Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_da_format.h"
  26#include "xfs_da_btree.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_bmap_util.h"
  32#include "xfs_error.h"
  33#include "xfs_dir2.h"
  34#include "xfs_dir2_priv.h"
  35#include "xfs_ioctl.h"
  36#include "xfs_trace.h"
  37#include "xfs_log.h"
  38#include "xfs_icache.h"
  39#include "xfs_pnfs.h"
  40#include "xfs_iomap.h"
  41#include "xfs_reflink.h"
  42
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
  46#include <linux/backing-dev.h>
  47#include <linux/mman.h>
 
 
  48
  49static const struct vm_operations_struct xfs_file_vm_ops;
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51int
  52xfs_update_prealloc_flags(
  53	struct xfs_inode	*ip,
  54	enum xfs_prealloc_flags	flags)
  55{
  56	struct xfs_trans	*tp;
  57	int			error;
  58
  59	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  60			0, 0, 0, &tp);
  61	if (error)
  62		return error;
  63
  64	xfs_ilock(ip, XFS_ILOCK_EXCL);
  65	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  66
  67	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  68		VFS_I(ip)->i_mode &= ~S_ISUID;
  69		if (VFS_I(ip)->i_mode & S_IXGRP)
  70			VFS_I(ip)->i_mode &= ~S_ISGID;
  71		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  72	}
  73
  74	if (flags & XFS_PREALLOC_SET)
  75		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  76	if (flags & XFS_PREALLOC_CLEAR)
  77		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
  78
  79	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  80	if (flags & XFS_PREALLOC_SYNC)
  81		xfs_trans_set_sync(tp);
  82	return xfs_trans_commit(tp);
  83}
  84
  85/*
  86 * Fsync operations on directories are much simpler than on regular files,
  87 * as there is no file data to flush, and thus also no need for explicit
  88 * cache flush operations, and there are no non-transaction metadata updates
  89 * on directories either.
  90 */
  91STATIC int
  92xfs_dir_fsync(
  93	struct file		*file,
  94	loff_t			start,
  95	loff_t			end,
  96	int			datasync)
  97{
  98	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  99	struct xfs_mount	*mp = ip->i_mount;
 100	xfs_lsn_t		lsn = 0;
 101
 102	trace_xfs_dir_fsync(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103
 104	xfs_ilock(ip, XFS_ILOCK_SHARED);
 105	if (xfs_ipincount(ip))
 106		lsn = ip->i_itemp->ili_last_lsn;
 107	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 108
 109	if (!lsn)
 110		return 0;
 111	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 
 
 
 112}
 113
 114STATIC int
 115xfs_file_fsync(
 116	struct file		*file,
 117	loff_t			start,
 118	loff_t			end,
 119	int			datasync)
 120{
 121	struct inode		*inode = file->f_mapping->host;
 122	struct xfs_inode	*ip = XFS_I(inode);
 123	struct xfs_mount	*mp = ip->i_mount;
 124	int			error = 0;
 125	int			log_flushed = 0;
 126	xfs_lsn_t		lsn = 0;
 127
 128	trace_xfs_file_fsync(ip);
 129
 130	error = file_write_and_wait_range(file, start, end);
 131	if (error)
 132		return error;
 133
 134	if (XFS_FORCED_SHUTDOWN(mp))
 135		return -EIO;
 136
 137	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 138
 139	/*
 140	 * If we have an RT and/or log subvolume we need to make sure to flush
 141	 * the write cache the device used for file data first.  This is to
 142	 * ensure newly written file data make it to disk before logging the new
 143	 * inode size in case of an extending write.
 144	 */
 145	if (XFS_IS_REALTIME_INODE(ip))
 146		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 147	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 148		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 149
 150	/*
 151	 * All metadata updates are logged, which means that we just have to
 152	 * flush the log up to the latest LSN that touched the inode. If we have
 153	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 154	 * log force before we clear the ili_fsync_fields field. This ensures
 155	 * that we don't get a racing sync operation that does not wait for the
 156	 * metadata to hit the journal before returning. If we race with
 157	 * clearing the ili_fsync_fields, then all that will happen is the log
 158	 * force will do nothing as the lsn will already be on disk. We can't
 159	 * race with setting ili_fsync_fields because that is done under
 160	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 161	 * until after the ili_fsync_fields is cleared.
 162	 */
 163	xfs_ilock(ip, XFS_ILOCK_SHARED);
 164	if (xfs_ipincount(ip)) {
 165		if (!datasync ||
 166		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 167			lsn = ip->i_itemp->ili_last_lsn;
 168	}
 169
 170	if (lsn) {
 171		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 172		ip->i_itemp->ili_fsync_fields = 0;
 173	}
 174	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 175
 176	/*
 177	 * If we only have a single device, and the log force about was
 178	 * a no-op we might have to flush the data device cache here.
 179	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 180	 * an already allocated file and thus do not have any metadata to
 181	 * commit.
 182	 */
 183	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 184	    mp->m_logdev_targp == mp->m_ddev_targp)
 185		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 186
 187	return error;
 188}
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190STATIC ssize_t
 191xfs_file_dio_aio_read(
 192	struct kiocb		*iocb,
 193	struct iov_iter		*to)
 194{
 195	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 196	size_t			count = iov_iter_count(to);
 197	ssize_t			ret;
 198
 199	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 200
 201	if (!count)
 202		return 0; /* skip atime */
 203
 204	file_accessed(iocb->ki_filp);
 205
 206	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 207	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 
 
 208	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 209
 210	return ret;
 211}
 212
 213static noinline ssize_t
 214xfs_file_dax_read(
 215	struct kiocb		*iocb,
 216	struct iov_iter		*to)
 217{
 218	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 219	size_t			count = iov_iter_count(to);
 220	ssize_t			ret = 0;
 221
 222	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 223
 224	if (!count)
 225		return 0; /* skip atime */
 226
 227	if (iocb->ki_flags & IOCB_NOWAIT) {
 228		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 229			return -EAGAIN;
 230	} else {
 231		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 232	}
 233
 234	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 235	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 236
 237	file_accessed(iocb->ki_filp);
 238	return ret;
 239}
 240
 241STATIC ssize_t
 242xfs_file_buffered_aio_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 245{
 246	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 247	ssize_t			ret;
 248
 249	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 250
 251	if (iocb->ki_flags & IOCB_NOWAIT) {
 252		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 253			return -EAGAIN;
 254	} else {
 255		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 256	}
 257	ret = generic_file_read_iter(iocb, to);
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 259
 260	return ret;
 261}
 262
 263STATIC ssize_t
 264xfs_file_read_iter(
 265	struct kiocb		*iocb,
 266	struct iov_iter		*to)
 267{
 268	struct inode		*inode = file_inode(iocb->ki_filp);
 269	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 270	ssize_t			ret = 0;
 271
 272	XFS_STATS_INC(mp, xs_read_calls);
 273
 274	if (XFS_FORCED_SHUTDOWN(mp))
 275		return -EIO;
 276
 277	if (IS_DAX(inode))
 278		ret = xfs_file_dax_read(iocb, to);
 279	else if (iocb->ki_flags & IOCB_DIRECT)
 280		ret = xfs_file_dio_aio_read(iocb, to);
 281	else
 282		ret = xfs_file_buffered_aio_read(iocb, to);
 283
 284	if (ret > 0)
 285		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 286	return ret;
 287}
 288
 289/*
 290 * Common pre-write limit and setup checks.
 291 *
 292 * Called with the iolocked held either shared and exclusive according to
 293 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 294 * if called for a direct write beyond i_size.
 295 */
 296STATIC ssize_t
 297xfs_file_aio_write_checks(
 298	struct kiocb		*iocb,
 299	struct iov_iter		*from,
 300	int			*iolock)
 301{
 302	struct file		*file = iocb->ki_filp;
 303	struct inode		*inode = file->f_mapping->host;
 304	struct xfs_inode	*ip = XFS_I(inode);
 305	ssize_t			error = 0;
 306	size_t			count = iov_iter_count(from);
 307	bool			drained_dio = false;
 308	loff_t			isize;
 309
 310restart:
 311	error = generic_write_checks(iocb, from);
 312	if (error <= 0)
 313		return error;
 314
 315	error = xfs_break_layouts(inode, iolock);
 
 
 
 
 
 
 
 316	if (error)
 317		return error;
 318
 319	/*
 320	 * For changing security info in file_remove_privs() we need i_rwsem
 321	 * exclusively.
 322	 */
 323	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 324		xfs_iunlock(ip, *iolock);
 325		*iolock = XFS_IOLOCK_EXCL;
 326		xfs_ilock(ip, *iolock);
 
 
 
 
 327		goto restart;
 328	}
 
 329	/*
 330	 * If the offset is beyond the size of the file, we need to zero any
 331	 * blocks that fall between the existing EOF and the start of this
 332	 * write.  If zeroing is needed and we are currently holding the
 333	 * iolock shared, we need to update it to exclusive which implies
 334	 * having to redo all checks before.
 335	 *
 336	 * We need to serialise against EOF updates that occur in IO
 337	 * completions here. We want to make sure that nobody is changing the
 338	 * size while we do this check until we have placed an IO barrier (i.e.
 339	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 340	 * The spinlock effectively forms a memory barrier once we have the
 341	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 342	 * and hence be able to correctly determine if we need to run zeroing.
 
 
 
 
 
 343	 */
 
 
 
 344	spin_lock(&ip->i_flags_lock);
 345	isize = i_size_read(inode);
 346	if (iocb->ki_pos > isize) {
 347		spin_unlock(&ip->i_flags_lock);
 
 
 
 
 348		if (!drained_dio) {
 349			if (*iolock == XFS_IOLOCK_SHARED) {
 350				xfs_iunlock(ip, *iolock);
 351				*iolock = XFS_IOLOCK_EXCL;
 352				xfs_ilock(ip, *iolock);
 353				iov_iter_reexpand(from, count);
 354			}
 355			/*
 356			 * We now have an IO submission barrier in place, but
 357			 * AIO can do EOF updates during IO completion and hence
 358			 * we now need to wait for all of them to drain. Non-AIO
 359			 * DIO will have drained before we are given the
 360			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 361			 * no-op.
 362			 */
 363			inode_dio_wait(inode);
 364			drained_dio = true;
 365			goto restart;
 366		}
 367	
 368		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 369		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 370				NULL, &xfs_iomap_ops);
 371		if (error)
 372			return error;
 373	} else
 374		spin_unlock(&ip->i_flags_lock);
 375
 376	/*
 377	 * Updating the timestamps will grab the ilock again from
 378	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 379	 * lock above.  Eventually we should look into a way to avoid
 380	 * the pointless lock roundtrip.
 381	 */
 382	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 383		error = file_update_time(file);
 384		if (error)
 385			return error;
 386	}
 387
 388	/*
 389	 * If we're writing the file then make sure to clear the setuid and
 390	 * setgid bits if the process is not being run by root.  This keeps
 391	 * people from modifying setuid and setgid binaries.
 392	 */
 393	if (!IS_NOSEC(inode))
 394		return file_remove_privs(file);
 395	return 0;
 396}
 397
 398static int
 399xfs_dio_write_end_io(
 400	struct kiocb		*iocb,
 401	ssize_t			size,
 
 402	unsigned		flags)
 403{
 404	struct inode		*inode = file_inode(iocb->ki_filp);
 405	struct xfs_inode	*ip = XFS_I(inode);
 406	loff_t			offset = iocb->ki_pos;
 407	int			error = 0;
 408
 409	trace_xfs_end_io_direct_write(ip, offset, size);
 410
 411	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 412		return -EIO;
 413
 414	if (size <= 0)
 415		return size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416
 417	if (flags & IOMAP_DIO_COW) {
 418		error = xfs_reflink_end_cow(ip, offset, size);
 419		if (error)
 420			return error;
 421	}
 422
 423	/*
 424	 * Unwritten conversion updates the in-core isize after extent
 425	 * conversion but before updating the on-disk size. Updating isize any
 426	 * earlier allows a racing dio read to find unwritten extents before
 427	 * they are converted.
 428	 */
 429	if (flags & IOMAP_DIO_UNWRITTEN)
 430		return xfs_iomap_write_unwritten(ip, offset, size, true);
 
 
 431
 432	/*
 433	 * We need to update the in-core inode size here so that we don't end up
 434	 * with the on-disk inode size being outside the in-core inode size. We
 435	 * have no other method of updating EOF for AIO, so always do it here
 436	 * if necessary.
 437	 *
 438	 * We need to lock the test/set EOF update as we can be racing with
 439	 * other IO completions here to update the EOF. Failing to serialise
 440	 * here can result in EOF moving backwards and Bad Things Happen when
 441	 * that occurs.
 
 
 
 
 
 
 
 442	 */
 
 
 
 443	spin_lock(&ip->i_flags_lock);
 444	if (offset + size > i_size_read(inode)) {
 445		i_size_write(inode, offset + size);
 446		spin_unlock(&ip->i_flags_lock);
 447		error = xfs_setfilesize(ip, offset, size);
 448	} else {
 449		spin_unlock(&ip->i_flags_lock);
 450	}
 451
 
 
 452	return error;
 453}
 454
 
 
 
 
 455/*
 456 * xfs_file_dio_aio_write - handle direct IO writes
 457 *
 458 * Lock the inode appropriately to prepare for and issue a direct IO write.
 459 * By separating it from the buffered write path we remove all the tricky to
 460 * follow locking changes and looping.
 461 *
 462 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 463 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 464 * pages are flushed out.
 465 *
 466 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 467 * allowing them to be done in parallel with reads and other direct IO writes.
 468 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 469 * needs to do sub-block zeroing and that requires serialisation against other
 470 * direct IOs to the same block. In this case we need to serialise the
 471 * submission of the unaligned IOs so that we don't get racing block zeroing in
 472 * the dio layer.  To avoid the problem with aio, we also need to wait for
 473 * outstanding IOs to complete so that unwritten extent conversion is completed
 474 * before we try to map the overlapping block. This is currently implemented by
 475 * hitting it with a big hammer (i.e. inode_dio_wait()).
 476 *
 477 * Returns with locks held indicated by @iolock and errors indicated by
 478 * negative return values.
 479 */
 480STATIC ssize_t
 481xfs_file_dio_aio_write(
 
 482	struct kiocb		*iocb,
 483	struct iov_iter		*from)
 484{
 485	struct file		*file = iocb->ki_filp;
 486	struct address_space	*mapping = file->f_mapping;
 487	struct inode		*inode = mapping->host;
 488	struct xfs_inode	*ip = XFS_I(inode);
 489	struct xfs_mount	*mp = ip->i_mount;
 490	ssize_t			ret = 0;
 491	int			unaligned_io = 0;
 492	int			iolock;
 493	size_t			count = iov_iter_count(from);
 494	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 495					mp->m_rtdev_targp : mp->m_ddev_targp;
 496
 497	/* DIO must be aligned to device logical sector size */
 498	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 499		return -EINVAL;
 
 
 
 500
 501	/*
 502	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 503	 * the file system block size.  We don't need to consider the EOF
 504	 * extension case here because xfs_file_aio_write_checks() will relock
 505	 * the inode as necessary for EOF zeroing cases and fill out the new
 506	 * inode size as appropriate.
 507	 */
 508	if ((iocb->ki_pos & mp->m_blockmask) ||
 509	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 510		unaligned_io = 1;
 511
 512		/*
 513		 * We can't properly handle unaligned direct I/O to reflink
 514		 * files yet, as we can't unshare a partial block.
 515		 */
 516		if (xfs_is_reflink_inode(ip)) {
 517			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 518			return -EREMCHG;
 519		}
 520		iolock = XFS_IOLOCK_EXCL;
 521	} else {
 522		iolock = XFS_IOLOCK_SHARED;
 523	}
 
 
 
 
 
 
 
 
 524
 525	if (iocb->ki_flags & IOCB_NOWAIT) {
 526		if (!xfs_ilock_nowait(ip, iolock))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527			return -EAGAIN;
 528	} else {
 529		xfs_ilock(ip, iolock);
 530	}
 531
 532	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 533	if (ret)
 534		goto out;
 535	count = iov_iter_count(from);
 536
 537	/*
 538	 * If we are doing unaligned IO, wait for all other IO to drain,
 539	 * otherwise demote the lock if we had to take the exclusive lock
 540	 * for other reasons in xfs_file_aio_write_checks.
 541	 */
 542	if (unaligned_io) {
 543		/* If we are going to wait for other DIO to finish, bail */
 544		if (iocb->ki_flags & IOCB_NOWAIT) {
 545			if (atomic_read(&inode->i_dio_count))
 546				return -EAGAIN;
 547		} else {
 548			inode_dio_wait(inode);
 549		}
 550	} else if (iolock == XFS_IOLOCK_EXCL) {
 551		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 552		iolock = XFS_IOLOCK_SHARED;
 553	}
 554
 555	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 556	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 557out:
 558	xfs_iunlock(ip, iolock);
 559
 560	/*
 561	 * No fallback to buffered IO on errors for XFS, direct IO will either
 562	 * complete fully or fail.
 
 
 563	 */
 564	ASSERT(ret < 0 || ret == count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565	return ret;
 566}
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568static noinline ssize_t
 569xfs_file_dax_write(
 570	struct kiocb		*iocb,
 571	struct iov_iter		*from)
 572{
 573	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 574	struct xfs_inode	*ip = XFS_I(inode);
 575	int			iolock = XFS_IOLOCK_EXCL;
 576	ssize_t			ret, error = 0;
 577	size_t			count;
 578	loff_t			pos;
 579
 580	if (iocb->ki_flags & IOCB_NOWAIT) {
 581		if (!xfs_ilock_nowait(ip, iolock))
 582			return -EAGAIN;
 583	} else {
 584		xfs_ilock(ip, iolock);
 585	}
 586
 587	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 588	if (ret)
 589		goto out;
 590
 591	pos = iocb->ki_pos;
 592	count = iov_iter_count(from);
 593
 594	trace_xfs_file_dax_write(ip, count, pos);
 595	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 596	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 597		i_size_write(inode, iocb->ki_pos);
 598		error = xfs_setfilesize(ip, pos, ret);
 599	}
 600out:
 601	xfs_iunlock(ip, iolock);
 602	return error ? error : ret;
 
 
 
 
 
 
 
 
 
 
 603}
 604
 605STATIC ssize_t
 606xfs_file_buffered_aio_write(
 607	struct kiocb		*iocb,
 608	struct iov_iter		*from)
 609{
 610	struct file		*file = iocb->ki_filp;
 611	struct address_space	*mapping = file->f_mapping;
 612	struct inode		*inode = mapping->host;
 613	struct xfs_inode	*ip = XFS_I(inode);
 614	ssize_t			ret;
 615	int			enospc = 0;
 616	int			iolock;
 617
 618	if (iocb->ki_flags & IOCB_NOWAIT)
 619		return -EOPNOTSUPP;
 620
 621write_retry:
 622	iolock = XFS_IOLOCK_EXCL;
 623	xfs_ilock(ip, iolock);
 624
 625	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 626	if (ret)
 627		goto out;
 628
 629	/* We can write back this queue in page reclaim */
 630	current->backing_dev_info = inode_to_bdi(inode);
 631
 632	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 633	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 
 634	if (likely(ret >= 0))
 635		iocb->ki_pos += ret;
 636
 637	/*
 638	 * If we hit a space limit, try to free up some lingering preallocated
 639	 * space before returning an error. In the case of ENOSPC, first try to
 640	 * write back all dirty inodes to free up some of the excess reserved
 641	 * metadata space. This reduces the chances that the eofblocks scan
 642	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 643	 * also behaves as a filter to prevent too many eofblocks scans from
 644	 * running at the same time.
 
 645	 */
 646	if (ret == -EDQUOT && !enospc) {
 647		xfs_iunlock(ip, iolock);
 648		enospc = xfs_inode_free_quota_eofblocks(ip);
 649		if (enospc)
 650			goto write_retry;
 651		enospc = xfs_inode_free_quota_cowblocks(ip);
 652		if (enospc)
 653			goto write_retry;
 654		iolock = 0;
 655	} else if (ret == -ENOSPC && !enospc) {
 656		struct xfs_eofblocks eofb = {0};
 657
 658		enospc = 1;
 659		xfs_flush_inodes(ip->i_mount);
 660
 661		xfs_iunlock(ip, iolock);
 662		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 663		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 664		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 665		goto write_retry;
 666	}
 667
 668	current->backing_dev_info = NULL;
 669out:
 670	if (iolock)
 671		xfs_iunlock(ip, iolock);
 
 
 
 
 
 
 672	return ret;
 673}
 674
 675STATIC ssize_t
 676xfs_file_write_iter(
 677	struct kiocb		*iocb,
 678	struct iov_iter		*from)
 679{
 680	struct file		*file = iocb->ki_filp;
 681	struct address_space	*mapping = file->f_mapping;
 682	struct inode		*inode = mapping->host;
 683	struct xfs_inode	*ip = XFS_I(inode);
 684	ssize_t			ret;
 685	size_t			ocount = iov_iter_count(from);
 686
 687	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 688
 689	if (ocount == 0)
 690		return 0;
 691
 692	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 693		return -EIO;
 694
 695	if (IS_DAX(inode))
 696		ret = xfs_file_dax_write(iocb, from);
 697	else if (iocb->ki_flags & IOCB_DIRECT) {
 
 698		/*
 699		 * Allow a directio write to fall back to a buffered
 700		 * write *only* in the case that we're doing a reflink
 701		 * CoW.  In all other directio scenarios we do not
 702		 * allow an operation to fall back to buffered mode.
 703		 */
 704		ret = xfs_file_dio_aio_write(iocb, from);
 705		if (ret == -EREMCHG)
 706			goto buffered;
 707	} else {
 708buffered:
 709		ret = xfs_file_buffered_aio_write(iocb, from);
 710	}
 711
 712	if (ret > 0) {
 713		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 714
 715		/* Handle various SYNC-type writes */
 716		ret = generic_write_sync(iocb, ret);
 717	}
 718	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719}
 720
 721#define	XFS_FALLOC_FL_SUPPORTED						\
 722		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 723		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 724		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 725
 726STATIC long
 727xfs_file_fallocate(
 728	struct file		*file,
 729	int			mode,
 730	loff_t			offset,
 731	loff_t			len)
 732{
 733	struct inode		*inode = file_inode(file);
 734	struct xfs_inode	*ip = XFS_I(inode);
 735	long			error;
 736	enum xfs_prealloc_flags	flags = 0;
 737	uint			iolock = XFS_IOLOCK_EXCL;
 738	loff_t			new_size = 0;
 739	bool			do_file_insert = false;
 740
 741	if (!S_ISREG(inode->i_mode))
 742		return -EINVAL;
 743	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 744		return -EOPNOTSUPP;
 745
 746	xfs_ilock(ip, iolock);
 747	error = xfs_break_layouts(inode, &iolock);
 748	if (error)
 749		goto out_unlock;
 750
 751	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 752	iolock |= XFS_MMAPLOCK_EXCL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753
 754	if (mode & FALLOC_FL_PUNCH_HOLE) {
 755		error = xfs_free_file_space(ip, offset, len);
 756		if (error)
 757			goto out_unlock;
 758	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 759		unsigned int blksize_mask = i_blocksize(inode) - 1;
 760
 761		if (offset & blksize_mask || len & blksize_mask) {
 762			error = -EINVAL;
 763			goto out_unlock;
 764		}
 765
 766		/*
 767		 * There is no need to overlap collapse range with EOF,
 768		 * in which case it is effectively a truncate operation
 769		 */
 770		if (offset + len >= i_size_read(inode)) {
 771			error = -EINVAL;
 772			goto out_unlock;
 773		}
 774
 775		new_size = i_size_read(inode) - len;
 776
 777		error = xfs_collapse_file_space(ip, offset, len);
 778		if (error)
 779			goto out_unlock;
 780	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 781		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 782		loff_t		isize = i_size_read(inode);
 783
 784		if (offset & blksize_mask || len & blksize_mask) {
 785			error = -EINVAL;
 786			goto out_unlock;
 787		}
 788
 789		/*
 790		 * New inode size must not exceed ->s_maxbytes, accounting for
 791		 * possible signed overflow.
 792		 */
 793		if (inode->i_sb->s_maxbytes - isize < len) {
 794			error = -EFBIG;
 795			goto out_unlock;
 796		}
 797		new_size = isize + len;
 798
 799		/* Offset should be less than i_size */
 800		if (offset >= isize) {
 801			error = -EINVAL;
 802			goto out_unlock;
 803		}
 804		do_file_insert = true;
 805	} else {
 806		flags |= XFS_PREALLOC_SET;
 807
 808		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 809		    offset + len > i_size_read(inode)) {
 810			new_size = offset + len;
 811			error = inode_newsize_ok(inode, new_size);
 812			if (error)
 813				goto out_unlock;
 814		}
 815
 816		if (mode & FALLOC_FL_ZERO_RANGE)
 817			error = xfs_zero_file_space(ip, offset, len);
 818		else {
 819			if (mode & FALLOC_FL_UNSHARE_RANGE) {
 820				error = xfs_reflink_unshare(ip, offset, len);
 821				if (error)
 822					goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823			}
 
 
 
 824			error = xfs_alloc_file_space(ip, offset, len,
 825						     XFS_BMAPI_PREALLOC);
 
 
 826		}
 827		if (error)
 828			goto out_unlock;
 829	}
 830
 831	if (file->f_flags & O_DSYNC)
 832		flags |= XFS_PREALLOC_SYNC;
 833
 834	error = xfs_update_prealloc_flags(ip, flags);
 835	if (error)
 836		goto out_unlock;
 837
 838	/* Change file size if needed */
 839	if (new_size) {
 840		struct iattr iattr;
 841
 842		iattr.ia_valid = ATTR_SIZE;
 843		iattr.ia_size = new_size;
 844		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 
 845		if (error)
 846			goto out_unlock;
 847	}
 848
 849	/*
 850	 * Perform hole insertion now that the file size has been
 851	 * updated so that if we crash during the operation we don't
 852	 * leave shifted extents past EOF and hence losing access to
 853	 * the data that is contained within them.
 854	 */
 855	if (do_file_insert)
 856		error = xfs_insert_file_space(ip, offset, len);
 857
 858out_unlock:
 859	xfs_iunlock(ip, iolock);
 860	return error;
 861}
 862
 863STATIC int
 864xfs_file_clone_range(
 865	struct file	*file_in,
 866	loff_t		pos_in,
 867	struct file	*file_out,
 868	loff_t		pos_out,
 869	u64		len)
 870{
 871	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
 872				     len, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 873}
 874
 875STATIC ssize_t
 876xfs_file_dedupe_range(
 877	struct file	*src_file,
 878	u64		loff,
 879	u64		len,
 880	struct file	*dst_file,
 881	u64		dst_loff)
 882{
 883	struct inode	*srci = file_inode(src_file);
 884	u64		max_dedupe;
 885	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886
 887	/*
 888	 * Since we have to read all these pages in to compare them, cut
 889	 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
 890	 * That means we won't do more than MAX_RW_COUNT IO per request.
 891	 */
 892	max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
 893	if (len > max_dedupe)
 894		len = max_dedupe;
 895	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
 896				     len, true);
 897	if (error)
 898		return error;
 899	return len;
 
 
 
 
 
 
 
 
 
 
 
 900}
 901
 902STATIC int
 903xfs_file_open(
 904	struct inode	*inode,
 905	struct file	*file)
 906{
 907	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 908		return -EFBIG;
 909	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 910		return -EIO;
 911	file->f_mode |= FMODE_NOWAIT;
 912	return 0;
 913}
 914
 915STATIC int
 916xfs_dir_open(
 917	struct inode	*inode,
 918	struct file	*file)
 919{
 920	struct xfs_inode *ip = XFS_I(inode);
 921	int		mode;
 922	int		error;
 923
 924	error = xfs_file_open(inode, file);
 925	if (error)
 926		return error;
 927
 928	/*
 929	 * If there are any blocks, read-ahead block 0 as we're almost
 930	 * certain to have the next operation be a read there.
 931	 */
 932	mode = xfs_ilock_data_map_shared(ip);
 933	if (ip->i_d.di_nextents > 0)
 934		error = xfs_dir3_data_readahead(ip, 0, -1);
 935	xfs_iunlock(ip, mode);
 936	return error;
 937}
 938
 939STATIC int
 940xfs_file_release(
 941	struct inode	*inode,
 942	struct file	*filp)
 943{
 944	return xfs_release(XFS_I(inode));
 945}
 946
 947STATIC int
 948xfs_file_readdir(
 949	struct file	*file,
 950	struct dir_context *ctx)
 951{
 952	struct inode	*inode = file_inode(file);
 953	xfs_inode_t	*ip = XFS_I(inode);
 954	size_t		bufsize;
 955
 956	/*
 957	 * The Linux API doesn't pass down the total size of the buffer
 958	 * we read into down to the filesystem.  With the filldir concept
 959	 * it's not needed for correct information, but the XFS dir2 leaf
 960	 * code wants an estimate of the buffer size to calculate it's
 961	 * readahead window and size the buffers used for mapping to
 962	 * physical blocks.
 963	 *
 964	 * Try to give it an estimate that's good enough, maybe at some
 965	 * point we can change the ->readdir prototype to include the
 966	 * buffer size.  For now we use the current glibc buffer size.
 967	 */
 968	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
 969
 970	return xfs_readdir(NULL, ip, ctx, bufsize);
 971}
 972
 973STATIC loff_t
 974xfs_file_llseek(
 975	struct file	*file,
 976	loff_t		offset,
 977	int		whence)
 978{
 979	struct inode		*inode = file->f_mapping->host;
 980
 981	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
 982		return -EIO;
 983
 984	switch (whence) {
 985	default:
 986		return generic_file_llseek(file, offset, whence);
 987	case SEEK_HOLE:
 988		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
 989		break;
 990	case SEEK_DATA:
 991		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
 992		break;
 993	}
 994
 995	if (offset < 0)
 996		return offset;
 997	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 998}
 999
1000/*
1001 * Locking for serialisation of IO during page faults. This results in a lock
1002 * ordering of:
1003 *
1004 * mmap_sem (MM)
1005 *   sb_start_pagefault(vfs, freeze)
1006 *     i_mmaplock (XFS - truncate serialisation)
1007 *       page_lock (MM)
1008 *         i_lock (XFS - extent map serialisation)
1009 */
1010static int
1011__xfs_filemap_fault(
1012	struct vm_fault		*vmf,
1013	enum page_entry_size	pe_size,
1014	bool			write_fault)
1015{
1016	struct inode		*inode = file_inode(vmf->vma->vm_file);
1017	struct xfs_inode	*ip = XFS_I(inode);
1018	int			ret;
1019
1020	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1021
1022	if (write_fault) {
1023		sb_start_pagefault(inode->i_sb);
1024		file_update_time(vmf->vma->vm_file);
1025	}
1026
1027	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1028	if (IS_DAX(inode)) {
1029		pfn_t pfn;
1030
1031		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
 
 
 
1032		if (ret & VM_FAULT_NEEDDSYNC)
1033			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1034	} else {
1035		if (write_fault)
1036			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
 
1037		else
1038			ret = filemap_fault(vmf);
1039	}
1040	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1041
1042	if (write_fault)
1043		sb_end_pagefault(inode->i_sb);
1044	return ret;
1045}
1046
1047static int
 
 
 
 
 
 
 
 
1048xfs_filemap_fault(
1049	struct vm_fault		*vmf)
1050{
1051	/* DAX can shortcut the normal fault path on write faults! */
1052	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1053			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1054			(vmf->flags & FAULT_FLAG_WRITE));
1055}
1056
1057static int
1058xfs_filemap_huge_fault(
1059	struct vm_fault		*vmf,
1060	enum page_entry_size	pe_size)
1061{
1062	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1063		return VM_FAULT_FALLBACK;
1064
1065	/* DAX can shortcut the normal fault path on write faults! */
1066	return __xfs_filemap_fault(vmf, pe_size,
1067			(vmf->flags & FAULT_FLAG_WRITE));
1068}
1069
1070static int
1071xfs_filemap_page_mkwrite(
1072	struct vm_fault		*vmf)
1073{
1074	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1075}
1076
1077/*
1078 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1079 * on write faults. In reality, it needs to serialise against truncate and
1080 * prepare memory for writing so handle is as standard write fault.
1081 */
1082static int
1083xfs_filemap_pfn_mkwrite(
1084	struct vm_fault		*vmf)
1085{
1086
1087	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1088}
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090static const struct vm_operations_struct xfs_file_vm_ops = {
1091	.fault		= xfs_filemap_fault,
1092	.huge_fault	= xfs_filemap_huge_fault,
1093	.map_pages	= filemap_map_pages,
1094	.page_mkwrite	= xfs_filemap_page_mkwrite,
1095	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1096};
1097
1098STATIC int
1099xfs_file_mmap(
1100	struct file	*filp,
1101	struct vm_area_struct *vma)
1102{
 
 
 
1103	/*
1104	 * We don't support synchronous mappings for non-DAX files. At least
1105	 * until someone comes with a sensible use case.
1106	 */
1107	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1108		return -EOPNOTSUPP;
1109
1110	file_accessed(filp);
1111	vma->vm_ops = &xfs_file_vm_ops;
1112	if (IS_DAX(file_inode(filp)))
1113		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1114	return 0;
1115}
1116
1117const struct file_operations xfs_file_operations = {
1118	.llseek		= xfs_file_llseek,
1119	.read_iter	= xfs_file_read_iter,
1120	.write_iter	= xfs_file_write_iter,
1121	.splice_read	= generic_file_splice_read,
1122	.splice_write	= iter_file_splice_write,
 
1123	.unlocked_ioctl	= xfs_file_ioctl,
1124#ifdef CONFIG_COMPAT
1125	.compat_ioctl	= xfs_file_compat_ioctl,
1126#endif
1127	.mmap		= xfs_file_mmap,
1128	.mmap_supported_flags = MAP_SYNC,
1129	.open		= xfs_file_open,
1130	.release	= xfs_file_release,
1131	.fsync		= xfs_file_fsync,
1132	.get_unmapped_area = thp_get_unmapped_area,
1133	.fallocate	= xfs_file_fallocate,
1134	.clone_file_range = xfs_file_clone_range,
1135	.dedupe_file_range = xfs_file_dedupe_range,
1136};
1137
1138const struct file_operations xfs_dir_file_operations = {
1139	.open		= xfs_dir_open,
1140	.read		= generic_read_dir,
1141	.iterate_shared	= xfs_file_readdir,
1142	.llseek		= generic_file_llseek,
1143	.unlocked_ioctl	= xfs_file_ioctl,
1144#ifdef CONFIG_COMPAT
1145	.compat_ioctl	= xfs_file_compat_ioctl,
1146#endif
1147	.fsync		= xfs_dir_fsync,
1148};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
 
  18#include "xfs_dir2.h"
  19#include "xfs_dir2_priv.h"
  20#include "xfs_ioctl.h"
  21#include "xfs_trace.h"
  22#include "xfs_log.h"
  23#include "xfs_icache.h"
  24#include "xfs_pnfs.h"
  25#include "xfs_iomap.h"
  26#include "xfs_reflink.h"
  27
 
  28#include <linux/falloc.h>
 
  29#include <linux/backing-dev.h>
  30#include <linux/mman.h>
  31#include <linux/fadvise.h>
  32#include <linux/mount.h>
  33
  34static const struct vm_operations_struct xfs_file_vm_ops;
  35
  36/*
  37 * Decide if the given file range is aligned to the size of the fundamental
  38 * allocation unit for the file.
  39 */
  40static bool
  41xfs_is_falloc_aligned(
  42	struct xfs_inode	*ip,
  43	loff_t			pos,
  44	long long int		len)
  45{
  46	struct xfs_mount	*mp = ip->i_mount;
  47	uint64_t		mask;
  48
  49	if (XFS_IS_REALTIME_INODE(ip)) {
  50		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
  51			u64	rextbytes;
  52			u32	mod;
  53
  54			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
  55			div_u64_rem(pos, rextbytes, &mod);
  56			if (mod)
  57				return false;
  58			div_u64_rem(len, rextbytes, &mod);
  59			return mod == 0;
  60		}
  61		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
  62	} else {
  63		mask = mp->m_sb.sb_blocksize - 1;
  64	}
  65
  66	return !((pos | len) & mask);
  67}
  68
  69int
  70xfs_update_prealloc_flags(
  71	struct xfs_inode	*ip,
  72	enum xfs_prealloc_flags	flags)
  73{
  74	struct xfs_trans	*tp;
  75	int			error;
  76
  77	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  78			0, 0, 0, &tp);
  79	if (error)
  80		return error;
  81
  82	xfs_ilock(ip, XFS_ILOCK_EXCL);
  83	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  84
  85	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  86		VFS_I(ip)->i_mode &= ~S_ISUID;
  87		if (VFS_I(ip)->i_mode & S_IXGRP)
  88			VFS_I(ip)->i_mode &= ~S_ISGID;
  89		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  90	}
  91
  92	if (flags & XFS_PREALLOC_SET)
  93		ip->i_diflags |= XFS_DIFLAG_PREALLOC;
  94	if (flags & XFS_PREALLOC_CLEAR)
  95		ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
  96
  97	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  98	if (flags & XFS_PREALLOC_SYNC)
  99		xfs_trans_set_sync(tp);
 100	return xfs_trans_commit(tp);
 101}
 102
 103/*
 104 * Fsync operations on directories are much simpler than on regular files,
 105 * as there is no file data to flush, and thus also no need for explicit
 106 * cache flush operations, and there are no non-transaction metadata updates
 107 * on directories either.
 108 */
 109STATIC int
 110xfs_dir_fsync(
 111	struct file		*file,
 112	loff_t			start,
 113	loff_t			end,
 114	int			datasync)
 115{
 116	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 
 117
 118	trace_xfs_dir_fsync(ip);
 119	return xfs_log_force_inode(ip);
 120}
 121
 122static xfs_csn_t
 123xfs_fsync_seq(
 124	struct xfs_inode	*ip,
 125	bool			datasync)
 126{
 127	if (!xfs_ipincount(ip))
 128		return 0;
 129	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 130		return 0;
 131	return ip->i_itemp->ili_commit_seq;
 132}
 133
 134/*
 135 * All metadata updates are logged, which means that we just have to flush the
 136 * log up to the latest LSN that touched the inode.
 137 *
 138 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
 139 * the log force before we clear the ili_fsync_fields field. This ensures that
 140 * we don't get a racing sync operation that does not wait for the metadata to
 141 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
 142 * then all that will happen is the log force will do nothing as the lsn will
 143 * already be on disk.  We can't race with setting ili_fsync_fields because that
 144 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
 145 * shared until after the ili_fsync_fields is cleared.
 146 */
 147static  int
 148xfs_fsync_flush_log(
 149	struct xfs_inode	*ip,
 150	bool			datasync,
 151	int			*log_flushed)
 152{
 153	int			error = 0;
 154	xfs_csn_t		seq;
 155
 156	xfs_ilock(ip, XFS_ILOCK_SHARED);
 157	seq = xfs_fsync_seq(ip, datasync);
 158	if (seq) {
 159		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
 160					  log_flushed);
 161
 162		spin_lock(&ip->i_itemp->ili_lock);
 163		ip->i_itemp->ili_fsync_fields = 0;
 164		spin_unlock(&ip->i_itemp->ili_lock);
 165	}
 166	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 167	return error;
 168}
 169
 170STATIC int
 171xfs_file_fsync(
 172	struct file		*file,
 173	loff_t			start,
 174	loff_t			end,
 175	int			datasync)
 176{
 177	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 
 178	struct xfs_mount	*mp = ip->i_mount;
 179	int			error = 0;
 180	int			log_flushed = 0;
 
 181
 182	trace_xfs_file_fsync(ip);
 183
 184	error = file_write_and_wait_range(file, start, end);
 185	if (error)
 186		return error;
 187
 188	if (XFS_FORCED_SHUTDOWN(mp))
 189		return -EIO;
 190
 191	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 192
 193	/*
 194	 * If we have an RT and/or log subvolume we need to make sure to flush
 195	 * the write cache the device used for file data first.  This is to
 196	 * ensure newly written file data make it to disk before logging the new
 197	 * inode size in case of an extending write.
 198	 */
 199	if (XFS_IS_REALTIME_INODE(ip))
 200		blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
 201	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 202		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 203
 204	/*
 205	 * Any inode that has dirty modifications in the log is pinned.  The
 206	 * racy check here for a pinned inode while not catch modifications
 207	 * that happen concurrently to the fsync call, but fsync semantics
 208	 * only require to sync previously completed I/O.
 
 
 
 
 
 
 
 209	 */
 210	if (xfs_ipincount(ip))
 211		error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
 
 
 
 
 
 
 
 
 
 
 212
 213	/*
 214	 * If we only have a single device, and the log force about was
 215	 * a no-op we might have to flush the data device cache here.
 216	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 217	 * an already allocated file and thus do not have any metadata to
 218	 * commit.
 219	 */
 220	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 221	    mp->m_logdev_targp == mp->m_ddev_targp)
 222		blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
 223
 224	return error;
 225}
 226
 227static int
 228xfs_ilock_iocb(
 229	struct kiocb		*iocb,
 230	unsigned int		lock_mode)
 231{
 232	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 233
 234	if (iocb->ki_flags & IOCB_NOWAIT) {
 235		if (!xfs_ilock_nowait(ip, lock_mode))
 236			return -EAGAIN;
 237	} else {
 238		xfs_ilock(ip, lock_mode);
 239	}
 240
 241	return 0;
 242}
 243
 244STATIC ssize_t
 245xfs_file_dio_read(
 246	struct kiocb		*iocb,
 247	struct iov_iter		*to)
 248{
 249	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 250	ssize_t			ret;
 251
 252	trace_xfs_file_direct_read(iocb, to);
 253
 254	if (!iov_iter_count(to))
 255		return 0; /* skip atime */
 256
 257	file_accessed(iocb->ki_filp);
 258
 259	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 260	if (ret)
 261		return ret;
 262	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0);
 263	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 264
 265	return ret;
 266}
 267
 268static noinline ssize_t
 269xfs_file_dax_read(
 270	struct kiocb		*iocb,
 271	struct iov_iter		*to)
 272{
 273	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 
 274	ssize_t			ret = 0;
 275
 276	trace_xfs_file_dax_read(iocb, to);
 277
 278	if (!iov_iter_count(to))
 279		return 0; /* skip atime */
 280
 281	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 282	if (ret)
 283		return ret;
 284	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
 
 
 
 
 285	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 286
 287	file_accessed(iocb->ki_filp);
 288	return ret;
 289}
 290
 291STATIC ssize_t
 292xfs_file_buffered_read(
 293	struct kiocb		*iocb,
 294	struct iov_iter		*to)
 295{
 296	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 297	ssize_t			ret;
 298
 299	trace_xfs_file_buffered_read(iocb, to);
 300
 301	ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
 302	if (ret)
 303		return ret;
 
 
 
 304	ret = generic_file_read_iter(iocb, to);
 305	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 306
 307	return ret;
 308}
 309
 310STATIC ssize_t
 311xfs_file_read_iter(
 312	struct kiocb		*iocb,
 313	struct iov_iter		*to)
 314{
 315	struct inode		*inode = file_inode(iocb->ki_filp);
 316	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 317	ssize_t			ret = 0;
 318
 319	XFS_STATS_INC(mp, xs_read_calls);
 320
 321	if (XFS_FORCED_SHUTDOWN(mp))
 322		return -EIO;
 323
 324	if (IS_DAX(inode))
 325		ret = xfs_file_dax_read(iocb, to);
 326	else if (iocb->ki_flags & IOCB_DIRECT)
 327		ret = xfs_file_dio_read(iocb, to);
 328	else
 329		ret = xfs_file_buffered_read(iocb, to);
 330
 331	if (ret > 0)
 332		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 333	return ret;
 334}
 335
 336/*
 337 * Common pre-write limit and setup checks.
 338 *
 339 * Called with the iolocked held either shared and exclusive according to
 340 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 341 * if called for a direct write beyond i_size.
 342 */
 343STATIC ssize_t
 344xfs_file_write_checks(
 345	struct kiocb		*iocb,
 346	struct iov_iter		*from,
 347	int			*iolock)
 348{
 349	struct file		*file = iocb->ki_filp;
 350	struct inode		*inode = file->f_mapping->host;
 351	struct xfs_inode	*ip = XFS_I(inode);
 352	ssize_t			error = 0;
 353	size_t			count = iov_iter_count(from);
 354	bool			drained_dio = false;
 355	loff_t			isize;
 356
 357restart:
 358	error = generic_write_checks(iocb, from);
 359	if (error <= 0)
 360		return error;
 361
 362	if (iocb->ki_flags & IOCB_NOWAIT) {
 363		error = break_layout(inode, false);
 364		if (error == -EWOULDBLOCK)
 365			error = -EAGAIN;
 366	} else {
 367		error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
 368	}
 369
 370	if (error)
 371		return error;
 372
 373	/*
 374	 * For changing security info in file_remove_privs() we need i_rwsem
 375	 * exclusively.
 376	 */
 377	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 378		xfs_iunlock(ip, *iolock);
 379		*iolock = XFS_IOLOCK_EXCL;
 380		error = xfs_ilock_iocb(iocb, *iolock);
 381		if (error) {
 382			*iolock = 0;
 383			return error;
 384		}
 385		goto restart;
 386	}
 387
 388	/*
 389	 * If the offset is beyond the size of the file, we need to zero any
 390	 * blocks that fall between the existing EOF and the start of this
 391	 * write.  If zeroing is needed and we are currently holding the iolock
 392	 * shared, we need to update it to exclusive which implies having to
 393	 * redo all checks before.
 394	 *
 395	 * We need to serialise against EOF updates that occur in IO completions
 396	 * here. We want to make sure that nobody is changing the size while we
 397	 * do this check until we have placed an IO barrier (i.e.  hold the
 398	 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.  The
 399	 * spinlock effectively forms a memory barrier once we have the
 400	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
 401	 * hence be able to correctly determine if we need to run zeroing.
 402	 *
 403	 * We can do an unlocked check here safely as IO completion can only
 404	 * extend EOF. Truncate is locked out at this point, so the EOF can
 405	 * not move backwards, only forwards. Hence we only need to take the
 406	 * slow path and spin locks when we are at or beyond the current EOF.
 407	 */
 408	if (iocb->ki_pos <= i_size_read(inode))
 409		goto out;
 410
 411	spin_lock(&ip->i_flags_lock);
 412	isize = i_size_read(inode);
 413	if (iocb->ki_pos > isize) {
 414		spin_unlock(&ip->i_flags_lock);
 415
 416		if (iocb->ki_flags & IOCB_NOWAIT)
 417			return -EAGAIN;
 418
 419		if (!drained_dio) {
 420			if (*iolock == XFS_IOLOCK_SHARED) {
 421				xfs_iunlock(ip, *iolock);
 422				*iolock = XFS_IOLOCK_EXCL;
 423				xfs_ilock(ip, *iolock);
 424				iov_iter_reexpand(from, count);
 425			}
 426			/*
 427			 * We now have an IO submission barrier in place, but
 428			 * AIO can do EOF updates during IO completion and hence
 429			 * we now need to wait for all of them to drain. Non-AIO
 430			 * DIO will have drained before we are given the
 431			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 432			 * no-op.
 433			 */
 434			inode_dio_wait(inode);
 435			drained_dio = true;
 436			goto restart;
 437		}
 438
 439		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 440		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 441				NULL, &xfs_buffered_write_iomap_ops);
 442		if (error)
 443			return error;
 444	} else
 445		spin_unlock(&ip->i_flags_lock);
 446
 447out:
 448	return file_modified(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449}
 450
 451static int
 452xfs_dio_write_end_io(
 453	struct kiocb		*iocb,
 454	ssize_t			size,
 455	int			error,
 456	unsigned		flags)
 457{
 458	struct inode		*inode = file_inode(iocb->ki_filp);
 459	struct xfs_inode	*ip = XFS_I(inode);
 460	loff_t			offset = iocb->ki_pos;
 461	unsigned int		nofs_flag;
 462
 463	trace_xfs_end_io_direct_write(ip, offset, size);
 464
 465	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 466		return -EIO;
 467
 468	if (error)
 469		return error;
 470	if (!size)
 471		return 0;
 472
 473	/*
 474	 * Capture amount written on completion as we can't reliably account
 475	 * for it on submission.
 476	 */
 477	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
 478
 479	/*
 480	 * We can allocate memory here while doing writeback on behalf of
 481	 * memory reclaim.  To avoid memory allocation deadlocks set the
 482	 * task-wide nofs context for the following operations.
 483	 */
 484	nofs_flag = memalloc_nofs_save();
 485
 486	if (flags & IOMAP_DIO_COW) {
 487		error = xfs_reflink_end_cow(ip, offset, size);
 488		if (error)
 489			goto out;
 490	}
 491
 492	/*
 493	 * Unwritten conversion updates the in-core isize after extent
 494	 * conversion but before updating the on-disk size. Updating isize any
 495	 * earlier allows a racing dio read to find unwritten extents before
 496	 * they are converted.
 497	 */
 498	if (flags & IOMAP_DIO_UNWRITTEN) {
 499		error = xfs_iomap_write_unwritten(ip, offset, size, true);
 500		goto out;
 501	}
 502
 503	/*
 504	 * We need to update the in-core inode size here so that we don't end up
 505	 * with the on-disk inode size being outside the in-core inode size. We
 506	 * have no other method of updating EOF for AIO, so always do it here
 507	 * if necessary.
 508	 *
 509	 * We need to lock the test/set EOF update as we can be racing with
 510	 * other IO completions here to update the EOF. Failing to serialise
 511	 * here can result in EOF moving backwards and Bad Things Happen when
 512	 * that occurs.
 513	 *
 514	 * As IO completion only ever extends EOF, we can do an unlocked check
 515	 * here to avoid taking the spinlock. If we land within the current EOF,
 516	 * then we do not need to do an extending update at all, and we don't
 517	 * need to take the lock to check this. If we race with an update moving
 518	 * EOF, then we'll either still be beyond EOF and need to take the lock,
 519	 * or we'll be within EOF and we don't need to take it at all.
 520	 */
 521	if (offset + size <= i_size_read(inode))
 522		goto out;
 523
 524	spin_lock(&ip->i_flags_lock);
 525	if (offset + size > i_size_read(inode)) {
 526		i_size_write(inode, offset + size);
 527		spin_unlock(&ip->i_flags_lock);
 528		error = xfs_setfilesize(ip, offset, size);
 529	} else {
 530		spin_unlock(&ip->i_flags_lock);
 531	}
 532
 533out:
 534	memalloc_nofs_restore(nofs_flag);
 535	return error;
 536}
 537
 538static const struct iomap_dio_ops xfs_dio_write_ops = {
 539	.end_io		= xfs_dio_write_end_io,
 540};
 541
 542/*
 543 * Handle block aligned direct I/O writes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544 */
 545static noinline ssize_t
 546xfs_file_dio_write_aligned(
 547	struct xfs_inode	*ip,
 548	struct kiocb		*iocb,
 549	struct iov_iter		*from)
 550{
 551	int			iolock = XFS_IOLOCK_SHARED;
 552	ssize_t			ret;
 
 
 
 
 
 
 
 
 
 553
 554	ret = xfs_ilock_iocb(iocb, iolock);
 555	if (ret)
 556		return ret;
 557	ret = xfs_file_write_checks(iocb, from, &iolock);
 558	if (ret)
 559		goto out_unlock;
 560
 561	/*
 562	 * We don't need to hold the IOLOCK exclusively across the IO, so demote
 563	 * the iolock back to shared if we had to take the exclusive lock in
 564	 * xfs_file_write_checks() for other reasons.
 565	 */
 566	if (iolock == XFS_IOLOCK_EXCL) {
 567		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568		iolock = XFS_IOLOCK_SHARED;
 569	}
 570	trace_xfs_file_direct_write(iocb, from);
 571	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 572			   &xfs_dio_write_ops, 0);
 573out_unlock:
 574	if (iolock)
 575		xfs_iunlock(ip, iolock);
 576	return ret;
 577}
 578
 579/*
 580 * Handle block unaligned direct I/O writes
 581 *
 582 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
 583 * them to be done in parallel with reads and other direct I/O writes.  However,
 584 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
 585 * to do sub-block zeroing and that requires serialisation against other direct
 586 * I/O to the same block.  In this case we need to serialise the submission of
 587 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
 588 * In the case where sub-block zeroing is not required, we can do concurrent
 589 * sub-block dios to the same block successfully.
 590 *
 591 * Optimistically submit the I/O using the shared lock first, but use the
 592 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
 593 * if block allocation or partial block zeroing would be required.  In that case
 594 * we try again with the exclusive lock.
 595 */
 596static noinline ssize_t
 597xfs_file_dio_write_unaligned(
 598	struct xfs_inode	*ip,
 599	struct kiocb		*iocb,
 600	struct iov_iter		*from)
 601{
 602	size_t			isize = i_size_read(VFS_I(ip));
 603	size_t			count = iov_iter_count(from);
 604	int			iolock = XFS_IOLOCK_SHARED;
 605	unsigned int		flags = IOMAP_DIO_OVERWRITE_ONLY;
 606	ssize_t			ret;
 607
 608	/*
 609	 * Extending writes need exclusivity because of the sub-block zeroing
 610	 * that the DIO code always does for partial tail blocks beyond EOF, so
 611	 * don't even bother trying the fast path in this case.
 612	 */
 613	if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
 614retry_exclusive:
 615		if (iocb->ki_flags & IOCB_NOWAIT)
 616			return -EAGAIN;
 617		iolock = XFS_IOLOCK_EXCL;
 618		flags = IOMAP_DIO_FORCE_WAIT;
 619	}
 620
 621	ret = xfs_ilock_iocb(iocb, iolock);
 622	if (ret)
 623		return ret;
 
 624
 625	/*
 626	 * We can't properly handle unaligned direct I/O to reflink files yet,
 627	 * as we can't unshare a partial block.
 628	 */
 629	if (xfs_is_cow_inode(ip)) {
 630		trace_xfs_reflink_bounce_dio_write(iocb, from);
 631		ret = -ENOTBLK;
 632		goto out_unlock;
 
 
 
 
 
 
 
 
 633	}
 634
 635	ret = xfs_file_write_checks(iocb, from, &iolock);
 636	if (ret)
 637		goto out_unlock;
 
 638
 639	/*
 640	 * If we are doing exclusive unaligned I/O, this must be the only I/O
 641	 * in-flight.  Otherwise we risk data corruption due to unwritten extent
 642	 * conversions from the AIO end_io handler.  Wait for all other I/O to
 643	 * drain first.
 644	 */
 645	if (flags & IOMAP_DIO_FORCE_WAIT)
 646		inode_dio_wait(VFS_I(ip));
 647
 648	trace_xfs_file_direct_write(iocb, from);
 649	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
 650			   &xfs_dio_write_ops, flags);
 651
 652	/*
 653	 * Retry unaligned I/O with exclusive blocking semantics if the DIO
 654	 * layer rejected it for mapping or locking reasons. If we are doing
 655	 * nonblocking user I/O, propagate the error.
 656	 */
 657	if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
 658		ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
 659		xfs_iunlock(ip, iolock);
 660		goto retry_exclusive;
 661	}
 662
 663out_unlock:
 664	if (iolock)
 665		xfs_iunlock(ip, iolock);
 666	return ret;
 667}
 668
 669static ssize_t
 670xfs_file_dio_write(
 671	struct kiocb		*iocb,
 672	struct iov_iter		*from)
 673{
 674	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 675	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
 676	size_t			count = iov_iter_count(from);
 677
 678	/* direct I/O must be aligned to device logical sector size */
 679	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 680		return -EINVAL;
 681	if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
 682		return xfs_file_dio_write_unaligned(ip, iocb, from);
 683	return xfs_file_dio_write_aligned(ip, iocb, from);
 684}
 685
 686static noinline ssize_t
 687xfs_file_dax_write(
 688	struct kiocb		*iocb,
 689	struct iov_iter		*from)
 690{
 691	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 692	struct xfs_inode	*ip = XFS_I(inode);
 693	int			iolock = XFS_IOLOCK_EXCL;
 694	ssize_t			ret, error = 0;
 
 695	loff_t			pos;
 696
 697	ret = xfs_ilock_iocb(iocb, iolock);
 698	if (ret)
 699		return ret;
 700	ret = xfs_file_write_checks(iocb, from, &iolock);
 
 
 
 
 701	if (ret)
 702		goto out;
 703
 704	pos = iocb->ki_pos;
 
 705
 706	trace_xfs_file_dax_write(iocb, from);
 707	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
 708	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 709		i_size_write(inode, iocb->ki_pos);
 710		error = xfs_setfilesize(ip, pos, ret);
 711	}
 712out:
 713	if (iolock)
 714		xfs_iunlock(ip, iolock);
 715	if (error)
 716		return error;
 717
 718	if (ret > 0) {
 719		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 720
 721		/* Handle various SYNC-type writes */
 722		ret = generic_write_sync(iocb, ret);
 723	}
 724	return ret;
 725}
 726
 727STATIC ssize_t
 728xfs_file_buffered_write(
 729	struct kiocb		*iocb,
 730	struct iov_iter		*from)
 731{
 732	struct file		*file = iocb->ki_filp;
 733	struct address_space	*mapping = file->f_mapping;
 734	struct inode		*inode = mapping->host;
 735	struct xfs_inode	*ip = XFS_I(inode);
 736	ssize_t			ret;
 737	bool			cleared_space = false;
 738	int			iolock;
 739
 740	if (iocb->ki_flags & IOCB_NOWAIT)
 741		return -EOPNOTSUPP;
 742
 743write_retry:
 744	iolock = XFS_IOLOCK_EXCL;
 745	xfs_ilock(ip, iolock);
 746
 747	ret = xfs_file_write_checks(iocb, from, &iolock);
 748	if (ret)
 749		goto out;
 750
 751	/* We can write back this queue in page reclaim */
 752	current->backing_dev_info = inode_to_bdi(inode);
 753
 754	trace_xfs_file_buffered_write(iocb, from);
 755	ret = iomap_file_buffered_write(iocb, from,
 756			&xfs_buffered_write_iomap_ops);
 757	if (likely(ret >= 0))
 758		iocb->ki_pos += ret;
 759
 760	/*
 761	 * If we hit a space limit, try to free up some lingering preallocated
 762	 * space before returning an error. In the case of ENOSPC, first try to
 763	 * write back all dirty inodes to free up some of the excess reserved
 764	 * metadata space. This reduces the chances that the eofblocks scan
 765	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 766	 * also behaves as a filter to prevent too many eofblocks scans from
 767	 * running at the same time.  Use a synchronous scan to increase the
 768	 * effectiveness of the scan.
 769	 */
 770	if (ret == -EDQUOT && !cleared_space) {
 771		xfs_iunlock(ip, iolock);
 772		xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
 773		cleared_space = true;
 774		goto write_retry;
 775	} else if (ret == -ENOSPC && !cleared_space) {
 776		struct xfs_icwalk	icw = {0};
 
 
 
 
 777
 778		cleared_space = true;
 779		xfs_flush_inodes(ip->i_mount);
 780
 781		xfs_iunlock(ip, iolock);
 782		icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
 783		xfs_blockgc_free_space(ip->i_mount, &icw);
 
 784		goto write_retry;
 785	}
 786
 787	current->backing_dev_info = NULL;
 788out:
 789	if (iolock)
 790		xfs_iunlock(ip, iolock);
 791
 792	if (ret > 0) {
 793		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 794		/* Handle various SYNC-type writes */
 795		ret = generic_write_sync(iocb, ret);
 796	}
 797	return ret;
 798}
 799
 800STATIC ssize_t
 801xfs_file_write_iter(
 802	struct kiocb		*iocb,
 803	struct iov_iter		*from)
 804{
 805	struct file		*file = iocb->ki_filp;
 806	struct address_space	*mapping = file->f_mapping;
 807	struct inode		*inode = mapping->host;
 808	struct xfs_inode	*ip = XFS_I(inode);
 809	ssize_t			ret;
 810	size_t			ocount = iov_iter_count(from);
 811
 812	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 813
 814	if (ocount == 0)
 815		return 0;
 816
 817	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 818		return -EIO;
 819
 820	if (IS_DAX(inode))
 821		return xfs_file_dax_write(iocb, from);
 822
 823	if (iocb->ki_flags & IOCB_DIRECT) {
 824		/*
 825		 * Allow a directio write to fall back to a buffered
 826		 * write *only* in the case that we're doing a reflink
 827		 * CoW.  In all other directio scenarios we do not
 828		 * allow an operation to fall back to buffered mode.
 829		 */
 830		ret = xfs_file_dio_write(iocb, from);
 831		if (ret != -ENOTBLK)
 832			return ret;
 
 
 
 833	}
 834
 835	return xfs_file_buffered_write(iocb, from);
 836}
 837
 838static void
 839xfs_wait_dax_page(
 840	struct inode		*inode)
 841{
 842	struct xfs_inode        *ip = XFS_I(inode);
 843
 844	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
 845	schedule();
 846	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 847}
 848
 849static int
 850xfs_break_dax_layouts(
 851	struct inode		*inode,
 852	bool			*retry)
 853{
 854	struct page		*page;
 855
 856	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
 857
 858	page = dax_layout_busy_page(inode->i_mapping);
 859	if (!page)
 860		return 0;
 861
 862	*retry = true;
 863	return ___wait_var_event(&page->_refcount,
 864			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
 865			0, 0, xfs_wait_dax_page(inode));
 866}
 867
 868int
 869xfs_break_layouts(
 870	struct inode		*inode,
 871	uint			*iolock,
 872	enum layout_break_reason reason)
 873{
 874	bool			retry;
 875	int			error;
 876
 877	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
 878
 879	do {
 880		retry = false;
 881		switch (reason) {
 882		case BREAK_UNMAP:
 883			error = xfs_break_dax_layouts(inode, &retry);
 884			if (error || retry)
 885				break;
 886			fallthrough;
 887		case BREAK_WRITE:
 888			error = xfs_break_leased_layouts(inode, iolock, &retry);
 889			break;
 890		default:
 891			WARN_ON_ONCE(1);
 892			error = -EINVAL;
 893		}
 894	} while (error == 0 && retry);
 895
 896	return error;
 897}
 898
 899#define	XFS_FALLOC_FL_SUPPORTED						\
 900		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 901		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 902		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 903
 904STATIC long
 905xfs_file_fallocate(
 906	struct file		*file,
 907	int			mode,
 908	loff_t			offset,
 909	loff_t			len)
 910{
 911	struct inode		*inode = file_inode(file);
 912	struct xfs_inode	*ip = XFS_I(inode);
 913	long			error;
 914	enum xfs_prealloc_flags	flags = 0;
 915	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
 916	loff_t			new_size = 0;
 917	bool			do_file_insert = false;
 918
 919	if (!S_ISREG(inode->i_mode))
 920		return -EINVAL;
 921	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 922		return -EOPNOTSUPP;
 923
 924	xfs_ilock(ip, iolock);
 925	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
 926	if (error)
 927		goto out_unlock;
 928
 929	/*
 930	 * Must wait for all AIO to complete before we continue as AIO can
 931	 * change the file size on completion without holding any locks we
 932	 * currently hold. We must do this first because AIO can update both
 933	 * the on disk and in memory inode sizes, and the operations that follow
 934	 * require the in-memory size to be fully up-to-date.
 935	 */
 936	inode_dio_wait(inode);
 937
 938	/*
 939	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
 940	 * the cached range over the first operation we are about to run.
 941	 *
 942	 * We care about zero and collapse here because they both run a hole
 943	 * punch over the range first. Because that can zero data, and the range
 944	 * of invalidation for the shift operations is much larger, we still do
 945	 * the required flush for collapse in xfs_prepare_shift().
 946	 *
 947	 * Insert has the same range requirements as collapse, and we extend the
 948	 * file first which can zero data. Hence insert has the same
 949	 * flush/invalidate requirements as collapse and so they are both
 950	 * handled at the right time by xfs_prepare_shift().
 951	 */
 952	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
 953		    FALLOC_FL_COLLAPSE_RANGE)) {
 954		error = xfs_flush_unmap_range(ip, offset, len);
 955		if (error)
 956			goto out_unlock;
 957	}
 958
 959	if (mode & FALLOC_FL_PUNCH_HOLE) {
 960		error = xfs_free_file_space(ip, offset, len);
 961		if (error)
 962			goto out_unlock;
 963	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 964		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 
 
 965			error = -EINVAL;
 966			goto out_unlock;
 967		}
 968
 969		/*
 970		 * There is no need to overlap collapse range with EOF,
 971		 * in which case it is effectively a truncate operation
 972		 */
 973		if (offset + len >= i_size_read(inode)) {
 974			error = -EINVAL;
 975			goto out_unlock;
 976		}
 977
 978		new_size = i_size_read(inode) - len;
 979
 980		error = xfs_collapse_file_space(ip, offset, len);
 981		if (error)
 982			goto out_unlock;
 983	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 
 984		loff_t		isize = i_size_read(inode);
 985
 986		if (!xfs_is_falloc_aligned(ip, offset, len)) {
 987			error = -EINVAL;
 988			goto out_unlock;
 989		}
 990
 991		/*
 992		 * New inode size must not exceed ->s_maxbytes, accounting for
 993		 * possible signed overflow.
 994		 */
 995		if (inode->i_sb->s_maxbytes - isize < len) {
 996			error = -EFBIG;
 997			goto out_unlock;
 998		}
 999		new_size = isize + len;
1000
1001		/* Offset should be less than i_size */
1002		if (offset >= isize) {
1003			error = -EINVAL;
1004			goto out_unlock;
1005		}
1006		do_file_insert = true;
1007	} else {
1008		flags |= XFS_PREALLOC_SET;
1009
1010		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1011		    offset + len > i_size_read(inode)) {
1012			new_size = offset + len;
1013			error = inode_newsize_ok(inode, new_size);
1014			if (error)
1015				goto out_unlock;
1016		}
1017
1018		if (mode & FALLOC_FL_ZERO_RANGE) {
1019			/*
1020			 * Punch a hole and prealloc the range.  We use a hole
1021			 * punch rather than unwritten extent conversion for two
1022			 * reasons:
1023			 *
1024			 *   1.) Hole punch handles partial block zeroing for us.
1025			 *   2.) If prealloc returns ENOSPC, the file range is
1026			 *       still zero-valued by virtue of the hole punch.
1027			 */
1028			unsigned int blksize = i_blocksize(inode);
1029
1030			trace_xfs_zero_file_space(ip);
1031
1032			error = xfs_free_file_space(ip, offset, len);
1033			if (error)
1034				goto out_unlock;
1035
1036			len = round_up(offset + len, blksize) -
1037			      round_down(offset, blksize);
1038			offset = round_down(offset, blksize);
1039		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1040			error = xfs_reflink_unshare(ip, offset, len);
1041			if (error)
1042				goto out_unlock;
1043		} else {
1044			/*
1045			 * If always_cow mode we can't use preallocations and
1046			 * thus should not create them.
1047			 */
1048			if (xfs_is_always_cow_inode(ip)) {
1049				error = -EOPNOTSUPP;
1050				goto out_unlock;
1051			}
1052		}
1053
1054		if (!xfs_is_always_cow_inode(ip)) {
1055			error = xfs_alloc_file_space(ip, offset, len,
1056						     XFS_BMAPI_PREALLOC);
1057			if (error)
1058				goto out_unlock;
1059		}
 
 
1060	}
1061
1062	if (file->f_flags & O_DSYNC)
1063		flags |= XFS_PREALLOC_SYNC;
1064
1065	error = xfs_update_prealloc_flags(ip, flags);
1066	if (error)
1067		goto out_unlock;
1068
1069	/* Change file size if needed */
1070	if (new_size) {
1071		struct iattr iattr;
1072
1073		iattr.ia_valid = ATTR_SIZE;
1074		iattr.ia_size = new_size;
1075		error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1076					    file_dentry(file), &iattr);
1077		if (error)
1078			goto out_unlock;
1079	}
1080
1081	/*
1082	 * Perform hole insertion now that the file size has been
1083	 * updated so that if we crash during the operation we don't
1084	 * leave shifted extents past EOF and hence losing access to
1085	 * the data that is contained within them.
1086	 */
1087	if (do_file_insert)
1088		error = xfs_insert_file_space(ip, offset, len);
1089
1090out_unlock:
1091	xfs_iunlock(ip, iolock);
1092	return error;
1093}
1094
1095STATIC int
1096xfs_file_fadvise(
1097	struct file	*file,
1098	loff_t		start,
1099	loff_t		end,
1100	int		advice)
1101{
1102	struct xfs_inode *ip = XFS_I(file_inode(file));
1103	int ret;
1104	int lockflags = 0;
1105
1106	/*
1107	 * Operations creating pages in page cache need protection from hole
1108	 * punching and similar ops
1109	 */
1110	if (advice == POSIX_FADV_WILLNEED) {
1111		lockflags = XFS_IOLOCK_SHARED;
1112		xfs_ilock(ip, lockflags);
1113	}
1114	ret = generic_fadvise(file, start, end, advice);
1115	if (lockflags)
1116		xfs_iunlock(ip, lockflags);
1117	return ret;
1118}
1119
1120/* Does this file, inode, or mount want synchronous writes? */
1121static inline bool xfs_file_sync_writes(struct file *filp)
 
 
 
 
 
1122{
1123	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1124
1125	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1126		return true;
1127	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1128		return true;
1129	if (IS_SYNC(file_inode(filp)))
1130		return true;
1131
1132	return false;
1133}
1134
1135STATIC loff_t
1136xfs_file_remap_range(
1137	struct file		*file_in,
1138	loff_t			pos_in,
1139	struct file		*file_out,
1140	loff_t			pos_out,
1141	loff_t			len,
1142	unsigned int		remap_flags)
1143{
1144	struct inode		*inode_in = file_inode(file_in);
1145	struct xfs_inode	*src = XFS_I(inode_in);
1146	struct inode		*inode_out = file_inode(file_out);
1147	struct xfs_inode	*dest = XFS_I(inode_out);
1148	struct xfs_mount	*mp = src->i_mount;
1149	loff_t			remapped = 0;
1150	xfs_extlen_t		cowextsize;
1151	int			ret;
1152
1153	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1154		return -EINVAL;
1155
1156	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1157		return -EOPNOTSUPP;
1158
1159	if (XFS_FORCED_SHUTDOWN(mp))
1160		return -EIO;
1161
1162	/* Prepare and then clone file data. */
1163	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1164			&len, remap_flags);
1165	if (ret || len == 0)
1166		return ret;
1167
1168	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1169
1170	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1171			&remapped);
1172	if (ret)
1173		goto out_unlock;
1174
1175	/*
1176	 * Carry the cowextsize hint from src to dest if we're sharing the
1177	 * entire source file to the entire destination file, the source file
1178	 * has a cowextsize hint, and the destination file does not.
1179	 */
1180	cowextsize = 0;
1181	if (pos_in == 0 && len == i_size_read(inode_in) &&
1182	    (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1183	    pos_out == 0 && len >= i_size_read(inode_out) &&
1184	    !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1185		cowextsize = src->i_cowextsize;
1186
1187	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1188			remap_flags);
1189	if (ret)
1190		goto out_unlock;
1191
1192	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1193		xfs_log_force_inode(dest);
1194out_unlock:
1195	xfs_iunlock2_io_mmap(src, dest);
1196	if (ret)
1197		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1198	return remapped > 0 ? remapped : ret;
1199}
1200
1201STATIC int
1202xfs_file_open(
1203	struct inode	*inode,
1204	struct file	*file)
1205{
1206	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1207		return -EFBIG;
1208	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1209		return -EIO;
1210	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1211	return 0;
1212}
1213
1214STATIC int
1215xfs_dir_open(
1216	struct inode	*inode,
1217	struct file	*file)
1218{
1219	struct xfs_inode *ip = XFS_I(inode);
1220	int		mode;
1221	int		error;
1222
1223	error = xfs_file_open(inode, file);
1224	if (error)
1225		return error;
1226
1227	/*
1228	 * If there are any blocks, read-ahead block 0 as we're almost
1229	 * certain to have the next operation be a read there.
1230	 */
1231	mode = xfs_ilock_data_map_shared(ip);
1232	if (ip->i_df.if_nextents > 0)
1233		error = xfs_dir3_data_readahead(ip, 0, 0);
1234	xfs_iunlock(ip, mode);
1235	return error;
1236}
1237
1238STATIC int
1239xfs_file_release(
1240	struct inode	*inode,
1241	struct file	*filp)
1242{
1243	return xfs_release(XFS_I(inode));
1244}
1245
1246STATIC int
1247xfs_file_readdir(
1248	struct file	*file,
1249	struct dir_context *ctx)
1250{
1251	struct inode	*inode = file_inode(file);
1252	xfs_inode_t	*ip = XFS_I(inode);
1253	size_t		bufsize;
1254
1255	/*
1256	 * The Linux API doesn't pass down the total size of the buffer
1257	 * we read into down to the filesystem.  With the filldir concept
1258	 * it's not needed for correct information, but the XFS dir2 leaf
1259	 * code wants an estimate of the buffer size to calculate it's
1260	 * readahead window and size the buffers used for mapping to
1261	 * physical blocks.
1262	 *
1263	 * Try to give it an estimate that's good enough, maybe at some
1264	 * point we can change the ->readdir prototype to include the
1265	 * buffer size.  For now we use the current glibc buffer size.
1266	 */
1267	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1268
1269	return xfs_readdir(NULL, ip, ctx, bufsize);
1270}
1271
1272STATIC loff_t
1273xfs_file_llseek(
1274	struct file	*file,
1275	loff_t		offset,
1276	int		whence)
1277{
1278	struct inode		*inode = file->f_mapping->host;
1279
1280	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1281		return -EIO;
1282
1283	switch (whence) {
1284	default:
1285		return generic_file_llseek(file, offset, whence);
1286	case SEEK_HOLE:
1287		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1288		break;
1289	case SEEK_DATA:
1290		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1291		break;
1292	}
1293
1294	if (offset < 0)
1295		return offset;
1296	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1297}
1298
1299/*
1300 * Locking for serialisation of IO during page faults. This results in a lock
1301 * ordering of:
1302 *
1303 * mmap_lock (MM)
1304 *   sb_start_pagefault(vfs, freeze)
1305 *     i_mmaplock (XFS - truncate serialisation)
1306 *       page_lock (MM)
1307 *         i_lock (XFS - extent map serialisation)
1308 */
1309static vm_fault_t
1310__xfs_filemap_fault(
1311	struct vm_fault		*vmf,
1312	enum page_entry_size	pe_size,
1313	bool			write_fault)
1314{
1315	struct inode		*inode = file_inode(vmf->vma->vm_file);
1316	struct xfs_inode	*ip = XFS_I(inode);
1317	vm_fault_t		ret;
1318
1319	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1320
1321	if (write_fault) {
1322		sb_start_pagefault(inode->i_sb);
1323		file_update_time(vmf->vma->vm_file);
1324	}
1325
1326	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1327	if (IS_DAX(inode)) {
1328		pfn_t pfn;
1329
1330		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1331				(write_fault && !vmf->cow_page) ?
1332				 &xfs_direct_write_iomap_ops :
1333				 &xfs_read_iomap_ops);
1334		if (ret & VM_FAULT_NEEDDSYNC)
1335			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1336	} else {
1337		if (write_fault)
1338			ret = iomap_page_mkwrite(vmf,
1339					&xfs_buffered_write_iomap_ops);
1340		else
1341			ret = filemap_fault(vmf);
1342	}
1343	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1344
1345	if (write_fault)
1346		sb_end_pagefault(inode->i_sb);
1347	return ret;
1348}
1349
1350static inline bool
1351xfs_is_write_fault(
1352	struct vm_fault		*vmf)
1353{
1354	return (vmf->flags & FAULT_FLAG_WRITE) &&
1355	       (vmf->vma->vm_flags & VM_SHARED);
1356}
1357
1358static vm_fault_t
1359xfs_filemap_fault(
1360	struct vm_fault		*vmf)
1361{
1362	/* DAX can shortcut the normal fault path on write faults! */
1363	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1364			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1365			xfs_is_write_fault(vmf));
1366}
1367
1368static vm_fault_t
1369xfs_filemap_huge_fault(
1370	struct vm_fault		*vmf,
1371	enum page_entry_size	pe_size)
1372{
1373	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1374		return VM_FAULT_FALLBACK;
1375
1376	/* DAX can shortcut the normal fault path on write faults! */
1377	return __xfs_filemap_fault(vmf, pe_size,
1378			xfs_is_write_fault(vmf));
1379}
1380
1381static vm_fault_t
1382xfs_filemap_page_mkwrite(
1383	struct vm_fault		*vmf)
1384{
1385	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1386}
1387
1388/*
1389 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1390 * on write faults. In reality, it needs to serialise against truncate and
1391 * prepare memory for writing so handle is as standard write fault.
1392 */
1393static vm_fault_t
1394xfs_filemap_pfn_mkwrite(
1395	struct vm_fault		*vmf)
1396{
1397
1398	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1399}
1400
1401static vm_fault_t
1402xfs_filemap_map_pages(
1403	struct vm_fault		*vmf,
1404	pgoff_t			start_pgoff,
1405	pgoff_t			end_pgoff)
1406{
1407	struct inode		*inode = file_inode(vmf->vma->vm_file);
1408	vm_fault_t ret;
1409
1410	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1411	ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1412	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1413	return ret;
1414}
1415
1416static const struct vm_operations_struct xfs_file_vm_ops = {
1417	.fault		= xfs_filemap_fault,
1418	.huge_fault	= xfs_filemap_huge_fault,
1419	.map_pages	= xfs_filemap_map_pages,
1420	.page_mkwrite	= xfs_filemap_page_mkwrite,
1421	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1422};
1423
1424STATIC int
1425xfs_file_mmap(
1426	struct file		*file,
1427	struct vm_area_struct	*vma)
1428{
1429	struct inode		*inode = file_inode(file);
1430	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1431
1432	/*
1433	 * We don't support synchronous mappings for non-DAX files and
1434	 * for DAX files if underneath dax_device is not synchronous.
1435	 */
1436	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1437		return -EOPNOTSUPP;
1438
1439	file_accessed(file);
1440	vma->vm_ops = &xfs_file_vm_ops;
1441	if (IS_DAX(inode))
1442		vma->vm_flags |= VM_HUGEPAGE;
1443	return 0;
1444}
1445
1446const struct file_operations xfs_file_operations = {
1447	.llseek		= xfs_file_llseek,
1448	.read_iter	= xfs_file_read_iter,
1449	.write_iter	= xfs_file_write_iter,
1450	.splice_read	= generic_file_splice_read,
1451	.splice_write	= iter_file_splice_write,
1452	.iopoll		= iomap_dio_iopoll,
1453	.unlocked_ioctl	= xfs_file_ioctl,
1454#ifdef CONFIG_COMPAT
1455	.compat_ioctl	= xfs_file_compat_ioctl,
1456#endif
1457	.mmap		= xfs_file_mmap,
1458	.mmap_supported_flags = MAP_SYNC,
1459	.open		= xfs_file_open,
1460	.release	= xfs_file_release,
1461	.fsync		= xfs_file_fsync,
1462	.get_unmapped_area = thp_get_unmapped_area,
1463	.fallocate	= xfs_file_fallocate,
1464	.fadvise	= xfs_file_fadvise,
1465	.remap_file_range = xfs_file_remap_range,
1466};
1467
1468const struct file_operations xfs_dir_file_operations = {
1469	.open		= xfs_dir_open,
1470	.read		= generic_read_dir,
1471	.iterate_shared	= xfs_file_readdir,
1472	.llseek		= generic_file_llseek,
1473	.unlocked_ioctl	= xfs_file_ioctl,
1474#ifdef CONFIG_COMPAT
1475	.compat_ioctl	= xfs_file_compat_ioctl,
1476#endif
1477	.fsync		= xfs_dir_fsync,
1478};