Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_da_format.h"
  26#include "xfs_da_btree.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_bmap_util.h"
  32#include "xfs_error.h"
  33#include "xfs_dir2.h"
  34#include "xfs_dir2_priv.h"
  35#include "xfs_ioctl.h"
  36#include "xfs_trace.h"
  37#include "xfs_log.h"
  38#include "xfs_icache.h"
  39#include "xfs_pnfs.h"
  40#include "xfs_iomap.h"
  41#include "xfs_reflink.h"
  42
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
  46#include <linux/backing-dev.h>
  47#include <linux/mman.h>
 
  48
  49static const struct vm_operations_struct xfs_file_vm_ops;
  50
  51int
  52xfs_update_prealloc_flags(
  53	struct xfs_inode	*ip,
  54	enum xfs_prealloc_flags	flags)
  55{
  56	struct xfs_trans	*tp;
  57	int			error;
  58
  59	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  60			0, 0, 0, &tp);
  61	if (error)
  62		return error;
  63
  64	xfs_ilock(ip, XFS_ILOCK_EXCL);
  65	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  66
  67	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  68		VFS_I(ip)->i_mode &= ~S_ISUID;
  69		if (VFS_I(ip)->i_mode & S_IXGRP)
  70			VFS_I(ip)->i_mode &= ~S_ISGID;
  71		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  72	}
  73
  74	if (flags & XFS_PREALLOC_SET)
  75		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  76	if (flags & XFS_PREALLOC_CLEAR)
  77		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  78
  79	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  80	if (flags & XFS_PREALLOC_SYNC)
  81		xfs_trans_set_sync(tp);
  82	return xfs_trans_commit(tp);
  83}
  84
  85/*
  86 * Fsync operations on directories are much simpler than on regular files,
  87 * as there is no file data to flush, and thus also no need for explicit
  88 * cache flush operations, and there are no non-transaction metadata updates
  89 * on directories either.
  90 */
  91STATIC int
  92xfs_dir_fsync(
  93	struct file		*file,
  94	loff_t			start,
  95	loff_t			end,
  96	int			datasync)
  97{
  98	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  99	struct xfs_mount	*mp = ip->i_mount;
 100	xfs_lsn_t		lsn = 0;
 101
 102	trace_xfs_dir_fsync(ip);
 103
 104	xfs_ilock(ip, XFS_ILOCK_SHARED);
 105	if (xfs_ipincount(ip))
 106		lsn = ip->i_itemp->ili_last_lsn;
 107	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 108
 109	if (!lsn)
 110		return 0;
 111	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 112}
 113
 114STATIC int
 115xfs_file_fsync(
 116	struct file		*file,
 117	loff_t			start,
 118	loff_t			end,
 119	int			datasync)
 120{
 121	struct inode		*inode = file->f_mapping->host;
 122	struct xfs_inode	*ip = XFS_I(inode);
 123	struct xfs_mount	*mp = ip->i_mount;
 124	int			error = 0;
 125	int			log_flushed = 0;
 126	xfs_lsn_t		lsn = 0;
 127
 128	trace_xfs_file_fsync(ip);
 129
 130	error = file_write_and_wait_range(file, start, end);
 131	if (error)
 132		return error;
 133
 134	if (XFS_FORCED_SHUTDOWN(mp))
 135		return -EIO;
 136
 137	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 138
 139	/*
 140	 * If we have an RT and/or log subvolume we need to make sure to flush
 141	 * the write cache the device used for file data first.  This is to
 142	 * ensure newly written file data make it to disk before logging the new
 143	 * inode size in case of an extending write.
 144	 */
 145	if (XFS_IS_REALTIME_INODE(ip))
 146		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 147	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 148		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 149
 150	/*
 151	 * All metadata updates are logged, which means that we just have to
 152	 * flush the log up to the latest LSN that touched the inode. If we have
 153	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 154	 * log force before we clear the ili_fsync_fields field. This ensures
 155	 * that we don't get a racing sync operation that does not wait for the
 156	 * metadata to hit the journal before returning. If we race with
 157	 * clearing the ili_fsync_fields, then all that will happen is the log
 158	 * force will do nothing as the lsn will already be on disk. We can't
 159	 * race with setting ili_fsync_fields because that is done under
 160	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 161	 * until after the ili_fsync_fields is cleared.
 162	 */
 163	xfs_ilock(ip, XFS_ILOCK_SHARED);
 164	if (xfs_ipincount(ip)) {
 165		if (!datasync ||
 166		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 167			lsn = ip->i_itemp->ili_last_lsn;
 168	}
 169
 170	if (lsn) {
 171		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 172		ip->i_itemp->ili_fsync_fields = 0;
 173	}
 174	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 175
 176	/*
 177	 * If we only have a single device, and the log force about was
 178	 * a no-op we might have to flush the data device cache here.
 179	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 180	 * an already allocated file and thus do not have any metadata to
 181	 * commit.
 182	 */
 183	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 184	    mp->m_logdev_targp == mp->m_ddev_targp)
 185		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 186
 187	return error;
 188}
 189
 190STATIC ssize_t
 191xfs_file_dio_aio_read(
 192	struct kiocb		*iocb,
 193	struct iov_iter		*to)
 194{
 195	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 196	size_t			count = iov_iter_count(to);
 197	ssize_t			ret;
 198
 199	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 200
 201	if (!count)
 202		return 0; /* skip atime */
 203
 204	file_accessed(iocb->ki_filp);
 205
 206	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 207	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 208	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 209
 210	return ret;
 211}
 212
 213static noinline ssize_t
 214xfs_file_dax_read(
 215	struct kiocb		*iocb,
 216	struct iov_iter		*to)
 217{
 218	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 219	size_t			count = iov_iter_count(to);
 220	ssize_t			ret = 0;
 221
 222	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 223
 224	if (!count)
 225		return 0; /* skip atime */
 226
 227	if (iocb->ki_flags & IOCB_NOWAIT) {
 228		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 229			return -EAGAIN;
 230	} else {
 231		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 232	}
 233
 234	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 235	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 236
 237	file_accessed(iocb->ki_filp);
 238	return ret;
 239}
 240
 241STATIC ssize_t
 242xfs_file_buffered_aio_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 245{
 246	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 247	ssize_t			ret;
 248
 249	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 250
 251	if (iocb->ki_flags & IOCB_NOWAIT) {
 252		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 253			return -EAGAIN;
 254	} else {
 255		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 256	}
 257	ret = generic_file_read_iter(iocb, to);
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 259
 260	return ret;
 261}
 262
 263STATIC ssize_t
 264xfs_file_read_iter(
 265	struct kiocb		*iocb,
 266	struct iov_iter		*to)
 267{
 268	struct inode		*inode = file_inode(iocb->ki_filp);
 269	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 270	ssize_t			ret = 0;
 271
 272	XFS_STATS_INC(mp, xs_read_calls);
 273
 274	if (XFS_FORCED_SHUTDOWN(mp))
 275		return -EIO;
 276
 277	if (IS_DAX(inode))
 278		ret = xfs_file_dax_read(iocb, to);
 279	else if (iocb->ki_flags & IOCB_DIRECT)
 280		ret = xfs_file_dio_aio_read(iocb, to);
 281	else
 282		ret = xfs_file_buffered_aio_read(iocb, to);
 283
 284	if (ret > 0)
 285		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 286	return ret;
 287}
 288
 289/*
 290 * Common pre-write limit and setup checks.
 291 *
 292 * Called with the iolocked held either shared and exclusive according to
 293 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 294 * if called for a direct write beyond i_size.
 295 */
 296STATIC ssize_t
 297xfs_file_aio_write_checks(
 298	struct kiocb		*iocb,
 299	struct iov_iter		*from,
 300	int			*iolock)
 301{
 302	struct file		*file = iocb->ki_filp;
 303	struct inode		*inode = file->f_mapping->host;
 304	struct xfs_inode	*ip = XFS_I(inode);
 305	ssize_t			error = 0;
 306	size_t			count = iov_iter_count(from);
 307	bool			drained_dio = false;
 308	loff_t			isize;
 309
 310restart:
 311	error = generic_write_checks(iocb, from);
 312	if (error <= 0)
 313		return error;
 314
 315	error = xfs_break_layouts(inode, iolock);
 316	if (error)
 317		return error;
 318
 319	/*
 320	 * For changing security info in file_remove_privs() we need i_rwsem
 321	 * exclusively.
 322	 */
 323	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 324		xfs_iunlock(ip, *iolock);
 325		*iolock = XFS_IOLOCK_EXCL;
 326		xfs_ilock(ip, *iolock);
 327		goto restart;
 328	}
 329	/*
 330	 * If the offset is beyond the size of the file, we need to zero any
 331	 * blocks that fall between the existing EOF and the start of this
 332	 * write.  If zeroing is needed and we are currently holding the
 333	 * iolock shared, we need to update it to exclusive which implies
 334	 * having to redo all checks before.
 335	 *
 336	 * We need to serialise against EOF updates that occur in IO
 337	 * completions here. We want to make sure that nobody is changing the
 338	 * size while we do this check until we have placed an IO barrier (i.e.
 339	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 340	 * The spinlock effectively forms a memory barrier once we have the
 341	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 342	 * and hence be able to correctly determine if we need to run zeroing.
 343	 */
 344	spin_lock(&ip->i_flags_lock);
 345	isize = i_size_read(inode);
 346	if (iocb->ki_pos > isize) {
 347		spin_unlock(&ip->i_flags_lock);
 348		if (!drained_dio) {
 349			if (*iolock == XFS_IOLOCK_SHARED) {
 350				xfs_iunlock(ip, *iolock);
 351				*iolock = XFS_IOLOCK_EXCL;
 352				xfs_ilock(ip, *iolock);
 353				iov_iter_reexpand(from, count);
 354			}
 355			/*
 356			 * We now have an IO submission barrier in place, but
 357			 * AIO can do EOF updates during IO completion and hence
 358			 * we now need to wait for all of them to drain. Non-AIO
 359			 * DIO will have drained before we are given the
 360			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 361			 * no-op.
 362			 */
 363			inode_dio_wait(inode);
 364			drained_dio = true;
 365			goto restart;
 366		}
 367	
 368		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 369		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 370				NULL, &xfs_iomap_ops);
 371		if (error)
 372			return error;
 373	} else
 374		spin_unlock(&ip->i_flags_lock);
 375
 376	/*
 377	 * Updating the timestamps will grab the ilock again from
 378	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 379	 * lock above.  Eventually we should look into a way to avoid
 380	 * the pointless lock roundtrip.
 381	 */
 382	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 383		error = file_update_time(file);
 384		if (error)
 385			return error;
 386	}
 387
 388	/*
 389	 * If we're writing the file then make sure to clear the setuid and
 390	 * setgid bits if the process is not being run by root.  This keeps
 391	 * people from modifying setuid and setgid binaries.
 392	 */
 393	if (!IS_NOSEC(inode))
 394		return file_remove_privs(file);
 395	return 0;
 396}
 397
 398static int
 399xfs_dio_write_end_io(
 400	struct kiocb		*iocb,
 401	ssize_t			size,
 
 402	unsigned		flags)
 403{
 404	struct inode		*inode = file_inode(iocb->ki_filp);
 405	struct xfs_inode	*ip = XFS_I(inode);
 406	loff_t			offset = iocb->ki_pos;
 407	int			error = 0;
 408
 409	trace_xfs_end_io_direct_write(ip, offset, size);
 410
 411	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 412		return -EIO;
 413
 414	if (size <= 0)
 415		return size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416
 417	if (flags & IOMAP_DIO_COW) {
 418		error = xfs_reflink_end_cow(ip, offset, size);
 419		if (error)
 420			return error;
 421	}
 422
 423	/*
 424	 * Unwritten conversion updates the in-core isize after extent
 425	 * conversion but before updating the on-disk size. Updating isize any
 426	 * earlier allows a racing dio read to find unwritten extents before
 427	 * they are converted.
 428	 */
 429	if (flags & IOMAP_DIO_UNWRITTEN)
 430		return xfs_iomap_write_unwritten(ip, offset, size, true);
 
 
 431
 432	/*
 433	 * We need to update the in-core inode size here so that we don't end up
 434	 * with the on-disk inode size being outside the in-core inode size. We
 435	 * have no other method of updating EOF for AIO, so always do it here
 436	 * if necessary.
 437	 *
 438	 * We need to lock the test/set EOF update as we can be racing with
 439	 * other IO completions here to update the EOF. Failing to serialise
 440	 * here can result in EOF moving backwards and Bad Things Happen when
 441	 * that occurs.
 442	 */
 443	spin_lock(&ip->i_flags_lock);
 444	if (offset + size > i_size_read(inode)) {
 445		i_size_write(inode, offset + size);
 446		spin_unlock(&ip->i_flags_lock);
 447		error = xfs_setfilesize(ip, offset, size);
 448	} else {
 449		spin_unlock(&ip->i_flags_lock);
 450	}
 451
 
 
 452	return error;
 453}
 454
 
 
 
 
 455/*
 456 * xfs_file_dio_aio_write - handle direct IO writes
 457 *
 458 * Lock the inode appropriately to prepare for and issue a direct IO write.
 459 * By separating it from the buffered write path we remove all the tricky to
 460 * follow locking changes and looping.
 461 *
 462 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 463 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 464 * pages are flushed out.
 465 *
 466 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 467 * allowing them to be done in parallel with reads and other direct IO writes.
 468 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 469 * needs to do sub-block zeroing and that requires serialisation against other
 470 * direct IOs to the same block. In this case we need to serialise the
 471 * submission of the unaligned IOs so that we don't get racing block zeroing in
 472 * the dio layer.  To avoid the problem with aio, we also need to wait for
 473 * outstanding IOs to complete so that unwritten extent conversion is completed
 474 * before we try to map the overlapping block. This is currently implemented by
 475 * hitting it with a big hammer (i.e. inode_dio_wait()).
 476 *
 477 * Returns with locks held indicated by @iolock and errors indicated by
 478 * negative return values.
 479 */
 480STATIC ssize_t
 481xfs_file_dio_aio_write(
 482	struct kiocb		*iocb,
 483	struct iov_iter		*from)
 484{
 485	struct file		*file = iocb->ki_filp;
 486	struct address_space	*mapping = file->f_mapping;
 487	struct inode		*inode = mapping->host;
 488	struct xfs_inode	*ip = XFS_I(inode);
 489	struct xfs_mount	*mp = ip->i_mount;
 490	ssize_t			ret = 0;
 491	int			unaligned_io = 0;
 492	int			iolock;
 493	size_t			count = iov_iter_count(from);
 494	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 495					mp->m_rtdev_targp : mp->m_ddev_targp;
 496
 497	/* DIO must be aligned to device logical sector size */
 498	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 499		return -EINVAL;
 500
 501	/*
 502	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 503	 * the file system block size.  We don't need to consider the EOF
 504	 * extension case here because xfs_file_aio_write_checks() will relock
 505	 * the inode as necessary for EOF zeroing cases and fill out the new
 506	 * inode size as appropriate.
 507	 */
 508	if ((iocb->ki_pos & mp->m_blockmask) ||
 509	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 510		unaligned_io = 1;
 511
 512		/*
 513		 * We can't properly handle unaligned direct I/O to reflink
 514		 * files yet, as we can't unshare a partial block.
 515		 */
 516		if (xfs_is_reflink_inode(ip)) {
 517			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 518			return -EREMCHG;
 519		}
 520		iolock = XFS_IOLOCK_EXCL;
 521	} else {
 522		iolock = XFS_IOLOCK_SHARED;
 523	}
 524
 525	if (iocb->ki_flags & IOCB_NOWAIT) {
 
 
 
 526		if (!xfs_ilock_nowait(ip, iolock))
 527			return -EAGAIN;
 528	} else {
 529		xfs_ilock(ip, iolock);
 530	}
 531
 532	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 533	if (ret)
 534		goto out;
 535	count = iov_iter_count(from);
 536
 537	/*
 538	 * If we are doing unaligned IO, wait for all other IO to drain,
 539	 * otherwise demote the lock if we had to take the exclusive lock
 540	 * for other reasons in xfs_file_aio_write_checks.
 
 
 541	 */
 542	if (unaligned_io) {
 543		/* If we are going to wait for other DIO to finish, bail */
 544		if (iocb->ki_flags & IOCB_NOWAIT) {
 545			if (atomic_read(&inode->i_dio_count))
 546				return -EAGAIN;
 547		} else {
 548			inode_dio_wait(inode);
 549		}
 550	} else if (iolock == XFS_IOLOCK_EXCL) {
 551		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 552		iolock = XFS_IOLOCK_SHARED;
 553	}
 554
 555	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 556	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 
 
 
 
 
 
 
 
 557out:
 558	xfs_iunlock(ip, iolock);
 559
 560	/*
 561	 * No fallback to buffered IO on errors for XFS, direct IO will either
 562	 * complete fully or fail.
 563	 */
 564	ASSERT(ret < 0 || ret == count);
 565	return ret;
 566}
 567
 568static noinline ssize_t
 569xfs_file_dax_write(
 570	struct kiocb		*iocb,
 571	struct iov_iter		*from)
 572{
 573	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 574	struct xfs_inode	*ip = XFS_I(inode);
 575	int			iolock = XFS_IOLOCK_EXCL;
 576	ssize_t			ret, error = 0;
 577	size_t			count;
 578	loff_t			pos;
 579
 580	if (iocb->ki_flags & IOCB_NOWAIT) {
 581		if (!xfs_ilock_nowait(ip, iolock))
 582			return -EAGAIN;
 583	} else {
 584		xfs_ilock(ip, iolock);
 585	}
 586
 587	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 588	if (ret)
 589		goto out;
 590
 591	pos = iocb->ki_pos;
 592	count = iov_iter_count(from);
 593
 594	trace_xfs_file_dax_write(ip, count, pos);
 595	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 596	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 597		i_size_write(inode, iocb->ki_pos);
 598		error = xfs_setfilesize(ip, pos, ret);
 599	}
 600out:
 601	xfs_iunlock(ip, iolock);
 602	return error ? error : ret;
 
 
 
 
 
 
 
 
 
 603}
 604
 605STATIC ssize_t
 606xfs_file_buffered_aio_write(
 607	struct kiocb		*iocb,
 608	struct iov_iter		*from)
 609{
 610	struct file		*file = iocb->ki_filp;
 611	struct address_space	*mapping = file->f_mapping;
 612	struct inode		*inode = mapping->host;
 613	struct xfs_inode	*ip = XFS_I(inode);
 614	ssize_t			ret;
 615	int			enospc = 0;
 616	int			iolock;
 617
 618	if (iocb->ki_flags & IOCB_NOWAIT)
 619		return -EOPNOTSUPP;
 620
 621write_retry:
 622	iolock = XFS_IOLOCK_EXCL;
 623	xfs_ilock(ip, iolock);
 624
 625	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 626	if (ret)
 627		goto out;
 628
 629	/* We can write back this queue in page reclaim */
 630	current->backing_dev_info = inode_to_bdi(inode);
 631
 632	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 633	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 634	if (likely(ret >= 0))
 635		iocb->ki_pos += ret;
 636
 637	/*
 638	 * If we hit a space limit, try to free up some lingering preallocated
 639	 * space before returning an error. In the case of ENOSPC, first try to
 640	 * write back all dirty inodes to free up some of the excess reserved
 641	 * metadata space. This reduces the chances that the eofblocks scan
 642	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 643	 * also behaves as a filter to prevent too many eofblocks scans from
 644	 * running at the same time.
 645	 */
 646	if (ret == -EDQUOT && !enospc) {
 647		xfs_iunlock(ip, iolock);
 648		enospc = xfs_inode_free_quota_eofblocks(ip);
 649		if (enospc)
 650			goto write_retry;
 651		enospc = xfs_inode_free_quota_cowblocks(ip);
 652		if (enospc)
 653			goto write_retry;
 654		iolock = 0;
 655	} else if (ret == -ENOSPC && !enospc) {
 656		struct xfs_eofblocks eofb = {0};
 657
 658		enospc = 1;
 659		xfs_flush_inodes(ip->i_mount);
 660
 661		xfs_iunlock(ip, iolock);
 662		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 663		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 664		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 665		goto write_retry;
 666	}
 667
 668	current->backing_dev_info = NULL;
 669out:
 670	if (iolock)
 671		xfs_iunlock(ip, iolock);
 
 
 
 
 
 
 672	return ret;
 673}
 674
 675STATIC ssize_t
 676xfs_file_write_iter(
 677	struct kiocb		*iocb,
 678	struct iov_iter		*from)
 679{
 680	struct file		*file = iocb->ki_filp;
 681	struct address_space	*mapping = file->f_mapping;
 682	struct inode		*inode = mapping->host;
 683	struct xfs_inode	*ip = XFS_I(inode);
 684	ssize_t			ret;
 685	size_t			ocount = iov_iter_count(from);
 686
 687	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 688
 689	if (ocount == 0)
 690		return 0;
 691
 692	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 693		return -EIO;
 694
 695	if (IS_DAX(inode))
 696		ret = xfs_file_dax_write(iocb, from);
 697	else if (iocb->ki_flags & IOCB_DIRECT) {
 
 698		/*
 699		 * Allow a directio write to fall back to a buffered
 700		 * write *only* in the case that we're doing a reflink
 701		 * CoW.  In all other directio scenarios we do not
 702		 * allow an operation to fall back to buffered mode.
 703		 */
 704		ret = xfs_file_dio_aio_write(iocb, from);
 705		if (ret == -EREMCHG)
 706			goto buffered;
 707	} else {
 708buffered:
 709		ret = xfs_file_buffered_aio_write(iocb, from);
 710	}
 711
 712	if (ret > 0) {
 713		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 714
 715		/* Handle various SYNC-type writes */
 716		ret = generic_write_sync(iocb, ret);
 717	}
 718	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721#define	XFS_FALLOC_FL_SUPPORTED						\
 722		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 723		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 724		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 725
 726STATIC long
 727xfs_file_fallocate(
 728	struct file		*file,
 729	int			mode,
 730	loff_t			offset,
 731	loff_t			len)
 732{
 733	struct inode		*inode = file_inode(file);
 734	struct xfs_inode	*ip = XFS_I(inode);
 735	long			error;
 736	enum xfs_prealloc_flags	flags = 0;
 737	uint			iolock = XFS_IOLOCK_EXCL;
 738	loff_t			new_size = 0;
 739	bool			do_file_insert = false;
 740
 741	if (!S_ISREG(inode->i_mode))
 742		return -EINVAL;
 743	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 744		return -EOPNOTSUPP;
 745
 746	xfs_ilock(ip, iolock);
 747	error = xfs_break_layouts(inode, &iolock);
 748	if (error)
 749		goto out_unlock;
 750
 751	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 752	iolock |= XFS_MMAPLOCK_EXCL;
 753
 754	if (mode & FALLOC_FL_PUNCH_HOLE) {
 755		error = xfs_free_file_space(ip, offset, len);
 756		if (error)
 757			goto out_unlock;
 758	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 759		unsigned int blksize_mask = i_blocksize(inode) - 1;
 760
 761		if (offset & blksize_mask || len & blksize_mask) {
 762			error = -EINVAL;
 763			goto out_unlock;
 764		}
 765
 766		/*
 767		 * There is no need to overlap collapse range with EOF,
 768		 * in which case it is effectively a truncate operation
 769		 */
 770		if (offset + len >= i_size_read(inode)) {
 771			error = -EINVAL;
 772			goto out_unlock;
 773		}
 774
 775		new_size = i_size_read(inode) - len;
 776
 777		error = xfs_collapse_file_space(ip, offset, len);
 778		if (error)
 779			goto out_unlock;
 780	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 781		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 782		loff_t		isize = i_size_read(inode);
 783
 784		if (offset & blksize_mask || len & blksize_mask) {
 785			error = -EINVAL;
 786			goto out_unlock;
 787		}
 788
 789		/*
 790		 * New inode size must not exceed ->s_maxbytes, accounting for
 791		 * possible signed overflow.
 792		 */
 793		if (inode->i_sb->s_maxbytes - isize < len) {
 794			error = -EFBIG;
 795			goto out_unlock;
 796		}
 797		new_size = isize + len;
 798
 799		/* Offset should be less than i_size */
 800		if (offset >= isize) {
 801			error = -EINVAL;
 802			goto out_unlock;
 803		}
 804		do_file_insert = true;
 805	} else {
 806		flags |= XFS_PREALLOC_SET;
 807
 808		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 809		    offset + len > i_size_read(inode)) {
 810			new_size = offset + len;
 811			error = inode_newsize_ok(inode, new_size);
 812			if (error)
 813				goto out_unlock;
 814		}
 815
 816		if (mode & FALLOC_FL_ZERO_RANGE)
 817			error = xfs_zero_file_space(ip, offset, len);
 818		else {
 819			if (mode & FALLOC_FL_UNSHARE_RANGE) {
 820				error = xfs_reflink_unshare(ip, offset, len);
 821				if (error)
 822					goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 823			}
 
 824			error = xfs_alloc_file_space(ip, offset, len,
 825						     XFS_BMAPI_PREALLOC);
 826		}
 827		if (error)
 828			goto out_unlock;
 829	}
 830
 831	if (file->f_flags & O_DSYNC)
 832		flags |= XFS_PREALLOC_SYNC;
 833
 834	error = xfs_update_prealloc_flags(ip, flags);
 835	if (error)
 836		goto out_unlock;
 837
 838	/* Change file size if needed */
 839	if (new_size) {
 840		struct iattr iattr;
 841
 842		iattr.ia_valid = ATTR_SIZE;
 843		iattr.ia_size = new_size;
 844		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 845		if (error)
 846			goto out_unlock;
 847	}
 848
 849	/*
 850	 * Perform hole insertion now that the file size has been
 851	 * updated so that if we crash during the operation we don't
 852	 * leave shifted extents past EOF and hence losing access to
 853	 * the data that is contained within them.
 854	 */
 855	if (do_file_insert)
 856		error = xfs_insert_file_space(ip, offset, len);
 857
 858out_unlock:
 859	xfs_iunlock(ip, iolock);
 860	return error;
 861}
 862
 863STATIC int
 864xfs_file_clone_range(
 865	struct file	*file_in,
 866	loff_t		pos_in,
 867	struct file	*file_out,
 868	loff_t		pos_out,
 869	u64		len)
 870{
 871	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
 872				     len, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 873}
 874
 875STATIC ssize_t
 876xfs_file_dedupe_range(
 877	struct file	*src_file,
 878	u64		loff,
 879	u64		len,
 880	struct file	*dst_file,
 881	u64		dst_loff)
 882{
 883	struct inode	*srci = file_inode(src_file);
 884	u64		max_dedupe;
 885	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	/*
 888	 * Since we have to read all these pages in to compare them, cut
 889	 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
 890	 * That means we won't do more than MAX_RW_COUNT IO per request.
 891	 */
 892	max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
 893	if (len > max_dedupe)
 894		len = max_dedupe;
 895	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
 896				     len, true);
 897	if (error)
 898		return error;
 899	return len;
 
 
 
 
 
 
 
 900}
 901
 902STATIC int
 903xfs_file_open(
 904	struct inode	*inode,
 905	struct file	*file)
 906{
 907	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 908		return -EFBIG;
 909	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 910		return -EIO;
 911	file->f_mode |= FMODE_NOWAIT;
 912	return 0;
 913}
 914
 915STATIC int
 916xfs_dir_open(
 917	struct inode	*inode,
 918	struct file	*file)
 919{
 920	struct xfs_inode *ip = XFS_I(inode);
 921	int		mode;
 922	int		error;
 923
 924	error = xfs_file_open(inode, file);
 925	if (error)
 926		return error;
 927
 928	/*
 929	 * If there are any blocks, read-ahead block 0 as we're almost
 930	 * certain to have the next operation be a read there.
 931	 */
 932	mode = xfs_ilock_data_map_shared(ip);
 933	if (ip->i_d.di_nextents > 0)
 934		error = xfs_dir3_data_readahead(ip, 0, -1);
 935	xfs_iunlock(ip, mode);
 936	return error;
 937}
 938
 939STATIC int
 940xfs_file_release(
 941	struct inode	*inode,
 942	struct file	*filp)
 943{
 944	return xfs_release(XFS_I(inode));
 945}
 946
 947STATIC int
 948xfs_file_readdir(
 949	struct file	*file,
 950	struct dir_context *ctx)
 951{
 952	struct inode	*inode = file_inode(file);
 953	xfs_inode_t	*ip = XFS_I(inode);
 954	size_t		bufsize;
 955
 956	/*
 957	 * The Linux API doesn't pass down the total size of the buffer
 958	 * we read into down to the filesystem.  With the filldir concept
 959	 * it's not needed for correct information, but the XFS dir2 leaf
 960	 * code wants an estimate of the buffer size to calculate it's
 961	 * readahead window and size the buffers used for mapping to
 962	 * physical blocks.
 963	 *
 964	 * Try to give it an estimate that's good enough, maybe at some
 965	 * point we can change the ->readdir prototype to include the
 966	 * buffer size.  For now we use the current glibc buffer size.
 967	 */
 968	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
 969
 970	return xfs_readdir(NULL, ip, ctx, bufsize);
 971}
 972
 973STATIC loff_t
 974xfs_file_llseek(
 975	struct file	*file,
 976	loff_t		offset,
 977	int		whence)
 978{
 979	struct inode		*inode = file->f_mapping->host;
 980
 981	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
 982		return -EIO;
 983
 984	switch (whence) {
 985	default:
 986		return generic_file_llseek(file, offset, whence);
 987	case SEEK_HOLE:
 988		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
 989		break;
 990	case SEEK_DATA:
 991		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
 992		break;
 993	}
 994
 995	if (offset < 0)
 996		return offset;
 997	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 998}
 999
1000/*
1001 * Locking for serialisation of IO during page faults. This results in a lock
1002 * ordering of:
1003 *
1004 * mmap_sem (MM)
1005 *   sb_start_pagefault(vfs, freeze)
1006 *     i_mmaplock (XFS - truncate serialisation)
1007 *       page_lock (MM)
1008 *         i_lock (XFS - extent map serialisation)
1009 */
1010static int
1011__xfs_filemap_fault(
1012	struct vm_fault		*vmf,
1013	enum page_entry_size	pe_size,
1014	bool			write_fault)
1015{
1016	struct inode		*inode = file_inode(vmf->vma->vm_file);
1017	struct xfs_inode	*ip = XFS_I(inode);
1018	int			ret;
1019
1020	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1021
1022	if (write_fault) {
1023		sb_start_pagefault(inode->i_sb);
1024		file_update_time(vmf->vma->vm_file);
1025	}
1026
1027	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1028	if (IS_DAX(inode)) {
1029		pfn_t pfn;
1030
1031		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1032		if (ret & VM_FAULT_NEEDDSYNC)
1033			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1034	} else {
1035		if (write_fault)
1036			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1037		else
1038			ret = filemap_fault(vmf);
1039	}
1040	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1041
1042	if (write_fault)
1043		sb_end_pagefault(inode->i_sb);
1044	return ret;
1045}
1046
1047static int
1048xfs_filemap_fault(
1049	struct vm_fault		*vmf)
1050{
1051	/* DAX can shortcut the normal fault path on write faults! */
1052	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1053			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1054			(vmf->flags & FAULT_FLAG_WRITE));
1055}
1056
1057static int
1058xfs_filemap_huge_fault(
1059	struct vm_fault		*vmf,
1060	enum page_entry_size	pe_size)
1061{
1062	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1063		return VM_FAULT_FALLBACK;
1064
1065	/* DAX can shortcut the normal fault path on write faults! */
1066	return __xfs_filemap_fault(vmf, pe_size,
1067			(vmf->flags & FAULT_FLAG_WRITE));
1068}
1069
1070static int
1071xfs_filemap_page_mkwrite(
1072	struct vm_fault		*vmf)
1073{
1074	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1075}
1076
1077/*
1078 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1079 * on write faults. In reality, it needs to serialise against truncate and
1080 * prepare memory for writing so handle is as standard write fault.
1081 */
1082static int
1083xfs_filemap_pfn_mkwrite(
1084	struct vm_fault		*vmf)
1085{
1086
1087	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1088}
1089
1090static const struct vm_operations_struct xfs_file_vm_ops = {
1091	.fault		= xfs_filemap_fault,
1092	.huge_fault	= xfs_filemap_huge_fault,
1093	.map_pages	= filemap_map_pages,
1094	.page_mkwrite	= xfs_filemap_page_mkwrite,
1095	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1096};
1097
1098STATIC int
1099xfs_file_mmap(
1100	struct file	*filp,
1101	struct vm_area_struct *vma)
1102{
 
 
 
1103	/*
1104	 * We don't support synchronous mappings for non-DAX files. At least
1105	 * until someone comes with a sensible use case.
1106	 */
1107	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1108		return -EOPNOTSUPP;
1109
1110	file_accessed(filp);
1111	vma->vm_ops = &xfs_file_vm_ops;
1112	if (IS_DAX(file_inode(filp)))
1113		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1114	return 0;
1115}
1116
1117const struct file_operations xfs_file_operations = {
1118	.llseek		= xfs_file_llseek,
1119	.read_iter	= xfs_file_read_iter,
1120	.write_iter	= xfs_file_write_iter,
1121	.splice_read	= generic_file_splice_read,
1122	.splice_write	= iter_file_splice_write,
 
1123	.unlocked_ioctl	= xfs_file_ioctl,
1124#ifdef CONFIG_COMPAT
1125	.compat_ioctl	= xfs_file_compat_ioctl,
1126#endif
1127	.mmap		= xfs_file_mmap,
1128	.mmap_supported_flags = MAP_SYNC,
1129	.open		= xfs_file_open,
1130	.release	= xfs_file_release,
1131	.fsync		= xfs_file_fsync,
1132	.get_unmapped_area = thp_get_unmapped_area,
1133	.fallocate	= xfs_file_fallocate,
1134	.clone_file_range = xfs_file_clone_range,
1135	.dedupe_file_range = xfs_file_dedupe_range,
1136};
1137
1138const struct file_operations xfs_dir_file_operations = {
1139	.open		= xfs_dir_open,
1140	.read		= generic_read_dir,
1141	.iterate_shared	= xfs_file_readdir,
1142	.llseek		= generic_file_llseek,
1143	.unlocked_ioctl	= xfs_file_ioctl,
1144#ifdef CONFIG_COMPAT
1145	.compat_ioctl	= xfs_file_compat_ioctl,
1146#endif
1147	.fsync		= xfs_dir_fsync,
1148};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
 
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
 
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32
  33static const struct vm_operations_struct xfs_file_vm_ops;
  34
  35int
  36xfs_update_prealloc_flags(
  37	struct xfs_inode	*ip,
  38	enum xfs_prealloc_flags	flags)
  39{
  40	struct xfs_trans	*tp;
  41	int			error;
  42
  43	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  44			0, 0, 0, &tp);
  45	if (error)
  46		return error;
  47
  48	xfs_ilock(ip, XFS_ILOCK_EXCL);
  49	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  50
  51	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  52		VFS_I(ip)->i_mode &= ~S_ISUID;
  53		if (VFS_I(ip)->i_mode & S_IXGRP)
  54			VFS_I(ip)->i_mode &= ~S_ISGID;
  55		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  56	}
  57
  58	if (flags & XFS_PREALLOC_SET)
  59		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  60	if (flags & XFS_PREALLOC_CLEAR)
  61		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  62
  63	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  64	if (flags & XFS_PREALLOC_SYNC)
  65		xfs_trans_set_sync(tp);
  66	return xfs_trans_commit(tp);
  67}
  68
  69/*
  70 * Fsync operations on directories are much simpler than on regular files,
  71 * as there is no file data to flush, and thus also no need for explicit
  72 * cache flush operations, and there are no non-transaction metadata updates
  73 * on directories either.
  74 */
  75STATIC int
  76xfs_dir_fsync(
  77	struct file		*file,
  78	loff_t			start,
  79	loff_t			end,
  80	int			datasync)
  81{
  82	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  83	struct xfs_mount	*mp = ip->i_mount;
  84	xfs_lsn_t		lsn = 0;
  85
  86	trace_xfs_dir_fsync(ip);
  87
  88	xfs_ilock(ip, XFS_ILOCK_SHARED);
  89	if (xfs_ipincount(ip))
  90		lsn = ip->i_itemp->ili_last_lsn;
  91	xfs_iunlock(ip, XFS_ILOCK_SHARED);
  92
  93	if (!lsn)
  94		return 0;
  95	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
  96}
  97
  98STATIC int
  99xfs_file_fsync(
 100	struct file		*file,
 101	loff_t			start,
 102	loff_t			end,
 103	int			datasync)
 104{
 105	struct inode		*inode = file->f_mapping->host;
 106	struct xfs_inode	*ip = XFS_I(inode);
 107	struct xfs_mount	*mp = ip->i_mount;
 108	int			error = 0;
 109	int			log_flushed = 0;
 110	xfs_lsn_t		lsn = 0;
 111
 112	trace_xfs_file_fsync(ip);
 113
 114	error = file_write_and_wait_range(file, start, end);
 115	if (error)
 116		return error;
 117
 118	if (XFS_FORCED_SHUTDOWN(mp))
 119		return -EIO;
 120
 121	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 122
 123	/*
 124	 * If we have an RT and/or log subvolume we need to make sure to flush
 125	 * the write cache the device used for file data first.  This is to
 126	 * ensure newly written file data make it to disk before logging the new
 127	 * inode size in case of an extending write.
 128	 */
 129	if (XFS_IS_REALTIME_INODE(ip))
 130		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 131	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 132		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 133
 134	/*
 135	 * All metadata updates are logged, which means that we just have to
 136	 * flush the log up to the latest LSN that touched the inode. If we have
 137	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 138	 * log force before we clear the ili_fsync_fields field. This ensures
 139	 * that we don't get a racing sync operation that does not wait for the
 140	 * metadata to hit the journal before returning. If we race with
 141	 * clearing the ili_fsync_fields, then all that will happen is the log
 142	 * force will do nothing as the lsn will already be on disk. We can't
 143	 * race with setting ili_fsync_fields because that is done under
 144	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 145	 * until after the ili_fsync_fields is cleared.
 146	 */
 147	xfs_ilock(ip, XFS_ILOCK_SHARED);
 148	if (xfs_ipincount(ip)) {
 149		if (!datasync ||
 150		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 151			lsn = ip->i_itemp->ili_last_lsn;
 152	}
 153
 154	if (lsn) {
 155		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 156		ip->i_itemp->ili_fsync_fields = 0;
 157	}
 158	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 159
 160	/*
 161	 * If we only have a single device, and the log force about was
 162	 * a no-op we might have to flush the data device cache here.
 163	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 164	 * an already allocated file and thus do not have any metadata to
 165	 * commit.
 166	 */
 167	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 168	    mp->m_logdev_targp == mp->m_ddev_targp)
 169		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 170
 171	return error;
 172}
 173
 174STATIC ssize_t
 175xfs_file_dio_aio_read(
 176	struct kiocb		*iocb,
 177	struct iov_iter		*to)
 178{
 179	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 180	size_t			count = iov_iter_count(to);
 181	ssize_t			ret;
 182
 183	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 184
 185	if (!count)
 186		return 0; /* skip atime */
 187
 188	file_accessed(iocb->ki_filp);
 189
 190	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 191	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 192	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 193
 194	return ret;
 195}
 196
 197static noinline ssize_t
 198xfs_file_dax_read(
 199	struct kiocb		*iocb,
 200	struct iov_iter		*to)
 201{
 202	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 203	size_t			count = iov_iter_count(to);
 204	ssize_t			ret = 0;
 205
 206	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 207
 208	if (!count)
 209		return 0; /* skip atime */
 210
 211	if (iocb->ki_flags & IOCB_NOWAIT) {
 212		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 213			return -EAGAIN;
 214	} else {
 215		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 216	}
 217
 218	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 219	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 220
 221	file_accessed(iocb->ki_filp);
 222	return ret;
 223}
 224
 225STATIC ssize_t
 226xfs_file_buffered_aio_read(
 227	struct kiocb		*iocb,
 228	struct iov_iter		*to)
 229{
 230	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 231	ssize_t			ret;
 232
 233	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 234
 235	if (iocb->ki_flags & IOCB_NOWAIT) {
 236		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 237			return -EAGAIN;
 238	} else {
 239		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 240	}
 241	ret = generic_file_read_iter(iocb, to);
 242	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 243
 244	return ret;
 245}
 246
 247STATIC ssize_t
 248xfs_file_read_iter(
 249	struct kiocb		*iocb,
 250	struct iov_iter		*to)
 251{
 252	struct inode		*inode = file_inode(iocb->ki_filp);
 253	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 254	ssize_t			ret = 0;
 255
 256	XFS_STATS_INC(mp, xs_read_calls);
 257
 258	if (XFS_FORCED_SHUTDOWN(mp))
 259		return -EIO;
 260
 261	if (IS_DAX(inode))
 262		ret = xfs_file_dax_read(iocb, to);
 263	else if (iocb->ki_flags & IOCB_DIRECT)
 264		ret = xfs_file_dio_aio_read(iocb, to);
 265	else
 266		ret = xfs_file_buffered_aio_read(iocb, to);
 267
 268	if (ret > 0)
 269		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 270	return ret;
 271}
 272
 273/*
 274 * Common pre-write limit and setup checks.
 275 *
 276 * Called with the iolocked held either shared and exclusive according to
 277 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 278 * if called for a direct write beyond i_size.
 279 */
 280STATIC ssize_t
 281xfs_file_aio_write_checks(
 282	struct kiocb		*iocb,
 283	struct iov_iter		*from,
 284	int			*iolock)
 285{
 286	struct file		*file = iocb->ki_filp;
 287	struct inode		*inode = file->f_mapping->host;
 288	struct xfs_inode	*ip = XFS_I(inode);
 289	ssize_t			error = 0;
 290	size_t			count = iov_iter_count(from);
 291	bool			drained_dio = false;
 292	loff_t			isize;
 293
 294restart:
 295	error = generic_write_checks(iocb, from);
 296	if (error <= 0)
 297		return error;
 298
 299	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 300	if (error)
 301		return error;
 302
 303	/*
 304	 * For changing security info in file_remove_privs() we need i_rwsem
 305	 * exclusively.
 306	 */
 307	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 308		xfs_iunlock(ip, *iolock);
 309		*iolock = XFS_IOLOCK_EXCL;
 310		xfs_ilock(ip, *iolock);
 311		goto restart;
 312	}
 313	/*
 314	 * If the offset is beyond the size of the file, we need to zero any
 315	 * blocks that fall between the existing EOF and the start of this
 316	 * write.  If zeroing is needed and we are currently holding the
 317	 * iolock shared, we need to update it to exclusive which implies
 318	 * having to redo all checks before.
 319	 *
 320	 * We need to serialise against EOF updates that occur in IO
 321	 * completions here. We want to make sure that nobody is changing the
 322	 * size while we do this check until we have placed an IO barrier (i.e.
 323	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 324	 * The spinlock effectively forms a memory barrier once we have the
 325	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 326	 * and hence be able to correctly determine if we need to run zeroing.
 327	 */
 328	spin_lock(&ip->i_flags_lock);
 329	isize = i_size_read(inode);
 330	if (iocb->ki_pos > isize) {
 331		spin_unlock(&ip->i_flags_lock);
 332		if (!drained_dio) {
 333			if (*iolock == XFS_IOLOCK_SHARED) {
 334				xfs_iunlock(ip, *iolock);
 335				*iolock = XFS_IOLOCK_EXCL;
 336				xfs_ilock(ip, *iolock);
 337				iov_iter_reexpand(from, count);
 338			}
 339			/*
 340			 * We now have an IO submission barrier in place, but
 341			 * AIO can do EOF updates during IO completion and hence
 342			 * we now need to wait for all of them to drain. Non-AIO
 343			 * DIO will have drained before we are given the
 344			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 345			 * no-op.
 346			 */
 347			inode_dio_wait(inode);
 348			drained_dio = true;
 349			goto restart;
 350		}
 351	
 352		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 353		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 354				NULL, &xfs_iomap_ops);
 355		if (error)
 356			return error;
 357	} else
 358		spin_unlock(&ip->i_flags_lock);
 359
 360	/*
 361	 * Updating the timestamps will grab the ilock again from
 362	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 363	 * lock above.  Eventually we should look into a way to avoid
 364	 * the pointless lock roundtrip.
 365	 */
 366	return file_modified(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 367}
 368
 369static int
 370xfs_dio_write_end_io(
 371	struct kiocb		*iocb,
 372	ssize_t			size,
 373	int			error,
 374	unsigned		flags)
 375{
 376	struct inode		*inode = file_inode(iocb->ki_filp);
 377	struct xfs_inode	*ip = XFS_I(inode);
 378	loff_t			offset = iocb->ki_pos;
 379	unsigned int		nofs_flag;
 380
 381	trace_xfs_end_io_direct_write(ip, offset, size);
 382
 383	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 384		return -EIO;
 385
 386	if (error)
 387		return error;
 388	if (!size)
 389		return 0;
 390
 391	/*
 392	 * Capture amount written on completion as we can't reliably account
 393	 * for it on submission.
 394	 */
 395	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 396
 397	/*
 398	 * We can allocate memory here while doing writeback on behalf of
 399	 * memory reclaim.  To avoid memory allocation deadlocks set the
 400	 * task-wide nofs context for the following operations.
 401	 */
 402	nofs_flag = memalloc_nofs_save();
 403
 404	if (flags & IOMAP_DIO_COW) {
 405		error = xfs_reflink_end_cow(ip, offset, size);
 406		if (error)
 407			goto out;
 408	}
 409
 410	/*
 411	 * Unwritten conversion updates the in-core isize after extent
 412	 * conversion but before updating the on-disk size. Updating isize any
 413	 * earlier allows a racing dio read to find unwritten extents before
 414	 * they are converted.
 415	 */
 416	if (flags & IOMAP_DIO_UNWRITTEN) {
 417		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 418		goto out;
 419	}
 420
 421	/*
 422	 * We need to update the in-core inode size here so that we don't end up
 423	 * with the on-disk inode size being outside the in-core inode size. We
 424	 * have no other method of updating EOF for AIO, so always do it here
 425	 * if necessary.
 426	 *
 427	 * We need to lock the test/set EOF update as we can be racing with
 428	 * other IO completions here to update the EOF. Failing to serialise
 429	 * here can result in EOF moving backwards and Bad Things Happen when
 430	 * that occurs.
 431	 */
 432	spin_lock(&ip->i_flags_lock);
 433	if (offset + size > i_size_read(inode)) {
 434		i_size_write(inode, offset + size);
 435		spin_unlock(&ip->i_flags_lock);
 436		error = xfs_setfilesize(ip, offset, size);
 437	} else {
 438		spin_unlock(&ip->i_flags_lock);
 439	}
 440
 441out:
 442	memalloc_nofs_restore(nofs_flag);
 443	return error;
 444}
 445
 446static const struct iomap_dio_ops xfs_dio_write_ops = {
 447	.end_io		= xfs_dio_write_end_io,
 448};
 449
 450/*
 451 * xfs_file_dio_aio_write - handle direct IO writes
 452 *
 453 * Lock the inode appropriately to prepare for and issue a direct IO write.
 454 * By separating it from the buffered write path we remove all the tricky to
 455 * follow locking changes and looping.
 456 *
 457 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 458 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 459 * pages are flushed out.
 460 *
 461 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 462 * allowing them to be done in parallel with reads and other direct IO writes.
 463 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 464 * needs to do sub-block zeroing and that requires serialisation against other
 465 * direct IOs to the same block. In this case we need to serialise the
 466 * submission of the unaligned IOs so that we don't get racing block zeroing in
 467 * the dio layer.  To avoid the problem with aio, we also need to wait for
 468 * outstanding IOs to complete so that unwritten extent conversion is completed
 469 * before we try to map the overlapping block. This is currently implemented by
 470 * hitting it with a big hammer (i.e. inode_dio_wait()).
 471 *
 472 * Returns with locks held indicated by @iolock and errors indicated by
 473 * negative return values.
 474 */
 475STATIC ssize_t
 476xfs_file_dio_aio_write(
 477	struct kiocb		*iocb,
 478	struct iov_iter		*from)
 479{
 480	struct file		*file = iocb->ki_filp;
 481	struct address_space	*mapping = file->f_mapping;
 482	struct inode		*inode = mapping->host;
 483	struct xfs_inode	*ip = XFS_I(inode);
 484	struct xfs_mount	*mp = ip->i_mount;
 485	ssize_t			ret = 0;
 486	int			unaligned_io = 0;
 487	int			iolock;
 488	size_t			count = iov_iter_count(from);
 489	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 490					mp->m_rtdev_targp : mp->m_ddev_targp;
 491
 492	/* DIO must be aligned to device logical sector size */
 493	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 494		return -EINVAL;
 495
 496	/*
 497	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 498	 * the file system block size.  We don't need to consider the EOF
 499	 * extension case here because xfs_file_aio_write_checks() will relock
 500	 * the inode as necessary for EOF zeroing cases and fill out the new
 501	 * inode size as appropriate.
 502	 */
 503	if ((iocb->ki_pos & mp->m_blockmask) ||
 504	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 505		unaligned_io = 1;
 506
 507		/*
 508		 * We can't properly handle unaligned direct I/O to reflink
 509		 * files yet, as we can't unshare a partial block.
 510		 */
 511		if (xfs_is_cow_inode(ip)) {
 512			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 513			return -EREMCHG;
 514		}
 515		iolock = XFS_IOLOCK_EXCL;
 516	} else {
 517		iolock = XFS_IOLOCK_SHARED;
 518	}
 519
 520	if (iocb->ki_flags & IOCB_NOWAIT) {
 521		/* unaligned dio always waits, bail */
 522		if (unaligned_io)
 523			return -EAGAIN;
 524		if (!xfs_ilock_nowait(ip, iolock))
 525			return -EAGAIN;
 526	} else {
 527		xfs_ilock(ip, iolock);
 528	}
 529
 530	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 531	if (ret)
 532		goto out;
 533	count = iov_iter_count(from);
 534
 535	/*
 536	 * If we are doing unaligned IO, we can't allow any other overlapping IO
 537	 * in-flight at the same time or we risk data corruption. Wait for all
 538	 * other IO to drain before we submit. If the IO is aligned, demote the
 539	 * iolock if we had to take the exclusive lock in
 540	 * xfs_file_aio_write_checks() for other reasons.
 541	 */
 542	if (unaligned_io) {
 543		inode_dio_wait(inode);
 
 
 
 
 
 
 544	} else if (iolock == XFS_IOLOCK_EXCL) {
 545		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 546		iolock = XFS_IOLOCK_SHARED;
 547	}
 548
 549	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 550	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, &xfs_dio_write_ops);
 551
 552	/*
 553	 * If unaligned, this is the only IO in-flight. If it has not yet
 554	 * completed, wait on it before we release the iolock to prevent
 555	 * subsequent overlapping IO.
 556	 */
 557	if (ret == -EIOCBQUEUED && unaligned_io)
 558		inode_dio_wait(inode);
 559out:
 560	xfs_iunlock(ip, iolock);
 561
 562	/*
 563	 * No fallback to buffered IO on errors for XFS, direct IO will either
 564	 * complete fully or fail.
 565	 */
 566	ASSERT(ret < 0 || ret == count);
 567	return ret;
 568}
 569
 570static noinline ssize_t
 571xfs_file_dax_write(
 572	struct kiocb		*iocb,
 573	struct iov_iter		*from)
 574{
 575	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 576	struct xfs_inode	*ip = XFS_I(inode);
 577	int			iolock = XFS_IOLOCK_EXCL;
 578	ssize_t			ret, error = 0;
 579	size_t			count;
 580	loff_t			pos;
 581
 582	if (iocb->ki_flags & IOCB_NOWAIT) {
 583		if (!xfs_ilock_nowait(ip, iolock))
 584			return -EAGAIN;
 585	} else {
 586		xfs_ilock(ip, iolock);
 587	}
 588
 589	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 590	if (ret)
 591		goto out;
 592
 593	pos = iocb->ki_pos;
 594	count = iov_iter_count(from);
 595
 596	trace_xfs_file_dax_write(ip, count, pos);
 597	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 598	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 599		i_size_write(inode, iocb->ki_pos);
 600		error = xfs_setfilesize(ip, pos, ret);
 601	}
 602out:
 603	xfs_iunlock(ip, iolock);
 604	if (error)
 605		return error;
 606
 607	if (ret > 0) {
 608		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 609
 610		/* Handle various SYNC-type writes */
 611		ret = generic_write_sync(iocb, ret);
 612	}
 613	return ret;
 614}
 615
 616STATIC ssize_t
 617xfs_file_buffered_aio_write(
 618	struct kiocb		*iocb,
 619	struct iov_iter		*from)
 620{
 621	struct file		*file = iocb->ki_filp;
 622	struct address_space	*mapping = file->f_mapping;
 623	struct inode		*inode = mapping->host;
 624	struct xfs_inode	*ip = XFS_I(inode);
 625	ssize_t			ret;
 626	int			enospc = 0;
 627	int			iolock;
 628
 629	if (iocb->ki_flags & IOCB_NOWAIT)
 630		return -EOPNOTSUPP;
 631
 632write_retry:
 633	iolock = XFS_IOLOCK_EXCL;
 634	xfs_ilock(ip, iolock);
 635
 636	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 637	if (ret)
 638		goto out;
 639
 640	/* We can write back this queue in page reclaim */
 641	current->backing_dev_info = inode_to_bdi(inode);
 642
 643	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 644	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 645	if (likely(ret >= 0))
 646		iocb->ki_pos += ret;
 647
 648	/*
 649	 * If we hit a space limit, try to free up some lingering preallocated
 650	 * space before returning an error. In the case of ENOSPC, first try to
 651	 * write back all dirty inodes to free up some of the excess reserved
 652	 * metadata space. This reduces the chances that the eofblocks scan
 653	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 654	 * also behaves as a filter to prevent too many eofblocks scans from
 655	 * running at the same time.
 656	 */
 657	if (ret == -EDQUOT && !enospc) {
 658		xfs_iunlock(ip, iolock);
 659		enospc = xfs_inode_free_quota_eofblocks(ip);
 660		if (enospc)
 661			goto write_retry;
 662		enospc = xfs_inode_free_quota_cowblocks(ip);
 663		if (enospc)
 664			goto write_retry;
 665		iolock = 0;
 666	} else if (ret == -ENOSPC && !enospc) {
 667		struct xfs_eofblocks eofb = {0};
 668
 669		enospc = 1;
 670		xfs_flush_inodes(ip->i_mount);
 671
 672		xfs_iunlock(ip, iolock);
 673		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 674		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 675		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 676		goto write_retry;
 677	}
 678
 679	current->backing_dev_info = NULL;
 680out:
 681	if (iolock)
 682		xfs_iunlock(ip, iolock);
 683
 684	if (ret > 0) {
 685		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 686		/* Handle various SYNC-type writes */
 687		ret = generic_write_sync(iocb, ret);
 688	}
 689	return ret;
 690}
 691
 692STATIC ssize_t
 693xfs_file_write_iter(
 694	struct kiocb		*iocb,
 695	struct iov_iter		*from)
 696{
 697	struct file		*file = iocb->ki_filp;
 698	struct address_space	*mapping = file->f_mapping;
 699	struct inode		*inode = mapping->host;
 700	struct xfs_inode	*ip = XFS_I(inode);
 701	ssize_t			ret;
 702	size_t			ocount = iov_iter_count(from);
 703
 704	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 705
 706	if (ocount == 0)
 707		return 0;
 708
 709	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 710		return -EIO;
 711
 712	if (IS_DAX(inode))
 713		return xfs_file_dax_write(iocb, from);
 714
 715	if (iocb->ki_flags & IOCB_DIRECT) {
 716		/*
 717		 * Allow a directio write to fall back to a buffered
 718		 * write *only* in the case that we're doing a reflink
 719		 * CoW.  In all other directio scenarios we do not
 720		 * allow an operation to fall back to buffered mode.
 721		 */
 722		ret = xfs_file_dio_aio_write(iocb, from);
 723		if (ret != -EREMCHG)
 724			return ret;
 
 
 
 725	}
 726
 727	return xfs_file_buffered_aio_write(iocb, from);
 728}
 729
 730static void
 731xfs_wait_dax_page(
 732	struct inode		*inode)
 733{
 734	struct xfs_inode        *ip = XFS_I(inode);
 735
 736	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 737	schedule();
 738	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 739}
 740
 741static int
 742xfs_break_dax_layouts(
 743	struct inode		*inode,
 744	bool			*retry)
 745{
 746	struct page		*page;
 747
 748	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 749
 750	page = dax_layout_busy_page(inode->i_mapping);
 751	if (!page)
 752		return 0;
 753
 754	*retry = true;
 755	return ___wait_var_event(&page->_refcount,
 756			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 757			0, 0, xfs_wait_dax_page(inode));
 758}
 759
 760int
 761xfs_break_layouts(
 762	struct inode		*inode,
 763	uint			*iolock,
 764	enum layout_break_reason reason)
 765{
 766	bool			retry;
 767	int			error;
 768
 769	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 770
 771	do {
 772		retry = false;
 773		switch (reason) {
 774		case BREAK_UNMAP:
 775			error = xfs_break_dax_layouts(inode, &retry);
 776			if (error || retry)
 777				break;
 778			/* fall through */
 779		case BREAK_WRITE:
 780			error = xfs_break_leased_layouts(inode, iolock, &retry);
 781			break;
 782		default:
 783			WARN_ON_ONCE(1);
 784			error = -EINVAL;
 785		}
 786	} while (error == 0 && retry);
 787
 788	return error;
 789}
 790
 791#define	XFS_FALLOC_FL_SUPPORTED						\
 792		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 793		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 794		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 795
 796STATIC long
 797xfs_file_fallocate(
 798	struct file		*file,
 799	int			mode,
 800	loff_t			offset,
 801	loff_t			len)
 802{
 803	struct inode		*inode = file_inode(file);
 804	struct xfs_inode	*ip = XFS_I(inode);
 805	long			error;
 806	enum xfs_prealloc_flags	flags = 0;
 807	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 808	loff_t			new_size = 0;
 809	bool			do_file_insert = false;
 810
 811	if (!S_ISREG(inode->i_mode))
 812		return -EINVAL;
 813	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 814		return -EOPNOTSUPP;
 815
 816	xfs_ilock(ip, iolock);
 817	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 818	if (error)
 819		goto out_unlock;
 820
 
 
 
 821	if (mode & FALLOC_FL_PUNCH_HOLE) {
 822		error = xfs_free_file_space(ip, offset, len);
 823		if (error)
 824			goto out_unlock;
 825	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 826		unsigned int blksize_mask = i_blocksize(inode) - 1;
 827
 828		if (offset & blksize_mask || len & blksize_mask) {
 829			error = -EINVAL;
 830			goto out_unlock;
 831		}
 832
 833		/*
 834		 * There is no need to overlap collapse range with EOF,
 835		 * in which case it is effectively a truncate operation
 836		 */
 837		if (offset + len >= i_size_read(inode)) {
 838			error = -EINVAL;
 839			goto out_unlock;
 840		}
 841
 842		new_size = i_size_read(inode) - len;
 843
 844		error = xfs_collapse_file_space(ip, offset, len);
 845		if (error)
 846			goto out_unlock;
 847	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 848		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 849		loff_t		isize = i_size_read(inode);
 850
 851		if (offset & blksize_mask || len & blksize_mask) {
 852			error = -EINVAL;
 853			goto out_unlock;
 854		}
 855
 856		/*
 857		 * New inode size must not exceed ->s_maxbytes, accounting for
 858		 * possible signed overflow.
 859		 */
 860		if (inode->i_sb->s_maxbytes - isize < len) {
 861			error = -EFBIG;
 862			goto out_unlock;
 863		}
 864		new_size = isize + len;
 865
 866		/* Offset should be less than i_size */
 867		if (offset >= isize) {
 868			error = -EINVAL;
 869			goto out_unlock;
 870		}
 871		do_file_insert = true;
 872	} else {
 873		flags |= XFS_PREALLOC_SET;
 874
 875		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 876		    offset + len > i_size_read(inode)) {
 877			new_size = offset + len;
 878			error = inode_newsize_ok(inode, new_size);
 879			if (error)
 880				goto out_unlock;
 881		}
 882
 883		if (mode & FALLOC_FL_ZERO_RANGE) {
 884			error = xfs_zero_file_space(ip, offset, len);
 885		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
 886			error = xfs_reflink_unshare(ip, offset, len);
 887			if (error)
 888				goto out_unlock;
 889
 890			if (!xfs_is_always_cow_inode(ip)) {
 891				error = xfs_alloc_file_space(ip, offset, len,
 892						XFS_BMAPI_PREALLOC);
 893			}
 894		} else {
 895			/*
 896			 * If always_cow mode we can't use preallocations and
 897			 * thus should not create them.
 898			 */
 899			if (xfs_is_always_cow_inode(ip)) {
 900				error = -EOPNOTSUPP;
 901				goto out_unlock;
 902			}
 903
 904			error = xfs_alloc_file_space(ip, offset, len,
 905						     XFS_BMAPI_PREALLOC);
 906		}
 907		if (error)
 908			goto out_unlock;
 909	}
 910
 911	if (file->f_flags & O_DSYNC)
 912		flags |= XFS_PREALLOC_SYNC;
 913
 914	error = xfs_update_prealloc_flags(ip, flags);
 915	if (error)
 916		goto out_unlock;
 917
 918	/* Change file size if needed */
 919	if (new_size) {
 920		struct iattr iattr;
 921
 922		iattr.ia_valid = ATTR_SIZE;
 923		iattr.ia_size = new_size;
 924		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 925		if (error)
 926			goto out_unlock;
 927	}
 928
 929	/*
 930	 * Perform hole insertion now that the file size has been
 931	 * updated so that if we crash during the operation we don't
 932	 * leave shifted extents past EOF and hence losing access to
 933	 * the data that is contained within them.
 934	 */
 935	if (do_file_insert)
 936		error = xfs_insert_file_space(ip, offset, len);
 937
 938out_unlock:
 939	xfs_iunlock(ip, iolock);
 940	return error;
 941}
 942
 943STATIC int
 944xfs_file_fadvise(
 945	struct file	*file,
 946	loff_t		start,
 947	loff_t		end,
 948	int		advice)
 949{
 950	struct xfs_inode *ip = XFS_I(file_inode(file));
 951	int ret;
 952	int lockflags = 0;
 953
 954	/*
 955	 * Operations creating pages in page cache need protection from hole
 956	 * punching and similar ops
 957	 */
 958	if (advice == POSIX_FADV_WILLNEED) {
 959		lockflags = XFS_IOLOCK_SHARED;
 960		xfs_ilock(ip, lockflags);
 961	}
 962	ret = generic_fadvise(file, start, end, advice);
 963	if (lockflags)
 964		xfs_iunlock(ip, lockflags);
 965	return ret;
 966}
 967
 968STATIC loff_t
 969xfs_file_remap_range(
 970	struct file		*file_in,
 971	loff_t			pos_in,
 972	struct file		*file_out,
 973	loff_t			pos_out,
 974	loff_t			len,
 975	unsigned int		remap_flags)
 976{
 977	struct inode		*inode_in = file_inode(file_in);
 978	struct xfs_inode	*src = XFS_I(inode_in);
 979	struct inode		*inode_out = file_inode(file_out);
 980	struct xfs_inode	*dest = XFS_I(inode_out);
 981	struct xfs_mount	*mp = src->i_mount;
 982	loff_t			remapped = 0;
 983	xfs_extlen_t		cowextsize;
 984	int			ret;
 985
 986	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
 987		return -EINVAL;
 988
 989	if (!xfs_sb_version_hasreflink(&mp->m_sb))
 990		return -EOPNOTSUPP;
 991
 992	if (XFS_FORCED_SHUTDOWN(mp))
 993		return -EIO;
 994
 995	/* Prepare and then clone file data. */
 996	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
 997			&len, remap_flags);
 998	if (ret < 0 || len == 0)
 999		return ret;
1000
1001	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1002
1003	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1004			&remapped);
1005	if (ret)
1006		goto out_unlock;
1007
1008	/*
1009	 * Carry the cowextsize hint from src to dest if we're sharing the
1010	 * entire source file to the entire destination file, the source file
1011	 * has a cowextsize hint, and the destination file does not.
1012	 */
1013	cowextsize = 0;
1014	if (pos_in == 0 && len == i_size_read(inode_in) &&
1015	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1016	    pos_out == 0 && len >= i_size_read(inode_out) &&
1017	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1018		cowextsize = src->i_d.di_cowextsize;
1019
1020	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1021			remap_flags);
1022
1023out_unlock:
1024	xfs_reflink_remap_unlock(file_in, file_out);
1025	if (ret)
1026		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1027	return remapped > 0 ? remapped : ret;
1028}
1029
1030STATIC int
1031xfs_file_open(
1032	struct inode	*inode,
1033	struct file	*file)
1034{
1035	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1036		return -EFBIG;
1037	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1038		return -EIO;
1039	file->f_mode |= FMODE_NOWAIT;
1040	return 0;
1041}
1042
1043STATIC int
1044xfs_dir_open(
1045	struct inode	*inode,
1046	struct file	*file)
1047{
1048	struct xfs_inode *ip = XFS_I(inode);
1049	int		mode;
1050	int		error;
1051
1052	error = xfs_file_open(inode, file);
1053	if (error)
1054		return error;
1055
1056	/*
1057	 * If there are any blocks, read-ahead block 0 as we're almost
1058	 * certain to have the next operation be a read there.
1059	 */
1060	mode = xfs_ilock_data_map_shared(ip);
1061	if (ip->i_d.di_nextents > 0)
1062		error = xfs_dir3_data_readahead(ip, 0, -1);
1063	xfs_iunlock(ip, mode);
1064	return error;
1065}
1066
1067STATIC int
1068xfs_file_release(
1069	struct inode	*inode,
1070	struct file	*filp)
1071{
1072	return xfs_release(XFS_I(inode));
1073}
1074
1075STATIC int
1076xfs_file_readdir(
1077	struct file	*file,
1078	struct dir_context *ctx)
1079{
1080	struct inode	*inode = file_inode(file);
1081	xfs_inode_t	*ip = XFS_I(inode);
1082	size_t		bufsize;
1083
1084	/*
1085	 * The Linux API doesn't pass down the total size of the buffer
1086	 * we read into down to the filesystem.  With the filldir concept
1087	 * it's not needed for correct information, but the XFS dir2 leaf
1088	 * code wants an estimate of the buffer size to calculate it's
1089	 * readahead window and size the buffers used for mapping to
1090	 * physical blocks.
1091	 *
1092	 * Try to give it an estimate that's good enough, maybe at some
1093	 * point we can change the ->readdir prototype to include the
1094	 * buffer size.  For now we use the current glibc buffer size.
1095	 */
1096	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1097
1098	return xfs_readdir(NULL, ip, ctx, bufsize);
1099}
1100
1101STATIC loff_t
1102xfs_file_llseek(
1103	struct file	*file,
1104	loff_t		offset,
1105	int		whence)
1106{
1107	struct inode		*inode = file->f_mapping->host;
1108
1109	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1110		return -EIO;
1111
1112	switch (whence) {
1113	default:
1114		return generic_file_llseek(file, offset, whence);
1115	case SEEK_HOLE:
1116		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1117		break;
1118	case SEEK_DATA:
1119		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1120		break;
1121	}
1122
1123	if (offset < 0)
1124		return offset;
1125	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1126}
1127
1128/*
1129 * Locking for serialisation of IO during page faults. This results in a lock
1130 * ordering of:
1131 *
1132 * mmap_sem (MM)
1133 *   sb_start_pagefault(vfs, freeze)
1134 *     i_mmaplock (XFS - truncate serialisation)
1135 *       page_lock (MM)
1136 *         i_lock (XFS - extent map serialisation)
1137 */
1138static vm_fault_t
1139__xfs_filemap_fault(
1140	struct vm_fault		*vmf,
1141	enum page_entry_size	pe_size,
1142	bool			write_fault)
1143{
1144	struct inode		*inode = file_inode(vmf->vma->vm_file);
1145	struct xfs_inode	*ip = XFS_I(inode);
1146	vm_fault_t		ret;
1147
1148	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1149
1150	if (write_fault) {
1151		sb_start_pagefault(inode->i_sb);
1152		file_update_time(vmf->vma->vm_file);
1153	}
1154
1155	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1156	if (IS_DAX(inode)) {
1157		pfn_t pfn;
1158
1159		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1160		if (ret & VM_FAULT_NEEDDSYNC)
1161			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1162	} else {
1163		if (write_fault)
1164			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1165		else
1166			ret = filemap_fault(vmf);
1167	}
1168	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1169
1170	if (write_fault)
1171		sb_end_pagefault(inode->i_sb);
1172	return ret;
1173}
1174
1175static vm_fault_t
1176xfs_filemap_fault(
1177	struct vm_fault		*vmf)
1178{
1179	/* DAX can shortcut the normal fault path on write faults! */
1180	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1181			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1182			(vmf->flags & FAULT_FLAG_WRITE));
1183}
1184
1185static vm_fault_t
1186xfs_filemap_huge_fault(
1187	struct vm_fault		*vmf,
1188	enum page_entry_size	pe_size)
1189{
1190	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1191		return VM_FAULT_FALLBACK;
1192
1193	/* DAX can shortcut the normal fault path on write faults! */
1194	return __xfs_filemap_fault(vmf, pe_size,
1195			(vmf->flags & FAULT_FLAG_WRITE));
1196}
1197
1198static vm_fault_t
1199xfs_filemap_page_mkwrite(
1200	struct vm_fault		*vmf)
1201{
1202	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1203}
1204
1205/*
1206 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1207 * on write faults. In reality, it needs to serialise against truncate and
1208 * prepare memory for writing so handle is as standard write fault.
1209 */
1210static vm_fault_t
1211xfs_filemap_pfn_mkwrite(
1212	struct vm_fault		*vmf)
1213{
1214
1215	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1216}
1217
1218static const struct vm_operations_struct xfs_file_vm_ops = {
1219	.fault		= xfs_filemap_fault,
1220	.huge_fault	= xfs_filemap_huge_fault,
1221	.map_pages	= filemap_map_pages,
1222	.page_mkwrite	= xfs_filemap_page_mkwrite,
1223	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1224};
1225
1226STATIC int
1227xfs_file_mmap(
1228	struct file	*filp,
1229	struct vm_area_struct *vma)
1230{
1231	struct dax_device 	*dax_dev;
1232
1233	dax_dev = xfs_find_daxdev_for_inode(file_inode(filp));
1234	/*
1235	 * We don't support synchronous mappings for non-DAX files and
1236	 * for DAX files if underneath dax_device is not synchronous.
1237	 */
1238	if (!daxdev_mapping_supported(vma, dax_dev))
1239		return -EOPNOTSUPP;
1240
1241	file_accessed(filp);
1242	vma->vm_ops = &xfs_file_vm_ops;
1243	if (IS_DAX(file_inode(filp)))
1244		vma->vm_flags |= VM_HUGEPAGE;
1245	return 0;
1246}
1247
1248const struct file_operations xfs_file_operations = {
1249	.llseek		= xfs_file_llseek,
1250	.read_iter	= xfs_file_read_iter,
1251	.write_iter	= xfs_file_write_iter,
1252	.splice_read	= generic_file_splice_read,
1253	.splice_write	= iter_file_splice_write,
1254	.iopoll		= iomap_dio_iopoll,
1255	.unlocked_ioctl	= xfs_file_ioctl,
1256#ifdef CONFIG_COMPAT
1257	.compat_ioctl	= xfs_file_compat_ioctl,
1258#endif
1259	.mmap		= xfs_file_mmap,
1260	.mmap_supported_flags = MAP_SYNC,
1261	.open		= xfs_file_open,
1262	.release	= xfs_file_release,
1263	.fsync		= xfs_file_fsync,
1264	.get_unmapped_area = thp_get_unmapped_area,
1265	.fallocate	= xfs_file_fallocate,
1266	.fadvise	= xfs_file_fadvise,
1267	.remap_file_range = xfs_file_remap_range,
1268};
1269
1270const struct file_operations xfs_dir_file_operations = {
1271	.open		= xfs_dir_open,
1272	.read		= generic_read_dir,
1273	.iterate_shared	= xfs_file_readdir,
1274	.llseek		= generic_file_llseek,
1275	.unlocked_ioctl	= xfs_file_ioctl,
1276#ifdef CONFIG_COMPAT
1277	.compat_ioctl	= xfs_file_compat_ioctl,
1278#endif
1279	.fsync		= xfs_dir_fsync,
1280};