Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/export.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53#include <xen/xen.h>
54
55#include <linux/errno.h>
56#include <linux/kernel.h>
57#include <linux/stddef.h>
58#include <linux/unistd.h>
59#include <linux/ptrace.h>
60#include <linux/user.h>
61#include <linux/delay.h>
62
63#include <linux/kallsyms.h>
64#include <linux/cpufreq.h>
65#include <linux/dma-mapping.h>
66#include <linux/ctype.h>
67#include <linux/uaccess.h>
68
69#include <linux/percpu.h>
70#include <linux/crash_dump.h>
71#include <linux/tboot.h>
72#include <linux/jiffies.h>
73#include <linux/mem_encrypt.h>
74
75#include <linux/usb/xhci-dbgp.h>
76#include <video/edid.h>
77
78#include <asm/mtrr.h>
79#include <asm/apic.h>
80#include <asm/realmode.h>
81#include <asm/e820/api.h>
82#include <asm/mpspec.h>
83#include <asm/setup.h>
84#include <asm/efi.h>
85#include <asm/timer.h>
86#include <asm/i8259.h>
87#include <asm/sections.h>
88#include <asm/io_apic.h>
89#include <asm/ist.h>
90#include <asm/setup_arch.h>
91#include <asm/bios_ebda.h>
92#include <asm/cacheflush.h>
93#include <asm/processor.h>
94#include <asm/bugs.h>
95#include <asm/kasan.h>
96
97#include <asm/vsyscall.h>
98#include <asm/cpu.h>
99#include <asm/desc.h>
100#include <asm/dma.h>
101#include <asm/iommu.h>
102#include <asm/gart.h>
103#include <asm/mmu_context.h>
104#include <asm/proto.h>
105
106#include <asm/paravirt.h>
107#include <asm/hypervisor.h>
108#include <asm/olpc_ofw.h>
109
110#include <asm/percpu.h>
111#include <asm/topology.h>
112#include <asm/apicdef.h>
113#include <asm/amd_nb.h>
114#include <asm/mce.h>
115#include <asm/alternative.h>
116#include <asm/prom.h>
117#include <asm/microcode.h>
118#include <asm/kaslr.h>
119#include <asm/unwind.h>
120
121/*
122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
123 * max_pfn_mapped: highest direct mapped pfn over 4GB
124 *
125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
126 * represented by pfn_mapped
127 */
128unsigned long max_low_pfn_mapped;
129unsigned long max_pfn_mapped;
130
131#ifdef CONFIG_DMI
132RESERVE_BRK(dmi_alloc, 65536);
133#endif
134
135
136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
137unsigned long _brk_end = (unsigned long)__brk_base;
138
139struct boot_params boot_params;
140
141/*
142 * Machine setup..
143 */
144static struct resource data_resource = {
145 .name = "Kernel data",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
149};
150
151static struct resource code_resource = {
152 .name = "Kernel code",
153 .start = 0,
154 .end = 0,
155 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
156};
157
158static struct resource bss_resource = {
159 .name = "Kernel bss",
160 .start = 0,
161 .end = 0,
162 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
163};
164
165
166#ifdef CONFIG_X86_32
167/* cpu data as detected by the assembly code in head_32.S */
168struct cpuinfo_x86 new_cpu_data;
169
170/* common cpu data for all cpus */
171struct cpuinfo_x86 boot_cpu_data __read_mostly;
172EXPORT_SYMBOL(boot_cpu_data);
173
174unsigned int def_to_bigsmp;
175
176/* for MCA, but anyone else can use it if they want */
177unsigned int machine_id;
178unsigned int machine_submodel_id;
179unsigned int BIOS_revision;
180
181struct apm_info apm_info;
182EXPORT_SYMBOL(apm_info);
183
184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
185 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
186struct ist_info ist_info;
187EXPORT_SYMBOL(ist_info);
188#else
189struct ist_info ist_info;
190#endif
191
192#else
193struct cpuinfo_x86 boot_cpu_data __read_mostly;
194EXPORT_SYMBOL(boot_cpu_data);
195#endif
196
197
198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
199__visible unsigned long mmu_cr4_features __ro_after_init;
200#else
201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
202#endif
203
204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
205int bootloader_type, bootloader_version;
206
207/*
208 * Setup options
209 */
210struct screen_info screen_info;
211EXPORT_SYMBOL(screen_info);
212struct edid_info edid_info;
213EXPORT_SYMBOL_GPL(edid_info);
214
215extern int root_mountflags;
216
217unsigned long saved_video_mode;
218
219#define RAMDISK_IMAGE_START_MASK 0x07FF
220#define RAMDISK_PROMPT_FLAG 0x8000
221#define RAMDISK_LOAD_FLAG 0x4000
222
223static char __initdata command_line[COMMAND_LINE_SIZE];
224#ifdef CONFIG_CMDLINE_BOOL
225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
226#endif
227
228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
229struct edd edd;
230#ifdef CONFIG_EDD_MODULE
231EXPORT_SYMBOL(edd);
232#endif
233/**
234 * copy_edd() - Copy the BIOS EDD information
235 * from boot_params into a safe place.
236 *
237 */
238static inline void __init copy_edd(void)
239{
240 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
241 sizeof(edd.mbr_signature));
242 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
243 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
244 edd.edd_info_nr = boot_params.eddbuf_entries;
245}
246#else
247static inline void __init copy_edd(void)
248{
249}
250#endif
251
252void * __init extend_brk(size_t size, size_t align)
253{
254 size_t mask = align - 1;
255 void *ret;
256
257 BUG_ON(_brk_start == 0);
258 BUG_ON(align & mask);
259
260 _brk_end = (_brk_end + mask) & ~mask;
261 BUG_ON((char *)(_brk_end + size) > __brk_limit);
262
263 ret = (void *)_brk_end;
264 _brk_end += size;
265
266 memset(ret, 0, size);
267
268 return ret;
269}
270
271#ifdef CONFIG_X86_32
272static void __init cleanup_highmap(void)
273{
274}
275#endif
276
277static void __init reserve_brk(void)
278{
279 if (_brk_end > _brk_start)
280 memblock_reserve(__pa_symbol(_brk_start),
281 _brk_end - _brk_start);
282
283 /* Mark brk area as locked down and no longer taking any
284 new allocations */
285 _brk_start = 0;
286}
287
288u64 relocated_ramdisk;
289
290#ifdef CONFIG_BLK_DEV_INITRD
291
292static u64 __init get_ramdisk_image(void)
293{
294 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
295
296 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
297
298 return ramdisk_image;
299}
300static u64 __init get_ramdisk_size(void)
301{
302 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
303
304 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
305
306 return ramdisk_size;
307}
308
309static void __init relocate_initrd(void)
310{
311 /* Assume only end is not page aligned */
312 u64 ramdisk_image = get_ramdisk_image();
313 u64 ramdisk_size = get_ramdisk_size();
314 u64 area_size = PAGE_ALIGN(ramdisk_size);
315
316 /* We need to move the initrd down into directly mapped mem */
317 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
318 area_size, PAGE_SIZE);
319
320 if (!relocated_ramdisk)
321 panic("Cannot find place for new RAMDISK of size %lld\n",
322 ramdisk_size);
323
324 /* Note: this includes all the mem currently occupied by
325 the initrd, we rely on that fact to keep the data intact. */
326 memblock_reserve(relocated_ramdisk, area_size);
327 initrd_start = relocated_ramdisk + PAGE_OFFSET;
328 initrd_end = initrd_start + ramdisk_size;
329 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
330 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
331
332 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
333
334 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
335 " [mem %#010llx-%#010llx]\n",
336 ramdisk_image, ramdisk_image + ramdisk_size - 1,
337 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
338}
339
340static void __init early_reserve_initrd(void)
341{
342 /* Assume only end is not page aligned */
343 u64 ramdisk_image = get_ramdisk_image();
344 u64 ramdisk_size = get_ramdisk_size();
345 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
346
347 if (!boot_params.hdr.type_of_loader ||
348 !ramdisk_image || !ramdisk_size)
349 return; /* No initrd provided by bootloader */
350
351 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
352}
353static void __init reserve_initrd(void)
354{
355 /* Assume only end is not page aligned */
356 u64 ramdisk_image = get_ramdisk_image();
357 u64 ramdisk_size = get_ramdisk_size();
358 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
359 u64 mapped_size;
360
361 if (!boot_params.hdr.type_of_loader ||
362 !ramdisk_image || !ramdisk_size)
363 return; /* No initrd provided by bootloader */
364
365 initrd_start = 0;
366
367 mapped_size = memblock_mem_size(max_pfn_mapped);
368 if (ramdisk_size >= (mapped_size>>1))
369 panic("initrd too large to handle, "
370 "disabling initrd (%lld needed, %lld available)\n",
371 ramdisk_size, mapped_size>>1);
372
373 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
374 ramdisk_end - 1);
375
376 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
377 PFN_DOWN(ramdisk_end))) {
378 /* All are mapped, easy case */
379 initrd_start = ramdisk_image + PAGE_OFFSET;
380 initrd_end = initrd_start + ramdisk_size;
381 return;
382 }
383
384 relocate_initrd();
385
386 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
387}
388
389#else
390static void __init early_reserve_initrd(void)
391{
392}
393static void __init reserve_initrd(void)
394{
395}
396#endif /* CONFIG_BLK_DEV_INITRD */
397
398static void __init parse_setup_data(void)
399{
400 struct setup_data *data;
401 u64 pa_data, pa_next;
402
403 pa_data = boot_params.hdr.setup_data;
404 while (pa_data) {
405 u32 data_len, data_type;
406
407 data = early_memremap(pa_data, sizeof(*data));
408 data_len = data->len + sizeof(struct setup_data);
409 data_type = data->type;
410 pa_next = data->next;
411 early_memunmap(data, sizeof(*data));
412
413 switch (data_type) {
414 case SETUP_E820_EXT:
415 e820__memory_setup_extended(pa_data, data_len);
416 break;
417 case SETUP_DTB:
418 add_dtb(pa_data);
419 break;
420 case SETUP_EFI:
421 parse_efi_setup(pa_data, data_len);
422 break;
423 default:
424 break;
425 }
426 pa_data = pa_next;
427 }
428}
429
430static void __init memblock_x86_reserve_range_setup_data(void)
431{
432 struct setup_data *data;
433 u64 pa_data;
434
435 pa_data = boot_params.hdr.setup_data;
436 while (pa_data) {
437 data = early_memremap(pa_data, sizeof(*data));
438 memblock_reserve(pa_data, sizeof(*data) + data->len);
439 pa_data = data->next;
440 early_memunmap(data, sizeof(*data));
441 }
442}
443
444/*
445 * --------- Crashkernel reservation ------------------------------
446 */
447
448#ifdef CONFIG_KEXEC_CORE
449
450/* 16M alignment for crash kernel regions */
451#define CRASH_ALIGN (16 << 20)
452
453/*
454 * Keep the crash kernel below this limit. On 32 bits earlier kernels
455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
456 * On 64bit, old kexec-tools need to under 896MiB.
457 */
458#ifdef CONFIG_X86_32
459# define CRASH_ADDR_LOW_MAX (512 << 20)
460# define CRASH_ADDR_HIGH_MAX (512 << 20)
461#else
462# define CRASH_ADDR_LOW_MAX (896UL << 20)
463# define CRASH_ADDR_HIGH_MAX MAXMEM
464#endif
465
466static int __init reserve_crashkernel_low(void)
467{
468#ifdef CONFIG_X86_64
469 unsigned long long base, low_base = 0, low_size = 0;
470 unsigned long total_low_mem;
471 int ret;
472
473 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
474
475 /* crashkernel=Y,low */
476 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
477 if (ret) {
478 /*
479 * two parts from lib/swiotlb.c:
480 * -swiotlb size: user-specified with swiotlb= or default.
481 *
482 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
483 * to 8M for other buffers that may need to stay low too. Also
484 * make sure we allocate enough extra low memory so that we
485 * don't run out of DMA buffers for 32-bit devices.
486 */
487 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
488 } else {
489 /* passed with crashkernel=0,low ? */
490 if (!low_size)
491 return 0;
492 }
493
494 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
495 if (!low_base) {
496 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
497 (unsigned long)(low_size >> 20));
498 return -ENOMEM;
499 }
500
501 ret = memblock_reserve(low_base, low_size);
502 if (ret) {
503 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
504 return ret;
505 }
506
507 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
508 (unsigned long)(low_size >> 20),
509 (unsigned long)(low_base >> 20),
510 (unsigned long)(total_low_mem >> 20));
511
512 crashk_low_res.start = low_base;
513 crashk_low_res.end = low_base + low_size - 1;
514 insert_resource(&iomem_resource, &crashk_low_res);
515#endif
516 return 0;
517}
518
519static void __init reserve_crashkernel(void)
520{
521 unsigned long long crash_size, crash_base, total_mem;
522 bool high = false;
523 int ret;
524
525 total_mem = memblock_phys_mem_size();
526
527 /* crashkernel=XM */
528 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
529 if (ret != 0 || crash_size <= 0) {
530 /* crashkernel=X,high */
531 ret = parse_crashkernel_high(boot_command_line, total_mem,
532 &crash_size, &crash_base);
533 if (ret != 0 || crash_size <= 0)
534 return;
535 high = true;
536 }
537
538 if (xen_pv_domain()) {
539 pr_info("Ignoring crashkernel for a Xen PV domain\n");
540 return;
541 }
542
543 /* 0 means: find the address automatically */
544 if (crash_base <= 0) {
545 /*
546 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
547 * as old kexec-tools loads bzImage below that, unless
548 * "crashkernel=size[KMG],high" is specified.
549 */
550 crash_base = memblock_find_in_range(CRASH_ALIGN,
551 high ? CRASH_ADDR_HIGH_MAX
552 : CRASH_ADDR_LOW_MAX,
553 crash_size, CRASH_ALIGN);
554 if (!crash_base) {
555 pr_info("crashkernel reservation failed - No suitable area found.\n");
556 return;
557 }
558
559 } else {
560 unsigned long long start;
561
562 start = memblock_find_in_range(crash_base,
563 crash_base + crash_size,
564 crash_size, 1 << 20);
565 if (start != crash_base) {
566 pr_info("crashkernel reservation failed - memory is in use.\n");
567 return;
568 }
569 }
570 ret = memblock_reserve(crash_base, crash_size);
571 if (ret) {
572 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
573 return;
574 }
575
576 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
577 memblock_free(crash_base, crash_size);
578 return;
579 }
580
581 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
582 (unsigned long)(crash_size >> 20),
583 (unsigned long)(crash_base >> 20),
584 (unsigned long)(total_mem >> 20));
585
586 crashk_res.start = crash_base;
587 crashk_res.end = crash_base + crash_size - 1;
588 insert_resource(&iomem_resource, &crashk_res);
589}
590#else
591static void __init reserve_crashkernel(void)
592{
593}
594#endif
595
596static struct resource standard_io_resources[] = {
597 { .name = "dma1", .start = 0x00, .end = 0x1f,
598 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
599 { .name = "pic1", .start = 0x20, .end = 0x21,
600 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
601 { .name = "timer0", .start = 0x40, .end = 0x43,
602 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
603 { .name = "timer1", .start = 0x50, .end = 0x53,
604 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
605 { .name = "keyboard", .start = 0x60, .end = 0x60,
606 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
607 { .name = "keyboard", .start = 0x64, .end = 0x64,
608 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
609 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
610 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
611 { .name = "pic2", .start = 0xa0, .end = 0xa1,
612 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
613 { .name = "dma2", .start = 0xc0, .end = 0xdf,
614 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
615 { .name = "fpu", .start = 0xf0, .end = 0xff,
616 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
617};
618
619void __init reserve_standard_io_resources(void)
620{
621 int i;
622
623 /* request I/O space for devices used on all i[345]86 PCs */
624 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
625 request_resource(&ioport_resource, &standard_io_resources[i]);
626
627}
628
629static __init void reserve_ibft_region(void)
630{
631 unsigned long addr, size = 0;
632
633 addr = find_ibft_region(&size);
634
635 if (size)
636 memblock_reserve(addr, size);
637}
638
639static bool __init snb_gfx_workaround_needed(void)
640{
641#ifdef CONFIG_PCI
642 int i;
643 u16 vendor, devid;
644 static const __initconst u16 snb_ids[] = {
645 0x0102,
646 0x0112,
647 0x0122,
648 0x0106,
649 0x0116,
650 0x0126,
651 0x010a,
652 };
653
654 /* Assume no if something weird is going on with PCI */
655 if (!early_pci_allowed())
656 return false;
657
658 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
659 if (vendor != 0x8086)
660 return false;
661
662 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
663 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
664 if (devid == snb_ids[i])
665 return true;
666#endif
667
668 return false;
669}
670
671/*
672 * Sandy Bridge graphics has trouble with certain ranges, exclude
673 * them from allocation.
674 */
675static void __init trim_snb_memory(void)
676{
677 static const __initconst unsigned long bad_pages[] = {
678 0x20050000,
679 0x20110000,
680 0x20130000,
681 0x20138000,
682 0x40004000,
683 };
684 int i;
685
686 if (!snb_gfx_workaround_needed())
687 return;
688
689 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
690
691 /*
692 * Reserve all memory below the 1 MB mark that has not
693 * already been reserved.
694 */
695 memblock_reserve(0, 1<<20);
696
697 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
698 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
699 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
700 bad_pages[i]);
701 }
702}
703
704/*
705 * Here we put platform-specific memory range workarounds, i.e.
706 * memory known to be corrupt or otherwise in need to be reserved on
707 * specific platforms.
708 *
709 * If this gets used more widely it could use a real dispatch mechanism.
710 */
711static void __init trim_platform_memory_ranges(void)
712{
713 trim_snb_memory();
714}
715
716static void __init trim_bios_range(void)
717{
718 /*
719 * A special case is the first 4Kb of memory;
720 * This is a BIOS owned area, not kernel ram, but generally
721 * not listed as such in the E820 table.
722 *
723 * This typically reserves additional memory (64KiB by default)
724 * since some BIOSes are known to corrupt low memory. See the
725 * Kconfig help text for X86_RESERVE_LOW.
726 */
727 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
728
729 /*
730 * special case: Some BIOSen report the PC BIOS
731 * area (640->1Mb) as ram even though it is not.
732 * take them out.
733 */
734 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
735
736 e820__update_table(e820_table);
737}
738
739/* called before trim_bios_range() to spare extra sanitize */
740static void __init e820_add_kernel_range(void)
741{
742 u64 start = __pa_symbol(_text);
743 u64 size = __pa_symbol(_end) - start;
744
745 /*
746 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
747 * attempt to fix it by adding the range. We may have a confused BIOS,
748 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
749 * exclude kernel range. If we really are running on top non-RAM,
750 * we will crash later anyways.
751 */
752 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
753 return;
754
755 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
756 e820__range_remove(start, size, E820_TYPE_RAM, 0);
757 e820__range_add(start, size, E820_TYPE_RAM);
758}
759
760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
761
762static int __init parse_reservelow(char *p)
763{
764 unsigned long long size;
765
766 if (!p)
767 return -EINVAL;
768
769 size = memparse(p, &p);
770
771 if (size < 4096)
772 size = 4096;
773
774 if (size > 640*1024)
775 size = 640*1024;
776
777 reserve_low = size;
778
779 return 0;
780}
781
782early_param("reservelow", parse_reservelow);
783
784static void __init trim_low_memory_range(void)
785{
786 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
787}
788
789/*
790 * Dump out kernel offset information on panic.
791 */
792static int
793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
794{
795 if (kaslr_enabled()) {
796 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
797 kaslr_offset(),
798 __START_KERNEL,
799 __START_KERNEL_map,
800 MODULES_VADDR-1);
801 } else {
802 pr_emerg("Kernel Offset: disabled\n");
803 }
804
805 return 0;
806}
807
808/*
809 * Determine if we were loaded by an EFI loader. If so, then we have also been
810 * passed the efi memmap, systab, etc., so we should use these data structures
811 * for initialization. Note, the efi init code path is determined by the
812 * global efi_enabled. This allows the same kernel image to be used on existing
813 * systems (with a traditional BIOS) as well as on EFI systems.
814 */
815/*
816 * setup_arch - architecture-specific boot-time initializations
817 *
818 * Note: On x86_64, fixmaps are ready for use even before this is called.
819 */
820
821void __init setup_arch(char **cmdline_p)
822{
823 memblock_reserve(__pa_symbol(_text),
824 (unsigned long)__bss_stop - (unsigned long)_text);
825
826 early_reserve_initrd();
827
828 /*
829 * At this point everything still needed from the boot loader
830 * or BIOS or kernel text should be early reserved or marked not
831 * RAM in e820. All other memory is free game.
832 */
833
834#ifdef CONFIG_X86_32
835 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
836
837 /*
838 * copy kernel address range established so far and switch
839 * to the proper swapper page table
840 */
841 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
842 initial_page_table + KERNEL_PGD_BOUNDARY,
843 KERNEL_PGD_PTRS);
844
845 load_cr3(swapper_pg_dir);
846 /*
847 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
848 * a cr3 based tlb flush, so the following __flush_tlb_all()
849 * will not flush anything because the cpu quirk which clears
850 * X86_FEATURE_PGE has not been invoked yet. Though due to the
851 * load_cr3() above the TLB has been flushed already. The
852 * quirk is invoked before subsequent calls to __flush_tlb_all()
853 * so proper operation is guaranteed.
854 */
855 __flush_tlb_all();
856#else
857 printk(KERN_INFO "Command line: %s\n", boot_command_line);
858 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
859#endif
860
861 /*
862 * If we have OLPC OFW, we might end up relocating the fixmap due to
863 * reserve_top(), so do this before touching the ioremap area.
864 */
865 olpc_ofw_detect();
866
867 idt_setup_early_traps();
868 early_cpu_init();
869 early_ioremap_init();
870
871 setup_olpc_ofw_pgd();
872
873 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
874 screen_info = boot_params.screen_info;
875 edid_info = boot_params.edid_info;
876#ifdef CONFIG_X86_32
877 apm_info.bios = boot_params.apm_bios_info;
878 ist_info = boot_params.ist_info;
879#endif
880 saved_video_mode = boot_params.hdr.vid_mode;
881 bootloader_type = boot_params.hdr.type_of_loader;
882 if ((bootloader_type >> 4) == 0xe) {
883 bootloader_type &= 0xf;
884 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
885 }
886 bootloader_version = bootloader_type & 0xf;
887 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
888
889#ifdef CONFIG_BLK_DEV_RAM
890 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
891 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
892 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
893#endif
894#ifdef CONFIG_EFI
895 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
896 EFI32_LOADER_SIGNATURE, 4)) {
897 set_bit(EFI_BOOT, &efi.flags);
898 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
899 EFI64_LOADER_SIGNATURE, 4)) {
900 set_bit(EFI_BOOT, &efi.flags);
901 set_bit(EFI_64BIT, &efi.flags);
902 }
903#endif
904
905 x86_init.oem.arch_setup();
906
907 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
908 e820__memory_setup();
909 parse_setup_data();
910
911 copy_edd();
912
913 if (!boot_params.hdr.root_flags)
914 root_mountflags &= ~MS_RDONLY;
915 init_mm.start_code = (unsigned long) _text;
916 init_mm.end_code = (unsigned long) _etext;
917 init_mm.end_data = (unsigned long) _edata;
918 init_mm.brk = _brk_end;
919
920 mpx_mm_init(&init_mm);
921
922 code_resource.start = __pa_symbol(_text);
923 code_resource.end = __pa_symbol(_etext)-1;
924 data_resource.start = __pa_symbol(_etext);
925 data_resource.end = __pa_symbol(_edata)-1;
926 bss_resource.start = __pa_symbol(__bss_start);
927 bss_resource.end = __pa_symbol(__bss_stop)-1;
928
929#ifdef CONFIG_CMDLINE_BOOL
930#ifdef CONFIG_CMDLINE_OVERRIDE
931 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
932#else
933 if (builtin_cmdline[0]) {
934 /* append boot loader cmdline to builtin */
935 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
936 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
937 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
938 }
939#endif
940#endif
941
942 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
943 *cmdline_p = command_line;
944
945 /*
946 * x86_configure_nx() is called before parse_early_param() to detect
947 * whether hardware doesn't support NX (so that the early EHCI debug
948 * console setup can safely call set_fixmap()). It may then be called
949 * again from within noexec_setup() during parsing early parameters
950 * to honor the respective command line option.
951 */
952 x86_configure_nx();
953
954 parse_early_param();
955
956 if (efi_enabled(EFI_BOOT))
957 efi_memblock_x86_reserve_range();
958#ifdef CONFIG_MEMORY_HOTPLUG
959 /*
960 * Memory used by the kernel cannot be hot-removed because Linux
961 * cannot migrate the kernel pages. When memory hotplug is
962 * enabled, we should prevent memblock from allocating memory
963 * for the kernel.
964 *
965 * ACPI SRAT records all hotpluggable memory ranges. But before
966 * SRAT is parsed, we don't know about it.
967 *
968 * The kernel image is loaded into memory at very early time. We
969 * cannot prevent this anyway. So on NUMA system, we set any
970 * node the kernel resides in as un-hotpluggable.
971 *
972 * Since on modern servers, one node could have double-digit
973 * gigabytes memory, we can assume the memory around the kernel
974 * image is also un-hotpluggable. So before SRAT is parsed, just
975 * allocate memory near the kernel image to try the best to keep
976 * the kernel away from hotpluggable memory.
977 */
978 if (movable_node_is_enabled())
979 memblock_set_bottom_up(true);
980#endif
981
982 x86_report_nx();
983
984 /* after early param, so could get panic from serial */
985 memblock_x86_reserve_range_setup_data();
986
987 if (acpi_mps_check()) {
988#ifdef CONFIG_X86_LOCAL_APIC
989 disable_apic = 1;
990#endif
991 setup_clear_cpu_cap(X86_FEATURE_APIC);
992 }
993
994#ifdef CONFIG_PCI
995 if (pci_early_dump_regs)
996 early_dump_pci_devices();
997#endif
998
999 e820__reserve_setup_data();
1000 e820__finish_early_params();
1001
1002 if (efi_enabled(EFI_BOOT))
1003 efi_init();
1004
1005 dmi_scan_machine();
1006 dmi_memdev_walk();
1007 dmi_set_dump_stack_arch_desc();
1008
1009 /*
1010 * VMware detection requires dmi to be available, so this
1011 * needs to be done after dmi_scan_machine(), for the boot CPU.
1012 */
1013 init_hypervisor_platform();
1014
1015 x86_init.resources.probe_roms();
1016
1017 /* after parse_early_param, so could debug it */
1018 insert_resource(&iomem_resource, &code_resource);
1019 insert_resource(&iomem_resource, &data_resource);
1020 insert_resource(&iomem_resource, &bss_resource);
1021
1022 e820_add_kernel_range();
1023 trim_bios_range();
1024#ifdef CONFIG_X86_32
1025 if (ppro_with_ram_bug()) {
1026 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027 E820_TYPE_RESERVED);
1028 e820__update_table(e820_table);
1029 printk(KERN_INFO "fixed physical RAM map:\n");
1030 e820__print_table("bad_ppro");
1031 }
1032#else
1033 early_gart_iommu_check();
1034#endif
1035
1036 /*
1037 * partially used pages are not usable - thus
1038 * we are rounding upwards:
1039 */
1040 max_pfn = e820__end_of_ram_pfn();
1041
1042 /* update e820 for memory not covered by WB MTRRs */
1043 mtrr_bp_init();
1044 if (mtrr_trim_uncached_memory(max_pfn))
1045 max_pfn = e820__end_of_ram_pfn();
1046
1047 max_possible_pfn = max_pfn;
1048
1049 /*
1050 * This call is required when the CPU does not support PAT. If
1051 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052 * effect.
1053 */
1054 init_cache_modes();
1055
1056 /*
1057 * Define random base addresses for memory sections after max_pfn is
1058 * defined and before each memory section base is used.
1059 */
1060 kernel_randomize_memory();
1061
1062#ifdef CONFIG_X86_32
1063 /* max_low_pfn get updated here */
1064 find_low_pfn_range();
1065#else
1066 check_x2apic();
1067
1068 /* How many end-of-memory variables you have, grandma! */
1069 /* need this before calling reserve_initrd */
1070 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071 max_low_pfn = e820__end_of_low_ram_pfn();
1072 else
1073 max_low_pfn = max_pfn;
1074
1075 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076#endif
1077
1078 /*
1079 * Find and reserve possible boot-time SMP configuration:
1080 */
1081 find_smp_config();
1082
1083 reserve_ibft_region();
1084
1085 early_alloc_pgt_buf();
1086
1087 /*
1088 * Need to conclude brk, before e820__memblock_setup()
1089 * it could use memblock_find_in_range, could overlap with
1090 * brk area.
1091 */
1092 reserve_brk();
1093
1094 cleanup_highmap();
1095
1096 memblock_set_current_limit(ISA_END_ADDRESS);
1097 e820__memblock_setup();
1098
1099 reserve_bios_regions();
1100
1101 if (efi_enabled(EFI_MEMMAP)) {
1102 efi_fake_memmap();
1103 efi_find_mirror();
1104 efi_esrt_init();
1105
1106 /*
1107 * The EFI specification says that boot service code won't be
1108 * called after ExitBootServices(). This is, in fact, a lie.
1109 */
1110 efi_reserve_boot_services();
1111 }
1112
1113 /* preallocate 4k for mptable mpc */
1114 e820__memblock_alloc_reserved_mpc_new();
1115
1116#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117 setup_bios_corruption_check();
1118#endif
1119
1120#ifdef CONFIG_X86_32
1121 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1123#endif
1124
1125 reserve_real_mode();
1126
1127 trim_platform_memory_ranges();
1128 trim_low_memory_range();
1129
1130 init_mem_mapping();
1131
1132 idt_setup_early_pf();
1133
1134 /*
1135 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136 * with the current CR4 value. This may not be necessary, but
1137 * auditing all the early-boot CR4 manipulation would be needed to
1138 * rule it out.
1139 *
1140 * Mask off features that don't work outside long mode (just
1141 * PCIDE for now).
1142 */
1143 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145 memblock_set_current_limit(get_max_mapped());
1146
1147 /*
1148 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149 */
1150
1151#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152 if (init_ohci1394_dma_early)
1153 init_ohci1394_dma_on_all_controllers();
1154#endif
1155 /* Allocate bigger log buffer */
1156 setup_log_buf(1);
1157
1158 if (efi_enabled(EFI_BOOT)) {
1159 switch (boot_params.secure_boot) {
1160 case efi_secureboot_mode_disabled:
1161 pr_info("Secure boot disabled\n");
1162 break;
1163 case efi_secureboot_mode_enabled:
1164 pr_info("Secure boot enabled\n");
1165 break;
1166 default:
1167 pr_info("Secure boot could not be determined\n");
1168 break;
1169 }
1170 }
1171
1172 reserve_initrd();
1173
1174 acpi_table_upgrade();
1175
1176 vsmp_init();
1177
1178 io_delay_init();
1179
1180 early_platform_quirks();
1181
1182 /*
1183 * Parse the ACPI tables for possible boot-time SMP configuration.
1184 */
1185 acpi_boot_table_init();
1186
1187 early_acpi_boot_init();
1188
1189 initmem_init();
1190 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1191
1192 /*
1193 * Reserve memory for crash kernel after SRAT is parsed so that it
1194 * won't consume hotpluggable memory.
1195 */
1196 reserve_crashkernel();
1197
1198 memblock_find_dma_reserve();
1199
1200#ifdef CONFIG_KVM_GUEST
1201 kvmclock_init();
1202#endif
1203
1204 tsc_early_delay_calibrate();
1205 if (!early_xdbc_setup_hardware())
1206 early_xdbc_register_console();
1207
1208 x86_init.paging.pagetable_init();
1209
1210 kasan_init();
1211
1212 /*
1213 * Sync back kernel address range.
1214 *
1215 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216 * this call?
1217 */
1218 sync_initial_page_table();
1219
1220 tboot_probe();
1221
1222 map_vsyscall();
1223
1224 generic_apic_probe();
1225
1226 early_quirks();
1227
1228 /*
1229 * Read APIC and some other early information from ACPI tables.
1230 */
1231 acpi_boot_init();
1232 sfi_init();
1233 x86_dtb_init();
1234
1235 /*
1236 * get boot-time SMP configuration:
1237 */
1238 get_smp_config();
1239
1240 /*
1241 * Systems w/o ACPI and mptables might not have it mapped the local
1242 * APIC yet, but prefill_possible_map() might need to access it.
1243 */
1244 init_apic_mappings();
1245
1246 prefill_possible_map();
1247
1248 init_cpu_to_node();
1249
1250 io_apic_init_mappings();
1251
1252 x86_init.hyper.guest_late_init();
1253
1254 e820__reserve_resources();
1255 e820__register_nosave_regions(max_low_pfn);
1256
1257 x86_init.resources.reserve_resources();
1258
1259 e820__setup_pci_gap();
1260
1261#ifdef CONFIG_VT
1262#if defined(CONFIG_VGA_CONSOLE)
1263 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1264 conswitchp = &vga_con;
1265#elif defined(CONFIG_DUMMY_CONSOLE)
1266 conswitchp = &dummy_con;
1267#endif
1268#endif
1269 x86_init.oem.banner();
1270
1271 x86_init.timers.wallclock_init();
1272
1273 mcheck_init();
1274
1275 arch_init_ideal_nops();
1276
1277 register_refined_jiffies(CLOCK_TICK_RATE);
1278
1279#ifdef CONFIG_EFI
1280 if (efi_enabled(EFI_BOOT))
1281 efi_apply_memmap_quirks();
1282#endif
1283
1284 unwind_init();
1285}
1286
1287#ifdef CONFIG_X86_32
1288
1289static struct resource video_ram_resource = {
1290 .name = "Video RAM area",
1291 .start = 0xa0000,
1292 .end = 0xbffff,
1293 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1294};
1295
1296void __init i386_reserve_resources(void)
1297{
1298 request_resource(&iomem_resource, &video_ram_resource);
1299 reserve_standard_io_resources();
1300}
1301
1302#endif /* CONFIG_X86_32 */
1303
1304static struct notifier_block kernel_offset_notifier = {
1305 .notifier_call = dump_kernel_offset
1306};
1307
1308static int __init register_kernel_offset_dumper(void)
1309{
1310 atomic_notifier_chain_register(&panic_notifier_list,
1311 &kernel_offset_notifier);
1312 return 0;
1313}
1314__initcall(register_kernel_offset_dumper);
1315
1316void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1317{
1318 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1319 return;
1320
1321 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1322}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/console.h>
9#include <linux/crash_dump.h>
10#include <linux/dmi.h>
11#include <linux/efi.h>
12#include <linux/init_ohci1394_dma.h>
13#include <linux/initrd.h>
14#include <linux/iscsi_ibft.h>
15#include <linux/memblock.h>
16#include <linux/pci.h>
17#include <linux/root_dev.h>
18#include <linux/sfi.h>
19#include <linux/hugetlb.h>
20#include <linux/tboot.h>
21#include <linux/usb/xhci-dbgp.h>
22
23#include <uapi/linux/mount.h>
24
25#include <xen/xen.h>
26
27#include <asm/apic.h>
28#include <asm/numa.h>
29#include <asm/bios_ebda.h>
30#include <asm/bugs.h>
31#include <asm/cpu.h>
32#include <asm/efi.h>
33#include <asm/gart.h>
34#include <asm/hypervisor.h>
35#include <asm/io_apic.h>
36#include <asm/kasan.h>
37#include <asm/kaslr.h>
38#include <asm/mce.h>
39#include <asm/mtrr.h>
40#include <asm/realmode.h>
41#include <asm/olpc_ofw.h>
42#include <asm/pci-direct.h>
43#include <asm/prom.h>
44#include <asm/proto.h>
45#include <asm/unwind.h>
46#include <asm/vsyscall.h>
47#include <linux/vmalloc.h>
48
49/*
50 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
51 * max_pfn_mapped: highest directly mapped pfn > 4 GB
52 *
53 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
54 * represented by pfn_mapped[].
55 */
56unsigned long max_low_pfn_mapped;
57unsigned long max_pfn_mapped;
58
59#ifdef CONFIG_DMI
60RESERVE_BRK(dmi_alloc, 65536);
61#endif
62
63
64/*
65 * Range of the BSS area. The size of the BSS area is determined
66 * at link time, with RESERVE_BRK*() facility reserving additional
67 * chunks.
68 */
69unsigned long _brk_start = (unsigned long)__brk_base;
70unsigned long _brk_end = (unsigned long)__brk_base;
71
72struct boot_params boot_params;
73
74/*
75 * These are the four main kernel memory regions, we put them into
76 * the resource tree so that kdump tools and other debugging tools
77 * recover it:
78 */
79
80static struct resource rodata_resource = {
81 .name = "Kernel rodata",
82 .start = 0,
83 .end = 0,
84 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
85};
86
87static struct resource data_resource = {
88 .name = "Kernel data",
89 .start = 0,
90 .end = 0,
91 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
92};
93
94static struct resource code_resource = {
95 .name = "Kernel code",
96 .start = 0,
97 .end = 0,
98 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
99};
100
101static struct resource bss_resource = {
102 .name = "Kernel bss",
103 .start = 0,
104 .end = 0,
105 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
106};
107
108
109#ifdef CONFIG_X86_32
110/* CPU data as detected by the assembly code in head_32.S */
111struct cpuinfo_x86 new_cpu_data;
112
113/* Common CPU data for all CPUs */
114struct cpuinfo_x86 boot_cpu_data __read_mostly;
115EXPORT_SYMBOL(boot_cpu_data);
116
117unsigned int def_to_bigsmp;
118
119/* For MCA, but anyone else can use it if they want */
120unsigned int machine_id;
121unsigned int machine_submodel_id;
122unsigned int BIOS_revision;
123
124struct apm_info apm_info;
125EXPORT_SYMBOL(apm_info);
126
127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
128 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
129struct ist_info ist_info;
130EXPORT_SYMBOL(ist_info);
131#else
132struct ist_info ist_info;
133#endif
134
135#else
136struct cpuinfo_x86 boot_cpu_data __read_mostly;
137EXPORT_SYMBOL(boot_cpu_data);
138#endif
139
140
141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
142__visible unsigned long mmu_cr4_features __ro_after_init;
143#else
144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
145#endif
146
147/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
148int bootloader_type, bootloader_version;
149
150/*
151 * Setup options
152 */
153struct screen_info screen_info;
154EXPORT_SYMBOL(screen_info);
155struct edid_info edid_info;
156EXPORT_SYMBOL_GPL(edid_info);
157
158extern int root_mountflags;
159
160unsigned long saved_video_mode;
161
162#define RAMDISK_IMAGE_START_MASK 0x07FF
163#define RAMDISK_PROMPT_FLAG 0x8000
164#define RAMDISK_LOAD_FLAG 0x4000
165
166static char __initdata command_line[COMMAND_LINE_SIZE];
167#ifdef CONFIG_CMDLINE_BOOL
168static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
169#endif
170
171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172struct edd edd;
173#ifdef CONFIG_EDD_MODULE
174EXPORT_SYMBOL(edd);
175#endif
176/**
177 * copy_edd() - Copy the BIOS EDD information
178 * from boot_params into a safe place.
179 *
180 */
181static inline void __init copy_edd(void)
182{
183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
184 sizeof(edd.mbr_signature));
185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
187 edd.edd_info_nr = boot_params.eddbuf_entries;
188}
189#else
190static inline void __init copy_edd(void)
191{
192}
193#endif
194
195void * __init extend_brk(size_t size, size_t align)
196{
197 size_t mask = align - 1;
198 void *ret;
199
200 BUG_ON(_brk_start == 0);
201 BUG_ON(align & mask);
202
203 _brk_end = (_brk_end + mask) & ~mask;
204 BUG_ON((char *)(_brk_end + size) > __brk_limit);
205
206 ret = (void *)_brk_end;
207 _brk_end += size;
208
209 memset(ret, 0, size);
210
211 return ret;
212}
213
214#ifdef CONFIG_X86_32
215static void __init cleanup_highmap(void)
216{
217}
218#endif
219
220static void __init reserve_brk(void)
221{
222 if (_brk_end > _brk_start)
223 memblock_reserve(__pa_symbol(_brk_start),
224 _brk_end - _brk_start);
225
226 /* Mark brk area as locked down and no longer taking any
227 new allocations */
228 _brk_start = 0;
229}
230
231u64 relocated_ramdisk;
232
233#ifdef CONFIG_BLK_DEV_INITRD
234
235static u64 __init get_ramdisk_image(void)
236{
237 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
238
239 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
240
241 if (ramdisk_image == 0)
242 ramdisk_image = phys_initrd_start;
243
244 return ramdisk_image;
245}
246static u64 __init get_ramdisk_size(void)
247{
248 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
249
250 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
251
252 if (ramdisk_size == 0)
253 ramdisk_size = phys_initrd_size;
254
255 return ramdisk_size;
256}
257
258static void __init relocate_initrd(void)
259{
260 /* Assume only end is not page aligned */
261 u64 ramdisk_image = get_ramdisk_image();
262 u64 ramdisk_size = get_ramdisk_size();
263 u64 area_size = PAGE_ALIGN(ramdisk_size);
264
265 /* We need to move the initrd down into directly mapped mem */
266 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
267 area_size, PAGE_SIZE);
268
269 if (!relocated_ramdisk)
270 panic("Cannot find place for new RAMDISK of size %lld\n",
271 ramdisk_size);
272
273 /* Note: this includes all the mem currently occupied by
274 the initrd, we rely on that fact to keep the data intact. */
275 memblock_reserve(relocated_ramdisk, area_size);
276 initrd_start = relocated_ramdisk + PAGE_OFFSET;
277 initrd_end = initrd_start + ramdisk_size;
278 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
279 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
280
281 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
282
283 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
284 " [mem %#010llx-%#010llx]\n",
285 ramdisk_image, ramdisk_image + ramdisk_size - 1,
286 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
287}
288
289static void __init early_reserve_initrd(void)
290{
291 /* Assume only end is not page aligned */
292 u64 ramdisk_image = get_ramdisk_image();
293 u64 ramdisk_size = get_ramdisk_size();
294 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
295
296 if (!boot_params.hdr.type_of_loader ||
297 !ramdisk_image || !ramdisk_size)
298 return; /* No initrd provided by bootloader */
299
300 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
301}
302static void __init reserve_initrd(void)
303{
304 /* Assume only end is not page aligned */
305 u64 ramdisk_image = get_ramdisk_image();
306 u64 ramdisk_size = get_ramdisk_size();
307 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
308 u64 mapped_size;
309
310 if (!boot_params.hdr.type_of_loader ||
311 !ramdisk_image || !ramdisk_size)
312 return; /* No initrd provided by bootloader */
313
314 initrd_start = 0;
315
316 mapped_size = memblock_mem_size(max_pfn_mapped);
317 if (ramdisk_size >= (mapped_size>>1))
318 panic("initrd too large to handle, "
319 "disabling initrd (%lld needed, %lld available)\n",
320 ramdisk_size, mapped_size>>1);
321
322 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
323 ramdisk_end - 1);
324
325 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
326 PFN_DOWN(ramdisk_end))) {
327 /* All are mapped, easy case */
328 initrd_start = ramdisk_image + PAGE_OFFSET;
329 initrd_end = initrd_start + ramdisk_size;
330 return;
331 }
332
333 relocate_initrd();
334
335 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
336}
337
338#else
339static void __init early_reserve_initrd(void)
340{
341}
342static void __init reserve_initrd(void)
343{
344}
345#endif /* CONFIG_BLK_DEV_INITRD */
346
347static void __init parse_setup_data(void)
348{
349 struct setup_data *data;
350 u64 pa_data, pa_next;
351
352 pa_data = boot_params.hdr.setup_data;
353 while (pa_data) {
354 u32 data_len, data_type;
355
356 data = early_memremap(pa_data, sizeof(*data));
357 data_len = data->len + sizeof(struct setup_data);
358 data_type = data->type;
359 pa_next = data->next;
360 early_memunmap(data, sizeof(*data));
361
362 switch (data_type) {
363 case SETUP_E820_EXT:
364 e820__memory_setup_extended(pa_data, data_len);
365 break;
366 case SETUP_DTB:
367 add_dtb(pa_data);
368 break;
369 case SETUP_EFI:
370 parse_efi_setup(pa_data, data_len);
371 break;
372 default:
373 break;
374 }
375 pa_data = pa_next;
376 }
377}
378
379static void __init memblock_x86_reserve_range_setup_data(void)
380{
381 struct setup_data *data;
382 u64 pa_data;
383
384 pa_data = boot_params.hdr.setup_data;
385 while (pa_data) {
386 data = early_memremap(pa_data, sizeof(*data));
387 memblock_reserve(pa_data, sizeof(*data) + data->len);
388
389 if (data->type == SETUP_INDIRECT &&
390 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
391 memblock_reserve(((struct setup_indirect *)data->data)->addr,
392 ((struct setup_indirect *)data->data)->len);
393
394 pa_data = data->next;
395 early_memunmap(data, sizeof(*data));
396 }
397}
398
399/*
400 * --------- Crashkernel reservation ------------------------------
401 */
402
403#ifdef CONFIG_KEXEC_CORE
404
405/* 16M alignment for crash kernel regions */
406#define CRASH_ALIGN SZ_16M
407
408/*
409 * Keep the crash kernel below this limit.
410 *
411 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
412 * due to mapping restrictions.
413 *
414 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
415 * the upper limit of system RAM in 4-level paging mode. Since the kdump
416 * jump could be from 5-level paging to 4-level paging, the jump will fail if
417 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
418 * no good way to detect the paging mode of the target kernel which will be
419 * loaded for dumping.
420 */
421#ifdef CONFIG_X86_32
422# define CRASH_ADDR_LOW_MAX SZ_512M
423# define CRASH_ADDR_HIGH_MAX SZ_512M
424#else
425# define CRASH_ADDR_LOW_MAX SZ_4G
426# define CRASH_ADDR_HIGH_MAX SZ_64T
427#endif
428
429static int __init reserve_crashkernel_low(void)
430{
431#ifdef CONFIG_X86_64
432 unsigned long long base, low_base = 0, low_size = 0;
433 unsigned long total_low_mem;
434 int ret;
435
436 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
437
438 /* crashkernel=Y,low */
439 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
440 if (ret) {
441 /*
442 * two parts from kernel/dma/swiotlb.c:
443 * -swiotlb size: user-specified with swiotlb= or default.
444 *
445 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
446 * to 8M for other buffers that may need to stay low too. Also
447 * make sure we allocate enough extra low memory so that we
448 * don't run out of DMA buffers for 32-bit devices.
449 */
450 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
451 } else {
452 /* passed with crashkernel=0,low ? */
453 if (!low_size)
454 return 0;
455 }
456
457 low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
458 if (!low_base) {
459 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
460 (unsigned long)(low_size >> 20));
461 return -ENOMEM;
462 }
463
464 ret = memblock_reserve(low_base, low_size);
465 if (ret) {
466 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
467 return ret;
468 }
469
470 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
471 (unsigned long)(low_size >> 20),
472 (unsigned long)(low_base >> 20),
473 (unsigned long)(total_low_mem >> 20));
474
475 crashk_low_res.start = low_base;
476 crashk_low_res.end = low_base + low_size - 1;
477 insert_resource(&iomem_resource, &crashk_low_res);
478#endif
479 return 0;
480}
481
482static void __init reserve_crashkernel(void)
483{
484 unsigned long long crash_size, crash_base, total_mem;
485 bool high = false;
486 int ret;
487
488 total_mem = memblock_phys_mem_size();
489
490 /* crashkernel=XM */
491 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
492 if (ret != 0 || crash_size <= 0) {
493 /* crashkernel=X,high */
494 ret = parse_crashkernel_high(boot_command_line, total_mem,
495 &crash_size, &crash_base);
496 if (ret != 0 || crash_size <= 0)
497 return;
498 high = true;
499 }
500
501 if (xen_pv_domain()) {
502 pr_info("Ignoring crashkernel for a Xen PV domain\n");
503 return;
504 }
505
506 /* 0 means: find the address automatically */
507 if (!crash_base) {
508 /*
509 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
510 * crashkernel=x,high reserves memory over 4G, also allocates
511 * 256M extra low memory for DMA buffers and swiotlb.
512 * But the extra memory is not required for all machines.
513 * So try low memory first and fall back to high memory
514 * unless "crashkernel=size[KMG],high" is specified.
515 */
516 if (!high)
517 crash_base = memblock_find_in_range(CRASH_ALIGN,
518 CRASH_ADDR_LOW_MAX,
519 crash_size, CRASH_ALIGN);
520 if (!crash_base)
521 crash_base = memblock_find_in_range(CRASH_ALIGN,
522 CRASH_ADDR_HIGH_MAX,
523 crash_size, CRASH_ALIGN);
524 if (!crash_base) {
525 pr_info("crashkernel reservation failed - No suitable area found.\n");
526 return;
527 }
528 } else {
529 unsigned long long start;
530
531 start = memblock_find_in_range(crash_base,
532 crash_base + crash_size,
533 crash_size, 1 << 20);
534 if (start != crash_base) {
535 pr_info("crashkernel reservation failed - memory is in use.\n");
536 return;
537 }
538 }
539 ret = memblock_reserve(crash_base, crash_size);
540 if (ret) {
541 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
542 return;
543 }
544
545 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
546 memblock_free(crash_base, crash_size);
547 return;
548 }
549
550 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
551 (unsigned long)(crash_size >> 20),
552 (unsigned long)(crash_base >> 20),
553 (unsigned long)(total_mem >> 20));
554
555 crashk_res.start = crash_base;
556 crashk_res.end = crash_base + crash_size - 1;
557 insert_resource(&iomem_resource, &crashk_res);
558}
559#else
560static void __init reserve_crashkernel(void)
561{
562}
563#endif
564
565static struct resource standard_io_resources[] = {
566 { .name = "dma1", .start = 0x00, .end = 0x1f,
567 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
568 { .name = "pic1", .start = 0x20, .end = 0x21,
569 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
570 { .name = "timer0", .start = 0x40, .end = 0x43,
571 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
572 { .name = "timer1", .start = 0x50, .end = 0x53,
573 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
574 { .name = "keyboard", .start = 0x60, .end = 0x60,
575 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
576 { .name = "keyboard", .start = 0x64, .end = 0x64,
577 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
578 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
579 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
580 { .name = "pic2", .start = 0xa0, .end = 0xa1,
581 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
582 { .name = "dma2", .start = 0xc0, .end = 0xdf,
583 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
584 { .name = "fpu", .start = 0xf0, .end = 0xff,
585 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
586};
587
588void __init reserve_standard_io_resources(void)
589{
590 int i;
591
592 /* request I/O space for devices used on all i[345]86 PCs */
593 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
594 request_resource(&ioport_resource, &standard_io_resources[i]);
595
596}
597
598static __init void reserve_ibft_region(void)
599{
600 unsigned long addr, size = 0;
601
602 addr = find_ibft_region(&size);
603
604 if (size)
605 memblock_reserve(addr, size);
606}
607
608static bool __init snb_gfx_workaround_needed(void)
609{
610#ifdef CONFIG_PCI
611 int i;
612 u16 vendor, devid;
613 static const __initconst u16 snb_ids[] = {
614 0x0102,
615 0x0112,
616 0x0122,
617 0x0106,
618 0x0116,
619 0x0126,
620 0x010a,
621 };
622
623 /* Assume no if something weird is going on with PCI */
624 if (!early_pci_allowed())
625 return false;
626
627 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
628 if (vendor != 0x8086)
629 return false;
630
631 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
632 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
633 if (devid == snb_ids[i])
634 return true;
635#endif
636
637 return false;
638}
639
640/*
641 * Sandy Bridge graphics has trouble with certain ranges, exclude
642 * them from allocation.
643 */
644static void __init trim_snb_memory(void)
645{
646 static const __initconst unsigned long bad_pages[] = {
647 0x20050000,
648 0x20110000,
649 0x20130000,
650 0x20138000,
651 0x40004000,
652 };
653 int i;
654
655 if (!snb_gfx_workaround_needed())
656 return;
657
658 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
659
660 /*
661 * Reserve all memory below the 1 MB mark that has not
662 * already been reserved.
663 */
664 memblock_reserve(0, 1<<20);
665
666 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
667 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
668 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
669 bad_pages[i]);
670 }
671}
672
673/*
674 * Here we put platform-specific memory range workarounds, i.e.
675 * memory known to be corrupt or otherwise in need to be reserved on
676 * specific platforms.
677 *
678 * If this gets used more widely it could use a real dispatch mechanism.
679 */
680static void __init trim_platform_memory_ranges(void)
681{
682 trim_snb_memory();
683}
684
685static void __init trim_bios_range(void)
686{
687 /*
688 * A special case is the first 4Kb of memory;
689 * This is a BIOS owned area, not kernel ram, but generally
690 * not listed as such in the E820 table.
691 *
692 * This typically reserves additional memory (64KiB by default)
693 * since some BIOSes are known to corrupt low memory. See the
694 * Kconfig help text for X86_RESERVE_LOW.
695 */
696 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
697
698 /*
699 * special case: Some BIOSes report the PC BIOS
700 * area (640Kb -> 1Mb) as RAM even though it is not.
701 * take them out.
702 */
703 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
704
705 e820__update_table(e820_table);
706}
707
708/* called before trim_bios_range() to spare extra sanitize */
709static void __init e820_add_kernel_range(void)
710{
711 u64 start = __pa_symbol(_text);
712 u64 size = __pa_symbol(_end) - start;
713
714 /*
715 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
716 * attempt to fix it by adding the range. We may have a confused BIOS,
717 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
718 * exclude kernel range. If we really are running on top non-RAM,
719 * we will crash later anyways.
720 */
721 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
722 return;
723
724 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
725 e820__range_remove(start, size, E820_TYPE_RAM, 0);
726 e820__range_add(start, size, E820_TYPE_RAM);
727}
728
729static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
730
731static int __init parse_reservelow(char *p)
732{
733 unsigned long long size;
734
735 if (!p)
736 return -EINVAL;
737
738 size = memparse(p, &p);
739
740 if (size < 4096)
741 size = 4096;
742
743 if (size > 640*1024)
744 size = 640*1024;
745
746 reserve_low = size;
747
748 return 0;
749}
750
751early_param("reservelow", parse_reservelow);
752
753static void __init trim_low_memory_range(void)
754{
755 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
756}
757
758/*
759 * Dump out kernel offset information on panic.
760 */
761static int
762dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
763{
764 if (kaslr_enabled()) {
765 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
766 kaslr_offset(),
767 __START_KERNEL,
768 __START_KERNEL_map,
769 MODULES_VADDR-1);
770 } else {
771 pr_emerg("Kernel Offset: disabled\n");
772 }
773
774 return 0;
775}
776
777/*
778 * Determine if we were loaded by an EFI loader. If so, then we have also been
779 * passed the efi memmap, systab, etc., so we should use these data structures
780 * for initialization. Note, the efi init code path is determined by the
781 * global efi_enabled. This allows the same kernel image to be used on existing
782 * systems (with a traditional BIOS) as well as on EFI systems.
783 */
784/*
785 * setup_arch - architecture-specific boot-time initializations
786 *
787 * Note: On x86_64, fixmaps are ready for use even before this is called.
788 */
789
790void __init setup_arch(char **cmdline_p)
791{
792 /*
793 * Reserve the memory occupied by the kernel between _text and
794 * __end_of_kernel_reserve symbols. Any kernel sections after the
795 * __end_of_kernel_reserve symbol must be explicitly reserved with a
796 * separate memblock_reserve() or they will be discarded.
797 */
798 memblock_reserve(__pa_symbol(_text),
799 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
800
801 /*
802 * Make sure page 0 is always reserved because on systems with
803 * L1TF its contents can be leaked to user processes.
804 */
805 memblock_reserve(0, PAGE_SIZE);
806
807 early_reserve_initrd();
808
809 /*
810 * At this point everything still needed from the boot loader
811 * or BIOS or kernel text should be early reserved or marked not
812 * RAM in e820. All other memory is free game.
813 */
814
815#ifdef CONFIG_X86_32
816 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
817
818 /*
819 * copy kernel address range established so far and switch
820 * to the proper swapper page table
821 */
822 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
823 initial_page_table + KERNEL_PGD_BOUNDARY,
824 KERNEL_PGD_PTRS);
825
826 load_cr3(swapper_pg_dir);
827 /*
828 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
829 * a cr3 based tlb flush, so the following __flush_tlb_all()
830 * will not flush anything because the CPU quirk which clears
831 * X86_FEATURE_PGE has not been invoked yet. Though due to the
832 * load_cr3() above the TLB has been flushed already. The
833 * quirk is invoked before subsequent calls to __flush_tlb_all()
834 * so proper operation is guaranteed.
835 */
836 __flush_tlb_all();
837#else
838 printk(KERN_INFO "Command line: %s\n", boot_command_line);
839 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
840#endif
841
842 /*
843 * If we have OLPC OFW, we might end up relocating the fixmap due to
844 * reserve_top(), so do this before touching the ioremap area.
845 */
846 olpc_ofw_detect();
847
848 idt_setup_early_traps();
849 early_cpu_init();
850 arch_init_ideal_nops();
851 jump_label_init();
852 early_ioremap_init();
853
854 setup_olpc_ofw_pgd();
855
856 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
857 screen_info = boot_params.screen_info;
858 edid_info = boot_params.edid_info;
859#ifdef CONFIG_X86_32
860 apm_info.bios = boot_params.apm_bios_info;
861 ist_info = boot_params.ist_info;
862#endif
863 saved_video_mode = boot_params.hdr.vid_mode;
864 bootloader_type = boot_params.hdr.type_of_loader;
865 if ((bootloader_type >> 4) == 0xe) {
866 bootloader_type &= 0xf;
867 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
868 }
869 bootloader_version = bootloader_type & 0xf;
870 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
871
872#ifdef CONFIG_BLK_DEV_RAM
873 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
874#endif
875#ifdef CONFIG_EFI
876 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
877 EFI32_LOADER_SIGNATURE, 4)) {
878 set_bit(EFI_BOOT, &efi.flags);
879 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
880 EFI64_LOADER_SIGNATURE, 4)) {
881 set_bit(EFI_BOOT, &efi.flags);
882 set_bit(EFI_64BIT, &efi.flags);
883 }
884#endif
885
886 x86_init.oem.arch_setup();
887
888 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
889 e820__memory_setup();
890 parse_setup_data();
891
892 copy_edd();
893
894 if (!boot_params.hdr.root_flags)
895 root_mountflags &= ~MS_RDONLY;
896 init_mm.start_code = (unsigned long) _text;
897 init_mm.end_code = (unsigned long) _etext;
898 init_mm.end_data = (unsigned long) _edata;
899 init_mm.brk = _brk_end;
900
901 code_resource.start = __pa_symbol(_text);
902 code_resource.end = __pa_symbol(_etext)-1;
903 rodata_resource.start = __pa_symbol(__start_rodata);
904 rodata_resource.end = __pa_symbol(__end_rodata)-1;
905 data_resource.start = __pa_symbol(_sdata);
906 data_resource.end = __pa_symbol(_edata)-1;
907 bss_resource.start = __pa_symbol(__bss_start);
908 bss_resource.end = __pa_symbol(__bss_stop)-1;
909
910#ifdef CONFIG_CMDLINE_BOOL
911#ifdef CONFIG_CMDLINE_OVERRIDE
912 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
913#else
914 if (builtin_cmdline[0]) {
915 /* append boot loader cmdline to builtin */
916 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
917 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
918 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
919 }
920#endif
921#endif
922
923 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
924 *cmdline_p = command_line;
925
926 /*
927 * x86_configure_nx() is called before parse_early_param() to detect
928 * whether hardware doesn't support NX (so that the early EHCI debug
929 * console setup can safely call set_fixmap()). It may then be called
930 * again from within noexec_setup() during parsing early parameters
931 * to honor the respective command line option.
932 */
933 x86_configure_nx();
934
935 parse_early_param();
936
937 if (efi_enabled(EFI_BOOT))
938 efi_memblock_x86_reserve_range();
939#ifdef CONFIG_MEMORY_HOTPLUG
940 /*
941 * Memory used by the kernel cannot be hot-removed because Linux
942 * cannot migrate the kernel pages. When memory hotplug is
943 * enabled, we should prevent memblock from allocating memory
944 * for the kernel.
945 *
946 * ACPI SRAT records all hotpluggable memory ranges. But before
947 * SRAT is parsed, we don't know about it.
948 *
949 * The kernel image is loaded into memory at very early time. We
950 * cannot prevent this anyway. So on NUMA system, we set any
951 * node the kernel resides in as un-hotpluggable.
952 *
953 * Since on modern servers, one node could have double-digit
954 * gigabytes memory, we can assume the memory around the kernel
955 * image is also un-hotpluggable. So before SRAT is parsed, just
956 * allocate memory near the kernel image to try the best to keep
957 * the kernel away from hotpluggable memory.
958 */
959 if (movable_node_is_enabled())
960 memblock_set_bottom_up(true);
961#endif
962
963 x86_report_nx();
964
965 /* after early param, so could get panic from serial */
966 memblock_x86_reserve_range_setup_data();
967
968 if (acpi_mps_check()) {
969#ifdef CONFIG_X86_LOCAL_APIC
970 disable_apic = 1;
971#endif
972 setup_clear_cpu_cap(X86_FEATURE_APIC);
973 }
974
975 e820__reserve_setup_data();
976 e820__finish_early_params();
977
978 if (efi_enabled(EFI_BOOT))
979 efi_init();
980
981 dmi_setup();
982
983 /*
984 * VMware detection requires dmi to be available, so this
985 * needs to be done after dmi_setup(), for the boot CPU.
986 */
987 init_hypervisor_platform();
988
989 tsc_early_init();
990 x86_init.resources.probe_roms();
991
992 /* after parse_early_param, so could debug it */
993 insert_resource(&iomem_resource, &code_resource);
994 insert_resource(&iomem_resource, &rodata_resource);
995 insert_resource(&iomem_resource, &data_resource);
996 insert_resource(&iomem_resource, &bss_resource);
997
998 e820_add_kernel_range();
999 trim_bios_range();
1000#ifdef CONFIG_X86_32
1001 if (ppro_with_ram_bug()) {
1002 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1003 E820_TYPE_RESERVED);
1004 e820__update_table(e820_table);
1005 printk(KERN_INFO "fixed physical RAM map:\n");
1006 e820__print_table("bad_ppro");
1007 }
1008#else
1009 early_gart_iommu_check();
1010#endif
1011
1012 /*
1013 * partially used pages are not usable - thus
1014 * we are rounding upwards:
1015 */
1016 max_pfn = e820__end_of_ram_pfn();
1017
1018 /* update e820 for memory not covered by WB MTRRs */
1019 mtrr_bp_init();
1020 if (mtrr_trim_uncached_memory(max_pfn))
1021 max_pfn = e820__end_of_ram_pfn();
1022
1023 max_possible_pfn = max_pfn;
1024
1025 /*
1026 * This call is required when the CPU does not support PAT. If
1027 * mtrr_bp_init() invoked it already via pat_init() the call has no
1028 * effect.
1029 */
1030 init_cache_modes();
1031
1032 /*
1033 * Define random base addresses for memory sections after max_pfn is
1034 * defined and before each memory section base is used.
1035 */
1036 kernel_randomize_memory();
1037
1038#ifdef CONFIG_X86_32
1039 /* max_low_pfn get updated here */
1040 find_low_pfn_range();
1041#else
1042 check_x2apic();
1043
1044 /* How many end-of-memory variables you have, grandma! */
1045 /* need this before calling reserve_initrd */
1046 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1047 max_low_pfn = e820__end_of_low_ram_pfn();
1048 else
1049 max_low_pfn = max_pfn;
1050
1051 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1052#endif
1053
1054 /*
1055 * Find and reserve possible boot-time SMP configuration:
1056 */
1057 find_smp_config();
1058
1059 reserve_ibft_region();
1060
1061 early_alloc_pgt_buf();
1062
1063 /*
1064 * Need to conclude brk, before e820__memblock_setup()
1065 * it could use memblock_find_in_range, could overlap with
1066 * brk area.
1067 */
1068 reserve_brk();
1069
1070 cleanup_highmap();
1071
1072 memblock_set_current_limit(ISA_END_ADDRESS);
1073 e820__memblock_setup();
1074
1075 reserve_bios_regions();
1076
1077 efi_fake_memmap();
1078 efi_find_mirror();
1079 efi_esrt_init();
1080
1081 /*
1082 * The EFI specification says that boot service code won't be
1083 * called after ExitBootServices(). This is, in fact, a lie.
1084 */
1085 efi_reserve_boot_services();
1086
1087 /* preallocate 4k for mptable mpc */
1088 e820__memblock_alloc_reserved_mpc_new();
1089
1090#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1091 setup_bios_corruption_check();
1092#endif
1093
1094#ifdef CONFIG_X86_32
1095 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1096 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1097#endif
1098
1099 reserve_real_mode();
1100
1101 trim_platform_memory_ranges();
1102 trim_low_memory_range();
1103
1104 init_mem_mapping();
1105
1106 idt_setup_early_pf();
1107
1108 /*
1109 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1110 * with the current CR4 value. This may not be necessary, but
1111 * auditing all the early-boot CR4 manipulation would be needed to
1112 * rule it out.
1113 *
1114 * Mask off features that don't work outside long mode (just
1115 * PCIDE for now).
1116 */
1117 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1118
1119 memblock_set_current_limit(get_max_mapped());
1120
1121 /*
1122 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1123 */
1124
1125#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1126 if (init_ohci1394_dma_early)
1127 init_ohci1394_dma_on_all_controllers();
1128#endif
1129 /* Allocate bigger log buffer */
1130 setup_log_buf(1);
1131
1132 if (efi_enabled(EFI_BOOT)) {
1133 switch (boot_params.secure_boot) {
1134 case efi_secureboot_mode_disabled:
1135 pr_info("Secure boot disabled\n");
1136 break;
1137 case efi_secureboot_mode_enabled:
1138 pr_info("Secure boot enabled\n");
1139 break;
1140 default:
1141 pr_info("Secure boot could not be determined\n");
1142 break;
1143 }
1144 }
1145
1146 reserve_initrd();
1147
1148 acpi_table_upgrade();
1149
1150 vsmp_init();
1151
1152 io_delay_init();
1153
1154 early_platform_quirks();
1155
1156 /*
1157 * Parse the ACPI tables for possible boot-time SMP configuration.
1158 */
1159 acpi_boot_table_init();
1160
1161 early_acpi_boot_init();
1162
1163 initmem_init();
1164 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1165
1166 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1167 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1168
1169 /*
1170 * Reserve memory for crash kernel after SRAT is parsed so that it
1171 * won't consume hotpluggable memory.
1172 */
1173 reserve_crashkernel();
1174
1175 memblock_find_dma_reserve();
1176
1177 if (!early_xdbc_setup_hardware())
1178 early_xdbc_register_console();
1179
1180 x86_init.paging.pagetable_init();
1181
1182 kasan_init();
1183
1184 /*
1185 * Sync back kernel address range.
1186 *
1187 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1188 * this call?
1189 */
1190 sync_initial_page_table();
1191
1192 tboot_probe();
1193
1194 map_vsyscall();
1195
1196 generic_apic_probe();
1197
1198 early_quirks();
1199
1200 /*
1201 * Read APIC and some other early information from ACPI tables.
1202 */
1203 acpi_boot_init();
1204 sfi_init();
1205 x86_dtb_init();
1206
1207 /*
1208 * get boot-time SMP configuration:
1209 */
1210 get_smp_config();
1211
1212 /*
1213 * Systems w/o ACPI and mptables might not have it mapped the local
1214 * APIC yet, but prefill_possible_map() might need to access it.
1215 */
1216 init_apic_mappings();
1217
1218 prefill_possible_map();
1219
1220 init_cpu_to_node();
1221
1222 io_apic_init_mappings();
1223
1224 x86_init.hyper.guest_late_init();
1225
1226 e820__reserve_resources();
1227 e820__register_nosave_regions(max_pfn);
1228
1229 x86_init.resources.reserve_resources();
1230
1231 e820__setup_pci_gap();
1232
1233#ifdef CONFIG_VT
1234#if defined(CONFIG_VGA_CONSOLE)
1235 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1236 conswitchp = &vga_con;
1237#endif
1238#endif
1239 x86_init.oem.banner();
1240
1241 x86_init.timers.wallclock_init();
1242
1243 mcheck_init();
1244
1245 register_refined_jiffies(CLOCK_TICK_RATE);
1246
1247#ifdef CONFIG_EFI
1248 if (efi_enabled(EFI_BOOT))
1249 efi_apply_memmap_quirks();
1250#endif
1251
1252 unwind_init();
1253}
1254
1255#ifdef CONFIG_X86_32
1256
1257static struct resource video_ram_resource = {
1258 .name = "Video RAM area",
1259 .start = 0xa0000,
1260 .end = 0xbffff,
1261 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1262};
1263
1264void __init i386_reserve_resources(void)
1265{
1266 request_resource(&iomem_resource, &video_ram_resource);
1267 reserve_standard_io_resources();
1268}
1269
1270#endif /* CONFIG_X86_32 */
1271
1272static struct notifier_block kernel_offset_notifier = {
1273 .notifier_call = dump_kernel_offset
1274};
1275
1276static int __init register_kernel_offset_dumper(void)
1277{
1278 atomic_notifier_chain_register(&panic_notifier_list,
1279 &kernel_offset_notifier);
1280 return 0;
1281}
1282__initcall(register_kernel_offset_dumper);