Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <xen/xen.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/mem_encrypt.h>
  74
  75#include <linux/usb/xhci-dbgp.h>
  76#include <video/edid.h>
  77
  78#include <asm/mtrr.h>
 
 
 
  79#include <asm/apic.h>
  80#include <asm/realmode.h>
  81#include <asm/e820/api.h>
  82#include <asm/mpspec.h>
  83#include <asm/setup.h>
  84#include <asm/efi.h>
  85#include <asm/timer.h>
  86#include <asm/i8259.h>
  87#include <asm/sections.h>
  88#include <asm/io_apic.h>
  89#include <asm/ist.h>
  90#include <asm/setup_arch.h>
  91#include <asm/bios_ebda.h>
  92#include <asm/cacheflush.h>
  93#include <asm/processor.h>
  94#include <asm/bugs.h>
  95#include <asm/kasan.h>
  96
  97#include <asm/vsyscall.h>
  98#include <asm/cpu.h>
  99#include <asm/desc.h>
 100#include <asm/dma.h>
 101#include <asm/iommu.h>
 102#include <asm/gart.h>
 103#include <asm/mmu_context.h>
 104#include <asm/proto.h>
 105
 106#include <asm/paravirt.h>
 107#include <asm/hypervisor.h>
 108#include <asm/olpc_ofw.h>
 109
 110#include <asm/percpu.h>
 111#include <asm/topology.h>
 112#include <asm/apicdef.h>
 113#include <asm/amd_nb.h>
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 
 
 
 116#include <asm/prom.h>
 117#include <asm/microcode.h>
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 
 
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 
 
 
 
 
 138
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 
 
 143 */
 
 
 
 
 
 
 
 
 144static struct resource data_resource = {
 145	.name	= "Kernel data",
 146	.start	= 0,
 147	.end	= 0,
 148	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152	.name	= "Kernel code",
 153	.start	= 0,
 154	.end	= 0,
 155	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159	.name	= "Kernel bss",
 160	.start	= 0,
 161	.end	= 0,
 162	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 193struct cpuinfo_x86 boot_cpu_data __read_mostly;
 194EXPORT_SYMBOL(boot_cpu_data);
 195#endif
 196
 197
 198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 199__visible unsigned long mmu_cr4_features __ro_after_init;
 200#else
 201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 202#endif
 203
 204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 205int bootloader_type, bootloader_version;
 206
 207/*
 208 * Setup options
 209 */
 210struct screen_info screen_info;
 211EXPORT_SYMBOL(screen_info);
 212struct edid_info edid_info;
 213EXPORT_SYMBOL_GPL(edid_info);
 214
 215extern int root_mountflags;
 216
 217unsigned long saved_video_mode;
 218
 219#define RAMDISK_IMAGE_START_MASK	0x07FF
 220#define RAMDISK_PROMPT_FLAG		0x8000
 221#define RAMDISK_LOAD_FLAG		0x4000
 222
 223static char __initdata command_line[COMMAND_LINE_SIZE];
 224#ifdef CONFIG_CMDLINE_BOOL
 225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 226#endif
 227
 228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 229struct edd edd;
 230#ifdef CONFIG_EDD_MODULE
 231EXPORT_SYMBOL(edd);
 232#endif
 233/**
 234 * copy_edd() - Copy the BIOS EDD information
 235 *              from boot_params into a safe place.
 236 *
 237 */
 238static inline void __init copy_edd(void)
 239{
 240     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 241	    sizeof(edd.mbr_signature));
 242     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 243     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 244     edd.edd_info_nr = boot_params.eddbuf_entries;
 245}
 246#else
 247static inline void __init copy_edd(void)
 248{
 249}
 250#endif
 251
 252void * __init extend_brk(size_t size, size_t align)
 253{
 254	size_t mask = align - 1;
 255	void *ret;
 256
 257	BUG_ON(_brk_start == 0);
 258	BUG_ON(align & mask);
 259
 260	_brk_end = (_brk_end + mask) & ~mask;
 261	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 262
 263	ret = (void *)_brk_end;
 264	_brk_end += size;
 265
 266	memset(ret, 0, size);
 267
 268	return ret;
 269}
 270
 271#ifdef CONFIG_X86_32
 272static void __init cleanup_highmap(void)
 273{
 274}
 275#endif
 276
 277static void __init reserve_brk(void)
 278{
 279	if (_brk_end > _brk_start)
 280		memblock_reserve(__pa_symbol(_brk_start),
 281				 _brk_end - _brk_start);
 282
 283	/* Mark brk area as locked down and no longer taking any
 284	   new allocations */
 285	_brk_start = 0;
 286}
 287
 288u64 relocated_ramdisk;
 289
 290#ifdef CONFIG_BLK_DEV_INITRD
 291
 292static u64 __init get_ramdisk_image(void)
 293{
 294	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 295
 296	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 297
 
 
 
 298	return ramdisk_image;
 299}
 300static u64 __init get_ramdisk_size(void)
 301{
 302	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 303
 304	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 305
 
 
 
 306	return ramdisk_size;
 307}
 308
 309static void __init relocate_initrd(void)
 310{
 311	/* Assume only end is not page aligned */
 312	u64 ramdisk_image = get_ramdisk_image();
 313	u64 ramdisk_size  = get_ramdisk_size();
 314	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 315
 316	/* We need to move the initrd down into directly mapped mem */
 317	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 318						   area_size, PAGE_SIZE);
 319
 320	if (!relocated_ramdisk)
 321		panic("Cannot find place for new RAMDISK of size %lld\n",
 322		      ramdisk_size);
 323
 324	/* Note: this includes all the mem currently occupied by
 325	   the initrd, we rely on that fact to keep the data intact. */
 326	memblock_reserve(relocated_ramdisk, area_size);
 327	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 328	initrd_end   = initrd_start + ramdisk_size;
 329	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 330	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 331
 332	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 333
 334	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 335		" [mem %#010llx-%#010llx]\n",
 336		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 337		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 338}
 339
 340static void __init early_reserve_initrd(void)
 341{
 342	/* Assume only end is not page aligned */
 343	u64 ramdisk_image = get_ramdisk_image();
 344	u64 ramdisk_size  = get_ramdisk_size();
 345	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 346
 347	if (!boot_params.hdr.type_of_loader ||
 348	    !ramdisk_image || !ramdisk_size)
 349		return;		/* No initrd provided by bootloader */
 350
 351	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 352}
 353static void __init reserve_initrd(void)
 354{
 355	/* Assume only end is not page aligned */
 356	u64 ramdisk_image = get_ramdisk_image();
 357	u64 ramdisk_size  = get_ramdisk_size();
 358	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359	u64 mapped_size;
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	initrd_start = 0;
 366
 367	mapped_size = memblock_mem_size(max_pfn_mapped);
 368	if (ramdisk_size >= (mapped_size>>1))
 369		panic("initrd too large to handle, "
 370		       "disabling initrd (%lld needed, %lld available)\n",
 371		       ramdisk_size, mapped_size>>1);
 372
 373	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 374			ramdisk_end - 1);
 375
 376	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 377				PFN_DOWN(ramdisk_end))) {
 378		/* All are mapped, easy case */
 379		initrd_start = ramdisk_image + PAGE_OFFSET;
 380		initrd_end = initrd_start + ramdisk_size;
 381		return;
 382	}
 383
 384	relocate_initrd();
 385
 386	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 387}
 388
 389#else
 390static void __init early_reserve_initrd(void)
 391{
 392}
 393static void __init reserve_initrd(void)
 394{
 395}
 396#endif /* CONFIG_BLK_DEV_INITRD */
 397
 398static void __init parse_setup_data(void)
 399{
 400	struct setup_data *data;
 401	u64 pa_data, pa_next;
 402
 403	pa_data = boot_params.hdr.setup_data;
 404	while (pa_data) {
 405		u32 data_len, data_type;
 406
 407		data = early_memremap(pa_data, sizeof(*data));
 408		data_len = data->len + sizeof(struct setup_data);
 409		data_type = data->type;
 410		pa_next = data->next;
 411		early_memunmap(data, sizeof(*data));
 412
 413		switch (data_type) {
 414		case SETUP_E820_EXT:
 415			e820__memory_setup_extended(pa_data, data_len);
 416			break;
 417		case SETUP_DTB:
 418			add_dtb(pa_data);
 419			break;
 420		case SETUP_EFI:
 421			parse_efi_setup(pa_data, data_len);
 422			break;
 423		default:
 424			break;
 425		}
 426		pa_data = pa_next;
 427	}
 428}
 429
 430static void __init memblock_x86_reserve_range_setup_data(void)
 431{
 432	struct setup_data *data;
 433	u64 pa_data;
 434
 435	pa_data = boot_params.hdr.setup_data;
 436	while (pa_data) {
 437		data = early_memremap(pa_data, sizeof(*data));
 438		memblock_reserve(pa_data, sizeof(*data) + data->len);
 
 
 
 
 
 
 439		pa_data = data->next;
 440		early_memunmap(data, sizeof(*data));
 441	}
 442}
 443
 444/*
 445 * --------- Crashkernel reservation ------------------------------
 446 */
 447
 448#ifdef CONFIG_KEXEC_CORE
 449
 450/* 16M alignment for crash kernel regions */
 451#define CRASH_ALIGN		(16 << 20)
 452
 453/*
 454 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 456 * On 64bit, old kexec-tools need to under 896MiB.
 
 
 
 
 
 
 
 
 457 */
 458#ifdef CONFIG_X86_32
 459# define CRASH_ADDR_LOW_MAX	(512 << 20)
 460# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 461#else
 462# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 463# define CRASH_ADDR_HIGH_MAX	MAXMEM
 464#endif
 465
 466static int __init reserve_crashkernel_low(void)
 467{
 468#ifdef CONFIG_X86_64
 469	unsigned long long base, low_base = 0, low_size = 0;
 470	unsigned long total_low_mem;
 471	int ret;
 472
 473	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 474
 475	/* crashkernel=Y,low */
 476	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 477	if (ret) {
 478		/*
 479		 * two parts from lib/swiotlb.c:
 480		 * -swiotlb size: user-specified with swiotlb= or default.
 481		 *
 482		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 483		 * to 8M for other buffers that may need to stay low too. Also
 484		 * make sure we allocate enough extra low memory so that we
 485		 * don't run out of DMA buffers for 32-bit devices.
 486		 */
 487		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 488	} else {
 489		/* passed with crashkernel=0,low ? */
 490		if (!low_size)
 491			return 0;
 492	}
 493
 494	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 495	if (!low_base) {
 496		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 497		       (unsigned long)(low_size >> 20));
 498		return -ENOMEM;
 499	}
 500
 501	ret = memblock_reserve(low_base, low_size);
 502	if (ret) {
 503		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 504		return ret;
 505	}
 506
 507	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 508		(unsigned long)(low_size >> 20),
 509		(unsigned long)(low_base >> 20),
 510		(unsigned long)(total_low_mem >> 20));
 511
 512	crashk_low_res.start = low_base;
 513	crashk_low_res.end   = low_base + low_size - 1;
 514	insert_resource(&iomem_resource, &crashk_low_res);
 515#endif
 516	return 0;
 517}
 518
 519static void __init reserve_crashkernel(void)
 520{
 521	unsigned long long crash_size, crash_base, total_mem;
 522	bool high = false;
 523	int ret;
 524
 525	total_mem = memblock_phys_mem_size();
 526
 527	/* crashkernel=XM */
 528	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 529	if (ret != 0 || crash_size <= 0) {
 530		/* crashkernel=X,high */
 531		ret = parse_crashkernel_high(boot_command_line, total_mem,
 532					     &crash_size, &crash_base);
 533		if (ret != 0 || crash_size <= 0)
 534			return;
 535		high = true;
 536	}
 537
 538	if (xen_pv_domain()) {
 539		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 540		return;
 541	}
 542
 543	/* 0 means: find the address automatically */
 544	if (crash_base <= 0) {
 545		/*
 546		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 547		 * as old kexec-tools loads bzImage below that, unless
 548		 * "crashkernel=size[KMG],high" is specified.
 
 
 
 549		 */
 550		crash_base = memblock_find_in_range(CRASH_ALIGN,
 551						    high ? CRASH_ADDR_HIGH_MAX
 552							 : CRASH_ADDR_LOW_MAX,
 553						    crash_size, CRASH_ALIGN);
 
 
 
 
 554		if (!crash_base) {
 555			pr_info("crashkernel reservation failed - No suitable area found.\n");
 556			return;
 557		}
 558
 559	} else {
 560		unsigned long long start;
 561
 562		start = memblock_find_in_range(crash_base,
 563					       crash_base + crash_size,
 564					       crash_size, 1 << 20);
 565		if (start != crash_base) {
 566			pr_info("crashkernel reservation failed - memory is in use.\n");
 567			return;
 568		}
 569	}
 570	ret = memblock_reserve(crash_base, crash_size);
 571	if (ret) {
 572		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 573		return;
 574	}
 575
 576	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 577		memblock_free(crash_base, crash_size);
 578		return;
 579	}
 580
 581	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 582		(unsigned long)(crash_size >> 20),
 583		(unsigned long)(crash_base >> 20),
 584		(unsigned long)(total_mem >> 20));
 585
 586	crashk_res.start = crash_base;
 587	crashk_res.end   = crash_base + crash_size - 1;
 588	insert_resource(&iomem_resource, &crashk_res);
 589}
 590#else
 591static void __init reserve_crashkernel(void)
 592{
 593}
 594#endif
 595
 596static struct resource standard_io_resources[] = {
 597	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 598		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 599	{ .name = "pic1", .start = 0x20, .end = 0x21,
 600		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 601	{ .name = "timer0", .start = 0x40, .end = 0x43,
 602		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 603	{ .name = "timer1", .start = 0x50, .end = 0x53,
 604		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 605	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 606		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 607	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 608		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 609	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 610		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 611	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 612		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 613	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 614		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 616		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 617};
 618
 619void __init reserve_standard_io_resources(void)
 620{
 621	int i;
 622
 623	/* request I/O space for devices used on all i[345]86 PCs */
 624	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 625		request_resource(&ioport_resource, &standard_io_resources[i]);
 626
 627}
 628
 629static __init void reserve_ibft_region(void)
 630{
 631	unsigned long addr, size = 0;
 632
 633	addr = find_ibft_region(&size);
 634
 635	if (size)
 636		memblock_reserve(addr, size);
 637}
 638
 639static bool __init snb_gfx_workaround_needed(void)
 640{
 641#ifdef CONFIG_PCI
 642	int i;
 643	u16 vendor, devid;
 644	static const __initconst u16 snb_ids[] = {
 645		0x0102,
 646		0x0112,
 647		0x0122,
 648		0x0106,
 649		0x0116,
 650		0x0126,
 651		0x010a,
 652	};
 653
 654	/* Assume no if something weird is going on with PCI */
 655	if (!early_pci_allowed())
 656		return false;
 657
 658	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 659	if (vendor != 0x8086)
 660		return false;
 661
 662	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 663	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 664		if (devid == snb_ids[i])
 665			return true;
 666#endif
 667
 668	return false;
 669}
 670
 671/*
 672 * Sandy Bridge graphics has trouble with certain ranges, exclude
 673 * them from allocation.
 674 */
 675static void __init trim_snb_memory(void)
 676{
 677	static const __initconst unsigned long bad_pages[] = {
 678		0x20050000,
 679		0x20110000,
 680		0x20130000,
 681		0x20138000,
 682		0x40004000,
 683	};
 684	int i;
 685
 686	if (!snb_gfx_workaround_needed())
 687		return;
 688
 689	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 690
 691	/*
 692	 * Reserve all memory below the 1 MB mark that has not
 693	 * already been reserved.
 694	 */
 695	memblock_reserve(0, 1<<20);
 696	
 697	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 698		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 699			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 700			       bad_pages[i]);
 701	}
 702}
 703
 704/*
 705 * Here we put platform-specific memory range workarounds, i.e.
 706 * memory known to be corrupt or otherwise in need to be reserved on
 707 * specific platforms.
 708 *
 709 * If this gets used more widely it could use a real dispatch mechanism.
 710 */
 711static void __init trim_platform_memory_ranges(void)
 712{
 713	trim_snb_memory();
 714}
 715
 716static void __init trim_bios_range(void)
 717{
 718	/*
 719	 * A special case is the first 4Kb of memory;
 720	 * This is a BIOS owned area, not kernel ram, but generally
 721	 * not listed as such in the E820 table.
 722	 *
 723	 * This typically reserves additional memory (64KiB by default)
 724	 * since some BIOSes are known to corrupt low memory.  See the
 725	 * Kconfig help text for X86_RESERVE_LOW.
 726	 */
 727	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 728
 729	/*
 730	 * special case: Some BIOSen report the PC BIOS
 731	 * area (640->1Mb) as ram even though it is not.
 732	 * take them out.
 733	 */
 734	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 735
 736	e820__update_table(e820_table);
 737}
 738
 739/* called before trim_bios_range() to spare extra sanitize */
 740static void __init e820_add_kernel_range(void)
 741{
 742	u64 start = __pa_symbol(_text);
 743	u64 size = __pa_symbol(_end) - start;
 744
 745	/*
 746	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 747	 * attempt to fix it by adding the range. We may have a confused BIOS,
 748	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 749	 * exclude kernel range. If we really are running on top non-RAM,
 750	 * we will crash later anyways.
 751	 */
 752	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 753		return;
 754
 755	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 756	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 757	e820__range_add(start, size, E820_TYPE_RAM);
 758}
 759
 760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 761
 762static int __init parse_reservelow(char *p)
 763{
 764	unsigned long long size;
 765
 766	if (!p)
 767		return -EINVAL;
 768
 769	size = memparse(p, &p);
 770
 771	if (size < 4096)
 772		size = 4096;
 773
 774	if (size > 640*1024)
 775		size = 640*1024;
 776
 777	reserve_low = size;
 778
 779	return 0;
 780}
 781
 782early_param("reservelow", parse_reservelow);
 783
 784static void __init trim_low_memory_range(void)
 785{
 786	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 787}
 788	
 789/*
 790 * Dump out kernel offset information on panic.
 791 */
 792static int
 793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 794{
 795	if (kaslr_enabled()) {
 796		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 797			 kaslr_offset(),
 798			 __START_KERNEL,
 799			 __START_KERNEL_map,
 800			 MODULES_VADDR-1);
 801	} else {
 802		pr_emerg("Kernel Offset: disabled\n");
 803	}
 804
 805	return 0;
 806}
 807
 808/*
 809 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 810 * passed the efi memmap, systab, etc., so we should use these data structures
 811 * for initialization.  Note, the efi init code path is determined by the
 812 * global efi_enabled. This allows the same kernel image to be used on existing
 813 * systems (with a traditional BIOS) as well as on EFI systems.
 814 */
 815/*
 816 * setup_arch - architecture-specific boot-time initializations
 817 *
 818 * Note: On x86_64, fixmaps are ready for use even before this is called.
 819 */
 820
 821void __init setup_arch(char **cmdline_p)
 822{
 
 
 
 
 
 
 823	memblock_reserve(__pa_symbol(_text),
 824			 (unsigned long)__bss_stop - (unsigned long)_text);
 
 
 
 
 
 
 825
 826	early_reserve_initrd();
 827
 828	/*
 829	 * At this point everything still needed from the boot loader
 830	 * or BIOS or kernel text should be early reserved or marked not
 831	 * RAM in e820. All other memory is free game.
 832	 */
 833
 834#ifdef CONFIG_X86_32
 835	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 836
 837	/*
 838	 * copy kernel address range established so far and switch
 839	 * to the proper swapper page table
 840	 */
 841	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 842			initial_page_table + KERNEL_PGD_BOUNDARY,
 843			KERNEL_PGD_PTRS);
 844
 845	load_cr3(swapper_pg_dir);
 846	/*
 847	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 848	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 849	 * will not flush anything because the cpu quirk which clears
 850	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 851	 * load_cr3() above the TLB has been flushed already. The
 852	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 853	 * so proper operation is guaranteed.
 854	 */
 855	__flush_tlb_all();
 856#else
 857	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 858	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 859#endif
 860
 861	/*
 862	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 863	 * reserve_top(), so do this before touching the ioremap area.
 864	 */
 865	olpc_ofw_detect();
 866
 867	idt_setup_early_traps();
 868	early_cpu_init();
 
 
 869	early_ioremap_init();
 870
 871	setup_olpc_ofw_pgd();
 872
 873	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 874	screen_info = boot_params.screen_info;
 875	edid_info = boot_params.edid_info;
 876#ifdef CONFIG_X86_32
 877	apm_info.bios = boot_params.apm_bios_info;
 878	ist_info = boot_params.ist_info;
 879#endif
 880	saved_video_mode = boot_params.hdr.vid_mode;
 881	bootloader_type = boot_params.hdr.type_of_loader;
 882	if ((bootloader_type >> 4) == 0xe) {
 883		bootloader_type &= 0xf;
 884		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 885	}
 886	bootloader_version  = bootloader_type & 0xf;
 887	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 888
 889#ifdef CONFIG_BLK_DEV_RAM
 890	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 891	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 892	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 893#endif
 894#ifdef CONFIG_EFI
 895	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 896		     EFI32_LOADER_SIGNATURE, 4)) {
 897		set_bit(EFI_BOOT, &efi.flags);
 898	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 899		     EFI64_LOADER_SIGNATURE, 4)) {
 900		set_bit(EFI_BOOT, &efi.flags);
 901		set_bit(EFI_64BIT, &efi.flags);
 902	}
 903#endif
 904
 905	x86_init.oem.arch_setup();
 906
 907	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 908	e820__memory_setup();
 909	parse_setup_data();
 910
 911	copy_edd();
 912
 913	if (!boot_params.hdr.root_flags)
 914		root_mountflags &= ~MS_RDONLY;
 915	init_mm.start_code = (unsigned long) _text;
 916	init_mm.end_code = (unsigned long) _etext;
 917	init_mm.end_data = (unsigned long) _edata;
 918	init_mm.brk = _brk_end;
 919
 920	mpx_mm_init(&init_mm);
 921
 922	code_resource.start = __pa_symbol(_text);
 923	code_resource.end = __pa_symbol(_etext)-1;
 924	data_resource.start = __pa_symbol(_etext);
 
 
 925	data_resource.end = __pa_symbol(_edata)-1;
 926	bss_resource.start = __pa_symbol(__bss_start);
 927	bss_resource.end = __pa_symbol(__bss_stop)-1;
 928
 929#ifdef CONFIG_CMDLINE_BOOL
 930#ifdef CONFIG_CMDLINE_OVERRIDE
 931	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 932#else
 933	if (builtin_cmdline[0]) {
 934		/* append boot loader cmdline to builtin */
 935		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 936		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 937		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 938	}
 939#endif
 940#endif
 941
 942	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 943	*cmdline_p = command_line;
 944
 945	/*
 946	 * x86_configure_nx() is called before parse_early_param() to detect
 947	 * whether hardware doesn't support NX (so that the early EHCI debug
 948	 * console setup can safely call set_fixmap()). It may then be called
 949	 * again from within noexec_setup() during parsing early parameters
 950	 * to honor the respective command line option.
 951	 */
 952	x86_configure_nx();
 953
 954	parse_early_param();
 955
 956	if (efi_enabled(EFI_BOOT))
 957		efi_memblock_x86_reserve_range();
 958#ifdef CONFIG_MEMORY_HOTPLUG
 959	/*
 960	 * Memory used by the kernel cannot be hot-removed because Linux
 961	 * cannot migrate the kernel pages. When memory hotplug is
 962	 * enabled, we should prevent memblock from allocating memory
 963	 * for the kernel.
 964	 *
 965	 * ACPI SRAT records all hotpluggable memory ranges. But before
 966	 * SRAT is parsed, we don't know about it.
 967	 *
 968	 * The kernel image is loaded into memory at very early time. We
 969	 * cannot prevent this anyway. So on NUMA system, we set any
 970	 * node the kernel resides in as un-hotpluggable.
 971	 *
 972	 * Since on modern servers, one node could have double-digit
 973	 * gigabytes memory, we can assume the memory around the kernel
 974	 * image is also un-hotpluggable. So before SRAT is parsed, just
 975	 * allocate memory near the kernel image to try the best to keep
 976	 * the kernel away from hotpluggable memory.
 977	 */
 978	if (movable_node_is_enabled())
 979		memblock_set_bottom_up(true);
 980#endif
 981
 982	x86_report_nx();
 983
 984	/* after early param, so could get panic from serial */
 985	memblock_x86_reserve_range_setup_data();
 986
 987	if (acpi_mps_check()) {
 988#ifdef CONFIG_X86_LOCAL_APIC
 989		disable_apic = 1;
 990#endif
 991		setup_clear_cpu_cap(X86_FEATURE_APIC);
 992	}
 993
 994#ifdef CONFIG_PCI
 995	if (pci_early_dump_regs)
 996		early_dump_pci_devices();
 997#endif
 998
 999	e820__reserve_setup_data();
1000	e820__finish_early_params();
1001
1002	if (efi_enabled(EFI_BOOT))
1003		efi_init();
1004
1005	dmi_scan_machine();
1006	dmi_memdev_walk();
1007	dmi_set_dump_stack_arch_desc();
1008
1009	/*
1010	 * VMware detection requires dmi to be available, so this
1011	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1012	 */
1013	init_hypervisor_platform();
1014
 
1015	x86_init.resources.probe_roms();
1016
1017	/* after parse_early_param, so could debug it */
1018	insert_resource(&iomem_resource, &code_resource);
 
1019	insert_resource(&iomem_resource, &data_resource);
1020	insert_resource(&iomem_resource, &bss_resource);
1021
1022	e820_add_kernel_range();
1023	trim_bios_range();
1024#ifdef CONFIG_X86_32
1025	if (ppro_with_ram_bug()) {
1026		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027				  E820_TYPE_RESERVED);
1028		e820__update_table(e820_table);
1029		printk(KERN_INFO "fixed physical RAM map:\n");
1030		e820__print_table("bad_ppro");
1031	}
1032#else
1033	early_gart_iommu_check();
1034#endif
1035
1036	/*
1037	 * partially used pages are not usable - thus
1038	 * we are rounding upwards:
1039	 */
1040	max_pfn = e820__end_of_ram_pfn();
1041
1042	/* update e820 for memory not covered by WB MTRRs */
1043	mtrr_bp_init();
1044	if (mtrr_trim_uncached_memory(max_pfn))
1045		max_pfn = e820__end_of_ram_pfn();
1046
1047	max_possible_pfn = max_pfn;
1048
1049	/*
1050	 * This call is required when the CPU does not support PAT. If
1051	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052	 * effect.
1053	 */
1054	init_cache_modes();
1055
1056	/*
1057	 * Define random base addresses for memory sections after max_pfn is
1058	 * defined and before each memory section base is used.
1059	 */
1060	kernel_randomize_memory();
1061
1062#ifdef CONFIG_X86_32
1063	/* max_low_pfn get updated here */
1064	find_low_pfn_range();
1065#else
1066	check_x2apic();
1067
1068	/* How many end-of-memory variables you have, grandma! */
1069	/* need this before calling reserve_initrd */
1070	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071		max_low_pfn = e820__end_of_low_ram_pfn();
1072	else
1073		max_low_pfn = max_pfn;
1074
1075	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076#endif
1077
1078	/*
1079	 * Find and reserve possible boot-time SMP configuration:
1080	 */
1081	find_smp_config();
1082
1083	reserve_ibft_region();
1084
1085	early_alloc_pgt_buf();
1086
1087	/*
1088	 * Need to conclude brk, before e820__memblock_setup()
1089	 *  it could use memblock_find_in_range, could overlap with
1090	 *  brk area.
1091	 */
1092	reserve_brk();
1093
1094	cleanup_highmap();
1095
1096	memblock_set_current_limit(ISA_END_ADDRESS);
1097	e820__memblock_setup();
1098
1099	reserve_bios_regions();
1100
1101	if (efi_enabled(EFI_MEMMAP)) {
1102		efi_fake_memmap();
1103		efi_find_mirror();
1104		efi_esrt_init();
1105
1106		/*
1107		 * The EFI specification says that boot service code won't be
1108		 * called after ExitBootServices(). This is, in fact, a lie.
1109		 */
1110		efi_reserve_boot_services();
1111	}
1112
1113	/* preallocate 4k for mptable mpc */
1114	e820__memblock_alloc_reserved_mpc_new();
1115
1116#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117	setup_bios_corruption_check();
1118#endif
1119
1120#ifdef CONFIG_X86_32
1121	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1123#endif
1124
1125	reserve_real_mode();
1126
1127	trim_platform_memory_ranges();
1128	trim_low_memory_range();
1129
1130	init_mem_mapping();
1131
1132	idt_setup_early_pf();
1133
1134	/*
1135	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136	 * with the current CR4 value.  This may not be necessary, but
1137	 * auditing all the early-boot CR4 manipulation would be needed to
1138	 * rule it out.
1139	 *
1140	 * Mask off features that don't work outside long mode (just
1141	 * PCIDE for now).
1142	 */
1143	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145	memblock_set_current_limit(get_max_mapped());
1146
1147	/*
1148	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149	 */
1150
1151#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152	if (init_ohci1394_dma_early)
1153		init_ohci1394_dma_on_all_controllers();
1154#endif
1155	/* Allocate bigger log buffer */
1156	setup_log_buf(1);
1157
1158	if (efi_enabled(EFI_BOOT)) {
1159		switch (boot_params.secure_boot) {
1160		case efi_secureboot_mode_disabled:
1161			pr_info("Secure boot disabled\n");
1162			break;
1163		case efi_secureboot_mode_enabled:
1164			pr_info("Secure boot enabled\n");
1165			break;
1166		default:
1167			pr_info("Secure boot could not be determined\n");
1168			break;
1169		}
1170	}
1171
1172	reserve_initrd();
1173
1174	acpi_table_upgrade();
1175
1176	vsmp_init();
1177
1178	io_delay_init();
1179
1180	early_platform_quirks();
1181
1182	/*
1183	 * Parse the ACPI tables for possible boot-time SMP configuration.
1184	 */
1185	acpi_boot_table_init();
1186
1187	early_acpi_boot_init();
1188
1189	initmem_init();
1190	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1191
 
 
 
1192	/*
1193	 * Reserve memory for crash kernel after SRAT is parsed so that it
1194	 * won't consume hotpluggable memory.
1195	 */
1196	reserve_crashkernel();
1197
1198	memblock_find_dma_reserve();
1199
1200#ifdef CONFIG_KVM_GUEST
1201	kvmclock_init();
1202#endif
1203
1204	tsc_early_delay_calibrate();
1205	if (!early_xdbc_setup_hardware())
1206		early_xdbc_register_console();
1207
1208	x86_init.paging.pagetable_init();
1209
1210	kasan_init();
1211
1212	/*
1213	 * Sync back kernel address range.
1214	 *
1215	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216	 * this call?
1217	 */
1218	sync_initial_page_table();
1219
1220	tboot_probe();
1221
1222	map_vsyscall();
1223
1224	generic_apic_probe();
1225
1226	early_quirks();
1227
1228	/*
1229	 * Read APIC and some other early information from ACPI tables.
1230	 */
1231	acpi_boot_init();
1232	sfi_init();
1233	x86_dtb_init();
1234
1235	/*
1236	 * get boot-time SMP configuration:
1237	 */
1238	get_smp_config();
1239
1240	/*
1241	 * Systems w/o ACPI and mptables might not have it mapped the local
1242	 * APIC yet, but prefill_possible_map() might need to access it.
1243	 */
1244	init_apic_mappings();
1245
1246	prefill_possible_map();
1247
1248	init_cpu_to_node();
1249
1250	io_apic_init_mappings();
1251
1252	x86_init.hyper.guest_late_init();
1253
1254	e820__reserve_resources();
1255	e820__register_nosave_regions(max_low_pfn);
1256
1257	x86_init.resources.reserve_resources();
1258
1259	e820__setup_pci_gap();
1260
1261#ifdef CONFIG_VT
1262#if defined(CONFIG_VGA_CONSOLE)
1263	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1264		conswitchp = &vga_con;
1265#elif defined(CONFIG_DUMMY_CONSOLE)
1266	conswitchp = &dummy_con;
1267#endif
1268#endif
1269	x86_init.oem.banner();
1270
1271	x86_init.timers.wallclock_init();
1272
1273	mcheck_init();
1274
1275	arch_init_ideal_nops();
1276
1277	register_refined_jiffies(CLOCK_TICK_RATE);
1278
1279#ifdef CONFIG_EFI
1280	if (efi_enabled(EFI_BOOT))
1281		efi_apply_memmap_quirks();
1282#endif
1283
1284	unwind_init();
1285}
1286
1287#ifdef CONFIG_X86_32
1288
1289static struct resource video_ram_resource = {
1290	.name	= "Video RAM area",
1291	.start	= 0xa0000,
1292	.end	= 0xbffff,
1293	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1294};
1295
1296void __init i386_reserve_resources(void)
1297{
1298	request_resource(&iomem_resource, &video_ram_resource);
1299	reserve_standard_io_resources();
1300}
1301
1302#endif /* CONFIG_X86_32 */
1303
1304static struct notifier_block kernel_offset_notifier = {
1305	.notifier_call = dump_kernel_offset
1306};
1307
1308static int __init register_kernel_offset_dumper(void)
1309{
1310	atomic_notifier_chain_register(&panic_notifier_list,
1311					&kernel_offset_notifier);
1312	return 0;
1313}
1314__initcall(register_kernel_offset_dumper);
1315
1316void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1317{
1318	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1319		return;
1320
1321	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1322}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
 
 
 
 
 
 
 
   8#include <linux/console.h>
   9#include <linux/crash_dump.h>
  10#include <linux/dmi.h>
 
  11#include <linux/efi.h>
  12#include <linux/init_ohci1394_dma.h>
  13#include <linux/initrd.h>
  14#include <linux/iscsi_ibft.h>
  15#include <linux/memblock.h>
 
 
 
  16#include <linux/pci.h>
  17#include <linux/root_dev.h>
  18#include <linux/sfi.h>
  19#include <linux/hugetlb.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20#include <linux/tboot.h>
 
 
 
  21#include <linux/usb/xhci-dbgp.h>
 
  22
  23#include <uapi/linux/mount.h>
  24
  25#include <xen/xen.h>
  26
  27#include <asm/apic.h>
  28#include <asm/numa.h>
 
 
 
 
 
 
 
 
 
 
  29#include <asm/bios_ebda.h>
 
 
  30#include <asm/bugs.h>
 
 
 
  31#include <asm/cpu.h>
  32#include <asm/efi.h>
 
 
  33#include <asm/gart.h>
 
 
 
 
  34#include <asm/hypervisor.h>
  35#include <asm/io_apic.h>
  36#include <asm/kasan.h>
  37#include <asm/kaslr.h>
 
 
 
  38#include <asm/mce.h>
  39#include <asm/mtrr.h>
  40#include <asm/realmode.h>
  41#include <asm/olpc_ofw.h>
  42#include <asm/pci-direct.h>
  43#include <asm/prom.h>
  44#include <asm/proto.h>
 
  45#include <asm/unwind.h>
  46#include <asm/vsyscall.h>
  47#include <linux/vmalloc.h>
  48
  49/*
  50 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  51 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  52 *
  53 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  54 * represented by pfn_mapped[].
  55 */
  56unsigned long max_low_pfn_mapped;
  57unsigned long max_pfn_mapped;
  58
  59#ifdef CONFIG_DMI
  60RESERVE_BRK(dmi_alloc, 65536);
  61#endif
  62
  63
  64/*
  65 * Range of the BSS area. The size of the BSS area is determined
  66 * at link time, with RESERVE_BRK*() facility reserving additional
  67 * chunks.
  68 */
  69unsigned long _brk_start = (unsigned long)__brk_base;
  70unsigned long _brk_end   = (unsigned long)__brk_base;
  71
  72struct boot_params boot_params;
  73
  74/*
  75 * These are the four main kernel memory regions, we put them into
  76 * the resource tree so that kdump tools and other debugging tools
  77 * recover it:
  78 */
  79
  80static struct resource rodata_resource = {
  81	.name	= "Kernel rodata",
  82	.start	= 0,
  83	.end	= 0,
  84	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  85};
  86
  87static struct resource data_resource = {
  88	.name	= "Kernel data",
  89	.start	= 0,
  90	.end	= 0,
  91	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  92};
  93
  94static struct resource code_resource = {
  95	.name	= "Kernel code",
  96	.start	= 0,
  97	.end	= 0,
  98	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  99};
 100
 101static struct resource bss_resource = {
 102	.name	= "Kernel bss",
 103	.start	= 0,
 104	.end	= 0,
 105	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 106};
 107
 108
 109#ifdef CONFIG_X86_32
 110/* CPU data as detected by the assembly code in head_32.S */
 111struct cpuinfo_x86 new_cpu_data;
 112
 113/* Common CPU data for all CPUs */
 114struct cpuinfo_x86 boot_cpu_data __read_mostly;
 115EXPORT_SYMBOL(boot_cpu_data);
 116
 117unsigned int def_to_bigsmp;
 118
 119/* For MCA, but anyone else can use it if they want */
 120unsigned int machine_id;
 121unsigned int machine_submodel_id;
 122unsigned int BIOS_revision;
 123
 124struct apm_info apm_info;
 125EXPORT_SYMBOL(apm_info);
 126
 127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 128	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 129struct ist_info ist_info;
 130EXPORT_SYMBOL(ist_info);
 131#else
 132struct ist_info ist_info;
 133#endif
 134
 135#else
 136struct cpuinfo_x86 boot_cpu_data __read_mostly;
 137EXPORT_SYMBOL(boot_cpu_data);
 138#endif
 139
 140
 141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 142__visible unsigned long mmu_cr4_features __ro_after_init;
 143#else
 144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 145#endif
 146
 147/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 148int bootloader_type, bootloader_version;
 149
 150/*
 151 * Setup options
 152 */
 153struct screen_info screen_info;
 154EXPORT_SYMBOL(screen_info);
 155struct edid_info edid_info;
 156EXPORT_SYMBOL_GPL(edid_info);
 157
 158extern int root_mountflags;
 159
 160unsigned long saved_video_mode;
 161
 162#define RAMDISK_IMAGE_START_MASK	0x07FF
 163#define RAMDISK_PROMPT_FLAG		0x8000
 164#define RAMDISK_LOAD_FLAG		0x4000
 165
 166static char __initdata command_line[COMMAND_LINE_SIZE];
 167#ifdef CONFIG_CMDLINE_BOOL
 168static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 169#endif
 170
 171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 172struct edd edd;
 173#ifdef CONFIG_EDD_MODULE
 174EXPORT_SYMBOL(edd);
 175#endif
 176/**
 177 * copy_edd() - Copy the BIOS EDD information
 178 *              from boot_params into a safe place.
 179 *
 180 */
 181static inline void __init copy_edd(void)
 182{
 183     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 184	    sizeof(edd.mbr_signature));
 185     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 186     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 187     edd.edd_info_nr = boot_params.eddbuf_entries;
 188}
 189#else
 190static inline void __init copy_edd(void)
 191{
 192}
 193#endif
 194
 195void * __init extend_brk(size_t size, size_t align)
 196{
 197	size_t mask = align - 1;
 198	void *ret;
 199
 200	BUG_ON(_brk_start == 0);
 201	BUG_ON(align & mask);
 202
 203	_brk_end = (_brk_end + mask) & ~mask;
 204	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 205
 206	ret = (void *)_brk_end;
 207	_brk_end += size;
 208
 209	memset(ret, 0, size);
 210
 211	return ret;
 212}
 213
 214#ifdef CONFIG_X86_32
 215static void __init cleanup_highmap(void)
 216{
 217}
 218#endif
 219
 220static void __init reserve_brk(void)
 221{
 222	if (_brk_end > _brk_start)
 223		memblock_reserve(__pa_symbol(_brk_start),
 224				 _brk_end - _brk_start);
 225
 226	/* Mark brk area as locked down and no longer taking any
 227	   new allocations */
 228	_brk_start = 0;
 229}
 230
 231u64 relocated_ramdisk;
 232
 233#ifdef CONFIG_BLK_DEV_INITRD
 234
 235static u64 __init get_ramdisk_image(void)
 236{
 237	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 238
 239	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 240
 241	if (ramdisk_image == 0)
 242		ramdisk_image = phys_initrd_start;
 243
 244	return ramdisk_image;
 245}
 246static u64 __init get_ramdisk_size(void)
 247{
 248	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 249
 250	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 251
 252	if (ramdisk_size == 0)
 253		ramdisk_size = phys_initrd_size;
 254
 255	return ramdisk_size;
 256}
 257
 258static void __init relocate_initrd(void)
 259{
 260	/* Assume only end is not page aligned */
 261	u64 ramdisk_image = get_ramdisk_image();
 262	u64 ramdisk_size  = get_ramdisk_size();
 263	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 264
 265	/* We need to move the initrd down into directly mapped mem */
 266	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 267						   area_size, PAGE_SIZE);
 268
 269	if (!relocated_ramdisk)
 270		panic("Cannot find place for new RAMDISK of size %lld\n",
 271		      ramdisk_size);
 272
 273	/* Note: this includes all the mem currently occupied by
 274	   the initrd, we rely on that fact to keep the data intact. */
 275	memblock_reserve(relocated_ramdisk, area_size);
 276	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 277	initrd_end   = initrd_start + ramdisk_size;
 278	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 279	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 280
 281	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 282
 283	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 284		" [mem %#010llx-%#010llx]\n",
 285		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 286		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 287}
 288
 289static void __init early_reserve_initrd(void)
 290{
 291	/* Assume only end is not page aligned */
 292	u64 ramdisk_image = get_ramdisk_image();
 293	u64 ramdisk_size  = get_ramdisk_size();
 294	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 295
 296	if (!boot_params.hdr.type_of_loader ||
 297	    !ramdisk_image || !ramdisk_size)
 298		return;		/* No initrd provided by bootloader */
 299
 300	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 301}
 302static void __init reserve_initrd(void)
 303{
 304	/* Assume only end is not page aligned */
 305	u64 ramdisk_image = get_ramdisk_image();
 306	u64 ramdisk_size  = get_ramdisk_size();
 307	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 308	u64 mapped_size;
 309
 310	if (!boot_params.hdr.type_of_loader ||
 311	    !ramdisk_image || !ramdisk_size)
 312		return;		/* No initrd provided by bootloader */
 313
 314	initrd_start = 0;
 315
 316	mapped_size = memblock_mem_size(max_pfn_mapped);
 317	if (ramdisk_size >= (mapped_size>>1))
 318		panic("initrd too large to handle, "
 319		       "disabling initrd (%lld needed, %lld available)\n",
 320		       ramdisk_size, mapped_size>>1);
 321
 322	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 323			ramdisk_end - 1);
 324
 325	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 326				PFN_DOWN(ramdisk_end))) {
 327		/* All are mapped, easy case */
 328		initrd_start = ramdisk_image + PAGE_OFFSET;
 329		initrd_end = initrd_start + ramdisk_size;
 330		return;
 331	}
 332
 333	relocate_initrd();
 334
 335	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 336}
 337
 338#else
 339static void __init early_reserve_initrd(void)
 340{
 341}
 342static void __init reserve_initrd(void)
 343{
 344}
 345#endif /* CONFIG_BLK_DEV_INITRD */
 346
 347static void __init parse_setup_data(void)
 348{
 349	struct setup_data *data;
 350	u64 pa_data, pa_next;
 351
 352	pa_data = boot_params.hdr.setup_data;
 353	while (pa_data) {
 354		u32 data_len, data_type;
 355
 356		data = early_memremap(pa_data, sizeof(*data));
 357		data_len = data->len + sizeof(struct setup_data);
 358		data_type = data->type;
 359		pa_next = data->next;
 360		early_memunmap(data, sizeof(*data));
 361
 362		switch (data_type) {
 363		case SETUP_E820_EXT:
 364			e820__memory_setup_extended(pa_data, data_len);
 365			break;
 366		case SETUP_DTB:
 367			add_dtb(pa_data);
 368			break;
 369		case SETUP_EFI:
 370			parse_efi_setup(pa_data, data_len);
 371			break;
 372		default:
 373			break;
 374		}
 375		pa_data = pa_next;
 376	}
 377}
 378
 379static void __init memblock_x86_reserve_range_setup_data(void)
 380{
 381	struct setup_data *data;
 382	u64 pa_data;
 383
 384	pa_data = boot_params.hdr.setup_data;
 385	while (pa_data) {
 386		data = early_memremap(pa_data, sizeof(*data));
 387		memblock_reserve(pa_data, sizeof(*data) + data->len);
 388
 389		if (data->type == SETUP_INDIRECT &&
 390		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 391			memblock_reserve(((struct setup_indirect *)data->data)->addr,
 392					 ((struct setup_indirect *)data->data)->len);
 393
 394		pa_data = data->next;
 395		early_memunmap(data, sizeof(*data));
 396	}
 397}
 398
 399/*
 400 * --------- Crashkernel reservation ------------------------------
 401 */
 402
 403#ifdef CONFIG_KEXEC_CORE
 404
 405/* 16M alignment for crash kernel regions */
 406#define CRASH_ALIGN		SZ_16M
 407
 408/*
 409 * Keep the crash kernel below this limit.
 410 *
 411 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 412 * due to mapping restrictions.
 413 *
 414 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 415 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 416 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 417 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 418 * no good way to detect the paging mode of the target kernel which will be
 419 * loaded for dumping.
 420 */
 421#ifdef CONFIG_X86_32
 422# define CRASH_ADDR_LOW_MAX	SZ_512M
 423# define CRASH_ADDR_HIGH_MAX	SZ_512M
 424#else
 425# define CRASH_ADDR_LOW_MAX	SZ_4G
 426# define CRASH_ADDR_HIGH_MAX	SZ_64T
 427#endif
 428
 429static int __init reserve_crashkernel_low(void)
 430{
 431#ifdef CONFIG_X86_64
 432	unsigned long long base, low_base = 0, low_size = 0;
 433	unsigned long total_low_mem;
 434	int ret;
 435
 436	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 437
 438	/* crashkernel=Y,low */
 439	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 440	if (ret) {
 441		/*
 442		 * two parts from kernel/dma/swiotlb.c:
 443		 * -swiotlb size: user-specified with swiotlb= or default.
 444		 *
 445		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 446		 * to 8M for other buffers that may need to stay low too. Also
 447		 * make sure we allocate enough extra low memory so that we
 448		 * don't run out of DMA buffers for 32-bit devices.
 449		 */
 450		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 451	} else {
 452		/* passed with crashkernel=0,low ? */
 453		if (!low_size)
 454			return 0;
 455	}
 456
 457	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 458	if (!low_base) {
 459		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 460		       (unsigned long)(low_size >> 20));
 461		return -ENOMEM;
 462	}
 463
 464	ret = memblock_reserve(low_base, low_size);
 465	if (ret) {
 466		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 467		return ret;
 468	}
 469
 470	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 471		(unsigned long)(low_size >> 20),
 472		(unsigned long)(low_base >> 20),
 473		(unsigned long)(total_low_mem >> 20));
 474
 475	crashk_low_res.start = low_base;
 476	crashk_low_res.end   = low_base + low_size - 1;
 477	insert_resource(&iomem_resource, &crashk_low_res);
 478#endif
 479	return 0;
 480}
 481
 482static void __init reserve_crashkernel(void)
 483{
 484	unsigned long long crash_size, crash_base, total_mem;
 485	bool high = false;
 486	int ret;
 487
 488	total_mem = memblock_phys_mem_size();
 489
 490	/* crashkernel=XM */
 491	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 492	if (ret != 0 || crash_size <= 0) {
 493		/* crashkernel=X,high */
 494		ret = parse_crashkernel_high(boot_command_line, total_mem,
 495					     &crash_size, &crash_base);
 496		if (ret != 0 || crash_size <= 0)
 497			return;
 498		high = true;
 499	}
 500
 501	if (xen_pv_domain()) {
 502		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 503		return;
 504	}
 505
 506	/* 0 means: find the address automatically */
 507	if (!crash_base) {
 508		/*
 509		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 510		 * crashkernel=x,high reserves memory over 4G, also allocates
 511		 * 256M extra low memory for DMA buffers and swiotlb.
 512		 * But the extra memory is not required for all machines.
 513		 * So try low memory first and fall back to high memory
 514		 * unless "crashkernel=size[KMG],high" is specified.
 515		 */
 516		if (!high)
 517			crash_base = memblock_find_in_range(CRASH_ALIGN,
 518						CRASH_ADDR_LOW_MAX,
 519						crash_size, CRASH_ALIGN);
 520		if (!crash_base)
 521			crash_base = memblock_find_in_range(CRASH_ALIGN,
 522						CRASH_ADDR_HIGH_MAX,
 523						crash_size, CRASH_ALIGN);
 524		if (!crash_base) {
 525			pr_info("crashkernel reservation failed - No suitable area found.\n");
 526			return;
 527		}
 
 528	} else {
 529		unsigned long long start;
 530
 531		start = memblock_find_in_range(crash_base,
 532					       crash_base + crash_size,
 533					       crash_size, 1 << 20);
 534		if (start != crash_base) {
 535			pr_info("crashkernel reservation failed - memory is in use.\n");
 536			return;
 537		}
 538	}
 539	ret = memblock_reserve(crash_base, crash_size);
 540	if (ret) {
 541		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 542		return;
 543	}
 544
 545	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 546		memblock_free(crash_base, crash_size);
 547		return;
 548	}
 549
 550	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 551		(unsigned long)(crash_size >> 20),
 552		(unsigned long)(crash_base >> 20),
 553		(unsigned long)(total_mem >> 20));
 554
 555	crashk_res.start = crash_base;
 556	crashk_res.end   = crash_base + crash_size - 1;
 557	insert_resource(&iomem_resource, &crashk_res);
 558}
 559#else
 560static void __init reserve_crashkernel(void)
 561{
 562}
 563#endif
 564
 565static struct resource standard_io_resources[] = {
 566	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 567		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 568	{ .name = "pic1", .start = 0x20, .end = 0x21,
 569		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 570	{ .name = "timer0", .start = 0x40, .end = 0x43,
 571		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 572	{ .name = "timer1", .start = 0x50, .end = 0x53,
 573		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 574	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 575		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 576	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 577		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 578	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 579		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 580	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 581		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 582	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 583		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 584	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 585		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 586};
 587
 588void __init reserve_standard_io_resources(void)
 589{
 590	int i;
 591
 592	/* request I/O space for devices used on all i[345]86 PCs */
 593	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 594		request_resource(&ioport_resource, &standard_io_resources[i]);
 595
 596}
 597
 598static __init void reserve_ibft_region(void)
 599{
 600	unsigned long addr, size = 0;
 601
 602	addr = find_ibft_region(&size);
 603
 604	if (size)
 605		memblock_reserve(addr, size);
 606}
 607
 608static bool __init snb_gfx_workaround_needed(void)
 609{
 610#ifdef CONFIG_PCI
 611	int i;
 612	u16 vendor, devid;
 613	static const __initconst u16 snb_ids[] = {
 614		0x0102,
 615		0x0112,
 616		0x0122,
 617		0x0106,
 618		0x0116,
 619		0x0126,
 620		0x010a,
 621	};
 622
 623	/* Assume no if something weird is going on with PCI */
 624	if (!early_pci_allowed())
 625		return false;
 626
 627	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 628	if (vendor != 0x8086)
 629		return false;
 630
 631	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 632	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 633		if (devid == snb_ids[i])
 634			return true;
 635#endif
 636
 637	return false;
 638}
 639
 640/*
 641 * Sandy Bridge graphics has trouble with certain ranges, exclude
 642 * them from allocation.
 643 */
 644static void __init trim_snb_memory(void)
 645{
 646	static const __initconst unsigned long bad_pages[] = {
 647		0x20050000,
 648		0x20110000,
 649		0x20130000,
 650		0x20138000,
 651		0x40004000,
 652	};
 653	int i;
 654
 655	if (!snb_gfx_workaround_needed())
 656		return;
 657
 658	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 659
 660	/*
 661	 * Reserve all memory below the 1 MB mark that has not
 662	 * already been reserved.
 663	 */
 664	memblock_reserve(0, 1<<20);
 665	
 666	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 667		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 668			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 669			       bad_pages[i]);
 670	}
 671}
 672
 673/*
 674 * Here we put platform-specific memory range workarounds, i.e.
 675 * memory known to be corrupt or otherwise in need to be reserved on
 676 * specific platforms.
 677 *
 678 * If this gets used more widely it could use a real dispatch mechanism.
 679 */
 680static void __init trim_platform_memory_ranges(void)
 681{
 682	trim_snb_memory();
 683}
 684
 685static void __init trim_bios_range(void)
 686{
 687	/*
 688	 * A special case is the first 4Kb of memory;
 689	 * This is a BIOS owned area, not kernel ram, but generally
 690	 * not listed as such in the E820 table.
 691	 *
 692	 * This typically reserves additional memory (64KiB by default)
 693	 * since some BIOSes are known to corrupt low memory.  See the
 694	 * Kconfig help text for X86_RESERVE_LOW.
 695	 */
 696	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 697
 698	/*
 699	 * special case: Some BIOSes report the PC BIOS
 700	 * area (640Kb -> 1Mb) as RAM even though it is not.
 701	 * take them out.
 702	 */
 703	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 704
 705	e820__update_table(e820_table);
 706}
 707
 708/* called before trim_bios_range() to spare extra sanitize */
 709static void __init e820_add_kernel_range(void)
 710{
 711	u64 start = __pa_symbol(_text);
 712	u64 size = __pa_symbol(_end) - start;
 713
 714	/*
 715	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 716	 * attempt to fix it by adding the range. We may have a confused BIOS,
 717	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 718	 * exclude kernel range. If we really are running on top non-RAM,
 719	 * we will crash later anyways.
 720	 */
 721	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 722		return;
 723
 724	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 725	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 726	e820__range_add(start, size, E820_TYPE_RAM);
 727}
 728
 729static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 730
 731static int __init parse_reservelow(char *p)
 732{
 733	unsigned long long size;
 734
 735	if (!p)
 736		return -EINVAL;
 737
 738	size = memparse(p, &p);
 739
 740	if (size < 4096)
 741		size = 4096;
 742
 743	if (size > 640*1024)
 744		size = 640*1024;
 745
 746	reserve_low = size;
 747
 748	return 0;
 749}
 750
 751early_param("reservelow", parse_reservelow);
 752
 753static void __init trim_low_memory_range(void)
 754{
 755	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 756}
 757	
 758/*
 759 * Dump out kernel offset information on panic.
 760 */
 761static int
 762dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 763{
 764	if (kaslr_enabled()) {
 765		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 766			 kaslr_offset(),
 767			 __START_KERNEL,
 768			 __START_KERNEL_map,
 769			 MODULES_VADDR-1);
 770	} else {
 771		pr_emerg("Kernel Offset: disabled\n");
 772	}
 773
 774	return 0;
 775}
 776
 777/*
 778 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 779 * passed the efi memmap, systab, etc., so we should use these data structures
 780 * for initialization.  Note, the efi init code path is determined by the
 781 * global efi_enabled. This allows the same kernel image to be used on existing
 782 * systems (with a traditional BIOS) as well as on EFI systems.
 783 */
 784/*
 785 * setup_arch - architecture-specific boot-time initializations
 786 *
 787 * Note: On x86_64, fixmaps are ready for use even before this is called.
 788 */
 789
 790void __init setup_arch(char **cmdline_p)
 791{
 792	/*
 793	 * Reserve the memory occupied by the kernel between _text and
 794	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 795	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 796	 * separate memblock_reserve() or they will be discarded.
 797	 */
 798	memblock_reserve(__pa_symbol(_text),
 799			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 800
 801	/*
 802	 * Make sure page 0 is always reserved because on systems with
 803	 * L1TF its contents can be leaked to user processes.
 804	 */
 805	memblock_reserve(0, PAGE_SIZE);
 806
 807	early_reserve_initrd();
 808
 809	/*
 810	 * At this point everything still needed from the boot loader
 811	 * or BIOS or kernel text should be early reserved or marked not
 812	 * RAM in e820. All other memory is free game.
 813	 */
 814
 815#ifdef CONFIG_X86_32
 816	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 817
 818	/*
 819	 * copy kernel address range established so far and switch
 820	 * to the proper swapper page table
 821	 */
 822	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 823			initial_page_table + KERNEL_PGD_BOUNDARY,
 824			KERNEL_PGD_PTRS);
 825
 826	load_cr3(swapper_pg_dir);
 827	/*
 828	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 829	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 830	 * will not flush anything because the CPU quirk which clears
 831	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 832	 * load_cr3() above the TLB has been flushed already. The
 833	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 834	 * so proper operation is guaranteed.
 835	 */
 836	__flush_tlb_all();
 837#else
 838	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 839	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 840#endif
 841
 842	/*
 843	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 844	 * reserve_top(), so do this before touching the ioremap area.
 845	 */
 846	olpc_ofw_detect();
 847
 848	idt_setup_early_traps();
 849	early_cpu_init();
 850	arch_init_ideal_nops();
 851	jump_label_init();
 852	early_ioremap_init();
 853
 854	setup_olpc_ofw_pgd();
 855
 856	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 857	screen_info = boot_params.screen_info;
 858	edid_info = boot_params.edid_info;
 859#ifdef CONFIG_X86_32
 860	apm_info.bios = boot_params.apm_bios_info;
 861	ist_info = boot_params.ist_info;
 862#endif
 863	saved_video_mode = boot_params.hdr.vid_mode;
 864	bootloader_type = boot_params.hdr.type_of_loader;
 865	if ((bootloader_type >> 4) == 0xe) {
 866		bootloader_type &= 0xf;
 867		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 868	}
 869	bootloader_version  = bootloader_type & 0xf;
 870	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 871
 872#ifdef CONFIG_BLK_DEV_RAM
 873	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 874#endif
 875#ifdef CONFIG_EFI
 876	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 877		     EFI32_LOADER_SIGNATURE, 4)) {
 878		set_bit(EFI_BOOT, &efi.flags);
 879	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 880		     EFI64_LOADER_SIGNATURE, 4)) {
 881		set_bit(EFI_BOOT, &efi.flags);
 882		set_bit(EFI_64BIT, &efi.flags);
 883	}
 884#endif
 885
 886	x86_init.oem.arch_setup();
 887
 888	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 889	e820__memory_setup();
 890	parse_setup_data();
 891
 892	copy_edd();
 893
 894	if (!boot_params.hdr.root_flags)
 895		root_mountflags &= ~MS_RDONLY;
 896	init_mm.start_code = (unsigned long) _text;
 897	init_mm.end_code = (unsigned long) _etext;
 898	init_mm.end_data = (unsigned long) _edata;
 899	init_mm.brk = _brk_end;
 900
 
 
 901	code_resource.start = __pa_symbol(_text);
 902	code_resource.end = __pa_symbol(_etext)-1;
 903	rodata_resource.start = __pa_symbol(__start_rodata);
 904	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 905	data_resource.start = __pa_symbol(_sdata);
 906	data_resource.end = __pa_symbol(_edata)-1;
 907	bss_resource.start = __pa_symbol(__bss_start);
 908	bss_resource.end = __pa_symbol(__bss_stop)-1;
 909
 910#ifdef CONFIG_CMDLINE_BOOL
 911#ifdef CONFIG_CMDLINE_OVERRIDE
 912	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 913#else
 914	if (builtin_cmdline[0]) {
 915		/* append boot loader cmdline to builtin */
 916		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 917		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 918		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 919	}
 920#endif
 921#endif
 922
 923	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 924	*cmdline_p = command_line;
 925
 926	/*
 927	 * x86_configure_nx() is called before parse_early_param() to detect
 928	 * whether hardware doesn't support NX (so that the early EHCI debug
 929	 * console setup can safely call set_fixmap()). It may then be called
 930	 * again from within noexec_setup() during parsing early parameters
 931	 * to honor the respective command line option.
 932	 */
 933	x86_configure_nx();
 934
 935	parse_early_param();
 936
 937	if (efi_enabled(EFI_BOOT))
 938		efi_memblock_x86_reserve_range();
 939#ifdef CONFIG_MEMORY_HOTPLUG
 940	/*
 941	 * Memory used by the kernel cannot be hot-removed because Linux
 942	 * cannot migrate the kernel pages. When memory hotplug is
 943	 * enabled, we should prevent memblock from allocating memory
 944	 * for the kernel.
 945	 *
 946	 * ACPI SRAT records all hotpluggable memory ranges. But before
 947	 * SRAT is parsed, we don't know about it.
 948	 *
 949	 * The kernel image is loaded into memory at very early time. We
 950	 * cannot prevent this anyway. So on NUMA system, we set any
 951	 * node the kernel resides in as un-hotpluggable.
 952	 *
 953	 * Since on modern servers, one node could have double-digit
 954	 * gigabytes memory, we can assume the memory around the kernel
 955	 * image is also un-hotpluggable. So before SRAT is parsed, just
 956	 * allocate memory near the kernel image to try the best to keep
 957	 * the kernel away from hotpluggable memory.
 958	 */
 959	if (movable_node_is_enabled())
 960		memblock_set_bottom_up(true);
 961#endif
 962
 963	x86_report_nx();
 964
 965	/* after early param, so could get panic from serial */
 966	memblock_x86_reserve_range_setup_data();
 967
 968	if (acpi_mps_check()) {
 969#ifdef CONFIG_X86_LOCAL_APIC
 970		disable_apic = 1;
 971#endif
 972		setup_clear_cpu_cap(X86_FEATURE_APIC);
 973	}
 974
 
 
 
 
 
 975	e820__reserve_setup_data();
 976	e820__finish_early_params();
 977
 978	if (efi_enabled(EFI_BOOT))
 979		efi_init();
 980
 981	dmi_setup();
 
 
 982
 983	/*
 984	 * VMware detection requires dmi to be available, so this
 985	 * needs to be done after dmi_setup(), for the boot CPU.
 986	 */
 987	init_hypervisor_platform();
 988
 989	tsc_early_init();
 990	x86_init.resources.probe_roms();
 991
 992	/* after parse_early_param, so could debug it */
 993	insert_resource(&iomem_resource, &code_resource);
 994	insert_resource(&iomem_resource, &rodata_resource);
 995	insert_resource(&iomem_resource, &data_resource);
 996	insert_resource(&iomem_resource, &bss_resource);
 997
 998	e820_add_kernel_range();
 999	trim_bios_range();
1000#ifdef CONFIG_X86_32
1001	if (ppro_with_ram_bug()) {
1002		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1003				  E820_TYPE_RESERVED);
1004		e820__update_table(e820_table);
1005		printk(KERN_INFO "fixed physical RAM map:\n");
1006		e820__print_table("bad_ppro");
1007	}
1008#else
1009	early_gart_iommu_check();
1010#endif
1011
1012	/*
1013	 * partially used pages are not usable - thus
1014	 * we are rounding upwards:
1015	 */
1016	max_pfn = e820__end_of_ram_pfn();
1017
1018	/* update e820 for memory not covered by WB MTRRs */
1019	mtrr_bp_init();
1020	if (mtrr_trim_uncached_memory(max_pfn))
1021		max_pfn = e820__end_of_ram_pfn();
1022
1023	max_possible_pfn = max_pfn;
1024
1025	/*
1026	 * This call is required when the CPU does not support PAT. If
1027	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1028	 * effect.
1029	 */
1030	init_cache_modes();
1031
1032	/*
1033	 * Define random base addresses for memory sections after max_pfn is
1034	 * defined and before each memory section base is used.
1035	 */
1036	kernel_randomize_memory();
1037
1038#ifdef CONFIG_X86_32
1039	/* max_low_pfn get updated here */
1040	find_low_pfn_range();
1041#else
1042	check_x2apic();
1043
1044	/* How many end-of-memory variables you have, grandma! */
1045	/* need this before calling reserve_initrd */
1046	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1047		max_low_pfn = e820__end_of_low_ram_pfn();
1048	else
1049		max_low_pfn = max_pfn;
1050
1051	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1052#endif
1053
1054	/*
1055	 * Find and reserve possible boot-time SMP configuration:
1056	 */
1057	find_smp_config();
1058
1059	reserve_ibft_region();
1060
1061	early_alloc_pgt_buf();
1062
1063	/*
1064	 * Need to conclude brk, before e820__memblock_setup()
1065	 *  it could use memblock_find_in_range, could overlap with
1066	 *  brk area.
1067	 */
1068	reserve_brk();
1069
1070	cleanup_highmap();
1071
1072	memblock_set_current_limit(ISA_END_ADDRESS);
1073	e820__memblock_setup();
1074
1075	reserve_bios_regions();
1076
1077	efi_fake_memmap();
1078	efi_find_mirror();
1079	efi_esrt_init();
 
1080
1081	/*
1082	 * The EFI specification says that boot service code won't be
1083	 * called after ExitBootServices(). This is, in fact, a lie.
1084	 */
1085	efi_reserve_boot_services();
 
1086
1087	/* preallocate 4k for mptable mpc */
1088	e820__memblock_alloc_reserved_mpc_new();
1089
1090#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1091	setup_bios_corruption_check();
1092#endif
1093
1094#ifdef CONFIG_X86_32
1095	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1096			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1097#endif
1098
1099	reserve_real_mode();
1100
1101	trim_platform_memory_ranges();
1102	trim_low_memory_range();
1103
1104	init_mem_mapping();
1105
1106	idt_setup_early_pf();
1107
1108	/*
1109	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1110	 * with the current CR4 value.  This may not be necessary, but
1111	 * auditing all the early-boot CR4 manipulation would be needed to
1112	 * rule it out.
1113	 *
1114	 * Mask off features that don't work outside long mode (just
1115	 * PCIDE for now).
1116	 */
1117	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1118
1119	memblock_set_current_limit(get_max_mapped());
1120
1121	/*
1122	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1123	 */
1124
1125#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1126	if (init_ohci1394_dma_early)
1127		init_ohci1394_dma_on_all_controllers();
1128#endif
1129	/* Allocate bigger log buffer */
1130	setup_log_buf(1);
1131
1132	if (efi_enabled(EFI_BOOT)) {
1133		switch (boot_params.secure_boot) {
1134		case efi_secureboot_mode_disabled:
1135			pr_info("Secure boot disabled\n");
1136			break;
1137		case efi_secureboot_mode_enabled:
1138			pr_info("Secure boot enabled\n");
1139			break;
1140		default:
1141			pr_info("Secure boot could not be determined\n");
1142			break;
1143		}
1144	}
1145
1146	reserve_initrd();
1147
1148	acpi_table_upgrade();
1149
1150	vsmp_init();
1151
1152	io_delay_init();
1153
1154	early_platform_quirks();
1155
1156	/*
1157	 * Parse the ACPI tables for possible boot-time SMP configuration.
1158	 */
1159	acpi_boot_table_init();
1160
1161	early_acpi_boot_init();
1162
1163	initmem_init();
1164	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1165
1166	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1167		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1168
1169	/*
1170	 * Reserve memory for crash kernel after SRAT is parsed so that it
1171	 * won't consume hotpluggable memory.
1172	 */
1173	reserve_crashkernel();
1174
1175	memblock_find_dma_reserve();
1176
 
 
 
 
 
1177	if (!early_xdbc_setup_hardware())
1178		early_xdbc_register_console();
1179
1180	x86_init.paging.pagetable_init();
1181
1182	kasan_init();
1183
1184	/*
1185	 * Sync back kernel address range.
1186	 *
1187	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1188	 * this call?
1189	 */
1190	sync_initial_page_table();
1191
1192	tboot_probe();
1193
1194	map_vsyscall();
1195
1196	generic_apic_probe();
1197
1198	early_quirks();
1199
1200	/*
1201	 * Read APIC and some other early information from ACPI tables.
1202	 */
1203	acpi_boot_init();
1204	sfi_init();
1205	x86_dtb_init();
1206
1207	/*
1208	 * get boot-time SMP configuration:
1209	 */
1210	get_smp_config();
1211
1212	/*
1213	 * Systems w/o ACPI and mptables might not have it mapped the local
1214	 * APIC yet, but prefill_possible_map() might need to access it.
1215	 */
1216	init_apic_mappings();
1217
1218	prefill_possible_map();
1219
1220	init_cpu_to_node();
1221
1222	io_apic_init_mappings();
1223
1224	x86_init.hyper.guest_late_init();
1225
1226	e820__reserve_resources();
1227	e820__register_nosave_regions(max_pfn);
1228
1229	x86_init.resources.reserve_resources();
1230
1231	e820__setup_pci_gap();
1232
1233#ifdef CONFIG_VT
1234#if defined(CONFIG_VGA_CONSOLE)
1235	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1236		conswitchp = &vga_con;
 
 
1237#endif
1238#endif
1239	x86_init.oem.banner();
1240
1241	x86_init.timers.wallclock_init();
1242
1243	mcheck_init();
1244
 
 
1245	register_refined_jiffies(CLOCK_TICK_RATE);
1246
1247#ifdef CONFIG_EFI
1248	if (efi_enabled(EFI_BOOT))
1249		efi_apply_memmap_quirks();
1250#endif
1251
1252	unwind_init();
1253}
1254
1255#ifdef CONFIG_X86_32
1256
1257static struct resource video_ram_resource = {
1258	.name	= "Video RAM area",
1259	.start	= 0xa0000,
1260	.end	= 0xbffff,
1261	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1262};
1263
1264void __init i386_reserve_resources(void)
1265{
1266	request_resource(&iomem_resource, &video_ram_resource);
1267	reserve_standard_io_resources();
1268}
1269
1270#endif /* CONFIG_X86_32 */
1271
1272static struct notifier_block kernel_offset_notifier = {
1273	.notifier_call = dump_kernel_offset
1274};
1275
1276static int __init register_kernel_offset_dumper(void)
1277{
1278	atomic_notifier_chain_register(&panic_notifier_list,
1279					&kernel_offset_notifier);
1280	return 0;
1281}
1282__initcall(register_kernel_offset_dumper);