Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
 
 
  24#include "xfs_mount.h"
  25#include "xfs_da_format.h"
  26#include "xfs_da_btree.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_bmap.h"
  31#include "xfs_bmap_util.h"
  32#include "xfs_error.h"
  33#include "xfs_dir2.h"
  34#include "xfs_dir2_priv.h"
  35#include "xfs_ioctl.h"
  36#include "xfs_trace.h"
  37#include "xfs_log.h"
  38#include "xfs_icache.h"
  39#include "xfs_pnfs.h"
  40#include "xfs_iomap.h"
  41#include "xfs_reflink.h"
  42
 
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
  46#include <linux/backing-dev.h>
  47#include <linux/mman.h>
  48
  49static const struct vm_operations_struct xfs_file_vm_ops;
  50
  51int
  52xfs_update_prealloc_flags(
 
 
 
 
  53	struct xfs_inode	*ip,
  54	enum xfs_prealloc_flags	flags)
  55{
  56	struct xfs_trans	*tp;
  57	int			error;
  58
  59	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
  60			0, 0, 0, &tp);
  61	if (error)
  62		return error;
  63
  64	xfs_ilock(ip, XFS_ILOCK_EXCL);
  65	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
  66
  67	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
  68		VFS_I(ip)->i_mode &= ~S_ISUID;
  69		if (VFS_I(ip)->i_mode & S_IXGRP)
  70			VFS_I(ip)->i_mode &= ~S_ISGID;
  71		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
  72	}
 
 
 
  73
  74	if (flags & XFS_PREALLOC_SET)
  75		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
  76	if (flags & XFS_PREALLOC_CLEAR)
  77		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  80	if (flags & XFS_PREALLOC_SYNC)
  81		xfs_trans_set_sync(tp);
  82	return xfs_trans_commit(tp);
  83}
  84
  85/*
  86 * Fsync operations on directories are much simpler than on regular files,
  87 * as there is no file data to flush, and thus also no need for explicit
  88 * cache flush operations, and there are no non-transaction metadata updates
  89 * on directories either.
  90 */
  91STATIC int
  92xfs_dir_fsync(
  93	struct file		*file,
  94	loff_t			start,
  95	loff_t			end,
  96	int			datasync)
  97{
  98	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
  99	struct xfs_mount	*mp = ip->i_mount;
 100	xfs_lsn_t		lsn = 0;
 101
 102	trace_xfs_dir_fsync(ip);
 103
 104	xfs_ilock(ip, XFS_ILOCK_SHARED);
 105	if (xfs_ipincount(ip))
 106		lsn = ip->i_itemp->ili_last_lsn;
 107	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 108
 109	if (!lsn)
 110		return 0;
 111	return xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 112}
 113
 114STATIC int
 115xfs_file_fsync(
 116	struct file		*file,
 117	loff_t			start,
 118	loff_t			end,
 119	int			datasync)
 120{
 121	struct inode		*inode = file->f_mapping->host;
 122	struct xfs_inode	*ip = XFS_I(inode);
 123	struct xfs_mount	*mp = ip->i_mount;
 124	int			error = 0;
 125	int			log_flushed = 0;
 126	xfs_lsn_t		lsn = 0;
 127
 128	trace_xfs_file_fsync(ip);
 129
 130	error = file_write_and_wait_range(file, start, end);
 131	if (error)
 132		return error;
 133
 134	if (XFS_FORCED_SHUTDOWN(mp))
 135		return -EIO;
 136
 137	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 138
 139	/*
 140	 * If we have an RT and/or log subvolume we need to make sure to flush
 141	 * the write cache the device used for file data first.  This is to
 142	 * ensure newly written file data make it to disk before logging the new
 143	 * inode size in case of an extending write.
 144	 */
 145	if (XFS_IS_REALTIME_INODE(ip))
 146		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 147	else if (mp->m_logdev_targp != mp->m_ddev_targp)
 148		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 
 
 
 149
 150	/*
 151	 * All metadata updates are logged, which means that we just have to
 152	 * flush the log up to the latest LSN that touched the inode. If we have
 153	 * concurrent fsync/fdatasync() calls, we need them to all block on the
 154	 * log force before we clear the ili_fsync_fields field. This ensures
 155	 * that we don't get a racing sync operation that does not wait for the
 156	 * metadata to hit the journal before returning. If we race with
 157	 * clearing the ili_fsync_fields, then all that will happen is the log
 158	 * force will do nothing as the lsn will already be on disk. We can't
 159	 * race with setting ili_fsync_fields because that is done under
 160	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
 161	 * until after the ili_fsync_fields is cleared.
 162	 */
 163	xfs_ilock(ip, XFS_ILOCK_SHARED);
 164	if (xfs_ipincount(ip)) {
 165		if (!datasync ||
 166		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 167			lsn = ip->i_itemp->ili_last_lsn;
 168	}
 169
 170	if (lsn) {
 171		error = xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 172		ip->i_itemp->ili_fsync_fields = 0;
 173	}
 174	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 175
 
 
 
 176	/*
 177	 * If we only have a single device, and the log force about was
 178	 * a no-op we might have to flush the data device cache here.
 179	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 180	 * an already allocated file and thus do not have any metadata to
 181	 * commit.
 182	 */
 183	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
 184	    mp->m_logdev_targp == mp->m_ddev_targp)
 
 
 185		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 186
 187	return error;
 188}
 189
 190STATIC ssize_t
 191xfs_file_dio_aio_read(
 192	struct kiocb		*iocb,
 193	struct iov_iter		*to)
 
 
 194{
 195	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 196	size_t			count = iov_iter_count(to);
 197	ssize_t			ret;
 198
 199	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
 200
 201	if (!count)
 202		return 0; /* skip atime */
 203
 204	file_accessed(iocb->ki_filp);
 205
 206	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 207	ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
 208	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 209
 210	return ret;
 211}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213static noinline ssize_t
 214xfs_file_dax_read(
 215	struct kiocb		*iocb,
 216	struct iov_iter		*to)
 217{
 218	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
 219	size_t			count = iov_iter_count(to);
 220	ssize_t			ret = 0;
 221
 222	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
 
 223
 224	if (!count)
 225		return 0; /* skip atime */
 226
 227	if (iocb->ki_flags & IOCB_NOWAIT) {
 228		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 229			return -EAGAIN;
 230	} else {
 231		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	}
 233
 234	ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
 235	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 236
 237	file_accessed(iocb->ki_filp);
 
 
 
 
 238	return ret;
 239}
 240
 241STATIC ssize_t
 242xfs_file_buffered_aio_read(
 243	struct kiocb		*iocb,
 244	struct iov_iter		*to)
 
 
 
 245{
 246	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
 
 247	ssize_t			ret;
 248
 249	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
 250
 251	if (iocb->ki_flags & IOCB_NOWAIT) {
 252		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
 253			return -EAGAIN;
 254	} else {
 255		xfs_ilock(ip, XFS_IOLOCK_SHARED);
 256	}
 257	ret = generic_file_read_iter(iocb, to);
 258	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 
 
 
 
 
 259
 
 260	return ret;
 261}
 262
 
 
 
 
 
 
 
 
 263STATIC ssize_t
 264xfs_file_read_iter(
 265	struct kiocb		*iocb,
 266	struct iov_iter		*to)
 
 
 
 267{
 268	struct inode		*inode = file_inode(iocb->ki_filp);
 269	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
 270	ssize_t			ret = 0;
 
 271
 272	XFS_STATS_INC(mp, xs_read_calls);
 273
 274	if (XFS_FORCED_SHUTDOWN(mp))
 
 
 
 275		return -EIO;
 276
 277	if (IS_DAX(inode))
 278		ret = xfs_file_dax_read(iocb, to);
 279	else if (iocb->ki_flags & IOCB_DIRECT)
 280		ret = xfs_file_dio_aio_read(iocb, to);
 281	else
 282		ret = xfs_file_buffered_aio_read(iocb, to);
 283
 
 
 
 284	if (ret > 0)
 285		XFS_STATS_ADD(mp, xs_read_bytes, ret);
 
 
 286	return ret;
 287}
 288
 289/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290 * Common pre-write limit and setup checks.
 291 *
 292 * Called with the iolocked held either shared and exclusive according to
 293 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 294 * if called for a direct write beyond i_size.
 295 */
 296STATIC ssize_t
 297xfs_file_aio_write_checks(
 298	struct kiocb		*iocb,
 299	struct iov_iter		*from,
 
 300	int			*iolock)
 301{
 302	struct file		*file = iocb->ki_filp;
 303	struct inode		*inode = file->f_mapping->host;
 304	struct xfs_inode	*ip = XFS_I(inode);
 305	ssize_t			error = 0;
 306	size_t			count = iov_iter_count(from);
 307	bool			drained_dio = false;
 308	loff_t			isize;
 309
 310restart:
 311	error = generic_write_checks(iocb, from);
 312	if (error <= 0)
 313		return error;
 314
 315	error = xfs_break_layouts(inode, iolock);
 316	if (error)
 317		return error;
 318
 319	/*
 320	 * For changing security info in file_remove_privs() we need i_rwsem
 321	 * exclusively.
 322	 */
 323	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
 324		xfs_iunlock(ip, *iolock);
 325		*iolock = XFS_IOLOCK_EXCL;
 326		xfs_ilock(ip, *iolock);
 327		goto restart;
 328	}
 329	/*
 330	 * If the offset is beyond the size of the file, we need to zero any
 331	 * blocks that fall between the existing EOF and the start of this
 332	 * write.  If zeroing is needed and we are currently holding the
 333	 * iolock shared, we need to update it to exclusive which implies
 334	 * having to redo all checks before.
 335	 *
 336	 * We need to serialise against EOF updates that occur in IO
 337	 * completions here. We want to make sure that nobody is changing the
 338	 * size while we do this check until we have placed an IO barrier (i.e.
 339	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
 340	 * The spinlock effectively forms a memory barrier once we have the
 341	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
 342	 * and hence be able to correctly determine if we need to run zeroing.
 343	 */
 344	spin_lock(&ip->i_flags_lock);
 345	isize = i_size_read(inode);
 346	if (iocb->ki_pos > isize) {
 347		spin_unlock(&ip->i_flags_lock);
 348		if (!drained_dio) {
 349			if (*iolock == XFS_IOLOCK_SHARED) {
 350				xfs_iunlock(ip, *iolock);
 351				*iolock = XFS_IOLOCK_EXCL;
 352				xfs_ilock(ip, *iolock);
 353				iov_iter_reexpand(from, count);
 354			}
 355			/*
 356			 * We now have an IO submission barrier in place, but
 357			 * AIO can do EOF updates during IO completion and hence
 358			 * we now need to wait for all of them to drain. Non-AIO
 359			 * DIO will have drained before we are given the
 360			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
 361			 * no-op.
 362			 */
 363			inode_dio_wait(inode);
 364			drained_dio = true;
 365			goto restart;
 366		}
 367	
 368		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
 369		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
 370				NULL, &xfs_iomap_ops);
 371		if (error)
 372			return error;
 373	} else
 374		spin_unlock(&ip->i_flags_lock);
 375
 376	/*
 377	 * Updating the timestamps will grab the ilock again from
 378	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 379	 * lock above.  Eventually we should look into a way to avoid
 380	 * the pointless lock roundtrip.
 381	 */
 382	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 383		error = file_update_time(file);
 384		if (error)
 385			return error;
 386	}
 387
 388	/*
 389	 * If we're writing the file then make sure to clear the setuid and
 390	 * setgid bits if the process is not being run by root.  This keeps
 391	 * people from modifying setuid and setgid binaries.
 392	 */
 393	if (!IS_NOSEC(inode))
 394		return file_remove_privs(file);
 395	return 0;
 396}
 397
 398static int
 399xfs_dio_write_end_io(
 400	struct kiocb		*iocb,
 401	ssize_t			size,
 402	unsigned		flags)
 403{
 404	struct inode		*inode = file_inode(iocb->ki_filp);
 405	struct xfs_inode	*ip = XFS_I(inode);
 406	loff_t			offset = iocb->ki_pos;
 407	int			error = 0;
 408
 409	trace_xfs_end_io_direct_write(ip, offset, size);
 410
 411	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 412		return -EIO;
 413
 414	if (size <= 0)
 415		return size;
 416
 417	if (flags & IOMAP_DIO_COW) {
 418		error = xfs_reflink_end_cow(ip, offset, size);
 419		if (error)
 420			return error;
 421	}
 422
 423	/*
 424	 * Unwritten conversion updates the in-core isize after extent
 425	 * conversion but before updating the on-disk size. Updating isize any
 426	 * earlier allows a racing dio read to find unwritten extents before
 427	 * they are converted.
 428	 */
 429	if (flags & IOMAP_DIO_UNWRITTEN)
 430		return xfs_iomap_write_unwritten(ip, offset, size, true);
 431
 432	/*
 433	 * We need to update the in-core inode size here so that we don't end up
 434	 * with the on-disk inode size being outside the in-core inode size. We
 435	 * have no other method of updating EOF for AIO, so always do it here
 436	 * if necessary.
 437	 *
 438	 * We need to lock the test/set EOF update as we can be racing with
 439	 * other IO completions here to update the EOF. Failing to serialise
 440	 * here can result in EOF moving backwards and Bad Things Happen when
 441	 * that occurs.
 442	 */
 443	spin_lock(&ip->i_flags_lock);
 444	if (offset + size > i_size_read(inode)) {
 445		i_size_write(inode, offset + size);
 446		spin_unlock(&ip->i_flags_lock);
 447		error = xfs_setfilesize(ip, offset, size);
 448	} else {
 449		spin_unlock(&ip->i_flags_lock);
 450	}
 451
 452	return error;
 453}
 454
 455/*
 456 * xfs_file_dio_aio_write - handle direct IO writes
 457 *
 458 * Lock the inode appropriately to prepare for and issue a direct IO write.
 459 * By separating it from the buffered write path we remove all the tricky to
 460 * follow locking changes and looping.
 461 *
 462 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 463 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 464 * pages are flushed out.
 465 *
 466 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 467 * allowing them to be done in parallel with reads and other direct IO writes.
 468 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 469 * needs to do sub-block zeroing and that requires serialisation against other
 470 * direct IOs to the same block. In this case we need to serialise the
 471 * submission of the unaligned IOs so that we don't get racing block zeroing in
 472 * the dio layer.  To avoid the problem with aio, we also need to wait for
 473 * outstanding IOs to complete so that unwritten extent conversion is completed
 474 * before we try to map the overlapping block. This is currently implemented by
 475 * hitting it with a big hammer (i.e. inode_dio_wait()).
 476 *
 477 * Returns with locks held indicated by @iolock and errors indicated by
 478 * negative return values.
 479 */
 480STATIC ssize_t
 481xfs_file_dio_aio_write(
 482	struct kiocb		*iocb,
 483	struct iov_iter		*from)
 
 
 
 484{
 485	struct file		*file = iocb->ki_filp;
 486	struct address_space	*mapping = file->f_mapping;
 487	struct inode		*inode = mapping->host;
 488	struct xfs_inode	*ip = XFS_I(inode);
 489	struct xfs_mount	*mp = ip->i_mount;
 490	ssize_t			ret = 0;
 
 491	int			unaligned_io = 0;
 492	int			iolock;
 493	size_t			count = iov_iter_count(from);
 494	struct xfs_buftarg      *target = XFS_IS_REALTIME_INODE(ip) ?
 495					mp->m_rtdev_targp : mp->m_ddev_targp;
 496
 497	/* DIO must be aligned to device logical sector size */
 498	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
 499		return -EINVAL;
 500
 501	/*
 502	 * Don't take the exclusive iolock here unless the I/O is unaligned to
 503	 * the file system block size.  We don't need to consider the EOF
 504	 * extension case here because xfs_file_aio_write_checks() will relock
 505	 * the inode as necessary for EOF zeroing cases and fill out the new
 506	 * inode size as appropriate.
 507	 */
 508	if ((iocb->ki_pos & mp->m_blockmask) ||
 509	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
 510		unaligned_io = 1;
 511
 512		/*
 513		 * We can't properly handle unaligned direct I/O to reflink
 514		 * files yet, as we can't unshare a partial block.
 515		 */
 516		if (xfs_is_reflink_inode(ip)) {
 517			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
 518			return -EREMCHG;
 519		}
 520		iolock = XFS_IOLOCK_EXCL;
 521	} else {
 522		iolock = XFS_IOLOCK_SHARED;
 523	}
 524
 525	if (iocb->ki_flags & IOCB_NOWAIT) {
 526		if (!xfs_ilock_nowait(ip, iolock))
 527			return -EAGAIN;
 528	} else {
 529		xfs_ilock(ip, iolock);
 
 
 
 
 530	}
 531
 532	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 533	if (ret)
 534		goto out;
 535	count = iov_iter_count(from);
 
 
 
 
 
 
 
 536
 537	/*
 538	 * If we are doing unaligned IO, wait for all other IO to drain,
 539	 * otherwise demote the lock if we had to take the exclusive lock
 540	 * for other reasons in xfs_file_aio_write_checks.
 541	 */
 542	if (unaligned_io) {
 543		/* If we are going to wait for other DIO to finish, bail */
 544		if (iocb->ki_flags & IOCB_NOWAIT) {
 545			if (atomic_read(&inode->i_dio_count))
 546				return -EAGAIN;
 547		} else {
 548			inode_dio_wait(inode);
 549		}
 550	} else if (iolock == XFS_IOLOCK_EXCL) {
 551		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
 552		iolock = XFS_IOLOCK_SHARED;
 553	}
 554
 555	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
 556	ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
 
 
 557out:
 558	xfs_iunlock(ip, iolock);
 559
 560	/*
 561	 * No fallback to buffered IO on errors for XFS, direct IO will either
 562	 * complete fully or fail.
 563	 */
 564	ASSERT(ret < 0 || ret == count);
 565	return ret;
 566}
 567
 568static noinline ssize_t
 569xfs_file_dax_write(
 570	struct kiocb		*iocb,
 571	struct iov_iter		*from)
 572{
 573	struct inode		*inode = iocb->ki_filp->f_mapping->host;
 574	struct xfs_inode	*ip = XFS_I(inode);
 575	int			iolock = XFS_IOLOCK_EXCL;
 576	ssize_t			ret, error = 0;
 577	size_t			count;
 578	loff_t			pos;
 579
 580	if (iocb->ki_flags & IOCB_NOWAIT) {
 581		if (!xfs_ilock_nowait(ip, iolock))
 582			return -EAGAIN;
 583	} else {
 584		xfs_ilock(ip, iolock);
 585	}
 586
 587	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 588	if (ret)
 589		goto out;
 590
 591	pos = iocb->ki_pos;
 592	count = iov_iter_count(from);
 593
 594	trace_xfs_file_dax_write(ip, count, pos);
 595	ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
 596	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
 597		i_size_write(inode, iocb->ki_pos);
 598		error = xfs_setfilesize(ip, pos, ret);
 599	}
 600out:
 601	xfs_iunlock(ip, iolock);
 602	return error ? error : ret;
 603}
 604
 605STATIC ssize_t
 606xfs_file_buffered_aio_write(
 607	struct kiocb		*iocb,
 608	struct iov_iter		*from)
 
 
 
 609{
 610	struct file		*file = iocb->ki_filp;
 611	struct address_space	*mapping = file->f_mapping;
 612	struct inode		*inode = mapping->host;
 613	struct xfs_inode	*ip = XFS_I(inode);
 614	ssize_t			ret;
 615	int			enospc = 0;
 616	int			iolock;
 
 617
 618	if (iocb->ki_flags & IOCB_NOWAIT)
 619		return -EOPNOTSUPP;
 620
 621write_retry:
 622	iolock = XFS_IOLOCK_EXCL;
 623	xfs_ilock(ip, iolock);
 624
 625	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
 626	if (ret)
 627		goto out;
 628
 
 629	/* We can write back this queue in page reclaim */
 630	current->backing_dev_info = inode_to_bdi(inode);
 631
 632	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
 633	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
 
 634	if (likely(ret >= 0))
 635		iocb->ki_pos += ret;
 636
 637	/*
 638	 * If we hit a space limit, try to free up some lingering preallocated
 639	 * space before returning an error. In the case of ENOSPC, first try to
 640	 * write back all dirty inodes to free up some of the excess reserved
 641	 * metadata space. This reduces the chances that the eofblocks scan
 642	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
 643	 * also behaves as a filter to prevent too many eofblocks scans from
 644	 * running at the same time.
 645	 */
 646	if (ret == -EDQUOT && !enospc) {
 647		xfs_iunlock(ip, iolock);
 648		enospc = xfs_inode_free_quota_eofblocks(ip);
 649		if (enospc)
 650			goto write_retry;
 651		enospc = xfs_inode_free_quota_cowblocks(ip);
 652		if (enospc)
 653			goto write_retry;
 654		iolock = 0;
 655	} else if (ret == -ENOSPC && !enospc) {
 656		struct xfs_eofblocks eofb = {0};
 657
 658		enospc = 1;
 659		xfs_flush_inodes(ip->i_mount);
 660
 661		xfs_iunlock(ip, iolock);
 662		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
 663		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
 664		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
 665		goto write_retry;
 666	}
 667
 668	current->backing_dev_info = NULL;
 669out:
 670	if (iolock)
 671		xfs_iunlock(ip, iolock);
 672	return ret;
 673}
 674
 675STATIC ssize_t
 676xfs_file_write_iter(
 677	struct kiocb		*iocb,
 678	struct iov_iter		*from)
 
 
 679{
 680	struct file		*file = iocb->ki_filp;
 681	struct address_space	*mapping = file->f_mapping;
 682	struct inode		*inode = mapping->host;
 683	struct xfs_inode	*ip = XFS_I(inode);
 684	ssize_t			ret;
 685	size_t			ocount = iov_iter_count(from);
 
 
 
 
 686
 687	XFS_STATS_INC(ip->i_mount, xs_write_calls);
 
 
 688
 689	if (ocount == 0)
 690		return 0;
 691
 692	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 693		return -EIO;
 694
 695	if (IS_DAX(inode))
 696		ret = xfs_file_dax_write(iocb, from);
 697	else if (iocb->ki_flags & IOCB_DIRECT) {
 698		/*
 699		 * Allow a directio write to fall back to a buffered
 700		 * write *only* in the case that we're doing a reflink
 701		 * CoW.  In all other directio scenarios we do not
 702		 * allow an operation to fall back to buffered mode.
 703		 */
 704		ret = xfs_file_dio_aio_write(iocb, from);
 705		if (ret == -EREMCHG)
 706			goto buffered;
 707	} else {
 708buffered:
 709		ret = xfs_file_buffered_aio_write(iocb, from);
 710	}
 711
 
 
 
 
 
 
 712	if (ret > 0) {
 713		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
 
 
 714
 715		/* Handle various SYNC-type writes */
 716		ret = generic_write_sync(iocb, ret);
 
 
 717	}
 
 
 718	return ret;
 719}
 720
 721#define	XFS_FALLOC_FL_SUPPORTED						\
 722		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
 723		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
 724		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
 725
 726STATIC long
 727xfs_file_fallocate(
 728	struct file		*file,
 729	int			mode,
 730	loff_t			offset,
 731	loff_t			len)
 732{
 733	struct inode		*inode = file_inode(file);
 734	struct xfs_inode	*ip = XFS_I(inode);
 
 735	long			error;
 736	enum xfs_prealloc_flags	flags = 0;
 737	uint			iolock = XFS_IOLOCK_EXCL;
 738	loff_t			new_size = 0;
 739	bool			do_file_insert = false;
 740
 741	if (!S_ISREG(inode->i_mode))
 742		return -EINVAL;
 743	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
 
 744		return -EOPNOTSUPP;
 745
 746	xfs_ilock(ip, iolock);
 747	error = xfs_break_layouts(inode, &iolock);
 748	if (error)
 749		goto out_unlock;
 750
 751	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 752	iolock |= XFS_MMAPLOCK_EXCL;
 753
 754	if (mode & FALLOC_FL_PUNCH_HOLE) {
 755		error = xfs_free_file_space(ip, offset, len);
 756		if (error)
 757			goto out_unlock;
 758	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 759		unsigned int blksize_mask = i_blocksize(inode) - 1;
 760
 761		if (offset & blksize_mask || len & blksize_mask) {
 762			error = -EINVAL;
 763			goto out_unlock;
 764		}
 765
 766		/*
 767		 * There is no need to overlap collapse range with EOF,
 768		 * in which case it is effectively a truncate operation
 769		 */
 770		if (offset + len >= i_size_read(inode)) {
 771			error = -EINVAL;
 772			goto out_unlock;
 773		}
 774
 775		new_size = i_size_read(inode) - len;
 776
 777		error = xfs_collapse_file_space(ip, offset, len);
 778		if (error)
 779			goto out_unlock;
 780	} else if (mode & FALLOC_FL_INSERT_RANGE) {
 781		unsigned int	blksize_mask = i_blocksize(inode) - 1;
 782		loff_t		isize = i_size_read(inode);
 783
 784		if (offset & blksize_mask || len & blksize_mask) {
 785			error = -EINVAL;
 786			goto out_unlock;
 787		}
 788
 789		/*
 790		 * New inode size must not exceed ->s_maxbytes, accounting for
 791		 * possible signed overflow.
 792		 */
 793		if (inode->i_sb->s_maxbytes - isize < len) {
 794			error = -EFBIG;
 795			goto out_unlock;
 796		}
 797		new_size = isize + len;
 798
 799		/* Offset should be less than i_size */
 800		if (offset >= isize) {
 801			error = -EINVAL;
 802			goto out_unlock;
 803		}
 804		do_file_insert = true;
 805	} else {
 806		flags |= XFS_PREALLOC_SET;
 807
 808		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 809		    offset + len > i_size_read(inode)) {
 810			new_size = offset + len;
 811			error = inode_newsize_ok(inode, new_size);
 812			if (error)
 813				goto out_unlock;
 814		}
 815
 816		if (mode & FALLOC_FL_ZERO_RANGE)
 817			error = xfs_zero_file_space(ip, offset, len);
 818		else {
 819			if (mode & FALLOC_FL_UNSHARE_RANGE) {
 820				error = xfs_reflink_unshare(ip, offset, len);
 821				if (error)
 822					goto out_unlock;
 823			}
 824			error = xfs_alloc_file_space(ip, offset, len,
 825						     XFS_BMAPI_PREALLOC);
 826		}
 827		if (error)
 828			goto out_unlock;
 829	}
 830
 831	if (file->f_flags & O_DSYNC)
 832		flags |= XFS_PREALLOC_SYNC;
 
 
 
 
 833
 834	error = xfs_update_prealloc_flags(ip, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835	if (error)
 836		goto out_unlock;
 837
 838	/* Change file size if needed */
 839	if (new_size) {
 840		struct iattr iattr;
 841
 842		iattr.ia_valid = ATTR_SIZE;
 843		iattr.ia_size = new_size;
 844		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
 845		if (error)
 846			goto out_unlock;
 847	}
 848
 849	/*
 850	 * Perform hole insertion now that the file size has been
 851	 * updated so that if we crash during the operation we don't
 852	 * leave shifted extents past EOF and hence losing access to
 853	 * the data that is contained within them.
 854	 */
 855	if (do_file_insert)
 856		error = xfs_insert_file_space(ip, offset, len);
 857
 858out_unlock:
 859	xfs_iunlock(ip, iolock);
 860	return error;
 861}
 862
 863STATIC int
 864xfs_file_clone_range(
 865	struct file	*file_in,
 866	loff_t		pos_in,
 867	struct file	*file_out,
 868	loff_t		pos_out,
 869	u64		len)
 870{
 871	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
 872				     len, false);
 873}
 874
 875STATIC ssize_t
 876xfs_file_dedupe_range(
 877	struct file	*src_file,
 878	u64		loff,
 879	u64		len,
 880	struct file	*dst_file,
 881	u64		dst_loff)
 882{
 883	struct inode	*srci = file_inode(src_file);
 884	u64		max_dedupe;
 885	int		error;
 886
 887	/*
 888	 * Since we have to read all these pages in to compare them, cut
 889	 * it off at MAX_RW_COUNT/2 rounded down to the nearest block.
 890	 * That means we won't do more than MAX_RW_COUNT IO per request.
 891	 */
 892	max_dedupe = (MAX_RW_COUNT >> 1) & ~(i_blocksize(srci) - 1);
 893	if (len > max_dedupe)
 894		len = max_dedupe;
 895	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
 896				     len, true);
 897	if (error)
 898		return error;
 899	return len;
 900}
 901
 902STATIC int
 903xfs_file_open(
 904	struct inode	*inode,
 905	struct file	*file)
 906{
 907	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 908		return -EFBIG;
 909	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 910		return -EIO;
 911	file->f_mode |= FMODE_NOWAIT;
 912	return 0;
 913}
 914
 915STATIC int
 916xfs_dir_open(
 917	struct inode	*inode,
 918	struct file	*file)
 919{
 920	struct xfs_inode *ip = XFS_I(inode);
 921	int		mode;
 922	int		error;
 923
 924	error = xfs_file_open(inode, file);
 925	if (error)
 926		return error;
 927
 928	/*
 929	 * If there are any blocks, read-ahead block 0 as we're almost
 930	 * certain to have the next operation be a read there.
 931	 */
 932	mode = xfs_ilock_data_map_shared(ip);
 933	if (ip->i_d.di_nextents > 0)
 934		error = xfs_dir3_data_readahead(ip, 0, -1);
 935	xfs_iunlock(ip, mode);
 936	return error;
 937}
 938
 939STATIC int
 940xfs_file_release(
 941	struct inode	*inode,
 942	struct file	*filp)
 943{
 944	return xfs_release(XFS_I(inode));
 945}
 946
 947STATIC int
 948xfs_file_readdir(
 949	struct file	*file,
 950	struct dir_context *ctx)
 951{
 952	struct inode	*inode = file_inode(file);
 953	xfs_inode_t	*ip = XFS_I(inode);
 
 954	size_t		bufsize;
 955
 956	/*
 957	 * The Linux API doesn't pass down the total size of the buffer
 958	 * we read into down to the filesystem.  With the filldir concept
 959	 * it's not needed for correct information, but the XFS dir2 leaf
 960	 * code wants an estimate of the buffer size to calculate it's
 961	 * readahead window and size the buffers used for mapping to
 962	 * physical blocks.
 963	 *
 964	 * Try to give it an estimate that's good enough, maybe at some
 965	 * point we can change the ->readdir prototype to include the
 966	 * buffer size.  For now we use the current glibc buffer size.
 967	 */
 968	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
 969
 970	return xfs_readdir(NULL, ip, ctx, bufsize);
 
 
 
 971}
 972
 973STATIC loff_t
 974xfs_file_llseek(
 975	struct file	*file,
 976	loff_t		offset,
 977	int		whence)
 978{
 979	struct inode		*inode = file->f_mapping->host;
 980
 981	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
 982		return -EIO;
 
 983
 984	switch (whence) {
 985	default:
 986		return generic_file_llseek(file, offset, whence);
 987	case SEEK_HOLE:
 988		offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
 989		break;
 990	case SEEK_DATA:
 991		offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
 992		break;
 993	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994
 995	if (offset < 0)
 996		return offset;
 997	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
 998}
 999
1000/*
1001 * Locking for serialisation of IO during page faults. This results in a lock
1002 * ordering of:
 
1003 *
1004 * mmap_sem (MM)
1005 *   sb_start_pagefault(vfs, freeze)
1006 *     i_mmaplock (XFS - truncate serialisation)
1007 *       page_lock (MM)
1008 *         i_lock (XFS - extent map serialisation)
 
 
1009 */
1010static int
1011__xfs_filemap_fault(
1012	struct vm_fault		*vmf,
1013	enum page_entry_size	pe_size,
1014	bool			write_fault)
 
1015{
1016	struct inode		*inode = file_inode(vmf->vma->vm_file);
1017	struct xfs_inode	*ip = XFS_I(inode);
1018	int			ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019
1020	trace_xfs_filemap_fault(ip, pe_size, write_fault);
 
 
 
 
 
 
 
 
 
1021
1022	if (write_fault) {
1023		sb_start_pagefault(inode->i_sb);
1024		file_update_time(vmf->vma->vm_file);
1025	}
1026
1027	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1028	if (IS_DAX(inode)) {
1029		pfn_t pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1030
1031		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL, &xfs_iomap_ops);
1032		if (ret & VM_FAULT_NEEDDSYNC)
1033			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1034	} else {
1035		if (write_fault)
1036			ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1037		else
1038			ret = filemap_fault(vmf);
1039	}
1040	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1041
1042	if (write_fault)
1043		sb_end_pagefault(inode->i_sb);
1044	return ret;
1045}
1046
1047static int
1048xfs_filemap_fault(
1049	struct vm_fault		*vmf)
1050{
1051	/* DAX can shortcut the normal fault path on write faults! */
1052	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1053			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1054			(vmf->flags & FAULT_FLAG_WRITE));
1055}
 
 
1056
1057static int
1058xfs_filemap_huge_fault(
1059	struct vm_fault		*vmf,
1060	enum page_entry_size	pe_size)
1061{
1062	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1063		return VM_FAULT_FALLBACK;
 
 
1064
1065	/* DAX can shortcut the normal fault path on write faults! */
1066	return __xfs_filemap_fault(vmf, pe_size,
1067			(vmf->flags & FAULT_FLAG_WRITE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068}
1069
1070static int
1071xfs_filemap_page_mkwrite(
1072	struct vm_fault		*vmf)
 
1073{
1074	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075}
1076
1077/*
1078 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1079 * on write faults. In reality, it needs to serialise against truncate and
1080 * prepare memory for writing so handle is as standard write fault.
1081 */
1082static int
1083xfs_filemap_pfn_mkwrite(
1084	struct vm_fault		*vmf)
1085{
 
 
 
 
 
 
 
 
 
1086
1087	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1088}
1089
1090static const struct vm_operations_struct xfs_file_vm_ops = {
1091	.fault		= xfs_filemap_fault,
1092	.huge_fault	= xfs_filemap_huge_fault,
1093	.map_pages	= filemap_map_pages,
1094	.page_mkwrite	= xfs_filemap_page_mkwrite,
1095	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1096};
1097
1098STATIC int
1099xfs_file_mmap(
1100	struct file	*filp,
1101	struct vm_area_struct *vma)
1102{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103	/*
1104	 * We don't support synchronous mappings for non-DAX files. At least
1105	 * until someone comes with a sensible use case.
 
 
1106	 */
1107	if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1108		return -EOPNOTSUPP;
1109
1110	file_accessed(filp);
1111	vma->vm_ops = &xfs_file_vm_ops;
1112	if (IS_DAX(file_inode(filp)))
1113		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1114	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1115}
1116
1117const struct file_operations xfs_file_operations = {
1118	.llseek		= xfs_file_llseek,
1119	.read_iter	= xfs_file_read_iter,
1120	.write_iter	= xfs_file_write_iter,
1121	.splice_read	= generic_file_splice_read,
1122	.splice_write	= iter_file_splice_write,
 
 
1123	.unlocked_ioctl	= xfs_file_ioctl,
1124#ifdef CONFIG_COMPAT
1125	.compat_ioctl	= xfs_file_compat_ioctl,
1126#endif
1127	.mmap		= xfs_file_mmap,
1128	.mmap_supported_flags = MAP_SYNC,
1129	.open		= xfs_file_open,
1130	.release	= xfs_file_release,
1131	.fsync		= xfs_file_fsync,
1132	.get_unmapped_area = thp_get_unmapped_area,
1133	.fallocate	= xfs_file_fallocate,
1134	.clone_file_range = xfs_file_clone_range,
1135	.dedupe_file_range = xfs_file_dedupe_range,
1136};
1137
1138const struct file_operations xfs_dir_file_operations = {
1139	.open		= xfs_dir_open,
1140	.read		= generic_read_dir,
1141	.iterate_shared	= xfs_file_readdir,
1142	.llseek		= generic_file_llseek,
1143	.unlocked_ioctl	= xfs_file_ioctl,
1144#ifdef CONFIG_COMPAT
1145	.compat_ioctl	= xfs_file_compat_ioctl,
1146#endif
1147	.fsync		= xfs_dir_fsync,
 
 
 
 
 
 
 
1148};
v3.15
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_da_format.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_inode.h"
  30#include "xfs_trans.h"
  31#include "xfs_inode_item.h"
  32#include "xfs_bmap.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_error.h"
  35#include "xfs_dir2.h"
  36#include "xfs_dir2_priv.h"
  37#include "xfs_ioctl.h"
  38#include "xfs_trace.h"
  39#include "xfs_log.h"
  40#include "xfs_dinode.h"
 
 
 
  41
  42#include <linux/aio.h>
  43#include <linux/dcache.h>
  44#include <linux/falloc.h>
  45#include <linux/pagevec.h>
 
 
  46
  47static const struct vm_operations_struct xfs_file_vm_ops;
  48
  49/*
  50 * Locking primitives for read and write IO paths to ensure we consistently use
  51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
  52 */
  53static inline void
  54xfs_rw_ilock(
  55	struct xfs_inode	*ip,
  56	int			type)
  57{
  58	if (type & XFS_IOLOCK_EXCL)
  59		mutex_lock(&VFS_I(ip)->i_mutex);
  60	xfs_ilock(ip, type);
  61}
 
 
 
  62
  63static inline void
  64xfs_rw_iunlock(
  65	struct xfs_inode	*ip,
  66	int			type)
  67{
  68	xfs_iunlock(ip, type);
  69	if (type & XFS_IOLOCK_EXCL)
  70		mutex_unlock(&VFS_I(ip)->i_mutex);
  71}
  72
  73static inline void
  74xfs_rw_ilock_demote(
  75	struct xfs_inode	*ip,
  76	int			type)
  77{
  78	xfs_ilock_demote(ip, type);
  79	if (type & XFS_IOLOCK_EXCL)
  80		mutex_unlock(&VFS_I(ip)->i_mutex);
  81}
  82
  83/*
  84 *	xfs_iozero
  85 *
  86 *	xfs_iozero clears the specified range of buffer supplied,
  87 *	and marks all the affected blocks as valid and modified.  If
  88 *	an affected block is not allocated, it will be allocated.  If
  89 *	an affected block is not completely overwritten, and is not
  90 *	valid before the operation, it will be read from disk before
  91 *	being partially zeroed.
  92 */
  93int
  94xfs_iozero(
  95	struct xfs_inode	*ip,	/* inode			*/
  96	loff_t			pos,	/* offset in file		*/
  97	size_t			count)	/* size of data to zero		*/
  98{
  99	struct page		*page;
 100	struct address_space	*mapping;
 101	int			status;
 102
 103	mapping = VFS_I(ip)->i_mapping;
 104	do {
 105		unsigned offset, bytes;
 106		void *fsdata;
 107
 108		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
 109		bytes = PAGE_CACHE_SIZE - offset;
 110		if (bytes > count)
 111			bytes = count;
 112
 113		status = pagecache_write_begin(NULL, mapping, pos, bytes,
 114					AOP_FLAG_UNINTERRUPTIBLE,
 115					&page, &fsdata);
 116		if (status)
 117			break;
 118
 119		zero_user(page, offset, bytes);
 120
 121		status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
 122					page, fsdata);
 123		WARN_ON(status <= 0); /* can't return less than zero! */
 124		pos += bytes;
 125		count -= bytes;
 126		status = 0;
 127	} while (count);
 128
 129	return (-status);
 
 
 
 130}
 131
 132/*
 133 * Fsync operations on directories are much simpler than on regular files,
 134 * as there is no file data to flush, and thus also no need for explicit
 135 * cache flush operations, and there are no non-transaction metadata updates
 136 * on directories either.
 137 */
 138STATIC int
 139xfs_dir_fsync(
 140	struct file		*file,
 141	loff_t			start,
 142	loff_t			end,
 143	int			datasync)
 144{
 145	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
 146	struct xfs_mount	*mp = ip->i_mount;
 147	xfs_lsn_t		lsn = 0;
 148
 149	trace_xfs_dir_fsync(ip);
 150
 151	xfs_ilock(ip, XFS_ILOCK_SHARED);
 152	if (xfs_ipincount(ip))
 153		lsn = ip->i_itemp->ili_last_lsn;
 154	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 155
 156	if (!lsn)
 157		return 0;
 158	return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
 159}
 160
 161STATIC int
 162xfs_file_fsync(
 163	struct file		*file,
 164	loff_t			start,
 165	loff_t			end,
 166	int			datasync)
 167{
 168	struct inode		*inode = file->f_mapping->host;
 169	struct xfs_inode	*ip = XFS_I(inode);
 170	struct xfs_mount	*mp = ip->i_mount;
 171	int			error = 0;
 172	int			log_flushed = 0;
 173	xfs_lsn_t		lsn = 0;
 174
 175	trace_xfs_file_fsync(ip);
 176
 177	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 178	if (error)
 179		return error;
 180
 181	if (XFS_FORCED_SHUTDOWN(mp))
 182		return -XFS_ERROR(EIO);
 183
 184	xfs_iflags_clear(ip, XFS_ITRUNCATED);
 185
 186	if (mp->m_flags & XFS_MOUNT_BARRIER) {
 187		/*
 188		 * If we have an RT and/or log subvolume we need to make sure
 189		 * to flush the write cache the device used for file data
 190		 * first.  This is to ensure newly written file data make
 191		 * it to disk before logging the new inode size in case of
 192		 * an extending write.
 193		 */
 194		if (XFS_IS_REALTIME_INODE(ip))
 195			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
 196		else if (mp->m_logdev_targp != mp->m_ddev_targp)
 197			xfs_blkdev_issue_flush(mp->m_ddev_targp);
 198	}
 199
 200	/*
 201	 * All metadata updates are logged, which means that we just have
 202	 * to flush the log up to the latest LSN that touched the inode.
 
 
 
 
 
 
 
 
 
 203	 */
 204	xfs_ilock(ip, XFS_ILOCK_SHARED);
 205	if (xfs_ipincount(ip)) {
 206		if (!datasync ||
 207		    (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
 208			lsn = ip->i_itemp->ili_last_lsn;
 209	}
 
 
 
 
 
 210	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 211
 212	if (lsn)
 213		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
 214
 215	/*
 216	 * If we only have a single device, and the log force about was
 217	 * a no-op we might have to flush the data device cache here.
 218	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
 219	 * an already allocated file and thus do not have any metadata to
 220	 * commit.
 221	 */
 222	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
 223	    mp->m_logdev_targp == mp->m_ddev_targp &&
 224	    !XFS_IS_REALTIME_INODE(ip) &&
 225	    !log_flushed)
 226		xfs_blkdev_issue_flush(mp->m_ddev_targp);
 227
 228	return -error;
 229}
 230
 231STATIC ssize_t
 232xfs_file_aio_read(
 233	struct kiocb		*iocb,
 234	const struct iovec	*iovp,
 235	unsigned long		nr_segs,
 236	loff_t			pos)
 237{
 238	struct file		*file = iocb->ki_filp;
 239	struct inode		*inode = file->f_mapping->host;
 240	struct xfs_inode	*ip = XFS_I(inode);
 241	struct xfs_mount	*mp = ip->i_mount;
 242	size_t			size = 0;
 243	ssize_t			ret = 0;
 244	int			ioflags = 0;
 245	xfs_fsize_t		n;
 246
 247	XFS_STATS_INC(xs_read_calls);
 248
 249	BUG_ON(iocb->ki_pos != pos);
 
 
 250
 251	if (unlikely(file->f_flags & O_DIRECT))
 252		ioflags |= IO_ISDIRECT;
 253	if (file->f_mode & FMODE_NOCMTIME)
 254		ioflags |= IO_INVIS;
 255
 256	ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
 257	if (ret < 0)
 258		return ret;
 259
 260	if (unlikely(ioflags & IO_ISDIRECT)) {
 261		xfs_buftarg_t	*target =
 262			XFS_IS_REALTIME_INODE(ip) ?
 263				mp->m_rtdev_targp : mp->m_ddev_targp;
 264		/* DIO must be aligned to device logical sector size */
 265		if ((pos | size) & target->bt_logical_sectormask) {
 266			if (pos == i_size_read(inode))
 267				return 0;
 268			return -XFS_ERROR(EINVAL);
 269		}
 270	}
 271
 272	n = mp->m_super->s_maxbytes - pos;
 273	if (n <= 0 || size == 0)
 274		return 0;
 
 
 
 
 
 275
 276	if (n < size)
 277		size = n;
 278
 279	if (XFS_FORCED_SHUTDOWN(mp))
 280		return -EIO;
 281
 282	/*
 283	 * Locking is a bit tricky here. If we take an exclusive lock
 284	 * for direct IO, we effectively serialise all new concurrent
 285	 * read IO to this file and block it behind IO that is currently in
 286	 * progress because IO in progress holds the IO lock shared. We only
 287	 * need to hold the lock exclusive to blow away the page cache, so
 288	 * only take lock exclusively if the page cache needs invalidation.
 289	 * This allows the normal direct IO case of no page cache pages to
 290	 * proceeed concurrently without serialisation.
 291	 */
 292	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 293	if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
 294		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 295		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
 296
 297		if (inode->i_mapping->nrpages) {
 298			ret = filemap_write_and_wait_range(
 299							VFS_I(ip)->i_mapping,
 300							pos, -1);
 301			if (ret) {
 302				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
 303				return ret;
 304			}
 305			truncate_pagecache_range(VFS_I(ip), pos, -1);
 306		}
 307		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 308	}
 309
 310	trace_xfs_file_read(ip, size, pos, ioflags);
 
 311
 312	ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
 313	if (ret > 0)
 314		XFS_STATS_ADD(xs_read_bytes, ret);
 315
 316	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 317	return ret;
 318}
 319
 320STATIC ssize_t
 321xfs_file_splice_read(
 322	struct file		*infilp,
 323	loff_t			*ppos,
 324	struct pipe_inode_info	*pipe,
 325	size_t			count,
 326	unsigned int		flags)
 327{
 328	struct xfs_inode	*ip = XFS_I(infilp->f_mapping->host);
 329	int			ioflags = 0;
 330	ssize_t			ret;
 331
 332	XFS_STATS_INC(xs_read_calls);
 333
 334	if (infilp->f_mode & FMODE_NOCMTIME)
 335		ioflags |= IO_INVIS;
 336
 337	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 338		return -EIO;
 339
 340	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
 341
 342	trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
 343
 344	ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
 345	if (ret > 0)
 346		XFS_STATS_ADD(xs_read_bytes, ret);
 347
 348	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
 349	return ret;
 350}
 351
 352/*
 353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
 354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
 355 * couuld cause lock inversions between the aio_write path and the splice path
 356 * if someone is doing concurrent splice(2) based writes and write(2) based
 357 * writes to the same inode. The only real way to fix this is to re-implement
 358 * the generic code here with correct locking orders.
 359 */
 360STATIC ssize_t
 361xfs_file_splice_write(
 362	struct pipe_inode_info	*pipe,
 363	struct file		*outfilp,
 364	loff_t			*ppos,
 365	size_t			count,
 366	unsigned int		flags)
 367{
 368	struct inode		*inode = outfilp->f_mapping->host;
 369	struct xfs_inode	*ip = XFS_I(inode);
 370	int			ioflags = 0;
 371	ssize_t			ret;
 372
 373	XFS_STATS_INC(xs_write_calls);
 374
 375	if (outfilp->f_mode & FMODE_NOCMTIME)
 376		ioflags |= IO_INVIS;
 377
 378	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 379		return -EIO;
 380
 381	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 382
 383	trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
 384
 385	ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
 386	if (ret > 0)
 387		XFS_STATS_ADD(xs_write_bytes, ret);
 388
 389	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 390	return ret;
 391}
 392
 393/*
 394 * This routine is called to handle zeroing any space in the last block of the
 395 * file that is beyond the EOF.  We do this since the size is being increased
 396 * without writing anything to that block and we don't want to read the
 397 * garbage on the disk.
 398 */
 399STATIC int				/* error (positive) */
 400xfs_zero_last_block(
 401	struct xfs_inode	*ip,
 402	xfs_fsize_t		offset,
 403	xfs_fsize_t		isize)
 404{
 405	struct xfs_mount	*mp = ip->i_mount;
 406	xfs_fileoff_t		last_fsb = XFS_B_TO_FSBT(mp, isize);
 407	int			zero_offset = XFS_B_FSB_OFFSET(mp, isize);
 408	int			zero_len;
 409	int			nimaps = 1;
 410	int			error = 0;
 411	struct xfs_bmbt_irec	imap;
 412
 413	xfs_ilock(ip, XFS_ILOCK_EXCL);
 414	error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
 415	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 416	if (error)
 417		return error;
 418
 419	ASSERT(nimaps > 0);
 420
 421	/*
 422	 * If the block underlying isize is just a hole, then there
 423	 * is nothing to zero.
 424	 */
 425	if (imap.br_startblock == HOLESTARTBLOCK)
 426		return 0;
 427
 428	zero_len = mp->m_sb.sb_blocksize - zero_offset;
 429	if (isize + zero_len > offset)
 430		zero_len = offset - isize;
 431	return xfs_iozero(ip, isize, zero_len);
 432}
 433
 434/*
 435 * Zero any on disk space between the current EOF and the new, larger EOF.
 436 *
 437 * This handles the normal case of zeroing the remainder of the last block in
 438 * the file and the unusual case of zeroing blocks out beyond the size of the
 439 * file.  This second case only happens with fixed size extents and when the
 440 * system crashes before the inode size was updated but after blocks were
 441 * allocated.
 442 *
 443 * Expects the iolock to be held exclusive, and will take the ilock internally.
 444 */
 445int					/* error (positive) */
 446xfs_zero_eof(
 447	struct xfs_inode	*ip,
 448	xfs_off_t		offset,		/* starting I/O offset */
 449	xfs_fsize_t		isize)		/* current inode size */
 450{
 451	struct xfs_mount	*mp = ip->i_mount;
 452	xfs_fileoff_t		start_zero_fsb;
 453	xfs_fileoff_t		end_zero_fsb;
 454	xfs_fileoff_t		zero_count_fsb;
 455	xfs_fileoff_t		last_fsb;
 456	xfs_fileoff_t		zero_off;
 457	xfs_fsize_t		zero_len;
 458	int			nimaps;
 459	int			error = 0;
 460	struct xfs_bmbt_irec	imap;
 461
 462	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 463	ASSERT(offset > isize);
 464
 465	/*
 466	 * First handle zeroing the block on which isize resides.
 467	 *
 468	 * We only zero a part of that block so it is handled specially.
 469	 */
 470	if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
 471		error = xfs_zero_last_block(ip, offset, isize);
 472		if (error)
 473			return error;
 474	}
 475
 476	/*
 477	 * Calculate the range between the new size and the old where blocks
 478	 * needing to be zeroed may exist.
 479	 *
 480	 * To get the block where the last byte in the file currently resides,
 481	 * we need to subtract one from the size and truncate back to a block
 482	 * boundary.  We subtract 1 in case the size is exactly on a block
 483	 * boundary.
 484	 */
 485	last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
 486	start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 487	end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
 488	ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
 489	if (last_fsb == end_zero_fsb) {
 490		/*
 491		 * The size was only incremented on its last block.
 492		 * We took care of that above, so just return.
 493		 */
 494		return 0;
 495	}
 496
 497	ASSERT(start_zero_fsb <= end_zero_fsb);
 498	while (start_zero_fsb <= end_zero_fsb) {
 499		nimaps = 1;
 500		zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
 501
 502		xfs_ilock(ip, XFS_ILOCK_EXCL);
 503		error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
 504					  &imap, &nimaps, 0);
 505		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 506		if (error)
 507			return error;
 508
 509		ASSERT(nimaps > 0);
 510
 511		if (imap.br_state == XFS_EXT_UNWRITTEN ||
 512		    imap.br_startblock == HOLESTARTBLOCK) {
 513			start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 514			ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 515			continue;
 516		}
 517
 518		/*
 519		 * There are blocks we need to zero.
 520		 */
 521		zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
 522		zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
 523
 524		if ((zero_off + zero_len) > offset)
 525			zero_len = offset - zero_off;
 526
 527		error = xfs_iozero(ip, zero_off, zero_len);
 528		if (error)
 529			return error;
 530
 531		start_zero_fsb = imap.br_startoff + imap.br_blockcount;
 532		ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
 533	}
 534
 535	return 0;
 536}
 537
 538/*
 539 * Common pre-write limit and setup checks.
 540 *
 541 * Called with the iolocked held either shared and exclusive according to
 542 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
 543 * if called for a direct write beyond i_size.
 544 */
 545STATIC ssize_t
 546xfs_file_aio_write_checks(
 547	struct file		*file,
 548	loff_t			*pos,
 549	size_t			*count,
 550	int			*iolock)
 551{
 
 552	struct inode		*inode = file->f_mapping->host;
 553	struct xfs_inode	*ip = XFS_I(inode);
 554	int			error = 0;
 
 
 
 555
 556restart:
 557	error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
 
 
 
 
 558	if (error)
 559		return error;
 560
 561	/*
 
 
 
 
 
 
 
 
 
 
 562	 * If the offset is beyond the size of the file, we need to zero any
 563	 * blocks that fall between the existing EOF and the start of this
 564	 * write.  If zeroing is needed and we are currently holding the
 565	 * iolock shared, we need to update it to exclusive which implies
 566	 * having to redo all checks before.
 
 
 
 
 
 
 
 
 567	 */
 568	if (*pos > i_size_read(inode)) {
 569		if (*iolock == XFS_IOLOCK_SHARED) {
 570			xfs_rw_iunlock(ip, *iolock);
 571			*iolock = XFS_IOLOCK_EXCL;
 572			xfs_rw_ilock(ip, *iolock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573			goto restart;
 574		}
 575		error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
 
 
 
 576		if (error)
 577			return error;
 578	}
 
 579
 580	/*
 581	 * Updating the timestamps will grab the ilock again from
 582	 * xfs_fs_dirty_inode, so we have to call it after dropping the
 583	 * lock above.  Eventually we should look into a way to avoid
 584	 * the pointless lock roundtrip.
 585	 */
 586	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
 587		error = file_update_time(file);
 588		if (error)
 589			return error;
 590	}
 591
 592	/*
 593	 * If we're writing the file then make sure to clear the setuid and
 594	 * setgid bits if the process is not being run by root.  This keeps
 595	 * people from modifying setuid and setgid binaries.
 596	 */
 597	return file_remove_suid(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598}
 599
 600/*
 601 * xfs_file_dio_aio_write - handle direct IO writes
 602 *
 603 * Lock the inode appropriately to prepare for and issue a direct IO write.
 604 * By separating it from the buffered write path we remove all the tricky to
 605 * follow locking changes and looping.
 606 *
 607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
 608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
 609 * pages are flushed out.
 610 *
 611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
 612 * allowing them to be done in parallel with reads and other direct IO writes.
 613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
 614 * needs to do sub-block zeroing and that requires serialisation against other
 615 * direct IOs to the same block. In this case we need to serialise the
 616 * submission of the unaligned IOs so that we don't get racing block zeroing in
 617 * the dio layer.  To avoid the problem with aio, we also need to wait for
 618 * outstanding IOs to complete so that unwritten extent conversion is completed
 619 * before we try to map the overlapping block. This is currently implemented by
 620 * hitting it with a big hammer (i.e. inode_dio_wait()).
 621 *
 622 * Returns with locks held indicated by @iolock and errors indicated by
 623 * negative return values.
 624 */
 625STATIC ssize_t
 626xfs_file_dio_aio_write(
 627	struct kiocb		*iocb,
 628	const struct iovec	*iovp,
 629	unsigned long		nr_segs,
 630	loff_t			pos,
 631	size_t			ocount)
 632{
 633	struct file		*file = iocb->ki_filp;
 634	struct address_space	*mapping = file->f_mapping;
 635	struct inode		*inode = mapping->host;
 636	struct xfs_inode	*ip = XFS_I(inode);
 637	struct xfs_mount	*mp = ip->i_mount;
 638	ssize_t			ret = 0;
 639	size_t			count = ocount;
 640	int			unaligned_io = 0;
 641	int			iolock;
 642	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
 
 643					mp->m_rtdev_targp : mp->m_ddev_targp;
 644
 645	/* DIO must be aligned to device logical sector size */
 646	if ((pos | count) & target->bt_logical_sectormask)
 647		return -XFS_ERROR(EINVAL);
 648
 649	/* "unaligned" here means not aligned to a filesystem block */
 650	if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
 
 
 
 
 
 
 
 651		unaligned_io = 1;
 652
 653	/*
 654	 * We don't need to take an exclusive lock unless there page cache needs
 655	 * to be invalidated or unaligned IO is being executed. We don't need to
 656	 * consider the EOF extension case here because
 657	 * xfs_file_aio_write_checks() will relock the inode as necessary for
 658	 * EOF zeroing cases and fill out the new inode size as appropriate.
 659	 */
 660	if (unaligned_io || mapping->nrpages)
 661		iolock = XFS_IOLOCK_EXCL;
 662	else
 663		iolock = XFS_IOLOCK_SHARED;
 664	xfs_rw_ilock(ip, iolock);
 665
 666	/*
 667	 * Recheck if there are cached pages that need invalidate after we got
 668	 * the iolock to protect against other threads adding new pages while
 669	 * we were waiting for the iolock.
 670	 */
 671	if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
 672		xfs_rw_iunlock(ip, iolock);
 673		iolock = XFS_IOLOCK_EXCL;
 674		xfs_rw_ilock(ip, iolock);
 675	}
 676
 677	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 678	if (ret)
 679		goto out;
 680
 681	if (mapping->nrpages) {
 682		ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
 683						    pos, -1);
 684		if (ret)
 685			goto out;
 686		truncate_pagecache_range(VFS_I(ip), pos, -1);
 687	}
 688
 689	/*
 690	 * If we are doing unaligned IO, wait for all other IO to drain,
 691	 * otherwise demote the lock if we had to flush cached pages
 
 692	 */
 693	if (unaligned_io)
 694		inode_dio_wait(inode);
 695	else if (iolock == XFS_IOLOCK_EXCL) {
 696		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 697		iolock = XFS_IOLOCK_SHARED;
 698	}
 699
 700	trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
 701	ret = generic_file_direct_write(iocb, iovp,
 702			&nr_segs, pos, count, ocount);
 703
 704out:
 705	xfs_rw_iunlock(ip, iolock);
 706
 707	/* No fallback to buffered IO on errors for XFS. */
 
 
 
 708	ASSERT(ret < 0 || ret == count);
 709	return ret;
 710}
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712STATIC ssize_t
 713xfs_file_buffered_aio_write(
 714	struct kiocb		*iocb,
 715	const struct iovec	*iovp,
 716	unsigned long		nr_segs,
 717	loff_t			pos,
 718	size_t			count)
 719{
 720	struct file		*file = iocb->ki_filp;
 721	struct address_space	*mapping = file->f_mapping;
 722	struct inode		*inode = mapping->host;
 723	struct xfs_inode	*ip = XFS_I(inode);
 724	ssize_t			ret;
 725	int			enospc = 0;
 726	int			iolock = XFS_IOLOCK_EXCL;
 727	struct iov_iter		from;
 728
 729	xfs_rw_ilock(ip, iolock);
 
 730
 731	ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
 
 
 
 
 732	if (ret)
 733		goto out;
 734
 735	iov_iter_init(&from, iovp, nr_segs, count, 0);
 736	/* We can write back this queue in page reclaim */
 737	current->backing_dev_info = mapping->backing_dev_info;
 738
 739write_retry:
 740	trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
 741	ret = generic_perform_write(file, &from, pos);
 742	if (likely(ret >= 0))
 743		iocb->ki_pos = pos + ret;
 
 744	/*
 745	 * If we just got an ENOSPC, try to write back all dirty inodes to
 746	 * convert delalloc space to free up some of the excess reserved
 747	 * metadata space.
 
 
 
 
 748	 */
 749	if (ret == -ENOSPC && !enospc) {
 
 
 
 
 
 
 
 
 
 
 
 750		enospc = 1;
 751		xfs_flush_inodes(ip->i_mount);
 
 
 
 
 
 752		goto write_retry;
 753	}
 754
 755	current->backing_dev_info = NULL;
 756out:
 757	xfs_rw_iunlock(ip, iolock);
 
 758	return ret;
 759}
 760
 761STATIC ssize_t
 762xfs_file_aio_write(
 763	struct kiocb		*iocb,
 764	const struct iovec	*iovp,
 765	unsigned long		nr_segs,
 766	loff_t			pos)
 767{
 768	struct file		*file = iocb->ki_filp;
 769	struct address_space	*mapping = file->f_mapping;
 770	struct inode		*inode = mapping->host;
 771	struct xfs_inode	*ip = XFS_I(inode);
 772	ssize_t			ret;
 773	size_t			ocount = 0;
 774
 775	XFS_STATS_INC(xs_write_calls);
 776
 777	BUG_ON(iocb->ki_pos != pos);
 778
 779	ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
 780	if (ret)
 781		return ret;
 782
 783	if (ocount == 0)
 784		return 0;
 785
 786	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 787		ret = -EIO;
 788		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789	}
 790
 791	if (unlikely(file->f_flags & O_DIRECT))
 792		ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
 793	else
 794		ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
 795						  ocount);
 796
 797	if (ret > 0) {
 798		ssize_t err;
 799
 800		XFS_STATS_ADD(xs_write_bytes, ret);
 801
 802		/* Handle various SYNC-type writes */
 803		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
 804		if (err < 0)
 805			ret = err;
 806	}
 807
 808out:
 809	return ret;
 810}
 811
 
 
 
 
 
 812STATIC long
 813xfs_file_fallocate(
 814	struct file		*file,
 815	int			mode,
 816	loff_t			offset,
 817	loff_t			len)
 818{
 819	struct inode		*inode = file_inode(file);
 820	struct xfs_inode	*ip = XFS_I(inode);
 821	struct xfs_trans	*tp;
 822	long			error;
 
 
 823	loff_t			new_size = 0;
 
 824
 825	if (!S_ISREG(inode->i_mode))
 826		return -EINVAL;
 827	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
 828		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
 829		return -EOPNOTSUPP;
 830
 831	xfs_ilock(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 832	if (mode & FALLOC_FL_PUNCH_HOLE) {
 833		error = xfs_free_file_space(ip, offset, len);
 834		if (error)
 835			goto out_unlock;
 836	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
 837		unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
 838
 839		if (offset & blksize_mask || len & blksize_mask) {
 840			error = EINVAL;
 841			goto out_unlock;
 842		}
 843
 844		/*
 845		 * There is no need to overlap collapse range with EOF,
 846		 * in which case it is effectively a truncate operation
 847		 */
 848		if (offset + len >= i_size_read(inode)) {
 849			error = EINVAL;
 850			goto out_unlock;
 851		}
 852
 853		new_size = i_size_read(inode) - len;
 854
 855		error = xfs_collapse_file_space(ip, offset, len);
 856		if (error)
 857			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858	} else {
 
 
 859		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
 860		    offset + len > i_size_read(inode)) {
 861			new_size = offset + len;
 862			error = -inode_newsize_ok(inode, new_size);
 863			if (error)
 864				goto out_unlock;
 865		}
 866
 867		if (mode & FALLOC_FL_ZERO_RANGE)
 868			error = xfs_zero_file_space(ip, offset, len);
 869		else
 
 
 
 
 
 870			error = xfs_alloc_file_space(ip, offset, len,
 871						     XFS_BMAPI_PREALLOC);
 
 872		if (error)
 873			goto out_unlock;
 874	}
 875
 876	tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
 877	error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
 878	if (error) {
 879		xfs_trans_cancel(tp, 0);
 880		goto out_unlock;
 881	}
 882
 883	xfs_ilock(ip, XFS_ILOCK_EXCL);
 884	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 885	ip->i_d.di_mode &= ~S_ISUID;
 886	if (ip->i_d.di_mode & S_IXGRP)
 887		ip->i_d.di_mode &= ~S_ISGID;
 888
 889	if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
 890		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
 891
 892	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
 893	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 894
 895	if (file->f_flags & O_DSYNC)
 896		xfs_trans_set_sync(tp);
 897	error = xfs_trans_commit(tp, 0);
 898	if (error)
 899		goto out_unlock;
 900
 901	/* Change file size if needed */
 902	if (new_size) {
 903		struct iattr iattr;
 904
 905		iattr.ia_valid = ATTR_SIZE;
 906		iattr.ia_size = new_size;
 907		error = xfs_setattr_size(ip, &iattr);
 
 
 908	}
 909
 
 
 
 
 
 
 
 
 
 910out_unlock:
 911	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 912	return -error;
 
 
 
 
 
 
 
 
 
 
 
 
 913}
 914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915
 916STATIC int
 917xfs_file_open(
 918	struct inode	*inode,
 919	struct file	*file)
 920{
 921	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
 922		return -EFBIG;
 923	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
 924		return -EIO;
 
 925	return 0;
 926}
 927
 928STATIC int
 929xfs_dir_open(
 930	struct inode	*inode,
 931	struct file	*file)
 932{
 933	struct xfs_inode *ip = XFS_I(inode);
 934	int		mode;
 935	int		error;
 936
 937	error = xfs_file_open(inode, file);
 938	if (error)
 939		return error;
 940
 941	/*
 942	 * If there are any blocks, read-ahead block 0 as we're almost
 943	 * certain to have the next operation be a read there.
 944	 */
 945	mode = xfs_ilock_data_map_shared(ip);
 946	if (ip->i_d.di_nextents > 0)
 947		xfs_dir3_data_readahead(NULL, ip, 0, -1);
 948	xfs_iunlock(ip, mode);
 949	return 0;
 950}
 951
 952STATIC int
 953xfs_file_release(
 954	struct inode	*inode,
 955	struct file	*filp)
 956{
 957	return -xfs_release(XFS_I(inode));
 958}
 959
 960STATIC int
 961xfs_file_readdir(
 962	struct file	*file,
 963	struct dir_context *ctx)
 964{
 965	struct inode	*inode = file_inode(file);
 966	xfs_inode_t	*ip = XFS_I(inode);
 967	int		error;
 968	size_t		bufsize;
 969
 970	/*
 971	 * The Linux API doesn't pass down the total size of the buffer
 972	 * we read into down to the filesystem.  With the filldir concept
 973	 * it's not needed for correct information, but the XFS dir2 leaf
 974	 * code wants an estimate of the buffer size to calculate it's
 975	 * readahead window and size the buffers used for mapping to
 976	 * physical blocks.
 977	 *
 978	 * Try to give it an estimate that's good enough, maybe at some
 979	 * point we can change the ->readdir prototype to include the
 980	 * buffer size.  For now we use the current glibc buffer size.
 981	 */
 982	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
 983
 984	error = xfs_readdir(ip, ctx, bufsize);
 985	if (error)
 986		return -error;
 987	return 0;
 988}
 989
 990STATIC int
 991xfs_file_mmap(
 992	struct file	*filp,
 993	struct vm_area_struct *vma)
 
 994{
 995	vma->vm_ops = &xfs_file_vm_ops;
 996
 997	file_accessed(filp);
 998	return 0;
 999}
1000
1001/*
1002 * mmap()d file has taken write protection fault and is being made
1003 * writable. We can set the page state up correctly for a writable
1004 * page, which means we can do correct delalloc accounting (ENOSPC
1005 * checking!) and unwritten extent mapping.
1006 */
1007STATIC int
1008xfs_vm_page_mkwrite(
1009	struct vm_area_struct	*vma,
1010	struct vm_fault		*vmf)
1011{
1012	return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1013}
1014
1015/*
1016 * This type is designed to indicate the type of offset we would like
1017 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1018 */
1019enum {
1020	HOLE_OFF = 0,
1021	DATA_OFF,
1022};
1023
1024/*
1025 * Lookup the desired type of offset from the given page.
1026 *
1027 * On success, return true and the offset argument will point to the
1028 * start of the region that was found.  Otherwise this function will
1029 * return false and keep the offset argument unchanged.
1030 */
1031STATIC bool
1032xfs_lookup_buffer_offset(
1033	struct page		*page,
1034	loff_t			*offset,
1035	unsigned int		type)
1036{
1037	loff_t			lastoff = page_offset(page);
1038	bool			found = false;
1039	struct buffer_head	*bh, *head;
1040
1041	bh = head = page_buffers(page);
1042	do {
1043		/*
1044		 * Unwritten extents that have data in the page
1045		 * cache covering them can be identified by the
1046		 * BH_Unwritten state flag.  Pages with multiple
1047		 * buffers might have a mix of holes, data and
1048		 * unwritten extents - any buffer with valid
1049		 * data in it should have BH_Uptodate flag set
1050		 * on it.
1051		 */
1052		if (buffer_unwritten(bh) ||
1053		    buffer_uptodate(bh)) {
1054			if (type == DATA_OFF)
1055				found = true;
1056		} else {
1057			if (type == HOLE_OFF)
1058				found = true;
1059		}
1060
1061		if (found) {
1062			*offset = lastoff;
1063			break;
1064		}
1065		lastoff += bh->b_size;
1066	} while ((bh = bh->b_this_page) != head);
1067
1068	return found;
 
 
1069}
1070
1071/*
1072 * This routine is called to find out and return a data or hole offset
1073 * from the page cache for unwritten extents according to the desired
1074 * type for xfs_seek_data() or xfs_seek_hole().
1075 *
1076 * The argument offset is used to tell where we start to search from the
1077 * page cache.  Map is used to figure out the end points of the range to
1078 * lookup pages.
1079 *
1080 * Return true if the desired type of offset was found, and the argument
1081 * offset is filled with that address.  Otherwise, return false and keep
1082 * offset unchanged.
1083 */
1084STATIC bool
1085xfs_find_get_desired_pgoff(
1086	struct inode		*inode,
1087	struct xfs_bmbt_irec	*map,
1088	unsigned int		type,
1089	loff_t			*offset)
1090{
 
1091	struct xfs_inode	*ip = XFS_I(inode);
1092	struct xfs_mount	*mp = ip->i_mount;
1093	struct pagevec		pvec;
1094	pgoff_t			index;
1095	pgoff_t			end;
1096	loff_t			endoff;
1097	loff_t			startoff = *offset;
1098	loff_t			lastoff = startoff;
1099	bool			found = false;
1100
1101	pagevec_init(&pvec, 0);
1102
1103	index = startoff >> PAGE_CACHE_SHIFT;
1104	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1105	end = endoff >> PAGE_CACHE_SHIFT;
1106	do {
1107		int		want;
1108		unsigned	nr_pages;
1109		unsigned int	i;
1110
1111		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1112		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1113					  want);
1114		/*
1115		 * No page mapped into given range.  If we are searching holes
1116		 * and if this is the first time we got into the loop, it means
1117		 * that the given offset is landed in a hole, return it.
1118		 *
1119		 * If we have already stepped through some block buffers to find
1120		 * holes but they all contains data.  In this case, the last
1121		 * offset is already updated and pointed to the end of the last
1122		 * mapped page, if it does not reach the endpoint to search,
1123		 * that means there should be a hole between them.
1124		 */
1125		if (nr_pages == 0) {
1126			/* Data search found nothing */
1127			if (type == DATA_OFF)
1128				break;
1129
1130			ASSERT(type == HOLE_OFF);
1131			if (lastoff == startoff || lastoff < endoff) {
1132				found = true;
1133				*offset = lastoff;
1134			}
1135			break;
1136		}
1137
1138		/*
1139		 * At lease we found one page.  If this is the first time we
1140		 * step into the loop, and if the first page index offset is
1141		 * greater than the given search offset, a hole was found.
1142		 */
1143		if (type == HOLE_OFF && lastoff == startoff &&
1144		    lastoff < page_offset(pvec.pages[0])) {
1145			found = true;
1146			break;
1147		}
1148
1149		for (i = 0; i < nr_pages; i++) {
1150			struct page	*page = pvec.pages[i];
1151			loff_t		b_offset;
 
1152
1153			/*
1154			 * At this point, the page may be truncated or
1155			 * invalidated (changing page->mapping to NULL),
1156			 * or even swizzled back from swapper_space to tmpfs
1157			 * file mapping. However, page->index will not change
1158			 * because we have a reference on the page.
1159			 *
1160			 * Searching done if the page index is out of range.
1161			 * If the current offset is not reaches the end of
1162			 * the specified search range, there should be a hole
1163			 * between them.
1164			 */
1165			if (page->index > end) {
1166				if (type == HOLE_OFF && lastoff < endoff) {
1167					*offset = lastoff;
1168					found = true;
1169				}
1170				goto out;
1171			}
1172
1173			lock_page(page);
1174			/*
1175			 * Page truncated or invalidated(page->mapping == NULL).
1176			 * We can freely skip it and proceed to check the next
1177			 * page.
1178			 */
1179			if (unlikely(page->mapping != inode->i_mapping)) {
1180				unlock_page(page);
1181				continue;
1182			}
1183
1184			if (!page_has_buffers(page)) {
1185				unlock_page(page);
1186				continue;
1187			}
1188
1189			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1190			if (found) {
1191				/*
1192				 * The found offset may be less than the start
1193				 * point to search if this is the first time to
1194				 * come here.
1195				 */
1196				*offset = max_t(loff_t, startoff, b_offset);
1197				unlock_page(page);
1198				goto out;
1199			}
1200
1201			/*
1202			 * We either searching data but nothing was found, or
1203			 * searching hole but found a data buffer.  In either
1204			 * case, probably the next page contains the desired
1205			 * things, update the last offset to it so.
1206			 */
1207			lastoff = page_offset(page) + PAGE_SIZE;
1208			unlock_page(page);
1209		}
1210
1211		/*
1212		 * The number of returned pages less than our desired, search
1213		 * done.  In this case, nothing was found for searching data,
1214		 * but we found a hole behind the last offset.
1215		 */
1216		if (nr_pages < want) {
1217			if (type == HOLE_OFF) {
1218				*offset = lastoff;
1219				found = true;
1220			}
1221			break;
1222		}
1223
1224		index = pvec.pages[i - 1]->index + 1;
1225		pagevec_release(&pvec);
1226	} while (index <= end);
1227
1228out:
1229	pagevec_release(&pvec);
1230	return found;
1231}
1232
1233STATIC loff_t
1234xfs_seek_data(
1235	struct file		*file,
1236	loff_t			start)
1237{
1238	struct inode		*inode = file->f_mapping->host;
1239	struct xfs_inode	*ip = XFS_I(inode);
1240	struct xfs_mount	*mp = ip->i_mount;
1241	loff_t			uninitialized_var(offset);
1242	xfs_fsize_t		isize;
1243	xfs_fileoff_t		fsbno;
1244	xfs_filblks_t		end;
1245	uint			lock;
1246	int			error;
1247
1248	lock = xfs_ilock_data_map_shared(ip);
1249
1250	isize = i_size_read(inode);
1251	if (start >= isize) {
1252		error = ENXIO;
1253		goto out_unlock;
1254	}
1255
1256	/*
1257	 * Try to read extents from the first block indicated
1258	 * by fsbno to the end block of the file.
1259	 */
1260	fsbno = XFS_B_TO_FSBT(mp, start);
1261	end = XFS_B_TO_FSB(mp, isize);
1262	for (;;) {
1263		struct xfs_bmbt_irec	map[2];
1264		int			nmap = 2;
1265		unsigned int		i;
1266
1267		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1268				       XFS_BMAPI_ENTIRE);
1269		if (error)
1270			goto out_unlock;
1271
1272		/* No extents at given offset, must be beyond EOF */
1273		if (nmap == 0) {
1274			error = ENXIO;
1275			goto out_unlock;
1276		}
1277
1278		for (i = 0; i < nmap; i++) {
1279			offset = max_t(loff_t, start,
1280				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1281
1282			/* Landed in a data extent */
1283			if (map[i].br_startblock == DELAYSTARTBLOCK ||
1284			    (map[i].br_state == XFS_EXT_NORM &&
1285			     !isnullstartblock(map[i].br_startblock)))
1286				goto out;
1287
1288			/*
1289			 * Landed in an unwritten extent, try to search data
1290			 * from page cache.
1291			 */
1292			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1293				if (xfs_find_get_desired_pgoff(inode, &map[i],
1294							DATA_OFF, &offset))
1295					goto out;
1296			}
1297		}
1298
1299		/*
1300		 * map[0] is hole or its an unwritten extent but
1301		 * without data in page cache.  Probably means that
1302		 * we are reading after EOF if nothing in map[1].
1303		 */
1304		if (nmap == 1) {
1305			error = ENXIO;
1306			goto out_unlock;
1307		}
1308
1309		ASSERT(i > 1);
1310
1311		/*
1312		 * Nothing was found, proceed to the next round of search
1313		 * if reading offset not beyond or hit EOF.
1314		 */
1315		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1316		start = XFS_FSB_TO_B(mp, fsbno);
1317		if (start >= isize) {
1318			error = ENXIO;
1319			goto out_unlock;
1320		}
1321	}
1322
1323out:
1324	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1325
1326out_unlock:
1327	xfs_iunlock(ip, lock);
1328
1329	if (error)
1330		return -error;
1331	return offset;
1332}
1333
1334STATIC loff_t
1335xfs_seek_hole(
1336	struct file		*file,
1337	loff_t			start)
 
 
 
 
1338{
1339	struct inode		*inode = file->f_mapping->host;
1340	struct xfs_inode	*ip = XFS_I(inode);
1341	struct xfs_mount	*mp = ip->i_mount;
1342	loff_t			uninitialized_var(offset);
1343	xfs_fsize_t		isize;
1344	xfs_fileoff_t		fsbno;
1345	xfs_filblks_t		end;
1346	uint			lock;
1347	int			error;
1348
1349	if (XFS_FORCED_SHUTDOWN(mp))
1350		return -XFS_ERROR(EIO);
1351
1352	lock = xfs_ilock_data_map_shared(ip);
 
 
 
 
 
 
1353
1354	isize = i_size_read(inode);
1355	if (start >= isize) {
1356		error = ENXIO;
1357		goto out_unlock;
1358	}
1359
1360	fsbno = XFS_B_TO_FSBT(mp, start);
1361	end = XFS_B_TO_FSB(mp, isize);
1362
1363	for (;;) {
1364		struct xfs_bmbt_irec	map[2];
1365		int			nmap = 2;
1366		unsigned int		i;
1367
1368		error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1369				       XFS_BMAPI_ENTIRE);
1370		if (error)
1371			goto out_unlock;
1372
1373		/* No extents at given offset, must be beyond EOF */
1374		if (nmap == 0) {
1375			error = ENXIO;
1376			goto out_unlock;
1377		}
1378
1379		for (i = 0; i < nmap; i++) {
1380			offset = max_t(loff_t, start,
1381				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1382
1383			/* Landed in a hole */
1384			if (map[i].br_startblock == HOLESTARTBLOCK)
1385				goto out;
1386
1387			/*
1388			 * Landed in an unwritten extent, try to search hole
1389			 * from page cache.
1390			 */
1391			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1392				if (xfs_find_get_desired_pgoff(inode, &map[i],
1393							HOLE_OFF, &offset))
1394					goto out;
1395			}
1396		}
1397
1398		/*
1399		 * map[0] contains data or its unwritten but contains
1400		 * data in page cache, probably means that we are
1401		 * reading after EOF.  We should fix offset to point
1402		 * to the end of the file(i.e., there is an implicit
1403		 * hole at the end of any file).
1404		 */
1405		if (nmap == 1) {
1406			offset = isize;
1407			break;
1408		}
1409
1410		ASSERT(i > 1);
1411
1412		/*
1413		 * Both mappings contains data, proceed to the next round of
1414		 * search if the current reading offset not beyond or hit EOF.
1415		 */
1416		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417		start = XFS_FSB_TO_B(mp, fsbno);
1418		if (start >= isize) {
1419			offset = isize;
1420			break;
1421		}
1422	}
1423
1424out:
1425	/*
1426	 * At this point, we must have found a hole.  However, the returned
1427	 * offset may be bigger than the file size as it may be aligned to
1428	 * page boundary for unwritten extents, we need to deal with this
1429	 * situation in particular.
1430	 */
1431	offset = min_t(loff_t, offset, isize);
1432	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1433
1434out_unlock:
1435	xfs_iunlock(ip, lock);
1436
1437	if (error)
1438		return -error;
1439	return offset;
1440}
1441
1442STATIC loff_t
1443xfs_file_llseek(
1444	struct file	*file,
1445	loff_t		offset,
1446	int		origin)
1447{
1448	switch (origin) {
1449	case SEEK_END:
1450	case SEEK_CUR:
1451	case SEEK_SET:
1452		return generic_file_llseek(file, offset, origin);
1453	case SEEK_DATA:
1454		return xfs_seek_data(file, offset);
1455	case SEEK_HOLE:
1456		return xfs_seek_hole(file, offset);
1457	default:
1458		return -EINVAL;
1459	}
1460}
1461
1462const struct file_operations xfs_file_operations = {
1463	.llseek		= xfs_file_llseek,
1464	.read		= do_sync_read,
1465	.write		= do_sync_write,
1466	.aio_read	= xfs_file_aio_read,
1467	.aio_write	= xfs_file_aio_write,
1468	.splice_read	= xfs_file_splice_read,
1469	.splice_write	= xfs_file_splice_write,
1470	.unlocked_ioctl	= xfs_file_ioctl,
1471#ifdef CONFIG_COMPAT
1472	.compat_ioctl	= xfs_file_compat_ioctl,
1473#endif
1474	.mmap		= xfs_file_mmap,
 
1475	.open		= xfs_file_open,
1476	.release	= xfs_file_release,
1477	.fsync		= xfs_file_fsync,
 
1478	.fallocate	= xfs_file_fallocate,
 
 
1479};
1480
1481const struct file_operations xfs_dir_file_operations = {
1482	.open		= xfs_dir_open,
1483	.read		= generic_read_dir,
1484	.iterate	= xfs_file_readdir,
1485	.llseek		= generic_file_llseek,
1486	.unlocked_ioctl	= xfs_file_ioctl,
1487#ifdef CONFIG_COMPAT
1488	.compat_ioctl	= xfs_file_compat_ioctl,
1489#endif
1490	.fsync		= xfs_dir_fsync,
1491};
1492
1493static const struct vm_operations_struct xfs_file_vm_ops = {
1494	.fault		= filemap_fault,
1495	.map_pages	= filemap_map_pages,
1496	.page_mkwrite	= xfs_vm_page_mkwrite,
1497	.remap_pages	= generic_file_remap_pages,
1498};