Linux Audio

Check our new training course

Loading...
v4.17
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This options enables the fips boot option which is
  31	  required if you want to system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_BLKCIPHER
  56	tristate
  57	select CRYPTO_BLKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_BLKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64	select CRYPTO_WORKQUEUE
  65
  66config CRYPTO_HASH
  67	tristate
  68	select CRYPTO_HASH2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_HASH2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74
  75config CRYPTO_RNG
  76	tristate
  77	select CRYPTO_RNG2
  78	select CRYPTO_ALGAPI
  79
  80config CRYPTO_RNG2
  81	tristate
  82	select CRYPTO_ALGAPI2
  83
  84config CRYPTO_RNG_DEFAULT
  85	tristate
  86	select CRYPTO_DRBG_MENU
  87
  88config CRYPTO_AKCIPHER2
  89	tristate
  90	select CRYPTO_ALGAPI2
  91
  92config CRYPTO_AKCIPHER
  93	tristate
  94	select CRYPTO_AKCIPHER2
  95	select CRYPTO_ALGAPI
  96
  97config CRYPTO_KPP2
  98	tristate
  99	select CRYPTO_ALGAPI2
 100
 101config CRYPTO_KPP
 102	tristate
 103	select CRYPTO_ALGAPI
 104	select CRYPTO_KPP2
 105
 106config CRYPTO_ACOMP2
 107	tristate
 108	select CRYPTO_ALGAPI2
 109	select SGL_ALLOC
 110
 111config CRYPTO_ACOMP
 112	tristate
 113	select CRYPTO_ALGAPI
 114	select CRYPTO_ACOMP2
 115
 116config CRYPTO_RSA
 117	tristate "RSA algorithm"
 118	select CRYPTO_AKCIPHER
 119	select CRYPTO_MANAGER
 120	select MPILIB
 121	select ASN1
 122	help
 123	  Generic implementation of the RSA public key algorithm.
 124
 125config CRYPTO_DH
 126	tristate "Diffie-Hellman algorithm"
 127	select CRYPTO_KPP
 128	select MPILIB
 129	help
 130	  Generic implementation of the Diffie-Hellman algorithm.
 131
 132config CRYPTO_ECDH
 133	tristate "ECDH algorithm"
 134	select CRYPTO_KPP
 135	select CRYPTO_RNG_DEFAULT
 136	help
 137	  Generic implementation of the ECDH algorithm
 138
 139config CRYPTO_MANAGER
 140	tristate "Cryptographic algorithm manager"
 141	select CRYPTO_MANAGER2
 142	help
 143	  Create default cryptographic template instantiations such as
 144	  cbc(aes).
 145
 146config CRYPTO_MANAGER2
 147	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 148	select CRYPTO_AEAD2
 149	select CRYPTO_HASH2
 150	select CRYPTO_BLKCIPHER2
 151	select CRYPTO_AKCIPHER2
 152	select CRYPTO_KPP2
 153	select CRYPTO_ACOMP2
 154
 155config CRYPTO_USER
 156	tristate "Userspace cryptographic algorithm configuration"
 157	depends on NET
 158	select CRYPTO_MANAGER
 159	help
 160	  Userspace configuration for cryptographic instantiations such as
 161	  cbc(aes).
 162
 
 
 163config CRYPTO_MANAGER_DISABLE_TESTS
 164	bool "Disable run-time self tests"
 165	default y
 166	depends on CRYPTO_MANAGER2
 167	help
 168	  Disable run-time self tests that normally take place at
 169	  algorithm registration.
 170
 171config CRYPTO_GF128MUL
 172	tristate "GF(2^128) multiplication functions"
 
 173	help
 174	  Efficient table driven implementation of multiplications in the
 175	  field GF(2^128).  This is needed by some cypher modes. This
 176	  option will be selected automatically if you select such a
 177	  cipher mode.  Only select this option by hand if you expect to load
 178	  an external module that requires these functions.
 
 
 
 
 
 179
 180config CRYPTO_NULL
 181	tristate "Null algorithms"
 182	select CRYPTO_NULL2
 183	help
 184	  These are 'Null' algorithms, used by IPsec, which do nothing.
 185
 186config CRYPTO_NULL2
 187	tristate
 188	select CRYPTO_ALGAPI2
 189	select CRYPTO_BLKCIPHER2
 190	select CRYPTO_HASH2
 191
 192config CRYPTO_PCRYPT
 193	tristate "Parallel crypto engine"
 194	depends on SMP
 195	select PADATA
 196	select CRYPTO_MANAGER
 197	select CRYPTO_AEAD
 198	help
 199	  This converts an arbitrary crypto algorithm into a parallel
 200	  algorithm that executes in kernel threads.
 201
 202config CRYPTO_WORKQUEUE
 203       tristate
 204
 205config CRYPTO_CRYPTD
 206	tristate "Software async crypto daemon"
 207	select CRYPTO_BLKCIPHER
 208	select CRYPTO_HASH
 209	select CRYPTO_MANAGER
 210	select CRYPTO_WORKQUEUE
 211	help
 212	  This is a generic software asynchronous crypto daemon that
 213	  converts an arbitrary synchronous software crypto algorithm
 214	  into an asynchronous algorithm that executes in a kernel thread.
 215
 216config CRYPTO_MCRYPTD
 217	tristate "Software async multi-buffer crypto daemon"
 218	select CRYPTO_BLKCIPHER
 219	select CRYPTO_HASH
 220	select CRYPTO_MANAGER
 221	select CRYPTO_WORKQUEUE
 222	help
 223	  This is a generic software asynchronous crypto daemon that
 224	  provides the kernel thread to assist multi-buffer crypto
 225	  algorithms for submitting jobs and flushing jobs in multi-buffer
 226	  crypto algorithms.  Multi-buffer crypto algorithms are executed
 227	  in the context of this kernel thread and drivers can post
 228	  their crypto request asynchronously to be processed by this daemon.
 229
 230config CRYPTO_AUTHENC
 231	tristate "Authenc support"
 232	select CRYPTO_AEAD
 233	select CRYPTO_BLKCIPHER
 234	select CRYPTO_MANAGER
 235	select CRYPTO_HASH
 236	select CRYPTO_NULL
 237	help
 238	  Authenc: Combined mode wrapper for IPsec.
 239	  This is required for IPSec.
 240
 241config CRYPTO_TEST
 242	tristate "Testing module"
 243	depends on m
 244	select CRYPTO_MANAGER
 245	help
 246	  Quick & dirty crypto test module.
 247
 248config CRYPTO_SIMD
 249	tristate
 250	select CRYPTO_CRYPTD
 251
 252config CRYPTO_GLUE_HELPER_X86
 253	tristate
 254	depends on X86
 255	select CRYPTO_BLKCIPHER
 256
 257config CRYPTO_ENGINE
 258	tristate
 259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260comment "Authenticated Encryption with Associated Data"
 261
 262config CRYPTO_CCM
 263	tristate "CCM support"
 264	select CRYPTO_CTR
 265	select CRYPTO_HASH
 266	select CRYPTO_AEAD
 
 267	help
 268	  Support for Counter with CBC MAC. Required for IPsec.
 269
 270config CRYPTO_GCM
 271	tristate "GCM/GMAC support"
 272	select CRYPTO_CTR
 273	select CRYPTO_AEAD
 274	select CRYPTO_GHASH
 275	select CRYPTO_NULL
 
 276	help
 277	  Support for Galois/Counter Mode (GCM) and Galois Message
 278	  Authentication Code (GMAC). Required for IPSec.
 279
 280config CRYPTO_CHACHA20POLY1305
 281	tristate "ChaCha20-Poly1305 AEAD support"
 282	select CRYPTO_CHACHA20
 283	select CRYPTO_POLY1305
 284	select CRYPTO_AEAD
 
 285	help
 286	  ChaCha20-Poly1305 AEAD support, RFC7539.
 287
 288	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 289	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 290	  IETF protocols.
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292config CRYPTO_SEQIV
 293	tristate "Sequence Number IV Generator"
 294	select CRYPTO_AEAD
 295	select CRYPTO_BLKCIPHER
 296	select CRYPTO_NULL
 297	select CRYPTO_RNG_DEFAULT
 
 298	help
 299	  This IV generator generates an IV based on a sequence number by
 300	  xoring it with a salt.  This algorithm is mainly useful for CTR
 301
 302config CRYPTO_ECHAINIV
 303	tristate "Encrypted Chain IV Generator"
 304	select CRYPTO_AEAD
 305	select CRYPTO_NULL
 306	select CRYPTO_RNG_DEFAULT
 307	default m
 308	help
 309	  This IV generator generates an IV based on the encryption of
 310	  a sequence number xored with a salt.  This is the default
 311	  algorithm for CBC.
 312
 313comment "Block modes"
 314
 315config CRYPTO_CBC
 316	tristate "CBC support"
 317	select CRYPTO_BLKCIPHER
 318	select CRYPTO_MANAGER
 319	help
 320	  CBC: Cipher Block Chaining mode
 321	  This block cipher algorithm is required for IPSec.
 322
 323config CRYPTO_CFB
 324	tristate "CFB support"
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_MANAGER
 327	help
 328	  CFB: Cipher FeedBack mode
 329	  This block cipher algorithm is required for TPM2 Cryptography.
 330
 331config CRYPTO_CTR
 332	tristate "CTR support"
 333	select CRYPTO_BLKCIPHER
 334	select CRYPTO_SEQIV
 335	select CRYPTO_MANAGER
 336	help
 337	  CTR: Counter mode
 338	  This block cipher algorithm is required for IPSec.
 339
 340config CRYPTO_CTS
 341	tristate "CTS support"
 342	select CRYPTO_BLKCIPHER
 
 343	help
 344	  CTS: Cipher Text Stealing
 345	  This is the Cipher Text Stealing mode as described by
 346	  Section 8 of rfc2040 and referenced by rfc3962.
 347	  (rfc3962 includes errata information in its Appendix A)
 
 348	  This mode is required for Kerberos gss mechanism support
 349	  for AES encryption.
 350
 
 
 351config CRYPTO_ECB
 352	tristate "ECB support"
 353	select CRYPTO_BLKCIPHER
 354	select CRYPTO_MANAGER
 355	help
 356	  ECB: Electronic CodeBook mode
 357	  This is the simplest block cipher algorithm.  It simply encrypts
 358	  the input block by block.
 359
 360config CRYPTO_LRW
 361	tristate "LRW support"
 362	select CRYPTO_BLKCIPHER
 363	select CRYPTO_MANAGER
 364	select CRYPTO_GF128MUL
 365	help
 366	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 367	  narrow block cipher mode for dm-crypt.  Use it with cipher
 368	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 369	  The first 128, 192 or 256 bits in the key are used for AES and the
 370	  rest is used to tie each cipher block to its logical position.
 371
 
 
 
 
 
 
 
 
 
 
 
 
 372config CRYPTO_PCBC
 373	tristate "PCBC support"
 374	select CRYPTO_BLKCIPHER
 375	select CRYPTO_MANAGER
 376	help
 377	  PCBC: Propagating Cipher Block Chaining mode
 378	  This block cipher algorithm is required for RxRPC.
 379
 380config CRYPTO_XTS
 381	tristate "XTS support"
 382	select CRYPTO_BLKCIPHER
 383	select CRYPTO_MANAGER
 384	select CRYPTO_ECB
 385	help
 386	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 387	  key size 256, 384 or 512 bits. This implementation currently
 388	  can't handle a sectorsize which is not a multiple of 16 bytes.
 389
 390config CRYPTO_KEYWRAP
 391	tristate "Key wrapping support"
 392	select CRYPTO_BLKCIPHER
 
 393	help
 394	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 395	  padding.
 396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397comment "Hash modes"
 398
 399config CRYPTO_CMAC
 400	tristate "CMAC support"
 401	select CRYPTO_HASH
 402	select CRYPTO_MANAGER
 403	help
 404	  Cipher-based Message Authentication Code (CMAC) specified by
 405	  The National Institute of Standards and Technology (NIST).
 406
 407	  https://tools.ietf.org/html/rfc4493
 408	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 409
 410config CRYPTO_HMAC
 411	tristate "HMAC support"
 412	select CRYPTO_HASH
 413	select CRYPTO_MANAGER
 414	help
 415	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 416	  This is required for IPSec.
 417
 418config CRYPTO_XCBC
 419	tristate "XCBC support"
 420	select CRYPTO_HASH
 421	select CRYPTO_MANAGER
 422	help
 423	  XCBC: Keyed-Hashing with encryption algorithm
 424		http://www.ietf.org/rfc/rfc3566.txt
 425		http://csrc.nist.gov/encryption/modes/proposedmodes/
 426		 xcbc-mac/xcbc-mac-spec.pdf
 427
 428config CRYPTO_VMAC
 429	tristate "VMAC support"
 430	select CRYPTO_HASH
 431	select CRYPTO_MANAGER
 432	help
 433	  VMAC is a message authentication algorithm designed for
 434	  very high speed on 64-bit architectures.
 435
 436	  See also:
 437	  <http://fastcrypto.org/vmac>
 438
 439comment "Digest"
 440
 441config CRYPTO_CRC32C
 442	tristate "CRC32c CRC algorithm"
 443	select CRYPTO_HASH
 444	select CRC32
 445	help
 446	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 447	  by iSCSI for header and data digests and by others.
 448	  See Castagnoli93.  Module will be crc32c.
 449
 450config CRYPTO_CRC32C_INTEL
 451	tristate "CRC32c INTEL hardware acceleration"
 452	depends on X86
 453	select CRYPTO_HASH
 454	help
 455	  In Intel processor with SSE4.2 supported, the processor will
 456	  support CRC32C implementation using hardware accelerated CRC32
 457	  instruction. This option will create 'crc32c-intel' module,
 458	  which will enable any routine to use the CRC32 instruction to
 459	  gain performance compared with software implementation.
 460	  Module will be crc32c-intel.
 461
 462config CRYPTO_CRC32C_VPMSUM
 463	tristate "CRC32c CRC algorithm (powerpc64)"
 464	depends on PPC64 && ALTIVEC
 465	select CRYPTO_HASH
 466	select CRC32
 467	help
 468	  CRC32c algorithm implemented using vector polynomial multiply-sum
 469	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 470	  and newer processors for improved performance.
 471
 472
 473config CRYPTO_CRC32C_SPARC64
 474	tristate "CRC32c CRC algorithm (SPARC64)"
 475	depends on SPARC64
 476	select CRYPTO_HASH
 477	select CRC32
 478	help
 479	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 480	  when available.
 481
 482config CRYPTO_CRC32
 483	tristate "CRC32 CRC algorithm"
 484	select CRYPTO_HASH
 485	select CRC32
 486	help
 487	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 488	  Shash crypto api wrappers to crc32_le function.
 489
 490config CRYPTO_CRC32_PCLMUL
 491	tristate "CRC32 PCLMULQDQ hardware acceleration"
 492	depends on X86
 493	select CRYPTO_HASH
 494	select CRC32
 495	help
 496	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 497	  and PCLMULQDQ supported, the processor will support
 498	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 499	  instruction. This option will create 'crc32-plcmul' module,
 500	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 501	  and gain better performance as compared with the table implementation.
 502
 503config CRYPTO_CRC32_MIPS
 504	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 505	depends on MIPS_CRC_SUPPORT
 506	select CRYPTO_HASH
 507	help
 508	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 509	  instructions, when available.
 510
 511
 
 
 
 
 
 
 
 
 512config CRYPTO_CRCT10DIF
 513	tristate "CRCT10DIF algorithm"
 514	select CRYPTO_HASH
 515	help
 516	  CRC T10 Data Integrity Field computation is being cast as
 517	  a crypto transform.  This allows for faster crc t10 diff
 518	  transforms to be used if they are available.
 519
 520config CRYPTO_CRCT10DIF_PCLMUL
 521	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 522	depends on X86 && 64BIT && CRC_T10DIF
 523	select CRYPTO_HASH
 524	help
 525	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 526	  CRC T10 DIF PCLMULQDQ computation can be hardware
 527	  accelerated PCLMULQDQ instruction. This option will create
 528	  'crct10dif-plcmul' module, which is faster when computing the
 529	  crct10dif checksum as compared with the generic table implementation.
 530
 531config CRYPTO_CRCT10DIF_VPMSUM
 532	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 533	depends on PPC64 && ALTIVEC && CRC_T10DIF
 534	select CRYPTO_HASH
 535	help
 536	  CRC10T10DIF algorithm implemented using vector polynomial
 537	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 538	  POWER8 and newer processors for improved performance.
 539
 540config CRYPTO_VPMSUM_TESTER
 541	tristate "Powerpc64 vpmsum hardware acceleration tester"
 542	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 543	help
 544	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 545	  POWER8 vpmsum instructions.
 546	  Unless you are testing these algorithms, you don't need this.
 547
 548config CRYPTO_GHASH
 549	tristate "GHASH digest algorithm"
 550	select CRYPTO_GF128MUL
 551	select CRYPTO_HASH
 552	help
 553	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 
 554
 555config CRYPTO_POLY1305
 556	tristate "Poly1305 authenticator algorithm"
 557	select CRYPTO_HASH
 558	help
 559	  Poly1305 authenticator algorithm, RFC7539.
 560
 561	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 562	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 563	  in IETF protocols. This is the portable C implementation of Poly1305.
 564
 565config CRYPTO_POLY1305_X86_64
 566	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 567	depends on X86 && 64BIT
 568	select CRYPTO_POLY1305
 569	help
 570	  Poly1305 authenticator algorithm, RFC7539.
 571
 572	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 573	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 574	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 575	  instructions.
 576
 577config CRYPTO_MD4
 578	tristate "MD4 digest algorithm"
 579	select CRYPTO_HASH
 580	help
 581	  MD4 message digest algorithm (RFC1320).
 582
 583config CRYPTO_MD5
 584	tristate "MD5 digest algorithm"
 585	select CRYPTO_HASH
 586	help
 587	  MD5 message digest algorithm (RFC1321).
 588
 589config CRYPTO_MD5_OCTEON
 590	tristate "MD5 digest algorithm (OCTEON)"
 591	depends on CPU_CAVIUM_OCTEON
 592	select CRYPTO_MD5
 593	select CRYPTO_HASH
 594	help
 595	  MD5 message digest algorithm (RFC1321) implemented
 596	  using OCTEON crypto instructions, when available.
 597
 598config CRYPTO_MD5_PPC
 599	tristate "MD5 digest algorithm (PPC)"
 600	depends on PPC
 601	select CRYPTO_HASH
 602	help
 603	  MD5 message digest algorithm (RFC1321) implemented
 604	  in PPC assembler.
 605
 606config CRYPTO_MD5_SPARC64
 607	tristate "MD5 digest algorithm (SPARC64)"
 608	depends on SPARC64
 609	select CRYPTO_MD5
 610	select CRYPTO_HASH
 611	help
 612	  MD5 message digest algorithm (RFC1321) implemented
 613	  using sparc64 crypto instructions, when available.
 614
 615config CRYPTO_MICHAEL_MIC
 616	tristate "Michael MIC keyed digest algorithm"
 617	select CRYPTO_HASH
 618	help
 619	  Michael MIC is used for message integrity protection in TKIP
 620	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 621	  should not be used for other purposes because of the weakness
 622	  of the algorithm.
 623
 624config CRYPTO_RMD128
 625	tristate "RIPEMD-128 digest algorithm"
 626	select CRYPTO_HASH
 627	help
 628	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 629
 630	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 631	  be used as a secure replacement for RIPEMD. For other use cases,
 632	  RIPEMD-160 should be used.
 633
 634	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 635	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 636
 637config CRYPTO_RMD160
 638	tristate "RIPEMD-160 digest algorithm"
 639	select CRYPTO_HASH
 640	help
 641	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 642
 643	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 644	  to be used as a secure replacement for the 128-bit hash functions
 645	  MD4, MD5 and it's predecessor RIPEMD
 646	  (not to be confused with RIPEMD-128).
 647
 648	  It's speed is comparable to SHA1 and there are no known attacks
 649	  against RIPEMD-160.
 650
 651	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 652	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 653
 654config CRYPTO_RMD256
 655	tristate "RIPEMD-256 digest algorithm"
 656	select CRYPTO_HASH
 657	help
 658	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 659	  256 bit hash. It is intended for applications that require
 660	  longer hash-results, without needing a larger security level
 661	  (than RIPEMD-128).
 662
 663	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 664	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 665
 666config CRYPTO_RMD320
 667	tristate "RIPEMD-320 digest algorithm"
 668	select CRYPTO_HASH
 669	help
 670	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 671	  320 bit hash. It is intended for applications that require
 672	  longer hash-results, without needing a larger security level
 673	  (than RIPEMD-160).
 674
 675	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 676	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 677
 678config CRYPTO_SHA1
 679	tristate "SHA1 digest algorithm"
 680	select CRYPTO_HASH
 681	help
 682	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 683
 684config CRYPTO_SHA1_SSSE3
 685	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 686	depends on X86 && 64BIT
 687	select CRYPTO_SHA1
 688	select CRYPTO_HASH
 689	help
 690	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 691	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 692	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 693	  when available.
 694
 695config CRYPTO_SHA256_SSSE3
 696	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 697	depends on X86 && 64BIT
 698	select CRYPTO_SHA256
 699	select CRYPTO_HASH
 700	help
 701	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 702	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 703	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 704	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 705	  Instructions) when available.
 706
 707config CRYPTO_SHA512_SSSE3
 708	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 709	depends on X86 && 64BIT
 710	select CRYPTO_SHA512
 711	select CRYPTO_HASH
 712	help
 713	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 714	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 715	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 716	  version 2 (AVX2) instructions, when available.
 717
 718config CRYPTO_SHA1_OCTEON
 719	tristate "SHA1 digest algorithm (OCTEON)"
 720	depends on CPU_CAVIUM_OCTEON
 721	select CRYPTO_SHA1
 722	select CRYPTO_HASH
 723	help
 724	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 725	  using OCTEON crypto instructions, when available.
 726
 727config CRYPTO_SHA1_SPARC64
 728	tristate "SHA1 digest algorithm (SPARC64)"
 729	depends on SPARC64
 730	select CRYPTO_SHA1
 731	select CRYPTO_HASH
 732	help
 733	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 734	  using sparc64 crypto instructions, when available.
 735
 736config CRYPTO_SHA1_PPC
 737	tristate "SHA1 digest algorithm (powerpc)"
 738	depends on PPC
 739	help
 740	  This is the powerpc hardware accelerated implementation of the
 741	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 742
 743config CRYPTO_SHA1_PPC_SPE
 744	tristate "SHA1 digest algorithm (PPC SPE)"
 745	depends on PPC && SPE
 746	help
 747	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 748	  using powerpc SPE SIMD instruction set.
 749
 750config CRYPTO_SHA1_MB
 751	tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 752	depends on X86 && 64BIT
 753	select CRYPTO_SHA1
 754	select CRYPTO_HASH
 755	select CRYPTO_MCRYPTD
 756	help
 757	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 758	  using multi-buffer technique.  This algorithm computes on
 759	  multiple data lanes concurrently with SIMD instructions for
 760	  better throughput.  It should not be enabled by default but
 761	  used when there is significant amount of work to keep the keep
 762	  the data lanes filled to get performance benefit.  If the data
 763	  lanes remain unfilled, a flush operation will be initiated to
 764	  process the crypto jobs, adding a slight latency.
 765
 766config CRYPTO_SHA256_MB
 767	tristate "SHA256 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 768	depends on X86 && 64BIT
 769	select CRYPTO_SHA256
 770	select CRYPTO_HASH
 771	select CRYPTO_MCRYPTD
 772	help
 773	  SHA-256 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 774	  using multi-buffer technique.  This algorithm computes on
 775	  multiple data lanes concurrently with SIMD instructions for
 776	  better throughput.  It should not be enabled by default but
 777	  used when there is significant amount of work to keep the keep
 778	  the data lanes filled to get performance benefit.  If the data
 779	  lanes remain unfilled, a flush operation will be initiated to
 780	  process the crypto jobs, adding a slight latency.
 781
 782config CRYPTO_SHA512_MB
 783        tristate "SHA512 digest algorithm (x86_64 Multi-Buffer, Experimental)"
 784        depends on X86 && 64BIT
 785        select CRYPTO_SHA512
 786        select CRYPTO_HASH
 787        select CRYPTO_MCRYPTD
 788        help
 789          SHA-512 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 790          using multi-buffer technique.  This algorithm computes on
 791          multiple data lanes concurrently with SIMD instructions for
 792          better throughput.  It should not be enabled by default but
 793          used when there is significant amount of work to keep the keep
 794          the data lanes filled to get performance benefit.  If the data
 795          lanes remain unfilled, a flush operation will be initiated to
 796          process the crypto jobs, adding a slight latency.
 797
 798config CRYPTO_SHA256
 799	tristate "SHA224 and SHA256 digest algorithm"
 800	select CRYPTO_HASH
 
 801	help
 802	  SHA256 secure hash standard (DFIPS 180-2).
 803
 804	  This version of SHA implements a 256 bit hash with 128 bits of
 805	  security against collision attacks.
 806
 807	  This code also includes SHA-224, a 224 bit hash with 112 bits
 808	  of security against collision attacks.
 809
 810config CRYPTO_SHA256_PPC_SPE
 811	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 812	depends on PPC && SPE
 813	select CRYPTO_SHA256
 814	select CRYPTO_HASH
 815	help
 816	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 817	  implemented using powerpc SPE SIMD instruction set.
 818
 819config CRYPTO_SHA256_OCTEON
 820	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 821	depends on CPU_CAVIUM_OCTEON
 822	select CRYPTO_SHA256
 823	select CRYPTO_HASH
 824	help
 825	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 826	  using OCTEON crypto instructions, when available.
 827
 828config CRYPTO_SHA256_SPARC64
 829	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 830	depends on SPARC64
 831	select CRYPTO_SHA256
 832	select CRYPTO_HASH
 833	help
 834	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 835	  using sparc64 crypto instructions, when available.
 836
 837config CRYPTO_SHA512
 838	tristate "SHA384 and SHA512 digest algorithms"
 839	select CRYPTO_HASH
 840	help
 841	  SHA512 secure hash standard (DFIPS 180-2).
 842
 843	  This version of SHA implements a 512 bit hash with 256 bits of
 844	  security against collision attacks.
 845
 846	  This code also includes SHA-384, a 384 bit hash with 192 bits
 847	  of security against collision attacks.
 848
 849config CRYPTO_SHA512_OCTEON
 850	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 851	depends on CPU_CAVIUM_OCTEON
 852	select CRYPTO_SHA512
 853	select CRYPTO_HASH
 854	help
 855	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 856	  using OCTEON crypto instructions, when available.
 857
 858config CRYPTO_SHA512_SPARC64
 859	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 860	depends on SPARC64
 861	select CRYPTO_SHA512
 862	select CRYPTO_HASH
 863	help
 864	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 865	  using sparc64 crypto instructions, when available.
 866
 867config CRYPTO_SHA3
 868	tristate "SHA3 digest algorithm"
 869	select CRYPTO_HASH
 870	help
 871	  SHA-3 secure hash standard (DFIPS 202). It's based on
 872	  cryptographic sponge function family called Keccak.
 873
 874	  References:
 875	  http://keccak.noekeon.org/
 876
 877config CRYPTO_SM3
 878	tristate "SM3 digest algorithm"
 879	select CRYPTO_HASH
 880	help
 881	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
 882	  It is part of the Chinese Commercial Cryptography suite.
 883
 884	  References:
 885	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
 886	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
 887
 
 
 
 
 
 
 
 
 
 
 
 
 888config CRYPTO_TGR192
 889	tristate "Tiger digest algorithms"
 890	select CRYPTO_HASH
 891	help
 892	  Tiger hash algorithm 192, 160 and 128-bit hashes
 893
 894	  Tiger is a hash function optimized for 64-bit processors while
 895	  still having decent performance on 32-bit processors.
 896	  Tiger was developed by Ross Anderson and Eli Biham.
 897
 898	  See also:
 899	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 900
 901config CRYPTO_WP512
 902	tristate "Whirlpool digest algorithms"
 903	select CRYPTO_HASH
 904	help
 905	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
 906
 907	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 908	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
 909
 910	  See also:
 911	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
 912
 913config CRYPTO_GHASH_CLMUL_NI_INTEL
 914	tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
 915	depends on X86 && 64BIT
 916	select CRYPTO_CRYPTD
 917	help
 918	  GHASH is message digest algorithm for GCM (Galois/Counter Mode).
 919	  The implementation is accelerated by CLMUL-NI of Intel.
 920
 921comment "Ciphers"
 922
 
 
 
 923config CRYPTO_AES
 924	tristate "AES cipher algorithms"
 925	select CRYPTO_ALGAPI
 
 926	help
 927	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 928	  algorithm.
 929
 930	  Rijndael appears to be consistently a very good performer in
 931	  both hardware and software across a wide range of computing
 932	  environments regardless of its use in feedback or non-feedback
 933	  modes. Its key setup time is excellent, and its key agility is
 934	  good. Rijndael's very low memory requirements make it very well
 935	  suited for restricted-space environments, in which it also
 936	  demonstrates excellent performance. Rijndael's operations are
 937	  among the easiest to defend against power and timing attacks.
 938
 939	  The AES specifies three key sizes: 128, 192 and 256 bits
 940
 941	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
 942
 943config CRYPTO_AES_TI
 944	tristate "Fixed time AES cipher"
 945	select CRYPTO_ALGAPI
 
 946	help
 947	  This is a generic implementation of AES that attempts to eliminate
 948	  data dependent latencies as much as possible without affecting
 949	  performance too much. It is intended for use by the generic CCM
 950	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 951	  solely on encryption (although decryption is supported as well, but
 952	  with a more dramatic performance hit)
 953
 954	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 955	  8 for decryption), this implementation only uses just two S-boxes of
 956	  256 bytes each, and attempts to eliminate data dependent latencies by
 957	  prefetching the entire table into the cache at the start of each
 958	  block.
 959
 960config CRYPTO_AES_586
 961	tristate "AES cipher algorithms (i586)"
 962	depends on (X86 || UML_X86) && !64BIT
 963	select CRYPTO_ALGAPI
 964	select CRYPTO_AES
 965	help
 966	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 967	  algorithm.
 968
 969	  Rijndael appears to be consistently a very good performer in
 970	  both hardware and software across a wide range of computing
 971	  environments regardless of its use in feedback or non-feedback
 972	  modes. Its key setup time is excellent, and its key agility is
 973	  good. Rijndael's very low memory requirements make it very well
 974	  suited for restricted-space environments, in which it also
 975	  demonstrates excellent performance. Rijndael's operations are
 976	  among the easiest to defend against power and timing attacks.
 977
 978	  The AES specifies three key sizes: 128, 192 and 256 bits
 979
 980	  See <http://csrc.nist.gov/encryption/aes/> for more information.
 981
 982config CRYPTO_AES_X86_64
 983	tristate "AES cipher algorithms (x86_64)"
 984	depends on (X86 || UML_X86) && 64BIT
 985	select CRYPTO_ALGAPI
 986	select CRYPTO_AES
 987	help
 988	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
 989	  algorithm.
 990
 991	  Rijndael appears to be consistently a very good performer in
 992	  both hardware and software across a wide range of computing
 993	  environments regardless of its use in feedback or non-feedback
 994	  modes. Its key setup time is excellent, and its key agility is
 995	  good. Rijndael's very low memory requirements make it very well
 996	  suited for restricted-space environments, in which it also
 997	  demonstrates excellent performance. Rijndael's operations are
 998	  among the easiest to defend against power and timing attacks.
 999
1000	  The AES specifies three key sizes: 128, 192 and 256 bits
1001
1002	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1003
1004config CRYPTO_AES_NI_INTEL
1005	tristate "AES cipher algorithms (AES-NI)"
1006	depends on X86
1007	select CRYPTO_AEAD
1008	select CRYPTO_AES_X86_64 if 64BIT
1009	select CRYPTO_AES_586 if !64BIT
1010	select CRYPTO_ALGAPI
1011	select CRYPTO_BLKCIPHER
1012	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1013	select CRYPTO_SIMD
1014	help
1015	  Use Intel AES-NI instructions for AES algorithm.
1016
1017	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1018	  algorithm.
1019
1020	  Rijndael appears to be consistently a very good performer in
1021	  both hardware and software across a wide range of computing
1022	  environments regardless of its use in feedback or non-feedback
1023	  modes. Its key setup time is excellent, and its key agility is
1024	  good. Rijndael's very low memory requirements make it very well
1025	  suited for restricted-space environments, in which it also
1026	  demonstrates excellent performance. Rijndael's operations are
1027	  among the easiest to defend against power and timing attacks.
1028
1029	  The AES specifies three key sizes: 128, 192 and 256 bits
1030
1031	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1032
1033	  In addition to AES cipher algorithm support, the acceleration
1034	  for some popular block cipher mode is supported too, including
1035	  ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
1036	  acceleration for CTR.
1037
1038config CRYPTO_AES_SPARC64
1039	tristate "AES cipher algorithms (SPARC64)"
1040	depends on SPARC64
1041	select CRYPTO_CRYPTD
1042	select CRYPTO_ALGAPI
1043	help
1044	  Use SPARC64 crypto opcodes for AES algorithm.
1045
1046	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1047	  algorithm.
1048
1049	  Rijndael appears to be consistently a very good performer in
1050	  both hardware and software across a wide range of computing
1051	  environments regardless of its use in feedback or non-feedback
1052	  modes. Its key setup time is excellent, and its key agility is
1053	  good. Rijndael's very low memory requirements make it very well
1054	  suited for restricted-space environments, in which it also
1055	  demonstrates excellent performance. Rijndael's operations are
1056	  among the easiest to defend against power and timing attacks.
1057
1058	  The AES specifies three key sizes: 128, 192 and 256 bits
1059
1060	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1061
1062	  In addition to AES cipher algorithm support, the acceleration
1063	  for some popular block cipher mode is supported too, including
1064	  ECB and CBC.
1065
1066config CRYPTO_AES_PPC_SPE
1067	tristate "AES cipher algorithms (PPC SPE)"
1068	depends on PPC && SPE
1069	help
1070	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1071	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1072	  This module should only be used for low power (router) devices
1073	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1074	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1075	  timining attacks. Nevertheless it might be not as secure as other
1076	  architecture specific assembler implementations that work on 1KB
1077	  tables or 256 bytes S-boxes.
1078
1079config CRYPTO_ANUBIS
1080	tristate "Anubis cipher algorithm"
1081	select CRYPTO_ALGAPI
1082	help
1083	  Anubis cipher algorithm.
1084
1085	  Anubis is a variable key length cipher which can use keys from
1086	  128 bits to 320 bits in length.  It was evaluated as a entrant
1087	  in the NESSIE competition.
1088
1089	  See also:
1090	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1091	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1092
 
 
 
1093config CRYPTO_ARC4
1094	tristate "ARC4 cipher algorithm"
1095	select CRYPTO_BLKCIPHER
 
1096	help
1097	  ARC4 cipher algorithm.
1098
1099	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1100	  bits in length.  This algorithm is required for driver-based
1101	  WEP, but it should not be for other purposes because of the
1102	  weakness of the algorithm.
1103
1104config CRYPTO_BLOWFISH
1105	tristate "Blowfish cipher algorithm"
1106	select CRYPTO_ALGAPI
1107	select CRYPTO_BLOWFISH_COMMON
1108	help
1109	  Blowfish cipher algorithm, by Bruce Schneier.
1110
1111	  This is a variable key length cipher which can use keys from 32
1112	  bits to 448 bits in length.  It's fast, simple and specifically
1113	  designed for use on "large microprocessors".
1114
1115	  See also:
1116	  <http://www.schneier.com/blowfish.html>
1117
1118config CRYPTO_BLOWFISH_COMMON
1119	tristate
1120	help
1121	  Common parts of the Blowfish cipher algorithm shared by the
1122	  generic c and the assembler implementations.
1123
1124	  See also:
1125	  <http://www.schneier.com/blowfish.html>
1126
1127config CRYPTO_BLOWFISH_X86_64
1128	tristate "Blowfish cipher algorithm (x86_64)"
1129	depends on X86 && 64BIT
1130	select CRYPTO_BLKCIPHER
1131	select CRYPTO_BLOWFISH_COMMON
1132	help
1133	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1134
1135	  This is a variable key length cipher which can use keys from 32
1136	  bits to 448 bits in length.  It's fast, simple and specifically
1137	  designed for use on "large microprocessors".
1138
1139	  See also:
1140	  <http://www.schneier.com/blowfish.html>
1141
1142config CRYPTO_CAMELLIA
1143	tristate "Camellia cipher algorithms"
1144	depends on CRYPTO
1145	select CRYPTO_ALGAPI
1146	help
1147	  Camellia cipher algorithms module.
1148
1149	  Camellia is a symmetric key block cipher developed jointly
1150	  at NTT and Mitsubishi Electric Corporation.
1151
1152	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1153
1154	  See also:
1155	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1156
1157config CRYPTO_CAMELLIA_X86_64
1158	tristate "Camellia cipher algorithm (x86_64)"
1159	depends on X86 && 64BIT
1160	depends on CRYPTO
1161	select CRYPTO_BLKCIPHER
1162	select CRYPTO_GLUE_HELPER_X86
1163	help
1164	  Camellia cipher algorithm module (x86_64).
1165
1166	  Camellia is a symmetric key block cipher developed jointly
1167	  at NTT and Mitsubishi Electric Corporation.
1168
1169	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1170
1171	  See also:
1172	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1173
1174config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1175	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1176	depends on X86 && 64BIT
1177	depends on CRYPTO
1178	select CRYPTO_BLKCIPHER
1179	select CRYPTO_CAMELLIA_X86_64
1180	select CRYPTO_GLUE_HELPER_X86
1181	select CRYPTO_SIMD
1182	select CRYPTO_XTS
1183	help
1184	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1185
1186	  Camellia is a symmetric key block cipher developed jointly
1187	  at NTT and Mitsubishi Electric Corporation.
1188
1189	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1190
1191	  See also:
1192	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1193
1194config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1195	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1196	depends on X86 && 64BIT
1197	depends on CRYPTO
1198	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1199	help
1200	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1201
1202	  Camellia is a symmetric key block cipher developed jointly
1203	  at NTT and Mitsubishi Electric Corporation.
1204
1205	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1206
1207	  See also:
1208	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1209
1210config CRYPTO_CAMELLIA_SPARC64
1211	tristate "Camellia cipher algorithm (SPARC64)"
1212	depends on SPARC64
1213	depends on CRYPTO
1214	select CRYPTO_ALGAPI
1215	help
1216	  Camellia cipher algorithm module (SPARC64).
1217
1218	  Camellia is a symmetric key block cipher developed jointly
1219	  at NTT and Mitsubishi Electric Corporation.
1220
1221	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1222
1223	  See also:
1224	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1225
1226config CRYPTO_CAST_COMMON
1227	tristate
1228	help
1229	  Common parts of the CAST cipher algorithms shared by the
1230	  generic c and the assembler implementations.
1231
1232config CRYPTO_CAST5
1233	tristate "CAST5 (CAST-128) cipher algorithm"
1234	select CRYPTO_ALGAPI
1235	select CRYPTO_CAST_COMMON
1236	help
1237	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1238	  described in RFC2144.
1239
1240config CRYPTO_CAST5_AVX_X86_64
1241	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1242	depends on X86 && 64BIT
1243	select CRYPTO_BLKCIPHER
1244	select CRYPTO_CAST5
1245	select CRYPTO_CAST_COMMON
1246	select CRYPTO_SIMD
1247	help
1248	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1249	  described in RFC2144.
1250
1251	  This module provides the Cast5 cipher algorithm that processes
1252	  sixteen blocks parallel using the AVX instruction set.
1253
1254config CRYPTO_CAST6
1255	tristate "CAST6 (CAST-256) cipher algorithm"
1256	select CRYPTO_ALGAPI
1257	select CRYPTO_CAST_COMMON
1258	help
1259	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1260	  described in RFC2612.
1261
1262config CRYPTO_CAST6_AVX_X86_64
1263	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1264	depends on X86 && 64BIT
1265	select CRYPTO_BLKCIPHER
1266	select CRYPTO_CAST6
1267	select CRYPTO_CAST_COMMON
1268	select CRYPTO_GLUE_HELPER_X86
1269	select CRYPTO_SIMD
1270	select CRYPTO_XTS
1271	help
1272	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1273	  described in RFC2612.
1274
1275	  This module provides the Cast6 cipher algorithm that processes
1276	  eight blocks parallel using the AVX instruction set.
1277
 
 
 
1278config CRYPTO_DES
1279	tristate "DES and Triple DES EDE cipher algorithms"
1280	select CRYPTO_ALGAPI
 
1281	help
1282	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1283
1284config CRYPTO_DES_SPARC64
1285	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1286	depends on SPARC64
1287	select CRYPTO_ALGAPI
1288	select CRYPTO_DES
1289	help
1290	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1291	  optimized using SPARC64 crypto opcodes.
1292
1293config CRYPTO_DES3_EDE_X86_64
1294	tristate "Triple DES EDE cipher algorithm (x86-64)"
1295	depends on X86 && 64BIT
1296	select CRYPTO_BLKCIPHER
1297	select CRYPTO_DES
1298	help
1299	  Triple DES EDE (FIPS 46-3) algorithm.
1300
1301	  This module provides implementation of the Triple DES EDE cipher
1302	  algorithm that is optimized for x86-64 processors. Two versions of
1303	  algorithm are provided; regular processing one input block and
1304	  one that processes three blocks parallel.
1305
1306config CRYPTO_FCRYPT
1307	tristate "FCrypt cipher algorithm"
1308	select CRYPTO_ALGAPI
1309	select CRYPTO_BLKCIPHER
1310	help
1311	  FCrypt algorithm used by RxRPC.
1312
1313config CRYPTO_KHAZAD
1314	tristate "Khazad cipher algorithm"
1315	select CRYPTO_ALGAPI
1316	help
1317	  Khazad cipher algorithm.
1318
1319	  Khazad was a finalist in the initial NESSIE competition.  It is
1320	  an algorithm optimized for 64-bit processors with good performance
1321	  on 32-bit processors.  Khazad uses an 128 bit key size.
1322
1323	  See also:
1324	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1325
1326config CRYPTO_SALSA20
1327	tristate "Salsa20 stream cipher algorithm"
1328	select CRYPTO_BLKCIPHER
1329	help
1330	  Salsa20 stream cipher algorithm.
1331
1332	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1333	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1334
1335	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1336	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1337
1338config CRYPTO_SALSA20_586
1339	tristate "Salsa20 stream cipher algorithm (i586)"
1340	depends on (X86 || UML_X86) && !64BIT
1341	select CRYPTO_BLKCIPHER
1342	select CRYPTO_SALSA20
1343	help
1344	  Salsa20 stream cipher algorithm.
1345
1346	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1347	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1348
1349	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1350	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1351
1352config CRYPTO_SALSA20_X86_64
1353	tristate "Salsa20 stream cipher algorithm (x86_64)"
1354	depends on (X86 || UML_X86) && 64BIT
1355	select CRYPTO_BLKCIPHER
1356	select CRYPTO_SALSA20
1357	help
1358	  Salsa20 stream cipher algorithm.
1359
1360	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1361	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1362
1363	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1364	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1365
1366config CRYPTO_CHACHA20
1367	tristate "ChaCha20 cipher algorithm"
1368	select CRYPTO_BLKCIPHER
1369	help
1370	  ChaCha20 cipher algorithm, RFC7539.
1371
1372	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1373	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1374	  This is the portable C implementation of ChaCha20.
1375
1376	  See also:
1377	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1378
 
 
 
 
 
 
 
 
 
 
1379config CRYPTO_CHACHA20_X86_64
1380	tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1381	depends on X86 && 64BIT
1382	select CRYPTO_BLKCIPHER
1383	select CRYPTO_CHACHA20
1384	help
1385	  ChaCha20 cipher algorithm, RFC7539.
1386
1387	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1388	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1389	  This is the x86_64 assembler implementation using SIMD instructions.
1390
1391	  See also:
1392	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1393
1394config CRYPTO_SEED
1395	tristate "SEED cipher algorithm"
1396	select CRYPTO_ALGAPI
1397	help
1398	  SEED cipher algorithm (RFC4269).
1399
1400	  SEED is a 128-bit symmetric key block cipher that has been
1401	  developed by KISA (Korea Information Security Agency) as a
1402	  national standard encryption algorithm of the Republic of Korea.
1403	  It is a 16 round block cipher with the key size of 128 bit.
1404
1405	  See also:
1406	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1407
1408config CRYPTO_SERPENT
1409	tristate "Serpent cipher algorithm"
1410	select CRYPTO_ALGAPI
1411	help
1412	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1413
1414	  Keys are allowed to be from 0 to 256 bits in length, in steps
1415	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1416	  variant of Serpent for compatibility with old kerneli.org code.
1417
1418	  See also:
1419	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1420
1421config CRYPTO_SERPENT_SSE2_X86_64
1422	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1423	depends on X86 && 64BIT
1424	select CRYPTO_BLKCIPHER
1425	select CRYPTO_GLUE_HELPER_X86
1426	select CRYPTO_SERPENT
1427	select CRYPTO_SIMD
1428	help
1429	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1430
1431	  Keys are allowed to be from 0 to 256 bits in length, in steps
1432	  of 8 bits.
1433
1434	  This module provides Serpent cipher algorithm that processes eight
1435	  blocks parallel using SSE2 instruction set.
1436
1437	  See also:
1438	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1439
1440config CRYPTO_SERPENT_SSE2_586
1441	tristate "Serpent cipher algorithm (i586/SSE2)"
1442	depends on X86 && !64BIT
1443	select CRYPTO_BLKCIPHER
1444	select CRYPTO_GLUE_HELPER_X86
1445	select CRYPTO_SERPENT
1446	select CRYPTO_SIMD
1447	help
1448	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1449
1450	  Keys are allowed to be from 0 to 256 bits in length, in steps
1451	  of 8 bits.
1452
1453	  This module provides Serpent cipher algorithm that processes four
1454	  blocks parallel using SSE2 instruction set.
1455
1456	  See also:
1457	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1458
1459config CRYPTO_SERPENT_AVX_X86_64
1460	tristate "Serpent cipher algorithm (x86_64/AVX)"
1461	depends on X86 && 64BIT
1462	select CRYPTO_BLKCIPHER
1463	select CRYPTO_GLUE_HELPER_X86
1464	select CRYPTO_SERPENT
1465	select CRYPTO_SIMD
1466	select CRYPTO_XTS
1467	help
1468	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1469
1470	  Keys are allowed to be from 0 to 256 bits in length, in steps
1471	  of 8 bits.
1472
1473	  This module provides the Serpent cipher algorithm that processes
1474	  eight blocks parallel using the AVX instruction set.
1475
1476	  See also:
1477	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1478
1479config CRYPTO_SERPENT_AVX2_X86_64
1480	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1481	depends on X86 && 64BIT
1482	select CRYPTO_SERPENT_AVX_X86_64
1483	help
1484	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1485
1486	  Keys are allowed to be from 0 to 256 bits in length, in steps
1487	  of 8 bits.
1488
1489	  This module provides Serpent cipher algorithm that processes 16
1490	  blocks parallel using AVX2 instruction set.
1491
1492	  See also:
1493	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1494
1495config CRYPTO_SM4
1496	tristate "SM4 cipher algorithm"
1497	select CRYPTO_ALGAPI
1498	help
1499	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1500
1501	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1502	  Organization of State Commercial Administration of China (OSCCA)
1503	  as an authorized cryptographic algorithms for the use within China.
1504
1505	  SMS4 was originally created for use in protecting wireless
1506	  networks, and is mandated in the Chinese National Standard for
1507	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1508	  (GB.15629.11-2003).
1509
1510	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1511	  standardized through TC 260 of the Standardization Administration
1512	  of the People's Republic of China (SAC).
1513
1514	  The input, output, and key of SMS4 are each 128 bits.
1515
1516	  See also: <https://eprint.iacr.org/2008/329.pdf>
1517
1518	  If unsure, say N.
1519
1520config CRYPTO_SPECK
1521	tristate "Speck cipher algorithm"
1522	select CRYPTO_ALGAPI
1523	help
1524	  Speck is a lightweight block cipher that is tuned for optimal
1525	  performance in software (rather than hardware).
1526
1527	  Speck may not be as secure as AES, and should only be used on systems
1528	  where AES is not fast enough.
1529
1530	  See also: <https://eprint.iacr.org/2013/404.pdf>
1531
1532	  If unsure, say N.
1533
1534config CRYPTO_TEA
1535	tristate "TEA, XTEA and XETA cipher algorithms"
1536	select CRYPTO_ALGAPI
1537	help
1538	  TEA cipher algorithm.
1539
1540	  Tiny Encryption Algorithm is a simple cipher that uses
1541	  many rounds for security.  It is very fast and uses
1542	  little memory.
1543
1544	  Xtendend Tiny Encryption Algorithm is a modification to
1545	  the TEA algorithm to address a potential key weakness
1546	  in the TEA algorithm.
1547
1548	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1549	  of the XTEA algorithm for compatibility purposes.
1550
1551config CRYPTO_TWOFISH
1552	tristate "Twofish cipher algorithm"
1553	select CRYPTO_ALGAPI
1554	select CRYPTO_TWOFISH_COMMON
1555	help
1556	  Twofish cipher algorithm.
1557
1558	  Twofish was submitted as an AES (Advanced Encryption Standard)
1559	  candidate cipher by researchers at CounterPane Systems.  It is a
1560	  16 round block cipher supporting key sizes of 128, 192, and 256
1561	  bits.
1562
1563	  See also:
1564	  <http://www.schneier.com/twofish.html>
1565
1566config CRYPTO_TWOFISH_COMMON
1567	tristate
1568	help
1569	  Common parts of the Twofish cipher algorithm shared by the
1570	  generic c and the assembler implementations.
1571
1572config CRYPTO_TWOFISH_586
1573	tristate "Twofish cipher algorithms (i586)"
1574	depends on (X86 || UML_X86) && !64BIT
1575	select CRYPTO_ALGAPI
1576	select CRYPTO_TWOFISH_COMMON
1577	help
1578	  Twofish cipher algorithm.
1579
1580	  Twofish was submitted as an AES (Advanced Encryption Standard)
1581	  candidate cipher by researchers at CounterPane Systems.  It is a
1582	  16 round block cipher supporting key sizes of 128, 192, and 256
1583	  bits.
1584
1585	  See also:
1586	  <http://www.schneier.com/twofish.html>
1587
1588config CRYPTO_TWOFISH_X86_64
1589	tristate "Twofish cipher algorithm (x86_64)"
1590	depends on (X86 || UML_X86) && 64BIT
1591	select CRYPTO_ALGAPI
1592	select CRYPTO_TWOFISH_COMMON
1593	help
1594	  Twofish cipher algorithm (x86_64).
1595
1596	  Twofish was submitted as an AES (Advanced Encryption Standard)
1597	  candidate cipher by researchers at CounterPane Systems.  It is a
1598	  16 round block cipher supporting key sizes of 128, 192, and 256
1599	  bits.
1600
1601	  See also:
1602	  <http://www.schneier.com/twofish.html>
1603
1604config CRYPTO_TWOFISH_X86_64_3WAY
1605	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1606	depends on X86 && 64BIT
1607	select CRYPTO_BLKCIPHER
1608	select CRYPTO_TWOFISH_COMMON
1609	select CRYPTO_TWOFISH_X86_64
1610	select CRYPTO_GLUE_HELPER_X86
1611	help
1612	  Twofish cipher algorithm (x86_64, 3-way parallel).
1613
1614	  Twofish was submitted as an AES (Advanced Encryption Standard)
1615	  candidate cipher by researchers at CounterPane Systems.  It is a
1616	  16 round block cipher supporting key sizes of 128, 192, and 256
1617	  bits.
1618
1619	  This module provides Twofish cipher algorithm that processes three
1620	  blocks parallel, utilizing resources of out-of-order CPUs better.
1621
1622	  See also:
1623	  <http://www.schneier.com/twofish.html>
1624
1625config CRYPTO_TWOFISH_AVX_X86_64
1626	tristate "Twofish cipher algorithm (x86_64/AVX)"
1627	depends on X86 && 64BIT
1628	select CRYPTO_BLKCIPHER
1629	select CRYPTO_GLUE_HELPER_X86
1630	select CRYPTO_SIMD
1631	select CRYPTO_TWOFISH_COMMON
1632	select CRYPTO_TWOFISH_X86_64
1633	select CRYPTO_TWOFISH_X86_64_3WAY
1634	help
1635	  Twofish cipher algorithm (x86_64/AVX).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  This module provides the Twofish cipher algorithm that processes
1643	  eight blocks parallel using the AVX Instruction Set.
1644
1645	  See also:
1646	  <http://www.schneier.com/twofish.html>
1647
1648comment "Compression"
1649
1650config CRYPTO_DEFLATE
1651	tristate "Deflate compression algorithm"
1652	select CRYPTO_ALGAPI
1653	select CRYPTO_ACOMP2
1654	select ZLIB_INFLATE
1655	select ZLIB_DEFLATE
1656	help
1657	  This is the Deflate algorithm (RFC1951), specified for use in
1658	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1659
1660	  You will most probably want this if using IPSec.
1661
1662config CRYPTO_LZO
1663	tristate "LZO compression algorithm"
1664	select CRYPTO_ALGAPI
1665	select CRYPTO_ACOMP2
1666	select LZO_COMPRESS
1667	select LZO_DECOMPRESS
1668	help
1669	  This is the LZO algorithm.
1670
1671config CRYPTO_842
1672	tristate "842 compression algorithm"
1673	select CRYPTO_ALGAPI
1674	select CRYPTO_ACOMP2
1675	select 842_COMPRESS
1676	select 842_DECOMPRESS
1677	help
1678	  This is the 842 algorithm.
1679
1680config CRYPTO_LZ4
1681	tristate "LZ4 compression algorithm"
1682	select CRYPTO_ALGAPI
1683	select CRYPTO_ACOMP2
1684	select LZ4_COMPRESS
1685	select LZ4_DECOMPRESS
1686	help
1687	  This is the LZ4 algorithm.
1688
1689config CRYPTO_LZ4HC
1690	tristate "LZ4HC compression algorithm"
1691	select CRYPTO_ALGAPI
1692	select CRYPTO_ACOMP2
1693	select LZ4HC_COMPRESS
1694	select LZ4_DECOMPRESS
1695	help
1696	  This is the LZ4 high compression mode algorithm.
1697
 
 
 
 
 
 
 
 
 
1698comment "Random Number Generation"
1699
1700config CRYPTO_ANSI_CPRNG
1701	tristate "Pseudo Random Number Generation for Cryptographic modules"
1702	select CRYPTO_AES
1703	select CRYPTO_RNG
1704	help
1705	  This option enables the generic pseudo random number generator
1706	  for cryptographic modules.  Uses the Algorithm specified in
1707	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1708	  CRYPTO_FIPS is selected
1709
1710menuconfig CRYPTO_DRBG_MENU
1711	tristate "NIST SP800-90A DRBG"
1712	help
1713	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1714	  more of the DRBG types must be selected.
1715
1716if CRYPTO_DRBG_MENU
1717
1718config CRYPTO_DRBG_HMAC
1719	bool
1720	default y
1721	select CRYPTO_HMAC
1722	select CRYPTO_SHA256
1723
1724config CRYPTO_DRBG_HASH
1725	bool "Enable Hash DRBG"
1726	select CRYPTO_SHA256
1727	help
1728	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1729
1730config CRYPTO_DRBG_CTR
1731	bool "Enable CTR DRBG"
1732	select CRYPTO_AES
1733	depends on CRYPTO_CTR
1734	help
1735	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1736
1737config CRYPTO_DRBG
1738	tristate
1739	default CRYPTO_DRBG_MENU
1740	select CRYPTO_RNG
1741	select CRYPTO_JITTERENTROPY
1742
1743endif	# if CRYPTO_DRBG_MENU
1744
1745config CRYPTO_JITTERENTROPY
1746	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1747	select CRYPTO_RNG
1748	help
1749	  The Jitterentropy RNG is a noise that is intended
1750	  to provide seed to another RNG. The RNG does not
1751	  perform any cryptographic whitening of the generated
1752	  random numbers. This Jitterentropy RNG registers with
1753	  the kernel crypto API and can be used by any caller.
1754
1755config CRYPTO_USER_API
1756	tristate
1757
1758config CRYPTO_USER_API_HASH
1759	tristate "User-space interface for hash algorithms"
1760	depends on NET
1761	select CRYPTO_HASH
1762	select CRYPTO_USER_API
1763	help
1764	  This option enables the user-spaces interface for hash
1765	  algorithms.
1766
1767config CRYPTO_USER_API_SKCIPHER
1768	tristate "User-space interface for symmetric key cipher algorithms"
1769	depends on NET
1770	select CRYPTO_BLKCIPHER
1771	select CRYPTO_USER_API
1772	help
1773	  This option enables the user-spaces interface for symmetric
1774	  key cipher algorithms.
1775
1776config CRYPTO_USER_API_RNG
1777	tristate "User-space interface for random number generator algorithms"
1778	depends on NET
1779	select CRYPTO_RNG
1780	select CRYPTO_USER_API
1781	help
1782	  This option enables the user-spaces interface for random
1783	  number generator algorithms.
1784
1785config CRYPTO_USER_API_AEAD
1786	tristate "User-space interface for AEAD cipher algorithms"
1787	depends on NET
1788	select CRYPTO_AEAD
1789	select CRYPTO_BLKCIPHER
1790	select CRYPTO_NULL
1791	select CRYPTO_USER_API
1792	help
1793	  This option enables the user-spaces interface for AEAD
1794	  cipher algorithms.
1795
 
 
 
 
 
 
 
 
 
 
 
 
1796config CRYPTO_HASH_INFO
1797	bool
1798
1799source "drivers/crypto/Kconfig"
1800source crypto/asymmetric_keys/Kconfig
1801source certs/Kconfig
1802
1803endif	# if CRYPTO
v5.4
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_BLKCIPHER
  56	tristate
  57	select CRYPTO_BLKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_BLKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
 
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 124	select CRYPTO_AEAD2
 125	select CRYPTO_HASH2
 126	select CRYPTO_BLKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139if CRYPTO_MANAGER2
 140
 141config CRYPTO_MANAGER_DISABLE_TESTS
 142	bool "Disable run-time self tests"
 143	default y
 
 144	help
 145	  Disable run-time self tests that normally take place at
 146	  algorithm registration.
 147
 148config CRYPTO_MANAGER_EXTRA_TESTS
 149	bool "Enable extra run-time crypto self tests"
 150	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
 151	help
 152	  Enable extra run-time self tests of registered crypto algorithms,
 153	  including randomized fuzz tests.
 154
 155	  This is intended for developer use only, as these tests take much
 156	  longer to run than the normal self tests.
 157
 158endif	# if CRYPTO_MANAGER2
 159
 160config CRYPTO_GF128MUL
 161	tristate
 162
 163config CRYPTO_NULL
 164	tristate "Null algorithms"
 165	select CRYPTO_NULL2
 166	help
 167	  These are 'Null' algorithms, used by IPsec, which do nothing.
 168
 169config CRYPTO_NULL2
 170	tristate
 171	select CRYPTO_ALGAPI2
 172	select CRYPTO_BLKCIPHER2
 173	select CRYPTO_HASH2
 174
 175config CRYPTO_PCRYPT
 176	tristate "Parallel crypto engine"
 177	depends on SMP
 178	select PADATA
 179	select CRYPTO_MANAGER
 180	select CRYPTO_AEAD
 181	help
 182	  This converts an arbitrary crypto algorithm into a parallel
 183	  algorithm that executes in kernel threads.
 184
 
 
 
 185config CRYPTO_CRYPTD
 186	tristate "Software async crypto daemon"
 187	select CRYPTO_BLKCIPHER
 188	select CRYPTO_HASH
 189	select CRYPTO_MANAGER
 
 190	help
 191	  This is a generic software asynchronous crypto daemon that
 192	  converts an arbitrary synchronous software crypto algorithm
 193	  into an asynchronous algorithm that executes in a kernel thread.
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195config CRYPTO_AUTHENC
 196	tristate "Authenc support"
 197	select CRYPTO_AEAD
 198	select CRYPTO_BLKCIPHER
 199	select CRYPTO_MANAGER
 200	select CRYPTO_HASH
 201	select CRYPTO_NULL
 202	help
 203	  Authenc: Combined mode wrapper for IPsec.
 204	  This is required for IPSec.
 205
 206config CRYPTO_TEST
 207	tristate "Testing module"
 208	depends on m
 209	select CRYPTO_MANAGER
 210	help
 211	  Quick & dirty crypto test module.
 212
 213config CRYPTO_SIMD
 214	tristate
 215	select CRYPTO_CRYPTD
 216
 217config CRYPTO_GLUE_HELPER_X86
 218	tristate
 219	depends on X86
 220	select CRYPTO_BLKCIPHER
 221
 222config CRYPTO_ENGINE
 223	tristate
 224
 225comment "Public-key cryptography"
 226
 227config CRYPTO_RSA
 228	tristate "RSA algorithm"
 229	select CRYPTO_AKCIPHER
 230	select CRYPTO_MANAGER
 231	select MPILIB
 232	select ASN1
 233	help
 234	  Generic implementation of the RSA public key algorithm.
 235
 236config CRYPTO_DH
 237	tristate "Diffie-Hellman algorithm"
 238	select CRYPTO_KPP
 239	select MPILIB
 240	help
 241	  Generic implementation of the Diffie-Hellman algorithm.
 242
 243config CRYPTO_ECC
 244	tristate
 245
 246config CRYPTO_ECDH
 247	tristate "ECDH algorithm"
 248	select CRYPTO_ECC
 249	select CRYPTO_KPP
 250	select CRYPTO_RNG_DEFAULT
 251	help
 252	  Generic implementation of the ECDH algorithm
 253
 254config CRYPTO_ECRDSA
 255	tristate "EC-RDSA (GOST 34.10) algorithm"
 256	select CRYPTO_ECC
 257	select CRYPTO_AKCIPHER
 258	select CRYPTO_STREEBOG
 259	select OID_REGISTRY
 260	select ASN1
 261	help
 262	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 263	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 264	  standard algorithms (called GOST algorithms). Only signature verification
 265	  is implemented.
 266
 267comment "Authenticated Encryption with Associated Data"
 268
 269config CRYPTO_CCM
 270	tristate "CCM support"
 271	select CRYPTO_CTR
 272	select CRYPTO_HASH
 273	select CRYPTO_AEAD
 274	select CRYPTO_MANAGER
 275	help
 276	  Support for Counter with CBC MAC. Required for IPsec.
 277
 278config CRYPTO_GCM
 279	tristate "GCM/GMAC support"
 280	select CRYPTO_CTR
 281	select CRYPTO_AEAD
 282	select CRYPTO_GHASH
 283	select CRYPTO_NULL
 284	select CRYPTO_MANAGER
 285	help
 286	  Support for Galois/Counter Mode (GCM) and Galois Message
 287	  Authentication Code (GMAC). Required for IPSec.
 288
 289config CRYPTO_CHACHA20POLY1305
 290	tristate "ChaCha20-Poly1305 AEAD support"
 291	select CRYPTO_CHACHA20
 292	select CRYPTO_POLY1305
 293	select CRYPTO_AEAD
 294	select CRYPTO_MANAGER
 295	help
 296	  ChaCha20-Poly1305 AEAD support, RFC7539.
 297
 298	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 299	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 300	  IETF protocols.
 301
 302config CRYPTO_AEGIS128
 303	tristate "AEGIS-128 AEAD algorithm"
 304	select CRYPTO_AEAD
 305	select CRYPTO_AES  # for AES S-box tables
 306	help
 307	 Support for the AEGIS-128 dedicated AEAD algorithm.
 308
 309config CRYPTO_AEGIS128_SIMD
 310	bool "Support SIMD acceleration for AEGIS-128"
 311	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 312	default y
 313
 314config CRYPTO_AEGIS128_AESNI_SSE2
 315	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 316	depends on X86 && 64BIT
 317	select CRYPTO_AEAD
 318	select CRYPTO_SIMD
 319	help
 320	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 321
 322config CRYPTO_SEQIV
 323	tristate "Sequence Number IV Generator"
 324	select CRYPTO_AEAD
 325	select CRYPTO_BLKCIPHER
 326	select CRYPTO_NULL
 327	select CRYPTO_RNG_DEFAULT
 328	select CRYPTO_MANAGER
 329	help
 330	  This IV generator generates an IV based on a sequence number by
 331	  xoring it with a salt.  This algorithm is mainly useful for CTR
 332
 333config CRYPTO_ECHAINIV
 334	tristate "Encrypted Chain IV Generator"
 335	select CRYPTO_AEAD
 336	select CRYPTO_NULL
 337	select CRYPTO_RNG_DEFAULT
 338	select CRYPTO_MANAGER
 339	help
 340	  This IV generator generates an IV based on the encryption of
 341	  a sequence number xored with a salt.  This is the default
 342	  algorithm for CBC.
 343
 344comment "Block modes"
 345
 346config CRYPTO_CBC
 347	tristate "CBC support"
 348	select CRYPTO_BLKCIPHER
 349	select CRYPTO_MANAGER
 350	help
 351	  CBC: Cipher Block Chaining mode
 352	  This block cipher algorithm is required for IPSec.
 353
 354config CRYPTO_CFB
 355	tristate "CFB support"
 356	select CRYPTO_BLKCIPHER
 357	select CRYPTO_MANAGER
 358	help
 359	  CFB: Cipher FeedBack mode
 360	  This block cipher algorithm is required for TPM2 Cryptography.
 361
 362config CRYPTO_CTR
 363	tristate "CTR support"
 364	select CRYPTO_BLKCIPHER
 365	select CRYPTO_SEQIV
 366	select CRYPTO_MANAGER
 367	help
 368	  CTR: Counter mode
 369	  This block cipher algorithm is required for IPSec.
 370
 371config CRYPTO_CTS
 372	tristate "CTS support"
 373	select CRYPTO_BLKCIPHER
 374	select CRYPTO_MANAGER
 375	help
 376	  CTS: Cipher Text Stealing
 377	  This is the Cipher Text Stealing mode as described by
 378	  Section 8 of rfc2040 and referenced by rfc3962
 379	  (rfc3962 includes errata information in its Appendix A) or
 380	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 381	  This mode is required for Kerberos gss mechanism support
 382	  for AES encryption.
 383
 384	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 385
 386config CRYPTO_ECB
 387	tristate "ECB support"
 388	select CRYPTO_BLKCIPHER
 389	select CRYPTO_MANAGER
 390	help
 391	  ECB: Electronic CodeBook mode
 392	  This is the simplest block cipher algorithm.  It simply encrypts
 393	  the input block by block.
 394
 395config CRYPTO_LRW
 396	tristate "LRW support"
 397	select CRYPTO_BLKCIPHER
 398	select CRYPTO_MANAGER
 399	select CRYPTO_GF128MUL
 400	help
 401	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 402	  narrow block cipher mode for dm-crypt.  Use it with cipher
 403	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 404	  The first 128, 192 or 256 bits in the key are used for AES and the
 405	  rest is used to tie each cipher block to its logical position.
 406
 407config CRYPTO_OFB
 408	tristate "OFB support"
 409	select CRYPTO_BLKCIPHER
 410	select CRYPTO_MANAGER
 411	help
 412	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 413	  stream cipher. It generates keystream blocks, which are then XORed
 414	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 415	  ciphertext produces a flipped bit in the plaintext at the same
 416	  location. This property allows many error correcting codes to function
 417	  normally even when applied before encryption.
 418
 419config CRYPTO_PCBC
 420	tristate "PCBC support"
 421	select CRYPTO_BLKCIPHER
 422	select CRYPTO_MANAGER
 423	help
 424	  PCBC: Propagating Cipher Block Chaining mode
 425	  This block cipher algorithm is required for RxRPC.
 426
 427config CRYPTO_XTS
 428	tristate "XTS support"
 429	select CRYPTO_BLKCIPHER
 430	select CRYPTO_MANAGER
 431	select CRYPTO_ECB
 432	help
 433	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 434	  key size 256, 384 or 512 bits. This implementation currently
 435	  can't handle a sectorsize which is not a multiple of 16 bytes.
 436
 437config CRYPTO_KEYWRAP
 438	tristate "Key wrapping support"
 439	select CRYPTO_BLKCIPHER
 440	select CRYPTO_MANAGER
 441	help
 442	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 443	  padding.
 444
 445config CRYPTO_NHPOLY1305
 446	tristate
 447	select CRYPTO_HASH
 448	select CRYPTO_POLY1305
 449
 450config CRYPTO_NHPOLY1305_SSE2
 451	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 452	depends on X86 && 64BIT
 453	select CRYPTO_NHPOLY1305
 454	help
 455	  SSE2 optimized implementation of the hash function used by the
 456	  Adiantum encryption mode.
 457
 458config CRYPTO_NHPOLY1305_AVX2
 459	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 460	depends on X86 && 64BIT
 461	select CRYPTO_NHPOLY1305
 462	help
 463	  AVX2 optimized implementation of the hash function used by the
 464	  Adiantum encryption mode.
 465
 466config CRYPTO_ADIANTUM
 467	tristate "Adiantum support"
 468	select CRYPTO_CHACHA20
 469	select CRYPTO_POLY1305
 470	select CRYPTO_NHPOLY1305
 471	select CRYPTO_MANAGER
 472	help
 473	  Adiantum is a tweakable, length-preserving encryption mode
 474	  designed for fast and secure disk encryption, especially on
 475	  CPUs without dedicated crypto instructions.  It encrypts
 476	  each sector using the XChaCha12 stream cipher, two passes of
 477	  an ε-almost-∆-universal hash function, and an invocation of
 478	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 479	  without AES instructions, Adiantum is much faster than
 480	  AES-XTS.
 481
 482	  Adiantum's security is provably reducible to that of its
 483	  underlying stream and block ciphers, subject to a security
 484	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 485	  mode, so it actually provides an even stronger notion of
 486	  security than XTS, subject to the security bound.
 487
 488	  If unsure, say N.
 489
 490config CRYPTO_ESSIV
 491	tristate "ESSIV support for block encryption"
 492	select CRYPTO_AUTHENC
 493	help
 494	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 495	  generation method that is used in some cases by fscrypt and/or
 496	  dm-crypt. It uses the hash of the block encryption key as the
 497	  symmetric key for a block encryption pass applied to the input
 498	  IV, making low entropy IV sources more suitable for block
 499	  encryption.
 500
 501	  This driver implements a crypto API template that can be
 502	  instantiated either as a skcipher or as a aead (depending on the
 503	  type of the first template argument), and which defers encryption
 504	  and decryption requests to the encapsulated cipher after applying
 505	  ESSIV to the input IV. Note that in the aead case, it is assumed
 506	  that the keys are presented in the same format used by the authenc
 507	  template, and that the IV appears at the end of the authenticated
 508	  associated data (AAD) region (which is how dm-crypt uses it.)
 509
 510	  Note that the use of ESSIV is not recommended for new deployments,
 511	  and so this only needs to be enabled when interoperability with
 512	  existing encrypted volumes of filesystems is required, or when
 513	  building for a particular system that requires it (e.g., when
 514	  the SoC in question has accelerated CBC but not XTS, making CBC
 515	  combined with ESSIV the only feasible mode for h/w accelerated
 516	  block encryption)
 517
 518comment "Hash modes"
 519
 520config CRYPTO_CMAC
 521	tristate "CMAC support"
 522	select CRYPTO_HASH
 523	select CRYPTO_MANAGER
 524	help
 525	  Cipher-based Message Authentication Code (CMAC) specified by
 526	  The National Institute of Standards and Technology (NIST).
 527
 528	  https://tools.ietf.org/html/rfc4493
 529	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 530
 531config CRYPTO_HMAC
 532	tristate "HMAC support"
 533	select CRYPTO_HASH
 534	select CRYPTO_MANAGER
 535	help
 536	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 537	  This is required for IPSec.
 538
 539config CRYPTO_XCBC
 540	tristate "XCBC support"
 541	select CRYPTO_HASH
 542	select CRYPTO_MANAGER
 543	help
 544	  XCBC: Keyed-Hashing with encryption algorithm
 545		http://www.ietf.org/rfc/rfc3566.txt
 546		http://csrc.nist.gov/encryption/modes/proposedmodes/
 547		 xcbc-mac/xcbc-mac-spec.pdf
 548
 549config CRYPTO_VMAC
 550	tristate "VMAC support"
 551	select CRYPTO_HASH
 552	select CRYPTO_MANAGER
 553	help
 554	  VMAC is a message authentication algorithm designed for
 555	  very high speed on 64-bit architectures.
 556
 557	  See also:
 558	  <http://fastcrypto.org/vmac>
 559
 560comment "Digest"
 561
 562config CRYPTO_CRC32C
 563	tristate "CRC32c CRC algorithm"
 564	select CRYPTO_HASH
 565	select CRC32
 566	help
 567	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 568	  by iSCSI for header and data digests and by others.
 569	  See Castagnoli93.  Module will be crc32c.
 570
 571config CRYPTO_CRC32C_INTEL
 572	tristate "CRC32c INTEL hardware acceleration"
 573	depends on X86
 574	select CRYPTO_HASH
 575	help
 576	  In Intel processor with SSE4.2 supported, the processor will
 577	  support CRC32C implementation using hardware accelerated CRC32
 578	  instruction. This option will create 'crc32c-intel' module,
 579	  which will enable any routine to use the CRC32 instruction to
 580	  gain performance compared with software implementation.
 581	  Module will be crc32c-intel.
 582
 583config CRYPTO_CRC32C_VPMSUM
 584	tristate "CRC32c CRC algorithm (powerpc64)"
 585	depends on PPC64 && ALTIVEC
 586	select CRYPTO_HASH
 587	select CRC32
 588	help
 589	  CRC32c algorithm implemented using vector polynomial multiply-sum
 590	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 591	  and newer processors for improved performance.
 592
 593
 594config CRYPTO_CRC32C_SPARC64
 595	tristate "CRC32c CRC algorithm (SPARC64)"
 596	depends on SPARC64
 597	select CRYPTO_HASH
 598	select CRC32
 599	help
 600	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 601	  when available.
 602
 603config CRYPTO_CRC32
 604	tristate "CRC32 CRC algorithm"
 605	select CRYPTO_HASH
 606	select CRC32
 607	help
 608	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 609	  Shash crypto api wrappers to crc32_le function.
 610
 611config CRYPTO_CRC32_PCLMUL
 612	tristate "CRC32 PCLMULQDQ hardware acceleration"
 613	depends on X86
 614	select CRYPTO_HASH
 615	select CRC32
 616	help
 617	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 618	  and PCLMULQDQ supported, the processor will support
 619	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 620	  instruction. This option will create 'crc32-pclmul' module,
 621	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 622	  and gain better performance as compared with the table implementation.
 623
 624config CRYPTO_CRC32_MIPS
 625	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 626	depends on MIPS_CRC_SUPPORT
 627	select CRYPTO_HASH
 628	help
 629	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 630	  instructions, when available.
 631
 632
 633config CRYPTO_XXHASH
 634	tristate "xxHash hash algorithm"
 635	select CRYPTO_HASH
 636	select XXHASH
 637	help
 638	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 639	  speeds close to RAM limits.
 640
 641config CRYPTO_CRCT10DIF
 642	tristate "CRCT10DIF algorithm"
 643	select CRYPTO_HASH
 644	help
 645	  CRC T10 Data Integrity Field computation is being cast as
 646	  a crypto transform.  This allows for faster crc t10 diff
 647	  transforms to be used if they are available.
 648
 649config CRYPTO_CRCT10DIF_PCLMUL
 650	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 651	depends on X86 && 64BIT && CRC_T10DIF
 652	select CRYPTO_HASH
 653	help
 654	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 655	  CRC T10 DIF PCLMULQDQ computation can be hardware
 656	  accelerated PCLMULQDQ instruction. This option will create
 657	  'crct10dif-pclmul' module, which is faster when computing the
 658	  crct10dif checksum as compared with the generic table implementation.
 659
 660config CRYPTO_CRCT10DIF_VPMSUM
 661	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 662	depends on PPC64 && ALTIVEC && CRC_T10DIF
 663	select CRYPTO_HASH
 664	help
 665	  CRC10T10DIF algorithm implemented using vector polynomial
 666	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 667	  POWER8 and newer processors for improved performance.
 668
 669config CRYPTO_VPMSUM_TESTER
 670	tristate "Powerpc64 vpmsum hardware acceleration tester"
 671	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 672	help
 673	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 674	  POWER8 vpmsum instructions.
 675	  Unless you are testing these algorithms, you don't need this.
 676
 677config CRYPTO_GHASH
 678	tristate "GHASH hash function"
 679	select CRYPTO_GF128MUL
 680	select CRYPTO_HASH
 681	help
 682	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 683	  It is not a general-purpose cryptographic hash function.
 684
 685config CRYPTO_POLY1305
 686	tristate "Poly1305 authenticator algorithm"
 687	select CRYPTO_HASH
 688	help
 689	  Poly1305 authenticator algorithm, RFC7539.
 690
 691	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 692	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 693	  in IETF protocols. This is the portable C implementation of Poly1305.
 694
 695config CRYPTO_POLY1305_X86_64
 696	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 697	depends on X86 && 64BIT
 698	select CRYPTO_POLY1305
 699	help
 700	  Poly1305 authenticator algorithm, RFC7539.
 701
 702	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 703	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 704	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 705	  instructions.
 706
 707config CRYPTO_MD4
 708	tristate "MD4 digest algorithm"
 709	select CRYPTO_HASH
 710	help
 711	  MD4 message digest algorithm (RFC1320).
 712
 713config CRYPTO_MD5
 714	tristate "MD5 digest algorithm"
 715	select CRYPTO_HASH
 716	help
 717	  MD5 message digest algorithm (RFC1321).
 718
 719config CRYPTO_MD5_OCTEON
 720	tristate "MD5 digest algorithm (OCTEON)"
 721	depends on CPU_CAVIUM_OCTEON
 722	select CRYPTO_MD5
 723	select CRYPTO_HASH
 724	help
 725	  MD5 message digest algorithm (RFC1321) implemented
 726	  using OCTEON crypto instructions, when available.
 727
 728config CRYPTO_MD5_PPC
 729	tristate "MD5 digest algorithm (PPC)"
 730	depends on PPC
 731	select CRYPTO_HASH
 732	help
 733	  MD5 message digest algorithm (RFC1321) implemented
 734	  in PPC assembler.
 735
 736config CRYPTO_MD5_SPARC64
 737	tristate "MD5 digest algorithm (SPARC64)"
 738	depends on SPARC64
 739	select CRYPTO_MD5
 740	select CRYPTO_HASH
 741	help
 742	  MD5 message digest algorithm (RFC1321) implemented
 743	  using sparc64 crypto instructions, when available.
 744
 745config CRYPTO_MICHAEL_MIC
 746	tristate "Michael MIC keyed digest algorithm"
 747	select CRYPTO_HASH
 748	help
 749	  Michael MIC is used for message integrity protection in TKIP
 750	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 751	  should not be used for other purposes because of the weakness
 752	  of the algorithm.
 753
 754config CRYPTO_RMD128
 755	tristate "RIPEMD-128 digest algorithm"
 756	select CRYPTO_HASH
 757	help
 758	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 759
 760	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 761	  be used as a secure replacement for RIPEMD. For other use cases,
 762	  RIPEMD-160 should be used.
 763
 764	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 765	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 766
 767config CRYPTO_RMD160
 768	tristate "RIPEMD-160 digest algorithm"
 769	select CRYPTO_HASH
 770	help
 771	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 772
 773	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 774	  to be used as a secure replacement for the 128-bit hash functions
 775	  MD4, MD5 and it's predecessor RIPEMD
 776	  (not to be confused with RIPEMD-128).
 777
 778	  It's speed is comparable to SHA1 and there are no known attacks
 779	  against RIPEMD-160.
 780
 781	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 782	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 783
 784config CRYPTO_RMD256
 785	tristate "RIPEMD-256 digest algorithm"
 786	select CRYPTO_HASH
 787	help
 788	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 789	  256 bit hash. It is intended for applications that require
 790	  longer hash-results, without needing a larger security level
 791	  (than RIPEMD-128).
 792
 793	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 794	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 795
 796config CRYPTO_RMD320
 797	tristate "RIPEMD-320 digest algorithm"
 798	select CRYPTO_HASH
 799	help
 800	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 801	  320 bit hash. It is intended for applications that require
 802	  longer hash-results, without needing a larger security level
 803	  (than RIPEMD-160).
 804
 805	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 806	  See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 807
 808config CRYPTO_SHA1
 809	tristate "SHA1 digest algorithm"
 810	select CRYPTO_HASH
 811	help
 812	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 813
 814config CRYPTO_SHA1_SSSE3
 815	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 816	depends on X86 && 64BIT
 817	select CRYPTO_SHA1
 818	select CRYPTO_HASH
 819	help
 820	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 821	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 822	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 823	  when available.
 824
 825config CRYPTO_SHA256_SSSE3
 826	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 827	depends on X86 && 64BIT
 828	select CRYPTO_SHA256
 829	select CRYPTO_HASH
 830	help
 831	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 832	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 833	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 834	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 835	  Instructions) when available.
 836
 837config CRYPTO_SHA512_SSSE3
 838	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 839	depends on X86 && 64BIT
 840	select CRYPTO_SHA512
 841	select CRYPTO_HASH
 842	help
 843	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 844	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 845	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 846	  version 2 (AVX2) instructions, when available.
 847
 848config CRYPTO_SHA1_OCTEON
 849	tristate "SHA1 digest algorithm (OCTEON)"
 850	depends on CPU_CAVIUM_OCTEON
 851	select CRYPTO_SHA1
 852	select CRYPTO_HASH
 853	help
 854	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 855	  using OCTEON crypto instructions, when available.
 856
 857config CRYPTO_SHA1_SPARC64
 858	tristate "SHA1 digest algorithm (SPARC64)"
 859	depends on SPARC64
 860	select CRYPTO_SHA1
 861	select CRYPTO_HASH
 862	help
 863	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 864	  using sparc64 crypto instructions, when available.
 865
 866config CRYPTO_SHA1_PPC
 867	tristate "SHA1 digest algorithm (powerpc)"
 868	depends on PPC
 869	help
 870	  This is the powerpc hardware accelerated implementation of the
 871	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 872
 873config CRYPTO_SHA1_PPC_SPE
 874	tristate "SHA1 digest algorithm (PPC SPE)"
 875	depends on PPC && SPE
 876	help
 877	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 878	  using powerpc SPE SIMD instruction set.
 879
 880config CRYPTO_LIB_SHA256
 881	tristate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882
 883config CRYPTO_SHA256
 884	tristate "SHA224 and SHA256 digest algorithm"
 885	select CRYPTO_HASH
 886	select CRYPTO_LIB_SHA256
 887	help
 888	  SHA256 secure hash standard (DFIPS 180-2).
 889
 890	  This version of SHA implements a 256 bit hash with 128 bits of
 891	  security against collision attacks.
 892
 893	  This code also includes SHA-224, a 224 bit hash with 112 bits
 894	  of security against collision attacks.
 895
 896config CRYPTO_SHA256_PPC_SPE
 897	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 898	depends on PPC && SPE
 899	select CRYPTO_SHA256
 900	select CRYPTO_HASH
 901	help
 902	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 903	  implemented using powerpc SPE SIMD instruction set.
 904
 905config CRYPTO_SHA256_OCTEON
 906	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 907	depends on CPU_CAVIUM_OCTEON
 908	select CRYPTO_SHA256
 909	select CRYPTO_HASH
 910	help
 911	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 912	  using OCTEON crypto instructions, when available.
 913
 914config CRYPTO_SHA256_SPARC64
 915	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 916	depends on SPARC64
 917	select CRYPTO_SHA256
 918	select CRYPTO_HASH
 919	help
 920	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 921	  using sparc64 crypto instructions, when available.
 922
 923config CRYPTO_SHA512
 924	tristate "SHA384 and SHA512 digest algorithms"
 925	select CRYPTO_HASH
 926	help
 927	  SHA512 secure hash standard (DFIPS 180-2).
 928
 929	  This version of SHA implements a 512 bit hash with 256 bits of
 930	  security against collision attacks.
 931
 932	  This code also includes SHA-384, a 384 bit hash with 192 bits
 933	  of security against collision attacks.
 934
 935config CRYPTO_SHA512_OCTEON
 936	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 937	depends on CPU_CAVIUM_OCTEON
 938	select CRYPTO_SHA512
 939	select CRYPTO_HASH
 940	help
 941	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 942	  using OCTEON crypto instructions, when available.
 943
 944config CRYPTO_SHA512_SPARC64
 945	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 946	depends on SPARC64
 947	select CRYPTO_SHA512
 948	select CRYPTO_HASH
 949	help
 950	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 951	  using sparc64 crypto instructions, when available.
 952
 953config CRYPTO_SHA3
 954	tristate "SHA3 digest algorithm"
 955	select CRYPTO_HASH
 956	help
 957	  SHA-3 secure hash standard (DFIPS 202). It's based on
 958	  cryptographic sponge function family called Keccak.
 959
 960	  References:
 961	  http://keccak.noekeon.org/
 962
 963config CRYPTO_SM3
 964	tristate "SM3 digest algorithm"
 965	select CRYPTO_HASH
 966	help
 967	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
 968	  It is part of the Chinese Commercial Cryptography suite.
 969
 970	  References:
 971	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
 972	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
 973
 974config CRYPTO_STREEBOG
 975	tristate "Streebog Hash Function"
 976	select CRYPTO_HASH
 977	help
 978	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
 979	  cryptographic standard algorithms (called GOST algorithms).
 980	  This setting enables two hash algorithms with 256 and 512 bits output.
 981
 982	  References:
 983	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
 984	  https://tools.ietf.org/html/rfc6986
 985
 986config CRYPTO_TGR192
 987	tristate "Tiger digest algorithms"
 988	select CRYPTO_HASH
 989	help
 990	  Tiger hash algorithm 192, 160 and 128-bit hashes
 991
 992	  Tiger is a hash function optimized for 64-bit processors while
 993	  still having decent performance on 32-bit processors.
 994	  Tiger was developed by Ross Anderson and Eli Biham.
 995
 996	  See also:
 997	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
 998
 999config CRYPTO_WP512
1000	tristate "Whirlpool digest algorithms"
1001	select CRYPTO_HASH
1002	help
1003	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1004
1005	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1006	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1007
1008	  See also:
1009	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1010
1011config CRYPTO_GHASH_CLMUL_NI_INTEL
1012	tristate "GHASH hash function (CLMUL-NI accelerated)"
1013	depends on X86 && 64BIT
1014	select CRYPTO_CRYPTD
1015	help
1016	  This is the x86_64 CLMUL-NI accelerated implementation of
1017	  GHASH, the hash function used in GCM (Galois/Counter mode).
1018
1019comment "Ciphers"
1020
1021config CRYPTO_LIB_AES
1022	tristate
1023
1024config CRYPTO_AES
1025	tristate "AES cipher algorithms"
1026	select CRYPTO_ALGAPI
1027	select CRYPTO_LIB_AES
1028	help
1029	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1030	  algorithm.
1031
1032	  Rijndael appears to be consistently a very good performer in
1033	  both hardware and software across a wide range of computing
1034	  environments regardless of its use in feedback or non-feedback
1035	  modes. Its key setup time is excellent, and its key agility is
1036	  good. Rijndael's very low memory requirements make it very well
1037	  suited for restricted-space environments, in which it also
1038	  demonstrates excellent performance. Rijndael's operations are
1039	  among the easiest to defend against power and timing attacks.
1040
1041	  The AES specifies three key sizes: 128, 192 and 256 bits
1042
1043	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1044
1045config CRYPTO_AES_TI
1046	tristate "Fixed time AES cipher"
1047	select CRYPTO_ALGAPI
1048	select CRYPTO_LIB_AES
1049	help
1050	  This is a generic implementation of AES that attempts to eliminate
1051	  data dependent latencies as much as possible without affecting
1052	  performance too much. It is intended for use by the generic CCM
1053	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1054	  solely on encryption (although decryption is supported as well, but
1055	  with a more dramatic performance hit)
1056
1057	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1058	  8 for decryption), this implementation only uses just two S-boxes of
1059	  256 bytes each, and attempts to eliminate data dependent latencies by
1060	  prefetching the entire table into the cache at the start of each
1061	  block. Interrupts are also disabled to avoid races where cachelines
1062	  are evicted when the CPU is interrupted to do something else.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064config CRYPTO_AES_NI_INTEL
1065	tristate "AES cipher algorithms (AES-NI)"
1066	depends on X86
1067	select CRYPTO_AEAD
1068	select CRYPTO_LIB_AES
 
1069	select CRYPTO_ALGAPI
1070	select CRYPTO_BLKCIPHER
1071	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1072	select CRYPTO_SIMD
1073	help
1074	  Use Intel AES-NI instructions for AES algorithm.
1075
1076	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1077	  algorithm.
1078
1079	  Rijndael appears to be consistently a very good performer in
1080	  both hardware and software across a wide range of computing
1081	  environments regardless of its use in feedback or non-feedback
1082	  modes. Its key setup time is excellent, and its key agility is
1083	  good. Rijndael's very low memory requirements make it very well
1084	  suited for restricted-space environments, in which it also
1085	  demonstrates excellent performance. Rijndael's operations are
1086	  among the easiest to defend against power and timing attacks.
1087
1088	  The AES specifies three key sizes: 128, 192 and 256 bits
1089
1090	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1091
1092	  In addition to AES cipher algorithm support, the acceleration
1093	  for some popular block cipher mode is supported too, including
1094	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1095	  acceleration for CTR.
1096
1097config CRYPTO_AES_SPARC64
1098	tristate "AES cipher algorithms (SPARC64)"
1099	depends on SPARC64
1100	select CRYPTO_CRYPTD
1101	select CRYPTO_ALGAPI
1102	help
1103	  Use SPARC64 crypto opcodes for AES algorithm.
1104
1105	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1106	  algorithm.
1107
1108	  Rijndael appears to be consistently a very good performer in
1109	  both hardware and software across a wide range of computing
1110	  environments regardless of its use in feedback or non-feedback
1111	  modes. Its key setup time is excellent, and its key agility is
1112	  good. Rijndael's very low memory requirements make it very well
1113	  suited for restricted-space environments, in which it also
1114	  demonstrates excellent performance. Rijndael's operations are
1115	  among the easiest to defend against power and timing attacks.
1116
1117	  The AES specifies three key sizes: 128, 192 and 256 bits
1118
1119	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1120
1121	  In addition to AES cipher algorithm support, the acceleration
1122	  for some popular block cipher mode is supported too, including
1123	  ECB and CBC.
1124
1125config CRYPTO_AES_PPC_SPE
1126	tristate "AES cipher algorithms (PPC SPE)"
1127	depends on PPC && SPE
1128	help
1129	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1130	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1131	  This module should only be used for low power (router) devices
1132	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1133	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1134	  timining attacks. Nevertheless it might be not as secure as other
1135	  architecture specific assembler implementations that work on 1KB
1136	  tables or 256 bytes S-boxes.
1137
1138config CRYPTO_ANUBIS
1139	tristate "Anubis cipher algorithm"
1140	select CRYPTO_ALGAPI
1141	help
1142	  Anubis cipher algorithm.
1143
1144	  Anubis is a variable key length cipher which can use keys from
1145	  128 bits to 320 bits in length.  It was evaluated as a entrant
1146	  in the NESSIE competition.
1147
1148	  See also:
1149	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1150	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1151
1152config CRYPTO_LIB_ARC4
1153	tristate
1154
1155config CRYPTO_ARC4
1156	tristate "ARC4 cipher algorithm"
1157	select CRYPTO_BLKCIPHER
1158	select CRYPTO_LIB_ARC4
1159	help
1160	  ARC4 cipher algorithm.
1161
1162	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1163	  bits in length.  This algorithm is required for driver-based
1164	  WEP, but it should not be for other purposes because of the
1165	  weakness of the algorithm.
1166
1167config CRYPTO_BLOWFISH
1168	tristate "Blowfish cipher algorithm"
1169	select CRYPTO_ALGAPI
1170	select CRYPTO_BLOWFISH_COMMON
1171	help
1172	  Blowfish cipher algorithm, by Bruce Schneier.
1173
1174	  This is a variable key length cipher which can use keys from 32
1175	  bits to 448 bits in length.  It's fast, simple and specifically
1176	  designed for use on "large microprocessors".
1177
1178	  See also:
1179	  <http://www.schneier.com/blowfish.html>
1180
1181config CRYPTO_BLOWFISH_COMMON
1182	tristate
1183	help
1184	  Common parts of the Blowfish cipher algorithm shared by the
1185	  generic c and the assembler implementations.
1186
1187	  See also:
1188	  <http://www.schneier.com/blowfish.html>
1189
1190config CRYPTO_BLOWFISH_X86_64
1191	tristate "Blowfish cipher algorithm (x86_64)"
1192	depends on X86 && 64BIT
1193	select CRYPTO_BLKCIPHER
1194	select CRYPTO_BLOWFISH_COMMON
1195	help
1196	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1197
1198	  This is a variable key length cipher which can use keys from 32
1199	  bits to 448 bits in length.  It's fast, simple and specifically
1200	  designed for use on "large microprocessors".
1201
1202	  See also:
1203	  <http://www.schneier.com/blowfish.html>
1204
1205config CRYPTO_CAMELLIA
1206	tristate "Camellia cipher algorithms"
1207	depends on CRYPTO
1208	select CRYPTO_ALGAPI
1209	help
1210	  Camellia cipher algorithms module.
1211
1212	  Camellia is a symmetric key block cipher developed jointly
1213	  at NTT and Mitsubishi Electric Corporation.
1214
1215	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1216
1217	  See also:
1218	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1219
1220config CRYPTO_CAMELLIA_X86_64
1221	tristate "Camellia cipher algorithm (x86_64)"
1222	depends on X86 && 64BIT
1223	depends on CRYPTO
1224	select CRYPTO_BLKCIPHER
1225	select CRYPTO_GLUE_HELPER_X86
1226	help
1227	  Camellia cipher algorithm module (x86_64).
1228
1229	  Camellia is a symmetric key block cipher developed jointly
1230	  at NTT and Mitsubishi Electric Corporation.
1231
1232	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1233
1234	  See also:
1235	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1236
1237config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1238	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1239	depends on X86 && 64BIT
1240	depends on CRYPTO
1241	select CRYPTO_BLKCIPHER
1242	select CRYPTO_CAMELLIA_X86_64
1243	select CRYPTO_GLUE_HELPER_X86
1244	select CRYPTO_SIMD
1245	select CRYPTO_XTS
1246	help
1247	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1248
1249	  Camellia is a symmetric key block cipher developed jointly
1250	  at NTT and Mitsubishi Electric Corporation.
1251
1252	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1253
1254	  See also:
1255	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1256
1257config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1258	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1259	depends on X86 && 64BIT
1260	depends on CRYPTO
1261	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1262	help
1263	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1264
1265	  Camellia is a symmetric key block cipher developed jointly
1266	  at NTT and Mitsubishi Electric Corporation.
1267
1268	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1269
1270	  See also:
1271	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1272
1273config CRYPTO_CAMELLIA_SPARC64
1274	tristate "Camellia cipher algorithm (SPARC64)"
1275	depends on SPARC64
1276	depends on CRYPTO
1277	select CRYPTO_ALGAPI
1278	help
1279	  Camellia cipher algorithm module (SPARC64).
1280
1281	  Camellia is a symmetric key block cipher developed jointly
1282	  at NTT and Mitsubishi Electric Corporation.
1283
1284	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1285
1286	  See also:
1287	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1288
1289config CRYPTO_CAST_COMMON
1290	tristate
1291	help
1292	  Common parts of the CAST cipher algorithms shared by the
1293	  generic c and the assembler implementations.
1294
1295config CRYPTO_CAST5
1296	tristate "CAST5 (CAST-128) cipher algorithm"
1297	select CRYPTO_ALGAPI
1298	select CRYPTO_CAST_COMMON
1299	help
1300	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1301	  described in RFC2144.
1302
1303config CRYPTO_CAST5_AVX_X86_64
1304	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1305	depends on X86 && 64BIT
1306	select CRYPTO_BLKCIPHER
1307	select CRYPTO_CAST5
1308	select CRYPTO_CAST_COMMON
1309	select CRYPTO_SIMD
1310	help
1311	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1312	  described in RFC2144.
1313
1314	  This module provides the Cast5 cipher algorithm that processes
1315	  sixteen blocks parallel using the AVX instruction set.
1316
1317config CRYPTO_CAST6
1318	tristate "CAST6 (CAST-256) cipher algorithm"
1319	select CRYPTO_ALGAPI
1320	select CRYPTO_CAST_COMMON
1321	help
1322	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1323	  described in RFC2612.
1324
1325config CRYPTO_CAST6_AVX_X86_64
1326	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1327	depends on X86 && 64BIT
1328	select CRYPTO_BLKCIPHER
1329	select CRYPTO_CAST6
1330	select CRYPTO_CAST_COMMON
1331	select CRYPTO_GLUE_HELPER_X86
1332	select CRYPTO_SIMD
1333	select CRYPTO_XTS
1334	help
1335	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1336	  described in RFC2612.
1337
1338	  This module provides the Cast6 cipher algorithm that processes
1339	  eight blocks parallel using the AVX instruction set.
1340
1341config CRYPTO_LIB_DES
1342	tristate
1343
1344config CRYPTO_DES
1345	tristate "DES and Triple DES EDE cipher algorithms"
1346	select CRYPTO_ALGAPI
1347	select CRYPTO_LIB_DES
1348	help
1349	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1350
1351config CRYPTO_DES_SPARC64
1352	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1353	depends on SPARC64
1354	select CRYPTO_ALGAPI
1355	select CRYPTO_LIB_DES
1356	help
1357	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1358	  optimized using SPARC64 crypto opcodes.
1359
1360config CRYPTO_DES3_EDE_X86_64
1361	tristate "Triple DES EDE cipher algorithm (x86-64)"
1362	depends on X86 && 64BIT
1363	select CRYPTO_BLKCIPHER
1364	select CRYPTO_LIB_DES
1365	help
1366	  Triple DES EDE (FIPS 46-3) algorithm.
1367
1368	  This module provides implementation of the Triple DES EDE cipher
1369	  algorithm that is optimized for x86-64 processors. Two versions of
1370	  algorithm are provided; regular processing one input block and
1371	  one that processes three blocks parallel.
1372
1373config CRYPTO_FCRYPT
1374	tristate "FCrypt cipher algorithm"
1375	select CRYPTO_ALGAPI
1376	select CRYPTO_BLKCIPHER
1377	help
1378	  FCrypt algorithm used by RxRPC.
1379
1380config CRYPTO_KHAZAD
1381	tristate "Khazad cipher algorithm"
1382	select CRYPTO_ALGAPI
1383	help
1384	  Khazad cipher algorithm.
1385
1386	  Khazad was a finalist in the initial NESSIE competition.  It is
1387	  an algorithm optimized for 64-bit processors with good performance
1388	  on 32-bit processors.  Khazad uses an 128 bit key size.
1389
1390	  See also:
1391	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1392
1393config CRYPTO_SALSA20
1394	tristate "Salsa20 stream cipher algorithm"
1395	select CRYPTO_BLKCIPHER
1396	help
1397	  Salsa20 stream cipher algorithm.
1398
1399	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1400	  Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1401
1402	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1403	  Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1405config CRYPTO_CHACHA20
1406	tristate "ChaCha stream cipher algorithms"
1407	select CRYPTO_BLKCIPHER
1408	help
1409	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1410
1411	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1412	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1413	  This is the portable C implementation of ChaCha20.  See also:
 
 
1414	  <http://cr.yp.to/chacha/chacha-20080128.pdf>
1415
1416	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1417	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1418	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1419	  while provably retaining ChaCha20's security.  See also:
1420	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1421
1422	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1423	  reduced security margin but increased performance.  It can be needed
1424	  in some performance-sensitive scenarios.
1425
1426config CRYPTO_CHACHA20_X86_64
1427	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1428	depends on X86 && 64BIT
1429	select CRYPTO_BLKCIPHER
1430	select CRYPTO_CHACHA20
1431	help
1432	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1433	  XChaCha20, and XChaCha12 stream ciphers.
 
 
 
 
 
 
1434
1435config CRYPTO_SEED
1436	tristate "SEED cipher algorithm"
1437	select CRYPTO_ALGAPI
1438	help
1439	  SEED cipher algorithm (RFC4269).
1440
1441	  SEED is a 128-bit symmetric key block cipher that has been
1442	  developed by KISA (Korea Information Security Agency) as a
1443	  national standard encryption algorithm of the Republic of Korea.
1444	  It is a 16 round block cipher with the key size of 128 bit.
1445
1446	  See also:
1447	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1448
1449config CRYPTO_SERPENT
1450	tristate "Serpent cipher algorithm"
1451	select CRYPTO_ALGAPI
1452	help
1453	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1454
1455	  Keys are allowed to be from 0 to 256 bits in length, in steps
1456	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1457	  variant of Serpent for compatibility with old kerneli.org code.
1458
1459	  See also:
1460	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1461
1462config CRYPTO_SERPENT_SSE2_X86_64
1463	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1464	depends on X86 && 64BIT
1465	select CRYPTO_BLKCIPHER
1466	select CRYPTO_GLUE_HELPER_X86
1467	select CRYPTO_SERPENT
1468	select CRYPTO_SIMD
1469	help
1470	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1471
1472	  Keys are allowed to be from 0 to 256 bits in length, in steps
1473	  of 8 bits.
1474
1475	  This module provides Serpent cipher algorithm that processes eight
1476	  blocks parallel using SSE2 instruction set.
1477
1478	  See also:
1479	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1480
1481config CRYPTO_SERPENT_SSE2_586
1482	tristate "Serpent cipher algorithm (i586/SSE2)"
1483	depends on X86 && !64BIT
1484	select CRYPTO_BLKCIPHER
1485	select CRYPTO_GLUE_HELPER_X86
1486	select CRYPTO_SERPENT
1487	select CRYPTO_SIMD
1488	help
1489	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1490
1491	  Keys are allowed to be from 0 to 256 bits in length, in steps
1492	  of 8 bits.
1493
1494	  This module provides Serpent cipher algorithm that processes four
1495	  blocks parallel using SSE2 instruction set.
1496
1497	  See also:
1498	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1499
1500config CRYPTO_SERPENT_AVX_X86_64
1501	tristate "Serpent cipher algorithm (x86_64/AVX)"
1502	depends on X86 && 64BIT
1503	select CRYPTO_BLKCIPHER
1504	select CRYPTO_GLUE_HELPER_X86
1505	select CRYPTO_SERPENT
1506	select CRYPTO_SIMD
1507	select CRYPTO_XTS
1508	help
1509	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1510
1511	  Keys are allowed to be from 0 to 256 bits in length, in steps
1512	  of 8 bits.
1513
1514	  This module provides the Serpent cipher algorithm that processes
1515	  eight blocks parallel using the AVX instruction set.
1516
1517	  See also:
1518	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1519
1520config CRYPTO_SERPENT_AVX2_X86_64
1521	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1522	depends on X86 && 64BIT
1523	select CRYPTO_SERPENT_AVX_X86_64
1524	help
1525	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1526
1527	  Keys are allowed to be from 0 to 256 bits in length, in steps
1528	  of 8 bits.
1529
1530	  This module provides Serpent cipher algorithm that processes 16
1531	  blocks parallel using AVX2 instruction set.
1532
1533	  See also:
1534	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1535
1536config CRYPTO_SM4
1537	tristate "SM4 cipher algorithm"
1538	select CRYPTO_ALGAPI
1539	help
1540	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1541
1542	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1543	  Organization of State Commercial Administration of China (OSCCA)
1544	  as an authorized cryptographic algorithms for the use within China.
1545
1546	  SMS4 was originally created for use in protecting wireless
1547	  networks, and is mandated in the Chinese National Standard for
1548	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1549	  (GB.15629.11-2003).
1550
1551	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1552	  standardized through TC 260 of the Standardization Administration
1553	  of the People's Republic of China (SAC).
1554
1555	  The input, output, and key of SMS4 are each 128 bits.
1556
1557	  See also: <https://eprint.iacr.org/2008/329.pdf>
1558
1559	  If unsure, say N.
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561config CRYPTO_TEA
1562	tristate "TEA, XTEA and XETA cipher algorithms"
1563	select CRYPTO_ALGAPI
1564	help
1565	  TEA cipher algorithm.
1566
1567	  Tiny Encryption Algorithm is a simple cipher that uses
1568	  many rounds for security.  It is very fast and uses
1569	  little memory.
1570
1571	  Xtendend Tiny Encryption Algorithm is a modification to
1572	  the TEA algorithm to address a potential key weakness
1573	  in the TEA algorithm.
1574
1575	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1576	  of the XTEA algorithm for compatibility purposes.
1577
1578config CRYPTO_TWOFISH
1579	tristate "Twofish cipher algorithm"
1580	select CRYPTO_ALGAPI
1581	select CRYPTO_TWOFISH_COMMON
1582	help
1583	  Twofish cipher algorithm.
1584
1585	  Twofish was submitted as an AES (Advanced Encryption Standard)
1586	  candidate cipher by researchers at CounterPane Systems.  It is a
1587	  16 round block cipher supporting key sizes of 128, 192, and 256
1588	  bits.
1589
1590	  See also:
1591	  <http://www.schneier.com/twofish.html>
1592
1593config CRYPTO_TWOFISH_COMMON
1594	tristate
1595	help
1596	  Common parts of the Twofish cipher algorithm shared by the
1597	  generic c and the assembler implementations.
1598
1599config CRYPTO_TWOFISH_586
1600	tristate "Twofish cipher algorithms (i586)"
1601	depends on (X86 || UML_X86) && !64BIT
1602	select CRYPTO_ALGAPI
1603	select CRYPTO_TWOFISH_COMMON
1604	help
1605	  Twofish cipher algorithm.
1606
1607	  Twofish was submitted as an AES (Advanced Encryption Standard)
1608	  candidate cipher by researchers at CounterPane Systems.  It is a
1609	  16 round block cipher supporting key sizes of 128, 192, and 256
1610	  bits.
1611
1612	  See also:
1613	  <http://www.schneier.com/twofish.html>
1614
1615config CRYPTO_TWOFISH_X86_64
1616	tristate "Twofish cipher algorithm (x86_64)"
1617	depends on (X86 || UML_X86) && 64BIT
1618	select CRYPTO_ALGAPI
1619	select CRYPTO_TWOFISH_COMMON
1620	help
1621	  Twofish cipher algorithm (x86_64).
1622
1623	  Twofish was submitted as an AES (Advanced Encryption Standard)
1624	  candidate cipher by researchers at CounterPane Systems.  It is a
1625	  16 round block cipher supporting key sizes of 128, 192, and 256
1626	  bits.
1627
1628	  See also:
1629	  <http://www.schneier.com/twofish.html>
1630
1631config CRYPTO_TWOFISH_X86_64_3WAY
1632	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1633	depends on X86 && 64BIT
1634	select CRYPTO_BLKCIPHER
1635	select CRYPTO_TWOFISH_COMMON
1636	select CRYPTO_TWOFISH_X86_64
1637	select CRYPTO_GLUE_HELPER_X86
1638	help
1639	  Twofish cipher algorithm (x86_64, 3-way parallel).
1640
1641	  Twofish was submitted as an AES (Advanced Encryption Standard)
1642	  candidate cipher by researchers at CounterPane Systems.  It is a
1643	  16 round block cipher supporting key sizes of 128, 192, and 256
1644	  bits.
1645
1646	  This module provides Twofish cipher algorithm that processes three
1647	  blocks parallel, utilizing resources of out-of-order CPUs better.
1648
1649	  See also:
1650	  <http://www.schneier.com/twofish.html>
1651
1652config CRYPTO_TWOFISH_AVX_X86_64
1653	tristate "Twofish cipher algorithm (x86_64/AVX)"
1654	depends on X86 && 64BIT
1655	select CRYPTO_BLKCIPHER
1656	select CRYPTO_GLUE_HELPER_X86
1657	select CRYPTO_SIMD
1658	select CRYPTO_TWOFISH_COMMON
1659	select CRYPTO_TWOFISH_X86_64
1660	select CRYPTO_TWOFISH_X86_64_3WAY
1661	help
1662	  Twofish cipher algorithm (x86_64/AVX).
1663
1664	  Twofish was submitted as an AES (Advanced Encryption Standard)
1665	  candidate cipher by researchers at CounterPane Systems.  It is a
1666	  16 round block cipher supporting key sizes of 128, 192, and 256
1667	  bits.
1668
1669	  This module provides the Twofish cipher algorithm that processes
1670	  eight blocks parallel using the AVX Instruction Set.
1671
1672	  See also:
1673	  <http://www.schneier.com/twofish.html>
1674
1675comment "Compression"
1676
1677config CRYPTO_DEFLATE
1678	tristate "Deflate compression algorithm"
1679	select CRYPTO_ALGAPI
1680	select CRYPTO_ACOMP2
1681	select ZLIB_INFLATE
1682	select ZLIB_DEFLATE
1683	help
1684	  This is the Deflate algorithm (RFC1951), specified for use in
1685	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1686
1687	  You will most probably want this if using IPSec.
1688
1689config CRYPTO_LZO
1690	tristate "LZO compression algorithm"
1691	select CRYPTO_ALGAPI
1692	select CRYPTO_ACOMP2
1693	select LZO_COMPRESS
1694	select LZO_DECOMPRESS
1695	help
1696	  This is the LZO algorithm.
1697
1698config CRYPTO_842
1699	tristate "842 compression algorithm"
1700	select CRYPTO_ALGAPI
1701	select CRYPTO_ACOMP2
1702	select 842_COMPRESS
1703	select 842_DECOMPRESS
1704	help
1705	  This is the 842 algorithm.
1706
1707config CRYPTO_LZ4
1708	tristate "LZ4 compression algorithm"
1709	select CRYPTO_ALGAPI
1710	select CRYPTO_ACOMP2
1711	select LZ4_COMPRESS
1712	select LZ4_DECOMPRESS
1713	help
1714	  This is the LZ4 algorithm.
1715
1716config CRYPTO_LZ4HC
1717	tristate "LZ4HC compression algorithm"
1718	select CRYPTO_ALGAPI
1719	select CRYPTO_ACOMP2
1720	select LZ4HC_COMPRESS
1721	select LZ4_DECOMPRESS
1722	help
1723	  This is the LZ4 high compression mode algorithm.
1724
1725config CRYPTO_ZSTD
1726	tristate "Zstd compression algorithm"
1727	select CRYPTO_ALGAPI
1728	select CRYPTO_ACOMP2
1729	select ZSTD_COMPRESS
1730	select ZSTD_DECOMPRESS
1731	help
1732	  This is the zstd algorithm.
1733
1734comment "Random Number Generation"
1735
1736config CRYPTO_ANSI_CPRNG
1737	tristate "Pseudo Random Number Generation for Cryptographic modules"
1738	select CRYPTO_AES
1739	select CRYPTO_RNG
1740	help
1741	  This option enables the generic pseudo random number generator
1742	  for cryptographic modules.  Uses the Algorithm specified in
1743	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1744	  CRYPTO_FIPS is selected
1745
1746menuconfig CRYPTO_DRBG_MENU
1747	tristate "NIST SP800-90A DRBG"
1748	help
1749	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1750	  more of the DRBG types must be selected.
1751
1752if CRYPTO_DRBG_MENU
1753
1754config CRYPTO_DRBG_HMAC
1755	bool
1756	default y
1757	select CRYPTO_HMAC
1758	select CRYPTO_SHA256
1759
1760config CRYPTO_DRBG_HASH
1761	bool "Enable Hash DRBG"
1762	select CRYPTO_SHA256
1763	help
1764	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1765
1766config CRYPTO_DRBG_CTR
1767	bool "Enable CTR DRBG"
1768	select CRYPTO_AES
1769	depends on CRYPTO_CTR
1770	help
1771	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1772
1773config CRYPTO_DRBG
1774	tristate
1775	default CRYPTO_DRBG_MENU
1776	select CRYPTO_RNG
1777	select CRYPTO_JITTERENTROPY
1778
1779endif	# if CRYPTO_DRBG_MENU
1780
1781config CRYPTO_JITTERENTROPY
1782	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1783	select CRYPTO_RNG
1784	help
1785	  The Jitterentropy RNG is a noise that is intended
1786	  to provide seed to another RNG. The RNG does not
1787	  perform any cryptographic whitening of the generated
1788	  random numbers. This Jitterentropy RNG registers with
1789	  the kernel crypto API and can be used by any caller.
1790
1791config CRYPTO_USER_API
1792	tristate
1793
1794config CRYPTO_USER_API_HASH
1795	tristate "User-space interface for hash algorithms"
1796	depends on NET
1797	select CRYPTO_HASH
1798	select CRYPTO_USER_API
1799	help
1800	  This option enables the user-spaces interface for hash
1801	  algorithms.
1802
1803config CRYPTO_USER_API_SKCIPHER
1804	tristate "User-space interface for symmetric key cipher algorithms"
1805	depends on NET
1806	select CRYPTO_BLKCIPHER
1807	select CRYPTO_USER_API
1808	help
1809	  This option enables the user-spaces interface for symmetric
1810	  key cipher algorithms.
1811
1812config CRYPTO_USER_API_RNG
1813	tristate "User-space interface for random number generator algorithms"
1814	depends on NET
1815	select CRYPTO_RNG
1816	select CRYPTO_USER_API
1817	help
1818	  This option enables the user-spaces interface for random
1819	  number generator algorithms.
1820
1821config CRYPTO_USER_API_AEAD
1822	tristate "User-space interface for AEAD cipher algorithms"
1823	depends on NET
1824	select CRYPTO_AEAD
1825	select CRYPTO_BLKCIPHER
1826	select CRYPTO_NULL
1827	select CRYPTO_USER_API
1828	help
1829	  This option enables the user-spaces interface for AEAD
1830	  cipher algorithms.
1831
1832config CRYPTO_STATS
1833	bool "Crypto usage statistics for User-space"
1834	depends on CRYPTO_USER
1835	help
1836	  This option enables the gathering of crypto stats.
1837	  This will collect:
1838	  - encrypt/decrypt size and numbers of symmeric operations
1839	  - compress/decompress size and numbers of compress operations
1840	  - size and numbers of hash operations
1841	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1842	  - generate/seed numbers for rng operations
1843
1844config CRYPTO_HASH_INFO
1845	bool
1846
1847source "drivers/crypto/Kconfig"
1848source "crypto/asymmetric_keys/Kconfig"
1849source "certs/Kconfig"
1850
1851endif	# if CRYPTO