Linux Audio

Check our new training course

Loading...
   1#
   2# Generic algorithms support
   3#
   4config XOR_BLOCKS
   5	tristate
   6
   7#
   8# async_tx api: hardware offloaded memory transfer/transform support
   9#
  10source "crypto/async_tx/Kconfig"
  11
  12#
  13# Cryptographic API Configuration
  14#
  15menuconfig CRYPTO
  16	tristate "Cryptographic API"
  17	help
  18	  This option provides the core Cryptographic API.
  19
  20if CRYPTO
  21
  22comment "Crypto core or helper"
  23
  24config CRYPTO_FIPS
  25	bool "FIPS 200 compliance"
  26	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  27	depends on (MODULE_SIG || !MODULES)
  28	help
  29	  This options enables the fips boot option which is
  30	  required if you want to system to operate in a FIPS 200
  31	  certification.  You should say no unless you know what
  32	  this is.
  33
  34config CRYPTO_ALGAPI
  35	tristate
  36	select CRYPTO_ALGAPI2
  37	help
  38	  This option provides the API for cryptographic algorithms.
  39
  40config CRYPTO_ALGAPI2
  41	tristate
  42
  43config CRYPTO_AEAD
  44	tristate
  45	select CRYPTO_AEAD2
  46	select CRYPTO_ALGAPI
  47
  48config CRYPTO_AEAD2
  49	tristate
  50	select CRYPTO_ALGAPI2
  51	select CRYPTO_NULL2
  52	select CRYPTO_RNG2
  53
  54config CRYPTO_BLKCIPHER
  55	tristate
  56	select CRYPTO_BLKCIPHER2
  57	select CRYPTO_ALGAPI
  58
  59config CRYPTO_BLKCIPHER2
  60	tristate
  61	select CRYPTO_ALGAPI2
  62	select CRYPTO_RNG2
  63	select CRYPTO_WORKQUEUE
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108
 109config CRYPTO_ACOMP
 110	tristate
 111	select CRYPTO_ALGAPI
 112	select CRYPTO_ACOMP2
 113
 114config CRYPTO_RSA
 115	tristate "RSA algorithm"
 116	select CRYPTO_AKCIPHER
 117	select CRYPTO_MANAGER
 118	select MPILIB
 119	select ASN1
 120	help
 121	  Generic implementation of the RSA public key algorithm.
 122
 123config CRYPTO_DH
 124	tristate "Diffie-Hellman algorithm"
 125	select CRYPTO_KPP
 126	select MPILIB
 127	help
 128	  Generic implementation of the Diffie-Hellman algorithm.
 129
 130config CRYPTO_ECDH
 131	tristate "ECDH algorithm"
 132	select CRYTPO_KPP
 133	help
 134	  Generic implementation of the ECDH algorithm
 135
 136config CRYPTO_MANAGER
 137	tristate "Cryptographic algorithm manager"
 138	select CRYPTO_MANAGER2
 139	help
 140	  Create default cryptographic template instantiations such as
 141	  cbc(aes).
 142
 143config CRYPTO_MANAGER2
 144	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 145	select CRYPTO_AEAD2
 146	select CRYPTO_HASH2
 147	select CRYPTO_BLKCIPHER2
 148	select CRYPTO_AKCIPHER2
 149	select CRYPTO_KPP2
 150	select CRYPTO_ACOMP2
 151
 152config CRYPTO_USER
 153	tristate "Userspace cryptographic algorithm configuration"
 154	depends on NET
 155	select CRYPTO_MANAGER
 156	help
 157	  Userspace configuration for cryptographic instantiations such as
 158	  cbc(aes).
 159
 160config CRYPTO_MANAGER_DISABLE_TESTS
 161	bool "Disable run-time self tests"
 162	default y
 163	depends on CRYPTO_MANAGER2
 164	help
 165	  Disable run-time self tests that normally take place at
 166	  algorithm registration.
 167
 168config CRYPTO_GF128MUL
 169	tristate "GF(2^128) multiplication functions"
 170	help
 171	  Efficient table driven implementation of multiplications in the
 172	  field GF(2^128).  This is needed by some cypher modes. This
 173	  option will be selected automatically if you select such a
 174	  cipher mode.  Only select this option by hand if you expect to load
 175	  an external module that requires these functions.
 176
 177config CRYPTO_NULL
 178	tristate "Null algorithms"
 179	select CRYPTO_NULL2
 180	help
 181	  These are 'Null' algorithms, used by IPsec, which do nothing.
 182
 183config CRYPTO_NULL2
 184	tristate
 185	select CRYPTO_ALGAPI2
 186	select CRYPTO_BLKCIPHER2
 187	select CRYPTO_HASH2
 188
 189config CRYPTO_PCRYPT
 190	tristate "Parallel crypto engine"
 191	depends on SMP
 192	select PADATA
 193	select CRYPTO_MANAGER
 194	select CRYPTO_AEAD
 195	help
 196	  This converts an arbitrary crypto algorithm into a parallel
 197	  algorithm that executes in kernel threads.
 198
 199config CRYPTO_WORKQUEUE
 200       tristate
 201
 202config CRYPTO_CRYPTD
 203	tristate "Software async crypto daemon"
 204	select CRYPTO_BLKCIPHER
 205	select CRYPTO_HASH
 206	select CRYPTO_MANAGER
 207	select CRYPTO_WORKQUEUE
 208	help
 209	  This is a generic software asynchronous crypto daemon that
 210	  converts an arbitrary synchronous software crypto algorithm
 211	  into an asynchronous algorithm that executes in a kernel thread.
 212
 213config CRYPTO_MCRYPTD
 214	tristate "Software async multi-buffer crypto daemon"
 215	select CRYPTO_BLKCIPHER
 216	select CRYPTO_HASH
 217	select CRYPTO_MANAGER
 218	select CRYPTO_WORKQUEUE
 219	help
 220	  This is a generic software asynchronous crypto daemon that
 221	  provides the kernel thread to assist multi-buffer crypto
 222	  algorithms for submitting jobs and flushing jobs in multi-buffer
 223	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 224	  in the context of this kernel thread and drivers can post
 225	  their crypto request asynchronously to be processed by this daemon.
 226
 227config CRYPTO_AUTHENC
 228	tristate "Authenc support"
 229	select CRYPTO_AEAD
 230	select CRYPTO_BLKCIPHER
 231	select CRYPTO_MANAGER
 232	select CRYPTO_HASH
 233	select CRYPTO_NULL
 234	help
 235	  Authenc: Combined mode wrapper for IPsec.
 236	  This is required for IPSec.
 237
 238config CRYPTO_TEST
 239	tristate "Testing module"
 240	depends on m
 241	select CRYPTO_MANAGER
 242	help
 243	  Quick & dirty crypto test module.
 244
 245config CRYPTO_ABLK_HELPER
 246	tristate
 247	select CRYPTO_CRYPTD
 248
 249config CRYPTO_SIMD
 250	tristate
 251	select CRYPTO_CRYPTD
 252
 253config CRYPTO_GLUE_HELPER_X86
 254	tristate
 255	depends on X86
 256	select CRYPTO_BLKCIPHER
 257
 258config CRYPTO_ENGINE
 259	tristate
 260
 261comment "Authenticated Encryption with Associated Data"
 262
 263config CRYPTO_CCM
 264	tristate "CCM support"
 265	select CRYPTO_CTR
 266	select CRYPTO_AEAD
 267	help
 268	  Support for Counter with CBC MAC. Required for IPsec.
 269
 270config CRYPTO_GCM
 271	tristate "GCM/GMAC support"
 272	select CRYPTO_CTR
 273	select CRYPTO_AEAD
 274	select CRYPTO_GHASH
 275	select CRYPTO_NULL
 276	help
 277	  Support for Galois/Counter Mode (GCM) and Galois Message
 278	  Authentication Code (GMAC). Required for IPSec.
 279
 280config CRYPTO_CHACHA20POLY1305
 281	tristate "ChaCha20-Poly1305 AEAD support"
 282	select CRYPTO_CHACHA20
 283	select CRYPTO_POLY1305
 284	select CRYPTO_AEAD
 285	help
 286	  ChaCha20-Poly1305 AEAD support, RFC7539.
 287
 288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 290	  IETF protocols.
 291
 292config CRYPTO_SEQIV
 293	tristate "Sequence Number IV Generator"
 294	select CRYPTO_AEAD
 295	select CRYPTO_BLKCIPHER
 296	select CRYPTO_NULL
 297	select CRYPTO_RNG_DEFAULT
 298	help
 299	  This IV generator generates an IV based on a sequence number by
 300	  xoring it with a salt.  This algorithm is mainly useful for CTR
 301
 302config CRYPTO_ECHAINIV
 303	tristate "Encrypted Chain IV Generator"
 304	select CRYPTO_AEAD
 305	select CRYPTO_NULL
 306	select CRYPTO_RNG_DEFAULT
 307	default m
 308	help
 309	  This IV generator generates an IV based on the encryption of
 310	  a sequence number xored with a salt.  This is the default
 311	  algorithm for CBC.
 312
 313comment "Block modes"
 314
 315config CRYPTO_CBC
 316	tristate "CBC support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	help
 320	  CBC: Cipher Block Chaining mode
 321	  This block cipher algorithm is required for IPSec.
 322
 323config CRYPTO_CTR
 324	tristate "CTR support"
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_SEQIV
 327	select CRYPTO_MANAGER
 328	help
 329	  CTR: Counter mode
 330	  This block cipher algorithm is required for IPSec.
 331
 332config CRYPTO_CTS
 333	tristate "CTS support"
 334	select CRYPTO_BLKCIPHER
 335	help
 336	  CTS: Cipher Text Stealing
 337	  This is the Cipher Text Stealing mode as described by
 338	  Section 8 of rfc2040 and referenced by rfc3962.
 339	  (rfc3962 includes errata information in its Appendix A)
 340	  This mode is required for Kerberos gss mechanism support
 341	  for AES encryption.
 342
 343config CRYPTO_ECB
 344	tristate "ECB support"
 345	select CRYPTO_BLKCIPHER
 346	select CRYPTO_MANAGER
 347	help
 348	  ECB: Electronic CodeBook mode
 349	  This is the simplest block cipher algorithm.  It simply encrypts
 350	  the input block by block.
 351
 352config CRYPTO_LRW
 353	tristate "LRW support"
 354	select CRYPTO_BLKCIPHER
 355	select CRYPTO_MANAGER
 356	select CRYPTO_GF128MUL
 357	help
 358	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 359	  narrow block cipher mode for dm-crypt.  Use it with cipher
 360	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 361	  The first 128, 192 or 256 bits in the key are used for AES and the
 362	  rest is used to tie each cipher block to its logical position.
 363
 364config CRYPTO_PCBC
 365	tristate "PCBC support"
 366	select CRYPTO_BLKCIPHER
 367	select CRYPTO_MANAGER
 368	help
 369	  PCBC: Propagating Cipher Block Chaining mode
 370	  This block cipher algorithm is required for RxRPC.
 371
 372config CRYPTO_XTS
 373	tristate "XTS support"
 374	select CRYPTO_BLKCIPHER
 375	select CRYPTO_MANAGER
 376	select CRYPTO_GF128MUL
 377	select CRYPTO_ECB
 378	help
 379	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 380	  key size 256, 384 or 512 bits. This implementation currently
 381	  can't handle a sectorsize which is not a multiple of 16 bytes.
 382
 383config CRYPTO_KEYWRAP
 384	tristate "Key wrapping support"
 385	select CRYPTO_BLKCIPHER
 386	help
 387	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 388	  padding.
 389
 390comment "Hash modes"
 391
 392config CRYPTO_CMAC
 393	tristate "CMAC support"
 394	select CRYPTO_HASH
 395	select CRYPTO_MANAGER
 396	help
 397	  Cipher-based Message Authentication Code (CMAC) specified by
 398	  The National Institute of Standards and Technology (NIST).
 399
 400	  https://tools.ietf.org/html/rfc4493
 401	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 402
 403config CRYPTO_HMAC
 404	tristate "HMAC support"
 405	select CRYPTO_HASH
 406	select CRYPTO_MANAGER
 407	help
 408	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 409	  This is required for IPSec.
 410
 411config CRYPTO_XCBC
 412	tristate "XCBC support"
 413	select CRYPTO_HASH
 414	select CRYPTO_MANAGER
 415	help
 416	  XCBC: Keyed-Hashing with encryption algorithm
 417		http://www.ietf.org/rfc/rfc3566.txt
 418		http://csrc.nist.gov/encryption/modes/proposedmodes/
 419		 xcbc-mac/xcbc-mac-spec.pdf
 420
 421config CRYPTO_VMAC
 422	tristate "VMAC support"
 423	select CRYPTO_HASH
 424	select CRYPTO_MANAGER
 425	help
 426	  VMAC is a message authentication algorithm designed for
 427	  very high speed on 64-bit architectures.
 428
 429	  See also:
 430	  <http://fastcrypto.org/vmac>
 431
 432comment "Digest"
 433
 434config CRYPTO_CRC32C
 435	tristate "CRC32c CRC algorithm"
 436	select CRYPTO_HASH
 437	select CRC32
 438	help
 439	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 440	  by iSCSI for header and data digests and by others.
 441	  See Castagnoli93.  Module will be crc32c.
 442
 443config CRYPTO_CRC32C_INTEL
 444	tristate "CRC32c INTEL hardware acceleration"
 445	depends on X86
 446	select CRYPTO_HASH
 447	help
 448	  In Intel processor with SSE4.2 supported, the processor will
 449	  support CRC32C implementation using hardware accelerated CRC32
 450	  instruction. This option will create 'crc32c-intel' module,
 451	  which will enable any routine to use the CRC32 instruction to
 452	  gain performance compared with software implementation.
 453	  Module will be crc32c-intel.
 454
 455config CRYPTO_CRC32C_VPMSUM
 456	tristate "CRC32c CRC algorithm (powerpc64)"
 457	depends on PPC64 && ALTIVEC
 458	select CRYPTO_HASH
 459	select CRC32
 460	help
 461	  CRC32c algorithm implemented using vector polynomial multiply-sum
 462	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 463	  and newer processors for improved performance.
 464
 465
 466config CRYPTO_CRC32C_SPARC64
 467	tristate "CRC32c CRC algorithm (SPARC64)"
 468	depends on SPARC64
 469	select CRYPTO_HASH
 470	select CRC32
 471	help
 472	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 473	  when available.
 474
 475config CRYPTO_CRC32
 476	tristate "CRC32 CRC algorithm"
 477	select CRYPTO_HASH
 478	select CRC32
 479	help
 480	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 481	  Shash crypto api wrappers to crc32_le function.
 482
 483config CRYPTO_CRC32_PCLMUL
 484	tristate "CRC32 PCLMULQDQ hardware acceleration"
 485	depends on X86
 486	select CRYPTO_HASH
 487	select CRC32
 488	help
 489	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 490	  and PCLMULQDQ supported, the processor will support
 491	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 492	  instruction. This option will create 'crc32-plcmul' module,
 493	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 494	  and gain better performance as compared with the table implementation.
 495
 496config CRYPTO_CRCT10DIF
 497	tristate "CRCT10DIF algorithm"
 498	select CRYPTO_HASH
 499	help
 500	  CRC T10 Data Integrity Field computation is being cast as
 501	  a crypto transform.  This allows for faster crc t10 diff
 502	  transforms to be used if they are available.
 503
 504config CRYPTO_CRCT10DIF_PCLMUL
 505	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 506	depends on X86 && 64BIT && CRC_T10DIF
 507	select CRYPTO_HASH
 508	help
 509	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 510	  CRC T10 DIF PCLMULQDQ computation can be hardware
 511	  accelerated PCLMULQDQ instruction. This option will create
 512	  'crct10dif-plcmul' module, which is faster when computing the
 513	  crct10dif checksum as compared with the generic table implementation.
 514
 515config CRYPTO_GHASH
 516	tristate "GHASH digest algorithm"
 517	select CRYPTO_GF128MUL
 518	select CRYPTO_HASH
 519	help
 520	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 521
 522config CRYPTO_POLY1305
 523	tristate "Poly1305 authenticator algorithm"
 524	select CRYPTO_HASH
 525	help
 526	  Poly1305 authenticator algorithm, RFC7539.
 527
 528	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 529	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 530	  in IETF protocols. This is the portable C implementation of Poly1305.
 531
 532config CRYPTO_POLY1305_X86_64
 533	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 534	depends on X86 && 64BIT
 535	select CRYPTO_POLY1305
 536	help
 537	  Poly1305 authenticator algorithm, RFC7539.
 538
 539	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 540	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 541	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 542	  instructions.
 543
 544config CRYPTO_MD4
 545	tristate "MD4 digest algorithm"
 546	select CRYPTO_HASH
 547	help
 548	  MD4 message digest algorithm (RFC1320).
 549
 550config CRYPTO_MD5
 551	tristate "MD5 digest algorithm"
 552	select CRYPTO_HASH
 553	help
 554	  MD5 message digest algorithm (RFC1321).
 555
 556config CRYPTO_MD5_OCTEON
 557	tristate "MD5 digest algorithm (OCTEON)"
 558	depends on CPU_CAVIUM_OCTEON
 559	select CRYPTO_MD5
 560	select CRYPTO_HASH
 561	help
 562	  MD5 message digest algorithm (RFC1321) implemented
 563	  using OCTEON crypto instructions, when available.
 564
 565config CRYPTO_MD5_PPC
 566	tristate "MD5 digest algorithm (PPC)"
 567	depends on PPC
 568	select CRYPTO_HASH
 569	help
 570	  MD5 message digest algorithm (RFC1321) implemented
 571	  in PPC assembler.
 572
 573config CRYPTO_MD5_SPARC64
 574	tristate "MD5 digest algorithm (SPARC64)"
 575	depends on SPARC64
 576	select CRYPTO_MD5
 577	select CRYPTO_HASH
 578	help
 579	  MD5 message digest algorithm (RFC1321) implemented
 580	  using sparc64 crypto instructions, when available.
 581
 582config CRYPTO_MICHAEL_MIC
 583	tristate "Michael MIC keyed digest algorithm"
 584	select CRYPTO_HASH
 585	help
 586	  Michael MIC is used for message integrity protection in TKIP
 587	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 588	  should not be used for other purposes because of the weakness
 589	  of the algorithm.
 590
 591config CRYPTO_RMD128
 592	tristate "RIPEMD-128 digest algorithm"
 593	select CRYPTO_HASH
 594	help
 595	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 596
 597	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 598	  be used as a secure replacement for RIPEMD. For other use cases,
 599	  RIPEMD-160 should be used.
 600
 601	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 602	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 603
 604config CRYPTO_RMD160
 605	tristate "RIPEMD-160 digest algorithm"
 606	select CRYPTO_HASH
 607	help
 608	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 609
 610	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 611	  to be used as a secure replacement for the 128-bit hash functions
 612	  MD4, MD5 and it's predecessor RIPEMD
 613	  (not to be confused with RIPEMD-128).
 614
 615	  It's speed is comparable to SHA1 and there are no known attacks
 616	  against RIPEMD-160.
 617
 618	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 619	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 620
 621config CRYPTO_RMD256
 622	tristate "RIPEMD-256 digest algorithm"
 623	select CRYPTO_HASH
 624	help
 625	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 626	  256 bit hash. It is intended for applications that require
 627	  longer hash-results, without needing a larger security level
 628	  (than RIPEMD-128).
 629
 630	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 631	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 632
 633config CRYPTO_RMD320
 634	tristate "RIPEMD-320 digest algorithm"
 635	select CRYPTO_HASH
 636	help
 637	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 638	  320 bit hash. It is intended for applications that require
 639	  longer hash-results, without needing a larger security level
 640	  (than RIPEMD-160).
 641
 642	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 643	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 644
 645config CRYPTO_SHA1
 646	tristate "SHA1 digest algorithm"
 647	select CRYPTO_HASH
 648	help
 649	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 650
 651config CRYPTO_SHA1_SSSE3
 652	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 653	depends on X86 && 64BIT
 654	select CRYPTO_SHA1
 655	select CRYPTO_HASH
 656	help
 657	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 658	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 659	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 660	  when available.
 661
 662config CRYPTO_SHA256_SSSE3
 663	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 664	depends on X86 && 64BIT
 665	select CRYPTO_SHA256
 666	select CRYPTO_HASH
 667	help
 668	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 669	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 670	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 671	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 672	  Instructions) when available.
 673
 674config CRYPTO_SHA512_SSSE3
 675	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 676	depends on X86 && 64BIT
 677	select CRYPTO_SHA512
 678	select CRYPTO_HASH
 679	help
 680	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 681	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 682	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 683	  version 2 (AVX2) instructions, when available.
 684
 685config CRYPTO_SHA1_OCTEON
 686	tristate "SHA1 digest algorithm (OCTEON)"
 687	depends on CPU_CAVIUM_OCTEON
 688	select CRYPTO_SHA1
 689	select CRYPTO_HASH
 690	help
 691	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 692	  using OCTEON crypto instructions, when available.
 693
 694config CRYPTO_SHA1_SPARC64
 695	tristate "SHA1 digest algorithm (SPARC64)"
 696	depends on SPARC64
 697	select CRYPTO_SHA1
 698	select CRYPTO_HASH
 699	help
 700	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 701	  using sparc64 crypto instructions, when available.
 702
 703config CRYPTO_SHA1_PPC
 704	tristate "SHA1 digest algorithm (powerpc)"
 705	depends on PPC
 706	help
 707	  This is the powerpc hardware accelerated implementation of the
 708	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 709
 710config CRYPTO_SHA1_PPC_SPE
 711	tristate "SHA1 digest algorithm (PPC SPE)"
 712	depends on PPC && SPE
 713	help
 714	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 715	  using powerpc SPE SIMD instruction set.
 716
 717config CRYPTO_SHA1_MB
 718	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 719	depends on X86 && 64BIT
 720	select CRYPTO_SHA1
 721	select CRYPTO_HASH
 722	select CRYPTO_MCRYPTD
 723	help
 724	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 725	  using multi-buffer technique.  This algorithm computes on
 726	  multiple data lanes concurrently with SIMD instructions for
 727	  better throughput.  It should not be enabled by default but
 728	  used when there is significant amount of work to keep the keep
 729	  the data lanes filled to get performance benefit.  If the data
 730	  lanes remain unfilled, a flush operation will be initiated to
 731	  process the crypto jobs, adding a slight latency.
 732
 733config CRYPTO_SHA256_MB
 734	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 735	depends on X86 && 64BIT
 736	select CRYPTO_SHA256
 737	select CRYPTO_HASH
 738	select CRYPTO_MCRYPTD
 739	help
 740	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 741	  using multi-buffer technique.  This algorithm computes on
 742	  multiple data lanes concurrently with SIMD instructions for
 743	  better throughput.  It should not be enabled by default but
 744	  used when there is significant amount of work to keep the keep
 745	  the data lanes filled to get performance benefit.  If the data
 746	  lanes remain unfilled, a flush operation will be initiated to
 747	  process the crypto jobs, adding a slight latency.
 748
 749config CRYPTO_SHA512_MB
 750        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 751        depends on X86 && 64BIT
 752        select CRYPTO_SHA512
 753        select CRYPTO_HASH
 754        select CRYPTO_MCRYPTD
 755        help
 756          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 757          using multi-buffer technique.  This algorithm computes on
 758          multiple data lanes concurrently with SIMD instructions for
 759          better throughput.  It should not be enabled by default but
 760          used when there is significant amount of work to keep the keep
 761          the data lanes filled to get performance benefit.  If the data
 762          lanes remain unfilled, a flush operation will be initiated to
 763          process the crypto jobs, adding a slight latency.
 764
 765config CRYPTO_SHA256
 766	tristate "SHA224 and SHA256 digest algorithm"
 767	select CRYPTO_HASH
 768	help
 769	  SHA256 secure hash standard (DFIPS 180-2).
 770
 771	  This version of SHA implements a 256 bit hash with 128 bits of
 772	  security against collision attacks.
 773
 774	  This code also includes SHA-224, a 224 bit hash with 112 bits
 775	  of security against collision attacks.
 776
 777config CRYPTO_SHA256_PPC_SPE
 778	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 779	depends on PPC && SPE
 780	select CRYPTO_SHA256
 781	select CRYPTO_HASH
 782	help
 783	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 784	  implemented using powerpc SPE SIMD instruction set.
 785
 786config CRYPTO_SHA256_OCTEON
 787	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 788	depends on CPU_CAVIUM_OCTEON
 789	select CRYPTO_SHA256
 790	select CRYPTO_HASH
 791	help
 792	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 793	  using OCTEON crypto instructions, when available.
 794
 795config CRYPTO_SHA256_SPARC64
 796	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 797	depends on SPARC64
 798	select CRYPTO_SHA256
 799	select CRYPTO_HASH
 800	help
 801	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 802	  using sparc64 crypto instructions, when available.
 803
 804config CRYPTO_SHA512
 805	tristate "SHA384 and SHA512 digest algorithms"
 806	select CRYPTO_HASH
 807	help
 808	  SHA512 secure hash standard (DFIPS 180-2).
 809
 810	  This version of SHA implements a 512 bit hash with 256 bits of
 811	  security against collision attacks.
 812
 813	  This code also includes SHA-384, a 384 bit hash with 192 bits
 814	  of security against collision attacks.
 815
 816config CRYPTO_SHA512_OCTEON
 817	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 818	depends on CPU_CAVIUM_OCTEON
 819	select CRYPTO_SHA512
 820	select CRYPTO_HASH
 821	help
 822	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 823	  using OCTEON crypto instructions, when available.
 824
 825config CRYPTO_SHA512_SPARC64
 826	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 827	depends on SPARC64
 828	select CRYPTO_SHA512
 829	select CRYPTO_HASH
 830	help
 831	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 832	  using sparc64 crypto instructions, when available.
 833
 834config CRYPTO_SHA3
 835	tristate "SHA3 digest algorithm"
 836	select CRYPTO_HASH
 837	help
 838	  SHA-3 secure hash standard (DFIPS 202). It's based on
 839	  cryptographic sponge function family called Keccak.
 840
 841	  References:
 842	  http://keccak.noekeon.org/
 843
 844config CRYPTO_TGR192
 845	tristate "Tiger digest algorithms"
 846	select CRYPTO_HASH
 847	help
 848	  Tiger hash algorithm 192, 160 and 128-bit hashes
 849
 850	  Tiger is a hash function optimized for 64-bit processors while
 851	  still having decent performance on 32-bit processors.
 852	  Tiger was developed by Ross Anderson and Eli Biham.
 853
 854	  See also:
 855	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 856
 857config CRYPTO_WP512
 858	tristate "Whirlpool digest algorithms"
 859	select CRYPTO_HASH
 860	help
 861	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 862
 863	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 864	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 865
 866	  See also:
 867	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 868
 869config CRYPTO_GHASH_CLMUL_NI_INTEL
 870	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 871	depends on X86 && 64BIT
 872	select CRYPTO_CRYPTD
 873	help
 874	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 875	  The implementation is accelerated by CLMUL-NI of Intel.
 876
 877comment "Ciphers"
 878
 879config CRYPTO_AES
 880	tristate "AES cipher algorithms"
 881	select CRYPTO_ALGAPI
 882	help
 883	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 884	  algorithm.
 885
 886	  Rijndael appears to be consistently a very good performer in
 887	  both hardware and software across a wide range of computing
 888	  environments regardless of its use in feedback or non-feedback
 889	  modes. Its key setup time is excellent, and its key agility is
 890	  good. Rijndael's very low memory requirements make it very well
 891	  suited for restricted-space environments, in which it also
 892	  demonstrates excellent performance. Rijndael's operations are
 893	  among the easiest to defend against power and timing attacks.
 894
 895	  The AES specifies three key sizes: 128, 192 and 256 bits
 896
 897	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 898
 899config CRYPTO_AES_586
 900	tristate "AES cipher algorithms (i586)"
 901	depends on (X86 || UML_X86) && !64BIT
 902	select CRYPTO_ALGAPI
 903	select CRYPTO_AES
 904	help
 905	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 906	  algorithm.
 907
 908	  Rijndael appears to be consistently a very good performer in
 909	  both hardware and software across a wide range of computing
 910	  environments regardless of its use in feedback or non-feedback
 911	  modes. Its key setup time is excellent, and its key agility is
 912	  good. Rijndael's very low memory requirements make it very well
 913	  suited for restricted-space environments, in which it also
 914	  demonstrates excellent performance. Rijndael's operations are
 915	  among the easiest to defend against power and timing attacks.
 916
 917	  The AES specifies three key sizes: 128, 192 and 256 bits
 918
 919	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 920
 921config CRYPTO_AES_X86_64
 922	tristate "AES cipher algorithms (x86_64)"
 923	depends on (X86 || UML_X86) && 64BIT
 924	select CRYPTO_ALGAPI
 925	select CRYPTO_AES
 926	help
 927	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 928	  algorithm.
 929
 930	  Rijndael appears to be consistently a very good performer in
 931	  both hardware and software across a wide range of computing
 932	  environments regardless of its use in feedback or non-feedback
 933	  modes. Its key setup time is excellent, and its key agility is
 934	  good. Rijndael's very low memory requirements make it very well
 935	  suited for restricted-space environments, in which it also
 936	  demonstrates excellent performance. Rijndael's operations are
 937	  among the easiest to defend against power and timing attacks.
 938
 939	  The AES specifies three key sizes: 128, 192 and 256 bits
 940
 941	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 942
 943config CRYPTO_AES_NI_INTEL
 944	tristate "AES cipher algorithms (AES-NI)"
 945	depends on X86
 946	select CRYPTO_AEAD
 947	select CRYPTO_AES_X86_64 if 64BIT
 948	select CRYPTO_AES_586 if !64BIT
 949	select CRYPTO_ALGAPI
 950	select CRYPTO_BLKCIPHER
 951	select CRYPTO_GLUE_HELPER_X86 if 64BIT
 952	select CRYPTO_SIMD
 953	help
 954	  Use Intel AES-NI instructions for AES algorithm.
 955
 956	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 957	  algorithm.
 958
 959	  Rijndael appears to be consistently a very good performer in
 960	  both hardware and software across a wide range of computing
 961	  environments regardless of its use in feedback or non-feedback
 962	  modes. Its key setup time is excellent, and its key agility is
 963	  good. Rijndael's very low memory requirements make it very well
 964	  suited for restricted-space environments, in which it also
 965	  demonstrates excellent performance. Rijndael's operations are
 966	  among the easiest to defend against power and timing attacks.
 967
 968	  The AES specifies three key sizes: 128, 192 and 256 bits
 969
 970	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 971
 972	  In addition to AES cipher algorithm support, the acceleration
 973	  for some popular block cipher mode is supported too, including
 974	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
 975	  acceleration for CTR.
 976
 977config CRYPTO_AES_SPARC64
 978	tristate "AES cipher algorithms (SPARC64)"
 979	depends on SPARC64
 980	select CRYPTO_CRYPTD
 981	select CRYPTO_ALGAPI
 982	help
 983	  Use SPARC64 crypto opcodes for AES algorithm.
 984
 985	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 986	  algorithm.
 987
 988	  Rijndael appears to be consistently a very good performer in
 989	  both hardware and software across a wide range of computing
 990	  environments regardless of its use in feedback or non-feedback
 991	  modes. Its key setup time is excellent, and its key agility is
 992	  good. Rijndael's very low memory requirements make it very well
 993	  suited for restricted-space environments, in which it also
 994	  demonstrates excellent performance. Rijndael's operations are
 995	  among the easiest to defend against power and timing attacks.
 996
 997	  The AES specifies three key sizes: 128, 192 and 256 bits
 998
 999	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1000
1001	  In addition to AES cipher algorithm support, the acceleration
1002	  for some popular block cipher mode is supported too, including
1003	  ECB and CBC.
1004
1005config CRYPTO_AES_PPC_SPE
1006	tristate "AES cipher algorithms (PPC SPE)"
1007	depends on PPC && SPE
1008	help
1009	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1010	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1011	  This module should only be used for low power (router) devices
1012	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1013	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1014	  timining attacks. Nevertheless it might be not as secure as other
1015	  architecture specific assembler implementations that work on 1KB
1016	  tables or 256 bytes S-boxes.
1017
1018config CRYPTO_ANUBIS
1019	tristate "Anubis cipher algorithm"
1020	select CRYPTO_ALGAPI
1021	help
1022	  Anubis cipher algorithm.
1023
1024	  Anubis is a variable key length cipher which can use keys from
1025	  128 bits to 320 bits in length.  It was evaluated as a entrant
1026	  in the NESSIE competition.
1027
1028	  See also:
1029	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1030	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1031
1032config CRYPTO_ARC4
1033	tristate "ARC4 cipher algorithm"
1034	select CRYPTO_BLKCIPHER
1035	help
1036	  ARC4 cipher algorithm.
1037
1038	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1039	  bits in length.  This algorithm is required for driver-based
1040	  WEP, but it should not be for other purposes because of the
1041	  weakness of the algorithm.
1042
1043config CRYPTO_BLOWFISH
1044	tristate "Blowfish cipher algorithm"
1045	select CRYPTO_ALGAPI
1046	select CRYPTO_BLOWFISH_COMMON
1047	help
1048	  Blowfish cipher algorithm, by Bruce Schneier.
1049
1050	  This is a variable key length cipher which can use keys from 32
1051	  bits to 448 bits in length.  It's fast, simple and specifically
1052	  designed for use on "large microprocessors".
1053
1054	  See also:
1055	  <http://www.schneier.com/blowfish.html>
1056
1057config CRYPTO_BLOWFISH_COMMON
1058	tristate
1059	help
1060	  Common parts of the Blowfish cipher algorithm shared by the
1061	  generic c and the assembler implementations.
1062
1063	  See also:
1064	  <http://www.schneier.com/blowfish.html>
1065
1066config CRYPTO_BLOWFISH_X86_64
1067	tristate "Blowfish cipher algorithm (x86_64)"
1068	depends on X86 && 64BIT
1069	select CRYPTO_ALGAPI
1070	select CRYPTO_BLOWFISH_COMMON
1071	help
1072	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1073
1074	  This is a variable key length cipher which can use keys from 32
1075	  bits to 448 bits in length.  It's fast, simple and specifically
1076	  designed for use on "large microprocessors".
1077
1078	  See also:
1079	  <http://www.schneier.com/blowfish.html>
1080
1081config CRYPTO_CAMELLIA
1082	tristate "Camellia cipher algorithms"
1083	depends on CRYPTO
1084	select CRYPTO_ALGAPI
1085	help
1086	  Camellia cipher algorithms module.
1087
1088	  Camellia is a symmetric key block cipher developed jointly
1089	  at NTT and Mitsubishi Electric Corporation.
1090
1091	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1092
1093	  See also:
1094	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1095
1096config CRYPTO_CAMELLIA_X86_64
1097	tristate "Camellia cipher algorithm (x86_64)"
1098	depends on X86 && 64BIT
1099	depends on CRYPTO
1100	select CRYPTO_ALGAPI
1101	select CRYPTO_GLUE_HELPER_X86
1102	select CRYPTO_LRW
1103	select CRYPTO_XTS
1104	help
1105	  Camellia cipher algorithm module (x86_64).
1106
1107	  Camellia is a symmetric key block cipher developed jointly
1108	  at NTT and Mitsubishi Electric Corporation.
1109
1110	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1111
1112	  See also:
1113	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1114
1115config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1116	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1117	depends on X86 && 64BIT
1118	depends on CRYPTO
1119	select CRYPTO_ALGAPI
1120	select CRYPTO_CRYPTD
1121	select CRYPTO_ABLK_HELPER
1122	select CRYPTO_GLUE_HELPER_X86
1123	select CRYPTO_CAMELLIA_X86_64
1124	select CRYPTO_LRW
1125	select CRYPTO_XTS
1126	help
1127	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1128
1129	  Camellia is a symmetric key block cipher developed jointly
1130	  at NTT and Mitsubishi Electric Corporation.
1131
1132	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1133
1134	  See also:
1135	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1136
1137config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1138	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1139	depends on X86 && 64BIT
1140	depends on CRYPTO
1141	select CRYPTO_ALGAPI
1142	select CRYPTO_CRYPTD
1143	select CRYPTO_ABLK_HELPER
1144	select CRYPTO_GLUE_HELPER_X86
1145	select CRYPTO_CAMELLIA_X86_64
1146	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1147	select CRYPTO_LRW
1148	select CRYPTO_XTS
1149	help
1150	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1151
1152	  Camellia is a symmetric key block cipher developed jointly
1153	  at NTT and Mitsubishi Electric Corporation.
1154
1155	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1156
1157	  See also:
1158	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1159
1160config CRYPTO_CAMELLIA_SPARC64
1161	tristate "Camellia cipher algorithm (SPARC64)"
1162	depends on SPARC64
1163	depends on CRYPTO
1164	select CRYPTO_ALGAPI
1165	help
1166	  Camellia cipher algorithm module (SPARC64).
1167
1168	  Camellia is a symmetric key block cipher developed jointly
1169	  at NTT and Mitsubishi Electric Corporation.
1170
1171	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1172
1173	  See also:
1174	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1175
1176config CRYPTO_CAST_COMMON
1177	tristate
1178	help
1179	  Common parts of the CAST cipher algorithms shared by the
1180	  generic c and the assembler implementations.
1181
1182config CRYPTO_CAST5
1183	tristate "CAST5 (CAST-128) cipher algorithm"
1184	select CRYPTO_ALGAPI
1185	select CRYPTO_CAST_COMMON
1186	help
1187	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1188	  described in RFC2144.
1189
1190config CRYPTO_CAST5_AVX_X86_64
1191	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1192	depends on X86 && 64BIT
1193	select CRYPTO_ALGAPI
1194	select CRYPTO_CRYPTD
1195	select CRYPTO_ABLK_HELPER
1196	select CRYPTO_CAST_COMMON
1197	select CRYPTO_CAST5
1198	help
1199	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1200	  described in RFC2144.
1201
1202	  This module provides the Cast5 cipher algorithm that processes
1203	  sixteen blocks parallel using the AVX instruction set.
1204
1205config CRYPTO_CAST6
1206	tristate "CAST6 (CAST-256) cipher algorithm"
1207	select CRYPTO_ALGAPI
1208	select CRYPTO_CAST_COMMON
1209	help
1210	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1211	  described in RFC2612.
1212
1213config CRYPTO_CAST6_AVX_X86_64
1214	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1215	depends on X86 && 64BIT
1216	select CRYPTO_ALGAPI
1217	select CRYPTO_CRYPTD
1218	select CRYPTO_ABLK_HELPER
1219	select CRYPTO_GLUE_HELPER_X86
1220	select CRYPTO_CAST_COMMON
1221	select CRYPTO_CAST6
1222	select CRYPTO_LRW
1223	select CRYPTO_XTS
1224	help
1225	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1226	  described in RFC2612.
1227
1228	  This module provides the Cast6 cipher algorithm that processes
1229	  eight blocks parallel using the AVX instruction set.
1230
1231config CRYPTO_DES
1232	tristate "DES and Triple DES EDE cipher algorithms"
1233	select CRYPTO_ALGAPI
1234	help
1235	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1236
1237config CRYPTO_DES_SPARC64
1238	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1239	depends on SPARC64
1240	select CRYPTO_ALGAPI
1241	select CRYPTO_DES
1242	help
1243	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1244	  optimized using SPARC64 crypto opcodes.
1245
1246config CRYPTO_DES3_EDE_X86_64
1247	tristate "Triple DES EDE cipher algorithm (x86-64)"
1248	depends on X86 && 64BIT
1249	select CRYPTO_ALGAPI
1250	select CRYPTO_DES
1251	help
1252	  Triple DES EDE (FIPS 46-3) algorithm.
1253
1254	  This module provides implementation of the Triple DES EDE cipher
1255	  algorithm that is optimized for x86-64 processors. Two versions of
1256	  algorithm are provided; regular processing one input block and
1257	  one that processes three blocks parallel.
1258
1259config CRYPTO_FCRYPT
1260	tristate "FCrypt cipher algorithm"
1261	select CRYPTO_ALGAPI
1262	select CRYPTO_BLKCIPHER
1263	help
1264	  FCrypt algorithm used by RxRPC.
1265
1266config CRYPTO_KHAZAD
1267	tristate "Khazad cipher algorithm"
1268	select CRYPTO_ALGAPI
1269	help
1270	  Khazad cipher algorithm.
1271
1272	  Khazad was a finalist in the initial NESSIE competition.  It is
1273	  an algorithm optimized for 64-bit processors with good performance
1274	  on 32-bit processors.  Khazad uses an 128 bit key size.
1275
1276	  See also:
1277	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1278
1279config CRYPTO_SALSA20
1280	tristate "Salsa20 stream cipher algorithm"
1281	select CRYPTO_BLKCIPHER
1282	help
1283	  Salsa20 stream cipher algorithm.
1284
1285	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1286	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1287
1288	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1289	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1290
1291config CRYPTO_SALSA20_586
1292	tristate "Salsa20 stream cipher algorithm (i586)"
1293	depends on (X86 || UML_X86) && !64BIT
1294	select CRYPTO_BLKCIPHER
1295	help
1296	  Salsa20 stream cipher algorithm.
1297
1298	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1299	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1300
1301	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1302	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1303
1304config CRYPTO_SALSA20_X86_64
1305	tristate "Salsa20 stream cipher algorithm (x86_64)"
1306	depends on (X86 || UML_X86) && 64BIT
1307	select CRYPTO_BLKCIPHER
1308	help
1309	  Salsa20 stream cipher algorithm.
1310
1311	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1312	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1313
1314	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1315	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1316
1317config CRYPTO_CHACHA20
1318	tristate "ChaCha20 cipher algorithm"
1319	select CRYPTO_BLKCIPHER
1320	help
1321	  ChaCha20 cipher algorithm, RFC7539.
1322
1323	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1324	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1325	  This is the portable C implementation of ChaCha20.
1326
1327	  See also:
1328	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1329
1330config CRYPTO_CHACHA20_X86_64
1331	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1332	depends on X86 && 64BIT
1333	select CRYPTO_BLKCIPHER
1334	select CRYPTO_CHACHA20
1335	help
1336	  ChaCha20 cipher algorithm, RFC7539.
1337
1338	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1339	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1340	  This is the x86_64 assembler implementation using SIMD instructions.
1341
1342	  See also:
1343	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1344
1345config CRYPTO_SEED
1346	tristate "SEED cipher algorithm"
1347	select CRYPTO_ALGAPI
1348	help
1349	  SEED cipher algorithm (RFC4269).
1350
1351	  SEED is a 128-bit symmetric key block cipher that has been
1352	  developed by KISA (Korea Information Security Agency) as a
1353	  national standard encryption algorithm of the Republic of Korea.
1354	  It is a 16 round block cipher with the key size of 128 bit.
1355
1356	  See also:
1357	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1358
1359config CRYPTO_SERPENT
1360	tristate "Serpent cipher algorithm"
1361	select CRYPTO_ALGAPI
1362	help
1363	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1364
1365	  Keys are allowed to be from 0 to 256 bits in length, in steps
1366	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1367	  variant of Serpent for compatibility with old kerneli.org code.
1368
1369	  See also:
1370	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1371
1372config CRYPTO_SERPENT_SSE2_X86_64
1373	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1374	depends on X86 && 64BIT
1375	select CRYPTO_ALGAPI
1376	select CRYPTO_CRYPTD
1377	select CRYPTO_ABLK_HELPER
1378	select CRYPTO_GLUE_HELPER_X86
1379	select CRYPTO_SERPENT
1380	select CRYPTO_LRW
1381	select CRYPTO_XTS
1382	help
1383	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1384
1385	  Keys are allowed to be from 0 to 256 bits in length, in steps
1386	  of 8 bits.
1387
1388	  This module provides Serpent cipher algorithm that processes eight
1389	  blocks parallel using SSE2 instruction set.
1390
1391	  See also:
1392	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1393
1394config CRYPTO_SERPENT_SSE2_586
1395	tristate "Serpent cipher algorithm (i586/SSE2)"
1396	depends on X86 && !64BIT
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_CRYPTD
1399	select CRYPTO_ABLK_HELPER
1400	select CRYPTO_GLUE_HELPER_X86
1401	select CRYPTO_SERPENT
1402	select CRYPTO_LRW
1403	select CRYPTO_XTS
1404	help
1405	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1406
1407	  Keys are allowed to be from 0 to 256 bits in length, in steps
1408	  of 8 bits.
1409
1410	  This module provides Serpent cipher algorithm that processes four
1411	  blocks parallel using SSE2 instruction set.
1412
1413	  See also:
1414	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1415
1416config CRYPTO_SERPENT_AVX_X86_64
1417	tristate "Serpent cipher algorithm (x86_64/AVX)"
1418	depends on X86 && 64BIT
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_CRYPTD
1421	select CRYPTO_ABLK_HELPER
1422	select CRYPTO_GLUE_HELPER_X86
1423	select CRYPTO_SERPENT
1424	select CRYPTO_LRW
1425	select CRYPTO_XTS
1426	help
1427	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1428
1429	  Keys are allowed to be from 0 to 256 bits in length, in steps
1430	  of 8 bits.
1431
1432	  This module provides the Serpent cipher algorithm that processes
1433	  eight blocks parallel using the AVX instruction set.
1434
1435	  See also:
1436	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1437
1438config CRYPTO_SERPENT_AVX2_X86_64
1439	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1440	depends on X86 && 64BIT
1441	select CRYPTO_ALGAPI
1442	select CRYPTO_CRYPTD
1443	select CRYPTO_ABLK_HELPER
1444	select CRYPTO_GLUE_HELPER_X86
1445	select CRYPTO_SERPENT
1446	select CRYPTO_SERPENT_AVX_X86_64
1447	select CRYPTO_LRW
1448	select CRYPTO_XTS
1449	help
1450	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1451
1452	  Keys are allowed to be from 0 to 256 bits in length, in steps
1453	  of 8 bits.
1454
1455	  This module provides Serpent cipher algorithm that processes 16
1456	  blocks parallel using AVX2 instruction set.
1457
1458	  See also:
1459	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1460
1461config CRYPTO_TEA
1462	tristate "TEA, XTEA and XETA cipher algorithms"
1463	select CRYPTO_ALGAPI
1464	help
1465	  TEA cipher algorithm.
1466
1467	  Tiny Encryption Algorithm is a simple cipher that uses
1468	  many rounds for security.  It is very fast and uses
1469	  little memory.
1470
1471	  Xtendend Tiny Encryption Algorithm is a modification to
1472	  the TEA algorithm to address a potential key weakness
1473	  in the TEA algorithm.
1474
1475	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1476	  of the XTEA algorithm for compatibility purposes.
1477
1478config CRYPTO_TWOFISH
1479	tristate "Twofish cipher algorithm"
1480	select CRYPTO_ALGAPI
1481	select CRYPTO_TWOFISH_COMMON
1482	help
1483	  Twofish cipher algorithm.
1484
1485	  Twofish was submitted as an AES (Advanced Encryption Standard)
1486	  candidate cipher by researchers at CounterPane Systems.  It is a
1487	  16 round block cipher supporting key sizes of 128, 192, and 256
1488	  bits.
1489
1490	  See also:
1491	  <http://www.schneier.com/twofish.html>
1492
1493config CRYPTO_TWOFISH_COMMON
1494	tristate
1495	help
1496	  Common parts of the Twofish cipher algorithm shared by the
1497	  generic c and the assembler implementations.
1498
1499config CRYPTO_TWOFISH_586
1500	tristate "Twofish cipher algorithms (i586)"
1501	depends on (X86 || UML_X86) && !64BIT
1502	select CRYPTO_ALGAPI
1503	select CRYPTO_TWOFISH_COMMON
1504	help
1505	  Twofish cipher algorithm.
1506
1507	  Twofish was submitted as an AES (Advanced Encryption Standard)
1508	  candidate cipher by researchers at CounterPane Systems.  It is a
1509	  16 round block cipher supporting key sizes of 128, 192, and 256
1510	  bits.
1511
1512	  See also:
1513	  <http://www.schneier.com/twofish.html>
1514
1515config CRYPTO_TWOFISH_X86_64
1516	tristate "Twofish cipher algorithm (x86_64)"
1517	depends on (X86 || UML_X86) && 64BIT
1518	select CRYPTO_ALGAPI
1519	select CRYPTO_TWOFISH_COMMON
1520	help
1521	  Twofish cipher algorithm (x86_64).
1522
1523	  Twofish was submitted as an AES (Advanced Encryption Standard)
1524	  candidate cipher by researchers at CounterPane Systems.  It is a
1525	  16 round block cipher supporting key sizes of 128, 192, and 256
1526	  bits.
1527
1528	  See also:
1529	  <http://www.schneier.com/twofish.html>
1530
1531config CRYPTO_TWOFISH_X86_64_3WAY
1532	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1533	depends on X86 && 64BIT
1534	select CRYPTO_ALGAPI
1535	select CRYPTO_TWOFISH_COMMON
1536	select CRYPTO_TWOFISH_X86_64
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_LRW
1539	select CRYPTO_XTS
1540	help
1541	  Twofish cipher algorithm (x86_64, 3-way parallel).
1542
1543	  Twofish was submitted as an AES (Advanced Encryption Standard)
1544	  candidate cipher by researchers at CounterPane Systems.  It is a
1545	  16 round block cipher supporting key sizes of 128, 192, and 256
1546	  bits.
1547
1548	  This module provides Twofish cipher algorithm that processes three
1549	  blocks parallel, utilizing resources of out-of-order CPUs better.
1550
1551	  See also:
1552	  <http://www.schneier.com/twofish.html>
1553
1554config CRYPTO_TWOFISH_AVX_X86_64
1555	tristate "Twofish cipher algorithm (x86_64/AVX)"
1556	depends on X86 && 64BIT
1557	select CRYPTO_ALGAPI
1558	select CRYPTO_CRYPTD
1559	select CRYPTO_ABLK_HELPER
1560	select CRYPTO_GLUE_HELPER_X86
1561	select CRYPTO_TWOFISH_COMMON
1562	select CRYPTO_TWOFISH_X86_64
1563	select CRYPTO_TWOFISH_X86_64_3WAY
1564	select CRYPTO_LRW
1565	select CRYPTO_XTS
1566	help
1567	  Twofish cipher algorithm (x86_64/AVX).
1568
1569	  Twofish was submitted as an AES (Advanced Encryption Standard)
1570	  candidate cipher by researchers at CounterPane Systems.  It is a
1571	  16 round block cipher supporting key sizes of 128, 192, and 256
1572	  bits.
1573
1574	  This module provides the Twofish cipher algorithm that processes
1575	  eight blocks parallel using the AVX Instruction Set.
1576
1577	  See also:
1578	  <http://www.schneier.com/twofish.html>
1579
1580comment "Compression"
1581
1582config CRYPTO_DEFLATE
1583	tristate "Deflate compression algorithm"
1584	select CRYPTO_ALGAPI
1585	select CRYPTO_ACOMP2
1586	select ZLIB_INFLATE
1587	select ZLIB_DEFLATE
1588	help
1589	  This is the Deflate algorithm (RFC1951), specified for use in
1590	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1591
1592	  You will most probably want this if using IPSec.
1593
1594config CRYPTO_LZO
1595	tristate "LZO compression algorithm"
1596	select CRYPTO_ALGAPI
1597	select CRYPTO_ACOMP2
1598	select LZO_COMPRESS
1599	select LZO_DECOMPRESS
1600	help
1601	  This is the LZO algorithm.
1602
1603config CRYPTO_842
1604	tristate "842 compression algorithm"
1605	select CRYPTO_ALGAPI
1606	select CRYPTO_ACOMP2
1607	select 842_COMPRESS
1608	select 842_DECOMPRESS
1609	help
1610	  This is the 842 algorithm.
1611
1612config CRYPTO_LZ4
1613	tristate "LZ4 compression algorithm"
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_ACOMP2
1616	select LZ4_COMPRESS
1617	select LZ4_DECOMPRESS
1618	help
1619	  This is the LZ4 algorithm.
1620
1621config CRYPTO_LZ4HC
1622	tristate "LZ4HC compression algorithm"
1623	select CRYPTO_ALGAPI
1624	select CRYPTO_ACOMP2
1625	select LZ4HC_COMPRESS
1626	select LZ4_DECOMPRESS
1627	help
1628	  This is the LZ4 high compression mode algorithm.
1629
1630comment "Random Number Generation"
1631
1632config CRYPTO_ANSI_CPRNG
1633	tristate "Pseudo Random Number Generation for Cryptographic modules"
1634	select CRYPTO_AES
1635	select CRYPTO_RNG
1636	help
1637	  This option enables the generic pseudo random number generator
1638	  for cryptographic modules.  Uses the Algorithm specified in
1639	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1640	  CRYPTO_FIPS is selected
1641
1642menuconfig CRYPTO_DRBG_MENU
1643	tristate "NIST SP800-90A DRBG"
1644	help
1645	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1646	  more of the DRBG types must be selected.
1647
1648if CRYPTO_DRBG_MENU
1649
1650config CRYPTO_DRBG_HMAC
1651	bool
1652	default y
1653	select CRYPTO_HMAC
1654	select CRYPTO_SHA256
1655
1656config CRYPTO_DRBG_HASH
1657	bool "Enable Hash DRBG"
1658	select CRYPTO_SHA256
1659	help
1660	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1661
1662config CRYPTO_DRBG_CTR
1663	bool "Enable CTR DRBG"
1664	select CRYPTO_AES
1665	depends on CRYPTO_CTR
1666	help
1667	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1668
1669config CRYPTO_DRBG
1670	tristate
1671	default CRYPTO_DRBG_MENU
1672	select CRYPTO_RNG
1673	select CRYPTO_JITTERENTROPY
1674
1675endif	# if CRYPTO_DRBG_MENU
1676
1677config CRYPTO_JITTERENTROPY
1678	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1679	select CRYPTO_RNG
1680	help
1681	  The Jitterentropy RNG is a noise that is intended
1682	  to provide seed to another RNG. The RNG does not
1683	  perform any cryptographic whitening of the generated
1684	  random numbers. This Jitterentropy RNG registers with
1685	  the kernel crypto API and can be used by any caller.
1686
1687config CRYPTO_USER_API
1688	tristate
1689
1690config CRYPTO_USER_API_HASH
1691	tristate "User-space interface for hash algorithms"
1692	depends on NET
1693	select CRYPTO_HASH
1694	select CRYPTO_USER_API
1695	help
1696	  This option enables the user-spaces interface for hash
1697	  algorithms.
1698
1699config CRYPTO_USER_API_SKCIPHER
1700	tristate "User-space interface for symmetric key cipher algorithms"
1701	depends on NET
1702	select CRYPTO_BLKCIPHER
1703	select CRYPTO_USER_API
1704	help
1705	  This option enables the user-spaces interface for symmetric
1706	  key cipher algorithms.
1707
1708config CRYPTO_USER_API_RNG
1709	tristate "User-space interface for random number generator algorithms"
1710	depends on NET
1711	select CRYPTO_RNG
1712	select CRYPTO_USER_API
1713	help
1714	  This option enables the user-spaces interface for random
1715	  number generator algorithms.
1716
1717config CRYPTO_USER_API_AEAD
1718	tristate "User-space interface for AEAD cipher algorithms"
1719	depends on NET
1720	select CRYPTO_AEAD
1721	select CRYPTO_USER_API
1722	help
1723	  This option enables the user-spaces interface for AEAD
1724	  cipher algorithms.
1725
1726config CRYPTO_HASH_INFO
1727	bool
1728
1729source "drivers/crypto/Kconfig"
1730source crypto/asymmetric_keys/Kconfig
1731source certs/Kconfig
1732
1733endif	# if CRYPTO