Linux Audio

Check our new training course

Loading...
v4.17
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <xen/xen.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/mem_encrypt.h>
  74
  75#include <linux/usb/xhci-dbgp.h>
  76#include <video/edid.h>
 
 
 
 
 
  77
  78#include <asm/mtrr.h>
  79#include <asm/apic.h>
  80#include <asm/realmode.h>
  81#include <asm/e820/api.h>
  82#include <asm/mpspec.h>
  83#include <asm/setup.h>
  84#include <asm/efi.h>
  85#include <asm/timer.h>
  86#include <asm/i8259.h>
  87#include <asm/sections.h>
  88#include <asm/io_apic.h>
  89#include <asm/ist.h>
  90#include <asm/setup_arch.h>
  91#include <asm/bios_ebda.h>
  92#include <asm/cacheflush.h>
  93#include <asm/processor.h>
  94#include <asm/bugs.h>
  95#include <asm/kasan.h>
  96
  97#include <asm/vsyscall.h>
  98#include <asm/cpu.h>
  99#include <asm/desc.h>
 100#include <asm/dma.h>
 101#include <asm/iommu.h>
 102#include <asm/gart.h>
 103#include <asm/mmu_context.h>
 104#include <asm/proto.h>
 105
 106#include <asm/paravirt.h>
 107#include <asm/hypervisor.h>
 108#include <asm/olpc_ofw.h>
 109
 110#include <asm/percpu.h>
 111#include <asm/topology.h>
 112#include <asm/apicdef.h>
 113#include <asm/amd_nb.h>
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 
 
 
 116#include <asm/prom.h>
 117#include <asm/microcode.h>
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 
 
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 
 
 
 
 
 138
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 
 
 143 */
 
 
 
 
 
 
 
 
 144static struct resource data_resource = {
 145	.name	= "Kernel data",
 146	.start	= 0,
 147	.end	= 0,
 148	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152	.name	= "Kernel code",
 153	.start	= 0,
 154	.end	= 0,
 155	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159	.name	= "Kernel bss",
 160	.start	= 0,
 161	.end	= 0,
 162	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 193struct cpuinfo_x86 boot_cpu_data __read_mostly;
 194EXPORT_SYMBOL(boot_cpu_data);
 195#endif
 196
 197
 198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 199__visible unsigned long mmu_cr4_features __ro_after_init;
 200#else
 201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 202#endif
 203
 204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 205int bootloader_type, bootloader_version;
 206
 207/*
 208 * Setup options
 209 */
 210struct screen_info screen_info;
 211EXPORT_SYMBOL(screen_info);
 212struct edid_info edid_info;
 213EXPORT_SYMBOL_GPL(edid_info);
 214
 215extern int root_mountflags;
 216
 217unsigned long saved_video_mode;
 218
 219#define RAMDISK_IMAGE_START_MASK	0x07FF
 220#define RAMDISK_PROMPT_FLAG		0x8000
 221#define RAMDISK_LOAD_FLAG		0x4000
 222
 223static char __initdata command_line[COMMAND_LINE_SIZE];
 224#ifdef CONFIG_CMDLINE_BOOL
 225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 226#endif
 227
 228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 229struct edd edd;
 230#ifdef CONFIG_EDD_MODULE
 231EXPORT_SYMBOL(edd);
 232#endif
 233/**
 234 * copy_edd() - Copy the BIOS EDD information
 235 *              from boot_params into a safe place.
 236 *
 237 */
 238static inline void __init copy_edd(void)
 239{
 240     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 241	    sizeof(edd.mbr_signature));
 242     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 243     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 244     edd.edd_info_nr = boot_params.eddbuf_entries;
 245}
 246#else
 247static inline void __init copy_edd(void)
 248{
 249}
 250#endif
 251
 252void * __init extend_brk(size_t size, size_t align)
 253{
 254	size_t mask = align - 1;
 255	void *ret;
 256
 257	BUG_ON(_brk_start == 0);
 258	BUG_ON(align & mask);
 259
 260	_brk_end = (_brk_end + mask) & ~mask;
 261	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 262
 263	ret = (void *)_brk_end;
 264	_brk_end += size;
 265
 266	memset(ret, 0, size);
 267
 268	return ret;
 269}
 270
 271#ifdef CONFIG_X86_32
 272static void __init cleanup_highmap(void)
 273{
 274}
 275#endif
 276
 277static void __init reserve_brk(void)
 278{
 279	if (_brk_end > _brk_start)
 280		memblock_reserve(__pa_symbol(_brk_start),
 281				 _brk_end - _brk_start);
 282
 283	/* Mark brk area as locked down and no longer taking any
 284	   new allocations */
 285	_brk_start = 0;
 286}
 287
 288u64 relocated_ramdisk;
 289
 290#ifdef CONFIG_BLK_DEV_INITRD
 291
 292static u64 __init get_ramdisk_image(void)
 293{
 294	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 295
 296	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 297
 
 
 
 298	return ramdisk_image;
 299}
 300static u64 __init get_ramdisk_size(void)
 301{
 302	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 303
 304	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 305
 
 
 
 306	return ramdisk_size;
 307}
 308
 309static void __init relocate_initrd(void)
 310{
 311	/* Assume only end is not page aligned */
 312	u64 ramdisk_image = get_ramdisk_image();
 313	u64 ramdisk_size  = get_ramdisk_size();
 314	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 315
 316	/* We need to move the initrd down into directly mapped mem */
 317	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 318						   area_size, PAGE_SIZE);
 319
 320	if (!relocated_ramdisk)
 321		panic("Cannot find place for new RAMDISK of size %lld\n",
 322		      ramdisk_size);
 323
 324	/* Note: this includes all the mem currently occupied by
 325	   the initrd, we rely on that fact to keep the data intact. */
 326	memblock_reserve(relocated_ramdisk, area_size);
 327	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 328	initrd_end   = initrd_start + ramdisk_size;
 329	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 330	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 331
 332	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 333
 334	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 335		" [mem %#010llx-%#010llx]\n",
 336		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 337		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 338}
 339
 340static void __init early_reserve_initrd(void)
 341{
 342	/* Assume only end is not page aligned */
 343	u64 ramdisk_image = get_ramdisk_image();
 344	u64 ramdisk_size  = get_ramdisk_size();
 345	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 346
 347	if (!boot_params.hdr.type_of_loader ||
 348	    !ramdisk_image || !ramdisk_size)
 349		return;		/* No initrd provided by bootloader */
 350
 351	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 352}
 
 353static void __init reserve_initrd(void)
 354{
 355	/* Assume only end is not page aligned */
 356	u64 ramdisk_image = get_ramdisk_image();
 357	u64 ramdisk_size  = get_ramdisk_size();
 358	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359	u64 mapped_size;
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	initrd_start = 0;
 366
 367	mapped_size = memblock_mem_size(max_pfn_mapped);
 368	if (ramdisk_size >= (mapped_size>>1))
 369		panic("initrd too large to handle, "
 370		       "disabling initrd (%lld needed, %lld available)\n",
 371		       ramdisk_size, mapped_size>>1);
 372
 373	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 374			ramdisk_end - 1);
 375
 376	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 377				PFN_DOWN(ramdisk_end))) {
 378		/* All are mapped, easy case */
 379		initrd_start = ramdisk_image + PAGE_OFFSET;
 380		initrd_end = initrd_start + ramdisk_size;
 381		return;
 382	}
 383
 384	relocate_initrd();
 385
 386	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 387}
 388
 389#else
 390static void __init early_reserve_initrd(void)
 391{
 392}
 393static void __init reserve_initrd(void)
 394{
 395}
 396#endif /* CONFIG_BLK_DEV_INITRD */
 397
 398static void __init parse_setup_data(void)
 399{
 400	struct setup_data *data;
 401	u64 pa_data, pa_next;
 402
 403	pa_data = boot_params.hdr.setup_data;
 404	while (pa_data) {
 405		u32 data_len, data_type;
 406
 407		data = early_memremap(pa_data, sizeof(*data));
 408		data_len = data->len + sizeof(struct setup_data);
 409		data_type = data->type;
 410		pa_next = data->next;
 411		early_memunmap(data, sizeof(*data));
 412
 413		switch (data_type) {
 414		case SETUP_E820_EXT:
 415			e820__memory_setup_extended(pa_data, data_len);
 416			break;
 417		case SETUP_DTB:
 418			add_dtb(pa_data);
 419			break;
 420		case SETUP_EFI:
 421			parse_efi_setup(pa_data, data_len);
 422			break;
 423		default:
 424			break;
 425		}
 426		pa_data = pa_next;
 427	}
 428}
 429
 430static void __init memblock_x86_reserve_range_setup_data(void)
 431{
 432	struct setup_data *data;
 433	u64 pa_data;
 434
 435	pa_data = boot_params.hdr.setup_data;
 436	while (pa_data) {
 437		data = early_memremap(pa_data, sizeof(*data));
 438		memblock_reserve(pa_data, sizeof(*data) + data->len);
 
 
 
 
 
 
 439		pa_data = data->next;
 440		early_memunmap(data, sizeof(*data));
 441	}
 442}
 443
 444/*
 445 * --------- Crashkernel reservation ------------------------------
 446 */
 447
 448#ifdef CONFIG_KEXEC_CORE
 449
 450/* 16M alignment for crash kernel regions */
 451#define CRASH_ALIGN		(16 << 20)
 452
 453/*
 454 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 456 * On 64bit, old kexec-tools need to under 896MiB.
 
 
 
 
 
 
 
 
 457 */
 458#ifdef CONFIG_X86_32
 459# define CRASH_ADDR_LOW_MAX	(512 << 20)
 460# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 461#else
 462# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 463# define CRASH_ADDR_HIGH_MAX	MAXMEM
 464#endif
 465
 466static int __init reserve_crashkernel_low(void)
 467{
 468#ifdef CONFIG_X86_64
 469	unsigned long long base, low_base = 0, low_size = 0;
 470	unsigned long total_low_mem;
 471	int ret;
 472
 473	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 474
 475	/* crashkernel=Y,low */
 476	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 477	if (ret) {
 478		/*
 479		 * two parts from lib/swiotlb.c:
 480		 * -swiotlb size: user-specified with swiotlb= or default.
 481		 *
 482		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 483		 * to 8M for other buffers that may need to stay low too. Also
 484		 * make sure we allocate enough extra low memory so that we
 485		 * don't run out of DMA buffers for 32-bit devices.
 486		 */
 487		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 488	} else {
 489		/* passed with crashkernel=0,low ? */
 490		if (!low_size)
 491			return 0;
 492	}
 493
 494	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 495	if (!low_base) {
 496		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 497		       (unsigned long)(low_size >> 20));
 498		return -ENOMEM;
 499	}
 500
 501	ret = memblock_reserve(low_base, low_size);
 502	if (ret) {
 503		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 504		return ret;
 505	}
 506
 507	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 508		(unsigned long)(low_size >> 20),
 509		(unsigned long)(low_base >> 20),
 510		(unsigned long)(total_low_mem >> 20));
 511
 512	crashk_low_res.start = low_base;
 513	crashk_low_res.end   = low_base + low_size - 1;
 514	insert_resource(&iomem_resource, &crashk_low_res);
 515#endif
 516	return 0;
 517}
 518
 519static void __init reserve_crashkernel(void)
 520{
 521	unsigned long long crash_size, crash_base, total_mem;
 522	bool high = false;
 523	int ret;
 524
 525	total_mem = memblock_phys_mem_size();
 526
 527	/* crashkernel=XM */
 528	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 529	if (ret != 0 || crash_size <= 0) {
 530		/* crashkernel=X,high */
 531		ret = parse_crashkernel_high(boot_command_line, total_mem,
 532					     &crash_size, &crash_base);
 533		if (ret != 0 || crash_size <= 0)
 534			return;
 535		high = true;
 536	}
 537
 538	if (xen_pv_domain()) {
 539		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 540		return;
 541	}
 542
 543	/* 0 means: find the address automatically */
 544	if (crash_base <= 0) {
 545		/*
 546		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 547		 * as old kexec-tools loads bzImage below that, unless
 548		 * "crashkernel=size[KMG],high" is specified.
 
 
 
 549		 */
 550		crash_base = memblock_find_in_range(CRASH_ALIGN,
 551						    high ? CRASH_ADDR_HIGH_MAX
 552							 : CRASH_ADDR_LOW_MAX,
 553						    crash_size, CRASH_ALIGN);
 
 
 
 
 554		if (!crash_base) {
 555			pr_info("crashkernel reservation failed - No suitable area found.\n");
 556			return;
 557		}
 558
 559	} else {
 560		unsigned long long start;
 561
 562		start = memblock_find_in_range(crash_base,
 563					       crash_base + crash_size,
 564					       crash_size, 1 << 20);
 565		if (start != crash_base) {
 566			pr_info("crashkernel reservation failed - memory is in use.\n");
 567			return;
 568		}
 569	}
 570	ret = memblock_reserve(crash_base, crash_size);
 571	if (ret) {
 572		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 573		return;
 574	}
 575
 576	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 577		memblock_free(crash_base, crash_size);
 578		return;
 579	}
 580
 581	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 582		(unsigned long)(crash_size >> 20),
 583		(unsigned long)(crash_base >> 20),
 584		(unsigned long)(total_mem >> 20));
 585
 586	crashk_res.start = crash_base;
 587	crashk_res.end   = crash_base + crash_size - 1;
 588	insert_resource(&iomem_resource, &crashk_res);
 589}
 590#else
 591static void __init reserve_crashkernel(void)
 592{
 593}
 594#endif
 595
 596static struct resource standard_io_resources[] = {
 597	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 598		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 599	{ .name = "pic1", .start = 0x20, .end = 0x21,
 600		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 601	{ .name = "timer0", .start = 0x40, .end = 0x43,
 602		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 603	{ .name = "timer1", .start = 0x50, .end = 0x53,
 604		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 605	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 606		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 607	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 608		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 609	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 610		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 611	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 612		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 613	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 614		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 616		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 617};
 618
 619void __init reserve_standard_io_resources(void)
 620{
 621	int i;
 622
 623	/* request I/O space for devices used on all i[345]86 PCs */
 624	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 625		request_resource(&ioport_resource, &standard_io_resources[i]);
 626
 627}
 628
 629static __init void reserve_ibft_region(void)
 630{
 631	unsigned long addr, size = 0;
 632
 633	addr = find_ibft_region(&size);
 634
 635	if (size)
 636		memblock_reserve(addr, size);
 637}
 638
 639static bool __init snb_gfx_workaround_needed(void)
 640{
 641#ifdef CONFIG_PCI
 642	int i;
 643	u16 vendor, devid;
 644	static const __initconst u16 snb_ids[] = {
 645		0x0102,
 646		0x0112,
 647		0x0122,
 648		0x0106,
 649		0x0116,
 650		0x0126,
 651		0x010a,
 652	};
 653
 654	/* Assume no if something weird is going on with PCI */
 655	if (!early_pci_allowed())
 656		return false;
 657
 658	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 659	if (vendor != 0x8086)
 660		return false;
 661
 662	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 663	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 664		if (devid == snb_ids[i])
 665			return true;
 666#endif
 667
 668	return false;
 669}
 670
 671/*
 672 * Sandy Bridge graphics has trouble with certain ranges, exclude
 673 * them from allocation.
 674 */
 675static void __init trim_snb_memory(void)
 676{
 677	static const __initconst unsigned long bad_pages[] = {
 678		0x20050000,
 679		0x20110000,
 680		0x20130000,
 681		0x20138000,
 682		0x40004000,
 683	};
 684	int i;
 685
 686	if (!snb_gfx_workaround_needed())
 687		return;
 688
 689	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 690
 691	/*
 692	 * Reserve all memory below the 1 MB mark that has not
 693	 * already been reserved.
 
 
 
 
 
 
 694	 */
 695	memblock_reserve(0, 1<<20);
 696	
 697	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 698		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 699			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 700			       bad_pages[i]);
 701	}
 702}
 703
 704/*
 705 * Here we put platform-specific memory range workarounds, i.e.
 706 * memory known to be corrupt or otherwise in need to be reserved on
 707 * specific platforms.
 708 *
 709 * If this gets used more widely it could use a real dispatch mechanism.
 710 */
 711static void __init trim_platform_memory_ranges(void)
 712{
 713	trim_snb_memory();
 714}
 715
 716static void __init trim_bios_range(void)
 717{
 718	/*
 719	 * A special case is the first 4Kb of memory;
 720	 * This is a BIOS owned area, not kernel ram, but generally
 721	 * not listed as such in the E820 table.
 722	 *
 723	 * This typically reserves additional memory (64KiB by default)
 724	 * since some BIOSes are known to corrupt low memory.  See the
 725	 * Kconfig help text for X86_RESERVE_LOW.
 726	 */
 727	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 728
 729	/*
 730	 * special case: Some BIOSen report the PC BIOS
 731	 * area (640->1Mb) as ram even though it is not.
 732	 * take them out.
 733	 */
 734	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 735
 736	e820__update_table(e820_table);
 737}
 738
 739/* called before trim_bios_range() to spare extra sanitize */
 740static void __init e820_add_kernel_range(void)
 741{
 742	u64 start = __pa_symbol(_text);
 743	u64 size = __pa_symbol(_end) - start;
 744
 745	/*
 746	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 747	 * attempt to fix it by adding the range. We may have a confused BIOS,
 748	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 749	 * exclude kernel range. If we really are running on top non-RAM,
 750	 * we will crash later anyways.
 751	 */
 752	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 753		return;
 754
 755	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 756	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 757	e820__range_add(start, size, E820_TYPE_RAM);
 758}
 759
 760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 761
 762static int __init parse_reservelow(char *p)
 763{
 764	unsigned long long size;
 765
 766	if (!p)
 767		return -EINVAL;
 
 
 
 
 768
 769	size = memparse(p, &p);
 
 
 
 
 
 
 
 
 
 
 
 770
 771	if (size < 4096)
 772		size = 4096;
 773
 774	if (size > 640*1024)
 775		size = 640*1024;
 776
 777	reserve_low = size;
 778
 779	return 0;
 
 
 780}
 781
 782early_param("reservelow", parse_reservelow);
 783
 784static void __init trim_low_memory_range(void)
 785{
 786	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 787}
 788	
 789/*
 790 * Dump out kernel offset information on panic.
 791 */
 792static int
 793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 794{
 795	if (kaslr_enabled()) {
 796		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 797			 kaslr_offset(),
 798			 __START_KERNEL,
 799			 __START_KERNEL_map,
 800			 MODULES_VADDR-1);
 801	} else {
 802		pr_emerg("Kernel Offset: disabled\n");
 803	}
 804
 805	return 0;
 806}
 807
 808/*
 809 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 810 * passed the efi memmap, systab, etc., so we should use these data structures
 811 * for initialization.  Note, the efi init code path is determined by the
 812 * global efi_enabled. This allows the same kernel image to be used on existing
 813 * systems (with a traditional BIOS) as well as on EFI systems.
 814 */
 815/*
 816 * setup_arch - architecture-specific boot-time initializations
 817 *
 818 * Note: On x86_64, fixmaps are ready for use even before this is called.
 819 */
 820
 821void __init setup_arch(char **cmdline_p)
 822{
 823	memblock_reserve(__pa_symbol(_text),
 824			 (unsigned long)__bss_stop - (unsigned long)_text);
 825
 826	early_reserve_initrd();
 827
 828	/*
 829	 * At this point everything still needed from the boot loader
 830	 * or BIOS or kernel text should be early reserved or marked not
 831	 * RAM in e820. All other memory is free game.
 832	 */
 833
 834#ifdef CONFIG_X86_32
 835	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 836
 837	/*
 838	 * copy kernel address range established so far and switch
 839	 * to the proper swapper page table
 840	 */
 841	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 842			initial_page_table + KERNEL_PGD_BOUNDARY,
 843			KERNEL_PGD_PTRS);
 844
 845	load_cr3(swapper_pg_dir);
 846	/*
 847	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 848	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 849	 * will not flush anything because the cpu quirk which clears
 850	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 851	 * load_cr3() above the TLB has been flushed already. The
 852	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 853	 * so proper operation is guaranteed.
 854	 */
 855	__flush_tlb_all();
 856#else
 857	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 858	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 859#endif
 860
 861	/*
 862	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 863	 * reserve_top(), so do this before touching the ioremap area.
 864	 */
 865	olpc_ofw_detect();
 866
 867	idt_setup_early_traps();
 868	early_cpu_init();
 
 
 869	early_ioremap_init();
 870
 871	setup_olpc_ofw_pgd();
 872
 873	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 874	screen_info = boot_params.screen_info;
 875	edid_info = boot_params.edid_info;
 876#ifdef CONFIG_X86_32
 877	apm_info.bios = boot_params.apm_bios_info;
 878	ist_info = boot_params.ist_info;
 879#endif
 880	saved_video_mode = boot_params.hdr.vid_mode;
 881	bootloader_type = boot_params.hdr.type_of_loader;
 882	if ((bootloader_type >> 4) == 0xe) {
 883		bootloader_type &= 0xf;
 884		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 885	}
 886	bootloader_version  = bootloader_type & 0xf;
 887	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 888
 889#ifdef CONFIG_BLK_DEV_RAM
 890	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 891	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 892	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 893#endif
 894#ifdef CONFIG_EFI
 895	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 896		     EFI32_LOADER_SIGNATURE, 4)) {
 897		set_bit(EFI_BOOT, &efi.flags);
 898	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 899		     EFI64_LOADER_SIGNATURE, 4)) {
 900		set_bit(EFI_BOOT, &efi.flags);
 901		set_bit(EFI_64BIT, &efi.flags);
 902	}
 903#endif
 904
 905	x86_init.oem.arch_setup();
 906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 908	e820__memory_setup();
 909	parse_setup_data();
 910
 911	copy_edd();
 912
 913	if (!boot_params.hdr.root_flags)
 914		root_mountflags &= ~MS_RDONLY;
 915	init_mm.start_code = (unsigned long) _text;
 916	init_mm.end_code = (unsigned long) _etext;
 917	init_mm.end_data = (unsigned long) _edata;
 918	init_mm.brk = _brk_end;
 919
 920	mpx_mm_init(&init_mm);
 921
 922	code_resource.start = __pa_symbol(_text);
 923	code_resource.end = __pa_symbol(_etext)-1;
 924	data_resource.start = __pa_symbol(_etext);
 
 
 925	data_resource.end = __pa_symbol(_edata)-1;
 926	bss_resource.start = __pa_symbol(__bss_start);
 927	bss_resource.end = __pa_symbol(__bss_stop)-1;
 928
 929#ifdef CONFIG_CMDLINE_BOOL
 930#ifdef CONFIG_CMDLINE_OVERRIDE
 931	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 932#else
 933	if (builtin_cmdline[0]) {
 934		/* append boot loader cmdline to builtin */
 935		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 936		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 937		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 938	}
 939#endif
 940#endif
 941
 942	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 943	*cmdline_p = command_line;
 944
 945	/*
 946	 * x86_configure_nx() is called before parse_early_param() to detect
 947	 * whether hardware doesn't support NX (so that the early EHCI debug
 948	 * console setup can safely call set_fixmap()). It may then be called
 949	 * again from within noexec_setup() during parsing early parameters
 950	 * to honor the respective command line option.
 951	 */
 952	x86_configure_nx();
 953
 954	parse_early_param();
 955
 956	if (efi_enabled(EFI_BOOT))
 957		efi_memblock_x86_reserve_range();
 958#ifdef CONFIG_MEMORY_HOTPLUG
 959	/*
 960	 * Memory used by the kernel cannot be hot-removed because Linux
 961	 * cannot migrate the kernel pages. When memory hotplug is
 962	 * enabled, we should prevent memblock from allocating memory
 963	 * for the kernel.
 964	 *
 965	 * ACPI SRAT records all hotpluggable memory ranges. But before
 966	 * SRAT is parsed, we don't know about it.
 967	 *
 968	 * The kernel image is loaded into memory at very early time. We
 969	 * cannot prevent this anyway. So on NUMA system, we set any
 970	 * node the kernel resides in as un-hotpluggable.
 971	 *
 972	 * Since on modern servers, one node could have double-digit
 973	 * gigabytes memory, we can assume the memory around the kernel
 974	 * image is also un-hotpluggable. So before SRAT is parsed, just
 975	 * allocate memory near the kernel image to try the best to keep
 976	 * the kernel away from hotpluggable memory.
 977	 */
 978	if (movable_node_is_enabled())
 979		memblock_set_bottom_up(true);
 980#endif
 981
 982	x86_report_nx();
 983
 984	/* after early param, so could get panic from serial */
 985	memblock_x86_reserve_range_setup_data();
 986
 987	if (acpi_mps_check()) {
 988#ifdef CONFIG_X86_LOCAL_APIC
 989		disable_apic = 1;
 990#endif
 991		setup_clear_cpu_cap(X86_FEATURE_APIC);
 992	}
 993
 994#ifdef CONFIG_PCI
 995	if (pci_early_dump_regs)
 996		early_dump_pci_devices();
 997#endif
 998
 999	e820__reserve_setup_data();
1000	e820__finish_early_params();
1001
1002	if (efi_enabled(EFI_BOOT))
1003		efi_init();
1004
1005	dmi_scan_machine();
1006	dmi_memdev_walk();
1007	dmi_set_dump_stack_arch_desc();
1008
1009	/*
1010	 * VMware detection requires dmi to be available, so this
1011	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1012	 */
1013	init_hypervisor_platform();
1014
 
1015	x86_init.resources.probe_roms();
1016
1017	/* after parse_early_param, so could debug it */
1018	insert_resource(&iomem_resource, &code_resource);
 
1019	insert_resource(&iomem_resource, &data_resource);
1020	insert_resource(&iomem_resource, &bss_resource);
1021
1022	e820_add_kernel_range();
1023	trim_bios_range();
1024#ifdef CONFIG_X86_32
1025	if (ppro_with_ram_bug()) {
1026		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027				  E820_TYPE_RESERVED);
1028		e820__update_table(e820_table);
1029		printk(KERN_INFO "fixed physical RAM map:\n");
1030		e820__print_table("bad_ppro");
1031	}
1032#else
1033	early_gart_iommu_check();
1034#endif
1035
1036	/*
1037	 * partially used pages are not usable - thus
1038	 * we are rounding upwards:
1039	 */
1040	max_pfn = e820__end_of_ram_pfn();
1041
1042	/* update e820 for memory not covered by WB MTRRs */
1043	mtrr_bp_init();
1044	if (mtrr_trim_uncached_memory(max_pfn))
1045		max_pfn = e820__end_of_ram_pfn();
1046
1047	max_possible_pfn = max_pfn;
1048
1049	/*
1050	 * This call is required when the CPU does not support PAT. If
1051	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052	 * effect.
1053	 */
1054	init_cache_modes();
1055
1056	/*
1057	 * Define random base addresses for memory sections after max_pfn is
1058	 * defined and before each memory section base is used.
1059	 */
1060	kernel_randomize_memory();
1061
1062#ifdef CONFIG_X86_32
1063	/* max_low_pfn get updated here */
1064	find_low_pfn_range();
1065#else
1066	check_x2apic();
1067
1068	/* How many end-of-memory variables you have, grandma! */
1069	/* need this before calling reserve_initrd */
1070	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071		max_low_pfn = e820__end_of_low_ram_pfn();
1072	else
1073		max_low_pfn = max_pfn;
1074
1075	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076#endif
1077
1078	/*
1079	 * Find and reserve possible boot-time SMP configuration:
1080	 */
1081	find_smp_config();
1082
1083	reserve_ibft_region();
1084
1085	early_alloc_pgt_buf();
1086
1087	/*
1088	 * Need to conclude brk, before e820__memblock_setup()
1089	 *  it could use memblock_find_in_range, could overlap with
1090	 *  brk area.
1091	 */
1092	reserve_brk();
1093
1094	cleanup_highmap();
1095
1096	memblock_set_current_limit(ISA_END_ADDRESS);
1097	e820__memblock_setup();
1098
1099	reserve_bios_regions();
 
 
 
 
1100
1101	if (efi_enabled(EFI_MEMMAP)) {
1102		efi_fake_memmap();
1103		efi_find_mirror();
1104		efi_esrt_init();
1105
1106		/*
1107		 * The EFI specification says that boot service code won't be
1108		 * called after ExitBootServices(). This is, in fact, a lie.
1109		 */
1110		efi_reserve_boot_services();
1111	}
1112
1113	/* preallocate 4k for mptable mpc */
1114	e820__memblock_alloc_reserved_mpc_new();
1115
1116#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117	setup_bios_corruption_check();
1118#endif
1119
1120#ifdef CONFIG_X86_32
1121	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1123#endif
1124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125	reserve_real_mode();
1126
1127	trim_platform_memory_ranges();
1128	trim_low_memory_range();
1129
1130	init_mem_mapping();
1131
1132	idt_setup_early_pf();
1133
1134	/*
1135	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136	 * with the current CR4 value.  This may not be necessary, but
1137	 * auditing all the early-boot CR4 manipulation would be needed to
1138	 * rule it out.
1139	 *
1140	 * Mask off features that don't work outside long mode (just
1141	 * PCIDE for now).
1142	 */
1143	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145	memblock_set_current_limit(get_max_mapped());
1146
1147	/*
1148	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149	 */
1150
1151#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152	if (init_ohci1394_dma_early)
1153		init_ohci1394_dma_on_all_controllers();
1154#endif
1155	/* Allocate bigger log buffer */
1156	setup_log_buf(1);
1157
1158	if (efi_enabled(EFI_BOOT)) {
1159		switch (boot_params.secure_boot) {
1160		case efi_secureboot_mode_disabled:
1161			pr_info("Secure boot disabled\n");
1162			break;
1163		case efi_secureboot_mode_enabled:
1164			pr_info("Secure boot enabled\n");
1165			break;
1166		default:
1167			pr_info("Secure boot could not be determined\n");
1168			break;
1169		}
1170	}
1171
1172	reserve_initrd();
1173
1174	acpi_table_upgrade();
 
 
1175
1176	vsmp_init();
1177
1178	io_delay_init();
1179
1180	early_platform_quirks();
1181
1182	/*
1183	 * Parse the ACPI tables for possible boot-time SMP configuration.
1184	 */
1185	acpi_boot_table_init();
1186
1187	early_acpi_boot_init();
1188
1189	initmem_init();
1190	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1191
 
 
 
1192	/*
1193	 * Reserve memory for crash kernel after SRAT is parsed so that it
1194	 * won't consume hotpluggable memory.
1195	 */
1196	reserve_crashkernel();
1197
1198	memblock_find_dma_reserve();
1199
1200#ifdef CONFIG_KVM_GUEST
1201	kvmclock_init();
1202#endif
1203
1204	tsc_early_delay_calibrate();
1205	if (!early_xdbc_setup_hardware())
1206		early_xdbc_register_console();
1207
1208	x86_init.paging.pagetable_init();
1209
1210	kasan_init();
1211
1212	/*
1213	 * Sync back kernel address range.
1214	 *
1215	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216	 * this call?
1217	 */
1218	sync_initial_page_table();
1219
1220	tboot_probe();
1221
1222	map_vsyscall();
1223
1224	generic_apic_probe();
1225
1226	early_quirks();
1227
1228	/*
1229	 * Read APIC and some other early information from ACPI tables.
1230	 */
1231	acpi_boot_init();
1232	sfi_init();
1233	x86_dtb_init();
1234
1235	/*
1236	 * get boot-time SMP configuration:
1237	 */
1238	get_smp_config();
1239
1240	/*
1241	 * Systems w/o ACPI and mptables might not have it mapped the local
1242	 * APIC yet, but prefill_possible_map() might need to access it.
1243	 */
1244	init_apic_mappings();
1245
1246	prefill_possible_map();
1247
1248	init_cpu_to_node();
 
1249
1250	io_apic_init_mappings();
1251
1252	x86_init.hyper.guest_late_init();
1253
1254	e820__reserve_resources();
1255	e820__register_nosave_regions(max_low_pfn);
1256
1257	x86_init.resources.reserve_resources();
1258
1259	e820__setup_pci_gap();
1260
1261#ifdef CONFIG_VT
1262#if defined(CONFIG_VGA_CONSOLE)
1263	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1264		conswitchp = &vga_con;
1265#elif defined(CONFIG_DUMMY_CONSOLE)
1266	conswitchp = &dummy_con;
1267#endif
1268#endif
1269	x86_init.oem.banner();
1270
1271	x86_init.timers.wallclock_init();
1272
1273	mcheck_init();
 
 
 
 
 
 
1274
1275	arch_init_ideal_nops();
1276
1277	register_refined_jiffies(CLOCK_TICK_RATE);
1278
1279#ifdef CONFIG_EFI
1280	if (efi_enabled(EFI_BOOT))
1281		efi_apply_memmap_quirks();
1282#endif
1283
1284	unwind_init();
1285}
1286
1287#ifdef CONFIG_X86_32
1288
1289static struct resource video_ram_resource = {
1290	.name	= "Video RAM area",
1291	.start	= 0xa0000,
1292	.end	= 0xbffff,
1293	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1294};
1295
1296void __init i386_reserve_resources(void)
1297{
1298	request_resource(&iomem_resource, &video_ram_resource);
1299	reserve_standard_io_resources();
1300}
1301
1302#endif /* CONFIG_X86_32 */
1303
1304static struct notifier_block kernel_offset_notifier = {
1305	.notifier_call = dump_kernel_offset
1306};
1307
1308static int __init register_kernel_offset_dumper(void)
1309{
1310	atomic_notifier_chain_register(&panic_notifier_list,
1311					&kernel_offset_notifier);
1312	return 0;
1313}
1314__initcall(register_kernel_offset_dumper);
1315
1316void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1317{
1318	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1319		return;
1320
1321	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1322}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8#include <linux/console.h>
   9#include <linux/crash_dump.h>
  10#include <linux/dma-map-ops.h>
  11#include <linux/dmi.h>
  12#include <linux/efi.h>
  13#include <linux/init_ohci1394_dma.h>
  14#include <linux/initrd.h>
  15#include <linux/iscsi_ibft.h>
  16#include <linux/memblock.h>
  17#include <linux/panic_notifier.h>
 
 
  18#include <linux/pci.h>
  19#include <linux/root_dev.h>
  20#include <linux/hugetlb.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21#include <linux/tboot.h>
 
 
 
  22#include <linux/usb/xhci-dbgp.h>
  23#include <linux/static_call.h>
  24#include <linux/swiotlb.h>
  25
  26#include <uapi/linux/mount.h>
  27
  28#include <xen/xen.h>
  29
 
  30#include <asm/apic.h>
  31#include <asm/numa.h>
 
 
 
 
 
 
 
 
 
 
  32#include <asm/bios_ebda.h>
 
 
  33#include <asm/bugs.h>
 
 
 
  34#include <asm/cpu.h>
  35#include <asm/efi.h>
 
 
  36#include <asm/gart.h>
 
 
 
 
  37#include <asm/hypervisor.h>
  38#include <asm/io_apic.h>
  39#include <asm/kasan.h>
  40#include <asm/kaslr.h>
 
 
 
  41#include <asm/mce.h>
  42#include <asm/mtrr.h>
  43#include <asm/realmode.h>
  44#include <asm/olpc_ofw.h>
  45#include <asm/pci-direct.h>
  46#include <asm/prom.h>
  47#include <asm/proto.h>
  48#include <asm/thermal.h>
  49#include <asm/unwind.h>
  50#include <asm/vsyscall.h>
  51#include <linux/vmalloc.h>
  52
  53/*
  54 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  55 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  56 *
  57 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  58 * represented by pfn_mapped[].
  59 */
  60unsigned long max_low_pfn_mapped;
  61unsigned long max_pfn_mapped;
  62
  63#ifdef CONFIG_DMI
  64RESERVE_BRK(dmi_alloc, 65536);
  65#endif
  66
  67
  68/*
  69 * Range of the BSS area. The size of the BSS area is determined
  70 * at link time, with RESERVE_BRK() facility reserving additional
  71 * chunks.
  72 */
  73unsigned long _brk_start = (unsigned long)__brk_base;
  74unsigned long _brk_end   = (unsigned long)__brk_base;
  75
  76struct boot_params boot_params;
  77
  78/*
  79 * These are the four main kernel memory regions, we put them into
  80 * the resource tree so that kdump tools and other debugging tools
  81 * recover it:
  82 */
  83
  84static struct resource rodata_resource = {
  85	.name	= "Kernel rodata",
  86	.start	= 0,
  87	.end	= 0,
  88	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  89};
  90
  91static struct resource data_resource = {
  92	.name	= "Kernel data",
  93	.start	= 0,
  94	.end	= 0,
  95	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  96};
  97
  98static struct resource code_resource = {
  99	.name	= "Kernel code",
 100	.start	= 0,
 101	.end	= 0,
 102	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 103};
 104
 105static struct resource bss_resource = {
 106	.name	= "Kernel bss",
 107	.start	= 0,
 108	.end	= 0,
 109	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 110};
 111
 112
 113#ifdef CONFIG_X86_32
 114/* CPU data as detected by the assembly code in head_32.S */
 115struct cpuinfo_x86 new_cpu_data;
 116
 117/* Common CPU data for all CPUs */
 118struct cpuinfo_x86 boot_cpu_data __read_mostly;
 119EXPORT_SYMBOL(boot_cpu_data);
 120
 121unsigned int def_to_bigsmp;
 122
 
 
 
 
 
 123struct apm_info apm_info;
 124EXPORT_SYMBOL(apm_info);
 125
 126#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 127	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 128struct ist_info ist_info;
 129EXPORT_SYMBOL(ist_info);
 130#else
 131struct ist_info ist_info;
 132#endif
 133
 134#else
 135struct cpuinfo_x86 boot_cpu_data __read_mostly;
 136EXPORT_SYMBOL(boot_cpu_data);
 137#endif
 138
 139
 140#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 141__visible unsigned long mmu_cr4_features __ro_after_init;
 142#else
 143__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 144#endif
 145
 146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 147int bootloader_type, bootloader_version;
 148
 149/*
 150 * Setup options
 151 */
 152struct screen_info screen_info;
 153EXPORT_SYMBOL(screen_info);
 154struct edid_info edid_info;
 155EXPORT_SYMBOL_GPL(edid_info);
 156
 157extern int root_mountflags;
 158
 159unsigned long saved_video_mode;
 160
 161#define RAMDISK_IMAGE_START_MASK	0x07FF
 162#define RAMDISK_PROMPT_FLAG		0x8000
 163#define RAMDISK_LOAD_FLAG		0x4000
 164
 165static char __initdata command_line[COMMAND_LINE_SIZE];
 166#ifdef CONFIG_CMDLINE_BOOL
 167static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 168#endif
 169
 170#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 171struct edd edd;
 172#ifdef CONFIG_EDD_MODULE
 173EXPORT_SYMBOL(edd);
 174#endif
 175/**
 176 * copy_edd() - Copy the BIOS EDD information
 177 *              from boot_params into a safe place.
 178 *
 179 */
 180static inline void __init copy_edd(void)
 181{
 182     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 183	    sizeof(edd.mbr_signature));
 184     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 185     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 186     edd.edd_info_nr = boot_params.eddbuf_entries;
 187}
 188#else
 189static inline void __init copy_edd(void)
 190{
 191}
 192#endif
 193
 194void * __init extend_brk(size_t size, size_t align)
 195{
 196	size_t mask = align - 1;
 197	void *ret;
 198
 199	BUG_ON(_brk_start == 0);
 200	BUG_ON(align & mask);
 201
 202	_brk_end = (_brk_end + mask) & ~mask;
 203	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 204
 205	ret = (void *)_brk_end;
 206	_brk_end += size;
 207
 208	memset(ret, 0, size);
 209
 210	return ret;
 211}
 212
 213#ifdef CONFIG_X86_32
 214static void __init cleanup_highmap(void)
 215{
 216}
 217#endif
 218
 219static void __init reserve_brk(void)
 220{
 221	if (_brk_end > _brk_start)
 222		memblock_reserve(__pa_symbol(_brk_start),
 223				 _brk_end - _brk_start);
 224
 225	/* Mark brk area as locked down and no longer taking any
 226	   new allocations */
 227	_brk_start = 0;
 228}
 229
 230u64 relocated_ramdisk;
 231
 232#ifdef CONFIG_BLK_DEV_INITRD
 233
 234static u64 __init get_ramdisk_image(void)
 235{
 236	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 237
 238	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 239
 240	if (ramdisk_image == 0)
 241		ramdisk_image = phys_initrd_start;
 242
 243	return ramdisk_image;
 244}
 245static u64 __init get_ramdisk_size(void)
 246{
 247	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 248
 249	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 250
 251	if (ramdisk_size == 0)
 252		ramdisk_size = phys_initrd_size;
 253
 254	return ramdisk_size;
 255}
 256
 257static void __init relocate_initrd(void)
 258{
 259	/* Assume only end is not page aligned */
 260	u64 ramdisk_image = get_ramdisk_image();
 261	u64 ramdisk_size  = get_ramdisk_size();
 262	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 263
 264	/* We need to move the initrd down into directly mapped mem */
 265	relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 266						      PFN_PHYS(max_pfn_mapped));
 
 267	if (!relocated_ramdisk)
 268		panic("Cannot find place for new RAMDISK of size %lld\n",
 269		      ramdisk_size);
 270
 
 
 
 271	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 272	initrd_end   = initrd_start + ramdisk_size;
 273	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 274	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 275
 276	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 277
 278	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 279		" [mem %#010llx-%#010llx]\n",
 280		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 281		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 282}
 283
 284static void __init early_reserve_initrd(void)
 285{
 286	/* Assume only end is not page aligned */
 287	u64 ramdisk_image = get_ramdisk_image();
 288	u64 ramdisk_size  = get_ramdisk_size();
 289	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 290
 291	if (!boot_params.hdr.type_of_loader ||
 292	    !ramdisk_image || !ramdisk_size)
 293		return;		/* No initrd provided by bootloader */
 294
 295	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 296}
 297
 298static void __init reserve_initrd(void)
 299{
 300	/* Assume only end is not page aligned */
 301	u64 ramdisk_image = get_ramdisk_image();
 302	u64 ramdisk_size  = get_ramdisk_size();
 303	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 
 304
 305	if (!boot_params.hdr.type_of_loader ||
 306	    !ramdisk_image || !ramdisk_size)
 307		return;		/* No initrd provided by bootloader */
 308
 309	initrd_start = 0;
 310
 
 
 
 
 
 
 311	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 312			ramdisk_end - 1);
 313
 314	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 315				PFN_DOWN(ramdisk_end))) {
 316		/* All are mapped, easy case */
 317		initrd_start = ramdisk_image + PAGE_OFFSET;
 318		initrd_end = initrd_start + ramdisk_size;
 319		return;
 320	}
 321
 322	relocate_initrd();
 323
 324	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 325}
 326
 327#else
 328static void __init early_reserve_initrd(void)
 329{
 330}
 331static void __init reserve_initrd(void)
 332{
 333}
 334#endif /* CONFIG_BLK_DEV_INITRD */
 335
 336static void __init parse_setup_data(void)
 337{
 338	struct setup_data *data;
 339	u64 pa_data, pa_next;
 340
 341	pa_data = boot_params.hdr.setup_data;
 342	while (pa_data) {
 343		u32 data_len, data_type;
 344
 345		data = early_memremap(pa_data, sizeof(*data));
 346		data_len = data->len + sizeof(struct setup_data);
 347		data_type = data->type;
 348		pa_next = data->next;
 349		early_memunmap(data, sizeof(*data));
 350
 351		switch (data_type) {
 352		case SETUP_E820_EXT:
 353			e820__memory_setup_extended(pa_data, data_len);
 354			break;
 355		case SETUP_DTB:
 356			add_dtb(pa_data);
 357			break;
 358		case SETUP_EFI:
 359			parse_efi_setup(pa_data, data_len);
 360			break;
 361		default:
 362			break;
 363		}
 364		pa_data = pa_next;
 365	}
 366}
 367
 368static void __init memblock_x86_reserve_range_setup_data(void)
 369{
 370	struct setup_data *data;
 371	u64 pa_data;
 372
 373	pa_data = boot_params.hdr.setup_data;
 374	while (pa_data) {
 375		data = early_memremap(pa_data, sizeof(*data));
 376		memblock_reserve(pa_data, sizeof(*data) + data->len);
 377
 378		if (data->type == SETUP_INDIRECT &&
 379		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 380			memblock_reserve(((struct setup_indirect *)data->data)->addr,
 381					 ((struct setup_indirect *)data->data)->len);
 382
 383		pa_data = data->next;
 384		early_memunmap(data, sizeof(*data));
 385	}
 386}
 387
 388/*
 389 * --------- Crashkernel reservation ------------------------------
 390 */
 391
 392#ifdef CONFIG_KEXEC_CORE
 393
 394/* 16M alignment for crash kernel regions */
 395#define CRASH_ALIGN		SZ_16M
 396
 397/*
 398 * Keep the crash kernel below this limit.
 399 *
 400 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 401 * due to mapping restrictions.
 402 *
 403 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 404 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 405 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 406 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 407 * no good way to detect the paging mode of the target kernel which will be
 408 * loaded for dumping.
 409 */
 410#ifdef CONFIG_X86_32
 411# define CRASH_ADDR_LOW_MAX	SZ_512M
 412# define CRASH_ADDR_HIGH_MAX	SZ_512M
 413#else
 414# define CRASH_ADDR_LOW_MAX	SZ_4G
 415# define CRASH_ADDR_HIGH_MAX	SZ_64T
 416#endif
 417
 418static int __init reserve_crashkernel_low(void)
 419{
 420#ifdef CONFIG_X86_64
 421	unsigned long long base, low_base = 0, low_size = 0;
 422	unsigned long low_mem_limit;
 423	int ret;
 424
 425	low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 426
 427	/* crashkernel=Y,low */
 428	ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 429	if (ret) {
 430		/*
 431		 * two parts from kernel/dma/swiotlb.c:
 432		 * -swiotlb size: user-specified with swiotlb= or default.
 433		 *
 434		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 435		 * to 8M for other buffers that may need to stay low too. Also
 436		 * make sure we allocate enough extra low memory so that we
 437		 * don't run out of DMA buffers for 32-bit devices.
 438		 */
 439		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 440	} else {
 441		/* passed with crashkernel=0,low ? */
 442		if (!low_size)
 443			return 0;
 444	}
 445
 446	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 447	if (!low_base) {
 448		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 449		       (unsigned long)(low_size >> 20));
 450		return -ENOMEM;
 451	}
 452
 453	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 
 
 
 
 
 
 454		(unsigned long)(low_size >> 20),
 455		(unsigned long)(low_base >> 20),
 456		(unsigned long)(low_mem_limit >> 20));
 457
 458	crashk_low_res.start = low_base;
 459	crashk_low_res.end   = low_base + low_size - 1;
 460	insert_resource(&iomem_resource, &crashk_low_res);
 461#endif
 462	return 0;
 463}
 464
 465static void __init reserve_crashkernel(void)
 466{
 467	unsigned long long crash_size, crash_base, total_mem;
 468	bool high = false;
 469	int ret;
 470
 471	total_mem = memblock_phys_mem_size();
 472
 473	/* crashkernel=XM */
 474	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 475	if (ret != 0 || crash_size <= 0) {
 476		/* crashkernel=X,high */
 477		ret = parse_crashkernel_high(boot_command_line, total_mem,
 478					     &crash_size, &crash_base);
 479		if (ret != 0 || crash_size <= 0)
 480			return;
 481		high = true;
 482	}
 483
 484	if (xen_pv_domain()) {
 485		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 486		return;
 487	}
 488
 489	/* 0 means: find the address automatically */
 490	if (!crash_base) {
 491		/*
 492		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 493		 * crashkernel=x,high reserves memory over 4G, also allocates
 494		 * 256M extra low memory for DMA buffers and swiotlb.
 495		 * But the extra memory is not required for all machines.
 496		 * So try low memory first and fall back to high memory
 497		 * unless "crashkernel=size[KMG],high" is specified.
 498		 */
 499		if (!high)
 500			crash_base = memblock_phys_alloc_range(crash_size,
 501						CRASH_ALIGN, CRASH_ALIGN,
 502						CRASH_ADDR_LOW_MAX);
 503		if (!crash_base)
 504			crash_base = memblock_phys_alloc_range(crash_size,
 505						CRASH_ALIGN, CRASH_ALIGN,
 506						CRASH_ADDR_HIGH_MAX);
 507		if (!crash_base) {
 508			pr_info("crashkernel reservation failed - No suitable area found.\n");
 509			return;
 510		}
 
 511	} else {
 512		unsigned long long start;
 513
 514		start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 515						  crash_base + crash_size);
 
 516		if (start != crash_base) {
 517			pr_info("crashkernel reservation failed - memory is in use.\n");
 518			return;
 519		}
 520	}
 
 
 
 
 
 521
 522	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 523		memblock_free(crash_base, crash_size);
 524		return;
 525	}
 526
 527	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 528		(unsigned long)(crash_size >> 20),
 529		(unsigned long)(crash_base >> 20),
 530		(unsigned long)(total_mem >> 20));
 531
 532	crashk_res.start = crash_base;
 533	crashk_res.end   = crash_base + crash_size - 1;
 534	insert_resource(&iomem_resource, &crashk_res);
 535}
 536#else
 537static void __init reserve_crashkernel(void)
 538{
 539}
 540#endif
 541
 542static struct resource standard_io_resources[] = {
 543	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 544		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 545	{ .name = "pic1", .start = 0x20, .end = 0x21,
 546		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 547	{ .name = "timer0", .start = 0x40, .end = 0x43,
 548		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 549	{ .name = "timer1", .start = 0x50, .end = 0x53,
 550		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 551	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 552		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 553	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 554		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 555	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 556		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 557	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 558		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 559	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 560		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 561	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 562		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 563};
 564
 565void __init reserve_standard_io_resources(void)
 566{
 567	int i;
 568
 569	/* request I/O space for devices used on all i[345]86 PCs */
 570	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 571		request_resource(&ioport_resource, &standard_io_resources[i]);
 572
 573}
 574
 575static __init void reserve_ibft_region(void)
 576{
 577	unsigned long addr, size = 0;
 578
 579	addr = find_ibft_region(&size);
 580
 581	if (size)
 582		memblock_reserve(addr, size);
 583}
 584
 585static bool __init snb_gfx_workaround_needed(void)
 586{
 587#ifdef CONFIG_PCI
 588	int i;
 589	u16 vendor, devid;
 590	static const __initconst u16 snb_ids[] = {
 591		0x0102,
 592		0x0112,
 593		0x0122,
 594		0x0106,
 595		0x0116,
 596		0x0126,
 597		0x010a,
 598	};
 599
 600	/* Assume no if something weird is going on with PCI */
 601	if (!early_pci_allowed())
 602		return false;
 603
 604	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 605	if (vendor != 0x8086)
 606		return false;
 607
 608	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 609	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 610		if (devid == snb_ids[i])
 611			return true;
 612#endif
 613
 614	return false;
 615}
 616
 617/*
 618 * Sandy Bridge graphics has trouble with certain ranges, exclude
 619 * them from allocation.
 620 */
 621static void __init trim_snb_memory(void)
 622{
 623	static const __initconst unsigned long bad_pages[] = {
 624		0x20050000,
 625		0x20110000,
 626		0x20130000,
 627		0x20138000,
 628		0x40004000,
 629	};
 630	int i;
 631
 632	if (!snb_gfx_workaround_needed())
 633		return;
 634
 635	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 636
 637	/*
 638	 * SandyBridge integrated graphics devices have a bug that prevents
 639	 * them from accessing certain memory ranges, namely anything below
 640	 * 1M and in the pages listed in bad_pages[] above.
 641	 *
 642	 * To avoid these pages being ever accessed by SNB gfx devices reserve
 643	 * bad_pages that have not already been reserved at boot time.
 644	 * All memory below the 1 MB mark is anyway reserved later during
 645	 * setup_arch(), so there is no need to reserve it here.
 646	 */
 647
 
 648	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 649		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 650			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 651			       bad_pages[i]);
 652	}
 653}
 654
 
 
 
 
 
 
 
 
 
 
 
 
 655static void __init trim_bios_range(void)
 656{
 657	/*
 658	 * A special case is the first 4Kb of memory;
 659	 * This is a BIOS owned area, not kernel ram, but generally
 660	 * not listed as such in the E820 table.
 661	 *
 662	 * This typically reserves additional memory (64KiB by default)
 663	 * since some BIOSes are known to corrupt low memory.  See the
 664	 * Kconfig help text for X86_RESERVE_LOW.
 665	 */
 666	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 667
 668	/*
 669	 * special case: Some BIOSes report the PC BIOS
 670	 * area (640Kb -> 1Mb) as RAM even though it is not.
 671	 * take them out.
 672	 */
 673	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 674
 675	e820__update_table(e820_table);
 676}
 677
 678/* called before trim_bios_range() to spare extra sanitize */
 679static void __init e820_add_kernel_range(void)
 680{
 681	u64 start = __pa_symbol(_text);
 682	u64 size = __pa_symbol(_end) - start;
 683
 684	/*
 685	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 686	 * attempt to fix it by adding the range. We may have a confused BIOS,
 687	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 688	 * exclude kernel range. If we really are running on top non-RAM,
 689	 * we will crash later anyways.
 690	 */
 691	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 692		return;
 693
 694	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 695	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 696	e820__range_add(start, size, E820_TYPE_RAM);
 697}
 698
 699static void __init early_reserve_memory(void)
 
 
 700{
 701	/*
 702	 * Reserve the memory occupied by the kernel between _text and
 703	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 704	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 705	 * separate memblock_reserve() or they will be discarded.
 706	 */
 707	memblock_reserve(__pa_symbol(_text),
 708			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 709
 710	/*
 711	 * The first 4Kb of memory is a BIOS owned area, but generally it is
 712	 * not listed as such in the E820 table.
 713	 *
 714	 * Reserve the first 64K of memory since some BIOSes are known to
 715	 * corrupt low memory. After the real mode trampoline is allocated the
 716	 * rest of the memory below 640k is reserved.
 717	 *
 718	 * In addition, make sure page 0 is always reserved because on
 719	 * systems with L1TF its contents can be leaked to user processes.
 720	 */
 721	memblock_reserve(0, SZ_64K);
 722
 723	early_reserve_initrd();
 
 724
 725	if (efi_enabled(EFI_BOOT))
 726		efi_memblock_x86_reserve_range();
 727
 728	memblock_x86_reserve_range_setup_data();
 729
 730	reserve_ibft_region();
 731	reserve_bios_regions();
 732	trim_snb_memory();
 733}
 734
 
 
 
 
 
 
 
 735/*
 736 * Dump out kernel offset information on panic.
 737 */
 738static int
 739dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 740{
 741	if (kaslr_enabled()) {
 742		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 743			 kaslr_offset(),
 744			 __START_KERNEL,
 745			 __START_KERNEL_map,
 746			 MODULES_VADDR-1);
 747	} else {
 748		pr_emerg("Kernel Offset: disabled\n");
 749	}
 750
 751	return 0;
 752}
 753
 754/*
 755 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 756 * passed the efi memmap, systab, etc., so we should use these data structures
 757 * for initialization.  Note, the efi init code path is determined by the
 758 * global efi_enabled. This allows the same kernel image to be used on existing
 759 * systems (with a traditional BIOS) as well as on EFI systems.
 760 */
 761/*
 762 * setup_arch - architecture-specific boot-time initializations
 763 *
 764 * Note: On x86_64, fixmaps are ready for use even before this is called.
 765 */
 766
 767void __init setup_arch(char **cmdline_p)
 768{
 
 
 
 
 
 
 
 
 
 
 
 769#ifdef CONFIG_X86_32
 770	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 771
 772	/*
 773	 * copy kernel address range established so far and switch
 774	 * to the proper swapper page table
 775	 */
 776	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 777			initial_page_table + KERNEL_PGD_BOUNDARY,
 778			KERNEL_PGD_PTRS);
 779
 780	load_cr3(swapper_pg_dir);
 781	/*
 782	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 783	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 784	 * will not flush anything because the CPU quirk which clears
 785	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 786	 * load_cr3() above the TLB has been flushed already. The
 787	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 788	 * so proper operation is guaranteed.
 789	 */
 790	__flush_tlb_all();
 791#else
 792	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 793	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 794#endif
 795
 796	/*
 797	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 798	 * reserve_top(), so do this before touching the ioremap area.
 799	 */
 800	olpc_ofw_detect();
 801
 802	idt_setup_early_traps();
 803	early_cpu_init();
 804	jump_label_init();
 805	static_call_init();
 806	early_ioremap_init();
 807
 808	setup_olpc_ofw_pgd();
 809
 810	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 811	screen_info = boot_params.screen_info;
 812	edid_info = boot_params.edid_info;
 813#ifdef CONFIG_X86_32
 814	apm_info.bios = boot_params.apm_bios_info;
 815	ist_info = boot_params.ist_info;
 816#endif
 817	saved_video_mode = boot_params.hdr.vid_mode;
 818	bootloader_type = boot_params.hdr.type_of_loader;
 819	if ((bootloader_type >> 4) == 0xe) {
 820		bootloader_type &= 0xf;
 821		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 822	}
 823	bootloader_version  = bootloader_type & 0xf;
 824	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 825
 826#ifdef CONFIG_BLK_DEV_RAM
 827	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 828#endif
 829#ifdef CONFIG_EFI
 830	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 831		     EFI32_LOADER_SIGNATURE, 4)) {
 832		set_bit(EFI_BOOT, &efi.flags);
 833	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 834		     EFI64_LOADER_SIGNATURE, 4)) {
 835		set_bit(EFI_BOOT, &efi.flags);
 836		set_bit(EFI_64BIT, &efi.flags);
 837	}
 838#endif
 839
 840	x86_init.oem.arch_setup();
 841
 842	/*
 843	 * Do some memory reservations *before* memory is added to memblock, so
 844	 * memblock allocations won't overwrite it.
 845	 *
 846	 * After this point, everything still needed from the boot loader or
 847	 * firmware or kernel text should be early reserved or marked not RAM in
 848	 * e820. All other memory is free game.
 849	 *
 850	 * This call needs to happen before e820__memory_setup() which calls the
 851	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
 852	 * early reservations have happened already.
 853	 */
 854	early_reserve_memory();
 855
 856	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 857	e820__memory_setup();
 858	parse_setup_data();
 859
 860	copy_edd();
 861
 862	if (!boot_params.hdr.root_flags)
 863		root_mountflags &= ~MS_RDONLY;
 864	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 
 
 
 
 
 865
 866	code_resource.start = __pa_symbol(_text);
 867	code_resource.end = __pa_symbol(_etext)-1;
 868	rodata_resource.start = __pa_symbol(__start_rodata);
 869	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 870	data_resource.start = __pa_symbol(_sdata);
 871	data_resource.end = __pa_symbol(_edata)-1;
 872	bss_resource.start = __pa_symbol(__bss_start);
 873	bss_resource.end = __pa_symbol(__bss_stop)-1;
 874
 875#ifdef CONFIG_CMDLINE_BOOL
 876#ifdef CONFIG_CMDLINE_OVERRIDE
 877	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 878#else
 879	if (builtin_cmdline[0]) {
 880		/* append boot loader cmdline to builtin */
 881		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 882		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 883		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 884	}
 885#endif
 886#endif
 887
 888	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 889	*cmdline_p = command_line;
 890
 891	/*
 892	 * x86_configure_nx() is called before parse_early_param() to detect
 893	 * whether hardware doesn't support NX (so that the early EHCI debug
 894	 * console setup can safely call set_fixmap()). It may then be called
 895	 * again from within noexec_setup() during parsing early parameters
 896	 * to honor the respective command line option.
 897	 */
 898	x86_configure_nx();
 899
 900	parse_early_param();
 901
 
 
 902#ifdef CONFIG_MEMORY_HOTPLUG
 903	/*
 904	 * Memory used by the kernel cannot be hot-removed because Linux
 905	 * cannot migrate the kernel pages. When memory hotplug is
 906	 * enabled, we should prevent memblock from allocating memory
 907	 * for the kernel.
 908	 *
 909	 * ACPI SRAT records all hotpluggable memory ranges. But before
 910	 * SRAT is parsed, we don't know about it.
 911	 *
 912	 * The kernel image is loaded into memory at very early time. We
 913	 * cannot prevent this anyway. So on NUMA system, we set any
 914	 * node the kernel resides in as un-hotpluggable.
 915	 *
 916	 * Since on modern servers, one node could have double-digit
 917	 * gigabytes memory, we can assume the memory around the kernel
 918	 * image is also un-hotpluggable. So before SRAT is parsed, just
 919	 * allocate memory near the kernel image to try the best to keep
 920	 * the kernel away from hotpluggable memory.
 921	 */
 922	if (movable_node_is_enabled())
 923		memblock_set_bottom_up(true);
 924#endif
 925
 926	x86_report_nx();
 927
 
 
 
 928	if (acpi_mps_check()) {
 929#ifdef CONFIG_X86_LOCAL_APIC
 930		disable_apic = 1;
 931#endif
 932		setup_clear_cpu_cap(X86_FEATURE_APIC);
 933	}
 934
 
 
 
 
 
 935	e820__reserve_setup_data();
 936	e820__finish_early_params();
 937
 938	if (efi_enabled(EFI_BOOT))
 939		efi_init();
 940
 941	dmi_setup();
 
 
 942
 943	/*
 944	 * VMware detection requires dmi to be available, so this
 945	 * needs to be done after dmi_setup(), for the boot CPU.
 946	 */
 947	init_hypervisor_platform();
 948
 949	tsc_early_init();
 950	x86_init.resources.probe_roms();
 951
 952	/* after parse_early_param, so could debug it */
 953	insert_resource(&iomem_resource, &code_resource);
 954	insert_resource(&iomem_resource, &rodata_resource);
 955	insert_resource(&iomem_resource, &data_resource);
 956	insert_resource(&iomem_resource, &bss_resource);
 957
 958	e820_add_kernel_range();
 959	trim_bios_range();
 960#ifdef CONFIG_X86_32
 961	if (ppro_with_ram_bug()) {
 962		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 963				  E820_TYPE_RESERVED);
 964		e820__update_table(e820_table);
 965		printk(KERN_INFO "fixed physical RAM map:\n");
 966		e820__print_table("bad_ppro");
 967	}
 968#else
 969	early_gart_iommu_check();
 970#endif
 971
 972	/*
 973	 * partially used pages are not usable - thus
 974	 * we are rounding upwards:
 975	 */
 976	max_pfn = e820__end_of_ram_pfn();
 977
 978	/* update e820 for memory not covered by WB MTRRs */
 979	mtrr_bp_init();
 980	if (mtrr_trim_uncached_memory(max_pfn))
 981		max_pfn = e820__end_of_ram_pfn();
 982
 983	max_possible_pfn = max_pfn;
 984
 985	/*
 986	 * This call is required when the CPU does not support PAT. If
 987	 * mtrr_bp_init() invoked it already via pat_init() the call has no
 988	 * effect.
 989	 */
 990	init_cache_modes();
 991
 992	/*
 993	 * Define random base addresses for memory sections after max_pfn is
 994	 * defined and before each memory section base is used.
 995	 */
 996	kernel_randomize_memory();
 997
 998#ifdef CONFIG_X86_32
 999	/* max_low_pfn get updated here */
1000	find_low_pfn_range();
1001#else
1002	check_x2apic();
1003
1004	/* How many end-of-memory variables you have, grandma! */
1005	/* need this before calling reserve_initrd */
1006	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1007		max_low_pfn = e820__end_of_low_ram_pfn();
1008	else
1009		max_low_pfn = max_pfn;
1010
1011	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1012#endif
1013
1014	/*
1015	 * Find and reserve possible boot-time SMP configuration:
1016	 */
1017	find_smp_config();
1018
 
 
1019	early_alloc_pgt_buf();
1020
1021	/*
1022	 * Need to conclude brk, before e820__memblock_setup()
1023	 * it could use memblock_find_in_range, could overlap with
1024	 * brk area.
1025	 */
1026	reserve_brk();
1027
1028	cleanup_highmap();
1029
1030	memblock_set_current_limit(ISA_END_ADDRESS);
1031	e820__memblock_setup();
1032
1033	/*
1034	 * Needs to run after memblock setup because it needs the physical
1035	 * memory size.
1036	 */
1037	sev_setup_arch();
1038
1039	efi_fake_memmap();
1040	efi_find_mirror();
1041	efi_esrt_init();
1042	efi_mokvar_table_init();
1043
1044	/*
1045	 * The EFI specification says that boot service code won't be
1046	 * called after ExitBootServices(). This is, in fact, a lie.
1047	 */
1048	efi_reserve_boot_services();
 
1049
1050	/* preallocate 4k for mptable mpc */
1051	e820__memblock_alloc_reserved_mpc_new();
1052
1053#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1054	setup_bios_corruption_check();
1055#endif
1056
1057#ifdef CONFIG_X86_32
1058	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1059			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1060#endif
1061
1062	/*
1063	 * Find free memory for the real mode trampoline and place it there. If
1064	 * there is not enough free memory under 1M, on EFI-enabled systems
1065	 * there will be additional attempt to reclaim the memory for the real
1066	 * mode trampoline at efi_free_boot_services().
1067	 *
1068	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1069	 * are known to corrupt low memory and several hundred kilobytes are not
1070	 * worth complex detection what memory gets clobbered. Windows does the
1071	 * same thing for very similar reasons.
1072	 *
1073	 * Moreover, on machines with SandyBridge graphics or in setups that use
1074	 * crashkernel the entire 1M is reserved anyway.
1075	 */
1076	reserve_real_mode();
1077
 
 
 
1078	init_mem_mapping();
1079
1080	idt_setup_early_pf();
1081
1082	/*
1083	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1084	 * with the current CR4 value.  This may not be necessary, but
1085	 * auditing all the early-boot CR4 manipulation would be needed to
1086	 * rule it out.
1087	 *
1088	 * Mask off features that don't work outside long mode (just
1089	 * PCIDE for now).
1090	 */
1091	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1092
1093	memblock_set_current_limit(get_max_mapped());
1094
1095	/*
1096	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1097	 */
1098
1099#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1100	if (init_ohci1394_dma_early)
1101		init_ohci1394_dma_on_all_controllers();
1102#endif
1103	/* Allocate bigger log buffer */
1104	setup_log_buf(1);
1105
1106	if (efi_enabled(EFI_BOOT)) {
1107		switch (boot_params.secure_boot) {
1108		case efi_secureboot_mode_disabled:
1109			pr_info("Secure boot disabled\n");
1110			break;
1111		case efi_secureboot_mode_enabled:
1112			pr_info("Secure boot enabled\n");
1113			break;
1114		default:
1115			pr_info("Secure boot could not be determined\n");
1116			break;
1117		}
1118	}
1119
1120	reserve_initrd();
1121
1122	acpi_table_upgrade();
1123	/* Look for ACPI tables and reserve memory occupied by them. */
1124	acpi_boot_table_init();
1125
1126	vsmp_init();
1127
1128	io_delay_init();
1129
1130	early_platform_quirks();
1131
 
 
 
 
 
1132	early_acpi_boot_init();
1133
1134	initmem_init();
1135	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1136
1137	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1138		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1139
1140	/*
1141	 * Reserve memory for crash kernel after SRAT is parsed so that it
1142	 * won't consume hotpluggable memory.
1143	 */
1144	reserve_crashkernel();
1145
1146	memblock_find_dma_reserve();
1147
 
 
 
 
 
1148	if (!early_xdbc_setup_hardware())
1149		early_xdbc_register_console();
1150
1151	x86_init.paging.pagetable_init();
1152
1153	kasan_init();
1154
1155	/*
1156	 * Sync back kernel address range.
1157	 *
1158	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1159	 * this call?
1160	 */
1161	sync_initial_page_table();
1162
1163	tboot_probe();
1164
1165	map_vsyscall();
1166
1167	generic_apic_probe();
1168
1169	early_quirks();
1170
1171	/*
1172	 * Read APIC and some other early information from ACPI tables.
1173	 */
1174	acpi_boot_init();
 
1175	x86_dtb_init();
1176
1177	/*
1178	 * get boot-time SMP configuration:
1179	 */
1180	get_smp_config();
1181
1182	/*
1183	 * Systems w/o ACPI and mptables might not have it mapped the local
1184	 * APIC yet, but prefill_possible_map() might need to access it.
1185	 */
1186	init_apic_mappings();
1187
1188	prefill_possible_map();
1189
1190	init_cpu_to_node();
1191	init_gi_nodes();
1192
1193	io_apic_init_mappings();
1194
1195	x86_init.hyper.guest_late_init();
1196
1197	e820__reserve_resources();
1198	e820__register_nosave_regions(max_pfn);
1199
1200	x86_init.resources.reserve_resources();
1201
1202	e820__setup_pci_gap();
1203
1204#ifdef CONFIG_VT
1205#if defined(CONFIG_VGA_CONSOLE)
1206	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1207		conswitchp = &vga_con;
 
 
1208#endif
1209#endif
1210	x86_init.oem.banner();
1211
1212	x86_init.timers.wallclock_init();
1213
1214	/*
1215	 * This needs to run before setup_local_APIC() which soft-disables the
1216	 * local APIC temporarily and that masks the thermal LVT interrupt,
1217	 * leading to softlockups on machines which have configured SMI
1218	 * interrupt delivery.
1219	 */
1220	therm_lvt_init();
1221
1222	mcheck_init();
1223
1224	register_refined_jiffies(CLOCK_TICK_RATE);
1225
1226#ifdef CONFIG_EFI
1227	if (efi_enabled(EFI_BOOT))
1228		efi_apply_memmap_quirks();
1229#endif
1230
1231	unwind_init();
1232}
1233
1234#ifdef CONFIG_X86_32
1235
1236static struct resource video_ram_resource = {
1237	.name	= "Video RAM area",
1238	.start	= 0xa0000,
1239	.end	= 0xbffff,
1240	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1241};
1242
1243void __init i386_reserve_resources(void)
1244{
1245	request_resource(&iomem_resource, &video_ram_resource);
1246	reserve_standard_io_resources();
1247}
1248
1249#endif /* CONFIG_X86_32 */
1250
1251static struct notifier_block kernel_offset_notifier = {
1252	.notifier_call = dump_kernel_offset
1253};
1254
1255static int __init register_kernel_offset_dumper(void)
1256{
1257	atomic_notifier_chain_register(&panic_notifier_list,
1258					&kernel_offset_notifier);
1259	return 0;
1260}
1261__initcall(register_kernel_offset_dumper);