (xfs_is_shutdown(mp))
1126		return -EIO;
1127
1128	/* Prepare and then clone file data. */
1129	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1130			&len, remap_flags);
1131	if (ret || len == 0)
1132		return ret;
1133
1134	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1135
1136	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1137			&remapped);
1138	if (ret)
1139		goto out_unlock;
1140
1141	/*
1142	 * Carry the cowextsize hint from src to dest if we're sharing the
1143	 * entire source file to the entire destination file, the source file
1144	 * has a cowextsize hint, and the destination file does not.
1145	 */
1146	cowextsize = 0;
1147	if (pos_in == 0 && len == i_size_read(inode_in) &&
1148	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1149	    pos_out == 0 && len >= i_size_read(inode_out) &&
1150	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1151		cowextsize = src->i_cowextsize;
1152
1153	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1154			remap_flags);
1155	if (ret)
1156		goto out_unlock;
1157
1158	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1159		xfs_log_force_inode(dest);
1160out_unlock:
1161	xfs_iunlock2_io_mmap(src, dest);
1162	if (ret)
1163		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1164	return remapped > 0 ? remapped : ret;
1165}
1166
1167STATIC int
1168xfs_file_open(
1169	struct inode	*inode,
1170	struct file	*file)
1171{
1172	if (xfs_is_shutdown(XFS_M(inode->i_sb)))
 
 
1173		return -EIO;
1174	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC;
1175	return generic_file_open(inode, file);
1176}
1177
1178STATIC int
1179xfs_dir_open(
1180	struct inode	*inode,
1181	struct file	*file)
1182{
1183	struct xfs_inode *ip = XFS_I(inode);
1184	unsigned int	mode;
1185	int		error;
1186
1187	error = xfs_file_open(inode, file);
1188	if (error)
1189		return error;
1190
1191	/*
1192	 * If there are any blocks, read-ahead block 0 as we're almost
1193	 * certain to have the next operation be a read there.
1194	 */
1195	mode = xfs_ilock_data_map_shared(ip);
1196	if (ip->i_df.if_nextents > 0)
1197		error = xfs_dir3_data_readahead(ip, 0, 0);
1198	xfs_iunlock(ip, mode);
1199	return error;
1200}
1201
1202STATIC int
1203xfs_file_release(
1204	struct inode	*inode,
1205	struct file	*filp)
1206{
1207	return xfs_release(XFS_I(inode));
1208}
1209
1210STATIC int
1211xfs_file_readdir(
1212	struct file	*file,
1213	struct dir_context *ctx)
1214{
1215	struct inode	*inode = file_inode(file);
1216	xfs_inode_t	*ip = XFS_I(inode);
1217	size_t		bufsize;
1218
1219	/*
1220	 * The Linux API doesn't pass down the total size of the buffer
1221	 * we read into down to the filesystem.  With the filldir concept
1222	 * it's not needed for correct information, but the XFS dir2 leaf
1223	 * code wants an estimate of the buffer size to calculate it's
1224	 * readahead window and size the buffers used for mapping to
1225	 * physical blocks.
1226	 *
1227	 * Try to give it an estimate that's good enough, maybe at some
1228	 * point we can change the ->readdir prototype to include the
1229	 * buffer size.  For now we use the current glibc buffer size.
1230	 */
1231	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1232
1233	return xfs_readdir(NULL, ip, ctx, bufsize);
1234}
1235
1236STATIC loff_t
1237xfs_file_llseek(
1238	struct file	*file,
1239	loff_t		offset,
1240	int		whence)
1241{
1242	struct inode		*inode = file->f_mapping->host;
1243
1244	if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1245		return -EIO;
1246
1247	switch (whence) {
1248	default:
1249		return generic_file_llseek(file, offset, whence);
1250	case SEEK_HOLE:
1251		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1252		break;
1253	case SEEK_DATA:
1254		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1255		break;
1256	}
1257
1258	if (offset < 0)
1259		return offset;
1260	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1261}
1262
1263#ifdef CONFIG_FS_DAX
1264static inline vm_fault_t
1265xfs_dax_fault(
1266	struct vm_fault		*vmf,
1267	enum page_entry_size	pe_size,
1268	bool			write_fault,
1269	pfn_t			*pfn)
1270{
1271	return dax_iomap_fault(vmf, pe_size, pfn, NULL,
1272			(write_fault && !vmf->cow_page) ?
1273				&xfs_dax_write_iomap_ops :
1274				&xfs_read_iomap_ops);
1275}
1276#else
1277static inline vm_fault_t
1278xfs_dax_fault(
1279	struct vm_fault		*vmf,
1280	enum page_entry_size	pe_size,
1281	bool			write_fault,
1282	pfn_t			*pfn)
1283{
1284	ASSERT(0);
1285	return VM_FAULT_SIGBUS;
1286}
1287#endif
1288
1289/*
1290 * Locking for serialisation of IO during page faults. This results in a lock
1291 * ordering of:
1292 *
1293 * mmap_lock (MM)
1294 *   sb_start_pagefault(vfs, freeze)
1295 *     invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1296 *       page_lock (MM)
1297 *         i_lock (XFS - extent map serialisation)
1298 */
1299static vm_fault_t
1300__xfs_filemap_fault(
1301	struct vm_fault		*vmf,
1302	enum page_entry_size	pe_size,
1303	bool			write_fault)
1304{
1305	struct inode		*inode = file_inode(vmf->vma->vm_file);
1306	struct xfs_inode	*ip = XFS_I(inode);
1307	vm_fault_t		ret;
1308
1309	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1310
1311	if (write_fault) {
1312		sb_start_pagefault(inode->i_sb);
1313		file_update_time(vmf->vma->vm_file);
1314	}
1315
 
1316	if (IS_DAX(inode)) {
1317		pfn_t pfn;
1318
1319		xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1320		ret = xfs_dax_fault(vmf, pe_size, write_fault, &pfn);
1321		if (ret & VM_FAULT_NEEDDSYNC)
1322			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1323		xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1324	} else {
1325		if (write_fault) {
1326			xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327			ret = iomap_page_mkwrite(vmf,
1328					&xfs_page_mkwrite_iomap_ops);
1329			xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1330		} else {
1331			ret = filemap_fault(vmf);
1332		}
1333	}
 
1334
1335	if (write_fault)
1336		sb_end_pagefault(inode->i_sb);
1337	return ret;
1338}
1339
1340static inline bool
1341xfs_is_write_fault(
1342	struct vm_fault		*vmf)
1343{
1344	return (vmf->flags & FAULT_FLAG_WRITE) &&
1345	       (vmf->vma->vm_flags & VM_SHARED);
1346}
1347
1348static vm_fault_t
1349xfs_filemap_fault(
1350	struct vm_fault		*vmf)
1351{
1352	/* DAX can shortcut the normal fault path on write faults! */
1353	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1354			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1355			xfs_is_write_fault(vmf));
1356}
1357
1358static vm_fault_t
1359xfs_filemap_huge_fault(
1360	struct vm_fault		*vmf,
1361	enum page_entry_size	pe_size)
1362{
1363	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1364		return VM_FAULT_FALLBACK;
1365
1366	/* DAX can shortcut the normal fault path on write faults! */
1367	return __xfs_filemap_fault(vmf, pe_size,
1368			xfs_is_write_fault(vmf));
1369}
1370
1371static vm_fault_t
1372xfs_filemap_page_mkwrite(
1373	struct vm_fault		*vmf)
1374{
1375	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1376}
1377
1378/*
1379 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1380 * on write faults. In reality, it needs to serialise against truncate and
1381 * prepare memory for writing so handle is as standard write fault.
1382 */
1383static vm_fault_t
1384xfs_filemap_pfn_mkwrite(
1385	struct vm_fault		*vmf)
1386{
1387
1388	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1389}
1390
1391static vm_fault_t
1392xfs_filemap_map_pages(
1393	struct vm_fault		*vmf,
1394	pgoff_t			start_pgoff,
1395	pgoff_t			end_pgoff)
1396{
1397	struct inode		*inode = file_inode(vmf->vma->vm_file);
1398	vm_fault_t ret;
1399
1400	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1401	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1402	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1403	return ret;
1404}
1405
1406static const struct vm_operations_struct xfs_file_vm_ops = {
1407	.fault		= xfs_filemap_fault,
1408	.huge_fault	= xfs_filemap_huge_fault,
1409	.map_pages	= xfs_filemap_map_pages,
1410	.page_mkwrite	= xfs_filemap_page_mkwrite,
1411	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1412};
1413
1414STATIC int
1415xfs_file_mmap(
1416	struct file		*file,
1417	struct vm_area_struct	*vma)
1418{
1419	struct inode		*inode = file_inode(file);
1420	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1421
1422	/*
1423	 * We don't support synchronous mappings for non-DAX files and
1424	 * for DAX files if underneath dax_device is not synchronous.
1425	 */
1426	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1427		return -EOPNOTSUPP;
1428
1429	file_accessed(file);
1430	vma->vm_ops = &xfs_file_vm_ops;
1431	if (IS_DAX(inode))
1432		vma->vm_flags |= VM_HUGEPAGE;
1433	return 0;
1434}
1435
1436const struct file_operations xfs_file_operations = {
1437	.llseek		= xfs_file_llseek,
1438	.read_iter	= xfs_file_read_iter,
1439	.write_iter	= xfs_file_write_iter,
1440	.splice_read	= generic_file_splice_read,
1441	.splice_write	= iter_file_splice_write,
1442	.iopoll		= iocb_bio_iopoll,
1443	.unlocked_ioctl	= xfs_file_ioctl,
1444#ifdef CONFIG_COMPAT
1445	.compat_ioctl	= xfs_file_compat_ioctl,
1446#endif
1447	.mmap		= xfs_file_mmap,
1448	.mmap_supported_flags = MAP_SYNC,
1449	.open		= xfs_file_open,
1450	.release	= xfs_file_release,
1451	.fsync		= xfs_file_fsync,
1452	.get_unmapped_area = thp_get_unmapped_area,
1453	.fallocate	= xfs_file_fallocate,
1454	.fadvise	= xfs_file_fadvise,
1455	.remap_file_range = xfs_file_remap_range,
1456};
1457
1458const struct file_operations xfs_dir_file_operations = {
1459	.open		= xfs_dir_open,
1460	.read		= generic_read_dir,
1461	.iterate_shared	= xfs_file_readdir,
1462	.llseek		= generic_file_llseek,
1463	.unlocked_ioctl	= xfs_file_ioctl,
1464#ifdef CONFIG_COMPAT
1465	.compat_ioctl	= xfs_file_compat_ioctl,
1466#endif
1467	.fsync		= xfs_dir_fsync,
1468};