Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This options enables the fips boot option which is
31 required if you want to system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64 select CRYPTO_WORKQUEUE
65
66config CRYPTO_HASH
67 tristate
68 select CRYPTO_HASH2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_HASH2
72 tristate
73 select CRYPTO_ALGAPI2
74
75config CRYPTO_RNG
76 tristate
77 select CRYPTO_RNG2
78 select CRYPTO_ALGAPI
79
80config CRYPTO_RNG2
81 tristate
82 select CRYPTO_ALGAPI2
83
84config CRYPTO_RNG_DEFAULT
85 tristate
86 select CRYPTO_DRBG_MENU
87
88config CRYPTO_AKCIPHER2
89 tristate
90 select CRYPTO_ALGAPI2
91
92config CRYPTO_AKCIPHER
93 tristate
94 select CRYPTO_AKCIPHER2
95 select CRYPTO_ALGAPI
96
97config CRYPTO_KPP2
98 tristate
99 select CRYPTO_ALGAPI2
100
101config CRYPTO_KPP
102 tristate
103 select CRYPTO_ALGAPI
104 select CRYPTO_KPP2
105
106config CRYPTO_ACOMP2
107 tristate
108 select CRYPTO_ALGAPI2
109 select SGL_ALLOC
110
111config CRYPTO_ACOMP
112 tristate
113 select CRYPTO_ALGAPI
114 select CRYPTO_ACOMP2
115
116config CRYPTO_RSA
117 tristate "RSA algorithm"
118 select CRYPTO_AKCIPHER
119 select CRYPTO_MANAGER
120 select MPILIB
121 select ASN1
122 help
123 Generic implementation of the RSA public key algorithm.
124
125config CRYPTO_DH
126 tristate "Diffie-Hellman algorithm"
127 select CRYPTO_KPP
128 select MPILIB
129 help
130 Generic implementation of the Diffie-Hellman algorithm.
131
132config CRYPTO_ECDH
133 tristate "ECDH algorithm"
134 select CRYPTO_KPP
135 select CRYPTO_RNG_DEFAULT
136 help
137 Generic implementation of the ECDH algorithm
138
139config CRYPTO_MANAGER
140 tristate "Cryptographic algorithm manager"
141 select CRYPTO_MANAGER2
142 help
143 Create default cryptographic template instantiations such as
144 cbc(aes).
145
146config CRYPTO_MANAGER2
147 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
148 select CRYPTO_AEAD2
149 select CRYPTO_HASH2
150 select CRYPTO_BLKCIPHER2
151 select CRYPTO_AKCIPHER2
152 select CRYPTO_KPP2
153 select CRYPTO_ACOMP2
154
155config CRYPTO_USER
156 tristate "Userspace cryptographic algorithm configuration"
157 depends on NET
158 select CRYPTO_MANAGER
159 help
160 Userspace configuration for cryptographic instantiations such as
161 cbc(aes).
162
163config CRYPTO_MANAGER_DISABLE_TESTS
164 bool "Disable run-time self tests"
165 default y
166 depends on CRYPTO_MANAGER2
167 help
168 Disable run-time self tests that normally take place at
169 algorithm registration.
170
171config CRYPTO_GF128MUL
172 tristate "GF(2^128) multiplication functions"
173 help
174 Efficient table driven implementation of multiplications in the
175 field GF(2^128). This is needed by some cypher modes. This
176 option will be selected automatically if you select such a
177 cipher mode. Only select this option by hand if you expect to load
178 an external module that requires these functions.
179
180config CRYPTO_NULL
181 tristate "Null algorithms"
182 select CRYPTO_NULL2
183 help
184 These are 'Null' algorithms, used by IPsec, which do nothing.
185
186config CRYPTO_NULL2
187 tristate
188 select CRYPTO_ALGAPI2
189 select CRYPTO_BLKCIPHER2
190 select CRYPTO_HASH2
191
192config CRYPTO_PCRYPT
193 tristate "Parallel crypto engine"
194 depends on SMP
195 select PADATA
196 select CRYPTO_MANAGER
197 select CRYPTO_AEAD
198 help
199 This converts an arbitrary crypto algorithm into a parallel
200 algorithm that executes in kernel threads.
201
202config CRYPTO_WORKQUEUE
203 tristate
204
205config CRYPTO_CRYPTD
206 tristate "Software async crypto daemon"
207 select CRYPTO_BLKCIPHER
208 select CRYPTO_HASH
209 select CRYPTO_MANAGER
210 select CRYPTO_WORKQUEUE
211 help
212 This is a generic software asynchronous crypto daemon that
213 converts an arbitrary synchronous software crypto algorithm
214 into an asynchronous algorithm that executes in a kernel thread.
215
216config CRYPTO_MCRYPTD
217 tristate "Software async multi-buffer crypto daemon"
218 select CRYPTO_BLKCIPHER
219 select CRYPTO_HASH
220 select CRYPTO_MANAGER
221 select CRYPTO_WORKQUEUE
222 help
223 This is a generic software asynchronous crypto daemon that
224 provides the kernel thread to assist multi-buffer crypto
225 algorithms for submitting jobs and flushing jobs in multi-buffer
226 crypto algorithms. Multi-buffer crypto algorithms are executed
227 in the context of this kernel thread and drivers can post
228 their crypto request asynchronously to be processed by this daemon.
229
230config CRYPTO_AUTHENC
231 tristate "Authenc support"
232 select CRYPTO_AEAD
233 select CRYPTO_BLKCIPHER
234 select CRYPTO_MANAGER
235 select CRYPTO_HASH
236 select CRYPTO_NULL
237 help
238 Authenc: Combined mode wrapper for IPsec.
239 This is required for IPSec.
240
241config CRYPTO_TEST
242 tristate "Testing module"
243 depends on m
244 select CRYPTO_MANAGER
245 help
246 Quick & dirty crypto test module.
247
248config CRYPTO_SIMD
249 tristate
250 select CRYPTO_CRYPTD
251
252config CRYPTO_GLUE_HELPER_X86
253 tristate
254 depends on X86
255 select CRYPTO_BLKCIPHER
256
257config CRYPTO_ENGINE
258 tristate
259
260comment "Authenticated Encryption with Associated Data"
261
262config CRYPTO_CCM
263 tristate "CCM support"
264 select CRYPTO_CTR
265 select CRYPTO_HASH
266 select CRYPTO_AEAD
267 help
268 Support for Counter with CBC MAC. Required for IPsec.
269
270config CRYPTO_GCM
271 tristate "GCM/GMAC support"
272 select CRYPTO_CTR
273 select CRYPTO_AEAD
274 select CRYPTO_GHASH
275 select CRYPTO_NULL
276 help
277 Support for Galois/Counter Mode (GCM) and Galois Message
278 Authentication Code (GMAC). Required for IPSec.
279
280config CRYPTO_CHACHA20POLY1305
281 tristate "ChaCha20-Poly1305 AEAD support"
282 select CRYPTO_CHACHA20
283 select CRYPTO_POLY1305
284 select CRYPTO_AEAD
285 help
286 ChaCha20-Poly1305 AEAD support, RFC7539.
287
288 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
289 with the Poly1305 authenticator. It is defined in RFC7539 for use in
290 IETF protocols.
291
292config CRYPTO_SEQIV
293 tristate "Sequence Number IV Generator"
294 select CRYPTO_AEAD
295 select CRYPTO_BLKCIPHER
296 select CRYPTO_NULL
297 select CRYPTO_RNG_DEFAULT
298 help
299 This IV generator generates an IV based on a sequence number by
300 xoring it with a salt. This algorithm is mainly useful for CTR
301
302config CRYPTO_ECHAINIV
303 tristate "Encrypted Chain IV Generator"
304 select CRYPTO_AEAD
305 select CRYPTO_NULL
306 select CRYPTO_RNG_DEFAULT
307 default m
308 help
309 This IV generator generates an IV based on the encryption of
310 a sequence number xored with a salt. This is the default
311 algorithm for CBC.
312
313comment "Block modes"
314
315config CRYPTO_CBC
316 tristate "CBC support"
317 select CRYPTO_BLKCIPHER
318 select CRYPTO_MANAGER
319 help
320 CBC: Cipher Block Chaining mode
321 This block cipher algorithm is required for IPSec.
322
323config CRYPTO_CFB
324 tristate "CFB support"
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_MANAGER
327 help
328 CFB: Cipher FeedBack mode
329 This block cipher algorithm is required for TPM2 Cryptography.
330
331config CRYPTO_CTR
332 tristate "CTR support"
333 select CRYPTO_BLKCIPHER
334 select CRYPTO_SEQIV
335 select CRYPTO_MANAGER
336 help
337 CTR: Counter mode
338 This block cipher algorithm is required for IPSec.
339
340config CRYPTO_CTS
341 tristate "CTS support"
342 select CRYPTO_BLKCIPHER
343 help
344 CTS: Cipher Text Stealing
345 This is the Cipher Text Stealing mode as described by
346 Section 8 of rfc2040 and referenced by rfc3962.
347 (rfc3962 includes errata information in its Appendix A)
348 This mode is required for Kerberos gss mechanism support
349 for AES encryption.
350
351config CRYPTO_ECB
352 tristate "ECB support"
353 select CRYPTO_BLKCIPHER
354 select CRYPTO_MANAGER
355 help
356 ECB: Electronic CodeBook mode
357 This is the simplest block cipher algorithm. It simply encrypts
358 the input block by block.
359
360config CRYPTO_LRW
361 tristate "LRW support"
362 select CRYPTO_BLKCIPHER
363 select CRYPTO_MANAGER
364 select CRYPTO_GF128MUL
365 help
366 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
367 narrow block cipher mode for dm-crypt. Use it with cipher
368 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
369 The first 128, 192 or 256 bits in the key are used for AES and the
370 rest is used to tie each cipher block to its logical position.
371
372config CRYPTO_PCBC
373 tristate "PCBC support"
374 select CRYPTO_BLKCIPHER
375 select CRYPTO_MANAGER
376 help
377 PCBC: Propagating Cipher Block Chaining mode
378 This block cipher algorithm is required for RxRPC.
379
380config CRYPTO_XTS
381 tristate "XTS support"
382 select CRYPTO_BLKCIPHER
383 select CRYPTO_MANAGER
384 select CRYPTO_ECB
385 help
386 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
387 key size 256, 384 or 512 bits. This implementation currently
388 can't handle a sectorsize which is not a multiple of 16 bytes.
389
390config CRYPTO_KEYWRAP
391 tristate "Key wrapping support"
392 select CRYPTO_BLKCIPHER
393 help
394 Support for key wrapping (NIST SP800-38F / RFC3394) without
395 padding.
396
397comment "Hash modes"
398
399config CRYPTO_CMAC
400 tristate "CMAC support"
401 select CRYPTO_HASH
402 select CRYPTO_MANAGER
403 help
404 Cipher-based Message Authentication Code (CMAC) specified by
405 The National Institute of Standards and Technology (NIST).
406
407 https://tools.ietf.org/html/rfc4493
408 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
409
410config CRYPTO_HMAC
411 tristate "HMAC support"
412 select CRYPTO_HASH
413 select CRYPTO_MANAGER
414 help
415 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
416 This is required for IPSec.
417
418config CRYPTO_XCBC
419 tristate "XCBC support"
420 select CRYPTO_HASH
421 select CRYPTO_MANAGER
422 help
423 XCBC: Keyed-Hashing with encryption algorithm
424 http://www.ietf.org/rfc/rfc3566.txt
425 http://csrc.nist.gov/encryption/modes/proposedmodes/
426 xcbc-mac/xcbc-mac-spec.pdf
427
428config CRYPTO_VMAC
429 tristate "VMAC support"
430 select CRYPTO_HASH
431 select CRYPTO_MANAGER
432 help
433 VMAC is a message authentication algorithm designed for
434 very high speed on 64-bit architectures.
435
436 See also:
437 <http://fastcrypto.org/vmac>
438
439comment "Digest"
440
441config CRYPTO_CRC32C
442 tristate "CRC32c CRC algorithm"
443 select CRYPTO_HASH
444 select CRC32
445 help
446 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
447 by iSCSI for header and data digests and by others.
448 See Castagnoli93. Module will be crc32c.
449
450config CRYPTO_CRC32C_INTEL
451 tristate "CRC32c INTEL hardware acceleration"
452 depends on X86
453 select CRYPTO_HASH
454 help
455 In Intel processor with SSE4.2 supported, the processor will
456 support CRC32C implementation using hardware accelerated CRC32
457 instruction. This option will create 'crc32c-intel' module,
458 which will enable any routine to use the CRC32 instruction to
459 gain performance compared with software implementation.
460 Module will be crc32c-intel.
461
462config CRYPTO_CRC32C_VPMSUM
463 tristate "CRC32c CRC algorithm (powerpc64)"
464 depends on PPC64 && ALTIVEC
465 select CRYPTO_HASH
466 select CRC32
467 help
468 CRC32c algorithm implemented using vector polynomial multiply-sum
469 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
470 and newer processors for improved performance.
471
472
473config CRYPTO_CRC32C_SPARC64
474 tristate "CRC32c CRC algorithm (SPARC64)"
475 depends on SPARC64
476 select CRYPTO_HASH
477 select CRC32
478 help
479 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
480 when available.
481
482config CRYPTO_CRC32
483 tristate "CRC32 CRC algorithm"
484 select CRYPTO_HASH
485 select CRC32
486 help
487 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
488 Shash crypto api wrappers to crc32_le function.
489
490config CRYPTO_CRC32_PCLMUL
491 tristate "CRC32 PCLMULQDQ hardware acceleration"
492 depends on X86
493 select CRYPTO_HASH
494 select CRC32
495 help
496 From Intel Westmere and AMD Bulldozer processor with SSE4.2
497 and PCLMULQDQ supported, the processor will support
498 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
499 instruction. This option will create 'crc32-plcmul' module,
500 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
501 and gain better performance as compared with the table implementation.
502
503config CRYPTO_CRC32_MIPS
504 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
505 depends on MIPS_CRC_SUPPORT
506 select CRYPTO_HASH
507 help
508 CRC32c and CRC32 CRC algorithms implemented using mips crypto
509 instructions, when available.
510
511
512config CRYPTO_CRCT10DIF
513 tristate "CRCT10DIF algorithm"
514 select CRYPTO_HASH
515 help
516 CRC T10 Data Integrity Field computation is being cast as
517 a crypto transform. This allows for faster crc t10 diff
518 transforms to be used if they are available.
519
520config CRYPTO_CRCT10DIF_PCLMUL
521 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
522 depends on X86 && 64BIT && CRC_T10DIF
523 select CRYPTO_HASH
524 help
525 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
526 CRC T10 DIF PCLMULQDQ computation can be hardware
527 accelerated PCLMULQDQ instruction. This option will create
528 'crct10dif-plcmul' module, which is faster when computing the
529 crct10dif checksum as compared with the generic table implementation.
530
531config CRYPTO_CRCT10DIF_VPMSUM
532 tristate "CRC32T10DIF powerpc64 hardware acceleration"
533 depends on PPC64 && ALTIVEC && CRC_T10DIF
534 select CRYPTO_HASH
535 help
536 CRC10T10DIF algorithm implemented using vector polynomial
537 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
538 POWER8 and newer processors for improved performance.
539
540config CRYPTO_VPMSUM_TESTER
541 tristate "Powerpc64 vpmsum hardware acceleration tester"
542 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
543 help
544 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
545 POWER8 vpmsum instructions.
546 Unless you are testing these algorithms, you don't need this.
547
548config CRYPTO_GHASH
549 tristate "GHASH digest algorithm"
550 select CRYPTO_GF128MUL
551 select CRYPTO_HASH
552 help
553 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
554
555config CRYPTO_POLY1305
556 tristate "Poly1305 authenticator algorithm"
557 select CRYPTO_HASH
558 help
559 Poly1305 authenticator algorithm, RFC7539.
560
561 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
562 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
563 in IETF protocols. This is the portable C implementation of Poly1305.
564
565config CRYPTO_POLY1305_X86_64
566 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
567 depends on X86 && 64BIT
568 select CRYPTO_POLY1305
569 help
570 Poly1305 authenticator algorithm, RFC7539.
571
572 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
573 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
574 in IETF protocols. This is the x86_64 assembler implementation using SIMD
575 instructions.
576
577config CRYPTO_MD4
578 tristate "MD4 digest algorithm"
579 select CRYPTO_HASH
580 help
581 MD4 message digest algorithm (RFC1320).
582
583config CRYPTO_MD5
584 tristate "MD5 digest algorithm"
585 select CRYPTO_HASH
586 help
587 MD5 message digest algorithm (RFC1321).
588
589config CRYPTO_MD5_OCTEON
590 tristate "MD5 digest algorithm (OCTEON)"
591 depends on CPU_CAVIUM_OCTEON
592 select CRYPTO_MD5
593 select CRYPTO_HASH
594 help
595 MD5 message digest algorithm (RFC1321) implemented
596 using OCTEON crypto instructions, when available.
597
598config CRYPTO_MD5_PPC
599 tristate "MD5 digest algorithm (PPC)"
600 depends on PPC
601 select CRYPTO_HASH
602 help
603 MD5 message digest algorithm (RFC1321) implemented
604 in PPC assembler.
605
606config CRYPTO_MD5_SPARC64
607 tristate "MD5 digest algorithm (SPARC64)"
608 depends on SPARC64
609 select CRYPTO_MD5
610 select CRYPTO_HASH
611 help
612 MD5 message digest algorithm (RFC1321) implemented
613 using sparc64 crypto instructions, when available.
614
615config CRYPTO_MICHAEL_MIC
616 tristate "Michael MIC keyed digest algorithm"
617 select CRYPTO_HASH
618 help
619 Michael MIC is used for message integrity protection in TKIP
620 (IEEE 802.11i). This algorithm is required for TKIP, but it
621 should not be used for other purposes because of the weakness
622 of the algorithm.
623
624config CRYPTO_RMD128
625 tristate "RIPEMD-128 digest algorithm"
626 select CRYPTO_HASH
627 help
628 RIPEMD-128 (ISO/IEC 10118-3:2004).
629
630 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
631 be used as a secure replacement for RIPEMD. For other use cases,
632 RIPEMD-160 should be used.
633
634 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
635 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
636
637config CRYPTO_RMD160
638 tristate "RIPEMD-160 digest algorithm"
639 select CRYPTO_HASH
640 help
641 RIPEMD-160 (ISO/IEC 10118-3:2004).
642
643 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
644 to be used as a secure replacement for the 128-bit hash functions
645 MD4, MD5 and it's predecessor RIPEMD
646 (not to be confused with RIPEMD-128).
647
648 It's speed is comparable to SHA1 and there are no known attacks
649 against RIPEMD-160.
650
651 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
652 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
653
654config CRYPTO_RMD256
655 tristate "RIPEMD-256 digest algorithm"
656 select CRYPTO_HASH
657 help
658 RIPEMD-256 is an optional extension of RIPEMD-128 with a
659 256 bit hash. It is intended for applications that require
660 longer hash-results, without needing a larger security level
661 (than RIPEMD-128).
662
663 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
664 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
665
666config CRYPTO_RMD320
667 tristate "RIPEMD-320 digest algorithm"
668 select CRYPTO_HASH
669 help
670 RIPEMD-320 is an optional extension of RIPEMD-160 with a
671 320 bit hash. It is intended for applications that require
672 longer hash-results, without needing a larger security level
673 (than RIPEMD-160).
674
675 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
676 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
677
678config CRYPTO_SHA1
679 tristate "SHA1 digest algorithm"
680 select CRYPTO_HASH
681 help
682 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
683
684config CRYPTO_SHA1_SSSE3
685 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
686 depends on X86 && 64BIT
687 select CRYPTO_SHA1
688 select CRYPTO_HASH
689 help
690 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
691 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
692 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
693 when available.
694
695config CRYPTO_SHA256_SSSE3
696 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
697 depends on X86 && 64BIT
698 select CRYPTO_SHA256
699 select CRYPTO_HASH
700 help
701 SHA-256 secure hash standard (DFIPS 180-2) implemented
702 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
703 Extensions version 1 (AVX1), or Advanced Vector Extensions
704 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
705 Instructions) when available.
706
707config CRYPTO_SHA512_SSSE3
708 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
709 depends on X86 && 64BIT
710 select CRYPTO_SHA512
711 select CRYPTO_HASH
712 help
713 SHA-512 secure hash standard (DFIPS 180-2) implemented
714 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
715 Extensions version 1 (AVX1), or Advanced Vector Extensions
716 version 2 (AVX2) instructions, when available.
717
718config CRYPTO_SHA1_OCTEON
719 tristate "SHA1 digest algorithm (OCTEON)"
720 depends on CPU_CAVIUM_OCTEON
721 select CRYPTO_SHA1
722 select CRYPTO_HASH
723 help
724 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
725 using OCTEON crypto instructions, when available.
726
727config CRYPTO_SHA1_SPARC64
728 tristate "SHA1 digest algorithm (SPARC64)"
729 depends on SPARC64
730 select CRYPTO_SHA1
731 select CRYPTO_HASH
732 help
733 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
734 using sparc64 crypto instructions, when available.
735
736config CRYPTO_SHA1_PPC
737 tristate "SHA1 digest algorithm (powerpc)"
738 depends on PPC
739 help
740 This is the powerpc hardware accelerated implementation of the
741 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
742
743config CRYPTO_SHA1_PPC_SPE
744 tristate "SHA1 digest algorithm (PPC SPE)"
745 depends on PPC && SPE
746 help
747 SHA-1 secure hash standard (DFIPS 180-4) implemented
748 using powerpc SPE SIMD instruction set.
749
750config CRYPTO_SHA1_MB
751 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
752 depends on X86 && 64BIT
753 select CRYPTO_SHA1
754 select CRYPTO_HASH
755 select CRYPTO_MCRYPTD
756 help
757 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
758 using multi-buffer technique. This algorithm computes on
759 multiple data lanes concurrently with SIMD instructions for
760 better throughput. It should not be enabled by default but
761 used when there is significant amount of work to keep the keep
762 the data lanes filled to get performance benefit. If the data
763 lanes remain unfilled, a flush operation will be initiated to
764 process the crypto jobs, adding a slight latency.
765
766config CRYPTO_SHA256_MB
767 tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
768 depends on X86 && 64BIT
769 select CRYPTO_SHA256
770 select CRYPTO_HASH
771 select CRYPTO_MCRYPTD
772 help
773 SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
774 using multi-buffer technique. This algorithm computes on
775 multiple data lanes concurrently with SIMD instructions for
776 better throughput. It should not be enabled by default but
777 used when there is significant amount of work to keep the keep
778 the data lanes filled to get performance benefit. If the data
779 lanes remain unfilled, a flush operation will be initiated to
780 process the crypto jobs, adding a slight latency.
781
782config CRYPTO_SHA512_MB
783 tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
784 depends on X86 && 64BIT
785 select CRYPTO_SHA512
786 select CRYPTO_HASH
787 select CRYPTO_MCRYPTD
788 help
789 SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
790 using multi-buffer technique. This algorithm computes on
791 multiple data lanes concurrently with SIMD instructions for
792 better throughput. It should not be enabled by default but
793 used when there is significant amount of work to keep the keep
794 the data lanes filled to get performance benefit. If the data
795 lanes remain unfilled, a flush operation will be initiated to
796 process the crypto jobs, adding a slight latency.
797
798config CRYPTO_SHA256
799 tristate "SHA224 and SHA256 digest algorithm"
800 select CRYPTO_HASH
801 help
802 SHA256 secure hash standard (DFIPS 180-2).
803
804 This version of SHA implements a 256 bit hash with 128 bits of
805 security against collision attacks.
806
807 This code also includes SHA-224, a 224 bit hash with 112 bits
808 of security against collision attacks.
809
810config CRYPTO_SHA256_PPC_SPE
811 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
812 depends on PPC && SPE
813 select CRYPTO_SHA256
814 select CRYPTO_HASH
815 help
816 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
817 implemented using powerpc SPE SIMD instruction set.
818
819config CRYPTO_SHA256_OCTEON
820 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
821 depends on CPU_CAVIUM_OCTEON
822 select CRYPTO_SHA256
823 select CRYPTO_HASH
824 help
825 SHA-256 secure hash standard (DFIPS 180-2) implemented
826 using OCTEON crypto instructions, when available.
827
828config CRYPTO_SHA256_SPARC64
829 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
830 depends on SPARC64
831 select CRYPTO_SHA256
832 select CRYPTO_HASH
833 help
834 SHA-256 secure hash standard (DFIPS 180-2) implemented
835 using sparc64 crypto instructions, when available.
836
837config CRYPTO_SHA512
838 tristate "SHA384 and SHA512 digest algorithms"
839 select CRYPTO_HASH
840 help
841 SHA512 secure hash standard (DFIPS 180-2).
842
843 This version of SHA implements a 512 bit hash with 256 bits of
844 security against collision attacks.
845
846 This code also includes SHA-384, a 384 bit hash with 192 bits
847 of security against collision attacks.
848
849config CRYPTO_SHA512_OCTEON
850 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
851 depends on CPU_CAVIUM_OCTEON
852 select CRYPTO_SHA512
853 select CRYPTO_HASH
854 help
855 SHA-512 secure hash standard (DFIPS 180-2) implemented
856 using OCTEON crypto instructions, when available.
857
858config CRYPTO_SHA512_SPARC64
859 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
860 depends on SPARC64
861 select CRYPTO_SHA512
862 select CRYPTO_HASH
863 help
864 SHA-512 secure hash standard (DFIPS 180-2) implemented
865 using sparc64 crypto instructions, when available.
866
867config CRYPTO_SHA3
868 tristate "SHA3 digest algorithm"
869 select CRYPTO_HASH
870 help
871 SHA-3 secure hash standard (DFIPS 202). It's based on
872 cryptographic sponge function family called Keccak.
873
874 References:
875 http://keccak.noekeon.org/
876
877config CRYPTO_SM3
878 tristate "SM3 digest algorithm"
879 select CRYPTO_HASH
880 help
881 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
882 It is part of the Chinese Commercial Cryptography suite.
883
884 References:
885 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
886 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
887
888config CRYPTO_TGR192
889 tristate "Tiger digest algorithms"
890 select CRYPTO_HASH
891 help
892 Tiger hash algorithm 192, 160 and 128-bit hashes
893
894 Tiger is a hash function optimized for 64-bit processors while
895 still having decent performance on 32-bit processors.
896 Tiger was developed by Ross Anderson and Eli Biham.
897
898 See also:
899 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
900
901config CRYPTO_WP512
902 tristate "Whirlpool digest algorithms"
903 select CRYPTO_HASH
904 help
905 Whirlpool hash algorithm 512, 384 and 256-bit hashes
906
907 Whirlpool-512 is part of the NESSIE cryptographic primitives.
908 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
909
910 See also:
911 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
912
913config CRYPTO_GHASH_CLMUL_NI_INTEL
914 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
915 depends on X86 && 64BIT
916 select CRYPTO_CRYPTD
917 help
918 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
919 The implementation is accelerated by CLMUL-NI of Intel.
920
921comment "Ciphers"
922
923config CRYPTO_AES
924 tristate "AES cipher algorithms"
925 select CRYPTO_ALGAPI
926 help
927 AES cipher algorithms (FIPS-197). AES uses the Rijndael
928 algorithm.
929
930 Rijndael appears to be consistently a very good performer in
931 both hardware and software across a wide range of computing
932 environments regardless of its use in feedback or non-feedback
933 modes. Its key setup time is excellent, and its key agility is
934 good. Rijndael's very low memory requirements make it very well
935 suited for restricted-space environments, in which it also
936 demonstrates excellent performance. Rijndael's operations are
937 among the easiest to defend against power and timing attacks.
938
939 The AES specifies three key sizes: 128, 192 and 256 bits
940
941 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
942
943config CRYPTO_AES_TI
944 tristate "Fixed time AES cipher"
945 select CRYPTO_ALGAPI
946 help
947 This is a generic implementation of AES that attempts to eliminate
948 data dependent latencies as much as possible without affecting
949 performance too much. It is intended for use by the generic CCM
950 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
951 solely on encryption (although decryption is supported as well, but
952 with a more dramatic performance hit)
953
954 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
955 8 for decryption), this implementation only uses just two S-boxes of
956 256 bytes each, and attempts to eliminate data dependent latencies by
957 prefetching the entire table into the cache at the start of each
958 block.
959
960config CRYPTO_AES_586
961 tristate "AES cipher algorithms (i586)"
962 depends on (X86 || UML_X86) && !64BIT
963 select CRYPTO_ALGAPI
964 select CRYPTO_AES
965 help
966 AES cipher algorithms (FIPS-197). AES uses the Rijndael
967 algorithm.
968
969 Rijndael appears to be consistently a very good performer in
970 both hardware and software across a wide range of computing
971 environments regardless of its use in feedback or non-feedback
972 modes. Its key setup time is excellent, and its key agility is
973 good. Rijndael's very low memory requirements make it very well
974 suited for restricted-space environments, in which it also
975 demonstrates excellent performance. Rijndael's operations are
976 among the easiest to defend against power and timing attacks.
977
978 The AES specifies three key sizes: 128, 192 and 256 bits
979
980 See <http://csrc.nist.gov/encryption/aes/> for more information.
981
982config CRYPTO_AES_X86_64
983 tristate "AES cipher algorithms (x86_64)"
984 depends on (X86 || UML_X86) && 64BIT
985 select CRYPTO_ALGAPI
986 select CRYPTO_AES
987 help
988 AES cipher algorithms (FIPS-197). AES uses the Rijndael
989 algorithm.
990
991 Rijndael appears to be consistently a very good performer in
992 both hardware and software across a wide range of computing
993 environments regardless of its use in feedback or non-feedback
994 modes. Its key setup time is excellent, and its key agility is
995 good. Rijndael's very low memory requirements make it very well
996 suited for restricted-space environments, in which it also
997 demonstrates excellent performance. Rijndael's operations are
998 among the easiest to defend against power and timing attacks.
999
1000 The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002 See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005 tristate "AES cipher algorithms (AES-NI)"
1006 depends on X86
1007 select CRYPTO_AEAD
1008 select CRYPTO_AES_X86_64 if 64BIT
1009 select CRYPTO_AES_586 if !64BIT
1010 select CRYPTO_ALGAPI
1011 select CRYPTO_BLKCIPHER
1012 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013 select CRYPTO_SIMD
1014 help
1015 Use Intel AES-NI instructions for AES algorithm.
1016
1017 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018 algorithm.
1019
1020 Rijndael appears to be consistently a very good performer in
1021 both hardware and software across a wide range of computing
1022 environments regardless of its use in feedback or non-feedback
1023 modes. Its key setup time is excellent, and its key agility is
1024 good. Rijndael's very low memory requirements make it very well
1025 suited for restricted-space environments, in which it also
1026 demonstrates excellent performance. Rijndael's operations are
1027 among the easiest to defend against power and timing attacks.
1028
1029 The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031 See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033 In addition to AES cipher algorithm support, the acceleration
1034 for some popular block cipher mode is supported too, including
1035 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036 acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039 tristate "AES cipher algorithms (SPARC64)"
1040 depends on SPARC64
1041 select CRYPTO_CRYPTD
1042 select CRYPTO_ALGAPI
1043 help
1044 Use SPARC64 crypto opcodes for AES algorithm.
1045
1046 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047 algorithm.
1048
1049 Rijndael appears to be consistently a very good performer in
1050 both hardware and software across a wide range of computing
1051 environments regardless of its use in feedback or non-feedback
1052 modes. Its key setup time is excellent, and its key agility is
1053 good. Rijndael's very low memory requirements make it very well
1054 suited for restricted-space environments, in which it also
1055 demonstrates excellent performance. Rijndael's operations are
1056 among the easiest to defend against power and timing attacks.
1057
1058 The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060 See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062 In addition to AES cipher algorithm support, the acceleration
1063 for some popular block cipher mode is supported too, including
1064 ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067 tristate "AES cipher algorithms (PPC SPE)"
1068 depends on PPC && SPE
1069 help
1070 AES cipher algorithms (FIPS-197). Additionally the acceleration
1071 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072 This module should only be used for low power (router) devices
1073 without hardware AES acceleration (e.g. caam crypto). It reduces the
1074 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075 timining attacks. Nevertheless it might be not as secure as other
1076 architecture specific assembler implementations that work on 1KB
1077 tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080 tristate "Anubis cipher algorithm"
1081 select CRYPTO_ALGAPI
1082 help
1083 Anubis cipher algorithm.
1084
1085 Anubis is a variable key length cipher which can use keys from
1086 128 bits to 320 bits in length. It was evaluated as a entrant
1087 in the NESSIE competition.
1088
1089 See also:
1090 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
1093config CRYPTO_ARC4
1094 tristate "ARC4 cipher algorithm"
1095 select CRYPTO_BLKCIPHER
1096 help
1097 ARC4 cipher algorithm.
1098
1099 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100 bits in length. This algorithm is required for driver-based
1101 WEP, but it should not be for other purposes because of the
1102 weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105 tristate "Blowfish cipher algorithm"
1106 select CRYPTO_ALGAPI
1107 select CRYPTO_BLOWFISH_COMMON
1108 help
1109 Blowfish cipher algorithm, by Bruce Schneier.
1110
1111 This is a variable key length cipher which can use keys from 32
1112 bits to 448 bits in length. It's fast, simple and specifically
1113 designed for use on "large microprocessors".
1114
1115 See also:
1116 <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119 tristate
1120 help
1121 Common parts of the Blowfish cipher algorithm shared by the
1122 generic c and the assembler implementations.
1123
1124 See also:
1125 <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128 tristate "Blowfish cipher algorithm (x86_64)"
1129 depends on X86 && 64BIT
1130 select CRYPTO_BLKCIPHER
1131 select CRYPTO_BLOWFISH_COMMON
1132 help
1133 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135 This is a variable key length cipher which can use keys from 32
1136 bits to 448 bits in length. It's fast, simple and specifically
1137 designed for use on "large microprocessors".
1138
1139 See also:
1140 <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143 tristate "Camellia cipher algorithms"
1144 depends on CRYPTO
1145 select CRYPTO_ALGAPI
1146 help
1147 Camellia cipher algorithms module.
1148
1149 Camellia is a symmetric key block cipher developed jointly
1150 at NTT and Mitsubishi Electric Corporation.
1151
1152 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154 See also:
1155 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158 tristate "Camellia cipher algorithm (x86_64)"
1159 depends on X86 && 64BIT
1160 depends on CRYPTO
1161 select CRYPTO_BLKCIPHER
1162 select CRYPTO_GLUE_HELPER_X86
1163 help
1164 Camellia cipher algorithm module (x86_64).
1165
1166 Camellia is a symmetric key block cipher developed jointly
1167 at NTT and Mitsubishi Electric Corporation.
1168
1169 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171 See also:
1172 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176 depends on X86 && 64BIT
1177 depends on CRYPTO
1178 select CRYPTO_BLKCIPHER
1179 select CRYPTO_CAMELLIA_X86_64
1180 select CRYPTO_GLUE_HELPER_X86
1181 select CRYPTO_SIMD
1182 select CRYPTO_XTS
1183 help
1184 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186 Camellia is a symmetric key block cipher developed jointly
1187 at NTT and Mitsubishi Electric Corporation.
1188
1189 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191 See also:
1192 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196 depends on X86 && 64BIT
1197 depends on CRYPTO
1198 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199 help
1200 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202 Camellia is a symmetric key block cipher developed jointly
1203 at NTT and Mitsubishi Electric Corporation.
1204
1205 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207 See also:
1208 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211 tristate "Camellia cipher algorithm (SPARC64)"
1212 depends on SPARC64
1213 depends on CRYPTO
1214 select CRYPTO_ALGAPI
1215 help
1216 Camellia cipher algorithm module (SPARC64).
1217
1218 Camellia is a symmetric key block cipher developed jointly
1219 at NTT and Mitsubishi Electric Corporation.
1220
1221 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223 See also:
1224 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227 tristate
1228 help
1229 Common parts of the CAST cipher algorithms shared by the
1230 generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233 tristate "CAST5 (CAST-128) cipher algorithm"
1234 select CRYPTO_ALGAPI
1235 select CRYPTO_CAST_COMMON
1236 help
1237 The CAST5 encryption algorithm (synonymous with CAST-128) is
1238 described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242 depends on X86 && 64BIT
1243 select CRYPTO_BLKCIPHER
1244 select CRYPTO_CAST5
1245 select CRYPTO_CAST_COMMON
1246 select CRYPTO_SIMD
1247 help
1248 The CAST5 encryption algorithm (synonymous with CAST-128) is
1249 described in RFC2144.
1250
1251 This module provides the Cast5 cipher algorithm that processes
1252 sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255 tristate "CAST6 (CAST-256) cipher algorithm"
1256 select CRYPTO_ALGAPI
1257 select CRYPTO_CAST_COMMON
1258 help
1259 The CAST6 encryption algorithm (synonymous with CAST-256) is
1260 described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264 depends on X86 && 64BIT
1265 select CRYPTO_BLKCIPHER
1266 select CRYPTO_CAST6
1267 select CRYPTO_CAST_COMMON
1268 select CRYPTO_GLUE_HELPER_X86
1269 select CRYPTO_SIMD
1270 select CRYPTO_XTS
1271 help
1272 The CAST6 encryption algorithm (synonymous with CAST-256) is
1273 described in RFC2612.
1274
1275 This module provides the Cast6 cipher algorithm that processes
1276 eight blocks parallel using the AVX instruction set.
1277
1278config CRYPTO_DES
1279 tristate "DES and Triple DES EDE cipher algorithms"
1280 select CRYPTO_ALGAPI
1281 help
1282 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286 depends on SPARC64
1287 select CRYPTO_ALGAPI
1288 select CRYPTO_DES
1289 help
1290 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291 optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294 tristate "Triple DES EDE cipher algorithm (x86-64)"
1295 depends on X86 && 64BIT
1296 select CRYPTO_BLKCIPHER
1297 select CRYPTO_DES
1298 help
1299 Triple DES EDE (FIPS 46-3) algorithm.
1300
1301 This module provides implementation of the Triple DES EDE cipher
1302 algorithm that is optimized for x86-64 processors. Two versions of
1303 algorithm are provided; regular processing one input block and
1304 one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307 tristate "FCrypt cipher algorithm"
1308 select CRYPTO_ALGAPI
1309 select CRYPTO_BLKCIPHER
1310 help
1311 FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314 tristate "Khazad cipher algorithm"
1315 select CRYPTO_ALGAPI
1316 help
1317 Khazad cipher algorithm.
1318
1319 Khazad was a finalist in the initial NESSIE competition. It is
1320 an algorithm optimized for 64-bit processors with good performance
1321 on 32-bit processors. Khazad uses an 128 bit key size.
1322
1323 See also:
1324 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327 tristate "Salsa20 stream cipher algorithm"
1328 select CRYPTO_BLKCIPHER
1329 help
1330 Salsa20 stream cipher algorithm.
1331
1332 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335 The Salsa20 stream cipher algorithm is designed by Daniel J.
1336 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339 tristate "Salsa20 stream cipher algorithm (i586)"
1340 depends on (X86 || UML_X86) && !64BIT
1341 select CRYPTO_BLKCIPHER
1342 select CRYPTO_SALSA20
1343 help
1344 Salsa20 stream cipher algorithm.
1345
1346 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349 The Salsa20 stream cipher algorithm is designed by Daniel J.
1350 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353 tristate "Salsa20 stream cipher algorithm (x86_64)"
1354 depends on (X86 || UML_X86) && 64BIT
1355 select CRYPTO_BLKCIPHER
1356 select CRYPTO_SALSA20
1357 help
1358 Salsa20 stream cipher algorithm.
1359
1360 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363 The Salsa20 stream cipher algorithm is designed by Daniel J.
1364 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367 tristate "ChaCha20 cipher algorithm"
1368 select CRYPTO_BLKCIPHER
1369 help
1370 ChaCha20 cipher algorithm, RFC7539.
1371
1372 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373 Bernstein and further specified in RFC7539 for use in IETF protocols.
1374 This is the portable C implementation of ChaCha20.
1375
1376 See also:
1377 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378
1379config CRYPTO_CHACHA20_X86_64
1380 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381 depends on X86 && 64BIT
1382 select CRYPTO_BLKCIPHER
1383 select CRYPTO_CHACHA20
1384 help
1385 ChaCha20 cipher algorithm, RFC7539.
1386
1387 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388 Bernstein and further specified in RFC7539 for use in IETF protocols.
1389 This is the x86_64 assembler implementation using SIMD instructions.
1390
1391 See also:
1392 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393
1394config CRYPTO_SEED
1395 tristate "SEED cipher algorithm"
1396 select CRYPTO_ALGAPI
1397 help
1398 SEED cipher algorithm (RFC4269).
1399
1400 SEED is a 128-bit symmetric key block cipher that has been
1401 developed by KISA (Korea Information Security Agency) as a
1402 national standard encryption algorithm of the Republic of Korea.
1403 It is a 16 round block cipher with the key size of 128 bit.
1404
1405 See also:
1406 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409 tristate "Serpent cipher algorithm"
1410 select CRYPTO_ALGAPI
1411 help
1412 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414 Keys are allowed to be from 0 to 256 bits in length, in steps
1415 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1416 variant of Serpent for compatibility with old kerneli.org code.
1417
1418 See also:
1419 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423 depends on X86 && 64BIT
1424 select CRYPTO_BLKCIPHER
1425 select CRYPTO_GLUE_HELPER_X86
1426 select CRYPTO_SERPENT
1427 select CRYPTO_SIMD
1428 help
1429 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431 Keys are allowed to be from 0 to 256 bits in length, in steps
1432 of 8 bits.
1433
1434 This module provides Serpent cipher algorithm that processes eight
1435 blocks parallel using SSE2 instruction set.
1436
1437 See also:
1438 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441 tristate "Serpent cipher algorithm (i586/SSE2)"
1442 depends on X86 && !64BIT
1443 select CRYPTO_BLKCIPHER
1444 select CRYPTO_GLUE_HELPER_X86
1445 select CRYPTO_SERPENT
1446 select CRYPTO_SIMD
1447 help
1448 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450 Keys are allowed to be from 0 to 256 bits in length, in steps
1451 of 8 bits.
1452
1453 This module provides Serpent cipher algorithm that processes four
1454 blocks parallel using SSE2 instruction set.
1455
1456 See also:
1457 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460 tristate "Serpent cipher algorithm (x86_64/AVX)"
1461 depends on X86 && 64BIT
1462 select CRYPTO_BLKCIPHER
1463 select CRYPTO_GLUE_HELPER_X86
1464 select CRYPTO_SERPENT
1465 select CRYPTO_SIMD
1466 select CRYPTO_XTS
1467 help
1468 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470 Keys are allowed to be from 0 to 256 bits in length, in steps
1471 of 8 bits.
1472
1473 This module provides the Serpent cipher algorithm that processes
1474 eight blocks parallel using the AVX instruction set.
1475
1476 See also:
1477 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481 depends on X86 && 64BIT
1482 select CRYPTO_SERPENT_AVX_X86_64
1483 help
1484 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486 Keys are allowed to be from 0 to 256 bits in length, in steps
1487 of 8 bits.
1488
1489 This module provides Serpent cipher algorithm that processes 16
1490 blocks parallel using AVX2 instruction set.
1491
1492 See also:
1493 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496 tristate "SM4 cipher algorithm"
1497 select CRYPTO_ALGAPI
1498 help
1499 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502 Organization of State Commercial Administration of China (OSCCA)
1503 as an authorized cryptographic algorithms for the use within China.
1504
1505 SMS4 was originally created for use in protecting wireless
1506 networks, and is mandated in the Chinese National Standard for
1507 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508 (GB.15629.11-2003).
1509
1510 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511 standardized through TC 260 of the Standardization Administration
1512 of the People's Republic of China (SAC).
1513
1514 The input, output, and key of SMS4 are each 128 bits.
1515
1516 See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518 If unsure, say N.
1519
1520config CRYPTO_SPECK
1521 tristate "Speck cipher algorithm"
1522 select CRYPTO_ALGAPI
1523 help
1524 Speck is a lightweight block cipher that is tuned for optimal
1525 performance in software (rather than hardware).
1526
1527 Speck may not be as secure as AES, and should only be used on systems
1528 where AES is not fast enough.
1529
1530 See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532 If unsure, say N.
1533
1534config CRYPTO_TEA
1535 tristate "TEA, XTEA and XETA cipher algorithms"
1536 select CRYPTO_ALGAPI
1537 help
1538 TEA cipher algorithm.
1539
1540 Tiny Encryption Algorithm is a simple cipher that uses
1541 many rounds for security. It is very fast and uses
1542 little memory.
1543
1544 Xtendend Tiny Encryption Algorithm is a modification to
1545 the TEA algorithm to address a potential key weakness
1546 in the TEA algorithm.
1547
1548 Xtendend Encryption Tiny Algorithm is a mis-implementation
1549 of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552 tristate "Twofish cipher algorithm"
1553 select CRYPTO_ALGAPI
1554 select CRYPTO_TWOFISH_COMMON
1555 help
1556 Twofish cipher algorithm.
1557
1558 Twofish was submitted as an AES (Advanced Encryption Standard)
1559 candidate cipher by researchers at CounterPane Systems. It is a
1560 16 round block cipher supporting key sizes of 128, 192, and 256
1561 bits.
1562
1563 See also:
1564 <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567 tristate
1568 help
1569 Common parts of the Twofish cipher algorithm shared by the
1570 generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573 tristate "Twofish cipher algorithms (i586)"
1574 depends on (X86 || UML_X86) && !64BIT
1575 select CRYPTO_ALGAPI
1576 select CRYPTO_TWOFISH_COMMON
1577 help
1578 Twofish cipher algorithm.
1579
1580 Twofish was submitted as an AES (Advanced Encryption Standard)
1581 candidate cipher by researchers at CounterPane Systems. It is a
1582 16 round block cipher supporting key sizes of 128, 192, and 256
1583 bits.
1584
1585 See also:
1586 <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589 tristate "Twofish cipher algorithm (x86_64)"
1590 depends on (X86 || UML_X86) && 64BIT
1591 select CRYPTO_ALGAPI
1592 select CRYPTO_TWOFISH_COMMON
1593 help
1594 Twofish cipher algorithm (x86_64).
1595
1596 Twofish was submitted as an AES (Advanced Encryption Standard)
1597 candidate cipher by researchers at CounterPane Systems. It is a
1598 16 round block cipher supporting key sizes of 128, 192, and 256
1599 bits.
1600
1601 See also:
1602 <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606 depends on X86 && 64BIT
1607 select CRYPTO_BLKCIPHER
1608 select CRYPTO_TWOFISH_COMMON
1609 select CRYPTO_TWOFISH_X86_64
1610 select CRYPTO_GLUE_HELPER_X86
1611 help
1612 Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614 Twofish was submitted as an AES (Advanced Encryption Standard)
1615 candidate cipher by researchers at CounterPane Systems. It is a
1616 16 round block cipher supporting key sizes of 128, 192, and 256
1617 bits.
1618
1619 This module provides Twofish cipher algorithm that processes three
1620 blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622 See also:
1623 <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626 tristate "Twofish cipher algorithm (x86_64/AVX)"
1627 depends on X86 && 64BIT
1628 select CRYPTO_BLKCIPHER
1629 select CRYPTO_GLUE_HELPER_X86
1630 select CRYPTO_SIMD
1631 select CRYPTO_TWOFISH_COMMON
1632 select CRYPTO_TWOFISH_X86_64
1633 select CRYPTO_TWOFISH_X86_64_3WAY
1634 help
1635 Twofish cipher algorithm (x86_64/AVX).
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 This module provides the Twofish cipher algorithm that processes
1643 eight blocks parallel using the AVX Instruction Set.
1644
1645 See also:
1646 <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651 tristate "Deflate compression algorithm"
1652 select CRYPTO_ALGAPI
1653 select CRYPTO_ACOMP2
1654 select ZLIB_INFLATE
1655 select ZLIB_DEFLATE
1656 help
1657 This is the Deflate algorithm (RFC1951), specified for use in
1658 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660 You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663 tristate "LZO compression algorithm"
1664 select CRYPTO_ALGAPI
1665 select CRYPTO_ACOMP2
1666 select LZO_COMPRESS
1667 select LZO_DECOMPRESS
1668 help
1669 This is the LZO algorithm.
1670
1671config CRYPTO_842
1672 tristate "842 compression algorithm"
1673 select CRYPTO_ALGAPI
1674 select CRYPTO_ACOMP2
1675 select 842_COMPRESS
1676 select 842_DECOMPRESS
1677 help
1678 This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681 tristate "LZ4 compression algorithm"
1682 select CRYPTO_ALGAPI
1683 select CRYPTO_ACOMP2
1684 select LZ4_COMPRESS
1685 select LZ4_DECOMPRESS
1686 help
1687 This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690 tristate "LZ4HC compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZ4HC_COMPRESS
1694 select LZ4_DECOMPRESS
1695 help
1696 This is the LZ4 high compression mode algorithm.
1697
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701 tristate "Pseudo Random Number Generation for Cryptographic modules"
1702 select CRYPTO_AES
1703 select CRYPTO_RNG
1704 help
1705 This option enables the generic pseudo random number generator
1706 for cryptographic modules. Uses the Algorithm specified in
1707 ANSI X9.31 A.2.4. Note that this option must be enabled if
1708 CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711 tristate "NIST SP800-90A DRBG"
1712 help
1713 NIST SP800-90A compliant DRBG. In the following submenu, one or
1714 more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719 bool
1720 default y
1721 select CRYPTO_HMAC
1722 select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725 bool "Enable Hash DRBG"
1726 select CRYPTO_SHA256
1727 help
1728 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731 bool "Enable CTR DRBG"
1732 select CRYPTO_AES
1733 depends on CRYPTO_CTR
1734 help
1735 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738 tristate
1739 default CRYPTO_DRBG_MENU
1740 select CRYPTO_RNG
1741 select CRYPTO_JITTERENTROPY
1742
1743endif # if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747 select CRYPTO_RNG
1748 help
1749 The Jitterentropy RNG is a noise that is intended
1750 to provide seed to another RNG. The RNG does not
1751 perform any cryptographic whitening of the generated
1752 random numbers. This Jitterentropy RNG registers with
1753 the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756 tristate
1757
1758config CRYPTO_USER_API_HASH
1759 tristate "User-space interface for hash algorithms"
1760 depends on NET
1761 select CRYPTO_HASH
1762 select CRYPTO_USER_API
1763 help
1764 This option enables the user-spaces interface for hash
1765 algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768 tristate "User-space interface for symmetric key cipher algorithms"
1769 depends on NET
1770 select CRYPTO_BLKCIPHER
1771 select CRYPTO_USER_API
1772 help
1773 This option enables the user-spaces interface for symmetric
1774 key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777 tristate "User-space interface for random number generator algorithms"
1778 depends on NET
1779 select CRYPTO_RNG
1780 select CRYPTO_USER_API
1781 help
1782 This option enables the user-spaces interface for random
1783 number generator algorithms.
1784
1785config CRYPTO_USER_API_AEAD
1786 tristate "User-space interface for AEAD cipher algorithms"
1787 depends on NET
1788 select CRYPTO_AEAD
1789 select CRYPTO_BLKCIPHER
1790 select CRYPTO_NULL
1791 select CRYPTO_USER_API
1792 help
1793 This option enables the user-spaces interface for AEAD
1794 cipher algorithms.
1795
1796config CRYPTO_HASH_INFO
1797 bool
1798
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_BLKCIPHER
56 tristate
57 select CRYPTO_BLKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_BLKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_BLKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139if CRYPTO_MANAGER2
140
141config CRYPTO_MANAGER_DISABLE_TESTS
142 bool "Disable run-time self tests"
143 default y
144 help
145 Disable run-time self tests that normally take place at
146 algorithm registration.
147
148config CRYPTO_MANAGER_EXTRA_TESTS
149 bool "Enable extra run-time crypto self tests"
150 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
151 help
152 Enable extra run-time self tests of registered crypto algorithms,
153 including randomized fuzz tests.
154
155 This is intended for developer use only, as these tests take much
156 longer to run than the normal self tests.
157
158endif # if CRYPTO_MANAGER2
159
160config CRYPTO_GF128MUL
161 tristate
162
163config CRYPTO_NULL
164 tristate "Null algorithms"
165 select CRYPTO_NULL2
166 help
167 These are 'Null' algorithms, used by IPsec, which do nothing.
168
169config CRYPTO_NULL2
170 tristate
171 select CRYPTO_ALGAPI2
172 select CRYPTO_BLKCIPHER2
173 select CRYPTO_HASH2
174
175config CRYPTO_PCRYPT
176 tristate "Parallel crypto engine"
177 depends on SMP
178 select PADATA
179 select CRYPTO_MANAGER
180 select CRYPTO_AEAD
181 help
182 This converts an arbitrary crypto algorithm into a parallel
183 algorithm that executes in kernel threads.
184
185config CRYPTO_CRYPTD
186 tristate "Software async crypto daemon"
187 select CRYPTO_BLKCIPHER
188 select CRYPTO_HASH
189 select CRYPTO_MANAGER
190 help
191 This is a generic software asynchronous crypto daemon that
192 converts an arbitrary synchronous software crypto algorithm
193 into an asynchronous algorithm that executes in a kernel thread.
194
195config CRYPTO_AUTHENC
196 tristate "Authenc support"
197 select CRYPTO_AEAD
198 select CRYPTO_BLKCIPHER
199 select CRYPTO_MANAGER
200 select CRYPTO_HASH
201 select CRYPTO_NULL
202 help
203 Authenc: Combined mode wrapper for IPsec.
204 This is required for IPSec.
205
206config CRYPTO_TEST
207 tristate "Testing module"
208 depends on m
209 select CRYPTO_MANAGER
210 help
211 Quick & dirty crypto test module.
212
213config CRYPTO_SIMD
214 tristate
215 select CRYPTO_CRYPTD
216
217config CRYPTO_GLUE_HELPER_X86
218 tristate
219 depends on X86
220 select CRYPTO_BLKCIPHER
221
222config CRYPTO_ENGINE
223 tristate
224
225comment "Public-key cryptography"
226
227config CRYPTO_RSA
228 tristate "RSA algorithm"
229 select CRYPTO_AKCIPHER
230 select CRYPTO_MANAGER
231 select MPILIB
232 select ASN1
233 help
234 Generic implementation of the RSA public key algorithm.
235
236config CRYPTO_DH
237 tristate "Diffie-Hellman algorithm"
238 select CRYPTO_KPP
239 select MPILIB
240 help
241 Generic implementation of the Diffie-Hellman algorithm.
242
243config CRYPTO_ECC
244 tristate
245
246config CRYPTO_ECDH
247 tristate "ECDH algorithm"
248 select CRYPTO_ECC
249 select CRYPTO_KPP
250 select CRYPTO_RNG_DEFAULT
251 help
252 Generic implementation of the ECDH algorithm
253
254config CRYPTO_ECRDSA
255 tristate "EC-RDSA (GOST 34.10) algorithm"
256 select CRYPTO_ECC
257 select CRYPTO_AKCIPHER
258 select CRYPTO_STREEBOG
259 select OID_REGISTRY
260 select ASN1
261 help
262 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
263 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
264 standard algorithms (called GOST algorithms). Only signature verification
265 is implemented.
266
267comment "Authenticated Encryption with Associated Data"
268
269config CRYPTO_CCM
270 tristate "CCM support"
271 select CRYPTO_CTR
272 select CRYPTO_HASH
273 select CRYPTO_AEAD
274 select CRYPTO_MANAGER
275 help
276 Support for Counter with CBC MAC. Required for IPsec.
277
278config CRYPTO_GCM
279 tristate "GCM/GMAC support"
280 select CRYPTO_CTR
281 select CRYPTO_AEAD
282 select CRYPTO_GHASH
283 select CRYPTO_NULL
284 select CRYPTO_MANAGER
285 help
286 Support for Galois/Counter Mode (GCM) and Galois Message
287 Authentication Code (GMAC). Required for IPSec.
288
289config CRYPTO_CHACHA20POLY1305
290 tristate "ChaCha20-Poly1305 AEAD support"
291 select CRYPTO_CHACHA20
292 select CRYPTO_POLY1305
293 select CRYPTO_AEAD
294 select CRYPTO_MANAGER
295 help
296 ChaCha20-Poly1305 AEAD support, RFC7539.
297
298 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
299 with the Poly1305 authenticator. It is defined in RFC7539 for use in
300 IETF protocols.
301
302config CRYPTO_AEGIS128
303 tristate "AEGIS-128 AEAD algorithm"
304 select CRYPTO_AEAD
305 select CRYPTO_AES # for AES S-box tables
306 help
307 Support for the AEGIS-128 dedicated AEAD algorithm.
308
309config CRYPTO_AEGIS128_SIMD
310 bool "Support SIMD acceleration for AEGIS-128"
311 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
312 default y
313
314config CRYPTO_AEGIS128_AESNI_SSE2
315 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
316 depends on X86 && 64BIT
317 select CRYPTO_AEAD
318 select CRYPTO_SIMD
319 help
320 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
321
322config CRYPTO_SEQIV
323 tristate "Sequence Number IV Generator"
324 select CRYPTO_AEAD
325 select CRYPTO_BLKCIPHER
326 select CRYPTO_NULL
327 select CRYPTO_RNG_DEFAULT
328 select CRYPTO_MANAGER
329 help
330 This IV generator generates an IV based on a sequence number by
331 xoring it with a salt. This algorithm is mainly useful for CTR
332
333config CRYPTO_ECHAINIV
334 tristate "Encrypted Chain IV Generator"
335 select CRYPTO_AEAD
336 select CRYPTO_NULL
337 select CRYPTO_RNG_DEFAULT
338 select CRYPTO_MANAGER
339 help
340 This IV generator generates an IV based on the encryption of
341 a sequence number xored with a salt. This is the default
342 algorithm for CBC.
343
344comment "Block modes"
345
346config CRYPTO_CBC
347 tristate "CBC support"
348 select CRYPTO_BLKCIPHER
349 select CRYPTO_MANAGER
350 help
351 CBC: Cipher Block Chaining mode
352 This block cipher algorithm is required for IPSec.
353
354config CRYPTO_CFB
355 tristate "CFB support"
356 select CRYPTO_BLKCIPHER
357 select CRYPTO_MANAGER
358 help
359 CFB: Cipher FeedBack mode
360 This block cipher algorithm is required for TPM2 Cryptography.
361
362config CRYPTO_CTR
363 tristate "CTR support"
364 select CRYPTO_BLKCIPHER
365 select CRYPTO_SEQIV
366 select CRYPTO_MANAGER
367 help
368 CTR: Counter mode
369 This block cipher algorithm is required for IPSec.
370
371config CRYPTO_CTS
372 tristate "CTS support"
373 select CRYPTO_BLKCIPHER
374 select CRYPTO_MANAGER
375 help
376 CTS: Cipher Text Stealing
377 This is the Cipher Text Stealing mode as described by
378 Section 8 of rfc2040 and referenced by rfc3962
379 (rfc3962 includes errata information in its Appendix A) or
380 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
381 This mode is required for Kerberos gss mechanism support
382 for AES encryption.
383
384 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
385
386config CRYPTO_ECB
387 tristate "ECB support"
388 select CRYPTO_BLKCIPHER
389 select CRYPTO_MANAGER
390 help
391 ECB: Electronic CodeBook mode
392 This is the simplest block cipher algorithm. It simply encrypts
393 the input block by block.
394
395config CRYPTO_LRW
396 tristate "LRW support"
397 select CRYPTO_BLKCIPHER
398 select CRYPTO_MANAGER
399 select CRYPTO_GF128MUL
400 help
401 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
402 narrow block cipher mode for dm-crypt. Use it with cipher
403 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
404 The first 128, 192 or 256 bits in the key are used for AES and the
405 rest is used to tie each cipher block to its logical position.
406
407config CRYPTO_OFB
408 tristate "OFB support"
409 select CRYPTO_BLKCIPHER
410 select CRYPTO_MANAGER
411 help
412 OFB: the Output Feedback mode makes a block cipher into a synchronous
413 stream cipher. It generates keystream blocks, which are then XORed
414 with the plaintext blocks to get the ciphertext. Flipping a bit in the
415 ciphertext produces a flipped bit in the plaintext at the same
416 location. This property allows many error correcting codes to function
417 normally even when applied before encryption.
418
419config CRYPTO_PCBC
420 tristate "PCBC support"
421 select CRYPTO_BLKCIPHER
422 select CRYPTO_MANAGER
423 help
424 PCBC: Propagating Cipher Block Chaining mode
425 This block cipher algorithm is required for RxRPC.
426
427config CRYPTO_XTS
428 tristate "XTS support"
429 select CRYPTO_BLKCIPHER
430 select CRYPTO_MANAGER
431 select CRYPTO_ECB
432 help
433 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
434 key size 256, 384 or 512 bits. This implementation currently
435 can't handle a sectorsize which is not a multiple of 16 bytes.
436
437config CRYPTO_KEYWRAP
438 tristate "Key wrapping support"
439 select CRYPTO_BLKCIPHER
440 select CRYPTO_MANAGER
441 help
442 Support for key wrapping (NIST SP800-38F / RFC3394) without
443 padding.
444
445config CRYPTO_NHPOLY1305
446 tristate
447 select CRYPTO_HASH
448 select CRYPTO_POLY1305
449
450config CRYPTO_NHPOLY1305_SSE2
451 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
452 depends on X86 && 64BIT
453 select CRYPTO_NHPOLY1305
454 help
455 SSE2 optimized implementation of the hash function used by the
456 Adiantum encryption mode.
457
458config CRYPTO_NHPOLY1305_AVX2
459 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
460 depends on X86 && 64BIT
461 select CRYPTO_NHPOLY1305
462 help
463 AVX2 optimized implementation of the hash function used by the
464 Adiantum encryption mode.
465
466config CRYPTO_ADIANTUM
467 tristate "Adiantum support"
468 select CRYPTO_CHACHA20
469 select CRYPTO_POLY1305
470 select CRYPTO_NHPOLY1305
471 select CRYPTO_MANAGER
472 help
473 Adiantum is a tweakable, length-preserving encryption mode
474 designed for fast and secure disk encryption, especially on
475 CPUs without dedicated crypto instructions. It encrypts
476 each sector using the XChaCha12 stream cipher, two passes of
477 an ε-almost-∆-universal hash function, and an invocation of
478 the AES-256 block cipher on a single 16-byte block. On CPUs
479 without AES instructions, Adiantum is much faster than
480 AES-XTS.
481
482 Adiantum's security is provably reducible to that of its
483 underlying stream and block ciphers, subject to a security
484 bound. Unlike XTS, Adiantum is a true wide-block encryption
485 mode, so it actually provides an even stronger notion of
486 security than XTS, subject to the security bound.
487
488 If unsure, say N.
489
490config CRYPTO_ESSIV
491 tristate "ESSIV support for block encryption"
492 select CRYPTO_AUTHENC
493 help
494 Encrypted salt-sector initialization vector (ESSIV) is an IV
495 generation method that is used in some cases by fscrypt and/or
496 dm-crypt. It uses the hash of the block encryption key as the
497 symmetric key for a block encryption pass applied to the input
498 IV, making low entropy IV sources more suitable for block
499 encryption.
500
501 This driver implements a crypto API template that can be
502 instantiated either as a skcipher or as a aead (depending on the
503 type of the first template argument), and which defers encryption
504 and decryption requests to the encapsulated cipher after applying
505 ESSIV to the input IV. Note that in the aead case, it is assumed
506 that the keys are presented in the same format used by the authenc
507 template, and that the IV appears at the end of the authenticated
508 associated data (AAD) region (which is how dm-crypt uses it.)
509
510 Note that the use of ESSIV is not recommended for new deployments,
511 and so this only needs to be enabled when interoperability with
512 existing encrypted volumes of filesystems is required, or when
513 building for a particular system that requires it (e.g., when
514 the SoC in question has accelerated CBC but not XTS, making CBC
515 combined with ESSIV the only feasible mode for h/w accelerated
516 block encryption)
517
518comment "Hash modes"
519
520config CRYPTO_CMAC
521 tristate "CMAC support"
522 select CRYPTO_HASH
523 select CRYPTO_MANAGER
524 help
525 Cipher-based Message Authentication Code (CMAC) specified by
526 The National Institute of Standards and Technology (NIST).
527
528 https://tools.ietf.org/html/rfc4493
529 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
530
531config CRYPTO_HMAC
532 tristate "HMAC support"
533 select CRYPTO_HASH
534 select CRYPTO_MANAGER
535 help
536 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
537 This is required for IPSec.
538
539config CRYPTO_XCBC
540 tristate "XCBC support"
541 select CRYPTO_HASH
542 select CRYPTO_MANAGER
543 help
544 XCBC: Keyed-Hashing with encryption algorithm
545 http://www.ietf.org/rfc/rfc3566.txt
546 http://csrc.nist.gov/encryption/modes/proposedmodes/
547 xcbc-mac/xcbc-mac-spec.pdf
548
549config CRYPTO_VMAC
550 tristate "VMAC support"
551 select CRYPTO_HASH
552 select CRYPTO_MANAGER
553 help
554 VMAC is a message authentication algorithm designed for
555 very high speed on 64-bit architectures.
556
557 See also:
558 <http://fastcrypto.org/vmac>
559
560comment "Digest"
561
562config CRYPTO_CRC32C
563 tristate "CRC32c CRC algorithm"
564 select CRYPTO_HASH
565 select CRC32
566 help
567 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
568 by iSCSI for header and data digests and by others.
569 See Castagnoli93. Module will be crc32c.
570
571config CRYPTO_CRC32C_INTEL
572 tristate "CRC32c INTEL hardware acceleration"
573 depends on X86
574 select CRYPTO_HASH
575 help
576 In Intel processor with SSE4.2 supported, the processor will
577 support CRC32C implementation using hardware accelerated CRC32
578 instruction. This option will create 'crc32c-intel' module,
579 which will enable any routine to use the CRC32 instruction to
580 gain performance compared with software implementation.
581 Module will be crc32c-intel.
582
583config CRYPTO_CRC32C_VPMSUM
584 tristate "CRC32c CRC algorithm (powerpc64)"
585 depends on PPC64 && ALTIVEC
586 select CRYPTO_HASH
587 select CRC32
588 help
589 CRC32c algorithm implemented using vector polynomial multiply-sum
590 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
591 and newer processors for improved performance.
592
593
594config CRYPTO_CRC32C_SPARC64
595 tristate "CRC32c CRC algorithm (SPARC64)"
596 depends on SPARC64
597 select CRYPTO_HASH
598 select CRC32
599 help
600 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
601 when available.
602
603config CRYPTO_CRC32
604 tristate "CRC32 CRC algorithm"
605 select CRYPTO_HASH
606 select CRC32
607 help
608 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
609 Shash crypto api wrappers to crc32_le function.
610
611config CRYPTO_CRC32_PCLMUL
612 tristate "CRC32 PCLMULQDQ hardware acceleration"
613 depends on X86
614 select CRYPTO_HASH
615 select CRC32
616 help
617 From Intel Westmere and AMD Bulldozer processor with SSE4.2
618 and PCLMULQDQ supported, the processor will support
619 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
620 instruction. This option will create 'crc32-pclmul' module,
621 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
622 and gain better performance as compared with the table implementation.
623
624config CRYPTO_CRC32_MIPS
625 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
626 depends on MIPS_CRC_SUPPORT
627 select CRYPTO_HASH
628 help
629 CRC32c and CRC32 CRC algorithms implemented using mips crypto
630 instructions, when available.
631
632
633config CRYPTO_XXHASH
634 tristate "xxHash hash algorithm"
635 select CRYPTO_HASH
636 select XXHASH
637 help
638 xxHash non-cryptographic hash algorithm. Extremely fast, working at
639 speeds close to RAM limits.
640
641config CRYPTO_CRCT10DIF
642 tristate "CRCT10DIF algorithm"
643 select CRYPTO_HASH
644 help
645 CRC T10 Data Integrity Field computation is being cast as
646 a crypto transform. This allows for faster crc t10 diff
647 transforms to be used if they are available.
648
649config CRYPTO_CRCT10DIF_PCLMUL
650 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
651 depends on X86 && 64BIT && CRC_T10DIF
652 select CRYPTO_HASH
653 help
654 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
655 CRC T10 DIF PCLMULQDQ computation can be hardware
656 accelerated PCLMULQDQ instruction. This option will create
657 'crct10dif-pclmul' module, which is faster when computing the
658 crct10dif checksum as compared with the generic table implementation.
659
660config CRYPTO_CRCT10DIF_VPMSUM
661 tristate "CRC32T10DIF powerpc64 hardware acceleration"
662 depends on PPC64 && ALTIVEC && CRC_T10DIF
663 select CRYPTO_HASH
664 help
665 CRC10T10DIF algorithm implemented using vector polynomial
666 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
667 POWER8 and newer processors for improved performance.
668
669config CRYPTO_VPMSUM_TESTER
670 tristate "Powerpc64 vpmsum hardware acceleration tester"
671 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
672 help
673 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
674 POWER8 vpmsum instructions.
675 Unless you are testing these algorithms, you don't need this.
676
677config CRYPTO_GHASH
678 tristate "GHASH hash function"
679 select CRYPTO_GF128MUL
680 select CRYPTO_HASH
681 help
682 GHASH is the hash function used in GCM (Galois/Counter Mode).
683 It is not a general-purpose cryptographic hash function.
684
685config CRYPTO_POLY1305
686 tristate "Poly1305 authenticator algorithm"
687 select CRYPTO_HASH
688 help
689 Poly1305 authenticator algorithm, RFC7539.
690
691 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
692 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
693 in IETF protocols. This is the portable C implementation of Poly1305.
694
695config CRYPTO_POLY1305_X86_64
696 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
697 depends on X86 && 64BIT
698 select CRYPTO_POLY1305
699 help
700 Poly1305 authenticator algorithm, RFC7539.
701
702 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
703 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
704 in IETF protocols. This is the x86_64 assembler implementation using SIMD
705 instructions.
706
707config CRYPTO_MD4
708 tristate "MD4 digest algorithm"
709 select CRYPTO_HASH
710 help
711 MD4 message digest algorithm (RFC1320).
712
713config CRYPTO_MD5
714 tristate "MD5 digest algorithm"
715 select CRYPTO_HASH
716 help
717 MD5 message digest algorithm (RFC1321).
718
719config CRYPTO_MD5_OCTEON
720 tristate "MD5 digest algorithm (OCTEON)"
721 depends on CPU_CAVIUM_OCTEON
722 select CRYPTO_MD5
723 select CRYPTO_HASH
724 help
725 MD5 message digest algorithm (RFC1321) implemented
726 using OCTEON crypto instructions, when available.
727
728config CRYPTO_MD5_PPC
729 tristate "MD5 digest algorithm (PPC)"
730 depends on PPC
731 select CRYPTO_HASH
732 help
733 MD5 message digest algorithm (RFC1321) implemented
734 in PPC assembler.
735
736config CRYPTO_MD5_SPARC64
737 tristate "MD5 digest algorithm (SPARC64)"
738 depends on SPARC64
739 select CRYPTO_MD5
740 select CRYPTO_HASH
741 help
742 MD5 message digest algorithm (RFC1321) implemented
743 using sparc64 crypto instructions, when available.
744
745config CRYPTO_MICHAEL_MIC
746 tristate "Michael MIC keyed digest algorithm"
747 select CRYPTO_HASH
748 help
749 Michael MIC is used for message integrity protection in TKIP
750 (IEEE 802.11i). This algorithm is required for TKIP, but it
751 should not be used for other purposes because of the weakness
752 of the algorithm.
753
754config CRYPTO_RMD128
755 tristate "RIPEMD-128 digest algorithm"
756 select CRYPTO_HASH
757 help
758 RIPEMD-128 (ISO/IEC 10118-3:2004).
759
760 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
761 be used as a secure replacement for RIPEMD. For other use cases,
762 RIPEMD-160 should be used.
763
764 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
765 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
766
767config CRYPTO_RMD160
768 tristate "RIPEMD-160 digest algorithm"
769 select CRYPTO_HASH
770 help
771 RIPEMD-160 (ISO/IEC 10118-3:2004).
772
773 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
774 to be used as a secure replacement for the 128-bit hash functions
775 MD4, MD5 and it's predecessor RIPEMD
776 (not to be confused with RIPEMD-128).
777
778 It's speed is comparable to SHA1 and there are no known attacks
779 against RIPEMD-160.
780
781 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
782 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
783
784config CRYPTO_RMD256
785 tristate "RIPEMD-256 digest algorithm"
786 select CRYPTO_HASH
787 help
788 RIPEMD-256 is an optional extension of RIPEMD-128 with a
789 256 bit hash. It is intended for applications that require
790 longer hash-results, without needing a larger security level
791 (than RIPEMD-128).
792
793 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
794 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
795
796config CRYPTO_RMD320
797 tristate "RIPEMD-320 digest algorithm"
798 select CRYPTO_HASH
799 help
800 RIPEMD-320 is an optional extension of RIPEMD-160 with a
801 320 bit hash. It is intended for applications that require
802 longer hash-results, without needing a larger security level
803 (than RIPEMD-160).
804
805 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
806 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
807
808config CRYPTO_SHA1
809 tristate "SHA1 digest algorithm"
810 select CRYPTO_HASH
811 help
812 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
813
814config CRYPTO_SHA1_SSSE3
815 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
816 depends on X86 && 64BIT
817 select CRYPTO_SHA1
818 select CRYPTO_HASH
819 help
820 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
821 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
822 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
823 when available.
824
825config CRYPTO_SHA256_SSSE3
826 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
827 depends on X86 && 64BIT
828 select CRYPTO_SHA256
829 select CRYPTO_HASH
830 help
831 SHA-256 secure hash standard (DFIPS 180-2) implemented
832 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
833 Extensions version 1 (AVX1), or Advanced Vector Extensions
834 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
835 Instructions) when available.
836
837config CRYPTO_SHA512_SSSE3
838 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
839 depends on X86 && 64BIT
840 select CRYPTO_SHA512
841 select CRYPTO_HASH
842 help
843 SHA-512 secure hash standard (DFIPS 180-2) implemented
844 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
845 Extensions version 1 (AVX1), or Advanced Vector Extensions
846 version 2 (AVX2) instructions, when available.
847
848config CRYPTO_SHA1_OCTEON
849 tristate "SHA1 digest algorithm (OCTEON)"
850 depends on CPU_CAVIUM_OCTEON
851 select CRYPTO_SHA1
852 select CRYPTO_HASH
853 help
854 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
855 using OCTEON crypto instructions, when available.
856
857config CRYPTO_SHA1_SPARC64
858 tristate "SHA1 digest algorithm (SPARC64)"
859 depends on SPARC64
860 select CRYPTO_SHA1
861 select CRYPTO_HASH
862 help
863 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
864 using sparc64 crypto instructions, when available.
865
866config CRYPTO_SHA1_PPC
867 tristate "SHA1 digest algorithm (powerpc)"
868 depends on PPC
869 help
870 This is the powerpc hardware accelerated implementation of the
871 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
872
873config CRYPTO_SHA1_PPC_SPE
874 tristate "SHA1 digest algorithm (PPC SPE)"
875 depends on PPC && SPE
876 help
877 SHA-1 secure hash standard (DFIPS 180-4) implemented
878 using powerpc SPE SIMD instruction set.
879
880config CRYPTO_LIB_SHA256
881 tristate
882
883config CRYPTO_SHA256
884 tristate "SHA224 and SHA256 digest algorithm"
885 select CRYPTO_HASH
886 select CRYPTO_LIB_SHA256
887 help
888 SHA256 secure hash standard (DFIPS 180-2).
889
890 This version of SHA implements a 256 bit hash with 128 bits of
891 security against collision attacks.
892
893 This code also includes SHA-224, a 224 bit hash with 112 bits
894 of security against collision attacks.
895
896config CRYPTO_SHA256_PPC_SPE
897 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
898 depends on PPC && SPE
899 select CRYPTO_SHA256
900 select CRYPTO_HASH
901 help
902 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
903 implemented using powerpc SPE SIMD instruction set.
904
905config CRYPTO_SHA256_OCTEON
906 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
907 depends on CPU_CAVIUM_OCTEON
908 select CRYPTO_SHA256
909 select CRYPTO_HASH
910 help
911 SHA-256 secure hash standard (DFIPS 180-2) implemented
912 using OCTEON crypto instructions, when available.
913
914config CRYPTO_SHA256_SPARC64
915 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
916 depends on SPARC64
917 select CRYPTO_SHA256
918 select CRYPTO_HASH
919 help
920 SHA-256 secure hash standard (DFIPS 180-2) implemented
921 using sparc64 crypto instructions, when available.
922
923config CRYPTO_SHA512
924 tristate "SHA384 and SHA512 digest algorithms"
925 select CRYPTO_HASH
926 help
927 SHA512 secure hash standard (DFIPS 180-2).
928
929 This version of SHA implements a 512 bit hash with 256 bits of
930 security against collision attacks.
931
932 This code also includes SHA-384, a 384 bit hash with 192 bits
933 of security against collision attacks.
934
935config CRYPTO_SHA512_OCTEON
936 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
937 depends on CPU_CAVIUM_OCTEON
938 select CRYPTO_SHA512
939 select CRYPTO_HASH
940 help
941 SHA-512 secure hash standard (DFIPS 180-2) implemented
942 using OCTEON crypto instructions, when available.
943
944config CRYPTO_SHA512_SPARC64
945 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
946 depends on SPARC64
947 select CRYPTO_SHA512
948 select CRYPTO_HASH
949 help
950 SHA-512 secure hash standard (DFIPS 180-2) implemented
951 using sparc64 crypto instructions, when available.
952
953config CRYPTO_SHA3
954 tristate "SHA3 digest algorithm"
955 select CRYPTO_HASH
956 help
957 SHA-3 secure hash standard (DFIPS 202). It's based on
958 cryptographic sponge function family called Keccak.
959
960 References:
961 http://keccak.noekeon.org/
962
963config CRYPTO_SM3
964 tristate "SM3 digest algorithm"
965 select CRYPTO_HASH
966 help
967 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
968 It is part of the Chinese Commercial Cryptography suite.
969
970 References:
971 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
972 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
973
974config CRYPTO_STREEBOG
975 tristate "Streebog Hash Function"
976 select CRYPTO_HASH
977 help
978 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
979 cryptographic standard algorithms (called GOST algorithms).
980 This setting enables two hash algorithms with 256 and 512 bits output.
981
982 References:
983 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
984 https://tools.ietf.org/html/rfc6986
985
986config CRYPTO_TGR192
987 tristate "Tiger digest algorithms"
988 select CRYPTO_HASH
989 help
990 Tiger hash algorithm 192, 160 and 128-bit hashes
991
992 Tiger is a hash function optimized for 64-bit processors while
993 still having decent performance on 32-bit processors.
994 Tiger was developed by Ross Anderson and Eli Biham.
995
996 See also:
997 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
998
999config CRYPTO_WP512
1000 tristate "Whirlpool digest algorithms"
1001 select CRYPTO_HASH
1002 help
1003 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1004
1005 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1006 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1007
1008 See also:
1009 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1010
1011config CRYPTO_GHASH_CLMUL_NI_INTEL
1012 tristate "GHASH hash function (CLMUL-NI accelerated)"
1013 depends on X86 && 64BIT
1014 select CRYPTO_CRYPTD
1015 help
1016 This is the x86_64 CLMUL-NI accelerated implementation of
1017 GHASH, the hash function used in GCM (Galois/Counter mode).
1018
1019comment "Ciphers"
1020
1021config CRYPTO_LIB_AES
1022 tristate
1023
1024config CRYPTO_AES
1025 tristate "AES cipher algorithms"
1026 select CRYPTO_ALGAPI
1027 select CRYPTO_LIB_AES
1028 help
1029 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1030 algorithm.
1031
1032 Rijndael appears to be consistently a very good performer in
1033 both hardware and software across a wide range of computing
1034 environments regardless of its use in feedback or non-feedback
1035 modes. Its key setup time is excellent, and its key agility is
1036 good. Rijndael's very low memory requirements make it very well
1037 suited for restricted-space environments, in which it also
1038 demonstrates excellent performance. Rijndael's operations are
1039 among the easiest to defend against power and timing attacks.
1040
1041 The AES specifies three key sizes: 128, 192 and 256 bits
1042
1043 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1044
1045config CRYPTO_AES_TI
1046 tristate "Fixed time AES cipher"
1047 select CRYPTO_ALGAPI
1048 select CRYPTO_LIB_AES
1049 help
1050 This is a generic implementation of AES that attempts to eliminate
1051 data dependent latencies as much as possible without affecting
1052 performance too much. It is intended for use by the generic CCM
1053 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1054 solely on encryption (although decryption is supported as well, but
1055 with a more dramatic performance hit)
1056
1057 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1058 8 for decryption), this implementation only uses just two S-boxes of
1059 256 bytes each, and attempts to eliminate data dependent latencies by
1060 prefetching the entire table into the cache at the start of each
1061 block. Interrupts are also disabled to avoid races where cachelines
1062 are evicted when the CPU is interrupted to do something else.
1063
1064config CRYPTO_AES_NI_INTEL
1065 tristate "AES cipher algorithms (AES-NI)"
1066 depends on X86
1067 select CRYPTO_AEAD
1068 select CRYPTO_LIB_AES
1069 select CRYPTO_ALGAPI
1070 select CRYPTO_BLKCIPHER
1071 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1072 select CRYPTO_SIMD
1073 help
1074 Use Intel AES-NI instructions for AES algorithm.
1075
1076 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1077 algorithm.
1078
1079 Rijndael appears to be consistently a very good performer in
1080 both hardware and software across a wide range of computing
1081 environments regardless of its use in feedback or non-feedback
1082 modes. Its key setup time is excellent, and its key agility is
1083 good. Rijndael's very low memory requirements make it very well
1084 suited for restricted-space environments, in which it also
1085 demonstrates excellent performance. Rijndael's operations are
1086 among the easiest to defend against power and timing attacks.
1087
1088 The AES specifies three key sizes: 128, 192 and 256 bits
1089
1090 See <http://csrc.nist.gov/encryption/aes/> for more information.
1091
1092 In addition to AES cipher algorithm support, the acceleration
1093 for some popular block cipher mode is supported too, including
1094 ECB, CBC, LRW, XTS. The 64 bit version has additional
1095 acceleration for CTR.
1096
1097config CRYPTO_AES_SPARC64
1098 tristate "AES cipher algorithms (SPARC64)"
1099 depends on SPARC64
1100 select CRYPTO_CRYPTD
1101 select CRYPTO_ALGAPI
1102 help
1103 Use SPARC64 crypto opcodes for AES algorithm.
1104
1105 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1106 algorithm.
1107
1108 Rijndael appears to be consistently a very good performer in
1109 both hardware and software across a wide range of computing
1110 environments regardless of its use in feedback or non-feedback
1111 modes. Its key setup time is excellent, and its key agility is
1112 good. Rijndael's very low memory requirements make it very well
1113 suited for restricted-space environments, in which it also
1114 demonstrates excellent performance. Rijndael's operations are
1115 among the easiest to defend against power and timing attacks.
1116
1117 The AES specifies three key sizes: 128, 192 and 256 bits
1118
1119 See <http://csrc.nist.gov/encryption/aes/> for more information.
1120
1121 In addition to AES cipher algorithm support, the acceleration
1122 for some popular block cipher mode is supported too, including
1123 ECB and CBC.
1124
1125config CRYPTO_AES_PPC_SPE
1126 tristate "AES cipher algorithms (PPC SPE)"
1127 depends on PPC && SPE
1128 help
1129 AES cipher algorithms (FIPS-197). Additionally the acceleration
1130 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1131 This module should only be used for low power (router) devices
1132 without hardware AES acceleration (e.g. caam crypto). It reduces the
1133 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1134 timining attacks. Nevertheless it might be not as secure as other
1135 architecture specific assembler implementations that work on 1KB
1136 tables or 256 bytes S-boxes.
1137
1138config CRYPTO_ANUBIS
1139 tristate "Anubis cipher algorithm"
1140 select CRYPTO_ALGAPI
1141 help
1142 Anubis cipher algorithm.
1143
1144 Anubis is a variable key length cipher which can use keys from
1145 128 bits to 320 bits in length. It was evaluated as a entrant
1146 in the NESSIE competition.
1147
1148 See also:
1149 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1150 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1151
1152config CRYPTO_LIB_ARC4
1153 tristate
1154
1155config CRYPTO_ARC4
1156 tristate "ARC4 cipher algorithm"
1157 select CRYPTO_BLKCIPHER
1158 select CRYPTO_LIB_ARC4
1159 help
1160 ARC4 cipher algorithm.
1161
1162 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1163 bits in length. This algorithm is required for driver-based
1164 WEP, but it should not be for other purposes because of the
1165 weakness of the algorithm.
1166
1167config CRYPTO_BLOWFISH
1168 tristate "Blowfish cipher algorithm"
1169 select CRYPTO_ALGAPI
1170 select CRYPTO_BLOWFISH_COMMON
1171 help
1172 Blowfish cipher algorithm, by Bruce Schneier.
1173
1174 This is a variable key length cipher which can use keys from 32
1175 bits to 448 bits in length. It's fast, simple and specifically
1176 designed for use on "large microprocessors".
1177
1178 See also:
1179 <http://www.schneier.com/blowfish.html>
1180
1181config CRYPTO_BLOWFISH_COMMON
1182 tristate
1183 help
1184 Common parts of the Blowfish cipher algorithm shared by the
1185 generic c and the assembler implementations.
1186
1187 See also:
1188 <http://www.schneier.com/blowfish.html>
1189
1190config CRYPTO_BLOWFISH_X86_64
1191 tristate "Blowfish cipher algorithm (x86_64)"
1192 depends on X86 && 64BIT
1193 select CRYPTO_BLKCIPHER
1194 select CRYPTO_BLOWFISH_COMMON
1195 help
1196 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1197
1198 This is a variable key length cipher which can use keys from 32
1199 bits to 448 bits in length. It's fast, simple and specifically
1200 designed for use on "large microprocessors".
1201
1202 See also:
1203 <http://www.schneier.com/blowfish.html>
1204
1205config CRYPTO_CAMELLIA
1206 tristate "Camellia cipher algorithms"
1207 depends on CRYPTO
1208 select CRYPTO_ALGAPI
1209 help
1210 Camellia cipher algorithms module.
1211
1212 Camellia is a symmetric key block cipher developed jointly
1213 at NTT and Mitsubishi Electric Corporation.
1214
1215 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1216
1217 See also:
1218 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1219
1220config CRYPTO_CAMELLIA_X86_64
1221 tristate "Camellia cipher algorithm (x86_64)"
1222 depends on X86 && 64BIT
1223 depends on CRYPTO
1224 select CRYPTO_BLKCIPHER
1225 select CRYPTO_GLUE_HELPER_X86
1226 help
1227 Camellia cipher algorithm module (x86_64).
1228
1229 Camellia is a symmetric key block cipher developed jointly
1230 at NTT and Mitsubishi Electric Corporation.
1231
1232 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1233
1234 See also:
1235 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1236
1237config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1238 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1239 depends on X86 && 64BIT
1240 depends on CRYPTO
1241 select CRYPTO_BLKCIPHER
1242 select CRYPTO_CAMELLIA_X86_64
1243 select CRYPTO_GLUE_HELPER_X86
1244 select CRYPTO_SIMD
1245 select CRYPTO_XTS
1246 help
1247 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1248
1249 Camellia is a symmetric key block cipher developed jointly
1250 at NTT and Mitsubishi Electric Corporation.
1251
1252 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1253
1254 See also:
1255 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1256
1257config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1258 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1259 depends on X86 && 64BIT
1260 depends on CRYPTO
1261 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1262 help
1263 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1264
1265 Camellia is a symmetric key block cipher developed jointly
1266 at NTT and Mitsubishi Electric Corporation.
1267
1268 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1269
1270 See also:
1271 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1272
1273config CRYPTO_CAMELLIA_SPARC64
1274 tristate "Camellia cipher algorithm (SPARC64)"
1275 depends on SPARC64
1276 depends on CRYPTO
1277 select CRYPTO_ALGAPI
1278 help
1279 Camellia cipher algorithm module (SPARC64).
1280
1281 Camellia is a symmetric key block cipher developed jointly
1282 at NTT and Mitsubishi Electric Corporation.
1283
1284 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1285
1286 See also:
1287 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1288
1289config CRYPTO_CAST_COMMON
1290 tristate
1291 help
1292 Common parts of the CAST cipher algorithms shared by the
1293 generic c and the assembler implementations.
1294
1295config CRYPTO_CAST5
1296 tristate "CAST5 (CAST-128) cipher algorithm"
1297 select CRYPTO_ALGAPI
1298 select CRYPTO_CAST_COMMON
1299 help
1300 The CAST5 encryption algorithm (synonymous with CAST-128) is
1301 described in RFC2144.
1302
1303config CRYPTO_CAST5_AVX_X86_64
1304 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1305 depends on X86 && 64BIT
1306 select CRYPTO_BLKCIPHER
1307 select CRYPTO_CAST5
1308 select CRYPTO_CAST_COMMON
1309 select CRYPTO_SIMD
1310 help
1311 The CAST5 encryption algorithm (synonymous with CAST-128) is
1312 described in RFC2144.
1313
1314 This module provides the Cast5 cipher algorithm that processes
1315 sixteen blocks parallel using the AVX instruction set.
1316
1317config CRYPTO_CAST6
1318 tristate "CAST6 (CAST-256) cipher algorithm"
1319 select CRYPTO_ALGAPI
1320 select CRYPTO_CAST_COMMON
1321 help
1322 The CAST6 encryption algorithm (synonymous with CAST-256) is
1323 described in RFC2612.
1324
1325config CRYPTO_CAST6_AVX_X86_64
1326 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1327 depends on X86 && 64BIT
1328 select CRYPTO_BLKCIPHER
1329 select CRYPTO_CAST6
1330 select CRYPTO_CAST_COMMON
1331 select CRYPTO_GLUE_HELPER_X86
1332 select CRYPTO_SIMD
1333 select CRYPTO_XTS
1334 help
1335 The CAST6 encryption algorithm (synonymous with CAST-256) is
1336 described in RFC2612.
1337
1338 This module provides the Cast6 cipher algorithm that processes
1339 eight blocks parallel using the AVX instruction set.
1340
1341config CRYPTO_LIB_DES
1342 tristate
1343
1344config CRYPTO_DES
1345 tristate "DES and Triple DES EDE cipher algorithms"
1346 select CRYPTO_ALGAPI
1347 select CRYPTO_LIB_DES
1348 help
1349 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1350
1351config CRYPTO_DES_SPARC64
1352 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1353 depends on SPARC64
1354 select CRYPTO_ALGAPI
1355 select CRYPTO_LIB_DES
1356 help
1357 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1358 optimized using SPARC64 crypto opcodes.
1359
1360config CRYPTO_DES3_EDE_X86_64
1361 tristate "Triple DES EDE cipher algorithm (x86-64)"
1362 depends on X86 && 64BIT
1363 select CRYPTO_BLKCIPHER
1364 select CRYPTO_LIB_DES
1365 help
1366 Triple DES EDE (FIPS 46-3) algorithm.
1367
1368 This module provides implementation of the Triple DES EDE cipher
1369 algorithm that is optimized for x86-64 processors. Two versions of
1370 algorithm are provided; regular processing one input block and
1371 one that processes three blocks parallel.
1372
1373config CRYPTO_FCRYPT
1374 tristate "FCrypt cipher algorithm"
1375 select CRYPTO_ALGAPI
1376 select CRYPTO_BLKCIPHER
1377 help
1378 FCrypt algorithm used by RxRPC.
1379
1380config CRYPTO_KHAZAD
1381 tristate "Khazad cipher algorithm"
1382 select CRYPTO_ALGAPI
1383 help
1384 Khazad cipher algorithm.
1385
1386 Khazad was a finalist in the initial NESSIE competition. It is
1387 an algorithm optimized for 64-bit processors with good performance
1388 on 32-bit processors. Khazad uses an 128 bit key size.
1389
1390 See also:
1391 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1392
1393config CRYPTO_SALSA20
1394 tristate "Salsa20 stream cipher algorithm"
1395 select CRYPTO_BLKCIPHER
1396 help
1397 Salsa20 stream cipher algorithm.
1398
1399 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1400 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1401
1402 The Salsa20 stream cipher algorithm is designed by Daniel J.
1403 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1404
1405config CRYPTO_CHACHA20
1406 tristate "ChaCha stream cipher algorithms"
1407 select CRYPTO_BLKCIPHER
1408 help
1409 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1410
1411 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1412 Bernstein and further specified in RFC7539 for use in IETF protocols.
1413 This is the portable C implementation of ChaCha20. See also:
1414 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1415
1416 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1417 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1418 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1419 while provably retaining ChaCha20's security. See also:
1420 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1421
1422 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1423 reduced security margin but increased performance. It can be needed
1424 in some performance-sensitive scenarios.
1425
1426config CRYPTO_CHACHA20_X86_64
1427 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1428 depends on X86 && 64BIT
1429 select CRYPTO_BLKCIPHER
1430 select CRYPTO_CHACHA20
1431 help
1432 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1433 XChaCha20, and XChaCha12 stream ciphers.
1434
1435config CRYPTO_SEED
1436 tristate "SEED cipher algorithm"
1437 select CRYPTO_ALGAPI
1438 help
1439 SEED cipher algorithm (RFC4269).
1440
1441 SEED is a 128-bit symmetric key block cipher that has been
1442 developed by KISA (Korea Information Security Agency) as a
1443 national standard encryption algorithm of the Republic of Korea.
1444 It is a 16 round block cipher with the key size of 128 bit.
1445
1446 See also:
1447 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1448
1449config CRYPTO_SERPENT
1450 tristate "Serpent cipher algorithm"
1451 select CRYPTO_ALGAPI
1452 help
1453 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1454
1455 Keys are allowed to be from 0 to 256 bits in length, in steps
1456 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1457 variant of Serpent for compatibility with old kerneli.org code.
1458
1459 See also:
1460 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1461
1462config CRYPTO_SERPENT_SSE2_X86_64
1463 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1464 depends on X86 && 64BIT
1465 select CRYPTO_BLKCIPHER
1466 select CRYPTO_GLUE_HELPER_X86
1467 select CRYPTO_SERPENT
1468 select CRYPTO_SIMD
1469 help
1470 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1471
1472 Keys are allowed to be from 0 to 256 bits in length, in steps
1473 of 8 bits.
1474
1475 This module provides Serpent cipher algorithm that processes eight
1476 blocks parallel using SSE2 instruction set.
1477
1478 See also:
1479 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1480
1481config CRYPTO_SERPENT_SSE2_586
1482 tristate "Serpent cipher algorithm (i586/SSE2)"
1483 depends on X86 && !64BIT
1484 select CRYPTO_BLKCIPHER
1485 select CRYPTO_GLUE_HELPER_X86
1486 select CRYPTO_SERPENT
1487 select CRYPTO_SIMD
1488 help
1489 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1490
1491 Keys are allowed to be from 0 to 256 bits in length, in steps
1492 of 8 bits.
1493
1494 This module provides Serpent cipher algorithm that processes four
1495 blocks parallel using SSE2 instruction set.
1496
1497 See also:
1498 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1499
1500config CRYPTO_SERPENT_AVX_X86_64
1501 tristate "Serpent cipher algorithm (x86_64/AVX)"
1502 depends on X86 && 64BIT
1503 select CRYPTO_BLKCIPHER
1504 select CRYPTO_GLUE_HELPER_X86
1505 select CRYPTO_SERPENT
1506 select CRYPTO_SIMD
1507 select CRYPTO_XTS
1508 help
1509 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510
1511 Keys are allowed to be from 0 to 256 bits in length, in steps
1512 of 8 bits.
1513
1514 This module provides the Serpent cipher algorithm that processes
1515 eight blocks parallel using the AVX instruction set.
1516
1517 See also:
1518 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519
1520config CRYPTO_SERPENT_AVX2_X86_64
1521 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1522 depends on X86 && 64BIT
1523 select CRYPTO_SERPENT_AVX_X86_64
1524 help
1525 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1526
1527 Keys are allowed to be from 0 to 256 bits in length, in steps
1528 of 8 bits.
1529
1530 This module provides Serpent cipher algorithm that processes 16
1531 blocks parallel using AVX2 instruction set.
1532
1533 See also:
1534 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1535
1536config CRYPTO_SM4
1537 tristate "SM4 cipher algorithm"
1538 select CRYPTO_ALGAPI
1539 help
1540 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1541
1542 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1543 Organization of State Commercial Administration of China (OSCCA)
1544 as an authorized cryptographic algorithms for the use within China.
1545
1546 SMS4 was originally created for use in protecting wireless
1547 networks, and is mandated in the Chinese National Standard for
1548 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1549 (GB.15629.11-2003).
1550
1551 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1552 standardized through TC 260 of the Standardization Administration
1553 of the People's Republic of China (SAC).
1554
1555 The input, output, and key of SMS4 are each 128 bits.
1556
1557 See also: <https://eprint.iacr.org/2008/329.pdf>
1558
1559 If unsure, say N.
1560
1561config CRYPTO_TEA
1562 tristate "TEA, XTEA and XETA cipher algorithms"
1563 select CRYPTO_ALGAPI
1564 help
1565 TEA cipher algorithm.
1566
1567 Tiny Encryption Algorithm is a simple cipher that uses
1568 many rounds for security. It is very fast and uses
1569 little memory.
1570
1571 Xtendend Tiny Encryption Algorithm is a modification to
1572 the TEA algorithm to address a potential key weakness
1573 in the TEA algorithm.
1574
1575 Xtendend Encryption Tiny Algorithm is a mis-implementation
1576 of the XTEA algorithm for compatibility purposes.
1577
1578config CRYPTO_TWOFISH
1579 tristate "Twofish cipher algorithm"
1580 select CRYPTO_ALGAPI
1581 select CRYPTO_TWOFISH_COMMON
1582 help
1583 Twofish cipher algorithm.
1584
1585 Twofish was submitted as an AES (Advanced Encryption Standard)
1586 candidate cipher by researchers at CounterPane Systems. It is a
1587 16 round block cipher supporting key sizes of 128, 192, and 256
1588 bits.
1589
1590 See also:
1591 <http://www.schneier.com/twofish.html>
1592
1593config CRYPTO_TWOFISH_COMMON
1594 tristate
1595 help
1596 Common parts of the Twofish cipher algorithm shared by the
1597 generic c and the assembler implementations.
1598
1599config CRYPTO_TWOFISH_586
1600 tristate "Twofish cipher algorithms (i586)"
1601 depends on (X86 || UML_X86) && !64BIT
1602 select CRYPTO_ALGAPI
1603 select CRYPTO_TWOFISH_COMMON
1604 help
1605 Twofish cipher algorithm.
1606
1607 Twofish was submitted as an AES (Advanced Encryption Standard)
1608 candidate cipher by researchers at CounterPane Systems. It is a
1609 16 round block cipher supporting key sizes of 128, 192, and 256
1610 bits.
1611
1612 See also:
1613 <http://www.schneier.com/twofish.html>
1614
1615config CRYPTO_TWOFISH_X86_64
1616 tristate "Twofish cipher algorithm (x86_64)"
1617 depends on (X86 || UML_X86) && 64BIT
1618 select CRYPTO_ALGAPI
1619 select CRYPTO_TWOFISH_COMMON
1620 help
1621 Twofish cipher algorithm (x86_64).
1622
1623 Twofish was submitted as an AES (Advanced Encryption Standard)
1624 candidate cipher by researchers at CounterPane Systems. It is a
1625 16 round block cipher supporting key sizes of 128, 192, and 256
1626 bits.
1627
1628 See also:
1629 <http://www.schneier.com/twofish.html>
1630
1631config CRYPTO_TWOFISH_X86_64_3WAY
1632 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1633 depends on X86 && 64BIT
1634 select CRYPTO_BLKCIPHER
1635 select CRYPTO_TWOFISH_COMMON
1636 select CRYPTO_TWOFISH_X86_64
1637 select CRYPTO_GLUE_HELPER_X86
1638 help
1639 Twofish cipher algorithm (x86_64, 3-way parallel).
1640
1641 Twofish was submitted as an AES (Advanced Encryption Standard)
1642 candidate cipher by researchers at CounterPane Systems. It is a
1643 16 round block cipher supporting key sizes of 128, 192, and 256
1644 bits.
1645
1646 This module provides Twofish cipher algorithm that processes three
1647 blocks parallel, utilizing resources of out-of-order CPUs better.
1648
1649 See also:
1650 <http://www.schneier.com/twofish.html>
1651
1652config CRYPTO_TWOFISH_AVX_X86_64
1653 tristate "Twofish cipher algorithm (x86_64/AVX)"
1654 depends on X86 && 64BIT
1655 select CRYPTO_BLKCIPHER
1656 select CRYPTO_GLUE_HELPER_X86
1657 select CRYPTO_SIMD
1658 select CRYPTO_TWOFISH_COMMON
1659 select CRYPTO_TWOFISH_X86_64
1660 select CRYPTO_TWOFISH_X86_64_3WAY
1661 help
1662 Twofish cipher algorithm (x86_64/AVX).
1663
1664 Twofish was submitted as an AES (Advanced Encryption Standard)
1665 candidate cipher by researchers at CounterPane Systems. It is a
1666 16 round block cipher supporting key sizes of 128, 192, and 256
1667 bits.
1668
1669 This module provides the Twofish cipher algorithm that processes
1670 eight blocks parallel using the AVX Instruction Set.
1671
1672 See also:
1673 <http://www.schneier.com/twofish.html>
1674
1675comment "Compression"
1676
1677config CRYPTO_DEFLATE
1678 tristate "Deflate compression algorithm"
1679 select CRYPTO_ALGAPI
1680 select CRYPTO_ACOMP2
1681 select ZLIB_INFLATE
1682 select ZLIB_DEFLATE
1683 help
1684 This is the Deflate algorithm (RFC1951), specified for use in
1685 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1686
1687 You will most probably want this if using IPSec.
1688
1689config CRYPTO_LZO
1690 tristate "LZO compression algorithm"
1691 select CRYPTO_ALGAPI
1692 select CRYPTO_ACOMP2
1693 select LZO_COMPRESS
1694 select LZO_DECOMPRESS
1695 help
1696 This is the LZO algorithm.
1697
1698config CRYPTO_842
1699 tristate "842 compression algorithm"
1700 select CRYPTO_ALGAPI
1701 select CRYPTO_ACOMP2
1702 select 842_COMPRESS
1703 select 842_DECOMPRESS
1704 help
1705 This is the 842 algorithm.
1706
1707config CRYPTO_LZ4
1708 tristate "LZ4 compression algorithm"
1709 select CRYPTO_ALGAPI
1710 select CRYPTO_ACOMP2
1711 select LZ4_COMPRESS
1712 select LZ4_DECOMPRESS
1713 help
1714 This is the LZ4 algorithm.
1715
1716config CRYPTO_LZ4HC
1717 tristate "LZ4HC compression algorithm"
1718 select CRYPTO_ALGAPI
1719 select CRYPTO_ACOMP2
1720 select LZ4HC_COMPRESS
1721 select LZ4_DECOMPRESS
1722 help
1723 This is the LZ4 high compression mode algorithm.
1724
1725config CRYPTO_ZSTD
1726 tristate "Zstd compression algorithm"
1727 select CRYPTO_ALGAPI
1728 select CRYPTO_ACOMP2
1729 select ZSTD_COMPRESS
1730 select ZSTD_DECOMPRESS
1731 help
1732 This is the zstd algorithm.
1733
1734comment "Random Number Generation"
1735
1736config CRYPTO_ANSI_CPRNG
1737 tristate "Pseudo Random Number Generation for Cryptographic modules"
1738 select CRYPTO_AES
1739 select CRYPTO_RNG
1740 help
1741 This option enables the generic pseudo random number generator
1742 for cryptographic modules. Uses the Algorithm specified in
1743 ANSI X9.31 A.2.4. Note that this option must be enabled if
1744 CRYPTO_FIPS is selected
1745
1746menuconfig CRYPTO_DRBG_MENU
1747 tristate "NIST SP800-90A DRBG"
1748 help
1749 NIST SP800-90A compliant DRBG. In the following submenu, one or
1750 more of the DRBG types must be selected.
1751
1752if CRYPTO_DRBG_MENU
1753
1754config CRYPTO_DRBG_HMAC
1755 bool
1756 default y
1757 select CRYPTO_HMAC
1758 select CRYPTO_SHA256
1759
1760config CRYPTO_DRBG_HASH
1761 bool "Enable Hash DRBG"
1762 select CRYPTO_SHA256
1763 help
1764 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1765
1766config CRYPTO_DRBG_CTR
1767 bool "Enable CTR DRBG"
1768 select CRYPTO_AES
1769 depends on CRYPTO_CTR
1770 help
1771 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1772
1773config CRYPTO_DRBG
1774 tristate
1775 default CRYPTO_DRBG_MENU
1776 select CRYPTO_RNG
1777 select CRYPTO_JITTERENTROPY
1778
1779endif # if CRYPTO_DRBG_MENU
1780
1781config CRYPTO_JITTERENTROPY
1782 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1783 select CRYPTO_RNG
1784 help
1785 The Jitterentropy RNG is a noise that is intended
1786 to provide seed to another RNG. The RNG does not
1787 perform any cryptographic whitening of the generated
1788 random numbers. This Jitterentropy RNG registers with
1789 the kernel crypto API and can be used by any caller.
1790
1791config CRYPTO_USER_API
1792 tristate
1793
1794config CRYPTO_USER_API_HASH
1795 tristate "User-space interface for hash algorithms"
1796 depends on NET
1797 select CRYPTO_HASH
1798 select CRYPTO_USER_API
1799 help
1800 This option enables the user-spaces interface for hash
1801 algorithms.
1802
1803config CRYPTO_USER_API_SKCIPHER
1804 tristate "User-space interface for symmetric key cipher algorithms"
1805 depends on NET
1806 select CRYPTO_BLKCIPHER
1807 select CRYPTO_USER_API
1808 help
1809 This option enables the user-spaces interface for symmetric
1810 key cipher algorithms.
1811
1812config CRYPTO_USER_API_RNG
1813 tristate "User-space interface for random number generator algorithms"
1814 depends on NET
1815 select CRYPTO_RNG
1816 select CRYPTO_USER_API
1817 help
1818 This option enables the user-spaces interface for random
1819 number generator algorithms.
1820
1821config CRYPTO_USER_API_AEAD
1822 tristate "User-space interface for AEAD cipher algorithms"
1823 depends on NET
1824 select CRYPTO_AEAD
1825 select CRYPTO_BLKCIPHER
1826 select CRYPTO_NULL
1827 select CRYPTO_USER_API
1828 help
1829 This option enables the user-spaces interface for AEAD
1830 cipher algorithms.
1831
1832config CRYPTO_STATS
1833 bool "Crypto usage statistics for User-space"
1834 depends on CRYPTO_USER
1835 help
1836 This option enables the gathering of crypto stats.
1837 This will collect:
1838 - encrypt/decrypt size and numbers of symmeric operations
1839 - compress/decompress size and numbers of compress operations
1840 - size and numbers of hash operations
1841 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1842 - generate/seed numbers for rng operations
1843
1844config CRYPTO_HASH_INFO
1845 bool
1846
1847source "drivers/crypto/Kconfig"
1848source "crypto/asymmetric_keys/Kconfig"
1849source "certs/Kconfig"
1850
1851endif # if CRYPTO