Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109 select SGL_ALLOC
110
111config CRYPTO_ACOMP
112 tristate
113 select CRYPTO_ALGAPI
114 select CRYPTO_ACOMP2
115
116config CRYPTO_RSA
117 tristate "RSA algorithm"
118 select CRYPTO_AKCIPHER
119 select CRYPTO_MANAGER
120 select MPILIB
121 select ASN1
122 help
123 Generic implementation of the RSA public key algorithm.
124
125config CRYPTO_DH
126 tristate "Diffie-Hellman algorithm"
127 select CRYPTO_KPP
128 select MPILIB
129 help
130 Generic implementation of the Diffie-Hellman algorithm.
131
132config CRYPTO_ECDH
133 tristate "ECDH algorithm"
134 select CRYPTO_KPP
135 select CRYPTO_RNG_DEFAULT
136 help
137 Generic implementation of the ECDH algorithm
138
139config CRYPTO_MANAGER
140 tristate "Cryptographic algorithm manager"
141 select CRYPTO_MANAGER2
142 help
143 Create default cryptographic template instantiations such as
144 cbc(aes).
145
146config CRYPTO_MANAGER2
147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148 select CRYPTO_AEAD2
149 select CRYPTO_HASH2
150 select CRYPTO_BLKCIPHER2
151 select CRYPTO_AKCIPHER2
152 select CRYPTO_KPP2
153 select CRYPTO_ACOMP2
154
155config CRYPTO_USER
156 tristate "Userspace cryptographic algorithm configuration"
157 depends on NET
158 select CRYPTO_MANAGER
159 help
160 Userspace configuration for cryptographic instantiations such as
161 cbc(aes).
162
163config CRYPTO_MANAGER_DISABLE_TESTS
164 bool "Disable run-time self tests"
165 default y
166 depends on CRYPTO_MANAGER2
167 help
168 Disable run-time self tests that normally take place at
169 algorithm registration.
170
171config CRYPTO_GF128MUL
172 tristate "GF(2^128) multiplication functions"
173 help
174 Efficient table driven implementation of multiplications in the
175 field GF(2^128). This is needed by some cypher modes. This
176 option will be selected automatically if you select such a
177 cipher mode. Only select this option by hand if you expect to load
178 an external module that requires these functions.
179
180config CRYPTO_NULL
181 tristate "Null algorithms"
182 select CRYPTO_NULL2
183 help
184 These are 'Null' algorithms, used by IPsec, which do nothing.
185
186config CRYPTO_NULL2
187 tristate
188 select CRYPTO_ALGAPI2
189 select CRYPTO_BLKCIPHER2
190 select CRYPTO_HASH2
191
192config CRYPTO_PCRYPT
193 tristate "Parallel crypto engine"
194 depends on SMP
195 select PADATA
196 select CRYPTO_MANAGER
197 select CRYPTO_AEAD
198 help
199 This converts an arbitrary crypto algorithm into a parallel
200 algorithm that executes in kernel threads.
201
202config CRYPTO_WORKQUEUE
203 tristate
204
205config CRYPTO_CRYPTD
206 tristate "Software async crypto daemon"
207 select CRYPTO_BLKCIPHER
208 select CRYPTO_HASH
209 select CRYPTO_MANAGER
210 select CRYPTO_WORKQUEUE
211 help
212 This is a generic software asynchronous crypto daemon that
213 converts an arbitrary synchronous software crypto algorithm
214 into an asynchronous algorithm that executes in a kernel thread.
215
216config CRYPTO_MCRYPTD
217 tristate "Software async multi-buffer crypto daemon"
218 select CRYPTO_BLKCIPHER
219 select CRYPTO_HASH
220 select CRYPTO_MANAGER
221 select CRYPTO_WORKQUEUE
222 help
223 This is a generic software asynchronous crypto daemon that
224 provides the kernel thread to assist multi-buffer crypto
225 algorithms for submitting jobs and flushing jobs in multi-buffer
226 crypto algorithms. Multi-buffer crypto algorithms are executed
227 in the context of this kernel thread and drivers can post
228 their crypto request asynchronously to be processed by this daemon.
229
230config CRYPTO_AUTHENC
231 tristate "Authenc support"
232 select CRYPTO_AEAD
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 select CRYPTO_HASH
236 select CRYPTO_NULL
237 help
238 Authenc: Combined mode wrapper for IPsec.
239 This is required for IPSec.
240
241config CRYPTO_TEST
242 tristate "Testing module"
243 depends on m
244 select CRYPTO_MANAGER
245 help
246 Quick & dirty crypto test module.
247
248config CRYPTO_SIMD
249 tristate
250 select CRYPTO_CRYPTD
251
252config CRYPTO_GLUE_HELPER_X86
253 tristate
254 depends on X86
255 select CRYPTO_BLKCIPHER
256
257config CRYPTO_ENGINE
258 tristate
259
260comment "Authenticated Encryption with Associated Data"
261
262config CRYPTO_CCM
263 tristate "CCM support"
264 select CRYPTO_CTR
265 select CRYPTO_HASH
266 select CRYPTO_AEAD
267 help
268 Support for Counter with CBC MAC. Required for IPsec.
269
270config CRYPTO_GCM
271 tristate "GCM/GMAC support"
272 select CRYPTO_CTR
273 select CRYPTO_AEAD
274 select CRYPTO_GHASH
275 select CRYPTO_NULL
276 help
277 Support for Galois/Counter Mode (GCM) and Galois Message
278 Authentication Code (GMAC). Required for IPSec.
279
280config CRYPTO_CHACHA20POLY1305
281 tristate "ChaCha20-Poly1305 AEAD support"
282 select CRYPTO_CHACHA20
283 select CRYPTO_POLY1305
284 select CRYPTO_AEAD
285 help
286 ChaCha20-Poly1305 AEAD support, RFC7539.
287
288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289 with the Poly1305 authenticator. It is defined in RFC7539 for use in
290 IETF protocols.
291
292config CRYPTO_SEQIV
293 tristate "Sequence Number IV Generator"
294 select CRYPTO_AEAD
295 select CRYPTO_BLKCIPHER
296 select CRYPTO_NULL
297 select CRYPTO_RNG_DEFAULT
298 help
299 This IV generator generates an IV based on a sequence number by
300 xoring it with a salt. This algorithm is mainly useful for CTR
301
302config CRYPTO_ECHAINIV
303 tristate "Encrypted Chain IV Generator"
304 select CRYPTO_AEAD
305 select CRYPTO_NULL
306 select CRYPTO_RNG_DEFAULT
307 default m
308 help
309 This IV generator generates an IV based on the encryption of
310 a sequence number xored with a salt. This is the default
311 algorithm for CBC.
312
313comment "Block modes"
314
315config CRYPTO_CBC
316 tristate "CBC support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 help
320 CBC: Cipher Block Chaining mode
321 This block cipher algorithm is required for IPSec.
322
323config CRYPTO_CFB
324 tristate "CFB support"
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_MANAGER
327 help
328 CFB: Cipher FeedBack mode
329 This block cipher algorithm is required for TPM2 Cryptography.
330
331config CRYPTO_CTR
332 tristate "CTR support"
333 select CRYPTO_BLKCIPHER
334 select CRYPTO_SEQIV
335 select CRYPTO_MANAGER
336 help
337 CTR: Counter mode
338 This block cipher algorithm is required for IPSec.
339
340config CRYPTO_CTS
341 tristate "CTS support"
342 select CRYPTO_BLKCIPHER
343 help
344 CTS: Cipher Text Stealing
345 This is the Cipher Text Stealing mode as described by
346 Section 8 of rfc2040 and referenced by rfc3962.
347 (rfc3962 includes errata information in its Appendix A)
348 This mode is required for Kerberos gss mechanism support
349 for AES encryption.
350
351config CRYPTO_ECB
352 tristate "ECB support"
353 select CRYPTO_BLKCIPHER
354 select CRYPTO_MANAGER
355 help
356 ECB: Electronic CodeBook mode
357 This is the simplest block cipher algorithm. It simply encrypts
358 the input block by block.
359
360config CRYPTO_LRW
361 tristate "LRW support"
362 select CRYPTO_BLKCIPHER
363 select CRYPTO_MANAGER
364 select CRYPTO_GF128MUL
365 help
366 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
367 narrow block cipher mode for dm-crypt. Use it with cipher
368 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
369 The first 128, 192 or 256 bits in the key are used for AES and the
370 rest is used to tie each cipher block to its logical position.
371
372config CRYPTO_PCBC
373 tristate "PCBC support"
374 select CRYPTO_BLKCIPHER
375 select CRYPTO_MANAGER
376 help
377 PCBC: Propagating Cipher Block Chaining mode
378 This block cipher algorithm is required for RxRPC.
379
380config CRYPTO_XTS
381 tristate "XTS support"
382 select CRYPTO_BLKCIPHER
383 select CRYPTO_MANAGER
384 select CRYPTO_ECB
385 help
386 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
387 key size 256, 384 or 512 bits. This implementation currently
388 can't handle a sectorsize which is not a multiple of 16 bytes.
389
390config CRYPTO_KEYWRAP
391 tristate "Key wrapping support"
392 select CRYPTO_BLKCIPHER
393 help
394 Support for key wrapping (NIST SP800-38F / RFC3394) without
395 padding.
396
397comment "Hash modes"
398
399config CRYPTO_CMAC
400 tristate "CMAC support"
401 select CRYPTO_HASH
402 select CRYPTO_MANAGER
403 help
404 Cipher-based Message Authentication Code (CMAC) specified by
405 The National Institute of Standards and Technology (NIST).
406
407 https://tools.ietf.org/html/rfc4493
408 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
409
410config CRYPTO_HMAC
411 tristate "HMAC support"
412 select CRYPTO_HASH
413 select CRYPTO_MANAGER
414 help
415 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
416 This is required for IPSec.
417
418config CRYPTO_XCBC
419 tristate "XCBC support"
420 select CRYPTO_HASH
421 select CRYPTO_MANAGER
422 help
423 XCBC: Keyed-Hashing with encryption algorithm
424 http://www.ietf.org/rfc/rfc3566.txt
425 http://csrc.nist.gov/encryption/modes/proposedmodes/
426 xcbc-mac/xcbc-mac-spec.pdf
427
428config CRYPTO_VMAC
429 tristate "VMAC support"
430 select CRYPTO_HASH
431 select CRYPTO_MANAGER
432 help
433 VMAC is a message authentication algorithm designed for
434 very high speed on 64-bit architectures.
435
436 See also:
437 <http://fastcrypto.org/vmac>
438
439comment "Digest"
440
441config CRYPTO_CRC32C
442 tristate "CRC32c CRC algorithm"
443 select CRYPTO_HASH
444 select CRC32
445 help
446 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
447 by iSCSI for header and data digests and by others.
448 See Castagnoli93. Module will be crc32c.
449
450config CRYPTO_CRC32C_INTEL
451 tristate "CRC32c INTEL hardware acceleration"
452 depends on X86
453 select CRYPTO_HASH
454 help
455 In Intel processor with SSE4.2 supported, the processor will
456 support CRC32C implementation using hardware accelerated CRC32
457 instruction. This option will create 'crc32c-intel' module,
458 which will enable any routine to use the CRC32 instruction to
459 gain performance compared with software implementation.
460 Module will be crc32c-intel.
461
462config CRYPTO_CRC32C_VPMSUM
463 tristate "CRC32c CRC algorithm (powerpc64)"
464 depends on PPC64 && ALTIVEC
465 select CRYPTO_HASH
466 select CRC32
467 help
468 CRC32c algorithm implemented using vector polynomial multiply-sum
469 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
470 and newer processors for improved performance.
471
472
473config CRYPTO_CRC32C_SPARC64
474 tristate "CRC32c CRC algorithm (SPARC64)"
475 depends on SPARC64
476 select CRYPTO_HASH
477 select CRC32
478 help
479 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
480 when available.
481
482config CRYPTO_CRC32
483 tristate "CRC32 CRC algorithm"
484 select CRYPTO_HASH
485 select CRC32
486 help
487 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
488 Shash crypto api wrappers to crc32_le function.
489
490config CRYPTO_CRC32_PCLMUL
491 tristate "CRC32 PCLMULQDQ hardware acceleration"
492 depends on X86
493 select CRYPTO_HASH
494 select CRC32
495 help
496 From Intel Westmere and AMD Bulldozer processor with SSE4.2
497 and PCLMULQDQ supported, the processor will support
498 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
499 instruction. This option will create 'crc32-plcmul' module,
500 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
501 and gain better performance as compared with the table implementation.
502
503config CRYPTO_CRC32_MIPS
504 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
505 depends on MIPS_CRC_SUPPORT
506 select CRYPTO_HASH
507 help
508 CRC32c and CRC32 CRC algorithms implemented using mips crypto
509 instructions, when available.
510
511
512config CRYPTO_CRCT10DIF
513 tristate "CRCT10DIF algorithm"
514 select CRYPTO_HASH
515 help
516 CRC T10 Data Integrity Field computation is being cast as
517 a crypto transform. This allows for faster crc t10 diff
518 transforms to be used if they are available.
519
520config CRYPTO_CRCT10DIF_PCLMUL
521 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
522 depends on X86 && 64BIT && CRC_T10DIF
523 select CRYPTO_HASH
524 help
525 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
526 CRC T10 DIF PCLMULQDQ computation can be hardware
527 accelerated PCLMULQDQ instruction. This option will create
528 'crct10dif-plcmul' module, which is faster when computing the
529 crct10dif checksum as compared with the generic table implementation.
530
531config CRYPTO_CRCT10DIF_VPMSUM
532 tristate "CRC32T10DIF powerpc64 hardware acceleration"
533 depends on PPC64 && ALTIVEC && CRC_T10DIF
534 select CRYPTO_HASH
535 help
536 CRC10T10DIF algorithm implemented using vector polynomial
537 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
538 POWER8 and newer processors for improved performance.
539
540config CRYPTO_VPMSUM_TESTER
541 tristate "Powerpc64 vpmsum hardware acceleration tester"
542 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
543 help
544 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
545 POWER8 vpmsum instructions.
546 Unless you are testing these algorithms, you don't need this.
547
548config CRYPTO_GHASH
549 tristate "GHASH digest algorithm"
550 select CRYPTO_GF128MUL
551 select CRYPTO_HASH
552 help
553 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
554
555config CRYPTO_POLY1305
556 tristate "Poly1305 authenticator algorithm"
557 select CRYPTO_HASH
558 help
559 Poly1305 authenticator algorithm, RFC7539.
560
561 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
562 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
563 in IETF protocols. This is the portable C implementation of Poly1305.
564
565config CRYPTO_POLY1305_X86_64
566 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
567 depends on X86 && 64BIT
568 select CRYPTO_POLY1305
569 help
570 Poly1305 authenticator algorithm, RFC7539.
571
572 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
573 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
574 in IETF protocols. This is the x86_64 assembler implementation using SIMD
575 instructions.
576
577config CRYPTO_MD4
578 tristate "MD4 digest algorithm"
579 select CRYPTO_HASH
580 help
581 MD4 message digest algorithm (RFC1320).
582
583config CRYPTO_MD5
584 tristate "MD5 digest algorithm"
585 select CRYPTO_HASH
586 help
587 MD5 message digest algorithm (RFC1321).
588
589config CRYPTO_MD5_OCTEON
590 tristate "MD5 digest algorithm (OCTEON)"
591 depends on CPU_CAVIUM_OCTEON
592 select CRYPTO_MD5
593 select CRYPTO_HASH
594 help
595 MD5 message digest algorithm (RFC1321) implemented
596 using OCTEON crypto instructions, when available.
597
598config CRYPTO_MD5_PPC
599 tristate "MD5 digest algorithm (PPC)"
600 depends on PPC
601 select CRYPTO_HASH
602 help
603 MD5 message digest algorithm (RFC1321) implemented
604 in PPC assembler.
605
606config CRYPTO_MD5_SPARC64
607 tristate "MD5 digest algorithm (SPARC64)"
608 depends on SPARC64
609 select CRYPTO_MD5
610 select CRYPTO_HASH
611 help
612 MD5 message digest algorithm (RFC1321) implemented
613 using sparc64 crypto instructions, when available.
614
615config CRYPTO_MICHAEL_MIC
616 tristate "Michael MIC keyed digest algorithm"
617 select CRYPTO_HASH
618 help
619 Michael MIC is used for message integrity protection in TKIP
620 (IEEE 802.11i). This algorithm is required for TKIP, but it
621 should not be used for other purposes because of the weakness
622 of the algorithm.
623
624config CRYPTO_RMD128
625 tristate "RIPEMD-128 digest algorithm"
626 select CRYPTO_HASH
627 help
628 RIPEMD-128 (ISO/IEC 10118-3:2004).
629
630 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
631 be used as a secure replacement for RIPEMD. For other use cases,
632 RIPEMD-160 should be used.
633
634 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
635 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
636
637config CRYPTO_RMD160
638 tristate "RIPEMD-160 digest algorithm"
639 select CRYPTO_HASH
640 help
641 RIPEMD-160 (ISO/IEC 10118-3:2004).
642
643 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
644 to be used as a secure replacement for the 128-bit hash functions
645 MD4, MD5 and it's predecessor RIPEMD
646 (not to be confused with RIPEMD-128).
647
648 It's speed is comparable to SHA1 and there are no known attacks
649 against RIPEMD-160.
650
651 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
652 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
653
654config CRYPTO_RMD256
655 tristate "RIPEMD-256 digest algorithm"
656 select CRYPTO_HASH
657 help
658 RIPEMD-256 is an optional extension of RIPEMD-128 with a
659 256 bit hash. It is intended for applications that require
660 longer hash-results, without needing a larger security level
661 (than RIPEMD-128).
662
663 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
664 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
665
666config CRYPTO_RMD320
667 tristate "RIPEMD-320 digest algorithm"
668 select CRYPTO_HASH
669 help
670 RIPEMD-320 is an optional extension of RIPEMD-160 with a
671 320 bit hash. It is intended for applications that require
672 longer hash-results, without needing a larger security level
673 (than RIPEMD-160).
674
675 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
676 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
677
678config CRYPTO_SHA1
679 tristate "SHA1 digest algorithm"
680 select CRYPTO_HASH
681 help
682 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
683
684config CRYPTO_SHA1_SSSE3
685 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
686 depends on X86 && 64BIT
687 select CRYPTO_SHA1
688 select CRYPTO_HASH
689 help
690 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
692 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
693 when available.
694
695config CRYPTO_SHA256_SSSE3
696 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
697 depends on X86 && 64BIT
698 select CRYPTO_SHA256
699 select CRYPTO_HASH
700 help
701 SHA-256 secure hash standard (DFIPS 180-2) implemented
702 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
703 Extensions version 1 (AVX1), or Advanced Vector Extensions
704 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
705 Instructions) when available.
706
707config CRYPTO_SHA512_SSSE3
708 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
709 depends on X86 && 64BIT
710 select CRYPTO_SHA512
711 select CRYPTO_HASH
712 help
713 SHA-512 secure hash standard (DFIPS 180-2) implemented
714 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
715 Extensions version 1 (AVX1), or Advanced Vector Extensions
716 version 2 (AVX2) instructions, when available.
717
718config CRYPTO_SHA1_OCTEON
719 tristate "SHA1 digest algorithm (OCTEON)"
720 depends on CPU_CAVIUM_OCTEON
721 select CRYPTO_SHA1
722 select CRYPTO_HASH
723 help
724 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725 using OCTEON crypto instructions, when available.
726
727config CRYPTO_SHA1_SPARC64
728 tristate "SHA1 digest algorithm (SPARC64)"
729 depends on SPARC64
730 select CRYPTO_SHA1
731 select CRYPTO_HASH
732 help
733 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
734 using sparc64 crypto instructions, when available.
735
736config CRYPTO_SHA1_PPC
737 tristate "SHA1 digest algorithm (powerpc)"
738 depends on PPC
739 help
740 This is the powerpc hardware accelerated implementation of the
741 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
742
743config CRYPTO_SHA1_PPC_SPE
744 tristate "SHA1 digest algorithm (PPC SPE)"
745 depends on PPC && SPE
746 help
747 SHA-1 secure hash standard (DFIPS 180-4) implemented
748 using powerpc SPE SIMD instruction set.
749
750config CRYPTO_SHA1_MB
751 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752 depends on X86 && 64BIT
753 select CRYPTO_SHA1
754 select CRYPTO_HASH
755 select CRYPTO_MCRYPTD
756 help
757 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758 using multi-buffer technique. This algorithm computes on
759 multiple data lanes concurrently with SIMD instructions for
760 better throughput. It should not be enabled by default but
761 used when there is significant amount of work to keep the keep
762 the data lanes filled to get performance benefit. If the data
763 lanes remain unfilled, a flush operation will be initiated to
764 process the crypto jobs, adding a slight latency.
765
766config CRYPTO_SHA256_MB
767 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
768 depends on X86 && 64BIT
769 select CRYPTO_SHA256
770 select CRYPTO_HASH
771 select CRYPTO_MCRYPTD
772 help
773 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
774 using multi-buffer technique. This algorithm computes on
775 multiple data lanes concurrently with SIMD instructions for
776 better throughput. It should not be enabled by default but
777 used when there is significant amount of work to keep the keep
778 the data lanes filled to get performance benefit. If the data
779 lanes remain unfilled, a flush operation will be initiated to
780 process the crypto jobs, adding a slight latency.
781
782config CRYPTO_SHA512_MB
783 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
784 depends on X86 && 64BIT
785 select CRYPTO_SHA512
786 select CRYPTO_HASH
787 select CRYPTO_MCRYPTD
788 help
789 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
790 using multi-buffer technique. This algorithm computes on
791 multiple data lanes concurrently with SIMD instructions for
792 better throughput. It should not be enabled by default but
793 used when there is significant amount of work to keep the keep
794 the data lanes filled to get performance benefit. If the data
795 lanes remain unfilled, a flush operation will be initiated to
796 process the crypto jobs, adding a slight latency.
797
798config CRYPTO_SHA256
799 tristate "SHA224 and SHA256 digest algorithm"
800 select CRYPTO_HASH
801 help
802 SHA256 secure hash standard (DFIPS 180-2).
803
804 This version of SHA implements a 256 bit hash with 128 bits of
805 security against collision attacks.
806
807 This code also includes SHA-224, a 224 bit hash with 112 bits
808 of security against collision attacks.
809
810config CRYPTO_SHA256_PPC_SPE
811 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
812 depends on PPC && SPE
813 select CRYPTO_SHA256
814 select CRYPTO_HASH
815 help
816 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
817 implemented using powerpc SPE SIMD instruction set.
818
819config CRYPTO_SHA256_OCTEON
820 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
821 depends on CPU_CAVIUM_OCTEON
822 select CRYPTO_SHA256
823 select CRYPTO_HASH
824 help
825 SHA-256 secure hash standard (DFIPS 180-2) implemented
826 using OCTEON crypto instructions, when available.
827
828config CRYPTO_SHA256_SPARC64
829 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
830 depends on SPARC64
831 select CRYPTO_SHA256
832 select CRYPTO_HASH
833 help
834 SHA-256 secure hash standard (DFIPS 180-2) implemented
835 using sparc64 crypto instructions, when available.
836
837config CRYPTO_SHA512
838 tristate "SHA384 and SHA512 digest algorithms"
839 select CRYPTO_HASH
840 help
841 SHA512 secure hash standard (DFIPS 180-2).
842
843 This version of SHA implements a 512 bit hash with 256 bits of
844 security against collision attacks.
845
846 This code also includes SHA-384, a 384 bit hash with 192 bits
847 of security against collision attacks.
848
849config CRYPTO_SHA512_OCTEON
850 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
851 depends on CPU_CAVIUM_OCTEON
852 select CRYPTO_SHA512
853 select CRYPTO_HASH
854 help
855 SHA-512 secure hash standard (DFIPS 180-2) implemented
856 using OCTEON crypto instructions, when available.
857
858config CRYPTO_SHA512_SPARC64
859 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
860 depends on SPARC64
861 select CRYPTO_SHA512
862 select CRYPTO_HASH
863 help
864 SHA-512 secure hash standard (DFIPS 180-2) implemented
865 using sparc64 crypto instructions, when available.
866
867config CRYPTO_SHA3
868 tristate "SHA3 digest algorithm"
869 select CRYPTO_HASH
870 help
871 SHA-3 secure hash standard (DFIPS 202). It's based on
872 cryptographic sponge function family called Keccak.
873
874 References:
875 http://keccak.noekeon.org/
876
877config CRYPTO_SM3
878 tristate "SM3 digest algorithm"
879 select CRYPTO_HASH
880 help
881 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
882 It is part of the Chinese Commercial Cryptography suite.
883
884 References:
885 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
886 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
887
888config CRYPTO_TGR192
889 tristate "Tiger digest algorithms"
890 select CRYPTO_HASH
891 help
892 Tiger hash algorithm 192, 160 and 128-bit hashes
893
894 Tiger is a hash function optimized for 64-bit processors while
895 still having decent performance on 32-bit processors.
896 Tiger was developed by Ross Anderson and Eli Biham.
897
898 See also:
899 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
900
901config CRYPTO_WP512
902 tristate "Whirlpool digest algorithms"
903 select CRYPTO_HASH
904 help
905 Whirlpool hash algorithm 512, 384 and 256-bit hashes
906
907 Whirlpool-512 is part of the NESSIE cryptographic primitives.
908 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
909
910 See also:
911 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
912
913config CRYPTO_GHASH_CLMUL_NI_INTEL
914 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
915 depends on X86 && 64BIT
916 select CRYPTO_CRYPTD
917 help
918 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
919 The implementation is accelerated by CLMUL-NI of Intel.
920
921comment "Ciphers"
922
923config CRYPTO_AES
924 tristate "AES cipher algorithms"
925 select CRYPTO_ALGAPI
926 help
927 AES cipher algorithms (FIPS-197). AES uses the Rijndael
928 algorithm.
929
930 Rijndael appears to be consistently a very good performer in
931 both hardware and software across a wide range of computing
932 environments regardless of its use in feedback or non-feedback
933 modes. Its key setup time is excellent, and its key agility is
934 good. Rijndael's very low memory requirements make it very well
935 suited for restricted-space environments, in which it also
936 demonstrates excellent performance. Rijndael's operations are
937 among the easiest to defend against power and timing attacks.
938
939 The AES specifies three key sizes: 128, 192 and 256 bits
940
941 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
942
943config CRYPTO_AES_TI
944 tristate "Fixed time AES cipher"
945 select CRYPTO_ALGAPI
946 help
947 This is a generic implementation of AES that attempts to eliminate
948 data dependent latencies as much as possible without affecting
949 performance too much. It is intended for use by the generic CCM
950 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
951 solely on encryption (although decryption is supported as well, but
952 with a more dramatic performance hit)
953
954 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
955 8 for decryption), this implementation only uses just two S-boxes of
956 256 bytes each, and attempts to eliminate data dependent latencies by
957 prefetching the entire table into the cache at the start of each
958 block.
959
960config CRYPTO_AES_586
961 tristate "AES cipher algorithms (i586)"
962 depends on (X86 || UML_X86) && !64BIT
963 select CRYPTO_ALGAPI
964 select CRYPTO_AES
965 help
966 AES cipher algorithms (FIPS-197). AES uses the Rijndael
967 algorithm.
968
969 Rijndael appears to be consistently a very good performer in
970 both hardware and software across a wide range of computing
971 environments regardless of its use in feedback or non-feedback
972 modes. Its key setup time is excellent, and its key agility is
973 good. Rijndael's very low memory requirements make it very well
974 suited for restricted-space environments, in which it also
975 demonstrates excellent performance. Rijndael's operations are
976 among the easiest to defend against power and timing attacks.
977
978 The AES specifies three key sizes: 128, 192 and 256 bits
979
980 See <http://csrc.nist.gov/encryption/aes/> for more information.
981
982config CRYPTO_AES_X86_64
983 tristate "AES cipher algorithms (x86_64)"
984 depends on (X86 || UML_X86) && 64BIT
985 select CRYPTO_ALGAPI
986 select CRYPTO_AES
987 help
988 AES cipher algorithms (FIPS-197). AES uses the Rijndael
989 algorithm.
990
991 Rijndael appears to be consistently a very good performer in
992 both hardware and software across a wide range of computing
993 environments regardless of its use in feedback or non-feedback
994 modes. Its key setup time is excellent, and its key agility is
995 good. Rijndael's very low memory requirements make it very well
996 suited for restricted-space environments, in which it also
997 demonstrates excellent performance. Rijndael's operations are
998 among the easiest to defend against power and timing attacks.
999
1000 The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002 See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005 tristate "AES cipher algorithms (AES-NI)"
1006 depends on X86
1007 select CRYPTO_AEAD
1008 select CRYPTO_AES_X86_64 if 64BIT
1009 select CRYPTO_AES_586 if !64BIT
1010 select CRYPTO_ALGAPI
1011 select CRYPTO_BLKCIPHER
1012 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013 select CRYPTO_SIMD
1014 help
1015 Use Intel AES-NI instructions for AES algorithm.
1016
1017 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018 algorithm.
1019
1020 Rijndael appears to be consistently a very good performer in
1021 both hardware and software across a wide range of computing
1022 environments regardless of its use in feedback or non-feedback
1023 modes. Its key setup time is excellent, and its key agility is
1024 good. Rijndael's very low memory requirements make it very well
1025 suited for restricted-space environments, in which it also
1026 demonstrates excellent performance. Rijndael's operations are
1027 among the easiest to defend against power and timing attacks.
1028
1029 The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031 See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033 In addition to AES cipher algorithm support, the acceleration
1034 for some popular block cipher mode is supported too, including
1035 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036 acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039 tristate "AES cipher algorithms (SPARC64)"
1040 depends on SPARC64
1041 select CRYPTO_CRYPTD
1042 select CRYPTO_ALGAPI
1043 help
1044 Use SPARC64 crypto opcodes for AES algorithm.
1045
1046 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047 algorithm.
1048
1049 Rijndael appears to be consistently a very good performer in
1050 both hardware and software across a wide range of computing
1051 environments regardless of its use in feedback or non-feedback
1052 modes. Its key setup time is excellent, and its key agility is
1053 good. Rijndael's very low memory requirements make it very well
1054 suited for restricted-space environments, in which it also
1055 demonstrates excellent performance. Rijndael's operations are
1056 among the easiest to defend against power and timing attacks.
1057
1058 The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060 See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062 In addition to AES cipher algorithm support, the acceleration
1063 for some popular block cipher mode is supported too, including
1064 ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067 tristate "AES cipher algorithms (PPC SPE)"
1068 depends on PPC && SPE
1069 help
1070 AES cipher algorithms (FIPS-197). Additionally the acceleration
1071 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072 This module should only be used for low power (router) devices
1073 without hardware AES acceleration (e.g. caam crypto). It reduces the
1074 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075 timining attacks. Nevertheless it might be not as secure as other
1076 architecture specific assembler implementations that work on 1KB
1077 tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080 tristate "Anubis cipher algorithm"
1081 select CRYPTO_ALGAPI
1082 help
1083 Anubis cipher algorithm.
1084
1085 Anubis is a variable key length cipher which can use keys from
1086 128 bits to 320 bits in length. It was evaluated as a entrant
1087 in the NESSIE competition.
1088
1089 See also:
1090 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
1093config CRYPTO_ARC4
1094 tristate "ARC4 cipher algorithm"
1095 select CRYPTO_BLKCIPHER
1096 help
1097 ARC4 cipher algorithm.
1098
1099 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100 bits in length. This algorithm is required for driver-based
1101 WEP, but it should not be for other purposes because of the
1102 weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105 tristate "Blowfish cipher algorithm"
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_BLOWFISH_COMMON
1108 help
1109 Blowfish cipher algorithm, by Bruce Schneier.
1110
1111 This is a variable key length cipher which can use keys from 32
1112 bits to 448 bits in length. It's fast, simple and specifically
1113 designed for use on "large microprocessors".
1114
1115 See also:
1116 <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119 tristate
1120 help
1121 Common parts of the Blowfish cipher algorithm shared by the
1122 generic c and the assembler implementations.
1123
1124 See also:
1125 <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128 tristate "Blowfish cipher algorithm (x86_64)"
1129 depends on X86 && 64BIT
1130 select CRYPTO_BLKCIPHER
1131 select CRYPTO_BLOWFISH_COMMON
1132 help
1133 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135 This is a variable key length cipher which can use keys from 32
1136 bits to 448 bits in length. It's fast, simple and specifically
1137 designed for use on "large microprocessors".
1138
1139 See also:
1140 <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143 tristate "Camellia cipher algorithms"
1144 depends on CRYPTO
1145 select CRYPTO_ALGAPI
1146 help
1147 Camellia cipher algorithms module.
1148
1149 Camellia is a symmetric key block cipher developed jointly
1150 at NTT and Mitsubishi Electric Corporation.
1151
1152 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154 See also:
1155 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158 tristate "Camellia cipher algorithm (x86_64)"
1159 depends on X86 && 64BIT
1160 depends on CRYPTO
1161 select CRYPTO_BLKCIPHER
1162 select CRYPTO_GLUE_HELPER_X86
1163 help
1164 Camellia cipher algorithm module (x86_64).
1165
1166 Camellia is a symmetric key block cipher developed jointly
1167 at NTT and Mitsubishi Electric Corporation.
1168
1169 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171 See also:
1172 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176 depends on X86 && 64BIT
1177 depends on CRYPTO
1178 select CRYPTO_BLKCIPHER
1179 select CRYPTO_CAMELLIA_X86_64
1180 select CRYPTO_GLUE_HELPER_X86
1181 select CRYPTO_SIMD
1182 select CRYPTO_XTS
1183 help
1184 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186 Camellia is a symmetric key block cipher developed jointly
1187 at NTT and Mitsubishi Electric Corporation.
1188
1189 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191 See also:
1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196 depends on X86 && 64BIT
1197 depends on CRYPTO
1198 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199 help
1200 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202 Camellia is a symmetric key block cipher developed jointly
1203 at NTT and Mitsubishi Electric Corporation.
1204
1205 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207 See also:
1208 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211 tristate "Camellia cipher algorithm (SPARC64)"
1212 depends on SPARC64
1213 depends on CRYPTO
1214 select CRYPTO_ALGAPI
1215 help
1216 Camellia cipher algorithm module (SPARC64).
1217
1218 Camellia is a symmetric key block cipher developed jointly
1219 at NTT and Mitsubishi Electric Corporation.
1220
1221 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223 See also:
1224 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227 tristate
1228 help
1229 Common parts of the CAST cipher algorithms shared by the
1230 generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233 tristate "CAST5 (CAST-128) cipher algorithm"
1234 select CRYPTO_ALGAPI
1235 select CRYPTO_CAST_COMMON
1236 help
1237 The CAST5 encryption algorithm (synonymous with CAST-128) is
1238 described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242 depends on X86 && 64BIT
1243 select CRYPTO_BLKCIPHER
1244 select CRYPTO_CAST5
1245 select CRYPTO_CAST_COMMON
1246 select CRYPTO_SIMD
1247 help
1248 The CAST5 encryption algorithm (synonymous with CAST-128) is
1249 described in RFC2144.
1250
1251 This module provides the Cast5 cipher algorithm that processes
1252 sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255 tristate "CAST6 (CAST-256) cipher algorithm"
1256 select CRYPTO_ALGAPI
1257 select CRYPTO_CAST_COMMON
1258 help
1259 The CAST6 encryption algorithm (synonymous with CAST-256) is
1260 described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264 depends on X86 && 64BIT
1265 select CRYPTO_BLKCIPHER
1266 select CRYPTO_CAST6
1267 select CRYPTO_CAST_COMMON
1268 select CRYPTO_GLUE_HELPER_X86
1269 select CRYPTO_SIMD
1270 select CRYPTO_XTS
1271 help
1272 The CAST6 encryption algorithm (synonymous with CAST-256) is
1273 described in RFC2612.
1274
1275 This module provides the Cast6 cipher algorithm that processes
1276 eight blocks parallel using the AVX instruction set.
1277
1278config CRYPTO_DES
1279 tristate "DES and Triple DES EDE cipher algorithms"
1280 select CRYPTO_ALGAPI
1281 help
1282 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286 depends on SPARC64
1287 select CRYPTO_ALGAPI
1288 select CRYPTO_DES
1289 help
1290 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291 optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294 tristate "Triple DES EDE cipher algorithm (x86-64)"
1295 depends on X86 && 64BIT
1296 select CRYPTO_BLKCIPHER
1297 select CRYPTO_DES
1298 help
1299 Triple DES EDE (FIPS 46-3) algorithm.
1300
1301 This module provides implementation of the Triple DES EDE cipher
1302 algorithm that is optimized for x86-64 processors. Two versions of
1303 algorithm are provided; regular processing one input block and
1304 one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307 tristate "FCrypt cipher algorithm"
1308 select CRYPTO_ALGAPI
1309 select CRYPTO_BLKCIPHER
1310 help
1311 FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314 tristate "Khazad cipher algorithm"
1315 select CRYPTO_ALGAPI
1316 help
1317 Khazad cipher algorithm.
1318
1319 Khazad was a finalist in the initial NESSIE competition. It is
1320 an algorithm optimized for 64-bit processors with good performance
1321 on 32-bit processors. Khazad uses an 128 bit key size.
1322
1323 See also:
1324 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327 tristate "Salsa20 stream cipher algorithm"
1328 select CRYPTO_BLKCIPHER
1329 help
1330 Salsa20 stream cipher algorithm.
1331
1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335 The Salsa20 stream cipher algorithm is designed by Daniel J.
1336 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339 tristate "Salsa20 stream cipher algorithm (i586)"
1340 depends on (X86 || UML_X86) && !64BIT
1341 select CRYPTO_BLKCIPHER
1342 select CRYPTO_SALSA20
1343 help
1344 Salsa20 stream cipher algorithm.
1345
1346 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349 The Salsa20 stream cipher algorithm is designed by Daniel J.
1350 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353 tristate "Salsa20 stream cipher algorithm (x86_64)"
1354 depends on (X86 || UML_X86) && 64BIT
1355 select CRYPTO_BLKCIPHER
1356 select CRYPTO_SALSA20
1357 help
1358 Salsa20 stream cipher algorithm.
1359
1360 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363 The Salsa20 stream cipher algorithm is designed by Daniel J.
1364 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367 tristate "ChaCha20 cipher algorithm"
1368 select CRYPTO_BLKCIPHER
1369 help
1370 ChaCha20 cipher algorithm, RFC7539.
1371
1372 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373 Bernstein and further specified in RFC7539 for use in IETF protocols.
1374 This is the portable C implementation of ChaCha20.
1375
1376 See also:
1377 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378
1379config CRYPTO_CHACHA20_X86_64
1380 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381 depends on X86 && 64BIT
1382 select CRYPTO_BLKCIPHER
1383 select CRYPTO_CHACHA20
1384 help
1385 ChaCha20 cipher algorithm, RFC7539.
1386
1387 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388 Bernstein and further specified in RFC7539 for use in IETF protocols.
1389 This is the x86_64 assembler implementation using SIMD instructions.
1390
1391 See also:
1392 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393
1394config CRYPTO_SEED
1395 tristate "SEED cipher algorithm"
1396 select CRYPTO_ALGAPI
1397 help
1398 SEED cipher algorithm (RFC4269).
1399
1400 SEED is a 128-bit symmetric key block cipher that has been
1401 developed by KISA (Korea Information Security Agency) as a
1402 national standard encryption algorithm of the Republic of Korea.
1403 It is a 16 round block cipher with the key size of 128 bit.
1404
1405 See also:
1406 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409 tristate "Serpent cipher algorithm"
1410 select CRYPTO_ALGAPI
1411 help
1412 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414 Keys are allowed to be from 0 to 256 bits in length, in steps
1415 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1416 variant of Serpent for compatibility with old kerneli.org code.
1417
1418 See also:
1419 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423 depends on X86 && 64BIT
1424 select CRYPTO_BLKCIPHER
1425 select CRYPTO_GLUE_HELPER_X86
1426 select CRYPTO_SERPENT
1427 select CRYPTO_SIMD
1428 help
1429 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431 Keys are allowed to be from 0 to 256 bits in length, in steps
1432 of 8 bits.
1433
1434 This module provides Serpent cipher algorithm that processes eight
1435 blocks parallel using SSE2 instruction set.
1436
1437 See also:
1438 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441 tristate "Serpent cipher algorithm (i586/SSE2)"
1442 depends on X86 && !64BIT
1443 select CRYPTO_BLKCIPHER
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_SERPENT
1446 select CRYPTO_SIMD
1447 help
1448 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450 Keys are allowed to be from 0 to 256 bits in length, in steps
1451 of 8 bits.
1452
1453 This module provides Serpent cipher algorithm that processes four
1454 blocks parallel using SSE2 instruction set.
1455
1456 See also:
1457 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460 tristate "Serpent cipher algorithm (x86_64/AVX)"
1461 depends on X86 && 64BIT
1462 select CRYPTO_BLKCIPHER
1463 select CRYPTO_GLUE_HELPER_X86
1464 select CRYPTO_SERPENT
1465 select CRYPTO_SIMD
1466 select CRYPTO_XTS
1467 help
1468 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470 Keys are allowed to be from 0 to 256 bits in length, in steps
1471 of 8 bits.
1472
1473 This module provides the Serpent cipher algorithm that processes
1474 eight blocks parallel using the AVX instruction set.
1475
1476 See also:
1477 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481 depends on X86 && 64BIT
1482 select CRYPTO_SERPENT_AVX_X86_64
1483 help
1484 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486 Keys are allowed to be from 0 to 256 bits in length, in steps
1487 of 8 bits.
1488
1489 This module provides Serpent cipher algorithm that processes 16
1490 blocks parallel using AVX2 instruction set.
1491
1492 See also:
1493 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496 tristate "SM4 cipher algorithm"
1497 select CRYPTO_ALGAPI
1498 help
1499 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502 Organization of State Commercial Administration of China (OSCCA)
1503 as an authorized cryptographic algorithms for the use within China.
1504
1505 SMS4 was originally created for use in protecting wireless
1506 networks, and is mandated in the Chinese National Standard for
1507 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508 (GB.15629.11-2003).
1509
1510 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511 standardized through TC 260 of the Standardization Administration
1512 of the People's Republic of China (SAC).
1513
1514 The input, output, and key of SMS4 are each 128 bits.
1515
1516 See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518 If unsure, say N.
1519
1520config CRYPTO_SPECK
1521 tristate "Speck cipher algorithm"
1522 select CRYPTO_ALGAPI
1523 help
1524 Speck is a lightweight block cipher that is tuned for optimal
1525 performance in software (rather than hardware).
1526
1527 Speck may not be as secure as AES, and should only be used on systems
1528 where AES is not fast enough.
1529
1530 See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532 If unsure, say N.
1533
1534config CRYPTO_TEA
1535 tristate "TEA, XTEA and XETA cipher algorithms"
1536 select CRYPTO_ALGAPI
1537 help
1538 TEA cipher algorithm.
1539
1540 Tiny Encryption Algorithm is a simple cipher that uses
1541 many rounds for security. It is very fast and uses
1542 little memory.
1543
1544 Xtendend Tiny Encryption Algorithm is a modification to
1545 the TEA algorithm to address a potential key weakness
1546 in the TEA algorithm.
1547
1548 Xtendend Encryption Tiny Algorithm is a mis-implementation
1549 of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552 tristate "Twofish cipher algorithm"
1553 select CRYPTO_ALGAPI
1554 select CRYPTO_TWOFISH_COMMON
1555 help
1556 Twofish cipher algorithm.
1557
1558 Twofish was submitted as an AES (Advanced Encryption Standard)
1559 candidate cipher by researchers at CounterPane Systems. It is a
1560 16 round block cipher supporting key sizes of 128, 192, and 256
1561 bits.
1562
1563 See also:
1564 <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567 tristate
1568 help
1569 Common parts of the Twofish cipher algorithm shared by the
1570 generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573 tristate "Twofish cipher algorithms (i586)"
1574 depends on (X86 || UML_X86) && !64BIT
1575 select CRYPTO_ALGAPI
1576 select CRYPTO_TWOFISH_COMMON
1577 help
1578 Twofish cipher algorithm.
1579
1580 Twofish was submitted as an AES (Advanced Encryption Standard)
1581 candidate cipher by researchers at CounterPane Systems. It is a
1582 16 round block cipher supporting key sizes of 128, 192, and 256
1583 bits.
1584
1585 See also:
1586 <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589 tristate "Twofish cipher algorithm (x86_64)"
1590 depends on (X86 || UML_X86) && 64BIT
1591 select CRYPTO_ALGAPI
1592 select CRYPTO_TWOFISH_COMMON
1593 help
1594 Twofish cipher algorithm (x86_64).
1595
1596 Twofish was submitted as an AES (Advanced Encryption Standard)
1597 candidate cipher by researchers at CounterPane Systems. It is a
1598 16 round block cipher supporting key sizes of 128, 192, and 256
1599 bits.
1600
1601 See also:
1602 <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606 depends on X86 && 64BIT
1607 select CRYPTO_BLKCIPHER
1608 select CRYPTO_TWOFISH_COMMON
1609 select CRYPTO_TWOFISH_X86_64
1610 select CRYPTO_GLUE_HELPER_X86
1611 help
1612 Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614 Twofish was submitted as an AES (Advanced Encryption Standard)
1615 candidate cipher by researchers at CounterPane Systems. It is a
1616 16 round block cipher supporting key sizes of 128, 192, and 256
1617 bits.
1618
1619 This module provides Twofish cipher algorithm that processes three
1620 blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622 See also:
1623 <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626 tristate "Twofish cipher algorithm (x86_64/AVX)"
1627 depends on X86 && 64BIT
1628 select CRYPTO_BLKCIPHER
1629 select CRYPTO_GLUE_HELPER_X86
1630 select CRYPTO_SIMD
1631 select CRYPTO_TWOFISH_COMMON
1632 select CRYPTO_TWOFISH_X86_64
1633 select CRYPTO_TWOFISH_X86_64_3WAY
1634 help
1635 Twofish cipher algorithm (x86_64/AVX).
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 This module provides the Twofish cipher algorithm that processes
1643 eight blocks parallel using the AVX Instruction Set.
1644
1645 See also:
1646 <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651 tristate "Deflate compression algorithm"
1652 select CRYPTO_ALGAPI
1653 select CRYPTO_ACOMP2
1654 select ZLIB_INFLATE
1655 select ZLIB_DEFLATE
1656 help
1657 This is the Deflate algorithm (RFC1951), specified for use in
1658 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660 You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663 tristate "LZO compression algorithm"
1664 select CRYPTO_ALGAPI
1665 select CRYPTO_ACOMP2
1666 select LZO_COMPRESS
1667 select LZO_DECOMPRESS
1668 help
1669 This is the LZO algorithm.
1670
1671config CRYPTO_842
1672 tristate "842 compression algorithm"
1673 select CRYPTO_ALGAPI
1674 select CRYPTO_ACOMP2
1675 select 842_COMPRESS
1676 select 842_DECOMPRESS
1677 help
1678 This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681 tristate "LZ4 compression algorithm"
1682 select CRYPTO_ALGAPI
1683 select CRYPTO_ACOMP2
1684 select LZ4_COMPRESS
1685 select LZ4_DECOMPRESS
1686 help
1687 This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690 tristate "LZ4HC compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZ4HC_COMPRESS
1694 select LZ4_DECOMPRESS
1695 help
1696 This is the LZ4 high compression mode algorithm.
1697
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701 tristate "Pseudo Random Number Generation for Cryptographic modules"
1702 select CRYPTO_AES
1703 select CRYPTO_RNG
1704 help
1705 This option enables the generic pseudo random number generator
1706 for cryptographic modules. Uses the Algorithm specified in
1707 ANSI X9.31 A.2.4. Note that this option must be enabled if
1708 CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711 tristate "NIST SP800-90A DRBG"
1712 help
1713 NIST SP800-90A compliant DRBG. In the following submenu, one or
1714 more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719 bool
1720 default y
1721 select CRYPTO_HMAC
1722 select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725 bool "Enable Hash DRBG"
1726 select CRYPTO_SHA256
1727 help
1728 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731 bool "Enable CTR DRBG"
1732 select CRYPTO_AES
1733 depends on CRYPTO_CTR
1734 help
1735 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738 tristate
1739 default CRYPTO_DRBG_MENU
1740 select CRYPTO_RNG
1741 select CRYPTO_JITTERENTROPY
1742
1743endif # if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747 select CRYPTO_RNG
1748 help
1749 The Jitterentropy RNG is a noise that is intended
1750 to provide seed to another RNG. The RNG does not
1751 perform any cryptographic whitening of the generated
1752 random numbers. This Jitterentropy RNG registers with
1753 the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756 tristate
1757
1758config CRYPTO_USER_API_HASH
1759 tristate "User-space interface for hash algorithms"
1760 depends on NET
1761 select CRYPTO_HASH
1762 select CRYPTO_USER_API
1763 help
1764 This option enables the user-spaces interface for hash
1765 algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768 tristate "User-space interface for symmetric key cipher algorithms"
1769 depends on NET
1770 select CRYPTO_BLKCIPHER
1771 select CRYPTO_USER_API
1772 help
1773 This option enables the user-spaces interface for symmetric
1774 key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777 tristate "User-space interface for random number generator algorithms"
1778 depends on NET
1779 select CRYPTO_RNG
1780 select CRYPTO_USER_API
1781 help
1782 This option enables the user-spaces interface for random
1783 number generator algorithms.
1784
1785config CRYPTO_USER_API_AEAD
1786 tristate "User-space interface for AEAD cipher algorithms"
1787 depends on NET
1788 select CRYPTO_AEAD
1789 select CRYPTO_BLKCIPHER
1790 select CRYPTO_NULL
1791 select CRYPTO_USER_API
1792 help
1793 This option enables the user-spaces interface for AEAD
1794 cipher algorithms.
1795
1796config CRYPTO_HASH_INFO
1797 bool
1798
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_SKCIPHER
56 tristate
57 select CRYPTO_SKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_SKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_SKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139config CRYPTO_MANAGER_DISABLE_TESTS
140 bool "Disable run-time self tests"
141 default y
142 help
143 Disable run-time self tests that normally take place at
144 algorithm registration.
145
146config CRYPTO_MANAGER_EXTRA_TESTS
147 bool "Enable extra run-time crypto self tests"
148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
149 help
150 Enable extra run-time self tests of registered crypto algorithms,
151 including randomized fuzz tests.
152
153 This is intended for developer use only, as these tests take much
154 longer to run than the normal self tests.
155
156config CRYPTO_GF128MUL
157 tristate
158
159config CRYPTO_NULL
160 tristate "Null algorithms"
161 select CRYPTO_NULL2
162 help
163 These are 'Null' algorithms, used by IPsec, which do nothing.
164
165config CRYPTO_NULL2
166 tristate
167 select CRYPTO_ALGAPI2
168 select CRYPTO_SKCIPHER2
169 select CRYPTO_HASH2
170
171config CRYPTO_PCRYPT
172 tristate "Parallel crypto engine"
173 depends on SMP
174 select PADATA
175 select CRYPTO_MANAGER
176 select CRYPTO_AEAD
177 help
178 This converts an arbitrary crypto algorithm into a parallel
179 algorithm that executes in kernel threads.
180
181config CRYPTO_CRYPTD
182 tristate "Software async crypto daemon"
183 select CRYPTO_SKCIPHER
184 select CRYPTO_HASH
185 select CRYPTO_MANAGER
186 help
187 This is a generic software asynchronous crypto daemon that
188 converts an arbitrary synchronous software crypto algorithm
189 into an asynchronous algorithm that executes in a kernel thread.
190
191config CRYPTO_AUTHENC
192 tristate "Authenc support"
193 select CRYPTO_AEAD
194 select CRYPTO_SKCIPHER
195 select CRYPTO_MANAGER
196 select CRYPTO_HASH
197 select CRYPTO_NULL
198 help
199 Authenc: Combined mode wrapper for IPsec.
200 This is required for IPSec.
201
202config CRYPTO_TEST
203 tristate "Testing module"
204 depends on m || EXPERT
205 select CRYPTO_MANAGER
206 help
207 Quick & dirty crypto test module.
208
209config CRYPTO_SIMD
210 tristate
211 select CRYPTO_CRYPTD
212
213config CRYPTO_ENGINE
214 tristate
215
216comment "Public-key cryptography"
217
218config CRYPTO_RSA
219 tristate "RSA algorithm"
220 select CRYPTO_AKCIPHER
221 select CRYPTO_MANAGER
222 select MPILIB
223 select ASN1
224 help
225 Generic implementation of the RSA public key algorithm.
226
227config CRYPTO_DH
228 tristate "Diffie-Hellman algorithm"
229 select CRYPTO_KPP
230 select MPILIB
231 help
232 Generic implementation of the Diffie-Hellman algorithm.
233
234config CRYPTO_ECC
235 tristate
236
237config CRYPTO_ECDH
238 tristate "ECDH algorithm"
239 select CRYPTO_ECC
240 select CRYPTO_KPP
241 select CRYPTO_RNG_DEFAULT
242 help
243 Generic implementation of the ECDH algorithm
244
245config CRYPTO_ECDSA
246 tristate "ECDSA (NIST P192, P256 etc.) algorithm"
247 select CRYPTO_ECC
248 select CRYPTO_AKCIPHER
249 select ASN1
250 help
251 Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
252 is A NIST cryptographic standard algorithm. Only signature verification
253 is implemented.
254
255config CRYPTO_ECRDSA
256 tristate "EC-RDSA (GOST 34.10) algorithm"
257 select CRYPTO_ECC
258 select CRYPTO_AKCIPHER
259 select CRYPTO_STREEBOG
260 select OID_REGISTRY
261 select ASN1
262 help
263 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
264 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
265 standard algorithms (called GOST algorithms). Only signature verification
266 is implemented.
267
268config CRYPTO_SM2
269 tristate "SM2 algorithm"
270 select CRYPTO_SM3
271 select CRYPTO_AKCIPHER
272 select CRYPTO_MANAGER
273 select MPILIB
274 select ASN1
275 help
276 Generic implementation of the SM2 public key algorithm. It was
277 published by State Encryption Management Bureau, China.
278 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
279
280 References:
281 https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
282 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
283 http://www.gmbz.org.cn/main/bzlb.html
284
285config CRYPTO_CURVE25519
286 tristate "Curve25519 algorithm"
287 select CRYPTO_KPP
288 select CRYPTO_LIB_CURVE25519_GENERIC
289
290config CRYPTO_CURVE25519_X86
291 tristate "x86_64 accelerated Curve25519 scalar multiplication library"
292 depends on X86 && 64BIT
293 select CRYPTO_LIB_CURVE25519_GENERIC
294 select CRYPTO_ARCH_HAVE_LIB_CURVE25519
295
296comment "Authenticated Encryption with Associated Data"
297
298config CRYPTO_CCM
299 tristate "CCM support"
300 select CRYPTO_CTR
301 select CRYPTO_HASH
302 select CRYPTO_AEAD
303 select CRYPTO_MANAGER
304 help
305 Support for Counter with CBC MAC. Required for IPsec.
306
307config CRYPTO_GCM
308 tristate "GCM/GMAC support"
309 select CRYPTO_CTR
310 select CRYPTO_AEAD
311 select CRYPTO_GHASH
312 select CRYPTO_NULL
313 select CRYPTO_MANAGER
314 help
315 Support for Galois/Counter Mode (GCM) and Galois Message
316 Authentication Code (GMAC). Required for IPSec.
317
318config CRYPTO_CHACHA20POLY1305
319 tristate "ChaCha20-Poly1305 AEAD support"
320 select CRYPTO_CHACHA20
321 select CRYPTO_POLY1305
322 select CRYPTO_AEAD
323 select CRYPTO_MANAGER
324 help
325 ChaCha20-Poly1305 AEAD support, RFC7539.
326
327 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
328 with the Poly1305 authenticator. It is defined in RFC7539 for use in
329 IETF protocols.
330
331config CRYPTO_AEGIS128
332 tristate "AEGIS-128 AEAD algorithm"
333 select CRYPTO_AEAD
334 select CRYPTO_AES # for AES S-box tables
335 help
336 Support for the AEGIS-128 dedicated AEAD algorithm.
337
338config CRYPTO_AEGIS128_SIMD
339 bool "Support SIMD acceleration for AEGIS-128"
340 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
341 default y
342
343config CRYPTO_AEGIS128_AESNI_SSE2
344 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
345 depends on X86 && 64BIT
346 select CRYPTO_AEAD
347 select CRYPTO_SIMD
348 help
349 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
350
351config CRYPTO_SEQIV
352 tristate "Sequence Number IV Generator"
353 select CRYPTO_AEAD
354 select CRYPTO_SKCIPHER
355 select CRYPTO_NULL
356 select CRYPTO_RNG_DEFAULT
357 select CRYPTO_MANAGER
358 help
359 This IV generator generates an IV based on a sequence number by
360 xoring it with a salt. This algorithm is mainly useful for CTR
361
362config CRYPTO_ECHAINIV
363 tristate "Encrypted Chain IV Generator"
364 select CRYPTO_AEAD
365 select CRYPTO_NULL
366 select CRYPTO_RNG_DEFAULT
367 select CRYPTO_MANAGER
368 help
369 This IV generator generates an IV based on the encryption of
370 a sequence number xored with a salt. This is the default
371 algorithm for CBC.
372
373comment "Block modes"
374
375config CRYPTO_CBC
376 tristate "CBC support"
377 select CRYPTO_SKCIPHER
378 select CRYPTO_MANAGER
379 help
380 CBC: Cipher Block Chaining mode
381 This block cipher algorithm is required for IPSec.
382
383config CRYPTO_CFB
384 tristate "CFB support"
385 select CRYPTO_SKCIPHER
386 select CRYPTO_MANAGER
387 help
388 CFB: Cipher FeedBack mode
389 This block cipher algorithm is required for TPM2 Cryptography.
390
391config CRYPTO_CTR
392 tristate "CTR support"
393 select CRYPTO_SKCIPHER
394 select CRYPTO_MANAGER
395 help
396 CTR: Counter mode
397 This block cipher algorithm is required for IPSec.
398
399config CRYPTO_CTS
400 tristate "CTS support"
401 select CRYPTO_SKCIPHER
402 select CRYPTO_MANAGER
403 help
404 CTS: Cipher Text Stealing
405 This is the Cipher Text Stealing mode as described by
406 Section 8 of rfc2040 and referenced by rfc3962
407 (rfc3962 includes errata information in its Appendix A) or
408 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
409 This mode is required for Kerberos gss mechanism support
410 for AES encryption.
411
412 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
413
414config CRYPTO_ECB
415 tristate "ECB support"
416 select CRYPTO_SKCIPHER
417 select CRYPTO_MANAGER
418 help
419 ECB: Electronic CodeBook mode
420 This is the simplest block cipher algorithm. It simply encrypts
421 the input block by block.
422
423config CRYPTO_LRW
424 tristate "LRW support"
425 select CRYPTO_SKCIPHER
426 select CRYPTO_MANAGER
427 select CRYPTO_GF128MUL
428 help
429 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
430 narrow block cipher mode for dm-crypt. Use it with cipher
431 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
432 The first 128, 192 or 256 bits in the key are used for AES and the
433 rest is used to tie each cipher block to its logical position.
434
435config CRYPTO_OFB
436 tristate "OFB support"
437 select CRYPTO_SKCIPHER
438 select CRYPTO_MANAGER
439 help
440 OFB: the Output Feedback mode makes a block cipher into a synchronous
441 stream cipher. It generates keystream blocks, which are then XORed
442 with the plaintext blocks to get the ciphertext. Flipping a bit in the
443 ciphertext produces a flipped bit in the plaintext at the same
444 location. This property allows many error correcting codes to function
445 normally even when applied before encryption.
446
447config CRYPTO_PCBC
448 tristate "PCBC support"
449 select CRYPTO_SKCIPHER
450 select CRYPTO_MANAGER
451 help
452 PCBC: Propagating Cipher Block Chaining mode
453 This block cipher algorithm is required for RxRPC.
454
455config CRYPTO_XTS
456 tristate "XTS support"
457 select CRYPTO_SKCIPHER
458 select CRYPTO_MANAGER
459 select CRYPTO_ECB
460 help
461 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
462 key size 256, 384 or 512 bits. This implementation currently
463 can't handle a sectorsize which is not a multiple of 16 bytes.
464
465config CRYPTO_KEYWRAP
466 tristate "Key wrapping support"
467 select CRYPTO_SKCIPHER
468 select CRYPTO_MANAGER
469 help
470 Support for key wrapping (NIST SP800-38F / RFC3394) without
471 padding.
472
473config CRYPTO_NHPOLY1305
474 tristate
475 select CRYPTO_HASH
476 select CRYPTO_LIB_POLY1305_GENERIC
477
478config CRYPTO_NHPOLY1305_SSE2
479 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
480 depends on X86 && 64BIT
481 select CRYPTO_NHPOLY1305
482 help
483 SSE2 optimized implementation of the hash function used by the
484 Adiantum encryption mode.
485
486config CRYPTO_NHPOLY1305_AVX2
487 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
488 depends on X86 && 64BIT
489 select CRYPTO_NHPOLY1305
490 help
491 AVX2 optimized implementation of the hash function used by the
492 Adiantum encryption mode.
493
494config CRYPTO_ADIANTUM
495 tristate "Adiantum support"
496 select CRYPTO_CHACHA20
497 select CRYPTO_LIB_POLY1305_GENERIC
498 select CRYPTO_NHPOLY1305
499 select CRYPTO_MANAGER
500 help
501 Adiantum is a tweakable, length-preserving encryption mode
502 designed for fast and secure disk encryption, especially on
503 CPUs without dedicated crypto instructions. It encrypts
504 each sector using the XChaCha12 stream cipher, two passes of
505 an ε-almost-∆-universal hash function, and an invocation of
506 the AES-256 block cipher on a single 16-byte block. On CPUs
507 without AES instructions, Adiantum is much faster than
508 AES-XTS.
509
510 Adiantum's security is provably reducible to that of its
511 underlying stream and block ciphers, subject to a security
512 bound. Unlike XTS, Adiantum is a true wide-block encryption
513 mode, so it actually provides an even stronger notion of
514 security than XTS, subject to the security bound.
515
516 If unsure, say N.
517
518config CRYPTO_ESSIV
519 tristate "ESSIV support for block encryption"
520 select CRYPTO_AUTHENC
521 help
522 Encrypted salt-sector initialization vector (ESSIV) is an IV
523 generation method that is used in some cases by fscrypt and/or
524 dm-crypt. It uses the hash of the block encryption key as the
525 symmetric key for a block encryption pass applied to the input
526 IV, making low entropy IV sources more suitable for block
527 encryption.
528
529 This driver implements a crypto API template that can be
530 instantiated either as an skcipher or as an AEAD (depending on the
531 type of the first template argument), and which defers encryption
532 and decryption requests to the encapsulated cipher after applying
533 ESSIV to the input IV. Note that in the AEAD case, it is assumed
534 that the keys are presented in the same format used by the authenc
535 template, and that the IV appears at the end of the authenticated
536 associated data (AAD) region (which is how dm-crypt uses it.)
537
538 Note that the use of ESSIV is not recommended for new deployments,
539 and so this only needs to be enabled when interoperability with
540 existing encrypted volumes of filesystems is required, or when
541 building for a particular system that requires it (e.g., when
542 the SoC in question has accelerated CBC but not XTS, making CBC
543 combined with ESSIV the only feasible mode for h/w accelerated
544 block encryption)
545
546comment "Hash modes"
547
548config CRYPTO_CMAC
549 tristate "CMAC support"
550 select CRYPTO_HASH
551 select CRYPTO_MANAGER
552 help
553 Cipher-based Message Authentication Code (CMAC) specified by
554 The National Institute of Standards and Technology (NIST).
555
556 https://tools.ietf.org/html/rfc4493
557 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
558
559config CRYPTO_HMAC
560 tristate "HMAC support"
561 select CRYPTO_HASH
562 select CRYPTO_MANAGER
563 help
564 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
565 This is required for IPSec.
566
567config CRYPTO_XCBC
568 tristate "XCBC support"
569 select CRYPTO_HASH
570 select CRYPTO_MANAGER
571 help
572 XCBC: Keyed-Hashing with encryption algorithm
573 https://www.ietf.org/rfc/rfc3566.txt
574 http://csrc.nist.gov/encryption/modes/proposedmodes/
575 xcbc-mac/xcbc-mac-spec.pdf
576
577config CRYPTO_VMAC
578 tristate "VMAC support"
579 select CRYPTO_HASH
580 select CRYPTO_MANAGER
581 help
582 VMAC is a message authentication algorithm designed for
583 very high speed on 64-bit architectures.
584
585 See also:
586 <https://fastcrypto.org/vmac>
587
588comment "Digest"
589
590config CRYPTO_CRC32C
591 tristate "CRC32c CRC algorithm"
592 select CRYPTO_HASH
593 select CRC32
594 help
595 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
596 by iSCSI for header and data digests and by others.
597 See Castagnoli93. Module will be crc32c.
598
599config CRYPTO_CRC32C_INTEL
600 tristate "CRC32c INTEL hardware acceleration"
601 depends on X86
602 select CRYPTO_HASH
603 help
604 In Intel processor with SSE4.2 supported, the processor will
605 support CRC32C implementation using hardware accelerated CRC32
606 instruction. This option will create 'crc32c-intel' module,
607 which will enable any routine to use the CRC32 instruction to
608 gain performance compared with software implementation.
609 Module will be crc32c-intel.
610
611config CRYPTO_CRC32C_VPMSUM
612 tristate "CRC32c CRC algorithm (powerpc64)"
613 depends on PPC64 && ALTIVEC
614 select CRYPTO_HASH
615 select CRC32
616 help
617 CRC32c algorithm implemented using vector polynomial multiply-sum
618 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
619 and newer processors for improved performance.
620
621
622config CRYPTO_CRC32C_SPARC64
623 tristate "CRC32c CRC algorithm (SPARC64)"
624 depends on SPARC64
625 select CRYPTO_HASH
626 select CRC32
627 help
628 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
629 when available.
630
631config CRYPTO_CRC32
632 tristate "CRC32 CRC algorithm"
633 select CRYPTO_HASH
634 select CRC32
635 help
636 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
637 Shash crypto api wrappers to crc32_le function.
638
639config CRYPTO_CRC32_PCLMUL
640 tristate "CRC32 PCLMULQDQ hardware acceleration"
641 depends on X86
642 select CRYPTO_HASH
643 select CRC32
644 help
645 From Intel Westmere and AMD Bulldozer processor with SSE4.2
646 and PCLMULQDQ supported, the processor will support
647 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
648 instruction. This option will create 'crc32-pclmul' module,
649 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
650 and gain better performance as compared with the table implementation.
651
652config CRYPTO_CRC32_MIPS
653 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
654 depends on MIPS_CRC_SUPPORT
655 select CRYPTO_HASH
656 help
657 CRC32c and CRC32 CRC algorithms implemented using mips crypto
658 instructions, when available.
659
660
661config CRYPTO_XXHASH
662 tristate "xxHash hash algorithm"
663 select CRYPTO_HASH
664 select XXHASH
665 help
666 xxHash non-cryptographic hash algorithm. Extremely fast, working at
667 speeds close to RAM limits.
668
669config CRYPTO_BLAKE2B
670 tristate "BLAKE2b digest algorithm"
671 select CRYPTO_HASH
672 help
673 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
674 optimized for 64bit platforms and can produce digests of any size
675 between 1 to 64. The keyed hash is also implemented.
676
677 This module provides the following algorithms:
678
679 - blake2b-160
680 - blake2b-256
681 - blake2b-384
682 - blake2b-512
683
684 See https://blake2.net for further information.
685
686config CRYPTO_BLAKE2S
687 tristate "BLAKE2s digest algorithm"
688 select CRYPTO_LIB_BLAKE2S_GENERIC
689 select CRYPTO_HASH
690 help
691 Implementation of cryptographic hash function BLAKE2s
692 optimized for 8-32bit platforms and can produce digests of any size
693 between 1 to 32. The keyed hash is also implemented.
694
695 This module provides the following algorithms:
696
697 - blake2s-128
698 - blake2s-160
699 - blake2s-224
700 - blake2s-256
701
702 See https://blake2.net for further information.
703
704config CRYPTO_BLAKE2S_X86
705 tristate "BLAKE2s digest algorithm (x86 accelerated version)"
706 depends on X86 && 64BIT
707 select CRYPTO_LIB_BLAKE2S_GENERIC
708 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
709
710config CRYPTO_CRCT10DIF
711 tristate "CRCT10DIF algorithm"
712 select CRYPTO_HASH
713 help
714 CRC T10 Data Integrity Field computation is being cast as
715 a crypto transform. This allows for faster crc t10 diff
716 transforms to be used if they are available.
717
718config CRYPTO_CRCT10DIF_PCLMUL
719 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
720 depends on X86 && 64BIT && CRC_T10DIF
721 select CRYPTO_HASH
722 help
723 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
724 CRC T10 DIF PCLMULQDQ computation can be hardware
725 accelerated PCLMULQDQ instruction. This option will create
726 'crct10dif-pclmul' module, which is faster when computing the
727 crct10dif checksum as compared with the generic table implementation.
728
729config CRYPTO_CRCT10DIF_VPMSUM
730 tristate "CRC32T10DIF powerpc64 hardware acceleration"
731 depends on PPC64 && ALTIVEC && CRC_T10DIF
732 select CRYPTO_HASH
733 help
734 CRC10T10DIF algorithm implemented using vector polynomial
735 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
736 POWER8 and newer processors for improved performance.
737
738config CRYPTO_VPMSUM_TESTER
739 tristate "Powerpc64 vpmsum hardware acceleration tester"
740 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
741 help
742 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
743 POWER8 vpmsum instructions.
744 Unless you are testing these algorithms, you don't need this.
745
746config CRYPTO_GHASH
747 tristate "GHASH hash function"
748 select CRYPTO_GF128MUL
749 select CRYPTO_HASH
750 help
751 GHASH is the hash function used in GCM (Galois/Counter Mode).
752 It is not a general-purpose cryptographic hash function.
753
754config CRYPTO_POLY1305
755 tristate "Poly1305 authenticator algorithm"
756 select CRYPTO_HASH
757 select CRYPTO_LIB_POLY1305_GENERIC
758 help
759 Poly1305 authenticator algorithm, RFC7539.
760
761 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
762 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
763 in IETF protocols. This is the portable C implementation of Poly1305.
764
765config CRYPTO_POLY1305_X86_64
766 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
767 depends on X86 && 64BIT
768 select CRYPTO_LIB_POLY1305_GENERIC
769 select CRYPTO_ARCH_HAVE_LIB_POLY1305
770 help
771 Poly1305 authenticator algorithm, RFC7539.
772
773 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
774 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
775 in IETF protocols. This is the x86_64 assembler implementation using SIMD
776 instructions.
777
778config CRYPTO_POLY1305_MIPS
779 tristate "Poly1305 authenticator algorithm (MIPS optimized)"
780 depends on MIPS
781 select CRYPTO_ARCH_HAVE_LIB_POLY1305
782
783config CRYPTO_MD4
784 tristate "MD4 digest algorithm"
785 select CRYPTO_HASH
786 help
787 MD4 message digest algorithm (RFC1320).
788
789config CRYPTO_MD5
790 tristate "MD5 digest algorithm"
791 select CRYPTO_HASH
792 help
793 MD5 message digest algorithm (RFC1321).
794
795config CRYPTO_MD5_OCTEON
796 tristate "MD5 digest algorithm (OCTEON)"
797 depends on CPU_CAVIUM_OCTEON
798 select CRYPTO_MD5
799 select CRYPTO_HASH
800 help
801 MD5 message digest algorithm (RFC1321) implemented
802 using OCTEON crypto instructions, when available.
803
804config CRYPTO_MD5_PPC
805 tristate "MD5 digest algorithm (PPC)"
806 depends on PPC
807 select CRYPTO_HASH
808 help
809 MD5 message digest algorithm (RFC1321) implemented
810 in PPC assembler.
811
812config CRYPTO_MD5_SPARC64
813 tristate "MD5 digest algorithm (SPARC64)"
814 depends on SPARC64
815 select CRYPTO_MD5
816 select CRYPTO_HASH
817 help
818 MD5 message digest algorithm (RFC1321) implemented
819 using sparc64 crypto instructions, when available.
820
821config CRYPTO_MICHAEL_MIC
822 tristate "Michael MIC keyed digest algorithm"
823 select CRYPTO_HASH
824 help
825 Michael MIC is used for message integrity protection in TKIP
826 (IEEE 802.11i). This algorithm is required for TKIP, but it
827 should not be used for other purposes because of the weakness
828 of the algorithm.
829
830config CRYPTO_RMD160
831 tristate "RIPEMD-160 digest algorithm"
832 select CRYPTO_HASH
833 help
834 RIPEMD-160 (ISO/IEC 10118-3:2004).
835
836 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
837 to be used as a secure replacement for the 128-bit hash functions
838 MD4, MD5 and it's predecessor RIPEMD
839 (not to be confused with RIPEMD-128).
840
841 It's speed is comparable to SHA1 and there are no known attacks
842 against RIPEMD-160.
843
844 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
845 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
846
847config CRYPTO_SHA1
848 tristate "SHA1 digest algorithm"
849 select CRYPTO_HASH
850 help
851 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
852
853config CRYPTO_SHA1_SSSE3
854 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
855 depends on X86 && 64BIT
856 select CRYPTO_SHA1
857 select CRYPTO_HASH
858 help
859 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
860 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
861 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
862 when available.
863
864config CRYPTO_SHA256_SSSE3
865 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
866 depends on X86 && 64BIT
867 select CRYPTO_SHA256
868 select CRYPTO_HASH
869 help
870 SHA-256 secure hash standard (DFIPS 180-2) implemented
871 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
872 Extensions version 1 (AVX1), or Advanced Vector Extensions
873 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
874 Instructions) when available.
875
876config CRYPTO_SHA512_SSSE3
877 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
878 depends on X86 && 64BIT
879 select CRYPTO_SHA512
880 select CRYPTO_HASH
881 help
882 SHA-512 secure hash standard (DFIPS 180-2) implemented
883 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
884 Extensions version 1 (AVX1), or Advanced Vector Extensions
885 version 2 (AVX2) instructions, when available.
886
887config CRYPTO_SHA1_OCTEON
888 tristate "SHA1 digest algorithm (OCTEON)"
889 depends on CPU_CAVIUM_OCTEON
890 select CRYPTO_SHA1
891 select CRYPTO_HASH
892 help
893 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
894 using OCTEON crypto instructions, when available.
895
896config CRYPTO_SHA1_SPARC64
897 tristate "SHA1 digest algorithm (SPARC64)"
898 depends on SPARC64
899 select CRYPTO_SHA1
900 select CRYPTO_HASH
901 help
902 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
903 using sparc64 crypto instructions, when available.
904
905config CRYPTO_SHA1_PPC
906 tristate "SHA1 digest algorithm (powerpc)"
907 depends on PPC
908 help
909 This is the powerpc hardware accelerated implementation of the
910 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
911
912config CRYPTO_SHA1_PPC_SPE
913 tristate "SHA1 digest algorithm (PPC SPE)"
914 depends on PPC && SPE
915 help
916 SHA-1 secure hash standard (DFIPS 180-4) implemented
917 using powerpc SPE SIMD instruction set.
918
919config CRYPTO_SHA256
920 tristate "SHA224 and SHA256 digest algorithm"
921 select CRYPTO_HASH
922 select CRYPTO_LIB_SHA256
923 help
924 SHA256 secure hash standard (DFIPS 180-2).
925
926 This version of SHA implements a 256 bit hash with 128 bits of
927 security against collision attacks.
928
929 This code also includes SHA-224, a 224 bit hash with 112 bits
930 of security against collision attacks.
931
932config CRYPTO_SHA256_PPC_SPE
933 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
934 depends on PPC && SPE
935 select CRYPTO_SHA256
936 select CRYPTO_HASH
937 help
938 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
939 implemented using powerpc SPE SIMD instruction set.
940
941config CRYPTO_SHA256_OCTEON
942 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
943 depends on CPU_CAVIUM_OCTEON
944 select CRYPTO_SHA256
945 select CRYPTO_HASH
946 help
947 SHA-256 secure hash standard (DFIPS 180-2) implemented
948 using OCTEON crypto instructions, when available.
949
950config CRYPTO_SHA256_SPARC64
951 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
952 depends on SPARC64
953 select CRYPTO_SHA256
954 select CRYPTO_HASH
955 help
956 SHA-256 secure hash standard (DFIPS 180-2) implemented
957 using sparc64 crypto instructions, when available.
958
959config CRYPTO_SHA512
960 tristate "SHA384 and SHA512 digest algorithms"
961 select CRYPTO_HASH
962 help
963 SHA512 secure hash standard (DFIPS 180-2).
964
965 This version of SHA implements a 512 bit hash with 256 bits of
966 security against collision attacks.
967
968 This code also includes SHA-384, a 384 bit hash with 192 bits
969 of security against collision attacks.
970
971config CRYPTO_SHA512_OCTEON
972 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
973 depends on CPU_CAVIUM_OCTEON
974 select CRYPTO_SHA512
975 select CRYPTO_HASH
976 help
977 SHA-512 secure hash standard (DFIPS 180-2) implemented
978 using OCTEON crypto instructions, when available.
979
980config CRYPTO_SHA512_SPARC64
981 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
982 depends on SPARC64
983 select CRYPTO_SHA512
984 select CRYPTO_HASH
985 help
986 SHA-512 secure hash standard (DFIPS 180-2) implemented
987 using sparc64 crypto instructions, when available.
988
989config CRYPTO_SHA3
990 tristate "SHA3 digest algorithm"
991 select CRYPTO_HASH
992 help
993 SHA-3 secure hash standard (DFIPS 202). It's based on
994 cryptographic sponge function family called Keccak.
995
996 References:
997 http://keccak.noekeon.org/
998
999config CRYPTO_SM3
1000 tristate "SM3 digest algorithm"
1001 select CRYPTO_HASH
1002 help
1003 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1004 It is part of the Chinese Commercial Cryptography suite.
1005
1006 References:
1007 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011 tristate "Streebog Hash Function"
1012 select CRYPTO_HASH
1013 help
1014 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015 cryptographic standard algorithms (called GOST algorithms).
1016 This setting enables two hash algorithms with 256 and 512 bits output.
1017
1018 References:
1019 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020 https://tools.ietf.org/html/rfc6986
1021
1022config CRYPTO_WP512
1023 tristate "Whirlpool digest algorithms"
1024 select CRYPTO_HASH
1025 help
1026 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1027
1028 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1030
1031 See also:
1032 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1033
1034config CRYPTO_GHASH_CLMUL_NI_INTEL
1035 tristate "GHASH hash function (CLMUL-NI accelerated)"
1036 depends on X86 && 64BIT
1037 select CRYPTO_CRYPTD
1038 help
1039 This is the x86_64 CLMUL-NI accelerated implementation of
1040 GHASH, the hash function used in GCM (Galois/Counter mode).
1041
1042comment "Ciphers"
1043
1044config CRYPTO_AES
1045 tristate "AES cipher algorithms"
1046 select CRYPTO_ALGAPI
1047 select CRYPTO_LIB_AES
1048 help
1049 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1050 algorithm.
1051
1052 Rijndael appears to be consistently a very good performer in
1053 both hardware and software across a wide range of computing
1054 environments regardless of its use in feedback or non-feedback
1055 modes. Its key setup time is excellent, and its key agility is
1056 good. Rijndael's very low memory requirements make it very well
1057 suited for restricted-space environments, in which it also
1058 demonstrates excellent performance. Rijndael's operations are
1059 among the easiest to defend against power and timing attacks.
1060
1061 The AES specifies three key sizes: 128, 192 and 256 bits
1062
1063 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1064
1065config CRYPTO_AES_TI
1066 tristate "Fixed time AES cipher"
1067 select CRYPTO_ALGAPI
1068 select CRYPTO_LIB_AES
1069 help
1070 This is a generic implementation of AES that attempts to eliminate
1071 data dependent latencies as much as possible without affecting
1072 performance too much. It is intended for use by the generic CCM
1073 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074 solely on encryption (although decryption is supported as well, but
1075 with a more dramatic performance hit)
1076
1077 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078 8 for decryption), this implementation only uses just two S-boxes of
1079 256 bytes each, and attempts to eliminate data dependent latencies by
1080 prefetching the entire table into the cache at the start of each
1081 block. Interrupts are also disabled to avoid races where cachelines
1082 are evicted when the CPU is interrupted to do something else.
1083
1084config CRYPTO_AES_NI_INTEL
1085 tristate "AES cipher algorithms (AES-NI)"
1086 depends on X86
1087 select CRYPTO_AEAD
1088 select CRYPTO_LIB_AES
1089 select CRYPTO_ALGAPI
1090 select CRYPTO_SKCIPHER
1091 select CRYPTO_SIMD
1092 help
1093 Use Intel AES-NI instructions for AES algorithm.
1094
1095 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1096 algorithm.
1097
1098 Rijndael appears to be consistently a very good performer in
1099 both hardware and software across a wide range of computing
1100 environments regardless of its use in feedback or non-feedback
1101 modes. Its key setup time is excellent, and its key agility is
1102 good. Rijndael's very low memory requirements make it very well
1103 suited for restricted-space environments, in which it also
1104 demonstrates excellent performance. Rijndael's operations are
1105 among the easiest to defend against power and timing attacks.
1106
1107 The AES specifies three key sizes: 128, 192 and 256 bits
1108
1109 See <http://csrc.nist.gov/encryption/aes/> for more information.
1110
1111 In addition to AES cipher algorithm support, the acceleration
1112 for some popular block cipher mode is supported too, including
1113 ECB, CBC, LRW, XTS. The 64 bit version has additional
1114 acceleration for CTR.
1115
1116config CRYPTO_AES_SPARC64
1117 tristate "AES cipher algorithms (SPARC64)"
1118 depends on SPARC64
1119 select CRYPTO_SKCIPHER
1120 help
1121 Use SPARC64 crypto opcodes for AES algorithm.
1122
1123 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1124 algorithm.
1125
1126 Rijndael appears to be consistently a very good performer in
1127 both hardware and software across a wide range of computing
1128 environments regardless of its use in feedback or non-feedback
1129 modes. Its key setup time is excellent, and its key agility is
1130 good. Rijndael's very low memory requirements make it very well
1131 suited for restricted-space environments, in which it also
1132 demonstrates excellent performance. Rijndael's operations are
1133 among the easiest to defend against power and timing attacks.
1134
1135 The AES specifies three key sizes: 128, 192 and 256 bits
1136
1137 See <http://csrc.nist.gov/encryption/aes/> for more information.
1138
1139 In addition to AES cipher algorithm support, the acceleration
1140 for some popular block cipher mode is supported too, including
1141 ECB and CBC.
1142
1143config CRYPTO_AES_PPC_SPE
1144 tristate "AES cipher algorithms (PPC SPE)"
1145 depends on PPC && SPE
1146 select CRYPTO_SKCIPHER
1147 help
1148 AES cipher algorithms (FIPS-197). Additionally the acceleration
1149 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150 This module should only be used for low power (router) devices
1151 without hardware AES acceleration (e.g. caam crypto). It reduces the
1152 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153 timining attacks. Nevertheless it might be not as secure as other
1154 architecture specific assembler implementations that work on 1KB
1155 tables or 256 bytes S-boxes.
1156
1157config CRYPTO_ANUBIS
1158 tristate "Anubis cipher algorithm"
1159 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160 select CRYPTO_ALGAPI
1161 help
1162 Anubis cipher algorithm.
1163
1164 Anubis is a variable key length cipher which can use keys from
1165 128 bits to 320 bits in length. It was evaluated as a entrant
1166 in the NESSIE competition.
1167
1168 See also:
1169 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1170 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1171
1172config CRYPTO_ARC4
1173 tristate "ARC4 cipher algorithm"
1174 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175 select CRYPTO_SKCIPHER
1176 select CRYPTO_LIB_ARC4
1177 help
1178 ARC4 cipher algorithm.
1179
1180 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181 bits in length. This algorithm is required for driver-based
1182 WEP, but it should not be for other purposes because of the
1183 weakness of the algorithm.
1184
1185config CRYPTO_BLOWFISH
1186 tristate "Blowfish cipher algorithm"
1187 select CRYPTO_ALGAPI
1188 select CRYPTO_BLOWFISH_COMMON
1189 help
1190 Blowfish cipher algorithm, by Bruce Schneier.
1191
1192 This is a variable key length cipher which can use keys from 32
1193 bits to 448 bits in length. It's fast, simple and specifically
1194 designed for use on "large microprocessors".
1195
1196 See also:
1197 <https://www.schneier.com/blowfish.html>
1198
1199config CRYPTO_BLOWFISH_COMMON
1200 tristate
1201 help
1202 Common parts of the Blowfish cipher algorithm shared by the
1203 generic c and the assembler implementations.
1204
1205 See also:
1206 <https://www.schneier.com/blowfish.html>
1207
1208config CRYPTO_BLOWFISH_X86_64
1209 tristate "Blowfish cipher algorithm (x86_64)"
1210 depends on X86 && 64BIT
1211 select CRYPTO_SKCIPHER
1212 select CRYPTO_BLOWFISH_COMMON
1213 imply CRYPTO_CTR
1214 help
1215 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1216
1217 This is a variable key length cipher which can use keys from 32
1218 bits to 448 bits in length. It's fast, simple and specifically
1219 designed for use on "large microprocessors".
1220
1221 See also:
1222 <https://www.schneier.com/blowfish.html>
1223
1224config CRYPTO_CAMELLIA
1225 tristate "Camellia cipher algorithms"
1226 select CRYPTO_ALGAPI
1227 help
1228 Camellia cipher algorithms module.
1229
1230 Camellia is a symmetric key block cipher developed jointly
1231 at NTT and Mitsubishi Electric Corporation.
1232
1233 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234
1235 See also:
1236 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237
1238config CRYPTO_CAMELLIA_X86_64
1239 tristate "Camellia cipher algorithm (x86_64)"
1240 depends on X86 && 64BIT
1241 select CRYPTO_SKCIPHER
1242 imply CRYPTO_CTR
1243 help
1244 Camellia cipher algorithm module (x86_64).
1245
1246 Camellia is a symmetric key block cipher developed jointly
1247 at NTT and Mitsubishi Electric Corporation.
1248
1249 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250
1251 See also:
1252 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253
1254config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256 depends on X86 && 64BIT
1257 select CRYPTO_SKCIPHER
1258 select CRYPTO_CAMELLIA_X86_64
1259 select CRYPTO_SIMD
1260 imply CRYPTO_XTS
1261 help
1262 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263
1264 Camellia is a symmetric key block cipher developed jointly
1265 at NTT and Mitsubishi Electric Corporation.
1266
1267 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268
1269 See also:
1270 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271
1272config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274 depends on X86 && 64BIT
1275 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276 help
1277 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278
1279 Camellia is a symmetric key block cipher developed jointly
1280 at NTT and Mitsubishi Electric Corporation.
1281
1282 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283
1284 See also:
1285 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286
1287config CRYPTO_CAMELLIA_SPARC64
1288 tristate "Camellia cipher algorithm (SPARC64)"
1289 depends on SPARC64
1290 select CRYPTO_ALGAPI
1291 select CRYPTO_SKCIPHER
1292 help
1293 Camellia cipher algorithm module (SPARC64).
1294
1295 Camellia is a symmetric key block cipher developed jointly
1296 at NTT and Mitsubishi Electric Corporation.
1297
1298 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1299
1300 See also:
1301 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1302
1303config CRYPTO_CAST_COMMON
1304 tristate
1305 help
1306 Common parts of the CAST cipher algorithms shared by the
1307 generic c and the assembler implementations.
1308
1309config CRYPTO_CAST5
1310 tristate "CAST5 (CAST-128) cipher algorithm"
1311 select CRYPTO_ALGAPI
1312 select CRYPTO_CAST_COMMON
1313 help
1314 The CAST5 encryption algorithm (synonymous with CAST-128) is
1315 described in RFC2144.
1316
1317config CRYPTO_CAST5_AVX_X86_64
1318 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1319 depends on X86 && 64BIT
1320 select CRYPTO_SKCIPHER
1321 select CRYPTO_CAST5
1322 select CRYPTO_CAST_COMMON
1323 select CRYPTO_SIMD
1324 imply CRYPTO_CTR
1325 help
1326 The CAST5 encryption algorithm (synonymous with CAST-128) is
1327 described in RFC2144.
1328
1329 This module provides the Cast5 cipher algorithm that processes
1330 sixteen blocks parallel using the AVX instruction set.
1331
1332config CRYPTO_CAST6
1333 tristate "CAST6 (CAST-256) cipher algorithm"
1334 select CRYPTO_ALGAPI
1335 select CRYPTO_CAST_COMMON
1336 help
1337 The CAST6 encryption algorithm (synonymous with CAST-256) is
1338 described in RFC2612.
1339
1340config CRYPTO_CAST6_AVX_X86_64
1341 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1342 depends on X86 && 64BIT
1343 select CRYPTO_SKCIPHER
1344 select CRYPTO_CAST6
1345 select CRYPTO_CAST_COMMON
1346 select CRYPTO_SIMD
1347 imply CRYPTO_XTS
1348 imply CRYPTO_CTR
1349 help
1350 The CAST6 encryption algorithm (synonymous with CAST-256) is
1351 described in RFC2612.
1352
1353 This module provides the Cast6 cipher algorithm that processes
1354 eight blocks parallel using the AVX instruction set.
1355
1356config CRYPTO_DES
1357 tristate "DES and Triple DES EDE cipher algorithms"
1358 select CRYPTO_ALGAPI
1359 select CRYPTO_LIB_DES
1360 help
1361 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362
1363config CRYPTO_DES_SPARC64
1364 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1365 depends on SPARC64
1366 select CRYPTO_ALGAPI
1367 select CRYPTO_LIB_DES
1368 select CRYPTO_SKCIPHER
1369 help
1370 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371 optimized using SPARC64 crypto opcodes.
1372
1373config CRYPTO_DES3_EDE_X86_64
1374 tristate "Triple DES EDE cipher algorithm (x86-64)"
1375 depends on X86 && 64BIT
1376 select CRYPTO_SKCIPHER
1377 select CRYPTO_LIB_DES
1378 imply CRYPTO_CTR
1379 help
1380 Triple DES EDE (FIPS 46-3) algorithm.
1381
1382 This module provides implementation of the Triple DES EDE cipher
1383 algorithm that is optimized for x86-64 processors. Two versions of
1384 algorithm are provided; regular processing one input block and
1385 one that processes three blocks parallel.
1386
1387config CRYPTO_FCRYPT
1388 tristate "FCrypt cipher algorithm"
1389 select CRYPTO_ALGAPI
1390 select CRYPTO_SKCIPHER
1391 help
1392 FCrypt algorithm used by RxRPC.
1393
1394config CRYPTO_KHAZAD
1395 tristate "Khazad cipher algorithm"
1396 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397 select CRYPTO_ALGAPI
1398 help
1399 Khazad cipher algorithm.
1400
1401 Khazad was a finalist in the initial NESSIE competition. It is
1402 an algorithm optimized for 64-bit processors with good performance
1403 on 32-bit processors. Khazad uses an 128 bit key size.
1404
1405 See also:
1406 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407
1408config CRYPTO_CHACHA20
1409 tristate "ChaCha stream cipher algorithms"
1410 select CRYPTO_LIB_CHACHA_GENERIC
1411 select CRYPTO_SKCIPHER
1412 help
1413 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414
1415 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416 Bernstein and further specified in RFC7539 for use in IETF protocols.
1417 This is the portable C implementation of ChaCha20. See also:
1418 <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419
1420 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1422 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423 while provably retaining ChaCha20's security. See also:
1424 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425
1426 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427 reduced security margin but increased performance. It can be needed
1428 in some performance-sensitive scenarios.
1429
1430config CRYPTO_CHACHA20_X86_64
1431 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432 depends on X86 && 64BIT
1433 select CRYPTO_SKCIPHER
1434 select CRYPTO_LIB_CHACHA_GENERIC
1435 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436 help
1437 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1438 XChaCha20, and XChaCha12 stream ciphers.
1439
1440config CRYPTO_CHACHA_MIPS
1441 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1442 depends on CPU_MIPS32_R2
1443 select CRYPTO_SKCIPHER
1444 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1445
1446config CRYPTO_SEED
1447 tristate "SEED cipher algorithm"
1448 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449 select CRYPTO_ALGAPI
1450 help
1451 SEED cipher algorithm (RFC4269).
1452
1453 SEED is a 128-bit symmetric key block cipher that has been
1454 developed by KISA (Korea Information Security Agency) as a
1455 national standard encryption algorithm of the Republic of Korea.
1456 It is a 16 round block cipher with the key size of 128 bit.
1457
1458 See also:
1459 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460
1461config CRYPTO_SERPENT
1462 tristate "Serpent cipher algorithm"
1463 select CRYPTO_ALGAPI
1464 help
1465 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466
1467 Keys are allowed to be from 0 to 256 bits in length, in steps
1468 of 8 bits.
1469
1470 See also:
1471 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472
1473config CRYPTO_SERPENT_SSE2_X86_64
1474 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475 depends on X86 && 64BIT
1476 select CRYPTO_SKCIPHER
1477 select CRYPTO_SERPENT
1478 select CRYPTO_SIMD
1479 imply CRYPTO_CTR
1480 help
1481 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483 Keys are allowed to be from 0 to 256 bits in length, in steps
1484 of 8 bits.
1485
1486 This module provides Serpent cipher algorithm that processes eight
1487 blocks parallel using SSE2 instruction set.
1488
1489 See also:
1490 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_SSE2_586
1493 tristate "Serpent cipher algorithm (i586/SSE2)"
1494 depends on X86 && !64BIT
1495 select CRYPTO_SKCIPHER
1496 select CRYPTO_SERPENT
1497 select CRYPTO_SIMD
1498 imply CRYPTO_CTR
1499 help
1500 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501
1502 Keys are allowed to be from 0 to 256 bits in length, in steps
1503 of 8 bits.
1504
1505 This module provides Serpent cipher algorithm that processes four
1506 blocks parallel using SSE2 instruction set.
1507
1508 See also:
1509 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510
1511config CRYPTO_SERPENT_AVX_X86_64
1512 tristate "Serpent cipher algorithm (x86_64/AVX)"
1513 depends on X86 && 64BIT
1514 select CRYPTO_SKCIPHER
1515 select CRYPTO_SERPENT
1516 select CRYPTO_SIMD
1517 imply CRYPTO_XTS
1518 imply CRYPTO_CTR
1519 help
1520 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1521
1522 Keys are allowed to be from 0 to 256 bits in length, in steps
1523 of 8 bits.
1524
1525 This module provides the Serpent cipher algorithm that processes
1526 eight blocks parallel using the AVX instruction set.
1527
1528 See also:
1529 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530
1531config CRYPTO_SERPENT_AVX2_X86_64
1532 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1533 depends on X86 && 64BIT
1534 select CRYPTO_SERPENT_AVX_X86_64
1535 help
1536 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1537
1538 Keys are allowed to be from 0 to 256 bits in length, in steps
1539 of 8 bits.
1540
1541 This module provides Serpent cipher algorithm that processes 16
1542 blocks parallel using AVX2 instruction set.
1543
1544 See also:
1545 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1546
1547config CRYPTO_SM4
1548 tristate "SM4 cipher algorithm"
1549 select CRYPTO_ALGAPI
1550 help
1551 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1552
1553 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1554 Organization of State Commercial Administration of China (OSCCA)
1555 as an authorized cryptographic algorithms for the use within China.
1556
1557 SMS4 was originally created for use in protecting wireless
1558 networks, and is mandated in the Chinese National Standard for
1559 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1560 (GB.15629.11-2003).
1561
1562 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1563 standardized through TC 260 of the Standardization Administration
1564 of the People's Republic of China (SAC).
1565
1566 The input, output, and key of SMS4 are each 128 bits.
1567
1568 See also: <https://eprint.iacr.org/2008/329.pdf>
1569
1570 If unsure, say N.
1571
1572config CRYPTO_TEA
1573 tristate "TEA, XTEA and XETA cipher algorithms"
1574 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1575 select CRYPTO_ALGAPI
1576 help
1577 TEA cipher algorithm.
1578
1579 Tiny Encryption Algorithm is a simple cipher that uses
1580 many rounds for security. It is very fast and uses
1581 little memory.
1582
1583 Xtendend Tiny Encryption Algorithm is a modification to
1584 the TEA algorithm to address a potential key weakness
1585 in the TEA algorithm.
1586
1587 Xtendend Encryption Tiny Algorithm is a mis-implementation
1588 of the XTEA algorithm for compatibility purposes.
1589
1590config CRYPTO_TWOFISH
1591 tristate "Twofish cipher algorithm"
1592 select CRYPTO_ALGAPI
1593 select CRYPTO_TWOFISH_COMMON
1594 help
1595 Twofish cipher algorithm.
1596
1597 Twofish was submitted as an AES (Advanced Encryption Standard)
1598 candidate cipher by researchers at CounterPane Systems. It is a
1599 16 round block cipher supporting key sizes of 128, 192, and 256
1600 bits.
1601
1602 See also:
1603 <https://www.schneier.com/twofish.html>
1604
1605config CRYPTO_TWOFISH_COMMON
1606 tristate
1607 help
1608 Common parts of the Twofish cipher algorithm shared by the
1609 generic c and the assembler implementations.
1610
1611config CRYPTO_TWOFISH_586
1612 tristate "Twofish cipher algorithms (i586)"
1613 depends on (X86 || UML_X86) && !64BIT
1614 select CRYPTO_ALGAPI
1615 select CRYPTO_TWOFISH_COMMON
1616 imply CRYPTO_CTR
1617 help
1618 Twofish cipher algorithm.
1619
1620 Twofish was submitted as an AES (Advanced Encryption Standard)
1621 candidate cipher by researchers at CounterPane Systems. It is a
1622 16 round block cipher supporting key sizes of 128, 192, and 256
1623 bits.
1624
1625 See also:
1626 <https://www.schneier.com/twofish.html>
1627
1628config CRYPTO_TWOFISH_X86_64
1629 tristate "Twofish cipher algorithm (x86_64)"
1630 depends on (X86 || UML_X86) && 64BIT
1631 select CRYPTO_ALGAPI
1632 select CRYPTO_TWOFISH_COMMON
1633 imply CRYPTO_CTR
1634 help
1635 Twofish cipher algorithm (x86_64).
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 See also:
1643 <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_X86_64_3WAY
1646 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1647 depends on X86 && 64BIT
1648 select CRYPTO_SKCIPHER
1649 select CRYPTO_TWOFISH_COMMON
1650 select CRYPTO_TWOFISH_X86_64
1651 help
1652 Twofish cipher algorithm (x86_64, 3-way parallel).
1653
1654 Twofish was submitted as an AES (Advanced Encryption Standard)
1655 candidate cipher by researchers at CounterPane Systems. It is a
1656 16 round block cipher supporting key sizes of 128, 192, and 256
1657 bits.
1658
1659 This module provides Twofish cipher algorithm that processes three
1660 blocks parallel, utilizing resources of out-of-order CPUs better.
1661
1662 See also:
1663 <https://www.schneier.com/twofish.html>
1664
1665config CRYPTO_TWOFISH_AVX_X86_64
1666 tristate "Twofish cipher algorithm (x86_64/AVX)"
1667 depends on X86 && 64BIT
1668 select CRYPTO_SKCIPHER
1669 select CRYPTO_SIMD
1670 select CRYPTO_TWOFISH_COMMON
1671 select CRYPTO_TWOFISH_X86_64
1672 select CRYPTO_TWOFISH_X86_64_3WAY
1673 imply CRYPTO_XTS
1674 help
1675 Twofish cipher algorithm (x86_64/AVX).
1676
1677 Twofish was submitted as an AES (Advanced Encryption Standard)
1678 candidate cipher by researchers at CounterPane Systems. It is a
1679 16 round block cipher supporting key sizes of 128, 192, and 256
1680 bits.
1681
1682 This module provides the Twofish cipher algorithm that processes
1683 eight blocks parallel using the AVX Instruction Set.
1684
1685 See also:
1686 <https://www.schneier.com/twofish.html>
1687
1688comment "Compression"
1689
1690config CRYPTO_DEFLATE
1691 tristate "Deflate compression algorithm"
1692 select CRYPTO_ALGAPI
1693 select CRYPTO_ACOMP2
1694 select ZLIB_INFLATE
1695 select ZLIB_DEFLATE
1696 help
1697 This is the Deflate algorithm (RFC1951), specified for use in
1698 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1699
1700 You will most probably want this if using IPSec.
1701
1702config CRYPTO_LZO
1703 tristate "LZO compression algorithm"
1704 select CRYPTO_ALGAPI
1705 select CRYPTO_ACOMP2
1706 select LZO_COMPRESS
1707 select LZO_DECOMPRESS
1708 help
1709 This is the LZO algorithm.
1710
1711config CRYPTO_842
1712 tristate "842 compression algorithm"
1713 select CRYPTO_ALGAPI
1714 select CRYPTO_ACOMP2
1715 select 842_COMPRESS
1716 select 842_DECOMPRESS
1717 help
1718 This is the 842 algorithm.
1719
1720config CRYPTO_LZ4
1721 tristate "LZ4 compression algorithm"
1722 select CRYPTO_ALGAPI
1723 select CRYPTO_ACOMP2
1724 select LZ4_COMPRESS
1725 select LZ4_DECOMPRESS
1726 help
1727 This is the LZ4 algorithm.
1728
1729config CRYPTO_LZ4HC
1730 tristate "LZ4HC compression algorithm"
1731 select CRYPTO_ALGAPI
1732 select CRYPTO_ACOMP2
1733 select LZ4HC_COMPRESS
1734 select LZ4_DECOMPRESS
1735 help
1736 This is the LZ4 high compression mode algorithm.
1737
1738config CRYPTO_ZSTD
1739 tristate "Zstd compression algorithm"
1740 select CRYPTO_ALGAPI
1741 select CRYPTO_ACOMP2
1742 select ZSTD_COMPRESS
1743 select ZSTD_DECOMPRESS
1744 help
1745 This is the zstd algorithm.
1746
1747comment "Random Number Generation"
1748
1749config CRYPTO_ANSI_CPRNG
1750 tristate "Pseudo Random Number Generation for Cryptographic modules"
1751 select CRYPTO_AES
1752 select CRYPTO_RNG
1753 help
1754 This option enables the generic pseudo random number generator
1755 for cryptographic modules. Uses the Algorithm specified in
1756 ANSI X9.31 A.2.4. Note that this option must be enabled if
1757 CRYPTO_FIPS is selected
1758
1759menuconfig CRYPTO_DRBG_MENU
1760 tristate "NIST SP800-90A DRBG"
1761 help
1762 NIST SP800-90A compliant DRBG. In the following submenu, one or
1763 more of the DRBG types must be selected.
1764
1765if CRYPTO_DRBG_MENU
1766
1767config CRYPTO_DRBG_HMAC
1768 bool
1769 default y
1770 select CRYPTO_HMAC
1771 select CRYPTO_SHA512
1772
1773config CRYPTO_DRBG_HASH
1774 bool "Enable Hash DRBG"
1775 select CRYPTO_SHA256
1776 help
1777 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1778
1779config CRYPTO_DRBG_CTR
1780 bool "Enable CTR DRBG"
1781 select CRYPTO_AES
1782 select CRYPTO_CTR
1783 help
1784 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1785
1786config CRYPTO_DRBG
1787 tristate
1788 default CRYPTO_DRBG_MENU
1789 select CRYPTO_RNG
1790 select CRYPTO_JITTERENTROPY
1791
1792endif # if CRYPTO_DRBG_MENU
1793
1794config CRYPTO_JITTERENTROPY
1795 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1796 select CRYPTO_RNG
1797 help
1798 The Jitterentropy RNG is a noise that is intended
1799 to provide seed to another RNG. The RNG does not
1800 perform any cryptographic whitening of the generated
1801 random numbers. This Jitterentropy RNG registers with
1802 the kernel crypto API and can be used by any caller.
1803
1804config CRYPTO_USER_API
1805 tristate
1806
1807config CRYPTO_USER_API_HASH
1808 tristate "User-space interface for hash algorithms"
1809 depends on NET
1810 select CRYPTO_HASH
1811 select CRYPTO_USER_API
1812 help
1813 This option enables the user-spaces interface for hash
1814 algorithms.
1815
1816config CRYPTO_USER_API_SKCIPHER
1817 tristate "User-space interface for symmetric key cipher algorithms"
1818 depends on NET
1819 select CRYPTO_SKCIPHER
1820 select CRYPTO_USER_API
1821 help
1822 This option enables the user-spaces interface for symmetric
1823 key cipher algorithms.
1824
1825config CRYPTO_USER_API_RNG
1826 tristate "User-space interface for random number generator algorithms"
1827 depends on NET
1828 select CRYPTO_RNG
1829 select CRYPTO_USER_API
1830 help
1831 This option enables the user-spaces interface for random
1832 number generator algorithms.
1833
1834config CRYPTO_USER_API_RNG_CAVP
1835 bool "Enable CAVP testing of DRBG"
1836 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1837 help
1838 This option enables extra API for CAVP testing via the user-space
1839 interface: resetting of DRBG entropy, and providing Additional Data.
1840 This should only be enabled for CAVP testing. You should say
1841 no unless you know what this is.
1842
1843config CRYPTO_USER_API_AEAD
1844 tristate "User-space interface for AEAD cipher algorithms"
1845 depends on NET
1846 select CRYPTO_AEAD
1847 select CRYPTO_SKCIPHER
1848 select CRYPTO_NULL
1849 select CRYPTO_USER_API
1850 help
1851 This option enables the user-spaces interface for AEAD
1852 cipher algorithms.
1853
1854config CRYPTO_USER_API_ENABLE_OBSOLETE
1855 bool "Enable obsolete cryptographic algorithms for userspace"
1856 depends on CRYPTO_USER_API
1857 default y
1858 help
1859 Allow obsolete cryptographic algorithms to be selected that have
1860 already been phased out from internal use by the kernel, and are
1861 only useful for userspace clients that still rely on them.
1862
1863config CRYPTO_STATS
1864 bool "Crypto usage statistics for User-space"
1865 depends on CRYPTO_USER
1866 help
1867 This option enables the gathering of crypto stats.
1868 This will collect:
1869 - encrypt/decrypt size and numbers of symmeric operations
1870 - compress/decompress size and numbers of compress operations
1871 - size and numbers of hash operations
1872 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1873 - generate/seed numbers for rng operations
1874
1875config CRYPTO_HASH_INFO
1876 bool
1877
1878source "lib/crypto/Kconfig"
1879source "drivers/crypto/Kconfig"
1880source "crypto/asymmetric_keys/Kconfig"
1881source "certs/Kconfig"
1882
1883endif # if CRYPTO