Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109 select SGL_ALLOC
110
111config CRYPTO_ACOMP
112 tristate
113 select CRYPTO_ALGAPI
114 select CRYPTO_ACOMP2
115
116config CRYPTO_RSA
117 tristate "RSA algorithm"
118 select CRYPTO_AKCIPHER
119 select CRYPTO_MANAGER
120 select MPILIB
121 select ASN1
122 help
123 Generic implementation of the RSA public key algorithm.
124
125config CRYPTO_DH
126 tristate "Diffie-Hellman algorithm"
127 select CRYPTO_KPP
128 select MPILIB
129 help
130 Generic implementation of the Diffie-Hellman algorithm.
131
132config CRYPTO_ECDH
133 tristate "ECDH algorithm"
134 select CRYPTO_KPP
135 select CRYPTO_RNG_DEFAULT
136 help
137 Generic implementation of the ECDH algorithm
138
139config CRYPTO_MANAGER
140 tristate "Cryptographic algorithm manager"
141 select CRYPTO_MANAGER2
142 help
143 Create default cryptographic template instantiations such as
144 cbc(aes).
145
146config CRYPTO_MANAGER2
147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148 select CRYPTO_AEAD2
149 select CRYPTO_HASH2
150 select CRYPTO_BLKCIPHER2
151 select CRYPTO_AKCIPHER2
152 select CRYPTO_KPP2
153 select CRYPTO_ACOMP2
154
155config CRYPTO_USER
156 tristate "Userspace cryptographic algorithm configuration"
157 depends on NET
158 select CRYPTO_MANAGER
159 help
160 Userspace configuration for cryptographic instantiations such as
161 cbc(aes).
162
163config CRYPTO_MANAGER_DISABLE_TESTS
164 bool "Disable run-time self tests"
165 default y
166 depends on CRYPTO_MANAGER2
167 help
168 Disable run-time self tests that normally take place at
169 algorithm registration.
170
171config CRYPTO_GF128MUL
172 tristate "GF(2^128) multiplication functions"
173 help
174 Efficient table driven implementation of multiplications in the
175 field GF(2^128). This is needed by some cypher modes. This
176 option will be selected automatically if you select such a
177 cipher mode. Only select this option by hand if you expect to load
178 an external module that requires these functions.
179
180config CRYPTO_NULL
181 tristate "Null algorithms"
182 select CRYPTO_NULL2
183 help
184 These are 'Null' algorithms, used by IPsec, which do nothing.
185
186config CRYPTO_NULL2
187 tristate
188 select CRYPTO_ALGAPI2
189 select CRYPTO_BLKCIPHER2
190 select CRYPTO_HASH2
191
192config CRYPTO_PCRYPT
193 tristate "Parallel crypto engine"
194 depends on SMP
195 select PADATA
196 select CRYPTO_MANAGER
197 select CRYPTO_AEAD
198 help
199 This converts an arbitrary crypto algorithm into a parallel
200 algorithm that executes in kernel threads.
201
202config CRYPTO_WORKQUEUE
203 tristate
204
205config CRYPTO_CRYPTD
206 tristate "Software async crypto daemon"
207 select CRYPTO_BLKCIPHER
208 select CRYPTO_HASH
209 select CRYPTO_MANAGER
210 select CRYPTO_WORKQUEUE
211 help
212 This is a generic software asynchronous crypto daemon that
213 converts an arbitrary synchronous software crypto algorithm
214 into an asynchronous algorithm that executes in a kernel thread.
215
216config CRYPTO_MCRYPTD
217 tristate "Software async multi-buffer crypto daemon"
218 select CRYPTO_BLKCIPHER
219 select CRYPTO_HASH
220 select CRYPTO_MANAGER
221 select CRYPTO_WORKQUEUE
222 help
223 This is a generic software asynchronous crypto daemon that
224 provides the kernel thread to assist multi-buffer crypto
225 algorithms for submitting jobs and flushing jobs in multi-buffer
226 crypto algorithms. Multi-buffer crypto algorithms are executed
227 in the context of this kernel thread and drivers can post
228 their crypto request asynchronously to be processed by this daemon.
229
230config CRYPTO_AUTHENC
231 tristate "Authenc support"
232 select CRYPTO_AEAD
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 select CRYPTO_HASH
236 select CRYPTO_NULL
237 help
238 Authenc: Combined mode wrapper for IPsec.
239 This is required for IPSec.
240
241config CRYPTO_TEST
242 tristate "Testing module"
243 depends on m
244 select CRYPTO_MANAGER
245 help
246 Quick & dirty crypto test module.
247
248config CRYPTO_SIMD
249 tristate
250 select CRYPTO_CRYPTD
251
252config CRYPTO_GLUE_HELPER_X86
253 tristate
254 depends on X86
255 select CRYPTO_BLKCIPHER
256
257config CRYPTO_ENGINE
258 tristate
259
260comment "Authenticated Encryption with Associated Data"
261
262config CRYPTO_CCM
263 tristate "CCM support"
264 select CRYPTO_CTR
265 select CRYPTO_HASH
266 select CRYPTO_AEAD
267 help
268 Support for Counter with CBC MAC. Required for IPsec.
269
270config CRYPTO_GCM
271 tristate "GCM/GMAC support"
272 select CRYPTO_CTR
273 select CRYPTO_AEAD
274 select CRYPTO_GHASH
275 select CRYPTO_NULL
276 help
277 Support for Galois/Counter Mode (GCM) and Galois Message
278 Authentication Code (GMAC). Required for IPSec.
279
280config CRYPTO_CHACHA20POLY1305
281 tristate "ChaCha20-Poly1305 AEAD support"
282 select CRYPTO_CHACHA20
283 select CRYPTO_POLY1305
284 select CRYPTO_AEAD
285 help
286 ChaCha20-Poly1305 AEAD support, RFC7539.
287
288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289 with the Poly1305 authenticator. It is defined in RFC7539 for use in
290 IETF protocols.
291
292config CRYPTO_SEQIV
293 tristate "Sequence Number IV Generator"
294 select CRYPTO_AEAD
295 select CRYPTO_BLKCIPHER
296 select CRYPTO_NULL
297 select CRYPTO_RNG_DEFAULT
298 help
299 This IV generator generates an IV based on a sequence number by
300 xoring it with a salt. This algorithm is mainly useful for CTR
301
302config CRYPTO_ECHAINIV
303 tristate "Encrypted Chain IV Generator"
304 select CRYPTO_AEAD
305 select CRYPTO_NULL
306 select CRYPTO_RNG_DEFAULT
307 default m
308 help
309 This IV generator generates an IV based on the encryption of
310 a sequence number xored with a salt. This is the default
311 algorithm for CBC.
312
313comment "Block modes"
314
315config CRYPTO_CBC
316 tristate "CBC support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 help
320 CBC: Cipher Block Chaining mode
321 This block cipher algorithm is required for IPSec.
322
323config CRYPTO_CFB
324 tristate "CFB support"
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_MANAGER
327 help
328 CFB: Cipher FeedBack mode
329 This block cipher algorithm is required for TPM2 Cryptography.
330
331config CRYPTO_CTR
332 tristate "CTR support"
333 select CRYPTO_BLKCIPHER
334 select CRYPTO_SEQIV
335 select CRYPTO_MANAGER
336 help
337 CTR: Counter mode
338 This block cipher algorithm is required for IPSec.
339
340config CRYPTO_CTS
341 tristate "CTS support"
342 select CRYPTO_BLKCIPHER
343 help
344 CTS: Cipher Text Stealing
345 This is the Cipher Text Stealing mode as described by
346 Section 8 of rfc2040 and referenced by rfc3962.
347 (rfc3962 includes errata information in its Appendix A)
348 This mode is required for Kerberos gss mechanism support
349 for AES encryption.
350
351config CRYPTO_ECB
352 tristate "ECB support"
353 select CRYPTO_BLKCIPHER
354 select CRYPTO_MANAGER
355 help
356 ECB: Electronic CodeBook mode
357 This is the simplest block cipher algorithm. It simply encrypts
358 the input block by block.
359
360config CRYPTO_LRW
361 tristate "LRW support"
362 select CRYPTO_BLKCIPHER
363 select CRYPTO_MANAGER
364 select CRYPTO_GF128MUL
365 help
366 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
367 narrow block cipher mode for dm-crypt. Use it with cipher
368 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
369 The first 128, 192 or 256 bits in the key are used for AES and the
370 rest is used to tie each cipher block to its logical position.
371
372config CRYPTO_PCBC
373 tristate "PCBC support"
374 select CRYPTO_BLKCIPHER
375 select CRYPTO_MANAGER
376 help
377 PCBC: Propagating Cipher Block Chaining mode
378 This block cipher algorithm is required for RxRPC.
379
380config CRYPTO_XTS
381 tristate "XTS support"
382 select CRYPTO_BLKCIPHER
383 select CRYPTO_MANAGER
384 select CRYPTO_ECB
385 help
386 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
387 key size 256, 384 or 512 bits. This implementation currently
388 can't handle a sectorsize which is not a multiple of 16 bytes.
389
390config CRYPTO_KEYWRAP
391 tristate "Key wrapping support"
392 select CRYPTO_BLKCIPHER
393 help
394 Support for key wrapping (NIST SP800-38F / RFC3394) without
395 padding.
396
397comment "Hash modes"
398
399config CRYPTO_CMAC
400 tristate "CMAC support"
401 select CRYPTO_HASH
402 select CRYPTO_MANAGER
403 help
404 Cipher-based Message Authentication Code (CMAC) specified by
405 The National Institute of Standards and Technology (NIST).
406
407 https://tools.ietf.org/html/rfc4493
408 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
409
410config CRYPTO_HMAC
411 tristate "HMAC support"
412 select CRYPTO_HASH
413 select CRYPTO_MANAGER
414 help
415 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
416 This is required for IPSec.
417
418config CRYPTO_XCBC
419 tristate "XCBC support"
420 select CRYPTO_HASH
421 select CRYPTO_MANAGER
422 help
423 XCBC: Keyed-Hashing with encryption algorithm
424 http://www.ietf.org/rfc/rfc3566.txt
425 http://csrc.nist.gov/encryption/modes/proposedmodes/
426 xcbc-mac/xcbc-mac-spec.pdf
427
428config CRYPTO_VMAC
429 tristate "VMAC support"
430 select CRYPTO_HASH
431 select CRYPTO_MANAGER
432 help
433 VMAC is a message authentication algorithm designed for
434 very high speed on 64-bit architectures.
435
436 See also:
437 <http://fastcrypto.org/vmac>
438
439comment "Digest"
440
441config CRYPTO_CRC32C
442 tristate "CRC32c CRC algorithm"
443 select CRYPTO_HASH
444 select CRC32
445 help
446 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
447 by iSCSI for header and data digests and by others.
448 See Castagnoli93. Module will be crc32c.
449
450config CRYPTO_CRC32C_INTEL
451 tristate "CRC32c INTEL hardware acceleration"
452 depends on X86
453 select CRYPTO_HASH
454 help
455 In Intel processor with SSE4.2 supported, the processor will
456 support CRC32C implementation using hardware accelerated CRC32
457 instruction. This option will create 'crc32c-intel' module,
458 which will enable any routine to use the CRC32 instruction to
459 gain performance compared with software implementation.
460 Module will be crc32c-intel.
461
462config CRYPTO_CRC32C_VPMSUM
463 tristate "CRC32c CRC algorithm (powerpc64)"
464 depends on PPC64 && ALTIVEC
465 select CRYPTO_HASH
466 select CRC32
467 help
468 CRC32c algorithm implemented using vector polynomial multiply-sum
469 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
470 and newer processors for improved performance.
471
472
473config CRYPTO_CRC32C_SPARC64
474 tristate "CRC32c CRC algorithm (SPARC64)"
475 depends on SPARC64
476 select CRYPTO_HASH
477 select CRC32
478 help
479 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
480 when available.
481
482config CRYPTO_CRC32
483 tristate "CRC32 CRC algorithm"
484 select CRYPTO_HASH
485 select CRC32
486 help
487 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
488 Shash crypto api wrappers to crc32_le function.
489
490config CRYPTO_CRC32_PCLMUL
491 tristate "CRC32 PCLMULQDQ hardware acceleration"
492 depends on X86
493 select CRYPTO_HASH
494 select CRC32
495 help
496 From Intel Westmere and AMD Bulldozer processor with SSE4.2
497 and PCLMULQDQ supported, the processor will support
498 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
499 instruction. This option will create 'crc32-plcmul' module,
500 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
501 and gain better performance as compared with the table implementation.
502
503config CRYPTO_CRC32_MIPS
504 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
505 depends on MIPS_CRC_SUPPORT
506 select CRYPTO_HASH
507 help
508 CRC32c and CRC32 CRC algorithms implemented using mips crypto
509 instructions, when available.
510
511
512config CRYPTO_CRCT10DIF
513 tristate "CRCT10DIF algorithm"
514 select CRYPTO_HASH
515 help
516 CRC T10 Data Integrity Field computation is being cast as
517 a crypto transform. This allows for faster crc t10 diff
518 transforms to be used if they are available.
519
520config CRYPTO_CRCT10DIF_PCLMUL
521 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
522 depends on X86 && 64BIT && CRC_T10DIF
523 select CRYPTO_HASH
524 help
525 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
526 CRC T10 DIF PCLMULQDQ computation can be hardware
527 accelerated PCLMULQDQ instruction. This option will create
528 'crct10dif-plcmul' module, which is faster when computing the
529 crct10dif checksum as compared with the generic table implementation.
530
531config CRYPTO_CRCT10DIF_VPMSUM
532 tristate "CRC32T10DIF powerpc64 hardware acceleration"
533 depends on PPC64 && ALTIVEC && CRC_T10DIF
534 select CRYPTO_HASH
535 help
536 CRC10T10DIF algorithm implemented using vector polynomial
537 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
538 POWER8 and newer processors for improved performance.
539
540config CRYPTO_VPMSUM_TESTER
541 tristate "Powerpc64 vpmsum hardware acceleration tester"
542 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
543 help
544 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
545 POWER8 vpmsum instructions.
546 Unless you are testing these algorithms, you don't need this.
547
548config CRYPTO_GHASH
549 tristate "GHASH digest algorithm"
550 select CRYPTO_GF128MUL
551 select CRYPTO_HASH
552 help
553 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
554
555config CRYPTO_POLY1305
556 tristate "Poly1305 authenticator algorithm"
557 select CRYPTO_HASH
558 help
559 Poly1305 authenticator algorithm, RFC7539.
560
561 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
562 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
563 in IETF protocols. This is the portable C implementation of Poly1305.
564
565config CRYPTO_POLY1305_X86_64
566 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
567 depends on X86 && 64BIT
568 select CRYPTO_POLY1305
569 help
570 Poly1305 authenticator algorithm, RFC7539.
571
572 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
573 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
574 in IETF protocols. This is the x86_64 assembler implementation using SIMD
575 instructions.
576
577config CRYPTO_MD4
578 tristate "MD4 digest algorithm"
579 select CRYPTO_HASH
580 help
581 MD4 message digest algorithm (RFC1320).
582
583config CRYPTO_MD5
584 tristate "MD5 digest algorithm"
585 select CRYPTO_HASH
586 help
587 MD5 message digest algorithm (RFC1321).
588
589config CRYPTO_MD5_OCTEON
590 tristate "MD5 digest algorithm (OCTEON)"
591 depends on CPU_CAVIUM_OCTEON
592 select CRYPTO_MD5
593 select CRYPTO_HASH
594 help
595 MD5 message digest algorithm (RFC1321) implemented
596 using OCTEON crypto instructions, when available.
597
598config CRYPTO_MD5_PPC
599 tristate "MD5 digest algorithm (PPC)"
600 depends on PPC
601 select CRYPTO_HASH
602 help
603 MD5 message digest algorithm (RFC1321) implemented
604 in PPC assembler.
605
606config CRYPTO_MD5_SPARC64
607 tristate "MD5 digest algorithm (SPARC64)"
608 depends on SPARC64
609 select CRYPTO_MD5
610 select CRYPTO_HASH
611 help
612 MD5 message digest algorithm (RFC1321) implemented
613 using sparc64 crypto instructions, when available.
614
615config CRYPTO_MICHAEL_MIC
616 tristate "Michael MIC keyed digest algorithm"
617 select CRYPTO_HASH
618 help
619 Michael MIC is used for message integrity protection in TKIP
620 (IEEE 802.11i). This algorithm is required for TKIP, but it
621 should not be used for other purposes because of the weakness
622 of the algorithm.
623
624config CRYPTO_RMD128
625 tristate "RIPEMD-128 digest algorithm"
626 select CRYPTO_HASH
627 help
628 RIPEMD-128 (ISO/IEC 10118-3:2004).
629
630 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
631 be used as a secure replacement for RIPEMD. For other use cases,
632 RIPEMD-160 should be used.
633
634 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
635 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
636
637config CRYPTO_RMD160
638 tristate "RIPEMD-160 digest algorithm"
639 select CRYPTO_HASH
640 help
641 RIPEMD-160 (ISO/IEC 10118-3:2004).
642
643 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
644 to be used as a secure replacement for the 128-bit hash functions
645 MD4, MD5 and it's predecessor RIPEMD
646 (not to be confused with RIPEMD-128).
647
648 It's speed is comparable to SHA1 and there are no known attacks
649 against RIPEMD-160.
650
651 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
652 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
653
654config CRYPTO_RMD256
655 tristate "RIPEMD-256 digest algorithm"
656 select CRYPTO_HASH
657 help
658 RIPEMD-256 is an optional extension of RIPEMD-128 with a
659 256 bit hash. It is intended for applications that require
660 longer hash-results, without needing a larger security level
661 (than RIPEMD-128).
662
663 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
664 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
665
666config CRYPTO_RMD320
667 tristate "RIPEMD-320 digest algorithm"
668 select CRYPTO_HASH
669 help
670 RIPEMD-320 is an optional extension of RIPEMD-160 with a
671 320 bit hash. It is intended for applications that require
672 longer hash-results, without needing a larger security level
673 (than RIPEMD-160).
674
675 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
676 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
677
678config CRYPTO_SHA1
679 tristate "SHA1 digest algorithm"
680 select CRYPTO_HASH
681 help
682 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
683
684config CRYPTO_SHA1_SSSE3
685 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
686 depends on X86 && 64BIT
687 select CRYPTO_SHA1
688 select CRYPTO_HASH
689 help
690 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
692 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
693 when available.
694
695config CRYPTO_SHA256_SSSE3
696 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
697 depends on X86 && 64BIT
698 select CRYPTO_SHA256
699 select CRYPTO_HASH
700 help
701 SHA-256 secure hash standard (DFIPS 180-2) implemented
702 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
703 Extensions version 1 (AVX1), or Advanced Vector Extensions
704 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
705 Instructions) when available.
706
707config CRYPTO_SHA512_SSSE3
708 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
709 depends on X86 && 64BIT
710 select CRYPTO_SHA512
711 select CRYPTO_HASH
712 help
713 SHA-512 secure hash standard (DFIPS 180-2) implemented
714 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
715 Extensions version 1 (AVX1), or Advanced Vector Extensions
716 version 2 (AVX2) instructions, when available.
717
718config CRYPTO_SHA1_OCTEON
719 tristate "SHA1 digest algorithm (OCTEON)"
720 depends on CPU_CAVIUM_OCTEON
721 select CRYPTO_SHA1
722 select CRYPTO_HASH
723 help
724 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725 using OCTEON crypto instructions, when available.
726
727config CRYPTO_SHA1_SPARC64
728 tristate "SHA1 digest algorithm (SPARC64)"
729 depends on SPARC64
730 select CRYPTO_SHA1
731 select CRYPTO_HASH
732 help
733 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
734 using sparc64 crypto instructions, when available.
735
736config CRYPTO_SHA1_PPC
737 tristate "SHA1 digest algorithm (powerpc)"
738 depends on PPC
739 help
740 This is the powerpc hardware accelerated implementation of the
741 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
742
743config CRYPTO_SHA1_PPC_SPE
744 tristate "SHA1 digest algorithm (PPC SPE)"
745 depends on PPC && SPE
746 help
747 SHA-1 secure hash standard (DFIPS 180-4) implemented
748 using powerpc SPE SIMD instruction set.
749
750config CRYPTO_SHA1_MB
751 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752 depends on X86 && 64BIT
753 select CRYPTO_SHA1
754 select CRYPTO_HASH
755 select CRYPTO_MCRYPTD
756 help
757 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758 using multi-buffer technique. This algorithm computes on
759 multiple data lanes concurrently with SIMD instructions for
760 better throughput. It should not be enabled by default but
761 used when there is significant amount of work to keep the keep
762 the data lanes filled to get performance benefit. If the data
763 lanes remain unfilled, a flush operation will be initiated to
764 process the crypto jobs, adding a slight latency.
765
766config CRYPTO_SHA256_MB
767 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
768 depends on X86 && 64BIT
769 select CRYPTO_SHA256
770 select CRYPTO_HASH
771 select CRYPTO_MCRYPTD
772 help
773 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
774 using multi-buffer technique. This algorithm computes on
775 multiple data lanes concurrently with SIMD instructions for
776 better throughput. It should not be enabled by default but
777 used when there is significant amount of work to keep the keep
778 the data lanes filled to get performance benefit. If the data
779 lanes remain unfilled, a flush operation will be initiated to
780 process the crypto jobs, adding a slight latency.
781
782config CRYPTO_SHA512_MB
783 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
784 depends on X86 && 64BIT
785 select CRYPTO_SHA512
786 select CRYPTO_HASH
787 select CRYPTO_MCRYPTD
788 help
789 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
790 using multi-buffer technique. This algorithm computes on
791 multiple data lanes concurrently with SIMD instructions for
792 better throughput. It should not be enabled by default but
793 used when there is significant amount of work to keep the keep
794 the data lanes filled to get performance benefit. If the data
795 lanes remain unfilled, a flush operation will be initiated to
796 process the crypto jobs, adding a slight latency.
797
798config CRYPTO_SHA256
799 tristate "SHA224 and SHA256 digest algorithm"
800 select CRYPTO_HASH
801 help
802 SHA256 secure hash standard (DFIPS 180-2).
803
804 This version of SHA implements a 256 bit hash with 128 bits of
805 security against collision attacks.
806
807 This code also includes SHA-224, a 224 bit hash with 112 bits
808 of security against collision attacks.
809
810config CRYPTO_SHA256_PPC_SPE
811 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
812 depends on PPC && SPE
813 select CRYPTO_SHA256
814 select CRYPTO_HASH
815 help
816 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
817 implemented using powerpc SPE SIMD instruction set.
818
819config CRYPTO_SHA256_OCTEON
820 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
821 depends on CPU_CAVIUM_OCTEON
822 select CRYPTO_SHA256
823 select CRYPTO_HASH
824 help
825 SHA-256 secure hash standard (DFIPS 180-2) implemented
826 using OCTEON crypto instructions, when available.
827
828config CRYPTO_SHA256_SPARC64
829 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
830 depends on SPARC64
831 select CRYPTO_SHA256
832 select CRYPTO_HASH
833 help
834 SHA-256 secure hash standard (DFIPS 180-2) implemented
835 using sparc64 crypto instructions, when available.
836
837config CRYPTO_SHA512
838 tristate "SHA384 and SHA512 digest algorithms"
839 select CRYPTO_HASH
840 help
841 SHA512 secure hash standard (DFIPS 180-2).
842
843 This version of SHA implements a 512 bit hash with 256 bits of
844 security against collision attacks.
845
846 This code also includes SHA-384, a 384 bit hash with 192 bits
847 of security against collision attacks.
848
849config CRYPTO_SHA512_OCTEON
850 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
851 depends on CPU_CAVIUM_OCTEON
852 select CRYPTO_SHA512
853 select CRYPTO_HASH
854 help
855 SHA-512 secure hash standard (DFIPS 180-2) implemented
856 using OCTEON crypto instructions, when available.
857
858config CRYPTO_SHA512_SPARC64
859 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
860 depends on SPARC64
861 select CRYPTO_SHA512
862 select CRYPTO_HASH
863 help
864 SHA-512 secure hash standard (DFIPS 180-2) implemented
865 using sparc64 crypto instructions, when available.
866
867config CRYPTO_SHA3
868 tristate "SHA3 digest algorithm"
869 select CRYPTO_HASH
870 help
871 SHA-3 secure hash standard (DFIPS 202). It's based on
872 cryptographic sponge function family called Keccak.
873
874 References:
875 http://keccak.noekeon.org/
876
877config CRYPTO_SM3
878 tristate "SM3 digest algorithm"
879 select CRYPTO_HASH
880 help
881 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
882 It is part of the Chinese Commercial Cryptography suite.
883
884 References:
885 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
886 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
887
888config CRYPTO_TGR192
889 tristate "Tiger digest algorithms"
890 select CRYPTO_HASH
891 help
892 Tiger hash algorithm 192, 160 and 128-bit hashes
893
894 Tiger is a hash function optimized for 64-bit processors while
895 still having decent performance on 32-bit processors.
896 Tiger was developed by Ross Anderson and Eli Biham.
897
898 See also:
899 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
900
901config CRYPTO_WP512
902 tristate "Whirlpool digest algorithms"
903 select CRYPTO_HASH
904 help
905 Whirlpool hash algorithm 512, 384 and 256-bit hashes
906
907 Whirlpool-512 is part of the NESSIE cryptographic primitives.
908 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
909
910 See also:
911 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
912
913config CRYPTO_GHASH_CLMUL_NI_INTEL
914 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
915 depends on X86 && 64BIT
916 select CRYPTO_CRYPTD
917 help
918 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
919 The implementation is accelerated by CLMUL-NI of Intel.
920
921comment "Ciphers"
922
923config CRYPTO_AES
924 tristate "AES cipher algorithms"
925 select CRYPTO_ALGAPI
926 help
927 AES cipher algorithms (FIPS-197). AES uses the Rijndael
928 algorithm.
929
930 Rijndael appears to be consistently a very good performer in
931 both hardware and software across a wide range of computing
932 environments regardless of its use in feedback or non-feedback
933 modes. Its key setup time is excellent, and its key agility is
934 good. Rijndael's very low memory requirements make it very well
935 suited for restricted-space environments, in which it also
936 demonstrates excellent performance. Rijndael's operations are
937 among the easiest to defend against power and timing attacks.
938
939 The AES specifies three key sizes: 128, 192 and 256 bits
940
941 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
942
943config CRYPTO_AES_TI
944 tristate "Fixed time AES cipher"
945 select CRYPTO_ALGAPI
946 help
947 This is a generic implementation of AES that attempts to eliminate
948 data dependent latencies as much as possible without affecting
949 performance too much. It is intended for use by the generic CCM
950 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
951 solely on encryption (although decryption is supported as well, but
952 with a more dramatic performance hit)
953
954 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
955 8 for decryption), this implementation only uses just two S-boxes of
956 256 bytes each, and attempts to eliminate data dependent latencies by
957 prefetching the entire table into the cache at the start of each
958 block.
959
960config CRYPTO_AES_586
961 tristate "AES cipher algorithms (i586)"
962 depends on (X86 || UML_X86) && !64BIT
963 select CRYPTO_ALGAPI
964 select CRYPTO_AES
965 help
966 AES cipher algorithms (FIPS-197). AES uses the Rijndael
967 algorithm.
968
969 Rijndael appears to be consistently a very good performer in
970 both hardware and software across a wide range of computing
971 environments regardless of its use in feedback or non-feedback
972 modes. Its key setup time is excellent, and its key agility is
973 good. Rijndael's very low memory requirements make it very well
974 suited for restricted-space environments, in which it also
975 demonstrates excellent performance. Rijndael's operations are
976 among the easiest to defend against power and timing attacks.
977
978 The AES specifies three key sizes: 128, 192 and 256 bits
979
980 See <http://csrc.nist.gov/encryption/aes/> for more information.
981
982config CRYPTO_AES_X86_64
983 tristate "AES cipher algorithms (x86_64)"
984 depends on (X86 || UML_X86) && 64BIT
985 select CRYPTO_ALGAPI
986 select CRYPTO_AES
987 help
988 AES cipher algorithms (FIPS-197). AES uses the Rijndael
989 algorithm.
990
991 Rijndael appears to be consistently a very good performer in
992 both hardware and software across a wide range of computing
993 environments regardless of its use in feedback or non-feedback
994 modes. Its key setup time is excellent, and its key agility is
995 good. Rijndael's very low memory requirements make it very well
996 suited for restricted-space environments, in which it also
997 demonstrates excellent performance. Rijndael's operations are
998 among the easiest to defend against power and timing attacks.
999
1000 The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002 See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005 tristate "AES cipher algorithms (AES-NI)"
1006 depends on X86
1007 select CRYPTO_AEAD
1008 select CRYPTO_AES_X86_64 if 64BIT
1009 select CRYPTO_AES_586 if !64BIT
1010 select CRYPTO_ALGAPI
1011 select CRYPTO_BLKCIPHER
1012 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013 select CRYPTO_SIMD
1014 help
1015 Use Intel AES-NI instructions for AES algorithm.
1016
1017 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018 algorithm.
1019
1020 Rijndael appears to be consistently a very good performer in
1021 both hardware and software across a wide range of computing
1022 environments regardless of its use in feedback or non-feedback
1023 modes. Its key setup time is excellent, and its key agility is
1024 good. Rijndael's very low memory requirements make it very well
1025 suited for restricted-space environments, in which it also
1026 demonstrates excellent performance. Rijndael's operations are
1027 among the easiest to defend against power and timing attacks.
1028
1029 The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031 See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033 In addition to AES cipher algorithm support, the acceleration
1034 for some popular block cipher mode is supported too, including
1035 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036 acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039 tristate "AES cipher algorithms (SPARC64)"
1040 depends on SPARC64
1041 select CRYPTO_CRYPTD
1042 select CRYPTO_ALGAPI
1043 help
1044 Use SPARC64 crypto opcodes for AES algorithm.
1045
1046 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047 algorithm.
1048
1049 Rijndael appears to be consistently a very good performer in
1050 both hardware and software across a wide range of computing
1051 environments regardless of its use in feedback or non-feedback
1052 modes. Its key setup time is excellent, and its key agility is
1053 good. Rijndael's very low memory requirements make it very well
1054 suited for restricted-space environments, in which it also
1055 demonstrates excellent performance. Rijndael's operations are
1056 among the easiest to defend against power and timing attacks.
1057
1058 The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060 See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062 In addition to AES cipher algorithm support, the acceleration
1063 for some popular block cipher mode is supported too, including
1064 ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067 tristate "AES cipher algorithms (PPC SPE)"
1068 depends on PPC && SPE
1069 help
1070 AES cipher algorithms (FIPS-197). Additionally the acceleration
1071 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072 This module should only be used for low power (router) devices
1073 without hardware AES acceleration (e.g. caam crypto). It reduces the
1074 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075 timining attacks. Nevertheless it might be not as secure as other
1076 architecture specific assembler implementations that work on 1KB
1077 tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080 tristate "Anubis cipher algorithm"
1081 select CRYPTO_ALGAPI
1082 help
1083 Anubis cipher algorithm.
1084
1085 Anubis is a variable key length cipher which can use keys from
1086 128 bits to 320 bits in length. It was evaluated as a entrant
1087 in the NESSIE competition.
1088
1089 See also:
1090 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
1093config CRYPTO_ARC4
1094 tristate "ARC4 cipher algorithm"
1095 select CRYPTO_BLKCIPHER
1096 help
1097 ARC4 cipher algorithm.
1098
1099 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100 bits in length. This algorithm is required for driver-based
1101 WEP, but it should not be for other purposes because of the
1102 weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105 tristate "Blowfish cipher algorithm"
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_BLOWFISH_COMMON
1108 help
1109 Blowfish cipher algorithm, by Bruce Schneier.
1110
1111 This is a variable key length cipher which can use keys from 32
1112 bits to 448 bits in length. It's fast, simple and specifically
1113 designed for use on "large microprocessors".
1114
1115 See also:
1116 <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119 tristate
1120 help
1121 Common parts of the Blowfish cipher algorithm shared by the
1122 generic c and the assembler implementations.
1123
1124 See also:
1125 <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128 tristate "Blowfish cipher algorithm (x86_64)"
1129 depends on X86 && 64BIT
1130 select CRYPTO_BLKCIPHER
1131 select CRYPTO_BLOWFISH_COMMON
1132 help
1133 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135 This is a variable key length cipher which can use keys from 32
1136 bits to 448 bits in length. It's fast, simple and specifically
1137 designed for use on "large microprocessors".
1138
1139 See also:
1140 <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143 tristate "Camellia cipher algorithms"
1144 depends on CRYPTO
1145 select CRYPTO_ALGAPI
1146 help
1147 Camellia cipher algorithms module.
1148
1149 Camellia is a symmetric key block cipher developed jointly
1150 at NTT and Mitsubishi Electric Corporation.
1151
1152 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154 See also:
1155 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158 tristate "Camellia cipher algorithm (x86_64)"
1159 depends on X86 && 64BIT
1160 depends on CRYPTO
1161 select CRYPTO_BLKCIPHER
1162 select CRYPTO_GLUE_HELPER_X86
1163 help
1164 Camellia cipher algorithm module (x86_64).
1165
1166 Camellia is a symmetric key block cipher developed jointly
1167 at NTT and Mitsubishi Electric Corporation.
1168
1169 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171 See also:
1172 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176 depends on X86 && 64BIT
1177 depends on CRYPTO
1178 select CRYPTO_BLKCIPHER
1179 select CRYPTO_CAMELLIA_X86_64
1180 select CRYPTO_GLUE_HELPER_X86
1181 select CRYPTO_SIMD
1182 select CRYPTO_XTS
1183 help
1184 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186 Camellia is a symmetric key block cipher developed jointly
1187 at NTT and Mitsubishi Electric Corporation.
1188
1189 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191 See also:
1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196 depends on X86 && 64BIT
1197 depends on CRYPTO
1198 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199 help
1200 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202 Camellia is a symmetric key block cipher developed jointly
1203 at NTT and Mitsubishi Electric Corporation.
1204
1205 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207 See also:
1208 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211 tristate "Camellia cipher algorithm (SPARC64)"
1212 depends on SPARC64
1213 depends on CRYPTO
1214 select CRYPTO_ALGAPI
1215 help
1216 Camellia cipher algorithm module (SPARC64).
1217
1218 Camellia is a symmetric key block cipher developed jointly
1219 at NTT and Mitsubishi Electric Corporation.
1220
1221 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223 See also:
1224 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227 tristate
1228 help
1229 Common parts of the CAST cipher algorithms shared by the
1230 generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233 tristate "CAST5 (CAST-128) cipher algorithm"
1234 select CRYPTO_ALGAPI
1235 select CRYPTO_CAST_COMMON
1236 help
1237 The CAST5 encryption algorithm (synonymous with CAST-128) is
1238 described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242 depends on X86 && 64BIT
1243 select CRYPTO_BLKCIPHER
1244 select CRYPTO_CAST5
1245 select CRYPTO_CAST_COMMON
1246 select CRYPTO_SIMD
1247 help
1248 The CAST5 encryption algorithm (synonymous with CAST-128) is
1249 described in RFC2144.
1250
1251 This module provides the Cast5 cipher algorithm that processes
1252 sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255 tristate "CAST6 (CAST-256) cipher algorithm"
1256 select CRYPTO_ALGAPI
1257 select CRYPTO_CAST_COMMON
1258 help
1259 The CAST6 encryption algorithm (synonymous with CAST-256) is
1260 described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264 depends on X86 && 64BIT
1265 select CRYPTO_BLKCIPHER
1266 select CRYPTO_CAST6
1267 select CRYPTO_CAST_COMMON
1268 select CRYPTO_GLUE_HELPER_X86
1269 select CRYPTO_SIMD
1270 select CRYPTO_XTS
1271 help
1272 The CAST6 encryption algorithm (synonymous with CAST-256) is
1273 described in RFC2612.
1274
1275 This module provides the Cast6 cipher algorithm that processes
1276 eight blocks parallel using the AVX instruction set.
1277
1278config CRYPTO_DES
1279 tristate "DES and Triple DES EDE cipher algorithms"
1280 select CRYPTO_ALGAPI
1281 help
1282 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286 depends on SPARC64
1287 select CRYPTO_ALGAPI
1288 select CRYPTO_DES
1289 help
1290 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291 optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294 tristate "Triple DES EDE cipher algorithm (x86-64)"
1295 depends on X86 && 64BIT
1296 select CRYPTO_BLKCIPHER
1297 select CRYPTO_DES
1298 help
1299 Triple DES EDE (FIPS 46-3) algorithm.
1300
1301 This module provides implementation of the Triple DES EDE cipher
1302 algorithm that is optimized for x86-64 processors. Two versions of
1303 algorithm are provided; regular processing one input block and
1304 one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307 tristate "FCrypt cipher algorithm"
1308 select CRYPTO_ALGAPI
1309 select CRYPTO_BLKCIPHER
1310 help
1311 FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314 tristate "Khazad cipher algorithm"
1315 select CRYPTO_ALGAPI
1316 help
1317 Khazad cipher algorithm.
1318
1319 Khazad was a finalist in the initial NESSIE competition. It is
1320 an algorithm optimized for 64-bit processors with good performance
1321 on 32-bit processors. Khazad uses an 128 bit key size.
1322
1323 See also:
1324 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327 tristate "Salsa20 stream cipher algorithm"
1328 select CRYPTO_BLKCIPHER
1329 help
1330 Salsa20 stream cipher algorithm.
1331
1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335 The Salsa20 stream cipher algorithm is designed by Daniel J.
1336 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339 tristate "Salsa20 stream cipher algorithm (i586)"
1340 depends on (X86 || UML_X86) && !64BIT
1341 select CRYPTO_BLKCIPHER
1342 select CRYPTO_SALSA20
1343 help
1344 Salsa20 stream cipher algorithm.
1345
1346 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349 The Salsa20 stream cipher algorithm is designed by Daniel J.
1350 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353 tristate "Salsa20 stream cipher algorithm (x86_64)"
1354 depends on (X86 || UML_X86) && 64BIT
1355 select CRYPTO_BLKCIPHER
1356 select CRYPTO_SALSA20
1357 help
1358 Salsa20 stream cipher algorithm.
1359
1360 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363 The Salsa20 stream cipher algorithm is designed by Daniel J.
1364 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367 tristate "ChaCha20 cipher algorithm"
1368 select CRYPTO_BLKCIPHER
1369 help
1370 ChaCha20 cipher algorithm, RFC7539.
1371
1372 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373 Bernstein and further specified in RFC7539 for use in IETF protocols.
1374 This is the portable C implementation of ChaCha20.
1375
1376 See also:
1377 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378
1379config CRYPTO_CHACHA20_X86_64
1380 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381 depends on X86 && 64BIT
1382 select CRYPTO_BLKCIPHER
1383 select CRYPTO_CHACHA20
1384 help
1385 ChaCha20 cipher algorithm, RFC7539.
1386
1387 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388 Bernstein and further specified in RFC7539 for use in IETF protocols.
1389 This is the x86_64 assembler implementation using SIMD instructions.
1390
1391 See also:
1392 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393
1394config CRYPTO_SEED
1395 tristate "SEED cipher algorithm"
1396 select CRYPTO_ALGAPI
1397 help
1398 SEED cipher algorithm (RFC4269).
1399
1400 SEED is a 128-bit symmetric key block cipher that has been
1401 developed by KISA (Korea Information Security Agency) as a
1402 national standard encryption algorithm of the Republic of Korea.
1403 It is a 16 round block cipher with the key size of 128 bit.
1404
1405 See also:
1406 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409 tristate "Serpent cipher algorithm"
1410 select CRYPTO_ALGAPI
1411 help
1412 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414 Keys are allowed to be from 0 to 256 bits in length, in steps
1415 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1416 variant of Serpent for compatibility with old kerneli.org code.
1417
1418 See also:
1419 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423 depends on X86 && 64BIT
1424 select CRYPTO_BLKCIPHER
1425 select CRYPTO_GLUE_HELPER_X86
1426 select CRYPTO_SERPENT
1427 select CRYPTO_SIMD
1428 help
1429 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431 Keys are allowed to be from 0 to 256 bits in length, in steps
1432 of 8 bits.
1433
1434 This module provides Serpent cipher algorithm that processes eight
1435 blocks parallel using SSE2 instruction set.
1436
1437 See also:
1438 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441 tristate "Serpent cipher algorithm (i586/SSE2)"
1442 depends on X86 && !64BIT
1443 select CRYPTO_BLKCIPHER
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_SERPENT
1446 select CRYPTO_SIMD
1447 help
1448 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450 Keys are allowed to be from 0 to 256 bits in length, in steps
1451 of 8 bits.
1452
1453 This module provides Serpent cipher algorithm that processes four
1454 blocks parallel using SSE2 instruction set.
1455
1456 See also:
1457 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460 tristate "Serpent cipher algorithm (x86_64/AVX)"
1461 depends on X86 && 64BIT
1462 select CRYPTO_BLKCIPHER
1463 select CRYPTO_GLUE_HELPER_X86
1464 select CRYPTO_SERPENT
1465 select CRYPTO_SIMD
1466 select CRYPTO_XTS
1467 help
1468 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470 Keys are allowed to be from 0 to 256 bits in length, in steps
1471 of 8 bits.
1472
1473 This module provides the Serpent cipher algorithm that processes
1474 eight blocks parallel using the AVX instruction set.
1475
1476 See also:
1477 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481 depends on X86 && 64BIT
1482 select CRYPTO_SERPENT_AVX_X86_64
1483 help
1484 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486 Keys are allowed to be from 0 to 256 bits in length, in steps
1487 of 8 bits.
1488
1489 This module provides Serpent cipher algorithm that processes 16
1490 blocks parallel using AVX2 instruction set.
1491
1492 See also:
1493 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496 tristate "SM4 cipher algorithm"
1497 select CRYPTO_ALGAPI
1498 help
1499 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502 Organization of State Commercial Administration of China (OSCCA)
1503 as an authorized cryptographic algorithms for the use within China.
1504
1505 SMS4 was originally created for use in protecting wireless
1506 networks, and is mandated in the Chinese National Standard for
1507 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508 (GB.15629.11-2003).
1509
1510 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511 standardized through TC 260 of the Standardization Administration
1512 of the People's Republic of China (SAC).
1513
1514 The input, output, and key of SMS4 are each 128 bits.
1515
1516 See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518 If unsure, say N.
1519
1520config CRYPTO_SPECK
1521 tristate "Speck cipher algorithm"
1522 select CRYPTO_ALGAPI
1523 help
1524 Speck is a lightweight block cipher that is tuned for optimal
1525 performance in software (rather than hardware).
1526
1527 Speck may not be as secure as AES, and should only be used on systems
1528 where AES is not fast enough.
1529
1530 See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532 If unsure, say N.
1533
1534config CRYPTO_TEA
1535 tristate "TEA, XTEA and XETA cipher algorithms"
1536 select CRYPTO_ALGAPI
1537 help
1538 TEA cipher algorithm.
1539
1540 Tiny Encryption Algorithm is a simple cipher that uses
1541 many rounds for security. It is very fast and uses
1542 little memory.
1543
1544 Xtendend Tiny Encryption Algorithm is a modification to
1545 the TEA algorithm to address a potential key weakness
1546 in the TEA algorithm.
1547
1548 Xtendend Encryption Tiny Algorithm is a mis-implementation
1549 of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552 tristate "Twofish cipher algorithm"
1553 select CRYPTO_ALGAPI
1554 select CRYPTO_TWOFISH_COMMON
1555 help
1556 Twofish cipher algorithm.
1557
1558 Twofish was submitted as an AES (Advanced Encryption Standard)
1559 candidate cipher by researchers at CounterPane Systems. It is a
1560 16 round block cipher supporting key sizes of 128, 192, and 256
1561 bits.
1562
1563 See also:
1564 <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567 tristate
1568 help
1569 Common parts of the Twofish cipher algorithm shared by the
1570 generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573 tristate "Twofish cipher algorithms (i586)"
1574 depends on (X86 || UML_X86) && !64BIT
1575 select CRYPTO_ALGAPI
1576 select CRYPTO_TWOFISH_COMMON
1577 help
1578 Twofish cipher algorithm.
1579
1580 Twofish was submitted as an AES (Advanced Encryption Standard)
1581 candidate cipher by researchers at CounterPane Systems. It is a
1582 16 round block cipher supporting key sizes of 128, 192, and 256
1583 bits.
1584
1585 See also:
1586 <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589 tristate "Twofish cipher algorithm (x86_64)"
1590 depends on (X86 || UML_X86) && 64BIT
1591 select CRYPTO_ALGAPI
1592 select CRYPTO_TWOFISH_COMMON
1593 help
1594 Twofish cipher algorithm (x86_64).
1595
1596 Twofish was submitted as an AES (Advanced Encryption Standard)
1597 candidate cipher by researchers at CounterPane Systems. It is a
1598 16 round block cipher supporting key sizes of 128, 192, and 256
1599 bits.
1600
1601 See also:
1602 <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606 depends on X86 && 64BIT
1607 select CRYPTO_BLKCIPHER
1608 select CRYPTO_TWOFISH_COMMON
1609 select CRYPTO_TWOFISH_X86_64
1610 select CRYPTO_GLUE_HELPER_X86
1611 help
1612 Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614 Twofish was submitted as an AES (Advanced Encryption Standard)
1615 candidate cipher by researchers at CounterPane Systems. It is a
1616 16 round block cipher supporting key sizes of 128, 192, and 256
1617 bits.
1618
1619 This module provides Twofish cipher algorithm that processes three
1620 blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622 See also:
1623 <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626 tristate "Twofish cipher algorithm (x86_64/AVX)"
1627 depends on X86 && 64BIT
1628 select CRYPTO_BLKCIPHER
1629 select CRYPTO_GLUE_HELPER_X86
1630 select CRYPTO_SIMD
1631 select CRYPTO_TWOFISH_COMMON
1632 select CRYPTO_TWOFISH_X86_64
1633 select CRYPTO_TWOFISH_X86_64_3WAY
1634 help
1635 Twofish cipher algorithm (x86_64/AVX).
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 This module provides the Twofish cipher algorithm that processes
1643 eight blocks parallel using the AVX Instruction Set.
1644
1645 See also:
1646 <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651 tristate "Deflate compression algorithm"
1652 select CRYPTO_ALGAPI
1653 select CRYPTO_ACOMP2
1654 select ZLIB_INFLATE
1655 select ZLIB_DEFLATE
1656 help
1657 This is the Deflate algorithm (RFC1951), specified for use in
1658 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660 You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663 tristate "LZO compression algorithm"
1664 select CRYPTO_ALGAPI
1665 select CRYPTO_ACOMP2
1666 select LZO_COMPRESS
1667 select LZO_DECOMPRESS
1668 help
1669 This is the LZO algorithm.
1670
1671config CRYPTO_842
1672 tristate "842 compression algorithm"
1673 select CRYPTO_ALGAPI
1674 select CRYPTO_ACOMP2
1675 select 842_COMPRESS
1676 select 842_DECOMPRESS
1677 help
1678 This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681 tristate "LZ4 compression algorithm"
1682 select CRYPTO_ALGAPI
1683 select CRYPTO_ACOMP2
1684 select LZ4_COMPRESS
1685 select LZ4_DECOMPRESS
1686 help
1687 This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690 tristate "LZ4HC compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZ4HC_COMPRESS
1694 select LZ4_DECOMPRESS
1695 help
1696 This is the LZ4 high compression mode algorithm.
1697
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701 tristate "Pseudo Random Number Generation for Cryptographic modules"
1702 select CRYPTO_AES
1703 select CRYPTO_RNG
1704 help
1705 This option enables the generic pseudo random number generator
1706 for cryptographic modules. Uses the Algorithm specified in
1707 ANSI X9.31 A.2.4. Note that this option must be enabled if
1708 CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711 tristate "NIST SP800-90A DRBG"
1712 help
1713 NIST SP800-90A compliant DRBG. In the following submenu, one or
1714 more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719 bool
1720 default y
1721 select CRYPTO_HMAC
1722 select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725 bool "Enable Hash DRBG"
1726 select CRYPTO_SHA256
1727 help
1728 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731 bool "Enable CTR DRBG"
1732 select CRYPTO_AES
1733 depends on CRYPTO_CTR
1734 help
1735 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738 tristate
1739 default CRYPTO_DRBG_MENU
1740 select CRYPTO_RNG
1741 select CRYPTO_JITTERENTROPY
1742
1743endif # if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747 select CRYPTO_RNG
1748 help
1749 The Jitterentropy RNG is a noise that is intended
1750 to provide seed to another RNG. The RNG does not
1751 perform any cryptographic whitening of the generated
1752 random numbers. This Jitterentropy RNG registers with
1753 the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756 tristate
1757
1758config CRYPTO_USER_API_HASH
1759 tristate "User-space interface for hash algorithms"
1760 depends on NET
1761 select CRYPTO_HASH
1762 select CRYPTO_USER_API
1763 help
1764 This option enables the user-spaces interface for hash
1765 algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768 tristate "User-space interface for symmetric key cipher algorithms"
1769 depends on NET
1770 select CRYPTO_BLKCIPHER
1771 select CRYPTO_USER_API
1772 help
1773 This option enables the user-spaces interface for symmetric
1774 key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777 tristate "User-space interface for random number generator algorithms"
1778 depends on NET
1779 select CRYPTO_RNG
1780 select CRYPTO_USER_API
1781 help
1782 This option enables the user-spaces interface for random
1783 number generator algorithms.
1784
1785config CRYPTO_USER_API_AEAD
1786 tristate "User-space interface for AEAD cipher algorithms"
1787 depends on NET
1788 select CRYPTO_AEAD
1789 select CRYPTO_BLKCIPHER
1790 select CRYPTO_NULL
1791 select CRYPTO_USER_API
1792 help
1793 This option enables the user-spaces interface for AEAD
1794 cipher algorithms.
1795
1796config CRYPTO_HASH_INFO
1797 bool
1798
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_SIG
76 tristate
77 select CRYPTO_SIG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_SIG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_SKCIPHER
85 tristate
86 select CRYPTO_SKCIPHER2
87 select CRYPTO_ALGAPI
88 select CRYPTO_ECB
89
90config CRYPTO_SKCIPHER2
91 tristate
92 select CRYPTO_ALGAPI2
93
94config CRYPTO_HASH
95 tristate
96 select CRYPTO_HASH2
97 select CRYPTO_ALGAPI
98
99config CRYPTO_HASH2
100 tristate
101 select CRYPTO_ALGAPI2
102
103config CRYPTO_RNG
104 tristate
105 select CRYPTO_RNG2
106 select CRYPTO_ALGAPI
107
108config CRYPTO_RNG2
109 tristate
110 select CRYPTO_ALGAPI2
111
112config CRYPTO_RNG_DEFAULT
113 tristate
114 select CRYPTO_DRBG_MENU
115
116config CRYPTO_AKCIPHER2
117 tristate
118 select CRYPTO_ALGAPI2
119
120config CRYPTO_AKCIPHER
121 tristate
122 select CRYPTO_AKCIPHER2
123 select CRYPTO_ALGAPI
124
125config CRYPTO_KPP2
126 tristate
127 select CRYPTO_ALGAPI2
128
129config CRYPTO_KPP
130 tristate
131 select CRYPTO_ALGAPI
132 select CRYPTO_KPP2
133
134config CRYPTO_ACOMP2
135 tristate
136 select CRYPTO_ALGAPI2
137 select SGL_ALLOC
138
139config CRYPTO_ACOMP
140 tristate
141 select CRYPTO_ALGAPI
142 select CRYPTO_ACOMP2
143
144config CRYPTO_MANAGER
145 tristate "Cryptographic algorithm manager"
146 select CRYPTO_MANAGER2
147 help
148 Create default cryptographic template instantiations such as
149 cbc(aes).
150
151config CRYPTO_MANAGER2
152 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
153 select CRYPTO_ACOMP2
154 select CRYPTO_AEAD2
155 select CRYPTO_AKCIPHER2
156 select CRYPTO_SIG2
157 select CRYPTO_HASH2
158 select CRYPTO_KPP2
159 select CRYPTO_RNG2
160 select CRYPTO_SKCIPHER2
161
162config CRYPTO_USER
163 tristate "Userspace cryptographic algorithm configuration"
164 depends on NET
165 select CRYPTO_MANAGER
166 help
167 Userspace configuration for cryptographic instantiations such as
168 cbc(aes).
169
170config CRYPTO_MANAGER_DISABLE_TESTS
171 bool "Disable run-time self tests"
172 default y
173 help
174 Disable run-time self tests that normally take place at
175 algorithm registration.
176
177config CRYPTO_MANAGER_EXTRA_TESTS
178 bool "Enable extra run-time crypto self tests"
179 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
180 help
181 Enable extra run-time self tests of registered crypto algorithms,
182 including randomized fuzz tests.
183
184 This is intended for developer use only, as these tests take much
185 longer to run than the normal self tests.
186
187config CRYPTO_NULL
188 tristate "Null algorithms"
189 select CRYPTO_NULL2
190 help
191 These are 'Null' algorithms, used by IPsec, which do nothing.
192
193config CRYPTO_NULL2
194 tristate
195 select CRYPTO_ALGAPI2
196 select CRYPTO_SKCIPHER2
197 select CRYPTO_HASH2
198
199config CRYPTO_PCRYPT
200 tristate "Parallel crypto engine"
201 depends on SMP
202 select PADATA
203 select CRYPTO_MANAGER
204 select CRYPTO_AEAD
205 help
206 This converts an arbitrary crypto algorithm into a parallel
207 algorithm that executes in kernel threads.
208
209config CRYPTO_CRYPTD
210 tristate "Software async crypto daemon"
211 select CRYPTO_SKCIPHER
212 select CRYPTO_HASH
213 select CRYPTO_MANAGER
214 help
215 This is a generic software asynchronous crypto daemon that
216 converts an arbitrary synchronous software crypto algorithm
217 into an asynchronous algorithm that executes in a kernel thread.
218
219config CRYPTO_AUTHENC
220 tristate "Authenc support"
221 select CRYPTO_AEAD
222 select CRYPTO_SKCIPHER
223 select CRYPTO_MANAGER
224 select CRYPTO_HASH
225 select CRYPTO_NULL
226 help
227 Authenc: Combined mode wrapper for IPsec.
228
229 This is required for IPSec ESP (XFRM_ESP).
230
231config CRYPTO_TEST
232 tristate "Testing module"
233 depends on m || EXPERT
234 select CRYPTO_MANAGER
235 help
236 Quick & dirty crypto test module.
237
238config CRYPTO_SIMD
239 tristate
240 select CRYPTO_CRYPTD
241
242config CRYPTO_ENGINE
243 tristate
244
245endmenu
246
247menu "Public-key cryptography"
248
249config CRYPTO_RSA
250 tristate "RSA (Rivest-Shamir-Adleman)"
251 select CRYPTO_AKCIPHER
252 select CRYPTO_MANAGER
253 select CRYPTO_SIG
254 select MPILIB
255 select ASN1
256 help
257 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
258
259config CRYPTO_DH
260 tristate "DH (Diffie-Hellman)"
261 select CRYPTO_KPP
262 select MPILIB
263 help
264 DH (Diffie-Hellman) key exchange algorithm
265
266config CRYPTO_DH_RFC7919_GROUPS
267 bool "RFC 7919 FFDHE groups"
268 depends on CRYPTO_DH
269 select CRYPTO_RNG_DEFAULT
270 help
271 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
272 defined in RFC7919.
273
274 Support these finite-field groups in DH key exchanges:
275 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
276
277 If unsure, say N.
278
279config CRYPTO_ECC
280 tristate
281 select CRYPTO_RNG_DEFAULT
282
283config CRYPTO_ECDH
284 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
285 select CRYPTO_ECC
286 select CRYPTO_KPP
287 help
288 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
289 using curves P-192, P-256, and P-384 (FIPS 186)
290
291config CRYPTO_ECDSA
292 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
293 select CRYPTO_ECC
294 select CRYPTO_SIG
295 select ASN1
296 help
297 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
298 ISO/IEC 14888-3)
299 using curves P-192, P-256, P-384 and P-521
300
301 Only signature verification is implemented.
302
303config CRYPTO_ECRDSA
304 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
305 select CRYPTO_ECC
306 select CRYPTO_SIG
307 select CRYPTO_STREEBOG
308 select OID_REGISTRY
309 select ASN1
310 help
311 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
312 RFC 7091, ISO/IEC 14888-3)
313
314 One of the Russian cryptographic standard algorithms (called GOST
315 algorithms). Only signature verification is implemented.
316
317config CRYPTO_CURVE25519
318 tristate "Curve25519"
319 select CRYPTO_KPP
320 select CRYPTO_LIB_CURVE25519_GENERIC
321 help
322 Curve25519 elliptic curve (RFC7748)
323
324endmenu
325
326menu "Block ciphers"
327
328config CRYPTO_AES
329 tristate "AES (Advanced Encryption Standard)"
330 select CRYPTO_ALGAPI
331 select CRYPTO_LIB_AES
332 help
333 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
334
335 Rijndael appears to be consistently a very good performer in
336 both hardware and software across a wide range of computing
337 environments regardless of its use in feedback or non-feedback
338 modes. Its key setup time is excellent, and its key agility is
339 good. Rijndael's very low memory requirements make it very well
340 suited for restricted-space environments, in which it also
341 demonstrates excellent performance. Rijndael's operations are
342 among the easiest to defend against power and timing attacks.
343
344 The AES specifies three key sizes: 128, 192 and 256 bits
345
346config CRYPTO_AES_TI
347 tristate "AES (Advanced Encryption Standard) (fixed time)"
348 select CRYPTO_ALGAPI
349 select CRYPTO_LIB_AES
350 help
351 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
352
353 This is a generic implementation of AES that attempts to eliminate
354 data dependent latencies as much as possible without affecting
355 performance too much. It is intended for use by the generic CCM
356 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
357 solely on encryption (although decryption is supported as well, but
358 with a more dramatic performance hit)
359
360 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
361 8 for decryption), this implementation only uses just two S-boxes of
362 256 bytes each, and attempts to eliminate data dependent latencies by
363 prefetching the entire table into the cache at the start of each
364 block. Interrupts are also disabled to avoid races where cachelines
365 are evicted when the CPU is interrupted to do something else.
366
367config CRYPTO_ANUBIS
368 tristate "Anubis"
369 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
370 select CRYPTO_ALGAPI
371 help
372 Anubis cipher algorithm
373
374 Anubis is a variable key length cipher which can use keys from
375 128 bits to 320 bits in length. It was evaluated as a entrant
376 in the NESSIE competition.
377
378 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
379 for further information.
380
381config CRYPTO_ARIA
382 tristate "ARIA"
383 select CRYPTO_ALGAPI
384 help
385 ARIA cipher algorithm (RFC5794)
386
387 ARIA is a standard encryption algorithm of the Republic of Korea.
388 The ARIA specifies three key sizes and rounds.
389 128-bit: 12 rounds.
390 192-bit: 14 rounds.
391 256-bit: 16 rounds.
392
393 See:
394 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
395
396config CRYPTO_BLOWFISH
397 tristate "Blowfish"
398 select CRYPTO_ALGAPI
399 select CRYPTO_BLOWFISH_COMMON
400 help
401 Blowfish cipher algorithm, by Bruce Schneier
402
403 This is a variable key length cipher which can use keys from 32
404 bits to 448 bits in length. It's fast, simple and specifically
405 designed for use on "large microprocessors".
406
407 See https://www.schneier.com/blowfish.html for further information.
408
409config CRYPTO_BLOWFISH_COMMON
410 tristate
411 help
412 Common parts of the Blowfish cipher algorithm shared by the
413 generic c and the assembler implementations.
414
415config CRYPTO_CAMELLIA
416 tristate "Camellia"
417 select CRYPTO_ALGAPI
418 help
419 Camellia cipher algorithms (ISO/IEC 18033-3)
420
421 Camellia is a symmetric key block cipher developed jointly
422 at NTT and Mitsubishi Electric Corporation.
423
424 The Camellia specifies three key sizes: 128, 192 and 256 bits.
425
426 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
427
428config CRYPTO_CAST_COMMON
429 tristate
430 help
431 Common parts of the CAST cipher algorithms shared by the
432 generic c and the assembler implementations.
433
434config CRYPTO_CAST5
435 tristate "CAST5 (CAST-128)"
436 select CRYPTO_ALGAPI
437 select CRYPTO_CAST_COMMON
438 help
439 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
440
441config CRYPTO_CAST6
442 tristate "CAST6 (CAST-256)"
443 select CRYPTO_ALGAPI
444 select CRYPTO_CAST_COMMON
445 help
446 CAST6 (CAST-256) encryption algorithm (RFC2612)
447
448config CRYPTO_DES
449 tristate "DES and Triple DES EDE"
450 select CRYPTO_ALGAPI
451 select CRYPTO_LIB_DES
452 help
453 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
454 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
455 cipher algorithms
456
457config CRYPTO_FCRYPT
458 tristate "FCrypt"
459 select CRYPTO_ALGAPI
460 select CRYPTO_SKCIPHER
461 help
462 FCrypt algorithm used by RxRPC
463
464 See https://ota.polyonymo.us/fcrypt-paper.txt
465
466config CRYPTO_KHAZAD
467 tristate "Khazad"
468 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
469 select CRYPTO_ALGAPI
470 help
471 Khazad cipher algorithm
472
473 Khazad was a finalist in the initial NESSIE competition. It is
474 an algorithm optimized for 64-bit processors with good performance
475 on 32-bit processors. Khazad uses an 128 bit key size.
476
477 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
478 for further information.
479
480config CRYPTO_SEED
481 tristate "SEED"
482 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
483 select CRYPTO_ALGAPI
484 help
485 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
486
487 SEED is a 128-bit symmetric key block cipher that has been
488 developed by KISA (Korea Information Security Agency) as a
489 national standard encryption algorithm of the Republic of Korea.
490 It is a 16 round block cipher with the key size of 128 bit.
491
492 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
493 for further information.
494
495config CRYPTO_SERPENT
496 tristate "Serpent"
497 select CRYPTO_ALGAPI
498 help
499 Serpent cipher algorithm, by Anderson, Biham & Knudsen
500
501 Keys are allowed to be from 0 to 256 bits in length, in steps
502 of 8 bits.
503
504 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
505
506config CRYPTO_SM4
507 tristate
508
509config CRYPTO_SM4_GENERIC
510 tristate "SM4 (ShangMi 4)"
511 select CRYPTO_ALGAPI
512 select CRYPTO_SM4
513 help
514 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
515 ISO/IEC 18033-3:2010/Amd 1:2021)
516
517 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
518 Organization of State Commercial Administration of China (OSCCA)
519 as an authorized cryptographic algorithms for the use within China.
520
521 SMS4 was originally created for use in protecting wireless
522 networks, and is mandated in the Chinese National Standard for
523 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
524 (GB.15629.11-2003).
525
526 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
527 standardized through TC 260 of the Standardization Administration
528 of the People's Republic of China (SAC).
529
530 The input, output, and key of SMS4 are each 128 bits.
531
532 See https://eprint.iacr.org/2008/329.pdf for further information.
533
534 If unsure, say N.
535
536config CRYPTO_TEA
537 tristate "TEA, XTEA and XETA"
538 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
539 select CRYPTO_ALGAPI
540 help
541 TEA (Tiny Encryption Algorithm) cipher algorithms
542
543 Tiny Encryption Algorithm is a simple cipher that uses
544 many rounds for security. It is very fast and uses
545 little memory.
546
547 Xtendend Tiny Encryption Algorithm is a modification to
548 the TEA algorithm to address a potential key weakness
549 in the TEA algorithm.
550
551 Xtendend Encryption Tiny Algorithm is a mis-implementation
552 of the XTEA algorithm for compatibility purposes.
553
554config CRYPTO_TWOFISH
555 tristate "Twofish"
556 select CRYPTO_ALGAPI
557 select CRYPTO_TWOFISH_COMMON
558 help
559 Twofish cipher algorithm
560
561 Twofish was submitted as an AES (Advanced Encryption Standard)
562 candidate cipher by researchers at CounterPane Systems. It is a
563 16 round block cipher supporting key sizes of 128, 192, and 256
564 bits.
565
566 See https://www.schneier.com/twofish.html for further information.
567
568config CRYPTO_TWOFISH_COMMON
569 tristate
570 help
571 Common parts of the Twofish cipher algorithm shared by the
572 generic c and the assembler implementations.
573
574endmenu
575
576menu "Length-preserving ciphers and modes"
577
578config CRYPTO_ADIANTUM
579 tristate "Adiantum"
580 select CRYPTO_CHACHA20
581 select CRYPTO_LIB_POLY1305_GENERIC
582 select CRYPTO_NHPOLY1305
583 select CRYPTO_MANAGER
584 help
585 Adiantum tweakable, length-preserving encryption mode
586
587 Designed for fast and secure disk encryption, especially on
588 CPUs without dedicated crypto instructions. It encrypts
589 each sector using the XChaCha12 stream cipher, two passes of
590 an ε-almost-∆-universal hash function, and an invocation of
591 the AES-256 block cipher on a single 16-byte block. On CPUs
592 without AES instructions, Adiantum is much faster than
593 AES-XTS.
594
595 Adiantum's security is provably reducible to that of its
596 underlying stream and block ciphers, subject to a security
597 bound. Unlike XTS, Adiantum is a true wide-block encryption
598 mode, so it actually provides an even stronger notion of
599 security than XTS, subject to the security bound.
600
601 If unsure, say N.
602
603config CRYPTO_ARC4
604 tristate "ARC4 (Alleged Rivest Cipher 4)"
605 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
606 select CRYPTO_SKCIPHER
607 select CRYPTO_LIB_ARC4
608 help
609 ARC4 cipher algorithm
610
611 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
612 bits in length. This algorithm is required for driver-based
613 WEP, but it should not be for other purposes because of the
614 weakness of the algorithm.
615
616config CRYPTO_CHACHA20
617 tristate "ChaCha"
618 select CRYPTO_LIB_CHACHA_GENERIC
619 select CRYPTO_SKCIPHER
620 help
621 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
622
623 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
624 Bernstein and further specified in RFC7539 for use in IETF protocols.
625 This is the portable C implementation of ChaCha20. See
626 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
627
628 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
629 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
630 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
631 while provably retaining ChaCha20's security. See
632 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
633
634 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
635 reduced security margin but increased performance. It can be needed
636 in some performance-sensitive scenarios.
637
638config CRYPTO_CBC
639 tristate "CBC (Cipher Block Chaining)"
640 select CRYPTO_SKCIPHER
641 select CRYPTO_MANAGER
642 help
643 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
644
645 This block cipher mode is required for IPSec ESP (XFRM_ESP).
646
647config CRYPTO_CTR
648 tristate "CTR (Counter)"
649 select CRYPTO_SKCIPHER
650 select CRYPTO_MANAGER
651 help
652 CTR (Counter) mode (NIST SP800-38A)
653
654config CRYPTO_CTS
655 tristate "CTS (Cipher Text Stealing)"
656 select CRYPTO_SKCIPHER
657 select CRYPTO_MANAGER
658 help
659 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
660 Addendum to SP800-38A (October 2010))
661
662 This mode is required for Kerberos gss mechanism support
663 for AES encryption.
664
665config CRYPTO_ECB
666 tristate "ECB (Electronic Codebook)"
667 select CRYPTO_SKCIPHER2
668 select CRYPTO_MANAGER
669 help
670 ECB (Electronic Codebook) mode (NIST SP800-38A)
671
672config CRYPTO_HCTR2
673 tristate "HCTR2"
674 select CRYPTO_XCTR
675 select CRYPTO_POLYVAL
676 select CRYPTO_MANAGER
677 help
678 HCTR2 length-preserving encryption mode
679
680 A mode for storage encryption that is efficient on processors with
681 instructions to accelerate AES and carryless multiplication, e.g.
682 x86 processors with AES-NI and CLMUL, and ARM processors with the
683 ARMv8 crypto extensions.
684
685 See https://eprint.iacr.org/2021/1441
686
687config CRYPTO_KEYWRAP
688 tristate "KW (AES Key Wrap)"
689 select CRYPTO_SKCIPHER
690 select CRYPTO_MANAGER
691 help
692 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
693 and RFC3394) without padding.
694
695config CRYPTO_LRW
696 tristate "LRW (Liskov Rivest Wagner)"
697 select CRYPTO_LIB_GF128MUL
698 select CRYPTO_SKCIPHER
699 select CRYPTO_MANAGER
700 select CRYPTO_ECB
701 help
702 LRW (Liskov Rivest Wagner) mode
703
704 A tweakable, non malleable, non movable
705 narrow block cipher mode for dm-crypt. Use it with cipher
706 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
707 The first 128, 192 or 256 bits in the key are used for AES and the
708 rest is used to tie each cipher block to its logical position.
709
710 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
711
712config CRYPTO_PCBC
713 tristate "PCBC (Propagating Cipher Block Chaining)"
714 select CRYPTO_SKCIPHER
715 select CRYPTO_MANAGER
716 help
717 PCBC (Propagating Cipher Block Chaining) mode
718
719 This block cipher mode is required for RxRPC.
720
721config CRYPTO_XCTR
722 tristate
723 select CRYPTO_SKCIPHER
724 select CRYPTO_MANAGER
725 help
726 XCTR (XOR Counter) mode for HCTR2
727
728 This blockcipher mode is a variant of CTR mode using XORs and little-endian
729 addition rather than big-endian arithmetic.
730
731 XCTR mode is used to implement HCTR2.
732
733config CRYPTO_XTS
734 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
735 select CRYPTO_SKCIPHER
736 select CRYPTO_MANAGER
737 select CRYPTO_ECB
738 help
739 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
740 and IEEE 1619)
741
742 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
743 implementation currently can't handle a sectorsize which is not a
744 multiple of 16 bytes.
745
746config CRYPTO_NHPOLY1305
747 tristate
748 select CRYPTO_HASH
749 select CRYPTO_LIB_POLY1305_GENERIC
750
751endmenu
752
753menu "AEAD (authenticated encryption with associated data) ciphers"
754
755config CRYPTO_AEGIS128
756 tristate "AEGIS-128"
757 select CRYPTO_AEAD
758 select CRYPTO_AES # for AES S-box tables
759 help
760 AEGIS-128 AEAD algorithm
761
762config CRYPTO_AEGIS128_SIMD
763 bool "AEGIS-128 (arm NEON, arm64 NEON)"
764 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
765 default y
766 help
767 AEGIS-128 AEAD algorithm
768
769 Architecture: arm or arm64 using:
770 - NEON (Advanced SIMD) extension
771
772config CRYPTO_CHACHA20POLY1305
773 tristate "ChaCha20-Poly1305"
774 select CRYPTO_CHACHA20
775 select CRYPTO_POLY1305
776 select CRYPTO_AEAD
777 select CRYPTO_MANAGER
778 help
779 ChaCha20 stream cipher and Poly1305 authenticator combined
780 mode (RFC8439)
781
782config CRYPTO_CCM
783 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
784 select CRYPTO_CTR
785 select CRYPTO_HASH
786 select CRYPTO_AEAD
787 select CRYPTO_MANAGER
788 help
789 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
790 authenticated encryption mode (NIST SP800-38C)
791
792config CRYPTO_GCM
793 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
794 select CRYPTO_CTR
795 select CRYPTO_AEAD
796 select CRYPTO_GHASH
797 select CRYPTO_NULL
798 select CRYPTO_MANAGER
799 help
800 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
801 (GCM Message Authentication Code) (NIST SP800-38D)
802
803 This is required for IPSec ESP (XFRM_ESP).
804
805config CRYPTO_GENIV
806 tristate
807 select CRYPTO_AEAD
808 select CRYPTO_NULL
809 select CRYPTO_MANAGER
810 select CRYPTO_RNG_DEFAULT
811
812config CRYPTO_SEQIV
813 tristate "Sequence Number IV Generator"
814 select CRYPTO_GENIV
815 help
816 Sequence Number IV generator
817
818 This IV generator generates an IV based on a sequence number by
819 xoring it with a salt. This algorithm is mainly useful for CTR.
820
821 This is required for IPsec ESP (XFRM_ESP).
822
823config CRYPTO_ECHAINIV
824 tristate "Encrypted Chain IV Generator"
825 select CRYPTO_GENIV
826 help
827 Encrypted Chain IV generator
828
829 This IV generator generates an IV based on the encryption of
830 a sequence number xored with a salt. This is the default
831 algorithm for CBC.
832
833config CRYPTO_ESSIV
834 tristate "Encrypted Salt-Sector IV Generator"
835 select CRYPTO_AUTHENC
836 help
837 Encrypted Salt-Sector IV generator
838
839 This IV generator is used in some cases by fscrypt and/or
840 dm-crypt. It uses the hash of the block encryption key as the
841 symmetric key for a block encryption pass applied to the input
842 IV, making low entropy IV sources more suitable for block
843 encryption.
844
845 This driver implements a crypto API template that can be
846 instantiated either as an skcipher or as an AEAD (depending on the
847 type of the first template argument), and which defers encryption
848 and decryption requests to the encapsulated cipher after applying
849 ESSIV to the input IV. Note that in the AEAD case, it is assumed
850 that the keys are presented in the same format used by the authenc
851 template, and that the IV appears at the end of the authenticated
852 associated data (AAD) region (which is how dm-crypt uses it.)
853
854 Note that the use of ESSIV is not recommended for new deployments,
855 and so this only needs to be enabled when interoperability with
856 existing encrypted volumes of filesystems is required, or when
857 building for a particular system that requires it (e.g., when
858 the SoC in question has accelerated CBC but not XTS, making CBC
859 combined with ESSIV the only feasible mode for h/w accelerated
860 block encryption)
861
862endmenu
863
864menu "Hashes, digests, and MACs"
865
866config CRYPTO_BLAKE2B
867 tristate "BLAKE2b"
868 select CRYPTO_HASH
869 help
870 BLAKE2b cryptographic hash function (RFC 7693)
871
872 BLAKE2b is optimized for 64-bit platforms and can produce digests
873 of any size between 1 and 64 bytes. The keyed hash is also implemented.
874
875 This module provides the following algorithms:
876 - blake2b-160
877 - blake2b-256
878 - blake2b-384
879 - blake2b-512
880
881 Used by the btrfs filesystem.
882
883 See https://blake2.net for further information.
884
885config CRYPTO_CMAC
886 tristate "CMAC (Cipher-based MAC)"
887 select CRYPTO_HASH
888 select CRYPTO_MANAGER
889 help
890 CMAC (Cipher-based Message Authentication Code) authentication
891 mode (NIST SP800-38B and IETF RFC4493)
892
893config CRYPTO_GHASH
894 tristate "GHASH"
895 select CRYPTO_HASH
896 select CRYPTO_LIB_GF128MUL
897 help
898 GCM GHASH function (NIST SP800-38D)
899
900config CRYPTO_HMAC
901 tristate "HMAC (Keyed-Hash MAC)"
902 select CRYPTO_HASH
903 select CRYPTO_MANAGER
904 help
905 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
906 RFC2104)
907
908 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
909
910config CRYPTO_MD4
911 tristate "MD4"
912 select CRYPTO_HASH
913 help
914 MD4 message digest algorithm (RFC1320)
915
916config CRYPTO_MD5
917 tristate "MD5"
918 select CRYPTO_HASH
919 help
920 MD5 message digest algorithm (RFC1321)
921
922config CRYPTO_MICHAEL_MIC
923 tristate "Michael MIC"
924 select CRYPTO_HASH
925 help
926 Michael MIC (Message Integrity Code) (IEEE 802.11i)
927
928 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
929 known as WPA (Wif-Fi Protected Access).
930
931 This algorithm is required for TKIP, but it should not be used for
932 other purposes because of the weakness of the algorithm.
933
934config CRYPTO_POLYVAL
935 tristate
936 select CRYPTO_HASH
937 select CRYPTO_LIB_GF128MUL
938 help
939 POLYVAL hash function for HCTR2
940
941 This is used in HCTR2. It is not a general-purpose
942 cryptographic hash function.
943
944config CRYPTO_POLY1305
945 tristate "Poly1305"
946 select CRYPTO_HASH
947 select CRYPTO_LIB_POLY1305_GENERIC
948 help
949 Poly1305 authenticator algorithm (RFC7539)
950
951 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
952 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
953 in IETF protocols. This is the portable C implementation of Poly1305.
954
955config CRYPTO_RMD160
956 tristate "RIPEMD-160"
957 select CRYPTO_HASH
958 help
959 RIPEMD-160 hash function (ISO/IEC 10118-3)
960
961 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
962 to be used as a secure replacement for the 128-bit hash functions
963 MD4, MD5 and its predecessor RIPEMD
964 (not to be confused with RIPEMD-128).
965
966 Its speed is comparable to SHA-1 and there are no known attacks
967 against RIPEMD-160.
968
969 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
970 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
971 for further information.
972
973config CRYPTO_SHA1
974 tristate "SHA-1"
975 select CRYPTO_HASH
976 select CRYPTO_LIB_SHA1
977 help
978 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
979
980config CRYPTO_SHA256
981 tristate "SHA-224 and SHA-256"
982 select CRYPTO_HASH
983 select CRYPTO_LIB_SHA256
984 help
985 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
986
987 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
988 Used by the btrfs filesystem, Ceph, NFS, and SMB.
989
990config CRYPTO_SHA512
991 tristate "SHA-384 and SHA-512"
992 select CRYPTO_HASH
993 help
994 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
995
996config CRYPTO_SHA3
997 tristate "SHA-3"
998 select CRYPTO_HASH
999 help
1000 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1001
1002config CRYPTO_SM3
1003 tristate
1004
1005config CRYPTO_SM3_GENERIC
1006 tristate "SM3 (ShangMi 3)"
1007 select CRYPTO_HASH
1008 select CRYPTO_SM3
1009 help
1010 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1011
1012 This is part of the Chinese Commercial Cryptography suite.
1013
1014 References:
1015 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1016 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1017
1018config CRYPTO_STREEBOG
1019 tristate "Streebog"
1020 select CRYPTO_HASH
1021 help
1022 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1023
1024 This is one of the Russian cryptographic standard algorithms (called
1025 GOST algorithms). This setting enables two hash algorithms with
1026 256 and 512 bits output.
1027
1028 References:
1029 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1030 https://tools.ietf.org/html/rfc6986
1031
1032config CRYPTO_VMAC
1033 tristate "VMAC"
1034 select CRYPTO_HASH
1035 select CRYPTO_MANAGER
1036 help
1037 VMAC is a message authentication algorithm designed for
1038 very high speed on 64-bit architectures.
1039
1040 See https://fastcrypto.org/vmac for further information.
1041
1042config CRYPTO_WP512
1043 tristate "Whirlpool"
1044 select CRYPTO_HASH
1045 help
1046 Whirlpool hash function (ISO/IEC 10118-3)
1047
1048 512, 384 and 256-bit hashes.
1049
1050 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1051
1052 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1053 for further information.
1054
1055config CRYPTO_XCBC
1056 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1057 select CRYPTO_HASH
1058 select CRYPTO_MANAGER
1059 help
1060 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1061 Code) (RFC3566)
1062
1063config CRYPTO_XXHASH
1064 tristate "xxHash"
1065 select CRYPTO_HASH
1066 select XXHASH
1067 help
1068 xxHash non-cryptographic hash algorithm
1069
1070 Extremely fast, working at speeds close to RAM limits.
1071
1072 Used by the btrfs filesystem.
1073
1074endmenu
1075
1076menu "CRCs (cyclic redundancy checks)"
1077
1078config CRYPTO_CRC32C
1079 tristate "CRC32c"
1080 select CRYPTO_HASH
1081 select CRC32
1082 help
1083 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1084
1085 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1086 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1087 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1088 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1089 iSCSI.
1090
1091 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1092
1093config CRYPTO_CRC32
1094 tristate "CRC32"
1095 select CRYPTO_HASH
1096 select CRC32
1097 help
1098 CRC32 CRC algorithm (IEEE 802.3)
1099
1100 Used by RoCEv2 and f2fs.
1101
1102config CRYPTO_CRCT10DIF
1103 tristate "CRCT10DIF"
1104 select CRYPTO_HASH
1105 help
1106 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1107
1108 CRC algorithm used by the SCSI Block Commands standard.
1109
1110config CRYPTO_CRC64_ROCKSOFT
1111 tristate "CRC64 based on Rocksoft Model algorithm"
1112 depends on CRC64
1113 select CRYPTO_HASH
1114 help
1115 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1116
1117 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1118
1119 See https://zlib.net/crc_v3.txt
1120
1121endmenu
1122
1123menu "Compression"
1124
1125config CRYPTO_DEFLATE
1126 tristate "Deflate"
1127 select CRYPTO_ALGAPI
1128 select CRYPTO_ACOMP2
1129 select ZLIB_INFLATE
1130 select ZLIB_DEFLATE
1131 help
1132 Deflate compression algorithm (RFC1951)
1133
1134 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1135
1136config CRYPTO_LZO
1137 tristate "LZO"
1138 select CRYPTO_ALGAPI
1139 select CRYPTO_ACOMP2
1140 select LZO_COMPRESS
1141 select LZO_DECOMPRESS
1142 help
1143 LZO compression algorithm
1144
1145 See https://www.oberhumer.com/opensource/lzo/ for further information.
1146
1147config CRYPTO_842
1148 tristate "842"
1149 select CRYPTO_ALGAPI
1150 select CRYPTO_ACOMP2
1151 select 842_COMPRESS
1152 select 842_DECOMPRESS
1153 help
1154 842 compression algorithm by IBM
1155
1156 See https://github.com/plauth/lib842 for further information.
1157
1158config CRYPTO_LZ4
1159 tristate "LZ4"
1160 select CRYPTO_ALGAPI
1161 select CRYPTO_ACOMP2
1162 select LZ4_COMPRESS
1163 select LZ4_DECOMPRESS
1164 help
1165 LZ4 compression algorithm
1166
1167 See https://github.com/lz4/lz4 for further information.
1168
1169config CRYPTO_LZ4HC
1170 tristate "LZ4HC"
1171 select CRYPTO_ALGAPI
1172 select CRYPTO_ACOMP2
1173 select LZ4HC_COMPRESS
1174 select LZ4_DECOMPRESS
1175 help
1176 LZ4 high compression mode algorithm
1177
1178 See https://github.com/lz4/lz4 for further information.
1179
1180config CRYPTO_ZSTD
1181 tristate "Zstd"
1182 select CRYPTO_ALGAPI
1183 select CRYPTO_ACOMP2
1184 select ZSTD_COMPRESS
1185 select ZSTD_DECOMPRESS
1186 help
1187 zstd compression algorithm
1188
1189 See https://github.com/facebook/zstd for further information.
1190
1191endmenu
1192
1193menu "Random number generation"
1194
1195config CRYPTO_ANSI_CPRNG
1196 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1197 select CRYPTO_AES
1198 select CRYPTO_RNG
1199 help
1200 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1201
1202 This uses the AES cipher algorithm.
1203
1204 Note that this option must be enabled if CRYPTO_FIPS is selected
1205
1206menuconfig CRYPTO_DRBG_MENU
1207 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1208 help
1209 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1210
1211 In the following submenu, one or more of the DRBG types must be selected.
1212
1213if CRYPTO_DRBG_MENU
1214
1215config CRYPTO_DRBG_HMAC
1216 bool
1217 default y
1218 select CRYPTO_HMAC
1219 select CRYPTO_SHA512
1220
1221config CRYPTO_DRBG_HASH
1222 bool "Hash_DRBG"
1223 select CRYPTO_SHA256
1224 help
1225 Hash_DRBG variant as defined in NIST SP800-90A.
1226
1227 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1228
1229config CRYPTO_DRBG_CTR
1230 bool "CTR_DRBG"
1231 select CRYPTO_AES
1232 select CRYPTO_CTR
1233 help
1234 CTR_DRBG variant as defined in NIST SP800-90A.
1235
1236 This uses the AES cipher algorithm with the counter block mode.
1237
1238config CRYPTO_DRBG
1239 tristate
1240 default CRYPTO_DRBG_MENU
1241 select CRYPTO_RNG
1242 select CRYPTO_JITTERENTROPY
1243
1244endif # if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_JITTERENTROPY
1247 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1248 select CRYPTO_RNG
1249 select CRYPTO_SHA3
1250 help
1251 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1252
1253 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1254 compliant with NIST SP800-90B) intended to provide a seed to a
1255 deterministic RNG (e.g., per NIST SP800-90C).
1256 This RNG does not perform any cryptographic whitening of the generated
1257 random numbers.
1258
1259 See https://www.chronox.de/jent/
1260
1261if CRYPTO_JITTERENTROPY
1262if CRYPTO_FIPS && EXPERT
1263
1264choice
1265 prompt "CPU Jitter RNG Memory Size"
1266 default CRYPTO_JITTERENTROPY_MEMSIZE_2
1267 help
1268 The Jitter RNG measures the execution time of memory accesses.
1269 Multiple consecutive memory accesses are performed. If the memory
1270 size fits into a cache (e.g. L1), only the memory access timing
1271 to that cache is measured. The closer the cache is to the CPU
1272 the less variations are measured and thus the less entropy is
1273 obtained. Thus, if the memory size fits into the L1 cache, the
1274 obtained entropy is less than if the memory size fits within
1275 L1 + L2, which in turn is less if the memory fits into
1276 L1 + L2 + L3. Thus, by selecting a different memory size,
1277 the entropy rate produced by the Jitter RNG can be modified.
1278
1279 config CRYPTO_JITTERENTROPY_MEMSIZE_2
1280 bool "2048 Bytes (default)"
1281
1282 config CRYPTO_JITTERENTROPY_MEMSIZE_128
1283 bool "128 kBytes"
1284
1285 config CRYPTO_JITTERENTROPY_MEMSIZE_1024
1286 bool "1024 kBytes"
1287
1288 config CRYPTO_JITTERENTROPY_MEMSIZE_8192
1289 bool "8192 kBytes"
1290endchoice
1291
1292config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1293 int
1294 default 64 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1295 default 512 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1296 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1297 default 4096 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1298
1299config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1300 int
1301 default 32 if CRYPTO_JITTERENTROPY_MEMSIZE_2
1302 default 256 if CRYPTO_JITTERENTROPY_MEMSIZE_128
1303 default 1024 if CRYPTO_JITTERENTROPY_MEMSIZE_1024
1304 default 2048 if CRYPTO_JITTERENTROPY_MEMSIZE_8192
1305
1306config CRYPTO_JITTERENTROPY_OSR
1307 int "CPU Jitter RNG Oversampling Rate"
1308 range 1 15
1309 default 3
1310 help
1311 The Jitter RNG allows the specification of an oversampling rate (OSR).
1312 The Jitter RNG operation requires a fixed amount of timing
1313 measurements to produce one output block of random numbers. The
1314 OSR value is multiplied with the amount of timing measurements to
1315 generate one output block. Thus, the timing measurement is oversampled
1316 by the OSR factor. The oversampling allows the Jitter RNG to operate
1317 on hardware whose timers deliver limited amount of entropy (e.g.
1318 the timer is coarse) by setting the OSR to a higher value. The
1319 trade-off, however, is that the Jitter RNG now requires more time
1320 to generate random numbers.
1321
1322config CRYPTO_JITTERENTROPY_TESTINTERFACE
1323 bool "CPU Jitter RNG Test Interface"
1324 help
1325 The test interface allows a privileged process to capture
1326 the raw unconditioned high resolution time stamp noise that
1327 is collected by the Jitter RNG for statistical analysis. As
1328 this data is used at the same time to generate random bits,
1329 the Jitter RNG operates in an insecure mode as long as the
1330 recording is enabled. This interface therefore is only
1331 intended for testing purposes and is not suitable for
1332 production systems.
1333
1334 The raw noise data can be obtained using the jent_raw_hires
1335 debugfs file. Using the option
1336 jitterentropy_testing.boot_raw_hires_test=1 the raw noise of
1337 the first 1000 entropy events since boot can be sampled.
1338
1339 If unsure, select N.
1340
1341endif # if CRYPTO_FIPS && EXPERT
1342
1343if !(CRYPTO_FIPS && EXPERT)
1344
1345config CRYPTO_JITTERENTROPY_MEMORY_BLOCKS
1346 int
1347 default 64
1348
1349config CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE
1350 int
1351 default 32
1352
1353config CRYPTO_JITTERENTROPY_OSR
1354 int
1355 default 1
1356
1357config CRYPTO_JITTERENTROPY_TESTINTERFACE
1358 bool
1359
1360endif # if !(CRYPTO_FIPS && EXPERT)
1361endif # if CRYPTO_JITTERENTROPY
1362
1363config CRYPTO_KDF800108_CTR
1364 tristate
1365 select CRYPTO_HMAC
1366 select CRYPTO_SHA256
1367
1368endmenu
1369menu "Userspace interface"
1370
1371config CRYPTO_USER_API
1372 tristate
1373
1374config CRYPTO_USER_API_HASH
1375 tristate "Hash algorithms"
1376 depends on NET
1377 select CRYPTO_HASH
1378 select CRYPTO_USER_API
1379 help
1380 Enable the userspace interface for hash algorithms.
1381
1382 See Documentation/crypto/userspace-if.rst and
1383 https://www.chronox.de/libkcapi/html/index.html
1384
1385config CRYPTO_USER_API_SKCIPHER
1386 tristate "Symmetric key cipher algorithms"
1387 depends on NET
1388 select CRYPTO_SKCIPHER
1389 select CRYPTO_USER_API
1390 help
1391 Enable the userspace interface for symmetric key cipher algorithms.
1392
1393 See Documentation/crypto/userspace-if.rst and
1394 https://www.chronox.de/libkcapi/html/index.html
1395
1396config CRYPTO_USER_API_RNG
1397 tristate "RNG (random number generator) algorithms"
1398 depends on NET
1399 select CRYPTO_RNG
1400 select CRYPTO_USER_API
1401 help
1402 Enable the userspace interface for RNG (random number generator)
1403 algorithms.
1404
1405 See Documentation/crypto/userspace-if.rst and
1406 https://www.chronox.de/libkcapi/html/index.html
1407
1408config CRYPTO_USER_API_RNG_CAVP
1409 bool "Enable CAVP testing of DRBG"
1410 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1411 help
1412 Enable extra APIs in the userspace interface for NIST CAVP
1413 (Cryptographic Algorithm Validation Program) testing:
1414 - resetting DRBG entropy
1415 - providing Additional Data
1416
1417 This should only be enabled for CAVP testing. You should say
1418 no unless you know what this is.
1419
1420config CRYPTO_USER_API_AEAD
1421 tristate "AEAD cipher algorithms"
1422 depends on NET
1423 select CRYPTO_AEAD
1424 select CRYPTO_SKCIPHER
1425 select CRYPTO_NULL
1426 select CRYPTO_USER_API
1427 help
1428 Enable the userspace interface for AEAD cipher algorithms.
1429
1430 See Documentation/crypto/userspace-if.rst and
1431 https://www.chronox.de/libkcapi/html/index.html
1432
1433config CRYPTO_USER_API_ENABLE_OBSOLETE
1434 bool "Obsolete cryptographic algorithms"
1435 depends on CRYPTO_USER_API
1436 default y
1437 help
1438 Allow obsolete cryptographic algorithms to be selected that have
1439 already been phased out from internal use by the kernel, and are
1440 only useful for userspace clients that still rely on them.
1441
1442endmenu
1443
1444config CRYPTO_HASH_INFO
1445 bool
1446
1447if !KMSAN # avoid false positives from assembly
1448if ARM
1449source "arch/arm/crypto/Kconfig"
1450endif
1451if ARM64
1452source "arch/arm64/crypto/Kconfig"
1453endif
1454if LOONGARCH
1455source "arch/loongarch/crypto/Kconfig"
1456endif
1457if MIPS
1458source "arch/mips/crypto/Kconfig"
1459endif
1460if PPC
1461source "arch/powerpc/crypto/Kconfig"
1462endif
1463if RISCV
1464source "arch/riscv/crypto/Kconfig"
1465endif
1466if S390
1467source "arch/s390/crypto/Kconfig"
1468endif
1469if SPARC
1470source "arch/sparc/crypto/Kconfig"
1471endif
1472if X86
1473source "arch/x86/crypto/Kconfig"
1474endif
1475endif
1476
1477source "drivers/crypto/Kconfig"
1478source "crypto/asymmetric_keys/Kconfig"
1479source "certs/Kconfig"
1480
1481endif # if CRYPTO