Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <xen/xen.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/mem_encrypt.h>
  74
  75#include <linux/usb/xhci-dbgp.h>
  76#include <video/edid.h>
  77
  78#include <asm/mtrr.h>
  79#include <asm/apic.h>
  80#include <asm/realmode.h>
  81#include <asm/e820/api.h>
  82#include <asm/mpspec.h>
  83#include <asm/setup.h>
  84#include <asm/efi.h>
  85#include <asm/timer.h>
  86#include <asm/i8259.h>
  87#include <asm/sections.h>
  88#include <asm/io_apic.h>
  89#include <asm/ist.h>
  90#include <asm/setup_arch.h>
  91#include <asm/bios_ebda.h>
  92#include <asm/cacheflush.h>
  93#include <asm/processor.h>
  94#include <asm/bugs.h>
  95#include <asm/kasan.h>
  96
  97#include <asm/vsyscall.h>
  98#include <asm/cpu.h>
  99#include <asm/desc.h>
 100#include <asm/dma.h>
 101#include <asm/iommu.h>
 102#include <asm/gart.h>
 103#include <asm/mmu_context.h>
 104#include <asm/proto.h>
 105
 106#include <asm/paravirt.h>
 107#include <asm/hypervisor.h>
 108#include <asm/olpc_ofw.h>
 109
 110#include <asm/percpu.h>
 111#include <asm/topology.h>
 112#include <asm/apicdef.h>
 113#include <asm/amd_nb.h>
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 116#include <asm/prom.h>
 117#include <asm/microcode.h>
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 138
 
 
 
 
 
 
 
 
 
 
 
 
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 143 */
 144static struct resource data_resource = {
 145	.name	= "Kernel data",
 146	.start	= 0,
 147	.end	= 0,
 148	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152	.name	= "Kernel code",
 153	.start	= 0,
 154	.end	= 0,
 155	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159	.name	= "Kernel bss",
 160	.start	= 0,
 161	.end	= 0,
 162	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 
 
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 193struct cpuinfo_x86 boot_cpu_data __read_mostly;
 
 
 194EXPORT_SYMBOL(boot_cpu_data);
 195#endif
 196
 197
 198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 199__visible unsigned long mmu_cr4_features __ro_after_init;
 200#else
 201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 202#endif
 203
 204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 205int bootloader_type, bootloader_version;
 206
 207/*
 208 * Setup options
 209 */
 210struct screen_info screen_info;
 211EXPORT_SYMBOL(screen_info);
 212struct edid_info edid_info;
 213EXPORT_SYMBOL_GPL(edid_info);
 214
 215extern int root_mountflags;
 216
 217unsigned long saved_video_mode;
 218
 219#define RAMDISK_IMAGE_START_MASK	0x07FF
 220#define RAMDISK_PROMPT_FLAG		0x8000
 221#define RAMDISK_LOAD_FLAG		0x4000
 222
 223static char __initdata command_line[COMMAND_LINE_SIZE];
 224#ifdef CONFIG_CMDLINE_BOOL
 225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 226#endif
 227
 228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 229struct edd edd;
 230#ifdef CONFIG_EDD_MODULE
 231EXPORT_SYMBOL(edd);
 232#endif
 233/**
 234 * copy_edd() - Copy the BIOS EDD information
 235 *              from boot_params into a safe place.
 236 *
 237 */
 238static inline void __init copy_edd(void)
 239{
 240     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 241	    sizeof(edd.mbr_signature));
 242     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 243     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 244     edd.edd_info_nr = boot_params.eddbuf_entries;
 245}
 246#else
 247static inline void __init copy_edd(void)
 248{
 249}
 250#endif
 251
 252void * __init extend_brk(size_t size, size_t align)
 253{
 254	size_t mask = align - 1;
 255	void *ret;
 256
 257	BUG_ON(_brk_start == 0);
 258	BUG_ON(align & mask);
 259
 260	_brk_end = (_brk_end + mask) & ~mask;
 261	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 262
 263	ret = (void *)_brk_end;
 264	_brk_end += size;
 265
 266	memset(ret, 0, size);
 267
 268	return ret;
 269}
 270
 271#ifdef CONFIG_X86_32
 272static void __init cleanup_highmap(void)
 273{
 274}
 275#endif
 276
 277static void __init reserve_brk(void)
 278{
 279	if (_brk_end > _brk_start)
 280		memblock_reserve(__pa_symbol(_brk_start),
 281				 _brk_end - _brk_start);
 282
 283	/* Mark brk area as locked down and no longer taking any
 284	   new allocations */
 285	_brk_start = 0;
 286}
 287
 288u64 relocated_ramdisk;
 289
 290#ifdef CONFIG_BLK_DEV_INITRD
 291
 292static u64 __init get_ramdisk_image(void)
 293{
 294	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 295
 296	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 297
 298	return ramdisk_image;
 299}
 300static u64 __init get_ramdisk_size(void)
 301{
 302	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 303
 304	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 305
 306	return ramdisk_size;
 307}
 308
 309static void __init relocate_initrd(void)
 310{
 311	/* Assume only end is not page aligned */
 312	u64 ramdisk_image = get_ramdisk_image();
 313	u64 ramdisk_size  = get_ramdisk_size();
 314	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 315
 316	/* We need to move the initrd down into directly mapped mem */
 317	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 318						   area_size, PAGE_SIZE);
 319
 320	if (!relocated_ramdisk)
 321		panic("Cannot find place for new RAMDISK of size %lld\n",
 322		      ramdisk_size);
 323
 324	/* Note: this includes all the mem currently occupied by
 325	   the initrd, we rely on that fact to keep the data intact. */
 326	memblock_reserve(relocated_ramdisk, area_size);
 327	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 328	initrd_end   = initrd_start + ramdisk_size;
 329	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 330	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 331
 332	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 333
 334	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 335		" [mem %#010llx-%#010llx]\n",
 336		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 337		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 338}
 339
 340static void __init early_reserve_initrd(void)
 341{
 342	/* Assume only end is not page aligned */
 343	u64 ramdisk_image = get_ramdisk_image();
 344	u64 ramdisk_size  = get_ramdisk_size();
 345	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 346
 347	if (!boot_params.hdr.type_of_loader ||
 348	    !ramdisk_image || !ramdisk_size)
 349		return;		/* No initrd provided by bootloader */
 350
 351	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 352}
 353static void __init reserve_initrd(void)
 354{
 355	/* Assume only end is not page aligned */
 356	u64 ramdisk_image = get_ramdisk_image();
 357	u64 ramdisk_size  = get_ramdisk_size();
 358	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359	u64 mapped_size;
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	initrd_start = 0;
 366
 367	mapped_size = memblock_mem_size(max_pfn_mapped);
 368	if (ramdisk_size >= (mapped_size>>1))
 369		panic("initrd too large to handle, "
 370		       "disabling initrd (%lld needed, %lld available)\n",
 371		       ramdisk_size, mapped_size>>1);
 372
 373	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 374			ramdisk_end - 1);
 375
 376	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 377				PFN_DOWN(ramdisk_end))) {
 378		/* All are mapped, easy case */
 379		initrd_start = ramdisk_image + PAGE_OFFSET;
 380		initrd_end = initrd_start + ramdisk_size;
 381		return;
 382	}
 383
 384	relocate_initrd();
 385
 386	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 387}
 388
 389#else
 390static void __init early_reserve_initrd(void)
 391{
 392}
 393static void __init reserve_initrd(void)
 394{
 395}
 396#endif /* CONFIG_BLK_DEV_INITRD */
 397
 398static void __init parse_setup_data(void)
 399{
 400	struct setup_data *data;
 401	u64 pa_data, pa_next;
 402
 403	pa_data = boot_params.hdr.setup_data;
 404	while (pa_data) {
 405		u32 data_len, data_type;
 406
 407		data = early_memremap(pa_data, sizeof(*data));
 408		data_len = data->len + sizeof(struct setup_data);
 409		data_type = data->type;
 410		pa_next = data->next;
 411		early_memunmap(data, sizeof(*data));
 412
 413		switch (data_type) {
 414		case SETUP_E820_EXT:
 415			e820__memory_setup_extended(pa_data, data_len);
 416			break;
 417		case SETUP_DTB:
 418			add_dtb(pa_data);
 419			break;
 420		case SETUP_EFI:
 421			parse_efi_setup(pa_data, data_len);
 422			break;
 423		default:
 424			break;
 425		}
 426		pa_data = pa_next;
 427	}
 428}
 429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430static void __init memblock_x86_reserve_range_setup_data(void)
 431{
 432	struct setup_data *data;
 433	u64 pa_data;
 434
 435	pa_data = boot_params.hdr.setup_data;
 436	while (pa_data) {
 437		data = early_memremap(pa_data, sizeof(*data));
 438		memblock_reserve(pa_data, sizeof(*data) + data->len);
 439		pa_data = data->next;
 440		early_memunmap(data, sizeof(*data));
 441	}
 442}
 443
 444/*
 445 * --------- Crashkernel reservation ------------------------------
 446 */
 447
 448#ifdef CONFIG_KEXEC_CORE
 449
 450/* 16M alignment for crash kernel regions */
 451#define CRASH_ALIGN		(16 << 20)
 452
 453/*
 454 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 456 * On 64bit, old kexec-tools need to under 896MiB.
 457 */
 458#ifdef CONFIG_X86_32
 459# define CRASH_ADDR_LOW_MAX	(512 << 20)
 460# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 461#else
 462# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 463# define CRASH_ADDR_HIGH_MAX	MAXMEM
 464#endif
 465
 466static int __init reserve_crashkernel_low(void)
 467{
 468#ifdef CONFIG_X86_64
 469	unsigned long long base, low_base = 0, low_size = 0;
 470	unsigned long total_low_mem;
 471	int ret;
 472
 473	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 474
 475	/* crashkernel=Y,low */
 476	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 477	if (ret) {
 478		/*
 479		 * two parts from lib/swiotlb.c:
 480		 * -swiotlb size: user-specified with swiotlb= or default.
 481		 *
 482		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 483		 * to 8M for other buffers that may need to stay low too. Also
 484		 * make sure we allocate enough extra low memory so that we
 485		 * don't run out of DMA buffers for 32-bit devices.
 486		 */
 487		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 488	} else {
 489		/* passed with crashkernel=0,low ? */
 490		if (!low_size)
 491			return 0;
 492	}
 493
 494	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 495	if (!low_base) {
 496		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 497		       (unsigned long)(low_size >> 20));
 498		return -ENOMEM;
 499	}
 500
 501	ret = memblock_reserve(low_base, low_size);
 502	if (ret) {
 503		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 504		return ret;
 505	}
 506
 507	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 508		(unsigned long)(low_size >> 20),
 509		(unsigned long)(low_base >> 20),
 510		(unsigned long)(total_low_mem >> 20));
 511
 512	crashk_low_res.start = low_base;
 513	crashk_low_res.end   = low_base + low_size - 1;
 514	insert_resource(&iomem_resource, &crashk_low_res);
 515#endif
 516	return 0;
 517}
 518
 519static void __init reserve_crashkernel(void)
 520{
 521	unsigned long long crash_size, crash_base, total_mem;
 522	bool high = false;
 523	int ret;
 524
 525	total_mem = memblock_phys_mem_size();
 526
 527	/* crashkernel=XM */
 528	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 529	if (ret != 0 || crash_size <= 0) {
 530		/* crashkernel=X,high */
 531		ret = parse_crashkernel_high(boot_command_line, total_mem,
 532					     &crash_size, &crash_base);
 533		if (ret != 0 || crash_size <= 0)
 534			return;
 535		high = true;
 536	}
 537
 538	if (xen_pv_domain()) {
 539		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 540		return;
 541	}
 542
 543	/* 0 means: find the address automatically */
 544	if (crash_base <= 0) {
 545		/*
 546		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 547		 * as old kexec-tools loads bzImage below that, unless
 548		 * "crashkernel=size[KMG],high" is specified.
 549		 */
 550		crash_base = memblock_find_in_range(CRASH_ALIGN,
 551						    high ? CRASH_ADDR_HIGH_MAX
 552							 : CRASH_ADDR_LOW_MAX,
 553						    crash_size, CRASH_ALIGN);
 554		if (!crash_base) {
 555			pr_info("crashkernel reservation failed - No suitable area found.\n");
 556			return;
 557		}
 558
 559	} else {
 560		unsigned long long start;
 561
 562		start = memblock_find_in_range(crash_base,
 563					       crash_base + crash_size,
 564					       crash_size, 1 << 20);
 565		if (start != crash_base) {
 566			pr_info("crashkernel reservation failed - memory is in use.\n");
 567			return;
 568		}
 569	}
 570	ret = memblock_reserve(crash_base, crash_size);
 571	if (ret) {
 572		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 573		return;
 574	}
 575
 576	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 577		memblock_free(crash_base, crash_size);
 578		return;
 579	}
 580
 581	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 582		(unsigned long)(crash_size >> 20),
 583		(unsigned long)(crash_base >> 20),
 584		(unsigned long)(total_mem >> 20));
 585
 586	crashk_res.start = crash_base;
 587	crashk_res.end   = crash_base + crash_size - 1;
 588	insert_resource(&iomem_resource, &crashk_res);
 589}
 590#else
 591static void __init reserve_crashkernel(void)
 592{
 593}
 594#endif
 595
 596static struct resource standard_io_resources[] = {
 597	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 598		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 599	{ .name = "pic1", .start = 0x20, .end = 0x21,
 600		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 601	{ .name = "timer0", .start = 0x40, .end = 0x43,
 602		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 603	{ .name = "timer1", .start = 0x50, .end = 0x53,
 604		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 605	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 606		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 607	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 608		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 609	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 610		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 611	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 612		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 613	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 614		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 616		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 617};
 618
 619void __init reserve_standard_io_resources(void)
 620{
 621	int i;
 622
 623	/* request I/O space for devices used on all i[345]86 PCs */
 624	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 625		request_resource(&ioport_resource, &standard_io_resources[i]);
 626
 627}
 628
 629static __init void reserve_ibft_region(void)
 630{
 631	unsigned long addr, size = 0;
 632
 633	addr = find_ibft_region(&size);
 634
 635	if (size)
 636		memblock_reserve(addr, size);
 637}
 638
 639static bool __init snb_gfx_workaround_needed(void)
 640{
 641#ifdef CONFIG_PCI
 642	int i;
 643	u16 vendor, devid;
 644	static const __initconst u16 snb_ids[] = {
 645		0x0102,
 646		0x0112,
 647		0x0122,
 648		0x0106,
 649		0x0116,
 650		0x0126,
 651		0x010a,
 652	};
 653
 654	/* Assume no if something weird is going on with PCI */
 655	if (!early_pci_allowed())
 656		return false;
 657
 658	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 659	if (vendor != 0x8086)
 660		return false;
 661
 662	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 663	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 664		if (devid == snb_ids[i])
 665			return true;
 666#endif
 667
 668	return false;
 669}
 670
 671/*
 672 * Sandy Bridge graphics has trouble with certain ranges, exclude
 673 * them from allocation.
 674 */
 675static void __init trim_snb_memory(void)
 676{
 677	static const __initconst unsigned long bad_pages[] = {
 678		0x20050000,
 679		0x20110000,
 680		0x20130000,
 681		0x20138000,
 682		0x40004000,
 683	};
 684	int i;
 685
 686	if (!snb_gfx_workaround_needed())
 687		return;
 688
 689	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 690
 691	/*
 692	 * Reserve all memory below the 1 MB mark that has not
 693	 * already been reserved.
 694	 */
 695	memblock_reserve(0, 1<<20);
 696	
 697	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 698		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 699			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 700			       bad_pages[i]);
 701	}
 702}
 703
 704/*
 705 * Here we put platform-specific memory range workarounds, i.e.
 706 * memory known to be corrupt or otherwise in need to be reserved on
 707 * specific platforms.
 708 *
 709 * If this gets used more widely it could use a real dispatch mechanism.
 710 */
 711static void __init trim_platform_memory_ranges(void)
 712{
 713	trim_snb_memory();
 714}
 715
 716static void __init trim_bios_range(void)
 717{
 718	/*
 719	 * A special case is the first 4Kb of memory;
 720	 * This is a BIOS owned area, not kernel ram, but generally
 721	 * not listed as such in the E820 table.
 722	 *
 723	 * This typically reserves additional memory (64KiB by default)
 724	 * since some BIOSes are known to corrupt low memory.  See the
 725	 * Kconfig help text for X86_RESERVE_LOW.
 726	 */
 727	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 728
 729	/*
 730	 * special case: Some BIOSen report the PC BIOS
 731	 * area (640->1Mb) as ram even though it is not.
 732	 * take them out.
 733	 */
 734	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 735
 736	e820__update_table(e820_table);
 737}
 738
 739/* called before trim_bios_range() to spare extra sanitize */
 740static void __init e820_add_kernel_range(void)
 741{
 742	u64 start = __pa_symbol(_text);
 743	u64 size = __pa_symbol(_end) - start;
 744
 745	/*
 746	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 747	 * attempt to fix it by adding the range. We may have a confused BIOS,
 748	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 749	 * exclude kernel range. If we really are running on top non-RAM,
 750	 * we will crash later anyways.
 751	 */
 752	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 753		return;
 754
 755	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 756	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 757	e820__range_add(start, size, E820_TYPE_RAM);
 758}
 759
 760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 761
 762static int __init parse_reservelow(char *p)
 763{
 764	unsigned long long size;
 765
 766	if (!p)
 767		return -EINVAL;
 768
 769	size = memparse(p, &p);
 770
 771	if (size < 4096)
 772		size = 4096;
 773
 774	if (size > 640*1024)
 775		size = 640*1024;
 776
 777	reserve_low = size;
 778
 779	return 0;
 780}
 781
 782early_param("reservelow", parse_reservelow);
 783
 784static void __init trim_low_memory_range(void)
 785{
 786	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 787}
 788	
 789/*
 790 * Dump out kernel offset information on panic.
 791 */
 792static int
 793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 794{
 795	if (kaslr_enabled()) {
 796		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 797			 kaslr_offset(),
 798			 __START_KERNEL,
 799			 __START_KERNEL_map,
 800			 MODULES_VADDR-1);
 801	} else {
 802		pr_emerg("Kernel Offset: disabled\n");
 803	}
 804
 805	return 0;
 806}
 807
 808/*
 809 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 810 * passed the efi memmap, systab, etc., so we should use these data structures
 811 * for initialization.  Note, the efi init code path is determined by the
 812 * global efi_enabled. This allows the same kernel image to be used on existing
 813 * systems (with a traditional BIOS) as well as on EFI systems.
 814 */
 815/*
 816 * setup_arch - architecture-specific boot-time initializations
 817 *
 818 * Note: On x86_64, fixmaps are ready for use even before this is called.
 819 */
 820
 821void __init setup_arch(char **cmdline_p)
 822{
 823	memblock_reserve(__pa_symbol(_text),
 824			 (unsigned long)__bss_stop - (unsigned long)_text);
 825
 826	early_reserve_initrd();
 827
 828	/*
 829	 * At this point everything still needed from the boot loader
 830	 * or BIOS or kernel text should be early reserved or marked not
 831	 * RAM in e820. All other memory is free game.
 832	 */
 833
 834#ifdef CONFIG_X86_32
 835	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 836
 837	/*
 838	 * copy kernel address range established so far and switch
 839	 * to the proper swapper page table
 840	 */
 841	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 842			initial_page_table + KERNEL_PGD_BOUNDARY,
 843			KERNEL_PGD_PTRS);
 844
 845	load_cr3(swapper_pg_dir);
 846	/*
 847	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 848	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 849	 * will not flush anything because the cpu quirk which clears
 850	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 851	 * load_cr3() above the TLB has been flushed already. The
 852	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 853	 * so proper operation is guaranteed.
 854	 */
 855	__flush_tlb_all();
 856#else
 857	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 858	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 859#endif
 860
 861	/*
 862	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 863	 * reserve_top(), so do this before touching the ioremap area.
 864	 */
 865	olpc_ofw_detect();
 866
 867	idt_setup_early_traps();
 868	early_cpu_init();
 869	early_ioremap_init();
 870
 871	setup_olpc_ofw_pgd();
 872
 873	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 874	screen_info = boot_params.screen_info;
 875	edid_info = boot_params.edid_info;
 876#ifdef CONFIG_X86_32
 877	apm_info.bios = boot_params.apm_bios_info;
 878	ist_info = boot_params.ist_info;
 879#endif
 880	saved_video_mode = boot_params.hdr.vid_mode;
 881	bootloader_type = boot_params.hdr.type_of_loader;
 882	if ((bootloader_type >> 4) == 0xe) {
 883		bootloader_type &= 0xf;
 884		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 885	}
 886	bootloader_version  = bootloader_type & 0xf;
 887	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 888
 889#ifdef CONFIG_BLK_DEV_RAM
 890	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 891	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 892	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 893#endif
 894#ifdef CONFIG_EFI
 895	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 896		     EFI32_LOADER_SIGNATURE, 4)) {
 897		set_bit(EFI_BOOT, &efi.flags);
 898	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 899		     EFI64_LOADER_SIGNATURE, 4)) {
 900		set_bit(EFI_BOOT, &efi.flags);
 901		set_bit(EFI_64BIT, &efi.flags);
 902	}
 
 
 
 903#endif
 904
 905	x86_init.oem.arch_setup();
 906
 907	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 908	e820__memory_setup();
 909	parse_setup_data();
 910
 911	copy_edd();
 912
 913	if (!boot_params.hdr.root_flags)
 914		root_mountflags &= ~MS_RDONLY;
 915	init_mm.start_code = (unsigned long) _text;
 916	init_mm.end_code = (unsigned long) _etext;
 917	init_mm.end_data = (unsigned long) _edata;
 918	init_mm.brk = _brk_end;
 919
 920	mpx_mm_init(&init_mm);
 921
 922	code_resource.start = __pa_symbol(_text);
 923	code_resource.end = __pa_symbol(_etext)-1;
 924	data_resource.start = __pa_symbol(_etext);
 925	data_resource.end = __pa_symbol(_edata)-1;
 926	bss_resource.start = __pa_symbol(__bss_start);
 927	bss_resource.end = __pa_symbol(__bss_stop)-1;
 928
 929#ifdef CONFIG_CMDLINE_BOOL
 930#ifdef CONFIG_CMDLINE_OVERRIDE
 931	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 932#else
 933	if (builtin_cmdline[0]) {
 934		/* append boot loader cmdline to builtin */
 935		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 936		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 937		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 938	}
 939#endif
 940#endif
 941
 942	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 943	*cmdline_p = command_line;
 944
 945	/*
 946	 * x86_configure_nx() is called before parse_early_param() to detect
 947	 * whether hardware doesn't support NX (so that the early EHCI debug
 948	 * console setup can safely call set_fixmap()). It may then be called
 949	 * again from within noexec_setup() during parsing early parameters
 950	 * to honor the respective command line option.
 951	 */
 952	x86_configure_nx();
 953
 954	parse_early_param();
 955
 956	if (efi_enabled(EFI_BOOT))
 957		efi_memblock_x86_reserve_range();
 958#ifdef CONFIG_MEMORY_HOTPLUG
 959	/*
 960	 * Memory used by the kernel cannot be hot-removed because Linux
 961	 * cannot migrate the kernel pages. When memory hotplug is
 962	 * enabled, we should prevent memblock from allocating memory
 963	 * for the kernel.
 964	 *
 965	 * ACPI SRAT records all hotpluggable memory ranges. But before
 966	 * SRAT is parsed, we don't know about it.
 967	 *
 968	 * The kernel image is loaded into memory at very early time. We
 969	 * cannot prevent this anyway. So on NUMA system, we set any
 970	 * node the kernel resides in as un-hotpluggable.
 971	 *
 972	 * Since on modern servers, one node could have double-digit
 973	 * gigabytes memory, we can assume the memory around the kernel
 974	 * image is also un-hotpluggable. So before SRAT is parsed, just
 975	 * allocate memory near the kernel image to try the best to keep
 976	 * the kernel away from hotpluggable memory.
 977	 */
 978	if (movable_node_is_enabled())
 979		memblock_set_bottom_up(true);
 980#endif
 981
 982	x86_report_nx();
 983
 984	/* after early param, so could get panic from serial */
 985	memblock_x86_reserve_range_setup_data();
 986
 987	if (acpi_mps_check()) {
 988#ifdef CONFIG_X86_LOCAL_APIC
 989		disable_apic = 1;
 990#endif
 991		setup_clear_cpu_cap(X86_FEATURE_APIC);
 992	}
 993
 994#ifdef CONFIG_PCI
 995	if (pci_early_dump_regs)
 996		early_dump_pci_devices();
 997#endif
 998
 999	e820__reserve_setup_data();
1000	e820__finish_early_params();
 
1001
1002	if (efi_enabled(EFI_BOOT))
1003		efi_init();
1004
1005	dmi_scan_machine();
1006	dmi_memdev_walk();
1007	dmi_set_dump_stack_arch_desc();
1008
1009	/*
1010	 * VMware detection requires dmi to be available, so this
1011	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1012	 */
1013	init_hypervisor_platform();
1014
1015	x86_init.resources.probe_roms();
1016
1017	/* after parse_early_param, so could debug it */
1018	insert_resource(&iomem_resource, &code_resource);
1019	insert_resource(&iomem_resource, &data_resource);
1020	insert_resource(&iomem_resource, &bss_resource);
1021
1022	e820_add_kernel_range();
1023	trim_bios_range();
1024#ifdef CONFIG_X86_32
1025	if (ppro_with_ram_bug()) {
1026		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027				  E820_TYPE_RESERVED);
1028		e820__update_table(e820_table);
1029		printk(KERN_INFO "fixed physical RAM map:\n");
1030		e820__print_table("bad_ppro");
1031	}
1032#else
1033	early_gart_iommu_check();
1034#endif
1035
1036	/*
1037	 * partially used pages are not usable - thus
1038	 * we are rounding upwards:
1039	 */
1040	max_pfn = e820__end_of_ram_pfn();
1041
1042	/* update e820 for memory not covered by WB MTRRs */
1043	mtrr_bp_init();
1044	if (mtrr_trim_uncached_memory(max_pfn))
1045		max_pfn = e820__end_of_ram_pfn();
1046
1047	max_possible_pfn = max_pfn;
1048
1049	/*
1050	 * This call is required when the CPU does not support PAT. If
1051	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052	 * effect.
1053	 */
1054	init_cache_modes();
1055
1056	/*
1057	 * Define random base addresses for memory sections after max_pfn is
1058	 * defined and before each memory section base is used.
1059	 */
1060	kernel_randomize_memory();
1061
1062#ifdef CONFIG_X86_32
1063	/* max_low_pfn get updated here */
1064	find_low_pfn_range();
1065#else
1066	check_x2apic();
1067
1068	/* How many end-of-memory variables you have, grandma! */
1069	/* need this before calling reserve_initrd */
1070	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071		max_low_pfn = e820__end_of_low_ram_pfn();
1072	else
1073		max_low_pfn = max_pfn;
1074
1075	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076#endif
1077
1078	/*
1079	 * Find and reserve possible boot-time SMP configuration:
1080	 */
1081	find_smp_config();
1082
1083	reserve_ibft_region();
1084
1085	early_alloc_pgt_buf();
1086
1087	/*
1088	 * Need to conclude brk, before e820__memblock_setup()
1089	 *  it could use memblock_find_in_range, could overlap with
1090	 *  brk area.
1091	 */
1092	reserve_brk();
1093
1094	cleanup_highmap();
1095
1096	memblock_set_current_limit(ISA_END_ADDRESS);
1097	e820__memblock_setup();
1098
1099	reserve_bios_regions();
1100
1101	if (efi_enabled(EFI_MEMMAP)) {
1102		efi_fake_memmap();
1103		efi_find_mirror();
1104		efi_esrt_init();
1105
1106		/*
1107		 * The EFI specification says that boot service code won't be
1108		 * called after ExitBootServices(). This is, in fact, a lie.
1109		 */
 
1110		efi_reserve_boot_services();
1111	}
1112
1113	/* preallocate 4k for mptable mpc */
1114	e820__memblock_alloc_reserved_mpc_new();
1115
1116#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117	setup_bios_corruption_check();
1118#endif
1119
1120#ifdef CONFIG_X86_32
1121	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1123#endif
1124
1125	reserve_real_mode();
1126
1127	trim_platform_memory_ranges();
1128	trim_low_memory_range();
1129
1130	init_mem_mapping();
1131
1132	idt_setup_early_pf();
1133
1134	/*
1135	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136	 * with the current CR4 value.  This may not be necessary, but
1137	 * auditing all the early-boot CR4 manipulation would be needed to
1138	 * rule it out.
1139	 *
1140	 * Mask off features that don't work outside long mode (just
1141	 * PCIDE for now).
1142	 */
1143	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145	memblock_set_current_limit(get_max_mapped());
1146
1147	/*
1148	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149	 */
1150
1151#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152	if (init_ohci1394_dma_early)
1153		init_ohci1394_dma_on_all_controllers();
1154#endif
1155	/* Allocate bigger log buffer */
1156	setup_log_buf(1);
1157
1158	if (efi_enabled(EFI_BOOT)) {
1159		switch (boot_params.secure_boot) {
1160		case efi_secureboot_mode_disabled:
1161			pr_info("Secure boot disabled\n");
1162			break;
1163		case efi_secureboot_mode_enabled:
1164			pr_info("Secure boot enabled\n");
1165			break;
1166		default:
1167			pr_info("Secure boot could not be determined\n");
1168			break;
1169		}
1170	}
1171
1172	reserve_initrd();
1173
1174	acpi_table_upgrade();
 
 
1175
1176	vsmp_init();
1177
1178	io_delay_init();
1179
1180	early_platform_quirks();
1181
1182	/*
1183	 * Parse the ACPI tables for possible boot-time SMP configuration.
1184	 */
1185	acpi_boot_table_init();
1186
1187	early_acpi_boot_init();
1188
1189	initmem_init();
1190	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1191
1192	/*
1193	 * Reserve memory for crash kernel after SRAT is parsed so that it
1194	 * won't consume hotpluggable memory.
1195	 */
1196	reserve_crashkernel();
1197
1198	memblock_find_dma_reserve();
1199
1200#ifdef CONFIG_KVM_GUEST
1201	kvmclock_init();
1202#endif
1203
1204	tsc_early_delay_calibrate();
1205	if (!early_xdbc_setup_hardware())
1206		early_xdbc_register_console();
1207
1208	x86_init.paging.pagetable_init();
1209
1210	kasan_init();
1211
 
 
 
 
 
 
 
 
 
 
 
 
 
1212	/*
1213	 * Sync back kernel address range.
1214	 *
1215	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216	 * this call?
1217	 */
1218	sync_initial_page_table();
 
 
 
1219
1220	tboot_probe();
1221
1222	map_vsyscall();
1223
1224	generic_apic_probe();
1225
1226	early_quirks();
1227
1228	/*
1229	 * Read APIC and some other early information from ACPI tables.
1230	 */
1231	acpi_boot_init();
1232	sfi_init();
1233	x86_dtb_init();
1234
1235	/*
1236	 * get boot-time SMP configuration:
1237	 */
1238	get_smp_config();
1239
1240	/*
1241	 * Systems w/o ACPI and mptables might not have it mapped the local
1242	 * APIC yet, but prefill_possible_map() might need to access it.
1243	 */
1244	init_apic_mappings();
1245
1246	prefill_possible_map();
1247
1248	init_cpu_to_node();
1249
 
1250	io_apic_init_mappings();
1251
1252	x86_init.hyper.guest_late_init();
1253
1254	e820__reserve_resources();
1255	e820__register_nosave_regions(max_low_pfn);
1256
1257	x86_init.resources.reserve_resources();
1258
1259	e820__setup_pci_gap();
1260
1261#ifdef CONFIG_VT
1262#if defined(CONFIG_VGA_CONSOLE)
1263	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1264		conswitchp = &vga_con;
1265#elif defined(CONFIG_DUMMY_CONSOLE)
1266	conswitchp = &dummy_con;
1267#endif
1268#endif
1269	x86_init.oem.banner();
1270
1271	x86_init.timers.wallclock_init();
1272
1273	mcheck_init();
1274
1275	arch_init_ideal_nops();
1276
1277	register_refined_jiffies(CLOCK_TICK_RATE);
1278
1279#ifdef CONFIG_EFI
1280	if (efi_enabled(EFI_BOOT))
1281		efi_apply_memmap_quirks();
1282#endif
1283
1284	unwind_init();
1285}
1286
1287#ifdef CONFIG_X86_32
1288
1289static struct resource video_ram_resource = {
1290	.name	= "Video RAM area",
1291	.start	= 0xa0000,
1292	.end	= 0xbffff,
1293	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1294};
1295
1296void __init i386_reserve_resources(void)
1297{
1298	request_resource(&iomem_resource, &video_ram_resource);
1299	reserve_standard_io_resources();
1300}
1301
1302#endif /* CONFIG_X86_32 */
1303
1304static struct notifier_block kernel_offset_notifier = {
1305	.notifier_call = dump_kernel_offset
1306};
1307
1308static int __init register_kernel_offset_dumper(void)
1309{
1310	atomic_notifier_chain_register(&panic_notifier_list,
1311					&kernel_offset_notifier);
1312	return 0;
1313}
1314__initcall(register_kernel_offset_dumper);
1315
1316void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1317{
1318	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1319		return;
1320
1321	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1322}
v4.6
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/module.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
 
  53
  54#include <linux/errno.h>
  55#include <linux/kernel.h>
  56#include <linux/stddef.h>
  57#include <linux/unistd.h>
  58#include <linux/ptrace.h>
  59#include <linux/user.h>
  60#include <linux/delay.h>
  61
  62#include <linux/kallsyms.h>
  63#include <linux/cpufreq.h>
  64#include <linux/dma-mapping.h>
  65#include <linux/ctype.h>
  66#include <linux/uaccess.h>
  67
  68#include <linux/percpu.h>
  69#include <linux/crash_dump.h>
  70#include <linux/tboot.h>
  71#include <linux/jiffies.h>
 
  72
 
  73#include <video/edid.h>
  74
  75#include <asm/mtrr.h>
  76#include <asm/apic.h>
  77#include <asm/realmode.h>
  78#include <asm/e820.h>
  79#include <asm/mpspec.h>
  80#include <asm/setup.h>
  81#include <asm/efi.h>
  82#include <asm/timer.h>
  83#include <asm/i8259.h>
  84#include <asm/sections.h>
  85#include <asm/io_apic.h>
  86#include <asm/ist.h>
  87#include <asm/setup_arch.h>
  88#include <asm/bios_ebda.h>
  89#include <asm/cacheflush.h>
  90#include <asm/processor.h>
  91#include <asm/bugs.h>
  92#include <asm/kasan.h>
  93
  94#include <asm/vsyscall.h>
  95#include <asm/cpu.h>
  96#include <asm/desc.h>
  97#include <asm/dma.h>
  98#include <asm/iommu.h>
  99#include <asm/gart.h>
 100#include <asm/mmu_context.h>
 101#include <asm/proto.h>
 102
 103#include <asm/paravirt.h>
 104#include <asm/hypervisor.h>
 105#include <asm/olpc_ofw.h>
 106
 107#include <asm/percpu.h>
 108#include <asm/topology.h>
 109#include <asm/apicdef.h>
 110#include <asm/amd_nb.h>
 111#include <asm/mce.h>
 112#include <asm/alternative.h>
 113#include <asm/prom.h>
 114#include <asm/microcode.h>
 115#include <asm/mmu_context.h>
 
 116
 117/*
 118 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 119 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 120 *
 121 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
 122 * represented by pfn_mapped
 123 */
 124unsigned long max_low_pfn_mapped;
 125unsigned long max_pfn_mapped;
 126
 127#ifdef CONFIG_DMI
 128RESERVE_BRK(dmi_alloc, 65536);
 129#endif
 130
 131
 132static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 133unsigned long _brk_end = (unsigned long)__brk_base;
 134
 135#ifdef CONFIG_X86_64
 136int default_cpu_present_to_apicid(int mps_cpu)
 137{
 138	return __default_cpu_present_to_apicid(mps_cpu);
 139}
 140
 141int default_check_phys_apicid_present(int phys_apicid)
 142{
 143	return __default_check_phys_apicid_present(phys_apicid);
 144}
 145#endif
 146
 147struct boot_params boot_params;
 148
 149/*
 150 * Machine setup..
 151 */
 152static struct resource data_resource = {
 153	.name	= "Kernel data",
 154	.start	= 0,
 155	.end	= 0,
 156	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 157};
 158
 159static struct resource code_resource = {
 160	.name	= "Kernel code",
 161	.start	= 0,
 162	.end	= 0,
 163	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 164};
 165
 166static struct resource bss_resource = {
 167	.name	= "Kernel bss",
 168	.start	= 0,
 169	.end	= 0,
 170	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 171};
 172
 173
 174#ifdef CONFIG_X86_32
 175/* cpu data as detected by the assembly code in head.S */
 176struct cpuinfo_x86 new_cpu_data = {
 177	.wp_works_ok = -1,
 178};
 179/* common cpu data for all cpus */
 180struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 181	.wp_works_ok = -1,
 182};
 183EXPORT_SYMBOL(boot_cpu_data);
 184
 185unsigned int def_to_bigsmp;
 186
 187/* for MCA, but anyone else can use it if they want */
 188unsigned int machine_id;
 189unsigned int machine_submodel_id;
 190unsigned int BIOS_revision;
 191
 192struct apm_info apm_info;
 193EXPORT_SYMBOL(apm_info);
 194
 195#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 196	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 197struct ist_info ist_info;
 198EXPORT_SYMBOL(ist_info);
 199#else
 200struct ist_info ist_info;
 201#endif
 202
 203#else
 204struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 205	.x86_phys_bits = MAX_PHYSMEM_BITS,
 206};
 207EXPORT_SYMBOL(boot_cpu_data);
 208#endif
 209
 210
 211#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 212__visible unsigned long mmu_cr4_features;
 213#else
 214__visible unsigned long mmu_cr4_features = X86_CR4_PAE;
 215#endif
 216
 217/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 218int bootloader_type, bootloader_version;
 219
 220/*
 221 * Setup options
 222 */
 223struct screen_info screen_info;
 224EXPORT_SYMBOL(screen_info);
 225struct edid_info edid_info;
 226EXPORT_SYMBOL_GPL(edid_info);
 227
 228extern int root_mountflags;
 229
 230unsigned long saved_video_mode;
 231
 232#define RAMDISK_IMAGE_START_MASK	0x07FF
 233#define RAMDISK_PROMPT_FLAG		0x8000
 234#define RAMDISK_LOAD_FLAG		0x4000
 235
 236static char __initdata command_line[COMMAND_LINE_SIZE];
 237#ifdef CONFIG_CMDLINE_BOOL
 238static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 239#endif
 240
 241#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 242struct edd edd;
 243#ifdef CONFIG_EDD_MODULE
 244EXPORT_SYMBOL(edd);
 245#endif
 246/**
 247 * copy_edd() - Copy the BIOS EDD information
 248 *              from boot_params into a safe place.
 249 *
 250 */
 251static inline void __init copy_edd(void)
 252{
 253     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 254	    sizeof(edd.mbr_signature));
 255     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 256     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 257     edd.edd_info_nr = boot_params.eddbuf_entries;
 258}
 259#else
 260static inline void __init copy_edd(void)
 261{
 262}
 263#endif
 264
 265void * __init extend_brk(size_t size, size_t align)
 266{
 267	size_t mask = align - 1;
 268	void *ret;
 269
 270	BUG_ON(_brk_start == 0);
 271	BUG_ON(align & mask);
 272
 273	_brk_end = (_brk_end + mask) & ~mask;
 274	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 275
 276	ret = (void *)_brk_end;
 277	_brk_end += size;
 278
 279	memset(ret, 0, size);
 280
 281	return ret;
 282}
 283
 284#ifdef CONFIG_X86_32
 285static void __init cleanup_highmap(void)
 286{
 287}
 288#endif
 289
 290static void __init reserve_brk(void)
 291{
 292	if (_brk_end > _brk_start)
 293		memblock_reserve(__pa_symbol(_brk_start),
 294				 _brk_end - _brk_start);
 295
 296	/* Mark brk area as locked down and no longer taking any
 297	   new allocations */
 298	_brk_start = 0;
 299}
 300
 301u64 relocated_ramdisk;
 302
 303#ifdef CONFIG_BLK_DEV_INITRD
 304
 305static u64 __init get_ramdisk_image(void)
 306{
 307	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 308
 309	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 310
 311	return ramdisk_image;
 312}
 313static u64 __init get_ramdisk_size(void)
 314{
 315	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 316
 317	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 318
 319	return ramdisk_size;
 320}
 321
 322static void __init relocate_initrd(void)
 323{
 324	/* Assume only end is not page aligned */
 325	u64 ramdisk_image = get_ramdisk_image();
 326	u64 ramdisk_size  = get_ramdisk_size();
 327	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 328
 329	/* We need to move the initrd down into directly mapped mem */
 330	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 331						   area_size, PAGE_SIZE);
 332
 333	if (!relocated_ramdisk)
 334		panic("Cannot find place for new RAMDISK of size %lld\n",
 335		      ramdisk_size);
 336
 337	/* Note: this includes all the mem currently occupied by
 338	   the initrd, we rely on that fact to keep the data intact. */
 339	memblock_reserve(relocated_ramdisk, area_size);
 340	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 341	initrd_end   = initrd_start + ramdisk_size;
 342	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 343	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 344
 345	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 346
 347	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 348		" [mem %#010llx-%#010llx]\n",
 349		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 350		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 351}
 352
 353static void __init early_reserve_initrd(void)
 354{
 355	/* Assume only end is not page aligned */
 356	u64 ramdisk_image = get_ramdisk_image();
 357	u64 ramdisk_size  = get_ramdisk_size();
 358	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359
 360	if (!boot_params.hdr.type_of_loader ||
 361	    !ramdisk_image || !ramdisk_size)
 362		return;		/* No initrd provided by bootloader */
 363
 364	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 365}
 366static void __init reserve_initrd(void)
 367{
 368	/* Assume only end is not page aligned */
 369	u64 ramdisk_image = get_ramdisk_image();
 370	u64 ramdisk_size  = get_ramdisk_size();
 371	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 372	u64 mapped_size;
 373
 374	if (!boot_params.hdr.type_of_loader ||
 375	    !ramdisk_image || !ramdisk_size)
 376		return;		/* No initrd provided by bootloader */
 377
 378	initrd_start = 0;
 379
 380	mapped_size = memblock_mem_size(max_pfn_mapped);
 381	if (ramdisk_size >= (mapped_size>>1))
 382		panic("initrd too large to handle, "
 383		       "disabling initrd (%lld needed, %lld available)\n",
 384		       ramdisk_size, mapped_size>>1);
 385
 386	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 387			ramdisk_end - 1);
 388
 389	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 390				PFN_DOWN(ramdisk_end))) {
 391		/* All are mapped, easy case */
 392		initrd_start = ramdisk_image + PAGE_OFFSET;
 393		initrd_end = initrd_start + ramdisk_size;
 394		return;
 395	}
 396
 397	relocate_initrd();
 398
 399	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 400}
 
 401#else
 402static void __init early_reserve_initrd(void)
 403{
 404}
 405static void __init reserve_initrd(void)
 406{
 407}
 408#endif /* CONFIG_BLK_DEV_INITRD */
 409
 410static void __init parse_setup_data(void)
 411{
 412	struct setup_data *data;
 413	u64 pa_data, pa_next;
 414
 415	pa_data = boot_params.hdr.setup_data;
 416	while (pa_data) {
 417		u32 data_len, data_type;
 418
 419		data = early_memremap(pa_data, sizeof(*data));
 420		data_len = data->len + sizeof(struct setup_data);
 421		data_type = data->type;
 422		pa_next = data->next;
 423		early_memunmap(data, sizeof(*data));
 424
 425		switch (data_type) {
 426		case SETUP_E820_EXT:
 427			parse_e820_ext(pa_data, data_len);
 428			break;
 429		case SETUP_DTB:
 430			add_dtb(pa_data);
 431			break;
 432		case SETUP_EFI:
 433			parse_efi_setup(pa_data, data_len);
 434			break;
 435		default:
 436			break;
 437		}
 438		pa_data = pa_next;
 439	}
 440}
 441
 442static void __init e820_reserve_setup_data(void)
 443{
 444	struct setup_data *data;
 445	u64 pa_data;
 446
 447	pa_data = boot_params.hdr.setup_data;
 448	if (!pa_data)
 449		return;
 450
 451	while (pa_data) {
 452		data = early_memremap(pa_data, sizeof(*data));
 453		e820_update_range(pa_data, sizeof(*data)+data->len,
 454			 E820_RAM, E820_RESERVED_KERN);
 455		pa_data = data->next;
 456		early_memunmap(data, sizeof(*data));
 457	}
 458
 459	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 460	memcpy(&e820_saved, &e820, sizeof(struct e820map));
 461	printk(KERN_INFO "extended physical RAM map:\n");
 462	e820_print_map("reserve setup_data");
 463}
 464
 465static void __init memblock_x86_reserve_range_setup_data(void)
 466{
 467	struct setup_data *data;
 468	u64 pa_data;
 469
 470	pa_data = boot_params.hdr.setup_data;
 471	while (pa_data) {
 472		data = early_memremap(pa_data, sizeof(*data));
 473		memblock_reserve(pa_data, sizeof(*data) + data->len);
 474		pa_data = data->next;
 475		early_memunmap(data, sizeof(*data));
 476	}
 477}
 478
 479/*
 480 * --------- Crashkernel reservation ------------------------------
 481 */
 482
 483#ifdef CONFIG_KEXEC_CORE
 484
 485/* 16M alignment for crash kernel regions */
 486#define CRASH_ALIGN		(16 << 20)
 487
 488/*
 489 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 490 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 491 * On 64bit, old kexec-tools need to under 896MiB.
 492 */
 493#ifdef CONFIG_X86_32
 494# define CRASH_ADDR_LOW_MAX	(512 << 20)
 495# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 496#else
 497# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 498# define CRASH_ADDR_HIGH_MAX	MAXMEM
 499#endif
 500
 501static int __init reserve_crashkernel_low(void)
 502{
 503#ifdef CONFIG_X86_64
 504	unsigned long long base, low_base = 0, low_size = 0;
 505	unsigned long total_low_mem;
 506	int ret;
 507
 508	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 509
 510	/* crashkernel=Y,low */
 511	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 512	if (ret) {
 513		/*
 514		 * two parts from lib/swiotlb.c:
 515		 * -swiotlb size: user-specified with swiotlb= or default.
 516		 *
 517		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 518		 * to 8M for other buffers that may need to stay low too. Also
 519		 * make sure we allocate enough extra low memory so that we
 520		 * don't run out of DMA buffers for 32-bit devices.
 521		 */
 522		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 523	} else {
 524		/* passed with crashkernel=0,low ? */
 525		if (!low_size)
 526			return 0;
 527	}
 528
 529	low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
 530	if (!low_base) {
 531		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 532		       (unsigned long)(low_size >> 20));
 533		return -ENOMEM;
 534	}
 535
 536	ret = memblock_reserve(low_base, low_size);
 537	if (ret) {
 538		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 539		return ret;
 540	}
 541
 542	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 543		(unsigned long)(low_size >> 20),
 544		(unsigned long)(low_base >> 20),
 545		(unsigned long)(total_low_mem >> 20));
 546
 547	crashk_low_res.start = low_base;
 548	crashk_low_res.end   = low_base + low_size - 1;
 549	insert_resource(&iomem_resource, &crashk_low_res);
 550#endif
 551	return 0;
 552}
 553
 554static void __init reserve_crashkernel(void)
 555{
 556	unsigned long long crash_size, crash_base, total_mem;
 557	bool high = false;
 558	int ret;
 559
 560	total_mem = memblock_phys_mem_size();
 561
 562	/* crashkernel=XM */
 563	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 564	if (ret != 0 || crash_size <= 0) {
 565		/* crashkernel=X,high */
 566		ret = parse_crashkernel_high(boot_command_line, total_mem,
 567					     &crash_size, &crash_base);
 568		if (ret != 0 || crash_size <= 0)
 569			return;
 570		high = true;
 571	}
 572
 
 
 
 
 
 573	/* 0 means: find the address automatically */
 574	if (crash_base <= 0) {
 575		/*
 576		 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
 
 
 577		 */
 578		crash_base = memblock_find_in_range(CRASH_ALIGN,
 579						    high ? CRASH_ADDR_HIGH_MAX
 580							 : CRASH_ADDR_LOW_MAX,
 581						    crash_size, CRASH_ALIGN);
 582		if (!crash_base) {
 583			pr_info("crashkernel reservation failed - No suitable area found.\n");
 584			return;
 585		}
 586
 587	} else {
 588		unsigned long long start;
 589
 590		start = memblock_find_in_range(crash_base,
 591					       crash_base + crash_size,
 592					       crash_size, 1 << 20);
 593		if (start != crash_base) {
 594			pr_info("crashkernel reservation failed - memory is in use.\n");
 595			return;
 596		}
 597	}
 598	ret = memblock_reserve(crash_base, crash_size);
 599	if (ret) {
 600		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 601		return;
 602	}
 603
 604	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 605		memblock_free(crash_base, crash_size);
 606		return;
 607	}
 608
 609	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 610		(unsigned long)(crash_size >> 20),
 611		(unsigned long)(crash_base >> 20),
 612		(unsigned long)(total_mem >> 20));
 613
 614	crashk_res.start = crash_base;
 615	crashk_res.end   = crash_base + crash_size - 1;
 616	insert_resource(&iomem_resource, &crashk_res);
 617}
 618#else
 619static void __init reserve_crashkernel(void)
 620{
 621}
 622#endif
 623
 624static struct resource standard_io_resources[] = {
 625	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 626		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 627	{ .name = "pic1", .start = 0x20, .end = 0x21,
 628		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 629	{ .name = "timer0", .start = 0x40, .end = 0x43,
 630		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 631	{ .name = "timer1", .start = 0x50, .end = 0x53,
 632		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 633	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 634		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 635	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 636		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 637	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 638		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 639	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 640		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 641	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 642		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 643	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 644		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 645};
 646
 647void __init reserve_standard_io_resources(void)
 648{
 649	int i;
 650
 651	/* request I/O space for devices used on all i[345]86 PCs */
 652	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 653		request_resource(&ioport_resource, &standard_io_resources[i]);
 654
 655}
 656
 657static __init void reserve_ibft_region(void)
 658{
 659	unsigned long addr, size = 0;
 660
 661	addr = find_ibft_region(&size);
 662
 663	if (size)
 664		memblock_reserve(addr, size);
 665}
 666
 667static bool __init snb_gfx_workaround_needed(void)
 668{
 669#ifdef CONFIG_PCI
 670	int i;
 671	u16 vendor, devid;
 672	static const __initconst u16 snb_ids[] = {
 673		0x0102,
 674		0x0112,
 675		0x0122,
 676		0x0106,
 677		0x0116,
 678		0x0126,
 679		0x010a,
 680	};
 681
 682	/* Assume no if something weird is going on with PCI */
 683	if (!early_pci_allowed())
 684		return false;
 685
 686	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 687	if (vendor != 0x8086)
 688		return false;
 689
 690	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 691	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 692		if (devid == snb_ids[i])
 693			return true;
 694#endif
 695
 696	return false;
 697}
 698
 699/*
 700 * Sandy Bridge graphics has trouble with certain ranges, exclude
 701 * them from allocation.
 702 */
 703static void __init trim_snb_memory(void)
 704{
 705	static const __initconst unsigned long bad_pages[] = {
 706		0x20050000,
 707		0x20110000,
 708		0x20130000,
 709		0x20138000,
 710		0x40004000,
 711	};
 712	int i;
 713
 714	if (!snb_gfx_workaround_needed())
 715		return;
 716
 717	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 718
 719	/*
 720	 * Reserve all memory below the 1 MB mark that has not
 721	 * already been reserved.
 722	 */
 723	memblock_reserve(0, 1<<20);
 724	
 725	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 726		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 727			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 728			       bad_pages[i]);
 729	}
 730}
 731
 732/*
 733 * Here we put platform-specific memory range workarounds, i.e.
 734 * memory known to be corrupt or otherwise in need to be reserved on
 735 * specific platforms.
 736 *
 737 * If this gets used more widely it could use a real dispatch mechanism.
 738 */
 739static void __init trim_platform_memory_ranges(void)
 740{
 741	trim_snb_memory();
 742}
 743
 744static void __init trim_bios_range(void)
 745{
 746	/*
 747	 * A special case is the first 4Kb of memory;
 748	 * This is a BIOS owned area, not kernel ram, but generally
 749	 * not listed as such in the E820 table.
 750	 *
 751	 * This typically reserves additional memory (64KiB by default)
 752	 * since some BIOSes are known to corrupt low memory.  See the
 753	 * Kconfig help text for X86_RESERVE_LOW.
 754	 */
 755	e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
 756
 757	/*
 758	 * special case: Some BIOSen report the PC BIOS
 759	 * area (640->1Mb) as ram even though it is not.
 760	 * take them out.
 761	 */
 762	e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
 763
 764	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 765}
 766
 767/* called before trim_bios_range() to spare extra sanitize */
 768static void __init e820_add_kernel_range(void)
 769{
 770	u64 start = __pa_symbol(_text);
 771	u64 size = __pa_symbol(_end) - start;
 772
 773	/*
 774	 * Complain if .text .data and .bss are not marked as E820_RAM and
 775	 * attempt to fix it by adding the range. We may have a confused BIOS,
 776	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 777	 * exclude kernel range. If we really are running on top non-RAM,
 778	 * we will crash later anyways.
 779	 */
 780	if (e820_all_mapped(start, start + size, E820_RAM))
 781		return;
 782
 783	pr_warn(".text .data .bss are not marked as E820_RAM!\n");
 784	e820_remove_range(start, size, E820_RAM, 0);
 785	e820_add_region(start, size, E820_RAM);
 786}
 787
 788static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 789
 790static int __init parse_reservelow(char *p)
 791{
 792	unsigned long long size;
 793
 794	if (!p)
 795		return -EINVAL;
 796
 797	size = memparse(p, &p);
 798
 799	if (size < 4096)
 800		size = 4096;
 801
 802	if (size > 640*1024)
 803		size = 640*1024;
 804
 805	reserve_low = size;
 806
 807	return 0;
 808}
 809
 810early_param("reservelow", parse_reservelow);
 811
 812static void __init trim_low_memory_range(void)
 813{
 814	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 815}
 816	
 817/*
 818 * Dump out kernel offset information on panic.
 819 */
 820static int
 821dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 822{
 823	if (kaslr_enabled()) {
 824		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 825			 kaslr_offset(),
 826			 __START_KERNEL,
 827			 __START_KERNEL_map,
 828			 MODULES_VADDR-1);
 829	} else {
 830		pr_emerg("Kernel Offset: disabled\n");
 831	}
 832
 833	return 0;
 834}
 835
 836/*
 837 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 838 * passed the efi memmap, systab, etc., so we should use these data structures
 839 * for initialization.  Note, the efi init code path is determined by the
 840 * global efi_enabled. This allows the same kernel image to be used on existing
 841 * systems (with a traditional BIOS) as well as on EFI systems.
 842 */
 843/*
 844 * setup_arch - architecture-specific boot-time initializations
 845 *
 846 * Note: On x86_64, fixmaps are ready for use even before this is called.
 847 */
 848
 849void __init setup_arch(char **cmdline_p)
 850{
 851	memblock_reserve(__pa_symbol(_text),
 852			 (unsigned long)__bss_stop - (unsigned long)_text);
 853
 854	early_reserve_initrd();
 855
 856	/*
 857	 * At this point everything still needed from the boot loader
 858	 * or BIOS or kernel text should be early reserved or marked not
 859	 * RAM in e820. All other memory is free game.
 860	 */
 861
 862#ifdef CONFIG_X86_32
 863	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 864
 865	/*
 866	 * copy kernel address range established so far and switch
 867	 * to the proper swapper page table
 868	 */
 869	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 870			initial_page_table + KERNEL_PGD_BOUNDARY,
 871			KERNEL_PGD_PTRS);
 872
 873	load_cr3(swapper_pg_dir);
 874	/*
 875	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 876	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 877	 * will not flush anything because the cpu quirk which clears
 878	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 879	 * load_cr3() above the TLB has been flushed already. The
 880	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 881	 * so proper operation is guaranteed.
 882	 */
 883	__flush_tlb_all();
 884#else
 885	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 
 886#endif
 887
 888	/*
 889	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 890	 * reserve_top(), so do this before touching the ioremap area.
 891	 */
 892	olpc_ofw_detect();
 893
 894	early_trap_init();
 895	early_cpu_init();
 896	early_ioremap_init();
 897
 898	setup_olpc_ofw_pgd();
 899
 900	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 901	screen_info = boot_params.screen_info;
 902	edid_info = boot_params.edid_info;
 903#ifdef CONFIG_X86_32
 904	apm_info.bios = boot_params.apm_bios_info;
 905	ist_info = boot_params.ist_info;
 906#endif
 907	saved_video_mode = boot_params.hdr.vid_mode;
 908	bootloader_type = boot_params.hdr.type_of_loader;
 909	if ((bootloader_type >> 4) == 0xe) {
 910		bootloader_type &= 0xf;
 911		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 912	}
 913	bootloader_version  = bootloader_type & 0xf;
 914	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 915
 916#ifdef CONFIG_BLK_DEV_RAM
 917	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 918	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 919	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 920#endif
 921#ifdef CONFIG_EFI
 922	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 923		     EFI32_LOADER_SIGNATURE, 4)) {
 924		set_bit(EFI_BOOT, &efi.flags);
 925	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 926		     EFI64_LOADER_SIGNATURE, 4)) {
 927		set_bit(EFI_BOOT, &efi.flags);
 928		set_bit(EFI_64BIT, &efi.flags);
 929	}
 930
 931	if (efi_enabled(EFI_BOOT))
 932		efi_memblock_x86_reserve_range();
 933#endif
 934
 935	x86_init.oem.arch_setup();
 936
 937	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 938	setup_memory_map();
 939	parse_setup_data();
 940
 941	copy_edd();
 942
 943	if (!boot_params.hdr.root_flags)
 944		root_mountflags &= ~MS_RDONLY;
 945	init_mm.start_code = (unsigned long) _text;
 946	init_mm.end_code = (unsigned long) _etext;
 947	init_mm.end_data = (unsigned long) _edata;
 948	init_mm.brk = _brk_end;
 949
 950	mpx_mm_init(&init_mm);
 951
 952	code_resource.start = __pa_symbol(_text);
 953	code_resource.end = __pa_symbol(_etext)-1;
 954	data_resource.start = __pa_symbol(_etext);
 955	data_resource.end = __pa_symbol(_edata)-1;
 956	bss_resource.start = __pa_symbol(__bss_start);
 957	bss_resource.end = __pa_symbol(__bss_stop)-1;
 958
 959#ifdef CONFIG_CMDLINE_BOOL
 960#ifdef CONFIG_CMDLINE_OVERRIDE
 961	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 962#else
 963	if (builtin_cmdline[0]) {
 964		/* append boot loader cmdline to builtin */
 965		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 966		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 967		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 968	}
 969#endif
 970#endif
 971
 972	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 973	*cmdline_p = command_line;
 974
 975	/*
 976	 * x86_configure_nx() is called before parse_early_param() to detect
 977	 * whether hardware doesn't support NX (so that the early EHCI debug
 978	 * console setup can safely call set_fixmap()). It may then be called
 979	 * again from within noexec_setup() during parsing early parameters
 980	 * to honor the respective command line option.
 981	 */
 982	x86_configure_nx();
 983
 984	parse_early_param();
 985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986	x86_report_nx();
 987
 988	/* after early param, so could get panic from serial */
 989	memblock_x86_reserve_range_setup_data();
 990
 991	if (acpi_mps_check()) {
 992#ifdef CONFIG_X86_LOCAL_APIC
 993		disable_apic = 1;
 994#endif
 995		setup_clear_cpu_cap(X86_FEATURE_APIC);
 996	}
 997
 998#ifdef CONFIG_PCI
 999	if (pci_early_dump_regs)
1000		early_dump_pci_devices();
1001#endif
1002
1003	/* update the e820_saved too */
1004	e820_reserve_setup_data();
1005	finish_e820_parsing();
1006
1007	if (efi_enabled(EFI_BOOT))
1008		efi_init();
1009
1010	dmi_scan_machine();
1011	dmi_memdev_walk();
1012	dmi_set_dump_stack_arch_desc();
1013
1014	/*
1015	 * VMware detection requires dmi to be available, so this
1016	 * needs to be done after dmi_scan_machine, for the BP.
1017	 */
1018	init_hypervisor_platform();
1019
1020	x86_init.resources.probe_roms();
1021
1022	/* after parse_early_param, so could debug it */
1023	insert_resource(&iomem_resource, &code_resource);
1024	insert_resource(&iomem_resource, &data_resource);
1025	insert_resource(&iomem_resource, &bss_resource);
1026
1027	e820_add_kernel_range();
1028	trim_bios_range();
1029#ifdef CONFIG_X86_32
1030	if (ppro_with_ram_bug()) {
1031		e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1032				  E820_RESERVED);
1033		sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
1034		printk(KERN_INFO "fixed physical RAM map:\n");
1035		e820_print_map("bad_ppro");
1036	}
1037#else
1038	early_gart_iommu_check();
1039#endif
1040
1041	/*
1042	 * partially used pages are not usable - thus
1043	 * we are rounding upwards:
1044	 */
1045	max_pfn = e820_end_of_ram_pfn();
1046
1047	/* update e820 for memory not covered by WB MTRRs */
1048	mtrr_bp_init();
1049	if (mtrr_trim_uncached_memory(max_pfn))
1050		max_pfn = e820_end_of_ram_pfn();
1051
1052	max_possible_pfn = max_pfn;
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
1054#ifdef CONFIG_X86_32
1055	/* max_low_pfn get updated here */
1056	find_low_pfn_range();
1057#else
1058	check_x2apic();
1059
1060	/* How many end-of-memory variables you have, grandma! */
1061	/* need this before calling reserve_initrd */
1062	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1063		max_low_pfn = e820_end_of_low_ram_pfn();
1064	else
1065		max_low_pfn = max_pfn;
1066
1067	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1068#endif
1069
1070	/*
1071	 * Find and reserve possible boot-time SMP configuration:
1072	 */
1073	find_smp_config();
1074
1075	reserve_ibft_region();
1076
1077	early_alloc_pgt_buf();
1078
1079	/*
1080	 * Need to conclude brk, before memblock_x86_fill()
1081	 *  it could use memblock_find_in_range, could overlap with
1082	 *  brk area.
1083	 */
1084	reserve_brk();
1085
1086	cleanup_highmap();
1087
1088	memblock_set_current_limit(ISA_END_ADDRESS);
1089	memblock_x86_fill();
 
 
1090
1091	if (efi_enabled(EFI_BOOT)) {
1092		efi_fake_memmap();
1093		efi_find_mirror();
1094	}
1095
1096	/*
1097	 * The EFI specification says that boot service code won't be called
1098	 * after ExitBootServices(). This is, in fact, a lie.
1099	 */
1100	if (efi_enabled(EFI_MEMMAP))
1101		efi_reserve_boot_services();
 
1102
1103	/* preallocate 4k for mptable mpc */
1104	early_reserve_e820_mpc_new();
1105
1106#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1107	setup_bios_corruption_check();
1108#endif
1109
1110#ifdef CONFIG_X86_32
1111	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1112			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1113#endif
1114
1115	reserve_real_mode();
1116
1117	trim_platform_memory_ranges();
1118	trim_low_memory_range();
1119
1120	init_mem_mapping();
1121
1122	early_trap_pf_init();
1123
1124	setup_real_mode();
 
 
 
 
 
 
 
 
 
1125
1126	memblock_set_current_limit(get_max_mapped());
1127
1128	/*
1129	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1130	 */
1131
1132#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1133	if (init_ohci1394_dma_early)
1134		init_ohci1394_dma_on_all_controllers();
1135#endif
1136	/* Allocate bigger log buffer */
1137	setup_log_buf(1);
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139	reserve_initrd();
1140
1141#if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD)
1142	acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start);
1143#endif
1144
1145	vsmp_init();
1146
1147	io_delay_init();
1148
 
 
1149	/*
1150	 * Parse the ACPI tables for possible boot-time SMP configuration.
1151	 */
1152	acpi_boot_table_init();
1153
1154	early_acpi_boot_init();
1155
1156	initmem_init();
1157	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1158
1159	/*
1160	 * Reserve memory for crash kernel after SRAT is parsed so that it
1161	 * won't consume hotpluggable memory.
1162	 */
1163	reserve_crashkernel();
1164
1165	memblock_find_dma_reserve();
1166
1167#ifdef CONFIG_KVM_GUEST
1168	kvmclock_init();
1169#endif
1170
 
 
 
 
1171	x86_init.paging.pagetable_init();
1172
1173	kasan_init();
1174
1175	if (boot_cpu_data.cpuid_level >= 0) {
1176		/* A CPU has %cr4 if and only if it has CPUID */
1177		mmu_cr4_features = __read_cr4();
1178		if (trampoline_cr4_features)
1179			*trampoline_cr4_features = mmu_cr4_features;
1180	}
1181
1182#ifdef CONFIG_X86_32
1183	/* sync back kernel address range */
1184	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1185			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1186			KERNEL_PGD_PTRS);
1187
1188	/*
1189	 * sync back low identity map too.  It is used for example
1190	 * in the 32-bit EFI stub.
 
 
1191	 */
1192	clone_pgd_range(initial_page_table,
1193			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1194			min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1195#endif
1196
1197	tboot_probe();
1198
1199	map_vsyscall();
1200
1201	generic_apic_probe();
1202
1203	early_quirks();
1204
1205	/*
1206	 * Read APIC and some other early information from ACPI tables.
1207	 */
1208	acpi_boot_init();
1209	sfi_init();
1210	x86_dtb_init();
1211
1212	/*
1213	 * get boot-time SMP configuration:
1214	 */
1215	if (smp_found_config)
1216		get_smp_config();
 
 
 
 
 
1217
1218	prefill_possible_map();
1219
1220	init_cpu_to_node();
1221
1222	init_apic_mappings();
1223	io_apic_init_mappings();
1224
1225	kvm_guest_init();
1226
1227	e820_reserve_resources();
1228	e820_mark_nosave_regions(max_low_pfn);
1229
1230	x86_init.resources.reserve_resources();
1231
1232	e820_setup_gap();
1233
1234#ifdef CONFIG_VT
1235#if defined(CONFIG_VGA_CONSOLE)
1236	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1237		conswitchp = &vga_con;
1238#elif defined(CONFIG_DUMMY_CONSOLE)
1239	conswitchp = &dummy_con;
1240#endif
1241#endif
1242	x86_init.oem.banner();
1243
1244	x86_init.timers.wallclock_init();
1245
1246	mcheck_init();
1247
1248	arch_init_ideal_nops();
1249
1250	register_refined_jiffies(CLOCK_TICK_RATE);
1251
1252#ifdef CONFIG_EFI
1253	if (efi_enabled(EFI_BOOT))
1254		efi_apply_memmap_quirks();
1255#endif
 
 
1256}
1257
1258#ifdef CONFIG_X86_32
1259
1260static struct resource video_ram_resource = {
1261	.name	= "Video RAM area",
1262	.start	= 0xa0000,
1263	.end	= 0xbffff,
1264	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1265};
1266
1267void __init i386_reserve_resources(void)
1268{
1269	request_resource(&iomem_resource, &video_ram_resource);
1270	reserve_standard_io_resources();
1271}
1272
1273#endif /* CONFIG_X86_32 */
1274
1275static struct notifier_block kernel_offset_notifier = {
1276	.notifier_call = dump_kernel_offset
1277};
1278
1279static int __init register_kernel_offset_dumper(void)
1280{
1281	atomic_notifier_chain_register(&panic_notifier_list,
1282					&kernel_offset_notifier);
1283	return 0;
1284}
1285__initcall(register_kernel_offset_dumper);
1286
1287void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1288{
1289	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1290		return;
1291
1292	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1293}