Linux Audio

Check our new training course

Loading...
v4.17
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This options enables the fips boot option which is
  31	  required if you want to system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_BLKCIPHER
  56	tristate
  57	select CRYPTO_BLKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_BLKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64	select CRYPTO_WORKQUEUE
  65
  66config CRYPTO_HASH
  67	tristate
  68	select CRYPTO_HASH2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_HASH2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74
  75config CRYPTO_RNG
  76	tristate
  77	select CRYPTO_RNG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_RNG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_RNG_DEFAULT
  85	tristate
  86	select CRYPTO_DRBG_MENU
  87
  88config CRYPTO_AKCIPHER2
  89	tristate
  90	select CRYPTO_ALGAPI2
  91
  92config CRYPTO_AKCIPHER
  93	tristate
  94	select CRYPTO_AKCIPHER2
  95	select CRYPTO_ALGAPI
  96
  97config CRYPTO_KPP2
  98	tristate
  99	select CRYPTO_ALGAPI2
 100
 101config CRYPTO_KPP
 102	tristate
 103	select CRYPTO_ALGAPI
 104	select CRYPTO_KPP2
 105
 106config CRYPTO_ACOMP2
 107	tristate
 108	select CRYPTO_ALGAPI2
 109	select SGL_ALLOC
 110
 111config CRYPTO_ACOMP
 112	tristate
 113	select CRYPTO_ALGAPI
 114	select CRYPTO_ACOMP2
 115
 116config CRYPTO_RSA
 117	tristate "RSA algorithm"
 118	select CRYPTO_AKCIPHER
 119	select CRYPTO_MANAGER
 120	select MPILIB
 121	select ASN1
 122	help
 123	  Generic implementation of the RSA public key algorithm.
 124
 125config CRYPTO_DH
 126	tristate "Diffie-Hellman algorithm"
 127	select CRYPTO_KPP
 128	select MPILIB
 129	help
 130	  Generic implementation of the Diffie-Hellman algorithm.
 131
 132config CRYPTO_ECDH
 133	tristate "ECDH algorithm"
 134	select CRYPTO_KPP
 135	select CRYPTO_RNG_DEFAULT
 136	help
 137	  Generic implementation of the ECDH algorithm
 138
 139config CRYPTO_MANAGER
 140	tristate "Cryptographic algorithm manager"
 141	select CRYPTO_MANAGER2
 142	help
 143	  Create default cryptographic template instantiations such as
 144	  cbc(aes).
 145
 146config CRYPTO_MANAGER2
 147	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 148	select CRYPTO_AEAD2
 149	select CRYPTO_HASH2
 150	select CRYPTO_BLKCIPHER2
 151	select CRYPTO_AKCIPHER2
 152	select CRYPTO_KPP2
 153	select CRYPTO_ACOMP2
 154
 155config CRYPTO_USER
 156	tristate "Userspace cryptographic algorithm configuration"
 157	depends on NET
 158	select CRYPTO_MANAGER
 159	help
 160	  Userspace configuration for cryptographic instantiations such as
 161	  cbc(aes).
 162
 163config CRYPTO_MANAGER_DISABLE_TESTS
 164	bool "Disable run-time self tests"
 165	default y
 166	depends on CRYPTO_MANAGER2
 167	help
 168	  Disable run-time self tests that normally take place at
 169	  algorithm registration.
 170
 171config CRYPTO_GF128MUL
 172	tristate "GF(2^128) multiplication functions"
 
 173	help
 174	  Efficient table driven implementation of multiplications in the
 175	  field GF(2^128).  This is needed by some cypher modes. This
 176	  option will be selected automatically if you select such a
 177	  cipher mode.  Only select this option by hand if you expect to load
 178	  an external module that requires these functions.
 
 
 
 179
 180config CRYPTO_NULL
 181	tristate "Null algorithms"
 182	select CRYPTO_NULL2
 183	help
 184	  These are 'Null' algorithms, used by IPsec, which do nothing.
 185
 186config CRYPTO_NULL2
 187	tristate
 188	select CRYPTO_ALGAPI2
 189	select CRYPTO_BLKCIPHER2
 190	select CRYPTO_HASH2
 191
 192config CRYPTO_PCRYPT
 193	tristate "Parallel crypto engine"
 194	depends on SMP
 195	select PADATA
 196	select CRYPTO_MANAGER
 197	select CRYPTO_AEAD
 198	help
 199	  This converts an arbitrary crypto algorithm into a parallel
 200	  algorithm that executes in kernel threads.
 201
 202config CRYPTO_WORKQUEUE
 203       tristate
 204
 205config CRYPTO_CRYPTD
 206	tristate "Software async crypto daemon"
 207	select CRYPTO_BLKCIPHER
 208	select CRYPTO_HASH
 209	select CRYPTO_MANAGER
 210	select CRYPTO_WORKQUEUE
 211	help
 212	  This is a generic software asynchronous crypto daemon that
 213	  converts an arbitrary synchronous software crypto algorithm
 214	  into an asynchronous algorithm that executes in a kernel thread.
 215
 216config CRYPTO_MCRYPTD
 217	tristate "Software async multi-buffer crypto daemon"
 218	select CRYPTO_BLKCIPHER
 219	select CRYPTO_HASH
 220	select CRYPTO_MANAGER
 221	select CRYPTO_WORKQUEUE
 222	help
 223	  This is a generic software asynchronous crypto daemon that
 224	  provides the kernel thread to assist multi-buffer crypto
 225	  algorithms for submitting jobs and flushing jobs in multi-buffer
 226	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 227	  in the context of this kernel thread and drivers can post
 228	  their crypto request asynchronously to be processed by this daemon.
 229
 230config CRYPTO_AUTHENC
 231	tristate "Authenc support"
 232	select CRYPTO_AEAD
 233	select CRYPTO_BLKCIPHER
 234	select CRYPTO_MANAGER
 235	select CRYPTO_HASH
 236	select CRYPTO_NULL
 237	help
 238	  Authenc: Combined mode wrapper for IPsec.
 239	  This is required for IPSec.
 240
 241config CRYPTO_TEST
 242	tristate "Testing module"
 243	depends on m
 244	select CRYPTO_MANAGER
 245	help
 246	  Quick & dirty crypto test module.
 247
 248config CRYPTO_SIMD
 249	tristate
 250	select CRYPTO_CRYPTD
 251
 252config CRYPTO_GLUE_HELPER_X86
 253	tristate
 254	depends on X86
 255	select CRYPTO_BLKCIPHER
 256
 257config CRYPTO_ENGINE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258	tristate
 259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260comment "Authenticated Encryption with Associated Data"
 261
 262config CRYPTO_CCM
 263	tristate "CCM support"
 264	select CRYPTO_CTR
 265	select CRYPTO_HASH
 266	select CRYPTO_AEAD
 
 267	help
 268	  Support for Counter with CBC MAC. Required for IPsec.
 269
 270config CRYPTO_GCM
 271	tristate "GCM/GMAC support"
 272	select CRYPTO_CTR
 273	select CRYPTO_AEAD
 274	select CRYPTO_GHASH
 275	select CRYPTO_NULL
 
 276	help
 277	  Support for Galois/Counter Mode (GCM) and Galois Message
 278	  Authentication Code (GMAC). Required for IPSec.
 279
 280config CRYPTO_CHACHA20POLY1305
 281	tristate "ChaCha20-Poly1305 AEAD support"
 282	select CRYPTO_CHACHA20
 283	select CRYPTO_POLY1305
 284	select CRYPTO_AEAD
 
 285	help
 286	  ChaCha20-Poly1305 AEAD support, RFC7539.
 287
 288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 290	  IETF protocols.
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292config CRYPTO_SEQIV
 293	tristate "Sequence Number IV Generator"
 294	select CRYPTO_AEAD
 295	select CRYPTO_BLKCIPHER
 296	select CRYPTO_NULL
 297	select CRYPTO_RNG_DEFAULT
 
 298	help
 299	  This IV generator generates an IV based on a sequence number by
 300	  xoring it with a salt.  This algorithm is mainly useful for CTR
 301
 302config CRYPTO_ECHAINIV
 303	tristate "Encrypted Chain IV Generator"
 304	select CRYPTO_AEAD
 305	select CRYPTO_NULL
 306	select CRYPTO_RNG_DEFAULT
 307	default m
 308	help
 309	  This IV generator generates an IV based on the encryption of
 310	  a sequence number xored with a salt.  This is the default
 311	  algorithm for CBC.
 312
 313comment "Block modes"
 314
 315config CRYPTO_CBC
 316	tristate "CBC support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	help
 320	  CBC: Cipher Block Chaining mode
 321	  This block cipher algorithm is required for IPSec.
 322
 323config CRYPTO_CFB
 324	tristate "CFB support"
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_MANAGER
 327	help
 328	  CFB: Cipher FeedBack mode
 329	  This block cipher algorithm is required for TPM2 Cryptography.
 330
 331config CRYPTO_CTR
 332	tristate "CTR support"
 333	select CRYPTO_BLKCIPHER
 334	select CRYPTO_SEQIV
 335	select CRYPTO_MANAGER
 336	help
 337	  CTR: Counter mode
 338	  This block cipher algorithm is required for IPSec.
 339
 340config CRYPTO_CTS
 341	tristate "CTS support"
 342	select CRYPTO_BLKCIPHER
 
 343	help
 344	  CTS: Cipher Text Stealing
 345	  This is the Cipher Text Stealing mode as described by
 346	  Section 8 of rfc2040 and referenced by rfc3962.
 347	  (rfc3962 includes errata information in its Appendix A)
 
 348	  This mode is required for Kerberos gss mechanism support
 349	  for AES encryption.
 350
 
 
 351config CRYPTO_ECB
 352	tristate "ECB support"
 353	select CRYPTO_BLKCIPHER
 354	select CRYPTO_MANAGER
 355	help
 356	  ECB: Electronic CodeBook mode
 357	  This is the simplest block cipher algorithm.  It simply encrypts
 358	  the input block by block.
 359
 360config CRYPTO_LRW
 361	tristate "LRW support"
 362	select CRYPTO_BLKCIPHER
 363	select CRYPTO_MANAGER
 364	select CRYPTO_GF128MUL
 365	help
 366	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 367	  narrow block cipher mode for dm-crypt.  Use it with cipher
 368	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 369	  The first 128, 192 or 256 bits in the key are used for AES and the
 370	  rest is used to tie each cipher block to its logical position.
 371
 
 
 
 
 
 
 
 
 
 
 
 
 372config CRYPTO_PCBC
 373	tristate "PCBC support"
 374	select CRYPTO_BLKCIPHER
 375	select CRYPTO_MANAGER
 376	help
 377	  PCBC: Propagating Cipher Block Chaining mode
 378	  This block cipher algorithm is required for RxRPC.
 379
 380config CRYPTO_XTS
 381	tristate "XTS support"
 382	select CRYPTO_BLKCIPHER
 383	select CRYPTO_MANAGER
 384	select CRYPTO_ECB
 385	help
 386	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 387	  key size 256, 384 or 512 bits. This implementation currently
 388	  can't handle a sectorsize which is not a multiple of 16 bytes.
 389
 390config CRYPTO_KEYWRAP
 391	tristate "Key wrapping support"
 392	select CRYPTO_BLKCIPHER
 
 393	help
 394	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 395	  padding.
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397comment "Hash modes"
 398
 399config CRYPTO_CMAC
 400	tristate "CMAC support"
 401	select CRYPTO_HASH
 402	select CRYPTO_MANAGER
 403	help
 404	  Cipher-based Message Authentication Code (CMAC) specified by
 405	  The National Institute of Standards and Technology (NIST).
 406
 407	  https://tools.ietf.org/html/rfc4493
 408	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 409
 410config CRYPTO_HMAC
 411	tristate "HMAC support"
 412	select CRYPTO_HASH
 413	select CRYPTO_MANAGER
 414	help
 415	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 416	  This is required for IPSec.
 417
 418config CRYPTO_XCBC
 419	tristate "XCBC support"
 420	select CRYPTO_HASH
 421	select CRYPTO_MANAGER
 422	help
 423	  XCBC: Keyed-Hashing with encryption algorithm
 424		http://www.ietf.org/rfc/rfc3566.txt
 425		http://csrc.nist.gov/encryption/modes/proposedmodes/
 426		 xcbc-mac/xcbc-mac-spec.pdf
 427
 428config CRYPTO_VMAC
 429	tristate "VMAC support"
 430	select CRYPTO_HASH
 431	select CRYPTO_MANAGER
 432	help
 433	  VMAC is a message authentication algorithm designed for
 434	  very high speed on 64-bit architectures.
 435
 436	  See also:
 437	  <http://fastcrypto.org/vmac>
 438
 439comment "Digest"
 440
 441config CRYPTO_CRC32C
 442	tristate "CRC32c CRC algorithm"
 443	select CRYPTO_HASH
 444	select CRC32
 445	help
 446	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 447	  by iSCSI for header and data digests and by others.
 448	  See Castagnoli93.  Module will be crc32c.
 449
 450config CRYPTO_CRC32C_INTEL
 451	tristate "CRC32c INTEL hardware acceleration"
 452	depends on X86
 453	select CRYPTO_HASH
 454	help
 455	  In Intel processor with SSE4.2 supported, the processor will
 456	  support CRC32C implementation using hardware accelerated CRC32
 457	  instruction. This option will create 'crc32c-intel' module,
 458	  which will enable any routine to use the CRC32 instruction to
 459	  gain performance compared with software implementation.
 460	  Module will be crc32c-intel.
 461
 462config CRYPTO_CRC32C_VPMSUM
 463	tristate "CRC32c CRC algorithm (powerpc64)"
 464	depends on PPC64 && ALTIVEC
 465	select CRYPTO_HASH
 466	select CRC32
 467	help
 468	  CRC32c algorithm implemented using vector polynomial multiply-sum
 469	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 470	  and newer processors for improved performance.
 471
 472
 473config CRYPTO_CRC32C_SPARC64
 474	tristate "CRC32c CRC algorithm (SPARC64)"
 475	depends on SPARC64
 476	select CRYPTO_HASH
 477	select CRC32
 478	help
 479	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 480	  when available.
 481
 482config CRYPTO_CRC32
 483	tristate "CRC32 CRC algorithm"
 484	select CRYPTO_HASH
 485	select CRC32
 486	help
 487	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 488	  Shash crypto api wrappers to crc32_le function.
 489
 490config CRYPTO_CRC32_PCLMUL
 491	tristate "CRC32 PCLMULQDQ hardware acceleration"
 492	depends on X86
 493	select CRYPTO_HASH
 494	select CRC32
 495	help
 496	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 497	  and PCLMULQDQ supported, the processor will support
 498	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 499	  instruction. This option will create 'crc32-plcmul' module,
 500	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 501	  and gain better performance as compared with the table implementation.
 502
 503config CRYPTO_CRC32_MIPS
 504	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 505	depends on MIPS_CRC_SUPPORT
 506	select CRYPTO_HASH
 507	help
 508	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 509	  instructions, when available.
 510
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512config CRYPTO_CRCT10DIF
 513	tristate "CRCT10DIF algorithm"
 514	select CRYPTO_HASH
 515	help
 516	  CRC T10 Data Integrity Field computation is being cast as
 517	  a crypto transform.  This allows for faster crc t10 diff
 518	  transforms to be used if they are available.
 519
 520config CRYPTO_CRCT10DIF_PCLMUL
 521	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 522	depends on X86 && 64BIT && CRC_T10DIF
 523	select CRYPTO_HASH
 524	help
 525	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 526	  CRC T10 DIF PCLMULQDQ computation can be hardware
 527	  accelerated PCLMULQDQ instruction. This option will create
 528	  'crct10dif-plcmul' module, which is faster when computing the
 529	  crct10dif checksum as compared with the generic table implementation.
 530
 531config CRYPTO_CRCT10DIF_VPMSUM
 532	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 533	depends on PPC64 && ALTIVEC && CRC_T10DIF
 534	select CRYPTO_HASH
 535	help
 536	  CRC10T10DIF algorithm implemented using vector polynomial
 537	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 538	  POWER8 and newer processors for improved performance.
 539
 540config CRYPTO_VPMSUM_TESTER
 541	tristate "Powerpc64 vpmsum hardware acceleration tester"
 542	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 543	help
 544	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 545	  POWER8 vpmsum instructions.
 546	  Unless you are testing these algorithms, you don't need this.
 547
 548config CRYPTO_GHASH
 549	tristate "GHASH digest algorithm"
 550	select CRYPTO_GF128MUL
 551	select CRYPTO_HASH
 552	help
 553	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 
 554
 555config CRYPTO_POLY1305
 556	tristate "Poly1305 authenticator algorithm"
 557	select CRYPTO_HASH
 
 558	help
 559	  Poly1305 authenticator algorithm, RFC7539.
 560
 561	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 562	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 563	  in IETF protocols. This is the portable C implementation of Poly1305.
 564
 565config CRYPTO_POLY1305_X86_64
 566	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 567	depends on X86 && 64BIT
 568	select CRYPTO_POLY1305
 
 569	help
 570	  Poly1305 authenticator algorithm, RFC7539.
 571
 572	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 573	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 574	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 575	  instructions.
 576
 
 
 
 
 
 577config CRYPTO_MD4
 578	tristate "MD4 digest algorithm"
 579	select CRYPTO_HASH
 580	help
 581	  MD4 message digest algorithm (RFC1320).
 582
 583config CRYPTO_MD5
 584	tristate "MD5 digest algorithm"
 585	select CRYPTO_HASH
 586	help
 587	  MD5 message digest algorithm (RFC1321).
 588
 589config CRYPTO_MD5_OCTEON
 590	tristate "MD5 digest algorithm (OCTEON)"
 591	depends on CPU_CAVIUM_OCTEON
 592	select CRYPTO_MD5
 593	select CRYPTO_HASH
 594	help
 595	  MD5 message digest algorithm (RFC1321) implemented
 596	  using OCTEON crypto instructions, when available.
 597
 598config CRYPTO_MD5_PPC
 599	tristate "MD5 digest algorithm (PPC)"
 600	depends on PPC
 601	select CRYPTO_HASH
 602	help
 603	  MD5 message digest algorithm (RFC1321) implemented
 604	  in PPC assembler.
 605
 606config CRYPTO_MD5_SPARC64
 607	tristate "MD5 digest algorithm (SPARC64)"
 608	depends on SPARC64
 609	select CRYPTO_MD5
 610	select CRYPTO_HASH
 611	help
 612	  MD5 message digest algorithm (RFC1321) implemented
 613	  using sparc64 crypto instructions, when available.
 614
 615config CRYPTO_MICHAEL_MIC
 616	tristate "Michael MIC keyed digest algorithm"
 617	select CRYPTO_HASH
 618	help
 619	  Michael MIC is used for message integrity protection in TKIP
 620	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 621	  should not be used for other purposes because of the weakness
 622	  of the algorithm.
 623
 624config CRYPTO_RMD128
 625	tristate "RIPEMD-128 digest algorithm"
 626	select CRYPTO_HASH
 627	help
 628	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 629
 630	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 631	  be used as a secure replacement for RIPEMD. For other use cases,
 632	  RIPEMD-160 should be used.
 633
 634	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 635	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 636
 637config CRYPTO_RMD160
 638	tristate "RIPEMD-160 digest algorithm"
 639	select CRYPTO_HASH
 640	help
 641	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 642
 643	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 644	  to be used as a secure replacement for the 128-bit hash functions
 645	  MD4, MD5 and it's predecessor RIPEMD
 646	  (not to be confused with RIPEMD-128).
 647
 648	  It's speed is comparable to SHA1 and there are no known attacks
 649	  against RIPEMD-160.
 650
 651	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 652	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 653
 654config CRYPTO_RMD256
 655	tristate "RIPEMD-256 digest algorithm"
 656	select CRYPTO_HASH
 657	help
 658	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 659	  256 bit hash. It is intended for applications that require
 660	  longer hash-results, without needing a larger security level
 661	  (than RIPEMD-128).
 662
 663	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 664	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 665
 666config CRYPTO_RMD320
 667	tristate "RIPEMD-320 digest algorithm"
 668	select CRYPTO_HASH
 669	help
 670	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 671	  320 bit hash. It is intended for applications that require
 672	  longer hash-results, without needing a larger security level
 673	  (than RIPEMD-160).
 674
 675	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 676	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 677
 678config CRYPTO_SHA1
 679	tristate "SHA1 digest algorithm"
 680	select CRYPTO_HASH
 681	help
 682	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 683
 684config CRYPTO_SHA1_SSSE3
 685	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 686	depends on X86 && 64BIT
 687	select CRYPTO_SHA1
 688	select CRYPTO_HASH
 689	help
 690	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 691	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 692	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 693	  when available.
 694
 695config CRYPTO_SHA256_SSSE3
 696	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 697	depends on X86 && 64BIT
 698	select CRYPTO_SHA256
 699	select CRYPTO_HASH
 700	help
 701	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 702	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 703	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 704	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 705	  Instructions) when available.
 706
 707config CRYPTO_SHA512_SSSE3
 708	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 709	depends on X86 && 64BIT
 710	select CRYPTO_SHA512
 711	select CRYPTO_HASH
 712	help
 713	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 714	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 715	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 716	  version 2 (AVX2) instructions, when available.
 717
 718config CRYPTO_SHA1_OCTEON
 719	tristate "SHA1 digest algorithm (OCTEON)"
 720	depends on CPU_CAVIUM_OCTEON
 721	select CRYPTO_SHA1
 722	select CRYPTO_HASH
 723	help
 724	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 725	  using OCTEON crypto instructions, when available.
 726
 727config CRYPTO_SHA1_SPARC64
 728	tristate "SHA1 digest algorithm (SPARC64)"
 729	depends on SPARC64
 730	select CRYPTO_SHA1
 731	select CRYPTO_HASH
 732	help
 733	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 734	  using sparc64 crypto instructions, when available.
 735
 736config CRYPTO_SHA1_PPC
 737	tristate "SHA1 digest algorithm (powerpc)"
 738	depends on PPC
 739	help
 740	  This is the powerpc hardware accelerated implementation of the
 741	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 742
 743config CRYPTO_SHA1_PPC_SPE
 744	tristate "SHA1 digest algorithm (PPC SPE)"
 745	depends on PPC && SPE
 746	help
 747	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 748	  using powerpc SPE SIMD instruction set.
 749
 750config CRYPTO_SHA1_MB
 751	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 752	depends on X86 && 64BIT
 753	select CRYPTO_SHA1
 754	select CRYPTO_HASH
 755	select CRYPTO_MCRYPTD
 756	help
 757	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 758	  using multi-buffer technique.  This algorithm computes on
 759	  multiple data lanes concurrently with SIMD instructions for
 760	  better throughput.  It should not be enabled by default but
 761	  used when there is significant amount of work to keep the keep
 762	  the data lanes filled to get performance benefit.  If the data
 763	  lanes remain unfilled, a flush operation will be initiated to
 764	  process the crypto jobs, adding a slight latency.
 765
 766config CRYPTO_SHA256_MB
 767	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 768	depends on X86 && 64BIT
 769	select CRYPTO_SHA256
 770	select CRYPTO_HASH
 771	select CRYPTO_MCRYPTD
 772	help
 773	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 774	  using multi-buffer technique.  This algorithm computes on
 775	  multiple data lanes concurrently with SIMD instructions for
 776	  better throughput.  It should not be enabled by default but
 777	  used when there is significant amount of work to keep the keep
 778	  the data lanes filled to get performance benefit.  If the data
 779	  lanes remain unfilled, a flush operation will be initiated to
 780	  process the crypto jobs, adding a slight latency.
 781
 782config CRYPTO_SHA512_MB
 783        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 784        depends on X86 && 64BIT
 785        select CRYPTO_SHA512
 786        select CRYPTO_HASH
 787        select CRYPTO_MCRYPTD
 788        help
 789          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 790          using multi-buffer technique.  This algorithm computes on
 791          multiple data lanes concurrently with SIMD instructions for
 792          better throughput.  It should not be enabled by default but
 793          used when there is significant amount of work to keep the keep
 794          the data lanes filled to get performance benefit.  If the data
 795          lanes remain unfilled, a flush operation will be initiated to
 796          process the crypto jobs, adding a slight latency.
 797
 798config CRYPTO_SHA256
 799	tristate "SHA224 and SHA256 digest algorithm"
 800	select CRYPTO_HASH
 
 801	help
 802	  SHA256 secure hash standard (DFIPS 180-2).
 803
 804	  This version of SHA implements a 256 bit hash with 128 bits of
 805	  security against collision attacks.
 806
 807	  This code also includes SHA-224, a 224 bit hash with 112 bits
 808	  of security against collision attacks.
 809
 810config CRYPTO_SHA256_PPC_SPE
 811	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 812	depends on PPC && SPE
 813	select CRYPTO_SHA256
 814	select CRYPTO_HASH
 815	help
 816	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 817	  implemented using powerpc SPE SIMD instruction set.
 818
 819config CRYPTO_SHA256_OCTEON
 820	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 821	depends on CPU_CAVIUM_OCTEON
 822	select CRYPTO_SHA256
 823	select CRYPTO_HASH
 824	help
 825	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 826	  using OCTEON crypto instructions, when available.
 827
 828config CRYPTO_SHA256_SPARC64
 829	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 830	depends on SPARC64
 831	select CRYPTO_SHA256
 832	select CRYPTO_HASH
 833	help
 834	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 835	  using sparc64 crypto instructions, when available.
 836
 837config CRYPTO_SHA512
 838	tristate "SHA384 and SHA512 digest algorithms"
 839	select CRYPTO_HASH
 840	help
 841	  SHA512 secure hash standard (DFIPS 180-2).
 842
 843	  This version of SHA implements a 512 bit hash with 256 bits of
 844	  security against collision attacks.
 845
 846	  This code also includes SHA-384, a 384 bit hash with 192 bits
 847	  of security against collision attacks.
 848
 849config CRYPTO_SHA512_OCTEON
 850	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 851	depends on CPU_CAVIUM_OCTEON
 852	select CRYPTO_SHA512
 853	select CRYPTO_HASH
 854	help
 855	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 856	  using OCTEON crypto instructions, when available.
 857
 858config CRYPTO_SHA512_SPARC64
 859	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 860	depends on SPARC64
 861	select CRYPTO_SHA512
 862	select CRYPTO_HASH
 863	help
 864	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 865	  using sparc64 crypto instructions, when available.
 866
 867config CRYPTO_SHA3
 868	tristate "SHA3 digest algorithm"
 869	select CRYPTO_HASH
 870	help
 871	  SHA-3 secure hash standard (DFIPS 202). It's based on
 872	  cryptographic sponge function family called Keccak.
 873
 874	  References:
 875	  http://keccak.noekeon.org/
 876
 877config CRYPTO_SM3
 878	tristate "SM3 digest algorithm"
 879	select CRYPTO_HASH
 880	help
 881	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
 882	  It is part of the Chinese Commercial Cryptography suite.
 883
 884	  References:
 885	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
 886	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
 887
 888config CRYPTO_TGR192
 889	tristate "Tiger digest algorithms"
 890	select CRYPTO_HASH
 891	help
 892	  Tiger hash algorithm 192, 160 and 128-bit hashes
 893
 894	  Tiger is a hash function optimized for 64-bit processors while
 895	  still having decent performance on 32-bit processors.
 896	  Tiger was developed by Ross Anderson and Eli Biham.
 897
 898	  See also:
 899	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 
 900
 901config CRYPTO_WP512
 902	tristate "Whirlpool digest algorithms"
 903	select CRYPTO_HASH
 904	help
 905	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 906
 907	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 908	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 909
 910	  See also:
 911	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 912
 913config CRYPTO_GHASH_CLMUL_NI_INTEL
 914	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 915	depends on X86 && 64BIT
 916	select CRYPTO_CRYPTD
 917	help
 918	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 919	  The implementation is accelerated by CLMUL-NI of Intel.
 920
 921comment "Ciphers"
 922
 923config CRYPTO_AES
 924	tristate "AES cipher algorithms"
 925	select CRYPTO_ALGAPI
 
 926	help
 927	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 928	  algorithm.
 929
 930	  Rijndael appears to be consistently a very good performer in
 931	  both hardware and software across a wide range of computing
 932	  environments regardless of its use in feedback or non-feedback
 933	  modes. Its key setup time is excellent, and its key agility is
 934	  good. Rijndael's very low memory requirements make it very well
 935	  suited for restricted-space environments, in which it also
 936	  demonstrates excellent performance. Rijndael's operations are
 937	  among the easiest to defend against power and timing attacks.
 938
 939	  The AES specifies three key sizes: 128, 192 and 256 bits
 940
 941	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 942
 943config CRYPTO_AES_TI
 944	tristate "Fixed time AES cipher"
 945	select CRYPTO_ALGAPI
 
 946	help
 947	  This is a generic implementation of AES that attempts to eliminate
 948	  data dependent latencies as much as possible without affecting
 949	  performance too much. It is intended for use by the generic CCM
 950	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 951	  solely on encryption (although decryption is supported as well, but
 952	  with a more dramatic performance hit)
 953
 954	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 955	  8 for decryption), this implementation only uses just two S-boxes of
 956	  256 bytes each, and attempts to eliminate data dependent latencies by
 957	  prefetching the entire table into the cache at the start of each
 958	  block.
 959
 960config CRYPTO_AES_586
 961	tristate "AES cipher algorithms (i586)"
 962	depends on (X86 || UML_X86) && !64BIT
 963	select CRYPTO_ALGAPI
 964	select CRYPTO_AES
 965	help
 966	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 967	  algorithm.
 968
 969	  Rijndael appears to be consistently a very good performer in
 970	  both hardware and software across a wide range of computing
 971	  environments regardless of its use in feedback or non-feedback
 972	  modes. Its key setup time is excellent, and its key agility is
 973	  good. Rijndael's very low memory requirements make it very well
 974	  suited for restricted-space environments, in which it also
 975	  demonstrates excellent performance. Rijndael's operations are
 976	  among the easiest to defend against power and timing attacks.
 977
 978	  The AES specifies three key sizes: 128, 192 and 256 bits
 979
 980	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 981
 982config CRYPTO_AES_X86_64
 983	tristate "AES cipher algorithms (x86_64)"
 984	depends on (X86 || UML_X86) && 64BIT
 985	select CRYPTO_ALGAPI
 986	select CRYPTO_AES
 987	help
 988	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 989	  algorithm.
 990
 991	  Rijndael appears to be consistently a very good performer in
 992	  both hardware and software across a wide range of computing
 993	  environments regardless of its use in feedback or non-feedback
 994	  modes. Its key setup time is excellent, and its key agility is
 995	  good. Rijndael's very low memory requirements make it very well
 996	  suited for restricted-space environments, in which it also
 997	  demonstrates excellent performance. Rijndael's operations are
 998	  among the easiest to defend against power and timing attacks.
 999
1000	  The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005	tristate "AES cipher algorithms (AES-NI)"
1006	depends on X86
1007	select CRYPTO_AEAD
1008	select CRYPTO_AES_X86_64 if 64BIT
1009	select CRYPTO_AES_586 if !64BIT
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_BLKCIPHER
1012	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013	select CRYPTO_SIMD
1014	help
1015	  Use Intel AES-NI instructions for AES algorithm.
1016
1017	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018	  algorithm.
1019
1020	  Rijndael appears to be consistently a very good performer in
1021	  both hardware and software across a wide range of computing
1022	  environments regardless of its use in feedback or non-feedback
1023	  modes. Its key setup time is excellent, and its key agility is
1024	  good. Rijndael's very low memory requirements make it very well
1025	  suited for restricted-space environments, in which it also
1026	  demonstrates excellent performance. Rijndael's operations are
1027	  among the easiest to defend against power and timing attacks.
1028
1029	  The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033	  In addition to AES cipher algorithm support, the acceleration
1034	  for some popular block cipher mode is supported too, including
1035	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036	  acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039	tristate "AES cipher algorithms (SPARC64)"
1040	depends on SPARC64
1041	select CRYPTO_CRYPTD
1042	select CRYPTO_ALGAPI
1043	help
1044	  Use SPARC64 crypto opcodes for AES algorithm.
1045
1046	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047	  algorithm.
1048
1049	  Rijndael appears to be consistently a very good performer in
1050	  both hardware and software across a wide range of computing
1051	  environments regardless of its use in feedback or non-feedback
1052	  modes. Its key setup time is excellent, and its key agility is
1053	  good. Rijndael's very low memory requirements make it very well
1054	  suited for restricted-space environments, in which it also
1055	  demonstrates excellent performance. Rijndael's operations are
1056	  among the easiest to defend against power and timing attacks.
1057
1058	  The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062	  In addition to AES cipher algorithm support, the acceleration
1063	  for some popular block cipher mode is supported too, including
1064	  ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067	tristate "AES cipher algorithms (PPC SPE)"
1068	depends on PPC && SPE
 
1069	help
1070	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1071	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072	  This module should only be used for low power (router) devices
1073	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1074	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075	  timining attacks. Nevertheless it might be not as secure as other
1076	  architecture specific assembler implementations that work on 1KB
1077	  tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080	tristate "Anubis cipher algorithm"
 
1081	select CRYPTO_ALGAPI
1082	help
1083	  Anubis cipher algorithm.
1084
1085	  Anubis is a variable key length cipher which can use keys from
1086	  128 bits to 320 bits in length.  It was evaluated as a entrant
1087	  in the NESSIE competition.
1088
1089	  See also:
1090	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
1093config CRYPTO_ARC4
1094	tristate "ARC4 cipher algorithm"
1095	select CRYPTO_BLKCIPHER
 
 
1096	help
1097	  ARC4 cipher algorithm.
1098
1099	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100	  bits in length.  This algorithm is required for driver-based
1101	  WEP, but it should not be for other purposes because of the
1102	  weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105	tristate "Blowfish cipher algorithm"
1106	select CRYPTO_ALGAPI
1107	select CRYPTO_BLOWFISH_COMMON
1108	help
1109	  Blowfish cipher algorithm, by Bruce Schneier.
1110
1111	  This is a variable key length cipher which can use keys from 32
1112	  bits to 448 bits in length.  It's fast, simple and specifically
1113	  designed for use on "large microprocessors".
1114
1115	  See also:
1116	  <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119	tristate
1120	help
1121	  Common parts of the Blowfish cipher algorithm shared by the
1122	  generic c and the assembler implementations.
1123
1124	  See also:
1125	  <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128	tristate "Blowfish cipher algorithm (x86_64)"
1129	depends on X86 && 64BIT
1130	select CRYPTO_BLKCIPHER
1131	select CRYPTO_BLOWFISH_COMMON
 
1132	help
1133	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135	  This is a variable key length cipher which can use keys from 32
1136	  bits to 448 bits in length.  It's fast, simple and specifically
1137	  designed for use on "large microprocessors".
1138
1139	  See also:
1140	  <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143	tristate "Camellia cipher algorithms"
1144	depends on CRYPTO
1145	select CRYPTO_ALGAPI
1146	help
1147	  Camellia cipher algorithms module.
1148
1149	  Camellia is a symmetric key block cipher developed jointly
1150	  at NTT and Mitsubishi Electric Corporation.
1151
1152	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154	  See also:
1155	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158	tristate "Camellia cipher algorithm (x86_64)"
1159	depends on X86 && 64BIT
1160	depends on CRYPTO
1161	select CRYPTO_BLKCIPHER
1162	select CRYPTO_GLUE_HELPER_X86
1163	help
1164	  Camellia cipher algorithm module (x86_64).
1165
1166	  Camellia is a symmetric key block cipher developed jointly
1167	  at NTT and Mitsubishi Electric Corporation.
1168
1169	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171	  See also:
1172	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176	depends on X86 && 64BIT
1177	depends on CRYPTO
1178	select CRYPTO_BLKCIPHER
1179	select CRYPTO_CAMELLIA_X86_64
1180	select CRYPTO_GLUE_HELPER_X86
1181	select CRYPTO_SIMD
1182	select CRYPTO_XTS
1183	help
1184	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186	  Camellia is a symmetric key block cipher developed jointly
1187	  at NTT and Mitsubishi Electric Corporation.
1188
1189	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191	  See also:
1192	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196	depends on X86 && 64BIT
1197	depends on CRYPTO
1198	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199	help
1200	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202	  Camellia is a symmetric key block cipher developed jointly
1203	  at NTT and Mitsubishi Electric Corporation.
1204
1205	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207	  See also:
1208	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211	tristate "Camellia cipher algorithm (SPARC64)"
1212	depends on SPARC64
1213	depends on CRYPTO
1214	select CRYPTO_ALGAPI
 
1215	help
1216	  Camellia cipher algorithm module (SPARC64).
1217
1218	  Camellia is a symmetric key block cipher developed jointly
1219	  at NTT and Mitsubishi Electric Corporation.
1220
1221	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223	  See also:
1224	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227	tristate
1228	help
1229	  Common parts of the CAST cipher algorithms shared by the
1230	  generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233	tristate "CAST5 (CAST-128) cipher algorithm"
1234	select CRYPTO_ALGAPI
1235	select CRYPTO_CAST_COMMON
1236	help
1237	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1238	  described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CAST5
1245	select CRYPTO_CAST_COMMON
1246	select CRYPTO_SIMD
 
1247	help
1248	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1249	  described in RFC2144.
1250
1251	  This module provides the Cast5 cipher algorithm that processes
1252	  sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255	tristate "CAST6 (CAST-256) cipher algorithm"
1256	select CRYPTO_ALGAPI
1257	select CRYPTO_CAST_COMMON
1258	help
1259	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1260	  described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264	depends on X86 && 64BIT
1265	select CRYPTO_BLKCIPHER
1266	select CRYPTO_CAST6
1267	select CRYPTO_CAST_COMMON
1268	select CRYPTO_GLUE_HELPER_X86
1269	select CRYPTO_SIMD
1270	select CRYPTO_XTS
 
1271	help
1272	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1273	  described in RFC2612.
1274
1275	  This module provides the Cast6 cipher algorithm that processes
1276	  eight blocks parallel using the AVX instruction set.
1277
1278config CRYPTO_DES
1279	tristate "DES and Triple DES EDE cipher algorithms"
1280	select CRYPTO_ALGAPI
 
1281	help
1282	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286	depends on SPARC64
1287	select CRYPTO_ALGAPI
1288	select CRYPTO_DES
 
1289	help
1290	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291	  optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294	tristate "Triple DES EDE cipher algorithm (x86-64)"
1295	depends on X86 && 64BIT
1296	select CRYPTO_BLKCIPHER
1297	select CRYPTO_DES
 
1298	help
1299	  Triple DES EDE (FIPS 46-3) algorithm.
1300
1301	  This module provides implementation of the Triple DES EDE cipher
1302	  algorithm that is optimized for x86-64 processors. Two versions of
1303	  algorithm are provided; regular processing one input block and
1304	  one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307	tristate "FCrypt cipher algorithm"
1308	select CRYPTO_ALGAPI
1309	select CRYPTO_BLKCIPHER
1310	help
1311	  FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314	tristate "Khazad cipher algorithm"
 
1315	select CRYPTO_ALGAPI
1316	help
1317	  Khazad cipher algorithm.
1318
1319	  Khazad was a finalist in the initial NESSIE competition.  It is
1320	  an algorithm optimized for 64-bit processors with good performance
1321	  on 32-bit processors.  Khazad uses an 128 bit key size.
1322
1323	  See also:
1324	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327	tristate "Salsa20 stream cipher algorithm"
1328	select CRYPTO_BLKCIPHER
1329	help
1330	  Salsa20 stream cipher algorithm.
1331
1332	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1336	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339	tristate "Salsa20 stream cipher algorithm (i586)"
1340	depends on (X86 || UML_X86) && !64BIT
1341	select CRYPTO_BLKCIPHER
1342	select CRYPTO_SALSA20
1343	help
1344	  Salsa20 stream cipher algorithm.
1345
1346	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1350	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353	tristate "Salsa20 stream cipher algorithm (x86_64)"
1354	depends on (X86 || UML_X86) && 64BIT
1355	select CRYPTO_BLKCIPHER
1356	select CRYPTO_SALSA20
1357	help
1358	  Salsa20 stream cipher algorithm.
1359
1360	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1364	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367	tristate "ChaCha20 cipher algorithm"
1368	select CRYPTO_BLKCIPHER
 
1369	help
1370	  ChaCha20 cipher algorithm, RFC7539.
1371
1372	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1374	  This is the portable C implementation of ChaCha20.
 
1375
1376	  See also:
1377	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
 
 
 
 
 
 
 
1378
1379config CRYPTO_CHACHA20_X86_64
1380	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381	depends on X86 && 64BIT
1382	select CRYPTO_BLKCIPHER
1383	select CRYPTO_CHACHA20
1384	help
1385	  ChaCha20 cipher algorithm, RFC7539.
1386
1387	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1389	  This is the x86_64 assembler implementation using SIMD instructions.
1390
1391	  See also:
1392	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
 
1393
1394config CRYPTO_SEED
1395	tristate "SEED cipher algorithm"
 
1396	select CRYPTO_ALGAPI
1397	help
1398	  SEED cipher algorithm (RFC4269).
1399
1400	  SEED is a 128-bit symmetric key block cipher that has been
1401	  developed by KISA (Korea Information Security Agency) as a
1402	  national standard encryption algorithm of the Republic of Korea.
1403	  It is a 16 round block cipher with the key size of 128 bit.
1404
1405	  See also:
1406	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409	tristate "Serpent cipher algorithm"
1410	select CRYPTO_ALGAPI
1411	help
1412	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414	  Keys are allowed to be from 0 to 256 bits in length, in steps
1415	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1416	  variant of Serpent for compatibility with old kerneli.org code.
1417
1418	  See also:
1419	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423	depends on X86 && 64BIT
1424	select CRYPTO_BLKCIPHER
1425	select CRYPTO_GLUE_HELPER_X86
1426	select CRYPTO_SERPENT
1427	select CRYPTO_SIMD
 
1428	help
1429	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431	  Keys are allowed to be from 0 to 256 bits in length, in steps
1432	  of 8 bits.
1433
1434	  This module provides Serpent cipher algorithm that processes eight
1435	  blocks parallel using SSE2 instruction set.
1436
1437	  See also:
1438	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441	tristate "Serpent cipher algorithm (i586/SSE2)"
1442	depends on X86 && !64BIT
1443	select CRYPTO_BLKCIPHER
1444	select CRYPTO_GLUE_HELPER_X86
1445	select CRYPTO_SERPENT
1446	select CRYPTO_SIMD
 
1447	help
1448	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450	  Keys are allowed to be from 0 to 256 bits in length, in steps
1451	  of 8 bits.
1452
1453	  This module provides Serpent cipher algorithm that processes four
1454	  blocks parallel using SSE2 instruction set.
1455
1456	  See also:
1457	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460	tristate "Serpent cipher algorithm (x86_64/AVX)"
1461	depends on X86 && 64BIT
1462	select CRYPTO_BLKCIPHER
1463	select CRYPTO_GLUE_HELPER_X86
1464	select CRYPTO_SERPENT
1465	select CRYPTO_SIMD
1466	select CRYPTO_XTS
 
1467	help
1468	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470	  Keys are allowed to be from 0 to 256 bits in length, in steps
1471	  of 8 bits.
1472
1473	  This module provides the Serpent cipher algorithm that processes
1474	  eight blocks parallel using the AVX instruction set.
1475
1476	  See also:
1477	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481	depends on X86 && 64BIT
1482	select CRYPTO_SERPENT_AVX_X86_64
1483	help
1484	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486	  Keys are allowed to be from 0 to 256 bits in length, in steps
1487	  of 8 bits.
1488
1489	  This module provides Serpent cipher algorithm that processes 16
1490	  blocks parallel using AVX2 instruction set.
1491
1492	  See also:
1493	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496	tristate "SM4 cipher algorithm"
1497	select CRYPTO_ALGAPI
1498	help
1499	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502	  Organization of State Commercial Administration of China (OSCCA)
1503	  as an authorized cryptographic algorithms for the use within China.
1504
1505	  SMS4 was originally created for use in protecting wireless
1506	  networks, and is mandated in the Chinese National Standard for
1507	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508	  (GB.15629.11-2003).
1509
1510	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511	  standardized through TC 260 of the Standardization Administration
1512	  of the People's Republic of China (SAC).
1513
1514	  The input, output, and key of SMS4 are each 128 bits.
1515
1516	  See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518	  If unsure, say N.
1519
1520config CRYPTO_SPECK
1521	tristate "Speck cipher algorithm"
1522	select CRYPTO_ALGAPI
1523	help
1524	  Speck is a lightweight block cipher that is tuned for optimal
1525	  performance in software (rather than hardware).
1526
1527	  Speck may not be as secure as AES, and should only be used on systems
1528	  where AES is not fast enough.
1529
1530	  See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532	  If unsure, say N.
1533
1534config CRYPTO_TEA
1535	tristate "TEA, XTEA and XETA cipher algorithms"
 
1536	select CRYPTO_ALGAPI
1537	help
1538	  TEA cipher algorithm.
1539
1540	  Tiny Encryption Algorithm is a simple cipher that uses
1541	  many rounds for security.  It is very fast and uses
1542	  little memory.
1543
1544	  Xtendend Tiny Encryption Algorithm is a modification to
1545	  the TEA algorithm to address a potential key weakness
1546	  in the TEA algorithm.
1547
1548	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1549	  of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552	tristate "Twofish cipher algorithm"
1553	select CRYPTO_ALGAPI
1554	select CRYPTO_TWOFISH_COMMON
1555	help
1556	  Twofish cipher algorithm.
1557
1558	  Twofish was submitted as an AES (Advanced Encryption Standard)
1559	  candidate cipher by researchers at CounterPane Systems.  It is a
1560	  16 round block cipher supporting key sizes of 128, 192, and 256
1561	  bits.
1562
1563	  See also:
1564	  <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567	tristate
1568	help
1569	  Common parts of the Twofish cipher algorithm shared by the
1570	  generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573	tristate "Twofish cipher algorithms (i586)"
1574	depends on (X86 || UML_X86) && !64BIT
1575	select CRYPTO_ALGAPI
1576	select CRYPTO_TWOFISH_COMMON
 
1577	help
1578	  Twofish cipher algorithm.
1579
1580	  Twofish was submitted as an AES (Advanced Encryption Standard)
1581	  candidate cipher by researchers at CounterPane Systems.  It is a
1582	  16 round block cipher supporting key sizes of 128, 192, and 256
1583	  bits.
1584
1585	  See also:
1586	  <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589	tristate "Twofish cipher algorithm (x86_64)"
1590	depends on (X86 || UML_X86) && 64BIT
1591	select CRYPTO_ALGAPI
1592	select CRYPTO_TWOFISH_COMMON
 
1593	help
1594	  Twofish cipher algorithm (x86_64).
1595
1596	  Twofish was submitted as an AES (Advanced Encryption Standard)
1597	  candidate cipher by researchers at CounterPane Systems.  It is a
1598	  16 round block cipher supporting key sizes of 128, 192, and 256
1599	  bits.
1600
1601	  See also:
1602	  <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606	depends on X86 && 64BIT
1607	select CRYPTO_BLKCIPHER
1608	select CRYPTO_TWOFISH_COMMON
1609	select CRYPTO_TWOFISH_X86_64
1610	select CRYPTO_GLUE_HELPER_X86
1611	help
1612	  Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614	  Twofish was submitted as an AES (Advanced Encryption Standard)
1615	  candidate cipher by researchers at CounterPane Systems.  It is a
1616	  16 round block cipher supporting key sizes of 128, 192, and 256
1617	  bits.
1618
1619	  This module provides Twofish cipher algorithm that processes three
1620	  blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622	  See also:
1623	  <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626	tristate "Twofish cipher algorithm (x86_64/AVX)"
1627	depends on X86 && 64BIT
1628	select CRYPTO_BLKCIPHER
1629	select CRYPTO_GLUE_HELPER_X86
1630	select CRYPTO_SIMD
1631	select CRYPTO_TWOFISH_COMMON
1632	select CRYPTO_TWOFISH_X86_64
1633	select CRYPTO_TWOFISH_X86_64_3WAY
 
1634	help
1635	  Twofish cipher algorithm (x86_64/AVX).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  This module provides the Twofish cipher algorithm that processes
1643	  eight blocks parallel using the AVX Instruction Set.
1644
1645	  See also:
1646	  <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651	tristate "Deflate compression algorithm"
1652	select CRYPTO_ALGAPI
1653	select CRYPTO_ACOMP2
1654	select ZLIB_INFLATE
1655	select ZLIB_DEFLATE
1656	help
1657	  This is the Deflate algorithm (RFC1951), specified for use in
1658	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660	  You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663	tristate "LZO compression algorithm"
1664	select CRYPTO_ALGAPI
1665	select CRYPTO_ACOMP2
1666	select LZO_COMPRESS
1667	select LZO_DECOMPRESS
1668	help
1669	  This is the LZO algorithm.
1670
1671config CRYPTO_842
1672	tristate "842 compression algorithm"
1673	select CRYPTO_ALGAPI
1674	select CRYPTO_ACOMP2
1675	select 842_COMPRESS
1676	select 842_DECOMPRESS
1677	help
1678	  This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681	tristate "LZ4 compression algorithm"
1682	select CRYPTO_ALGAPI
1683	select CRYPTO_ACOMP2
1684	select LZ4_COMPRESS
1685	select LZ4_DECOMPRESS
1686	help
1687	  This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690	tristate "LZ4HC compression algorithm"
1691	select CRYPTO_ALGAPI
1692	select CRYPTO_ACOMP2
1693	select LZ4HC_COMPRESS
1694	select LZ4_DECOMPRESS
1695	help
1696	  This is the LZ4 high compression mode algorithm.
1697
 
 
 
 
 
 
 
 
 
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701	tristate "Pseudo Random Number Generation for Cryptographic modules"
1702	select CRYPTO_AES
1703	select CRYPTO_RNG
1704	help
1705	  This option enables the generic pseudo random number generator
1706	  for cryptographic modules.  Uses the Algorithm specified in
1707	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1708	  CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711	tristate "NIST SP800-90A DRBG"
1712	help
1713	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1714	  more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719	bool
1720	default y
1721	select CRYPTO_HMAC
1722	select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725	bool "Enable Hash DRBG"
1726	select CRYPTO_SHA256
1727	help
1728	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731	bool "Enable CTR DRBG"
1732	select CRYPTO_AES
1733	depends on CRYPTO_CTR
1734	help
1735	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738	tristate
1739	default CRYPTO_DRBG_MENU
1740	select CRYPTO_RNG
1741	select CRYPTO_JITTERENTROPY
1742
1743endif	# if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747	select CRYPTO_RNG
1748	help
1749	  The Jitterentropy RNG is a noise that is intended
1750	  to provide seed to another RNG. The RNG does not
1751	  perform any cryptographic whitening of the generated
1752	  random numbers. This Jitterentropy RNG registers with
1753	  the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756	tristate
1757
1758config CRYPTO_USER_API_HASH
1759	tristate "User-space interface for hash algorithms"
1760	depends on NET
1761	select CRYPTO_HASH
1762	select CRYPTO_USER_API
1763	help
1764	  This option enables the user-spaces interface for hash
1765	  algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768	tristate "User-space interface for symmetric key cipher algorithms"
1769	depends on NET
1770	select CRYPTO_BLKCIPHER
1771	select CRYPTO_USER_API
1772	help
1773	  This option enables the user-spaces interface for symmetric
1774	  key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777	tristate "User-space interface for random number generator algorithms"
1778	depends on NET
1779	select CRYPTO_RNG
1780	select CRYPTO_USER_API
1781	help
1782	  This option enables the user-spaces interface for random
1783	  number generator algorithms.
1784
 
 
 
 
 
 
 
 
 
1785config CRYPTO_USER_API_AEAD
1786	tristate "User-space interface for AEAD cipher algorithms"
1787	depends on NET
1788	select CRYPTO_AEAD
1789	select CRYPTO_BLKCIPHER
1790	select CRYPTO_NULL
1791	select CRYPTO_USER_API
1792	help
1793	  This option enables the user-spaces interface for AEAD
1794	  cipher algorithms.
1795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796config CRYPTO_HASH_INFO
1797	bool
1798
 
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif	# if CRYPTO
v5.14.15
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
 
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 124	select CRYPTO_AEAD2
 125	select CRYPTO_HASH2
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 
 
 
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m || EXPERT
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 213config CRYPTO_ENGINE
 214	tristate
 
 
 215
 216comment "Public-key cryptography"
 217
 218config CRYPTO_RSA
 219	tristate "RSA algorithm"
 220	select CRYPTO_AKCIPHER
 221	select CRYPTO_MANAGER
 222	select MPILIB
 223	select ASN1
 224	help
 225	  Generic implementation of the RSA public key algorithm.
 226
 227config CRYPTO_DH
 228	tristate "Diffie-Hellman algorithm"
 229	select CRYPTO_KPP
 230	select MPILIB
 231	help
 232	  Generic implementation of the Diffie-Hellman algorithm.
 233
 234config CRYPTO_ECC
 235	tristate
 236
 237config CRYPTO_ECDH
 238	tristate "ECDH algorithm"
 239	select CRYPTO_ECC
 240	select CRYPTO_KPP
 241	select CRYPTO_RNG_DEFAULT
 242	help
 243	  Generic implementation of the ECDH algorithm
 244
 245config CRYPTO_ECDSA
 246	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
 247	select CRYPTO_ECC
 248	select CRYPTO_AKCIPHER
 249	select ASN1
 250	help
 251	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
 252	  is A NIST cryptographic standard algorithm. Only signature verification
 253	  is implemented.
 254
 255config CRYPTO_ECRDSA
 256	tristate "EC-RDSA (GOST 34.10) algorithm"
 257	select CRYPTO_ECC
 258	select CRYPTO_AKCIPHER
 259	select CRYPTO_STREEBOG
 260	select OID_REGISTRY
 261	select ASN1
 262	help
 263	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 264	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 265	  standard algorithms (called GOST algorithms). Only signature verification
 266	  is implemented.
 267
 268config CRYPTO_SM2
 269	tristate "SM2 algorithm"
 270	select CRYPTO_SM3
 271	select CRYPTO_AKCIPHER
 272	select CRYPTO_MANAGER
 273	select MPILIB
 274	select ASN1
 275	help
 276	  Generic implementation of the SM2 public key algorithm. It was
 277	  published by State Encryption Management Bureau, China.
 278	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 279
 280	  References:
 281	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
 282	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 283	  http://www.gmbz.org.cn/main/bzlb.html
 284
 285config CRYPTO_CURVE25519
 286	tristate "Curve25519 algorithm"
 287	select CRYPTO_KPP
 288	select CRYPTO_LIB_CURVE25519_GENERIC
 289
 290config CRYPTO_CURVE25519_X86
 291	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 292	depends on X86 && 64BIT
 293	select CRYPTO_LIB_CURVE25519_GENERIC
 294	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 295
 296comment "Authenticated Encryption with Associated Data"
 297
 298config CRYPTO_CCM
 299	tristate "CCM support"
 300	select CRYPTO_CTR
 301	select CRYPTO_HASH
 302	select CRYPTO_AEAD
 303	select CRYPTO_MANAGER
 304	help
 305	  Support for Counter with CBC MAC. Required for IPsec.
 306
 307config CRYPTO_GCM
 308	tristate "GCM/GMAC support"
 309	select CRYPTO_CTR
 310	select CRYPTO_AEAD
 311	select CRYPTO_GHASH
 312	select CRYPTO_NULL
 313	select CRYPTO_MANAGER
 314	help
 315	  Support for Galois/Counter Mode (GCM) and Galois Message
 316	  Authentication Code (GMAC). Required for IPSec.
 317
 318config CRYPTO_CHACHA20POLY1305
 319	tristate "ChaCha20-Poly1305 AEAD support"
 320	select CRYPTO_CHACHA20
 321	select CRYPTO_POLY1305
 322	select CRYPTO_AEAD
 323	select CRYPTO_MANAGER
 324	help
 325	  ChaCha20-Poly1305 AEAD support, RFC7539.
 326
 327	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 328	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 329	  IETF protocols.
 330
 331config CRYPTO_AEGIS128
 332	tristate "AEGIS-128 AEAD algorithm"
 333	select CRYPTO_AEAD
 334	select CRYPTO_AES  # for AES S-box tables
 335	help
 336	 Support for the AEGIS-128 dedicated AEAD algorithm.
 337
 338config CRYPTO_AEGIS128_SIMD
 339	bool "Support SIMD acceleration for AEGIS-128"
 340	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 341	default y
 342
 343config CRYPTO_AEGIS128_AESNI_SSE2
 344	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 345	depends on X86 && 64BIT
 346	select CRYPTO_AEAD
 347	select CRYPTO_SIMD
 348	help
 349	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 350
 351config CRYPTO_SEQIV
 352	tristate "Sequence Number IV Generator"
 353	select CRYPTO_AEAD
 354	select CRYPTO_SKCIPHER
 355	select CRYPTO_NULL
 356	select CRYPTO_RNG_DEFAULT
 357	select CRYPTO_MANAGER
 358	help
 359	  This IV generator generates an IV based on a sequence number by
 360	  xoring it with a salt.  This algorithm is mainly useful for CTR
 361
 362config CRYPTO_ECHAINIV
 363	tristate "Encrypted Chain IV Generator"
 364	select CRYPTO_AEAD
 365	select CRYPTO_NULL
 366	select CRYPTO_RNG_DEFAULT
 367	select CRYPTO_MANAGER
 368	help
 369	  This IV generator generates an IV based on the encryption of
 370	  a sequence number xored with a salt.  This is the default
 371	  algorithm for CBC.
 372
 373comment "Block modes"
 374
 375config CRYPTO_CBC
 376	tristate "CBC support"
 377	select CRYPTO_SKCIPHER
 378	select CRYPTO_MANAGER
 379	help
 380	  CBC: Cipher Block Chaining mode
 381	  This block cipher algorithm is required for IPSec.
 382
 383config CRYPTO_CFB
 384	tristate "CFB support"
 385	select CRYPTO_SKCIPHER
 386	select CRYPTO_MANAGER
 387	help
 388	  CFB: Cipher FeedBack mode
 389	  This block cipher algorithm is required for TPM2 Cryptography.
 390
 391config CRYPTO_CTR
 392	tristate "CTR support"
 393	select CRYPTO_SKCIPHER
 
 394	select CRYPTO_MANAGER
 395	help
 396	  CTR: Counter mode
 397	  This block cipher algorithm is required for IPSec.
 398
 399config CRYPTO_CTS
 400	tristate "CTS support"
 401	select CRYPTO_SKCIPHER
 402	select CRYPTO_MANAGER
 403	help
 404	  CTS: Cipher Text Stealing
 405	  This is the Cipher Text Stealing mode as described by
 406	  Section 8 of rfc2040 and referenced by rfc3962
 407	  (rfc3962 includes errata information in its Appendix A) or
 408	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 409	  This mode is required for Kerberos gss mechanism support
 410	  for AES encryption.
 411
 412	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 413
 414config CRYPTO_ECB
 415	tristate "ECB support"
 416	select CRYPTO_SKCIPHER
 417	select CRYPTO_MANAGER
 418	help
 419	  ECB: Electronic CodeBook mode
 420	  This is the simplest block cipher algorithm.  It simply encrypts
 421	  the input block by block.
 422
 423config CRYPTO_LRW
 424	tristate "LRW support"
 425	select CRYPTO_SKCIPHER
 426	select CRYPTO_MANAGER
 427	select CRYPTO_GF128MUL
 428	help
 429	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 430	  narrow block cipher mode for dm-crypt.  Use it with cipher
 431	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 432	  The first 128, 192 or 256 bits in the key are used for AES and the
 433	  rest is used to tie each cipher block to its logical position.
 434
 435config CRYPTO_OFB
 436	tristate "OFB support"
 437	select CRYPTO_SKCIPHER
 438	select CRYPTO_MANAGER
 439	help
 440	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 441	  stream cipher. It generates keystream blocks, which are then XORed
 442	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 443	  ciphertext produces a flipped bit in the plaintext at the same
 444	  location. This property allows many error correcting codes to function
 445	  normally even when applied before encryption.
 446
 447config CRYPTO_PCBC
 448	tristate "PCBC support"
 449	select CRYPTO_SKCIPHER
 450	select CRYPTO_MANAGER
 451	help
 452	  PCBC: Propagating Cipher Block Chaining mode
 453	  This block cipher algorithm is required for RxRPC.
 454
 455config CRYPTO_XTS
 456	tristate "XTS support"
 457	select CRYPTO_SKCIPHER
 458	select CRYPTO_MANAGER
 459	select CRYPTO_ECB
 460	help
 461	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 462	  key size 256, 384 or 512 bits. This implementation currently
 463	  can't handle a sectorsize which is not a multiple of 16 bytes.
 464
 465config CRYPTO_KEYWRAP
 466	tristate "Key wrapping support"
 467	select CRYPTO_SKCIPHER
 468	select CRYPTO_MANAGER
 469	help
 470	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 471	  padding.
 472
 473config CRYPTO_NHPOLY1305
 474	tristate
 475	select CRYPTO_HASH
 476	select CRYPTO_LIB_POLY1305_GENERIC
 477
 478config CRYPTO_NHPOLY1305_SSE2
 479	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 480	depends on X86 && 64BIT
 481	select CRYPTO_NHPOLY1305
 482	help
 483	  SSE2 optimized implementation of the hash function used by the
 484	  Adiantum encryption mode.
 485
 486config CRYPTO_NHPOLY1305_AVX2
 487	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 488	depends on X86 && 64BIT
 489	select CRYPTO_NHPOLY1305
 490	help
 491	  AVX2 optimized implementation of the hash function used by the
 492	  Adiantum encryption mode.
 493
 494config CRYPTO_ADIANTUM
 495	tristate "Adiantum support"
 496	select CRYPTO_CHACHA20
 497	select CRYPTO_LIB_POLY1305_GENERIC
 498	select CRYPTO_NHPOLY1305
 499	select CRYPTO_MANAGER
 500	help
 501	  Adiantum is a tweakable, length-preserving encryption mode
 502	  designed for fast and secure disk encryption, especially on
 503	  CPUs without dedicated crypto instructions.  It encrypts
 504	  each sector using the XChaCha12 stream cipher, two passes of
 505	  an ε-almost-∆-universal hash function, and an invocation of
 506	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 507	  without AES instructions, Adiantum is much faster than
 508	  AES-XTS.
 509
 510	  Adiantum's security is provably reducible to that of its
 511	  underlying stream and block ciphers, subject to a security
 512	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 513	  mode, so it actually provides an even stronger notion of
 514	  security than XTS, subject to the security bound.
 515
 516	  If unsure, say N.
 517
 518config CRYPTO_ESSIV
 519	tristate "ESSIV support for block encryption"
 520	select CRYPTO_AUTHENC
 521	help
 522	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 523	  generation method that is used in some cases by fscrypt and/or
 524	  dm-crypt. It uses the hash of the block encryption key as the
 525	  symmetric key for a block encryption pass applied to the input
 526	  IV, making low entropy IV sources more suitable for block
 527	  encryption.
 528
 529	  This driver implements a crypto API template that can be
 530	  instantiated either as an skcipher or as an AEAD (depending on the
 531	  type of the first template argument), and which defers encryption
 532	  and decryption requests to the encapsulated cipher after applying
 533	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 534	  that the keys are presented in the same format used by the authenc
 535	  template, and that the IV appears at the end of the authenticated
 536	  associated data (AAD) region (which is how dm-crypt uses it.)
 537
 538	  Note that the use of ESSIV is not recommended for new deployments,
 539	  and so this only needs to be enabled when interoperability with
 540	  existing encrypted volumes of filesystems is required, or when
 541	  building for a particular system that requires it (e.g., when
 542	  the SoC in question has accelerated CBC but not XTS, making CBC
 543	  combined with ESSIV the only feasible mode for h/w accelerated
 544	  block encryption)
 545
 546comment "Hash modes"
 547
 548config CRYPTO_CMAC
 549	tristate "CMAC support"
 550	select CRYPTO_HASH
 551	select CRYPTO_MANAGER
 552	help
 553	  Cipher-based Message Authentication Code (CMAC) specified by
 554	  The National Institute of Standards and Technology (NIST).
 555
 556	  https://tools.ietf.org/html/rfc4493
 557	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 558
 559config CRYPTO_HMAC
 560	tristate "HMAC support"
 561	select CRYPTO_HASH
 562	select CRYPTO_MANAGER
 563	help
 564	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 565	  This is required for IPSec.
 566
 567config CRYPTO_XCBC
 568	tristate "XCBC support"
 569	select CRYPTO_HASH
 570	select CRYPTO_MANAGER
 571	help
 572	  XCBC: Keyed-Hashing with encryption algorithm
 573		https://www.ietf.org/rfc/rfc3566.txt
 574		http://csrc.nist.gov/encryption/modes/proposedmodes/
 575		 xcbc-mac/xcbc-mac-spec.pdf
 576
 577config CRYPTO_VMAC
 578	tristate "VMAC support"
 579	select CRYPTO_HASH
 580	select CRYPTO_MANAGER
 581	help
 582	  VMAC is a message authentication algorithm designed for
 583	  very high speed on 64-bit architectures.
 584
 585	  See also:
 586	  <https://fastcrypto.org/vmac>
 587
 588comment "Digest"
 589
 590config CRYPTO_CRC32C
 591	tristate "CRC32c CRC algorithm"
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 596	  by iSCSI for header and data digests and by others.
 597	  See Castagnoli93.  Module will be crc32c.
 598
 599config CRYPTO_CRC32C_INTEL
 600	tristate "CRC32c INTEL hardware acceleration"
 601	depends on X86
 602	select CRYPTO_HASH
 603	help
 604	  In Intel processor with SSE4.2 supported, the processor will
 605	  support CRC32C implementation using hardware accelerated CRC32
 606	  instruction. This option will create 'crc32c-intel' module,
 607	  which will enable any routine to use the CRC32 instruction to
 608	  gain performance compared with software implementation.
 609	  Module will be crc32c-intel.
 610
 611config CRYPTO_CRC32C_VPMSUM
 612	tristate "CRC32c CRC algorithm (powerpc64)"
 613	depends on PPC64 && ALTIVEC
 614	select CRYPTO_HASH
 615	select CRC32
 616	help
 617	  CRC32c algorithm implemented using vector polynomial multiply-sum
 618	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 619	  and newer processors for improved performance.
 620
 621
 622config CRYPTO_CRC32C_SPARC64
 623	tristate "CRC32c CRC algorithm (SPARC64)"
 624	depends on SPARC64
 625	select CRYPTO_HASH
 626	select CRC32
 627	help
 628	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 629	  when available.
 630
 631config CRYPTO_CRC32
 632	tristate "CRC32 CRC algorithm"
 633	select CRYPTO_HASH
 634	select CRC32
 635	help
 636	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 637	  Shash crypto api wrappers to crc32_le function.
 638
 639config CRYPTO_CRC32_PCLMUL
 640	tristate "CRC32 PCLMULQDQ hardware acceleration"
 641	depends on X86
 642	select CRYPTO_HASH
 643	select CRC32
 644	help
 645	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 646	  and PCLMULQDQ supported, the processor will support
 647	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 648	  instruction. This option will create 'crc32-pclmul' module,
 649	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 650	  and gain better performance as compared with the table implementation.
 651
 652config CRYPTO_CRC32_MIPS
 653	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 654	depends on MIPS_CRC_SUPPORT
 655	select CRYPTO_HASH
 656	help
 657	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 658	  instructions, when available.
 659
 660
 661config CRYPTO_XXHASH
 662	tristate "xxHash hash algorithm"
 663	select CRYPTO_HASH
 664	select XXHASH
 665	help
 666	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 667	  speeds close to RAM limits.
 668
 669config CRYPTO_BLAKE2B
 670	tristate "BLAKE2b digest algorithm"
 671	select CRYPTO_HASH
 672	help
 673	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 674	  optimized for 64bit platforms and can produce digests of any size
 675	  between 1 to 64.  The keyed hash is also implemented.
 676
 677	  This module provides the following algorithms:
 678
 679	  - blake2b-160
 680	  - blake2b-256
 681	  - blake2b-384
 682	  - blake2b-512
 683
 684	  See https://blake2.net for further information.
 685
 686config CRYPTO_BLAKE2S
 687	tristate "BLAKE2s digest algorithm"
 688	select CRYPTO_LIB_BLAKE2S_GENERIC
 689	select CRYPTO_HASH
 690	help
 691	  Implementation of cryptographic hash function BLAKE2s
 692	  optimized for 8-32bit platforms and can produce digests of any size
 693	  between 1 to 32.  The keyed hash is also implemented.
 694
 695	  This module provides the following algorithms:
 696
 697	  - blake2s-128
 698	  - blake2s-160
 699	  - blake2s-224
 700	  - blake2s-256
 701
 702	  See https://blake2.net for further information.
 703
 704config CRYPTO_BLAKE2S_X86
 705	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 706	depends on X86 && 64BIT
 707	select CRYPTO_LIB_BLAKE2S_GENERIC
 708	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 709
 710config CRYPTO_CRCT10DIF
 711	tristate "CRCT10DIF algorithm"
 712	select CRYPTO_HASH
 713	help
 714	  CRC T10 Data Integrity Field computation is being cast as
 715	  a crypto transform.  This allows for faster crc t10 diff
 716	  transforms to be used if they are available.
 717
 718config CRYPTO_CRCT10DIF_PCLMUL
 719	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 720	depends on X86 && 64BIT && CRC_T10DIF
 721	select CRYPTO_HASH
 722	help
 723	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 724	  CRC T10 DIF PCLMULQDQ computation can be hardware
 725	  accelerated PCLMULQDQ instruction. This option will create
 726	  'crct10dif-pclmul' module, which is faster when computing the
 727	  crct10dif checksum as compared with the generic table implementation.
 728
 729config CRYPTO_CRCT10DIF_VPMSUM
 730	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 731	depends on PPC64 && ALTIVEC && CRC_T10DIF
 732	select CRYPTO_HASH
 733	help
 734	  CRC10T10DIF algorithm implemented using vector polynomial
 735	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 736	  POWER8 and newer processors for improved performance.
 737
 738config CRYPTO_VPMSUM_TESTER
 739	tristate "Powerpc64 vpmsum hardware acceleration tester"
 740	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 741	help
 742	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 743	  POWER8 vpmsum instructions.
 744	  Unless you are testing these algorithms, you don't need this.
 745
 746config CRYPTO_GHASH
 747	tristate "GHASH hash function"
 748	select CRYPTO_GF128MUL
 749	select CRYPTO_HASH
 750	help
 751	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 752	  It is not a general-purpose cryptographic hash function.
 753
 754config CRYPTO_POLY1305
 755	tristate "Poly1305 authenticator algorithm"
 756	select CRYPTO_HASH
 757	select CRYPTO_LIB_POLY1305_GENERIC
 758	help
 759	  Poly1305 authenticator algorithm, RFC7539.
 760
 761	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 762	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 763	  in IETF protocols. This is the portable C implementation of Poly1305.
 764
 765config CRYPTO_POLY1305_X86_64
 766	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 767	depends on X86 && 64BIT
 768	select CRYPTO_LIB_POLY1305_GENERIC
 769	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 770	help
 771	  Poly1305 authenticator algorithm, RFC7539.
 772
 773	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 774	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 775	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 776	  instructions.
 777
 778config CRYPTO_POLY1305_MIPS
 779	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 780	depends on MIPS
 781	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 782
 783config CRYPTO_MD4
 784	tristate "MD4 digest algorithm"
 785	select CRYPTO_HASH
 786	help
 787	  MD4 message digest algorithm (RFC1320).
 788
 789config CRYPTO_MD5
 790	tristate "MD5 digest algorithm"
 791	select CRYPTO_HASH
 792	help
 793	  MD5 message digest algorithm (RFC1321).
 794
 795config CRYPTO_MD5_OCTEON
 796	tristate "MD5 digest algorithm (OCTEON)"
 797	depends on CPU_CAVIUM_OCTEON
 798	select CRYPTO_MD5
 799	select CRYPTO_HASH
 800	help
 801	  MD5 message digest algorithm (RFC1321) implemented
 802	  using OCTEON crypto instructions, when available.
 803
 804config CRYPTO_MD5_PPC
 805	tristate "MD5 digest algorithm (PPC)"
 806	depends on PPC
 807	select CRYPTO_HASH
 808	help
 809	  MD5 message digest algorithm (RFC1321) implemented
 810	  in PPC assembler.
 811
 812config CRYPTO_MD5_SPARC64
 813	tristate "MD5 digest algorithm (SPARC64)"
 814	depends on SPARC64
 815	select CRYPTO_MD5
 816	select CRYPTO_HASH
 817	help
 818	  MD5 message digest algorithm (RFC1321) implemented
 819	  using sparc64 crypto instructions, when available.
 820
 821config CRYPTO_MICHAEL_MIC
 822	tristate "Michael MIC keyed digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  Michael MIC is used for message integrity protection in TKIP
 826	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 827	  should not be used for other purposes because of the weakness
 828	  of the algorithm.
 829
 
 
 
 
 
 
 
 
 
 
 
 
 
 830config CRYPTO_RMD160
 831	tristate "RIPEMD-160 digest algorithm"
 832	select CRYPTO_HASH
 833	help
 834	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 835
 836	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 837	  to be used as a secure replacement for the 128-bit hash functions
 838	  MD4, MD5 and it's predecessor RIPEMD
 839	  (not to be confused with RIPEMD-128).
 840
 841	  It's speed is comparable to SHA1 and there are no known attacks
 842	  against RIPEMD-160.
 843
 844	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 845	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847config CRYPTO_SHA1
 848	tristate "SHA1 digest algorithm"
 849	select CRYPTO_HASH
 850	help
 851	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 852
 853config CRYPTO_SHA1_SSSE3
 854	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 855	depends on X86 && 64BIT
 856	select CRYPTO_SHA1
 857	select CRYPTO_HASH
 858	help
 859	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 860	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 861	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 862	  when available.
 863
 864config CRYPTO_SHA256_SSSE3
 865	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 866	depends on X86 && 64BIT
 867	select CRYPTO_SHA256
 868	select CRYPTO_HASH
 869	help
 870	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 871	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 872	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 873	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 874	  Instructions) when available.
 875
 876config CRYPTO_SHA512_SSSE3
 877	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 878	depends on X86 && 64BIT
 879	select CRYPTO_SHA512
 880	select CRYPTO_HASH
 881	help
 882	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 883	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 884	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 885	  version 2 (AVX2) instructions, when available.
 886
 887config CRYPTO_SHA1_OCTEON
 888	tristate "SHA1 digest algorithm (OCTEON)"
 889	depends on CPU_CAVIUM_OCTEON
 890	select CRYPTO_SHA1
 891	select CRYPTO_HASH
 892	help
 893	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 894	  using OCTEON crypto instructions, when available.
 895
 896config CRYPTO_SHA1_SPARC64
 897	tristate "SHA1 digest algorithm (SPARC64)"
 898	depends on SPARC64
 899	select CRYPTO_SHA1
 900	select CRYPTO_HASH
 901	help
 902	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 903	  using sparc64 crypto instructions, when available.
 904
 905config CRYPTO_SHA1_PPC
 906	tristate "SHA1 digest algorithm (powerpc)"
 907	depends on PPC
 908	help
 909	  This is the powerpc hardware accelerated implementation of the
 910	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 911
 912config CRYPTO_SHA1_PPC_SPE
 913	tristate "SHA1 digest algorithm (PPC SPE)"
 914	depends on PPC && SPE
 915	help
 916	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 917	  using powerpc SPE SIMD instruction set.
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919config CRYPTO_SHA256
 920	tristate "SHA224 and SHA256 digest algorithm"
 921	select CRYPTO_HASH
 922	select CRYPTO_LIB_SHA256
 923	help
 924	  SHA256 secure hash standard (DFIPS 180-2).
 925
 926	  This version of SHA implements a 256 bit hash with 128 bits of
 927	  security against collision attacks.
 928
 929	  This code also includes SHA-224, a 224 bit hash with 112 bits
 930	  of security against collision attacks.
 931
 932config CRYPTO_SHA256_PPC_SPE
 933	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 934	depends on PPC && SPE
 935	select CRYPTO_SHA256
 936	select CRYPTO_HASH
 937	help
 938	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 939	  implemented using powerpc SPE SIMD instruction set.
 940
 941config CRYPTO_SHA256_OCTEON
 942	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 943	depends on CPU_CAVIUM_OCTEON
 944	select CRYPTO_SHA256
 945	select CRYPTO_HASH
 946	help
 947	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 948	  using OCTEON crypto instructions, when available.
 949
 950config CRYPTO_SHA256_SPARC64
 951	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 952	depends on SPARC64
 953	select CRYPTO_SHA256
 954	select CRYPTO_HASH
 955	help
 956	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 957	  using sparc64 crypto instructions, when available.
 958
 959config CRYPTO_SHA512
 960	tristate "SHA384 and SHA512 digest algorithms"
 961	select CRYPTO_HASH
 962	help
 963	  SHA512 secure hash standard (DFIPS 180-2).
 964
 965	  This version of SHA implements a 512 bit hash with 256 bits of
 966	  security against collision attacks.
 967
 968	  This code also includes SHA-384, a 384 bit hash with 192 bits
 969	  of security against collision attacks.
 970
 971config CRYPTO_SHA512_OCTEON
 972	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 973	depends on CPU_CAVIUM_OCTEON
 974	select CRYPTO_SHA512
 975	select CRYPTO_HASH
 976	help
 977	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 978	  using OCTEON crypto instructions, when available.
 979
 980config CRYPTO_SHA512_SPARC64
 981	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 982	depends on SPARC64
 983	select CRYPTO_SHA512
 984	select CRYPTO_HASH
 985	help
 986	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 987	  using sparc64 crypto instructions, when available.
 988
 989config CRYPTO_SHA3
 990	tristate "SHA3 digest algorithm"
 991	select CRYPTO_HASH
 992	help
 993	  SHA-3 secure hash standard (DFIPS 202). It's based on
 994	  cryptographic sponge function family called Keccak.
 995
 996	  References:
 997	  http://keccak.noekeon.org/
 998
 999config CRYPTO_SM3
1000	tristate "SM3 digest algorithm"
1001	select CRYPTO_HASH
1002	help
1003	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1004	  It is part of the Chinese Commercial Cryptography suite.
1005
1006	  References:
1007	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011	tristate "Streebog Hash Function"
1012	select CRYPTO_HASH
1013	help
1014	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015	  cryptographic standard algorithms (called GOST algorithms).
1016	  This setting enables two hash algorithms with 256 and 512 bits output.
 
 
1017
1018	  References:
1019	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020	  https://tools.ietf.org/html/rfc6986
1021
1022config CRYPTO_WP512
1023	tristate "Whirlpool digest algorithms"
1024	select CRYPTO_HASH
1025	help
1026	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1027
1028	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1030
1031	  See also:
1032	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1033
1034config CRYPTO_GHASH_CLMUL_NI_INTEL
1035	tristate "GHASH hash function (CLMUL-NI accelerated)"
1036	depends on X86 && 64BIT
1037	select CRYPTO_CRYPTD
1038	help
1039	  This is the x86_64 CLMUL-NI accelerated implementation of
1040	  GHASH, the hash function used in GCM (Galois/Counter mode).
1041
1042comment "Ciphers"
1043
1044config CRYPTO_AES
1045	tristate "AES cipher algorithms"
1046	select CRYPTO_ALGAPI
1047	select CRYPTO_LIB_AES
1048	help
1049	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1050	  algorithm.
1051
1052	  Rijndael appears to be consistently a very good performer in
1053	  both hardware and software across a wide range of computing
1054	  environments regardless of its use in feedback or non-feedback
1055	  modes. Its key setup time is excellent, and its key agility is
1056	  good. Rijndael's very low memory requirements make it very well
1057	  suited for restricted-space environments, in which it also
1058	  demonstrates excellent performance. Rijndael's operations are
1059	  among the easiest to defend against power and timing attacks.
1060
1061	  The AES specifies three key sizes: 128, 192 and 256 bits
1062
1063	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1064
1065config CRYPTO_AES_TI
1066	tristate "Fixed time AES cipher"
1067	select CRYPTO_ALGAPI
1068	select CRYPTO_LIB_AES
1069	help
1070	  This is a generic implementation of AES that attempts to eliminate
1071	  data dependent latencies as much as possible without affecting
1072	  performance too much. It is intended for use by the generic CCM
1073	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074	  solely on encryption (although decryption is supported as well, but
1075	  with a more dramatic performance hit)
1076
1077	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078	  8 for decryption), this implementation only uses just two S-boxes of
1079	  256 bytes each, and attempts to eliminate data dependent latencies by
1080	  prefetching the entire table into the cache at the start of each
1081	  block. Interrupts are also disabled to avoid races where cachelines
1082	  are evicted when the CPU is interrupted to do something else.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083
1084config CRYPTO_AES_NI_INTEL
1085	tristate "AES cipher algorithms (AES-NI)"
1086	depends on X86
1087	select CRYPTO_AEAD
1088	select CRYPTO_LIB_AES
 
1089	select CRYPTO_ALGAPI
1090	select CRYPTO_SKCIPHER
 
1091	select CRYPTO_SIMD
1092	help
1093	  Use Intel AES-NI instructions for AES algorithm.
1094
1095	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1096	  algorithm.
1097
1098	  Rijndael appears to be consistently a very good performer in
1099	  both hardware and software across a wide range of computing
1100	  environments regardless of its use in feedback or non-feedback
1101	  modes. Its key setup time is excellent, and its key agility is
1102	  good. Rijndael's very low memory requirements make it very well
1103	  suited for restricted-space environments, in which it also
1104	  demonstrates excellent performance. Rijndael's operations are
1105	  among the easiest to defend against power and timing attacks.
1106
1107	  The AES specifies three key sizes: 128, 192 and 256 bits
1108
1109	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1110
1111	  In addition to AES cipher algorithm support, the acceleration
1112	  for some popular block cipher mode is supported too, including
1113	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1114	  acceleration for CTR.
1115
1116config CRYPTO_AES_SPARC64
1117	tristate "AES cipher algorithms (SPARC64)"
1118	depends on SPARC64
1119	select CRYPTO_SKCIPHER
 
1120	help
1121	  Use SPARC64 crypto opcodes for AES algorithm.
1122
1123	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1124	  algorithm.
1125
1126	  Rijndael appears to be consistently a very good performer in
1127	  both hardware and software across a wide range of computing
1128	  environments regardless of its use in feedback or non-feedback
1129	  modes. Its key setup time is excellent, and its key agility is
1130	  good. Rijndael's very low memory requirements make it very well
1131	  suited for restricted-space environments, in which it also
1132	  demonstrates excellent performance. Rijndael's operations are
1133	  among the easiest to defend against power and timing attacks.
1134
1135	  The AES specifies three key sizes: 128, 192 and 256 bits
1136
1137	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1138
1139	  In addition to AES cipher algorithm support, the acceleration
1140	  for some popular block cipher mode is supported too, including
1141	  ECB and CBC.
1142
1143config CRYPTO_AES_PPC_SPE
1144	tristate "AES cipher algorithms (PPC SPE)"
1145	depends on PPC && SPE
1146	select CRYPTO_SKCIPHER
1147	help
1148	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1149	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150	  This module should only be used for low power (router) devices
1151	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1152	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153	  timining attacks. Nevertheless it might be not as secure as other
1154	  architecture specific assembler implementations that work on 1KB
1155	  tables or 256 bytes S-boxes.
1156
1157config CRYPTO_ANUBIS
1158	tristate "Anubis cipher algorithm"
1159	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160	select CRYPTO_ALGAPI
1161	help
1162	  Anubis cipher algorithm.
1163
1164	  Anubis is a variable key length cipher which can use keys from
1165	  128 bits to 320 bits in length.  It was evaluated as a entrant
1166	  in the NESSIE competition.
1167
1168	  See also:
1169	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1170	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1171
1172config CRYPTO_ARC4
1173	tristate "ARC4 cipher algorithm"
1174	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175	select CRYPTO_SKCIPHER
1176	select CRYPTO_LIB_ARC4
1177	help
1178	  ARC4 cipher algorithm.
1179
1180	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181	  bits in length.  This algorithm is required for driver-based
1182	  WEP, but it should not be for other purposes because of the
1183	  weakness of the algorithm.
1184
1185config CRYPTO_BLOWFISH
1186	tristate "Blowfish cipher algorithm"
1187	select CRYPTO_ALGAPI
1188	select CRYPTO_BLOWFISH_COMMON
1189	help
1190	  Blowfish cipher algorithm, by Bruce Schneier.
1191
1192	  This is a variable key length cipher which can use keys from 32
1193	  bits to 448 bits in length.  It's fast, simple and specifically
1194	  designed for use on "large microprocessors".
1195
1196	  See also:
1197	  <https://www.schneier.com/blowfish.html>
1198
1199config CRYPTO_BLOWFISH_COMMON
1200	tristate
1201	help
1202	  Common parts of the Blowfish cipher algorithm shared by the
1203	  generic c and the assembler implementations.
1204
1205	  See also:
1206	  <https://www.schneier.com/blowfish.html>
1207
1208config CRYPTO_BLOWFISH_X86_64
1209	tristate "Blowfish cipher algorithm (x86_64)"
1210	depends on X86 && 64BIT
1211	select CRYPTO_SKCIPHER
1212	select CRYPTO_BLOWFISH_COMMON
1213	imply CRYPTO_CTR
1214	help
1215	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1216
1217	  This is a variable key length cipher which can use keys from 32
1218	  bits to 448 bits in length.  It's fast, simple and specifically
1219	  designed for use on "large microprocessors".
1220
1221	  See also:
1222	  <https://www.schneier.com/blowfish.html>
1223
1224config CRYPTO_CAMELLIA
1225	tristate "Camellia cipher algorithms"
 
1226	select CRYPTO_ALGAPI
1227	help
1228	  Camellia cipher algorithms module.
1229
1230	  Camellia is a symmetric key block cipher developed jointly
1231	  at NTT and Mitsubishi Electric Corporation.
1232
1233	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234
1235	  See also:
1236	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237
1238config CRYPTO_CAMELLIA_X86_64
1239	tristate "Camellia cipher algorithm (x86_64)"
1240	depends on X86 && 64BIT
1241	select CRYPTO_SKCIPHER
1242	imply CRYPTO_CTR
 
1243	help
1244	  Camellia cipher algorithm module (x86_64).
1245
1246	  Camellia is a symmetric key block cipher developed jointly
1247	  at NTT and Mitsubishi Electric Corporation.
1248
1249	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250
1251	  See also:
1252	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253
1254config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256	depends on X86 && 64BIT
1257	select CRYPTO_SKCIPHER
 
1258	select CRYPTO_CAMELLIA_X86_64
 
1259	select CRYPTO_SIMD
1260	imply CRYPTO_XTS
1261	help
1262	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263
1264	  Camellia is a symmetric key block cipher developed jointly
1265	  at NTT and Mitsubishi Electric Corporation.
1266
1267	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268
1269	  See also:
1270	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271
1272config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274	depends on X86 && 64BIT
 
1275	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276	help
1277	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278
1279	  Camellia is a symmetric key block cipher developed jointly
1280	  at NTT and Mitsubishi Electric Corporation.
1281
1282	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283
1284	  See also:
1285	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286
1287config CRYPTO_CAMELLIA_SPARC64
1288	tristate "Camellia cipher algorithm (SPARC64)"
1289	depends on SPARC64
 
1290	select CRYPTO_ALGAPI
1291	select CRYPTO_SKCIPHER
1292	help
1293	  Camellia cipher algorithm module (SPARC64).
1294
1295	  Camellia is a symmetric key block cipher developed jointly
1296	  at NTT and Mitsubishi Electric Corporation.
1297
1298	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1299
1300	  See also:
1301	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1302
1303config CRYPTO_CAST_COMMON
1304	tristate
1305	help
1306	  Common parts of the CAST cipher algorithms shared by the
1307	  generic c and the assembler implementations.
1308
1309config CRYPTO_CAST5
1310	tristate "CAST5 (CAST-128) cipher algorithm"
1311	select CRYPTO_ALGAPI
1312	select CRYPTO_CAST_COMMON
1313	help
1314	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1315	  described in RFC2144.
1316
1317config CRYPTO_CAST5_AVX_X86_64
1318	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1319	depends on X86 && 64BIT
1320	select CRYPTO_SKCIPHER
1321	select CRYPTO_CAST5
1322	select CRYPTO_CAST_COMMON
1323	select CRYPTO_SIMD
1324	imply CRYPTO_CTR
1325	help
1326	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1327	  described in RFC2144.
1328
1329	  This module provides the Cast5 cipher algorithm that processes
1330	  sixteen blocks parallel using the AVX instruction set.
1331
1332config CRYPTO_CAST6
1333	tristate "CAST6 (CAST-256) cipher algorithm"
1334	select CRYPTO_ALGAPI
1335	select CRYPTO_CAST_COMMON
1336	help
1337	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1338	  described in RFC2612.
1339
1340config CRYPTO_CAST6_AVX_X86_64
1341	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1342	depends on X86 && 64BIT
1343	select CRYPTO_SKCIPHER
1344	select CRYPTO_CAST6
1345	select CRYPTO_CAST_COMMON
 
1346	select CRYPTO_SIMD
1347	imply CRYPTO_XTS
1348	imply CRYPTO_CTR
1349	help
1350	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1351	  described in RFC2612.
1352
1353	  This module provides the Cast6 cipher algorithm that processes
1354	  eight blocks parallel using the AVX instruction set.
1355
1356config CRYPTO_DES
1357	tristate "DES and Triple DES EDE cipher algorithms"
1358	select CRYPTO_ALGAPI
1359	select CRYPTO_LIB_DES
1360	help
1361	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362
1363config CRYPTO_DES_SPARC64
1364	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1365	depends on SPARC64
1366	select CRYPTO_ALGAPI
1367	select CRYPTO_LIB_DES
1368	select CRYPTO_SKCIPHER
1369	help
1370	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371	  optimized using SPARC64 crypto opcodes.
1372
1373config CRYPTO_DES3_EDE_X86_64
1374	tristate "Triple DES EDE cipher algorithm (x86-64)"
1375	depends on X86 && 64BIT
1376	select CRYPTO_SKCIPHER
1377	select CRYPTO_LIB_DES
1378	imply CRYPTO_CTR
1379	help
1380	  Triple DES EDE (FIPS 46-3) algorithm.
1381
1382	  This module provides implementation of the Triple DES EDE cipher
1383	  algorithm that is optimized for x86-64 processors. Two versions of
1384	  algorithm are provided; regular processing one input block and
1385	  one that processes three blocks parallel.
1386
1387config CRYPTO_FCRYPT
1388	tristate "FCrypt cipher algorithm"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_SKCIPHER
1391	help
1392	  FCrypt algorithm used by RxRPC.
1393
1394config CRYPTO_KHAZAD
1395	tristate "Khazad cipher algorithm"
1396	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397	select CRYPTO_ALGAPI
1398	help
1399	  Khazad cipher algorithm.
1400
1401	  Khazad was a finalist in the initial NESSIE competition.  It is
1402	  an algorithm optimized for 64-bit processors with good performance
1403	  on 32-bit processors.  Khazad uses an 128 bit key size.
1404
1405	  See also:
1406	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408config CRYPTO_CHACHA20
1409	tristate "ChaCha stream cipher algorithms"
1410	select CRYPTO_LIB_CHACHA_GENERIC
1411	select CRYPTO_SKCIPHER
1412	help
1413	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414
1415	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1417	  This is the portable C implementation of ChaCha20.  See also:
1418	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419
1420	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1422	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423	  while provably retaining ChaCha20's security.  See also:
1424	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425
1426	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427	  reduced security margin but increased performance.  It can be needed
1428	  in some performance-sensitive scenarios.
1429
1430config CRYPTO_CHACHA20_X86_64
1431	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432	depends on X86 && 64BIT
1433	select CRYPTO_SKCIPHER
1434	select CRYPTO_LIB_CHACHA_GENERIC
1435	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436	help
1437	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1438	  XChaCha20, and XChaCha12 stream ciphers.
1439
1440config CRYPTO_CHACHA_MIPS
1441	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1442	depends on CPU_MIPS32_R2
1443	select CRYPTO_SKCIPHER
1444	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1445
1446config CRYPTO_SEED
1447	tristate "SEED cipher algorithm"
1448	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449	select CRYPTO_ALGAPI
1450	help
1451	  SEED cipher algorithm (RFC4269).
1452
1453	  SEED is a 128-bit symmetric key block cipher that has been
1454	  developed by KISA (Korea Information Security Agency) as a
1455	  national standard encryption algorithm of the Republic of Korea.
1456	  It is a 16 round block cipher with the key size of 128 bit.
1457
1458	  See also:
1459	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460
1461config CRYPTO_SERPENT
1462	tristate "Serpent cipher algorithm"
1463	select CRYPTO_ALGAPI
1464	help
1465	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466
1467	  Keys are allowed to be from 0 to 256 bits in length, in steps
1468	  of 8 bits.
 
1469
1470	  See also:
1471	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472
1473config CRYPTO_SERPENT_SSE2_X86_64
1474	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475	depends on X86 && 64BIT
1476	select CRYPTO_SKCIPHER
 
1477	select CRYPTO_SERPENT
1478	select CRYPTO_SIMD
1479	imply CRYPTO_CTR
1480	help
1481	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483	  Keys are allowed to be from 0 to 256 bits in length, in steps
1484	  of 8 bits.
1485
1486	  This module provides Serpent cipher algorithm that processes eight
1487	  blocks parallel using SSE2 instruction set.
1488
1489	  See also:
1490	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_SSE2_586
1493	tristate "Serpent cipher algorithm (i586/SSE2)"
1494	depends on X86 && !64BIT
1495	select CRYPTO_SKCIPHER
 
1496	select CRYPTO_SERPENT
1497	select CRYPTO_SIMD
1498	imply CRYPTO_CTR
1499	help
1500	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501
1502	  Keys are allowed to be from 0 to 256 bits in length, in steps
1503	  of 8 bits.
1504
1505	  This module provides Serpent cipher algorithm that processes four
1506	  blocks parallel using SSE2 instruction set.
1507
1508	  See also:
1509	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510
1511config CRYPTO_SERPENT_AVX_X86_64
1512	tristate "Serpent cipher algorithm (x86_64/AVX)"
1513	depends on X86 && 64BIT
1514	select CRYPTO_SKCIPHER
 
1515	select CRYPTO_SERPENT
1516	select CRYPTO_SIMD
1517	imply CRYPTO_XTS
1518	imply CRYPTO_CTR
1519	help
1520	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1521
1522	  Keys are allowed to be from 0 to 256 bits in length, in steps
1523	  of 8 bits.
1524
1525	  This module provides the Serpent cipher algorithm that processes
1526	  eight blocks parallel using the AVX instruction set.
1527
1528	  See also:
1529	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530
1531config CRYPTO_SERPENT_AVX2_X86_64
1532	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1533	depends on X86 && 64BIT
1534	select CRYPTO_SERPENT_AVX_X86_64
1535	help
1536	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1537
1538	  Keys are allowed to be from 0 to 256 bits in length, in steps
1539	  of 8 bits.
1540
1541	  This module provides Serpent cipher algorithm that processes 16
1542	  blocks parallel using AVX2 instruction set.
1543
1544	  See also:
1545	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1546
1547config CRYPTO_SM4
1548	tristate "SM4 cipher algorithm"
1549	select CRYPTO_ALGAPI
1550	help
1551	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1552
1553	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1554	  Organization of State Commercial Administration of China (OSCCA)
1555	  as an authorized cryptographic algorithms for the use within China.
1556
1557	  SMS4 was originally created for use in protecting wireless
1558	  networks, and is mandated in the Chinese National Standard for
1559	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1560	  (GB.15629.11-2003).
1561
1562	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1563	  standardized through TC 260 of the Standardization Administration
1564	  of the People's Republic of China (SAC).
1565
1566	  The input, output, and key of SMS4 are each 128 bits.
1567
1568	  See also: <https://eprint.iacr.org/2008/329.pdf>
1569
1570	  If unsure, say N.
1571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572config CRYPTO_TEA
1573	tristate "TEA, XTEA and XETA cipher algorithms"
1574	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1575	select CRYPTO_ALGAPI
1576	help
1577	  TEA cipher algorithm.
1578
1579	  Tiny Encryption Algorithm is a simple cipher that uses
1580	  many rounds for security.  It is very fast and uses
1581	  little memory.
1582
1583	  Xtendend Tiny Encryption Algorithm is a modification to
1584	  the TEA algorithm to address a potential key weakness
1585	  in the TEA algorithm.
1586
1587	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1588	  of the XTEA algorithm for compatibility purposes.
1589
1590config CRYPTO_TWOFISH
1591	tristate "Twofish cipher algorithm"
1592	select CRYPTO_ALGAPI
1593	select CRYPTO_TWOFISH_COMMON
1594	help
1595	  Twofish cipher algorithm.
1596
1597	  Twofish was submitted as an AES (Advanced Encryption Standard)
1598	  candidate cipher by researchers at CounterPane Systems.  It is a
1599	  16 round block cipher supporting key sizes of 128, 192, and 256
1600	  bits.
1601
1602	  See also:
1603	  <https://www.schneier.com/twofish.html>
1604
1605config CRYPTO_TWOFISH_COMMON
1606	tristate
1607	help
1608	  Common parts of the Twofish cipher algorithm shared by the
1609	  generic c and the assembler implementations.
1610
1611config CRYPTO_TWOFISH_586
1612	tristate "Twofish cipher algorithms (i586)"
1613	depends on (X86 || UML_X86) && !64BIT
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_TWOFISH_COMMON
1616	imply CRYPTO_CTR
1617	help
1618	  Twofish cipher algorithm.
1619
1620	  Twofish was submitted as an AES (Advanced Encryption Standard)
1621	  candidate cipher by researchers at CounterPane Systems.  It is a
1622	  16 round block cipher supporting key sizes of 128, 192, and 256
1623	  bits.
1624
1625	  See also:
1626	  <https://www.schneier.com/twofish.html>
1627
1628config CRYPTO_TWOFISH_X86_64
1629	tristate "Twofish cipher algorithm (x86_64)"
1630	depends on (X86 || UML_X86) && 64BIT
1631	select CRYPTO_ALGAPI
1632	select CRYPTO_TWOFISH_COMMON
1633	imply CRYPTO_CTR
1634	help
1635	  Twofish cipher algorithm (x86_64).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_X86_64_3WAY
1646	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1647	depends on X86 && 64BIT
1648	select CRYPTO_SKCIPHER
1649	select CRYPTO_TWOFISH_COMMON
1650	select CRYPTO_TWOFISH_X86_64
 
1651	help
1652	  Twofish cipher algorithm (x86_64, 3-way parallel).
1653
1654	  Twofish was submitted as an AES (Advanced Encryption Standard)
1655	  candidate cipher by researchers at CounterPane Systems.  It is a
1656	  16 round block cipher supporting key sizes of 128, 192, and 256
1657	  bits.
1658
1659	  This module provides Twofish cipher algorithm that processes three
1660	  blocks parallel, utilizing resources of out-of-order CPUs better.
1661
1662	  See also:
1663	  <https://www.schneier.com/twofish.html>
1664
1665config CRYPTO_TWOFISH_AVX_X86_64
1666	tristate "Twofish cipher algorithm (x86_64/AVX)"
1667	depends on X86 && 64BIT
1668	select CRYPTO_SKCIPHER
 
1669	select CRYPTO_SIMD
1670	select CRYPTO_TWOFISH_COMMON
1671	select CRYPTO_TWOFISH_X86_64
1672	select CRYPTO_TWOFISH_X86_64_3WAY
1673	imply CRYPTO_XTS
1674	help
1675	  Twofish cipher algorithm (x86_64/AVX).
1676
1677	  Twofish was submitted as an AES (Advanced Encryption Standard)
1678	  candidate cipher by researchers at CounterPane Systems.  It is a
1679	  16 round block cipher supporting key sizes of 128, 192, and 256
1680	  bits.
1681
1682	  This module provides the Twofish cipher algorithm that processes
1683	  eight blocks parallel using the AVX Instruction Set.
1684
1685	  See also:
1686	  <https://www.schneier.com/twofish.html>
1687
1688comment "Compression"
1689
1690config CRYPTO_DEFLATE
1691	tristate "Deflate compression algorithm"
1692	select CRYPTO_ALGAPI
1693	select CRYPTO_ACOMP2
1694	select ZLIB_INFLATE
1695	select ZLIB_DEFLATE
1696	help
1697	  This is the Deflate algorithm (RFC1951), specified for use in
1698	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1699
1700	  You will most probably want this if using IPSec.
1701
1702config CRYPTO_LZO
1703	tristate "LZO compression algorithm"
1704	select CRYPTO_ALGAPI
1705	select CRYPTO_ACOMP2
1706	select LZO_COMPRESS
1707	select LZO_DECOMPRESS
1708	help
1709	  This is the LZO algorithm.
1710
1711config CRYPTO_842
1712	tristate "842 compression algorithm"
1713	select CRYPTO_ALGAPI
1714	select CRYPTO_ACOMP2
1715	select 842_COMPRESS
1716	select 842_DECOMPRESS
1717	help
1718	  This is the 842 algorithm.
1719
1720config CRYPTO_LZ4
1721	tristate "LZ4 compression algorithm"
1722	select CRYPTO_ALGAPI
1723	select CRYPTO_ACOMP2
1724	select LZ4_COMPRESS
1725	select LZ4_DECOMPRESS
1726	help
1727	  This is the LZ4 algorithm.
1728
1729config CRYPTO_LZ4HC
1730	tristate "LZ4HC compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select LZ4HC_COMPRESS
1734	select LZ4_DECOMPRESS
1735	help
1736	  This is the LZ4 high compression mode algorithm.
1737
1738config CRYPTO_ZSTD
1739	tristate "Zstd compression algorithm"
1740	select CRYPTO_ALGAPI
1741	select CRYPTO_ACOMP2
1742	select ZSTD_COMPRESS
1743	select ZSTD_DECOMPRESS
1744	help
1745	  This is the zstd algorithm.
1746
1747comment "Random Number Generation"
1748
1749config CRYPTO_ANSI_CPRNG
1750	tristate "Pseudo Random Number Generation for Cryptographic modules"
1751	select CRYPTO_AES
1752	select CRYPTO_RNG
1753	help
1754	  This option enables the generic pseudo random number generator
1755	  for cryptographic modules.  Uses the Algorithm specified in
1756	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1757	  CRYPTO_FIPS is selected
1758
1759menuconfig CRYPTO_DRBG_MENU
1760	tristate "NIST SP800-90A DRBG"
1761	help
1762	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1763	  more of the DRBG types must be selected.
1764
1765if CRYPTO_DRBG_MENU
1766
1767config CRYPTO_DRBG_HMAC
1768	bool
1769	default y
1770	select CRYPTO_HMAC
1771	select CRYPTO_SHA512
1772
1773config CRYPTO_DRBG_HASH
1774	bool "Enable Hash DRBG"
1775	select CRYPTO_SHA256
1776	help
1777	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1778
1779config CRYPTO_DRBG_CTR
1780	bool "Enable CTR DRBG"
1781	select CRYPTO_AES
1782	select CRYPTO_CTR
1783	help
1784	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1785
1786config CRYPTO_DRBG
1787	tristate
1788	default CRYPTO_DRBG_MENU
1789	select CRYPTO_RNG
1790	select CRYPTO_JITTERENTROPY
1791
1792endif	# if CRYPTO_DRBG_MENU
1793
1794config CRYPTO_JITTERENTROPY
1795	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1796	select CRYPTO_RNG
1797	help
1798	  The Jitterentropy RNG is a noise that is intended
1799	  to provide seed to another RNG. The RNG does not
1800	  perform any cryptographic whitening of the generated
1801	  random numbers. This Jitterentropy RNG registers with
1802	  the kernel crypto API and can be used by any caller.
1803
1804config CRYPTO_USER_API
1805	tristate
1806
1807config CRYPTO_USER_API_HASH
1808	tristate "User-space interface for hash algorithms"
1809	depends on NET
1810	select CRYPTO_HASH
1811	select CRYPTO_USER_API
1812	help
1813	  This option enables the user-spaces interface for hash
1814	  algorithms.
1815
1816config CRYPTO_USER_API_SKCIPHER
1817	tristate "User-space interface for symmetric key cipher algorithms"
1818	depends on NET
1819	select CRYPTO_SKCIPHER
1820	select CRYPTO_USER_API
1821	help
1822	  This option enables the user-spaces interface for symmetric
1823	  key cipher algorithms.
1824
1825config CRYPTO_USER_API_RNG
1826	tristate "User-space interface for random number generator algorithms"
1827	depends on NET
1828	select CRYPTO_RNG
1829	select CRYPTO_USER_API
1830	help
1831	  This option enables the user-spaces interface for random
1832	  number generator algorithms.
1833
1834config CRYPTO_USER_API_RNG_CAVP
1835	bool "Enable CAVP testing of DRBG"
1836	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1837	help
1838	  This option enables extra API for CAVP testing via the user-space
1839	  interface: resetting of DRBG entropy, and providing Additional Data.
1840	  This should only be enabled for CAVP testing. You should say
1841	  no unless you know what this is.
1842
1843config CRYPTO_USER_API_AEAD
1844	tristate "User-space interface for AEAD cipher algorithms"
1845	depends on NET
1846	select CRYPTO_AEAD
1847	select CRYPTO_SKCIPHER
1848	select CRYPTO_NULL
1849	select CRYPTO_USER_API
1850	help
1851	  This option enables the user-spaces interface for AEAD
1852	  cipher algorithms.
1853
1854config CRYPTO_USER_API_ENABLE_OBSOLETE
1855	bool "Enable obsolete cryptographic algorithms for userspace"
1856	depends on CRYPTO_USER_API
1857	default y
1858	help
1859	  Allow obsolete cryptographic algorithms to be selected that have
1860	  already been phased out from internal use by the kernel, and are
1861	  only useful for userspace clients that still rely on them.
1862
1863config CRYPTO_STATS
1864	bool "Crypto usage statistics for User-space"
1865	depends on CRYPTO_USER
1866	help
1867	  This option enables the gathering of crypto stats.
1868	  This will collect:
1869	  - encrypt/decrypt size and numbers of symmeric operations
1870	  - compress/decompress size and numbers of compress operations
1871	  - size and numbers of hash operations
1872	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1873	  - generate/seed numbers for rng operations
1874
1875config CRYPTO_HASH_INFO
1876	bool
1877
1878source "lib/crypto/Kconfig"
1879source "drivers/crypto/Kconfig"
1880source "crypto/asymmetric_keys/Kconfig"
1881source "certs/Kconfig"
1882
1883endif	# if CRYPTO