Linux Audio

Check our new training course

Loading...
v4.17
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <xen/xen.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/mem_encrypt.h>
  74
  75#include <linux/usb/xhci-dbgp.h>
  76#include <video/edid.h>
  77
  78#include <asm/mtrr.h>
  79#include <asm/apic.h>
  80#include <asm/realmode.h>
  81#include <asm/e820/api.h>
  82#include <asm/mpspec.h>
  83#include <asm/setup.h>
  84#include <asm/efi.h>
  85#include <asm/timer.h>
  86#include <asm/i8259.h>
  87#include <asm/sections.h>
  88#include <asm/io_apic.h>
  89#include <asm/ist.h>
  90#include <asm/setup_arch.h>
  91#include <asm/bios_ebda.h>
  92#include <asm/cacheflush.h>
  93#include <asm/processor.h>
  94#include <asm/bugs.h>
  95#include <asm/kasan.h>
  96
  97#include <asm/vsyscall.h>
  98#include <asm/cpu.h>
  99#include <asm/desc.h>
 100#include <asm/dma.h>
 101#include <asm/iommu.h>
 102#include <asm/gart.h>
 103#include <asm/mmu_context.h>
 104#include <asm/proto.h>
 105
 106#include <asm/paravirt.h>
 107#include <asm/hypervisor.h>
 108#include <asm/olpc_ofw.h>
 109
 110#include <asm/percpu.h>
 111#include <asm/topology.h>
 112#include <asm/apicdef.h>
 113#include <asm/amd_nb.h>
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 116#include <asm/prom.h>
 117#include <asm/microcode.h>
 
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 138
 
 
 
 
 
 
 
 
 
 
 
 
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 143 */
 144static struct resource data_resource = {
 145	.name	= "Kernel data",
 146	.start	= 0,
 147	.end	= 0,
 148	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152	.name	= "Kernel code",
 153	.start	= 0,
 154	.end	= 0,
 155	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159	.name	= "Kernel bss",
 160	.start	= 0,
 161	.end	= 0,
 162	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 
 
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 193struct cpuinfo_x86 boot_cpu_data __read_mostly;
 
 
 194EXPORT_SYMBOL(boot_cpu_data);
 195#endif
 196
 197
 198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 199__visible unsigned long mmu_cr4_features __ro_after_init;
 200#else
 201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 202#endif
 203
 204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 205int bootloader_type, bootloader_version;
 206
 207/*
 208 * Setup options
 209 */
 210struct screen_info screen_info;
 211EXPORT_SYMBOL(screen_info);
 212struct edid_info edid_info;
 213EXPORT_SYMBOL_GPL(edid_info);
 214
 215extern int root_mountflags;
 216
 217unsigned long saved_video_mode;
 218
 219#define RAMDISK_IMAGE_START_MASK	0x07FF
 220#define RAMDISK_PROMPT_FLAG		0x8000
 221#define RAMDISK_LOAD_FLAG		0x4000
 222
 223static char __initdata command_line[COMMAND_LINE_SIZE];
 224#ifdef CONFIG_CMDLINE_BOOL
 225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 226#endif
 227
 228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 229struct edd edd;
 230#ifdef CONFIG_EDD_MODULE
 231EXPORT_SYMBOL(edd);
 232#endif
 233/**
 234 * copy_edd() - Copy the BIOS EDD information
 235 *              from boot_params into a safe place.
 236 *
 237 */
 238static inline void __init copy_edd(void)
 239{
 240     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 241	    sizeof(edd.mbr_signature));
 242     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 243     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 244     edd.edd_info_nr = boot_params.eddbuf_entries;
 245}
 246#else
 247static inline void __init copy_edd(void)
 248{
 249}
 250#endif
 251
 252void * __init extend_brk(size_t size, size_t align)
 253{
 254	size_t mask = align - 1;
 255	void *ret;
 256
 257	BUG_ON(_brk_start == 0);
 258	BUG_ON(align & mask);
 259
 260	_brk_end = (_brk_end + mask) & ~mask;
 261	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 262
 263	ret = (void *)_brk_end;
 264	_brk_end += size;
 265
 266	memset(ret, 0, size);
 267
 268	return ret;
 269}
 270
 271#ifdef CONFIG_X86_32
 272static void __init cleanup_highmap(void)
 273{
 274}
 275#endif
 276
 277static void __init reserve_brk(void)
 278{
 279	if (_brk_end > _brk_start)
 280		memblock_reserve(__pa_symbol(_brk_start),
 281				 _brk_end - _brk_start);
 282
 283	/* Mark brk area as locked down and no longer taking any
 284	   new allocations */
 285	_brk_start = 0;
 286}
 287
 288u64 relocated_ramdisk;
 289
 290#ifdef CONFIG_BLK_DEV_INITRD
 291
 292static u64 __init get_ramdisk_image(void)
 293{
 294	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 295
 296	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 297
 298	return ramdisk_image;
 299}
 300static u64 __init get_ramdisk_size(void)
 301{
 302	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 303
 304	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 305
 306	return ramdisk_size;
 307}
 308
 309static void __init relocate_initrd(void)
 310{
 311	/* Assume only end is not page aligned */
 312	u64 ramdisk_image = get_ramdisk_image();
 313	u64 ramdisk_size  = get_ramdisk_size();
 314	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 315
 316	/* We need to move the initrd down into directly mapped mem */
 317	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 318						   area_size, PAGE_SIZE);
 319
 320	if (!relocated_ramdisk)
 321		panic("Cannot find place for new RAMDISK of size %lld\n",
 322		      ramdisk_size);
 323
 324	/* Note: this includes all the mem currently occupied by
 325	   the initrd, we rely on that fact to keep the data intact. */
 326	memblock_reserve(relocated_ramdisk, area_size);
 327	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 328	initrd_end   = initrd_start + ramdisk_size;
 329	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 330	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 331
 332	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 333
 334	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 335		" [mem %#010llx-%#010llx]\n",
 336		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 337		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 338}
 339
 340static void __init early_reserve_initrd(void)
 341{
 342	/* Assume only end is not page aligned */
 343	u64 ramdisk_image = get_ramdisk_image();
 344	u64 ramdisk_size  = get_ramdisk_size();
 345	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 346
 347	if (!boot_params.hdr.type_of_loader ||
 348	    !ramdisk_image || !ramdisk_size)
 349		return;		/* No initrd provided by bootloader */
 350
 351	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 352}
 353static void __init reserve_initrd(void)
 354{
 355	/* Assume only end is not page aligned */
 356	u64 ramdisk_image = get_ramdisk_image();
 357	u64 ramdisk_size  = get_ramdisk_size();
 358	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359	u64 mapped_size;
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	initrd_start = 0;
 366
 367	mapped_size = memblock_mem_size(max_pfn_mapped);
 368	if (ramdisk_size >= (mapped_size>>1))
 369		panic("initrd too large to handle, "
 370		       "disabling initrd (%lld needed, %lld available)\n",
 371		       ramdisk_size, mapped_size>>1);
 372
 373	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 374			ramdisk_end - 1);
 375
 376	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 377				PFN_DOWN(ramdisk_end))) {
 378		/* All are mapped, easy case */
 379		initrd_start = ramdisk_image + PAGE_OFFSET;
 380		initrd_end = initrd_start + ramdisk_size;
 381		return;
 382	}
 383
 384	relocate_initrd();
 385
 386	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 387}
 388
 389#else
 390static void __init early_reserve_initrd(void)
 391{
 392}
 393static void __init reserve_initrd(void)
 394{
 395}
 396#endif /* CONFIG_BLK_DEV_INITRD */
 397
 398static void __init parse_setup_data(void)
 399{
 400	struct setup_data *data;
 401	u64 pa_data, pa_next;
 402
 403	pa_data = boot_params.hdr.setup_data;
 404	while (pa_data) {
 405		u32 data_len, data_type;
 406
 407		data = early_memremap(pa_data, sizeof(*data));
 408		data_len = data->len + sizeof(struct setup_data);
 409		data_type = data->type;
 410		pa_next = data->next;
 411		early_memunmap(data, sizeof(*data));
 412
 413		switch (data_type) {
 414		case SETUP_E820_EXT:
 415			e820__memory_setup_extended(pa_data, data_len);
 416			break;
 417		case SETUP_DTB:
 418			add_dtb(pa_data);
 419			break;
 420		case SETUP_EFI:
 421			parse_efi_setup(pa_data, data_len);
 422			break;
 423		default:
 424			break;
 425		}
 426		pa_data = pa_next;
 427	}
 428}
 429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430static void __init memblock_x86_reserve_range_setup_data(void)
 431{
 432	struct setup_data *data;
 433	u64 pa_data;
 434
 435	pa_data = boot_params.hdr.setup_data;
 436	while (pa_data) {
 437		data = early_memremap(pa_data, sizeof(*data));
 438		memblock_reserve(pa_data, sizeof(*data) + data->len);
 439		pa_data = data->next;
 440		early_memunmap(data, sizeof(*data));
 441	}
 442}
 443
 444/*
 445 * --------- Crashkernel reservation ------------------------------
 446 */
 447
 448#ifdef CONFIG_KEXEC_CORE
 449
 450/* 16M alignment for crash kernel regions */
 451#define CRASH_ALIGN		(16 << 20)
 452
 453/*
 454 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 456 * On 64bit, old kexec-tools need to under 896MiB.
 457 */
 458#ifdef CONFIG_X86_32
 459# define CRASH_ADDR_LOW_MAX	(512 << 20)
 460# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 461#else
 462# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 463# define CRASH_ADDR_HIGH_MAX	MAXMEM
 464#endif
 465
 466static int __init reserve_crashkernel_low(void)
 467{
 468#ifdef CONFIG_X86_64
 469	unsigned long long base, low_base = 0, low_size = 0;
 470	unsigned long total_low_mem;
 471	int ret;
 472
 473	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 474
 475	/* crashkernel=Y,low */
 476	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 477	if (ret) {
 478		/*
 479		 * two parts from lib/swiotlb.c:
 480		 * -swiotlb size: user-specified with swiotlb= or default.
 481		 *
 482		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 483		 * to 8M for other buffers that may need to stay low too. Also
 484		 * make sure we allocate enough extra low memory so that we
 485		 * don't run out of DMA buffers for 32-bit devices.
 486		 */
 487		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 488	} else {
 489		/* passed with crashkernel=0,low ? */
 490		if (!low_size)
 491			return 0;
 492	}
 493
 494	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 495	if (!low_base) {
 496		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 497		       (unsigned long)(low_size >> 20));
 498		return -ENOMEM;
 499	}
 500
 501	ret = memblock_reserve(low_base, low_size);
 502	if (ret) {
 503		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 504		return ret;
 505	}
 506
 507	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 508		(unsigned long)(low_size >> 20),
 509		(unsigned long)(low_base >> 20),
 510		(unsigned long)(total_low_mem >> 20));
 511
 512	crashk_low_res.start = low_base;
 513	crashk_low_res.end   = low_base + low_size - 1;
 514	insert_resource(&iomem_resource, &crashk_low_res);
 515#endif
 516	return 0;
 517}
 518
 519static void __init reserve_crashkernel(void)
 520{
 521	unsigned long long crash_size, crash_base, total_mem;
 522	bool high = false;
 523	int ret;
 524
 525	total_mem = memblock_phys_mem_size();
 526
 527	/* crashkernel=XM */
 528	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 529	if (ret != 0 || crash_size <= 0) {
 530		/* crashkernel=X,high */
 531		ret = parse_crashkernel_high(boot_command_line, total_mem,
 532					     &crash_size, &crash_base);
 533		if (ret != 0 || crash_size <= 0)
 534			return;
 535		high = true;
 536	}
 537
 538	if (xen_pv_domain()) {
 539		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 540		return;
 541	}
 542
 543	/* 0 means: find the address automatically */
 544	if (crash_base <= 0) {
 545		/*
 546		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 547		 * as old kexec-tools loads bzImage below that, unless
 548		 * "crashkernel=size[KMG],high" is specified.
 549		 */
 550		crash_base = memblock_find_in_range(CRASH_ALIGN,
 551						    high ? CRASH_ADDR_HIGH_MAX
 552							 : CRASH_ADDR_LOW_MAX,
 553						    crash_size, CRASH_ALIGN);
 554		if (!crash_base) {
 555			pr_info("crashkernel reservation failed - No suitable area found.\n");
 556			return;
 557		}
 558
 559	} else {
 560		unsigned long long start;
 561
 562		start = memblock_find_in_range(crash_base,
 563					       crash_base + crash_size,
 564					       crash_size, 1 << 20);
 565		if (start != crash_base) {
 566			pr_info("crashkernel reservation failed - memory is in use.\n");
 567			return;
 568		}
 569	}
 570	ret = memblock_reserve(crash_base, crash_size);
 571	if (ret) {
 572		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 573		return;
 574	}
 575
 576	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 577		memblock_free(crash_base, crash_size);
 578		return;
 579	}
 580
 581	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 582		(unsigned long)(crash_size >> 20),
 583		(unsigned long)(crash_base >> 20),
 584		(unsigned long)(total_mem >> 20));
 585
 586	crashk_res.start = crash_base;
 587	crashk_res.end   = crash_base + crash_size - 1;
 588	insert_resource(&iomem_resource, &crashk_res);
 589}
 590#else
 591static void __init reserve_crashkernel(void)
 592{
 593}
 594#endif
 595
 596static struct resource standard_io_resources[] = {
 597	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 598		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 599	{ .name = "pic1", .start = 0x20, .end = 0x21,
 600		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 601	{ .name = "timer0", .start = 0x40, .end = 0x43,
 602		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 603	{ .name = "timer1", .start = 0x50, .end = 0x53,
 604		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 605	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 606		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 607	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 608		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 609	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 610		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 611	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 612		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 613	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 614		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 616		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 617};
 618
 619void __init reserve_standard_io_resources(void)
 620{
 621	int i;
 622
 623	/* request I/O space for devices used on all i[345]86 PCs */
 624	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 625		request_resource(&ioport_resource, &standard_io_resources[i]);
 626
 627}
 628
 629static __init void reserve_ibft_region(void)
 630{
 631	unsigned long addr, size = 0;
 632
 633	addr = find_ibft_region(&size);
 634
 635	if (size)
 636		memblock_reserve(addr, size);
 637}
 638
 639static bool __init snb_gfx_workaround_needed(void)
 640{
 641#ifdef CONFIG_PCI
 642	int i;
 643	u16 vendor, devid;
 644	static const __initconst u16 snb_ids[] = {
 645		0x0102,
 646		0x0112,
 647		0x0122,
 648		0x0106,
 649		0x0116,
 650		0x0126,
 651		0x010a,
 652	};
 653
 654	/* Assume no if something weird is going on with PCI */
 655	if (!early_pci_allowed())
 656		return false;
 657
 658	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 659	if (vendor != 0x8086)
 660		return false;
 661
 662	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 663	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 664		if (devid == snb_ids[i])
 665			return true;
 666#endif
 667
 668	return false;
 669}
 670
 671/*
 672 * Sandy Bridge graphics has trouble with certain ranges, exclude
 673 * them from allocation.
 674 */
 675static void __init trim_snb_memory(void)
 676{
 677	static const __initconst unsigned long bad_pages[] = {
 678		0x20050000,
 679		0x20110000,
 680		0x20130000,
 681		0x20138000,
 682		0x40004000,
 683	};
 684	int i;
 685
 686	if (!snb_gfx_workaround_needed())
 687		return;
 688
 689	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 690
 691	/*
 692	 * Reserve all memory below the 1 MB mark that has not
 693	 * already been reserved.
 694	 */
 695	memblock_reserve(0, 1<<20);
 696	
 697	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 698		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 699			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 700			       bad_pages[i]);
 701	}
 702}
 703
 704/*
 705 * Here we put platform-specific memory range workarounds, i.e.
 706 * memory known to be corrupt or otherwise in need to be reserved on
 707 * specific platforms.
 708 *
 709 * If this gets used more widely it could use a real dispatch mechanism.
 710 */
 711static void __init trim_platform_memory_ranges(void)
 712{
 713	trim_snb_memory();
 714}
 715
 716static void __init trim_bios_range(void)
 717{
 718	/*
 719	 * A special case is the first 4Kb of memory;
 720	 * This is a BIOS owned area, not kernel ram, but generally
 721	 * not listed as such in the E820 table.
 722	 *
 723	 * This typically reserves additional memory (64KiB by default)
 724	 * since some BIOSes are known to corrupt low memory.  See the
 725	 * Kconfig help text for X86_RESERVE_LOW.
 726	 */
 727	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 728
 729	/*
 730	 * special case: Some BIOSen report the PC BIOS
 731	 * area (640->1Mb) as ram even though it is not.
 732	 * take them out.
 733	 */
 734	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 735
 736	e820__update_table(e820_table);
 737}
 738
 739/* called before trim_bios_range() to spare extra sanitize */
 740static void __init e820_add_kernel_range(void)
 741{
 742	u64 start = __pa_symbol(_text);
 743	u64 size = __pa_symbol(_end) - start;
 744
 745	/*
 746	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 747	 * attempt to fix it by adding the range. We may have a confused BIOS,
 748	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 749	 * exclude kernel range. If we really are running on top non-RAM,
 750	 * we will crash later anyways.
 751	 */
 752	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 753		return;
 754
 755	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 756	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 757	e820__range_add(start, size, E820_TYPE_RAM);
 758}
 759
 760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 761
 762static int __init parse_reservelow(char *p)
 763{
 764	unsigned long long size;
 765
 766	if (!p)
 767		return -EINVAL;
 768
 769	size = memparse(p, &p);
 770
 771	if (size < 4096)
 772		size = 4096;
 773
 774	if (size > 640*1024)
 775		size = 640*1024;
 776
 777	reserve_low = size;
 778
 779	return 0;
 780}
 781
 782early_param("reservelow", parse_reservelow);
 783
 784static void __init trim_low_memory_range(void)
 785{
 786	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 787}
 788	
 789/*
 790 * Dump out kernel offset information on panic.
 791 */
 792static int
 793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 794{
 795	if (kaslr_enabled()) {
 796		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 797			 kaslr_offset(),
 798			 __START_KERNEL,
 799			 __START_KERNEL_map,
 800			 MODULES_VADDR-1);
 801	} else {
 802		pr_emerg("Kernel Offset: disabled\n");
 803	}
 804
 805	return 0;
 806}
 807
 808/*
 809 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 810 * passed the efi memmap, systab, etc., so we should use these data structures
 811 * for initialization.  Note, the efi init code path is determined by the
 812 * global efi_enabled. This allows the same kernel image to be used on existing
 813 * systems (with a traditional BIOS) as well as on EFI systems.
 814 */
 815/*
 816 * setup_arch - architecture-specific boot-time initializations
 817 *
 818 * Note: On x86_64, fixmaps are ready for use even before this is called.
 819 */
 820
 821void __init setup_arch(char **cmdline_p)
 822{
 823	memblock_reserve(__pa_symbol(_text),
 824			 (unsigned long)__bss_stop - (unsigned long)_text);
 825
 826	early_reserve_initrd();
 827
 828	/*
 829	 * At this point everything still needed from the boot loader
 830	 * or BIOS or kernel text should be early reserved or marked not
 831	 * RAM in e820. All other memory is free game.
 832	 */
 833
 834#ifdef CONFIG_X86_32
 835	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 836
 837	/*
 838	 * copy kernel address range established so far and switch
 839	 * to the proper swapper page table
 840	 */
 841	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 842			initial_page_table + KERNEL_PGD_BOUNDARY,
 843			KERNEL_PGD_PTRS);
 844
 845	load_cr3(swapper_pg_dir);
 846	/*
 847	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 848	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 849	 * will not flush anything because the cpu quirk which clears
 850	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 851	 * load_cr3() above the TLB has been flushed already. The
 852	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 853	 * so proper operation is guaranteed.
 854	 */
 855	__flush_tlb_all();
 856#else
 857	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 858	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 859#endif
 860
 861	/*
 862	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 863	 * reserve_top(), so do this before touching the ioremap area.
 864	 */
 865	olpc_ofw_detect();
 866
 867	idt_setup_early_traps();
 868	early_cpu_init();
 869	early_ioremap_init();
 870
 871	setup_olpc_ofw_pgd();
 872
 873	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 874	screen_info = boot_params.screen_info;
 875	edid_info = boot_params.edid_info;
 876#ifdef CONFIG_X86_32
 877	apm_info.bios = boot_params.apm_bios_info;
 878	ist_info = boot_params.ist_info;
 879#endif
 880	saved_video_mode = boot_params.hdr.vid_mode;
 881	bootloader_type = boot_params.hdr.type_of_loader;
 882	if ((bootloader_type >> 4) == 0xe) {
 883		bootloader_type &= 0xf;
 884		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 885	}
 886	bootloader_version  = bootloader_type & 0xf;
 887	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 888
 889#ifdef CONFIG_BLK_DEV_RAM
 890	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 891	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 892	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 893#endif
 894#ifdef CONFIG_EFI
 895	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 896		     EFI32_LOADER_SIGNATURE, 4)) {
 897		set_bit(EFI_BOOT, &efi.flags);
 898	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 899		     EFI64_LOADER_SIGNATURE, 4)) {
 900		set_bit(EFI_BOOT, &efi.flags);
 901		set_bit(EFI_64BIT, &efi.flags);
 902	}
 
 
 
 903#endif
 904
 905	x86_init.oem.arch_setup();
 906
 907	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 908	e820__memory_setup();
 909	parse_setup_data();
 910
 911	copy_edd();
 912
 913	if (!boot_params.hdr.root_flags)
 914		root_mountflags &= ~MS_RDONLY;
 915	init_mm.start_code = (unsigned long) _text;
 916	init_mm.end_code = (unsigned long) _etext;
 917	init_mm.end_data = (unsigned long) _edata;
 918	init_mm.brk = _brk_end;
 919
 920	mpx_mm_init(&init_mm);
 921
 922	code_resource.start = __pa_symbol(_text);
 923	code_resource.end = __pa_symbol(_etext)-1;
 924	data_resource.start = __pa_symbol(_etext);
 925	data_resource.end = __pa_symbol(_edata)-1;
 926	bss_resource.start = __pa_symbol(__bss_start);
 927	bss_resource.end = __pa_symbol(__bss_stop)-1;
 928
 929#ifdef CONFIG_CMDLINE_BOOL
 930#ifdef CONFIG_CMDLINE_OVERRIDE
 931	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 932#else
 933	if (builtin_cmdline[0]) {
 934		/* append boot loader cmdline to builtin */
 935		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 936		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 937		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 938	}
 939#endif
 940#endif
 941
 942	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 943	*cmdline_p = command_line;
 944
 945	/*
 946	 * x86_configure_nx() is called before parse_early_param() to detect
 947	 * whether hardware doesn't support NX (so that the early EHCI debug
 948	 * console setup can safely call set_fixmap()). It may then be called
 949	 * again from within noexec_setup() during parsing early parameters
 950	 * to honor the respective command line option.
 951	 */
 952	x86_configure_nx();
 953
 954	parse_early_param();
 955
 956	if (efi_enabled(EFI_BOOT))
 957		efi_memblock_x86_reserve_range();
 958#ifdef CONFIG_MEMORY_HOTPLUG
 959	/*
 960	 * Memory used by the kernel cannot be hot-removed because Linux
 961	 * cannot migrate the kernel pages. When memory hotplug is
 962	 * enabled, we should prevent memblock from allocating memory
 963	 * for the kernel.
 964	 *
 965	 * ACPI SRAT records all hotpluggable memory ranges. But before
 966	 * SRAT is parsed, we don't know about it.
 967	 *
 968	 * The kernel image is loaded into memory at very early time. We
 969	 * cannot prevent this anyway. So on NUMA system, we set any
 970	 * node the kernel resides in as un-hotpluggable.
 971	 *
 972	 * Since on modern servers, one node could have double-digit
 973	 * gigabytes memory, we can assume the memory around the kernel
 974	 * image is also un-hotpluggable. So before SRAT is parsed, just
 975	 * allocate memory near the kernel image to try the best to keep
 976	 * the kernel away from hotpluggable memory.
 977	 */
 978	if (movable_node_is_enabled())
 979		memblock_set_bottom_up(true);
 980#endif
 981
 982	x86_report_nx();
 983
 984	/* after early param, so could get panic from serial */
 985	memblock_x86_reserve_range_setup_data();
 986
 987	if (acpi_mps_check()) {
 988#ifdef CONFIG_X86_LOCAL_APIC
 989		disable_apic = 1;
 990#endif
 991		setup_clear_cpu_cap(X86_FEATURE_APIC);
 992	}
 993
 994#ifdef CONFIG_PCI
 995	if (pci_early_dump_regs)
 996		early_dump_pci_devices();
 997#endif
 998
 999	e820__reserve_setup_data();
1000	e820__finish_early_params();
 
1001
1002	if (efi_enabled(EFI_BOOT))
1003		efi_init();
1004
1005	dmi_scan_machine();
1006	dmi_memdev_walk();
1007	dmi_set_dump_stack_arch_desc();
1008
1009	/*
1010	 * VMware detection requires dmi to be available, so this
1011	 * needs to be done after dmi_scan_machine(), for the boot CPU.
1012	 */
1013	init_hypervisor_platform();
1014
1015	x86_init.resources.probe_roms();
1016
1017	/* after parse_early_param, so could debug it */
1018	insert_resource(&iomem_resource, &code_resource);
1019	insert_resource(&iomem_resource, &data_resource);
1020	insert_resource(&iomem_resource, &bss_resource);
1021
1022	e820_add_kernel_range();
1023	trim_bios_range();
1024#ifdef CONFIG_X86_32
1025	if (ppro_with_ram_bug()) {
1026		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027				  E820_TYPE_RESERVED);
1028		e820__update_table(e820_table);
1029		printk(KERN_INFO "fixed physical RAM map:\n");
1030		e820__print_table("bad_ppro");
1031	}
1032#else
1033	early_gart_iommu_check();
1034#endif
1035
1036	/*
1037	 * partially used pages are not usable - thus
1038	 * we are rounding upwards:
1039	 */
1040	max_pfn = e820__end_of_ram_pfn();
1041
1042	/* update e820 for memory not covered by WB MTRRs */
1043	mtrr_bp_init();
1044	if (mtrr_trim_uncached_memory(max_pfn))
1045		max_pfn = e820__end_of_ram_pfn();
1046
1047	max_possible_pfn = max_pfn;
1048
1049	/*
1050	 * This call is required when the CPU does not support PAT. If
1051	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052	 * effect.
1053	 */
1054	init_cache_modes();
1055
1056	/*
1057	 * Define random base addresses for memory sections after max_pfn is
1058	 * defined and before each memory section base is used.
1059	 */
1060	kernel_randomize_memory();
1061
1062#ifdef CONFIG_X86_32
1063	/* max_low_pfn get updated here */
1064	find_low_pfn_range();
1065#else
1066	check_x2apic();
1067
1068	/* How many end-of-memory variables you have, grandma! */
1069	/* need this before calling reserve_initrd */
1070	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071		max_low_pfn = e820__end_of_low_ram_pfn();
1072	else
1073		max_low_pfn = max_pfn;
1074
1075	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076#endif
1077
1078	/*
1079	 * Find and reserve possible boot-time SMP configuration:
1080	 */
1081	find_smp_config();
1082
1083	reserve_ibft_region();
1084
1085	early_alloc_pgt_buf();
1086
1087	/*
1088	 * Need to conclude brk, before e820__memblock_setup()
1089	 *  it could use memblock_find_in_range, could overlap with
1090	 *  brk area.
1091	 */
1092	reserve_brk();
1093
1094	cleanup_highmap();
1095
1096	memblock_set_current_limit(ISA_END_ADDRESS);
1097	e820__memblock_setup();
1098
1099	reserve_bios_regions();
1100
1101	if (efi_enabled(EFI_MEMMAP)) {
1102		efi_fake_memmap();
1103		efi_find_mirror();
1104		efi_esrt_init();
1105
1106		/*
1107		 * The EFI specification says that boot service code won't be
1108		 * called after ExitBootServices(). This is, in fact, a lie.
1109		 */
1110		efi_reserve_boot_services();
1111	}
1112
1113	/* preallocate 4k for mptable mpc */
1114	e820__memblock_alloc_reserved_mpc_new();
1115
1116#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117	setup_bios_corruption_check();
1118#endif
1119
1120#ifdef CONFIG_X86_32
1121	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1123#endif
1124
1125	reserve_real_mode();
1126
1127	trim_platform_memory_ranges();
1128	trim_low_memory_range();
1129
1130	init_mem_mapping();
1131
1132	idt_setup_early_pf();
1133
1134	/*
1135	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136	 * with the current CR4 value.  This may not be necessary, but
1137	 * auditing all the early-boot CR4 manipulation would be needed to
1138	 * rule it out.
1139	 *
1140	 * Mask off features that don't work outside long mode (just
1141	 * PCIDE for now).
1142	 */
1143	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145	memblock_set_current_limit(get_max_mapped());
1146
1147	/*
1148	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149	 */
1150
1151#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152	if (init_ohci1394_dma_early)
1153		init_ohci1394_dma_on_all_controllers();
1154#endif
1155	/* Allocate bigger log buffer */
1156	setup_log_buf(1);
1157
1158	if (efi_enabled(EFI_BOOT)) {
1159		switch (boot_params.secure_boot) {
1160		case efi_secureboot_mode_disabled:
1161			pr_info("Secure boot disabled\n");
1162			break;
1163		case efi_secureboot_mode_enabled:
1164			pr_info("Secure boot enabled\n");
1165			break;
1166		default:
1167			pr_info("Secure boot could not be determined\n");
1168			break;
1169		}
1170	}
1171
1172	reserve_initrd();
1173
1174	acpi_table_upgrade();
1175
1176	vsmp_init();
1177
1178	io_delay_init();
1179
1180	early_platform_quirks();
1181
1182	/*
1183	 * Parse the ACPI tables for possible boot-time SMP configuration.
1184	 */
1185	acpi_boot_table_init();
1186
1187	early_acpi_boot_init();
1188
1189	initmem_init();
1190	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1191
1192	/*
1193	 * Reserve memory for crash kernel after SRAT is parsed so that it
1194	 * won't consume hotpluggable memory.
1195	 */
1196	reserve_crashkernel();
1197
1198	memblock_find_dma_reserve();
1199
1200#ifdef CONFIG_KVM_GUEST
1201	kvmclock_init();
1202#endif
1203
1204	tsc_early_delay_calibrate();
1205	if (!early_xdbc_setup_hardware())
1206		early_xdbc_register_console();
1207
1208	x86_init.paging.pagetable_init();
1209
1210	kasan_init();
1211
 
 
 
 
 
 
1212	/*
1213	 * Sync back kernel address range.
1214	 *
1215	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216	 * this call?
1217	 */
1218	sync_initial_page_table();
 
 
 
1219
1220	tboot_probe();
1221
1222	map_vsyscall();
1223
1224	generic_apic_probe();
1225
1226	early_quirks();
1227
1228	/*
1229	 * Read APIC and some other early information from ACPI tables.
1230	 */
1231	acpi_boot_init();
1232	sfi_init();
1233	x86_dtb_init();
1234
1235	/*
1236	 * get boot-time SMP configuration:
1237	 */
1238	get_smp_config();
1239
1240	/*
1241	 * Systems w/o ACPI and mptables might not have it mapped the local
1242	 * APIC yet, but prefill_possible_map() might need to access it.
1243	 */
1244	init_apic_mappings();
1245
1246	prefill_possible_map();
1247
1248	init_cpu_to_node();
1249
1250	io_apic_init_mappings();
1251
1252	x86_init.hyper.guest_late_init();
1253
1254	e820__reserve_resources();
1255	e820__register_nosave_regions(max_low_pfn);
1256
1257	x86_init.resources.reserve_resources();
1258
1259	e820__setup_pci_gap();
1260
1261#ifdef CONFIG_VT
1262#if defined(CONFIG_VGA_CONSOLE)
1263	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1264		conswitchp = &vga_con;
1265#elif defined(CONFIG_DUMMY_CONSOLE)
1266	conswitchp = &dummy_con;
1267#endif
1268#endif
1269	x86_init.oem.banner();
1270
1271	x86_init.timers.wallclock_init();
1272
1273	mcheck_init();
1274
1275	arch_init_ideal_nops();
1276
1277	register_refined_jiffies(CLOCK_TICK_RATE);
1278
1279#ifdef CONFIG_EFI
1280	if (efi_enabled(EFI_BOOT))
1281		efi_apply_memmap_quirks();
1282#endif
1283
1284	unwind_init();
1285}
1286
1287#ifdef CONFIG_X86_32
1288
1289static struct resource video_ram_resource = {
1290	.name	= "Video RAM area",
1291	.start	= 0xa0000,
1292	.end	= 0xbffff,
1293	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1294};
1295
1296void __init i386_reserve_resources(void)
1297{
1298	request_resource(&iomem_resource, &video_ram_resource);
1299	reserve_standard_io_resources();
1300}
1301
1302#endif /* CONFIG_X86_32 */
1303
1304static struct notifier_block kernel_offset_notifier = {
1305	.notifier_call = dump_kernel_offset
1306};
1307
1308static int __init register_kernel_offset_dumper(void)
1309{
1310	atomic_notifier_chain_register(&panic_notifier_list,
1311					&kernel_offset_notifier);
1312	return 0;
1313}
1314__initcall(register_kernel_offset_dumper);
1315
1316void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1317{
1318	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1319		return;
1320
1321	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1322}
v4.10.11
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
 
  53
  54#include <linux/errno.h>
  55#include <linux/kernel.h>
  56#include <linux/stddef.h>
  57#include <linux/unistd.h>
  58#include <linux/ptrace.h>
  59#include <linux/user.h>
  60#include <linux/delay.h>
  61
  62#include <linux/kallsyms.h>
  63#include <linux/cpufreq.h>
  64#include <linux/dma-mapping.h>
  65#include <linux/ctype.h>
  66#include <linux/uaccess.h>
  67
  68#include <linux/percpu.h>
  69#include <linux/crash_dump.h>
  70#include <linux/tboot.h>
  71#include <linux/jiffies.h>
 
  72
 
  73#include <video/edid.h>
  74
  75#include <asm/mtrr.h>
  76#include <asm/apic.h>
  77#include <asm/realmode.h>
  78#include <asm/e820.h>
  79#include <asm/mpspec.h>
  80#include <asm/setup.h>
  81#include <asm/efi.h>
  82#include <asm/timer.h>
  83#include <asm/i8259.h>
  84#include <asm/sections.h>
  85#include <asm/io_apic.h>
  86#include <asm/ist.h>
  87#include <asm/setup_arch.h>
  88#include <asm/bios_ebda.h>
  89#include <asm/cacheflush.h>
  90#include <asm/processor.h>
  91#include <asm/bugs.h>
  92#include <asm/kasan.h>
  93
  94#include <asm/vsyscall.h>
  95#include <asm/cpu.h>
  96#include <asm/desc.h>
  97#include <asm/dma.h>
  98#include <asm/iommu.h>
  99#include <asm/gart.h>
 100#include <asm/mmu_context.h>
 101#include <asm/proto.h>
 102
 103#include <asm/paravirt.h>
 104#include <asm/hypervisor.h>
 105#include <asm/olpc_ofw.h>
 106
 107#include <asm/percpu.h>
 108#include <asm/topology.h>
 109#include <asm/apicdef.h>
 110#include <asm/amd_nb.h>
 111#include <asm/mce.h>
 112#include <asm/alternative.h>
 113#include <asm/prom.h>
 114#include <asm/microcode.h>
 115#include <asm/mmu_context.h>
 116#include <asm/kaslr.h>
 
 117
 118/*
 119 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 120 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 121 *
 122 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
 123 * represented by pfn_mapped
 124 */
 125unsigned long max_low_pfn_mapped;
 126unsigned long max_pfn_mapped;
 127
 128#ifdef CONFIG_DMI
 129RESERVE_BRK(dmi_alloc, 65536);
 130#endif
 131
 132
 133static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 134unsigned long _brk_end = (unsigned long)__brk_base;
 135
 136#ifdef CONFIG_X86_64
 137int default_cpu_present_to_apicid(int mps_cpu)
 138{
 139	return __default_cpu_present_to_apicid(mps_cpu);
 140}
 141
 142int default_check_phys_apicid_present(int phys_apicid)
 143{
 144	return __default_check_phys_apicid_present(phys_apicid);
 145}
 146#endif
 147
 148struct boot_params boot_params;
 149
 150/*
 151 * Machine setup..
 152 */
 153static struct resource data_resource = {
 154	.name	= "Kernel data",
 155	.start	= 0,
 156	.end	= 0,
 157	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 158};
 159
 160static struct resource code_resource = {
 161	.name	= "Kernel code",
 162	.start	= 0,
 163	.end	= 0,
 164	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 165};
 166
 167static struct resource bss_resource = {
 168	.name	= "Kernel bss",
 169	.start	= 0,
 170	.end	= 0,
 171	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 172};
 173
 174
 175#ifdef CONFIG_X86_32
 176/* cpu data as detected by the assembly code in head.S */
 177struct cpuinfo_x86 new_cpu_data = {
 178	.wp_works_ok = -1,
 179};
 180/* common cpu data for all cpus */
 181struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 182	.wp_works_ok = -1,
 183};
 184EXPORT_SYMBOL(boot_cpu_data);
 185
 186unsigned int def_to_bigsmp;
 187
 188/* for MCA, but anyone else can use it if they want */
 189unsigned int machine_id;
 190unsigned int machine_submodel_id;
 191unsigned int BIOS_revision;
 192
 193struct apm_info apm_info;
 194EXPORT_SYMBOL(apm_info);
 195
 196#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 197	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 198struct ist_info ist_info;
 199EXPORT_SYMBOL(ist_info);
 200#else
 201struct ist_info ist_info;
 202#endif
 203
 204#else
 205struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 206	.x86_phys_bits = MAX_PHYSMEM_BITS,
 207};
 208EXPORT_SYMBOL(boot_cpu_data);
 209#endif
 210
 211
 212#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 213__visible unsigned long mmu_cr4_features __ro_after_init;
 214#else
 215__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 216#endif
 217
 218/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 219int bootloader_type, bootloader_version;
 220
 221/*
 222 * Setup options
 223 */
 224struct screen_info screen_info;
 225EXPORT_SYMBOL(screen_info);
 226struct edid_info edid_info;
 227EXPORT_SYMBOL_GPL(edid_info);
 228
 229extern int root_mountflags;
 230
 231unsigned long saved_video_mode;
 232
 233#define RAMDISK_IMAGE_START_MASK	0x07FF
 234#define RAMDISK_PROMPT_FLAG		0x8000
 235#define RAMDISK_LOAD_FLAG		0x4000
 236
 237static char __initdata command_line[COMMAND_LINE_SIZE];
 238#ifdef CONFIG_CMDLINE_BOOL
 239static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 240#endif
 241
 242#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 243struct edd edd;
 244#ifdef CONFIG_EDD_MODULE
 245EXPORT_SYMBOL(edd);
 246#endif
 247/**
 248 * copy_edd() - Copy the BIOS EDD information
 249 *              from boot_params into a safe place.
 250 *
 251 */
 252static inline void __init copy_edd(void)
 253{
 254     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 255	    sizeof(edd.mbr_signature));
 256     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 257     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 258     edd.edd_info_nr = boot_params.eddbuf_entries;
 259}
 260#else
 261static inline void __init copy_edd(void)
 262{
 263}
 264#endif
 265
 266void * __init extend_brk(size_t size, size_t align)
 267{
 268	size_t mask = align - 1;
 269	void *ret;
 270
 271	BUG_ON(_brk_start == 0);
 272	BUG_ON(align & mask);
 273
 274	_brk_end = (_brk_end + mask) & ~mask;
 275	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 276
 277	ret = (void *)_brk_end;
 278	_brk_end += size;
 279
 280	memset(ret, 0, size);
 281
 282	return ret;
 283}
 284
 285#ifdef CONFIG_X86_32
 286static void __init cleanup_highmap(void)
 287{
 288}
 289#endif
 290
 291static void __init reserve_brk(void)
 292{
 293	if (_brk_end > _brk_start)
 294		memblock_reserve(__pa_symbol(_brk_start),
 295				 _brk_end - _brk_start);
 296
 297	/* Mark brk area as locked down and no longer taking any
 298	   new allocations */
 299	_brk_start = 0;
 300}
 301
 302u64 relocated_ramdisk;
 303
 304#ifdef CONFIG_BLK_DEV_INITRD
 305
 306static u64 __init get_ramdisk_image(void)
 307{
 308	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 309
 310	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 311
 312	return ramdisk_image;
 313}
 314static u64 __init get_ramdisk_size(void)
 315{
 316	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 317
 318	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 319
 320	return ramdisk_size;
 321}
 322
 323static void __init relocate_initrd(void)
 324{
 325	/* Assume only end is not page aligned */
 326	u64 ramdisk_image = get_ramdisk_image();
 327	u64 ramdisk_size  = get_ramdisk_size();
 328	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 329
 330	/* We need to move the initrd down into directly mapped mem */
 331	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 332						   area_size, PAGE_SIZE);
 333
 334	if (!relocated_ramdisk)
 335		panic("Cannot find place for new RAMDISK of size %lld\n",
 336		      ramdisk_size);
 337
 338	/* Note: this includes all the mem currently occupied by
 339	   the initrd, we rely on that fact to keep the data intact. */
 340	memblock_reserve(relocated_ramdisk, area_size);
 341	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 342	initrd_end   = initrd_start + ramdisk_size;
 343	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 344	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 345
 346	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 347
 348	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 349		" [mem %#010llx-%#010llx]\n",
 350		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 351		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 352}
 353
 354static void __init early_reserve_initrd(void)
 355{
 356	/* Assume only end is not page aligned */
 357	u64 ramdisk_image = get_ramdisk_image();
 358	u64 ramdisk_size  = get_ramdisk_size();
 359	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 366}
 367static void __init reserve_initrd(void)
 368{
 369	/* Assume only end is not page aligned */
 370	u64 ramdisk_image = get_ramdisk_image();
 371	u64 ramdisk_size  = get_ramdisk_size();
 372	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 373	u64 mapped_size;
 374
 375	if (!boot_params.hdr.type_of_loader ||
 376	    !ramdisk_image || !ramdisk_size)
 377		return;		/* No initrd provided by bootloader */
 378
 379	initrd_start = 0;
 380
 381	mapped_size = memblock_mem_size(max_pfn_mapped);
 382	if (ramdisk_size >= (mapped_size>>1))
 383		panic("initrd too large to handle, "
 384		       "disabling initrd (%lld needed, %lld available)\n",
 385		       ramdisk_size, mapped_size>>1);
 386
 387	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 388			ramdisk_end - 1);
 389
 390	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 391				PFN_DOWN(ramdisk_end))) {
 392		/* All are mapped, easy case */
 393		initrd_start = ramdisk_image + PAGE_OFFSET;
 394		initrd_end = initrd_start + ramdisk_size;
 395		return;
 396	}
 397
 398	relocate_initrd();
 399
 400	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 401}
 402
 403#else
 404static void __init early_reserve_initrd(void)
 405{
 406}
 407static void __init reserve_initrd(void)
 408{
 409}
 410#endif /* CONFIG_BLK_DEV_INITRD */
 411
 412static void __init parse_setup_data(void)
 413{
 414	struct setup_data *data;
 415	u64 pa_data, pa_next;
 416
 417	pa_data = boot_params.hdr.setup_data;
 418	while (pa_data) {
 419		u32 data_len, data_type;
 420
 421		data = early_memremap(pa_data, sizeof(*data));
 422		data_len = data->len + sizeof(struct setup_data);
 423		data_type = data->type;
 424		pa_next = data->next;
 425		early_memunmap(data, sizeof(*data));
 426
 427		switch (data_type) {
 428		case SETUP_E820_EXT:
 429			parse_e820_ext(pa_data, data_len);
 430			break;
 431		case SETUP_DTB:
 432			add_dtb(pa_data);
 433			break;
 434		case SETUP_EFI:
 435			parse_efi_setup(pa_data, data_len);
 436			break;
 437		default:
 438			break;
 439		}
 440		pa_data = pa_next;
 441	}
 442}
 443
 444static void __init e820_reserve_setup_data(void)
 445{
 446	struct setup_data *data;
 447	u64 pa_data;
 448
 449	pa_data = boot_params.hdr.setup_data;
 450	if (!pa_data)
 451		return;
 452
 453	while (pa_data) {
 454		data = early_memremap(pa_data, sizeof(*data));
 455		e820_update_range(pa_data, sizeof(*data)+data->len,
 456			 E820_RAM, E820_RESERVED_KERN);
 457		pa_data = data->next;
 458		early_memunmap(data, sizeof(*data));
 459	}
 460
 461	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
 462	memcpy(e820_saved, e820, sizeof(struct e820map));
 463	printk(KERN_INFO "extended physical RAM map:\n");
 464	e820_print_map("reserve setup_data");
 465}
 466
 467static void __init memblock_x86_reserve_range_setup_data(void)
 468{
 469	struct setup_data *data;
 470	u64 pa_data;
 471
 472	pa_data = boot_params.hdr.setup_data;
 473	while (pa_data) {
 474		data = early_memremap(pa_data, sizeof(*data));
 475		memblock_reserve(pa_data, sizeof(*data) + data->len);
 476		pa_data = data->next;
 477		early_memunmap(data, sizeof(*data));
 478	}
 479}
 480
 481/*
 482 * --------- Crashkernel reservation ------------------------------
 483 */
 484
 485#ifdef CONFIG_KEXEC_CORE
 486
 487/* 16M alignment for crash kernel regions */
 488#define CRASH_ALIGN		(16 << 20)
 489
 490/*
 491 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 492 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 493 * On 64bit, old kexec-tools need to under 896MiB.
 494 */
 495#ifdef CONFIG_X86_32
 496# define CRASH_ADDR_LOW_MAX	(512 << 20)
 497# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 498#else
 499# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 500# define CRASH_ADDR_HIGH_MAX	MAXMEM
 501#endif
 502
 503static int __init reserve_crashkernel_low(void)
 504{
 505#ifdef CONFIG_X86_64
 506	unsigned long long base, low_base = 0, low_size = 0;
 507	unsigned long total_low_mem;
 508	int ret;
 509
 510	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 511
 512	/* crashkernel=Y,low */
 513	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 514	if (ret) {
 515		/*
 516		 * two parts from lib/swiotlb.c:
 517		 * -swiotlb size: user-specified with swiotlb= or default.
 518		 *
 519		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 520		 * to 8M for other buffers that may need to stay low too. Also
 521		 * make sure we allocate enough extra low memory so that we
 522		 * don't run out of DMA buffers for 32-bit devices.
 523		 */
 524		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 525	} else {
 526		/* passed with crashkernel=0,low ? */
 527		if (!low_size)
 528			return 0;
 529	}
 530
 531	low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
 532	if (!low_base) {
 533		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 534		       (unsigned long)(low_size >> 20));
 535		return -ENOMEM;
 536	}
 537
 538	ret = memblock_reserve(low_base, low_size);
 539	if (ret) {
 540		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 541		return ret;
 542	}
 543
 544	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 545		(unsigned long)(low_size >> 20),
 546		(unsigned long)(low_base >> 20),
 547		(unsigned long)(total_low_mem >> 20));
 548
 549	crashk_low_res.start = low_base;
 550	crashk_low_res.end   = low_base + low_size - 1;
 551	insert_resource(&iomem_resource, &crashk_low_res);
 552#endif
 553	return 0;
 554}
 555
 556static void __init reserve_crashkernel(void)
 557{
 558	unsigned long long crash_size, crash_base, total_mem;
 559	bool high = false;
 560	int ret;
 561
 562	total_mem = memblock_phys_mem_size();
 563
 564	/* crashkernel=XM */
 565	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 566	if (ret != 0 || crash_size <= 0) {
 567		/* crashkernel=X,high */
 568		ret = parse_crashkernel_high(boot_command_line, total_mem,
 569					     &crash_size, &crash_base);
 570		if (ret != 0 || crash_size <= 0)
 571			return;
 572		high = true;
 573	}
 574
 
 
 
 
 
 575	/* 0 means: find the address automatically */
 576	if (crash_base <= 0) {
 577		/*
 578		 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
 
 
 579		 */
 580		crash_base = memblock_find_in_range(CRASH_ALIGN,
 581						    high ? CRASH_ADDR_HIGH_MAX
 582							 : CRASH_ADDR_LOW_MAX,
 583						    crash_size, CRASH_ALIGN);
 584		if (!crash_base) {
 585			pr_info("crashkernel reservation failed - No suitable area found.\n");
 586			return;
 587		}
 588
 589	} else {
 590		unsigned long long start;
 591
 592		start = memblock_find_in_range(crash_base,
 593					       crash_base + crash_size,
 594					       crash_size, 1 << 20);
 595		if (start != crash_base) {
 596			pr_info("crashkernel reservation failed - memory is in use.\n");
 597			return;
 598		}
 599	}
 600	ret = memblock_reserve(crash_base, crash_size);
 601	if (ret) {
 602		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 603		return;
 604	}
 605
 606	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 607		memblock_free(crash_base, crash_size);
 608		return;
 609	}
 610
 611	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 612		(unsigned long)(crash_size >> 20),
 613		(unsigned long)(crash_base >> 20),
 614		(unsigned long)(total_mem >> 20));
 615
 616	crashk_res.start = crash_base;
 617	crashk_res.end   = crash_base + crash_size - 1;
 618	insert_resource(&iomem_resource, &crashk_res);
 619}
 620#else
 621static void __init reserve_crashkernel(void)
 622{
 623}
 624#endif
 625
 626static struct resource standard_io_resources[] = {
 627	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 628		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 629	{ .name = "pic1", .start = 0x20, .end = 0x21,
 630		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 631	{ .name = "timer0", .start = 0x40, .end = 0x43,
 632		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 633	{ .name = "timer1", .start = 0x50, .end = 0x53,
 634		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 635	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 636		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 637	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 638		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 639	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 640		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 641	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 642		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 643	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 644		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 645	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 646		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 647};
 648
 649void __init reserve_standard_io_resources(void)
 650{
 651	int i;
 652
 653	/* request I/O space for devices used on all i[345]86 PCs */
 654	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 655		request_resource(&ioport_resource, &standard_io_resources[i]);
 656
 657}
 658
 659static __init void reserve_ibft_region(void)
 660{
 661	unsigned long addr, size = 0;
 662
 663	addr = find_ibft_region(&size);
 664
 665	if (size)
 666		memblock_reserve(addr, size);
 667}
 668
 669static bool __init snb_gfx_workaround_needed(void)
 670{
 671#ifdef CONFIG_PCI
 672	int i;
 673	u16 vendor, devid;
 674	static const __initconst u16 snb_ids[] = {
 675		0x0102,
 676		0x0112,
 677		0x0122,
 678		0x0106,
 679		0x0116,
 680		0x0126,
 681		0x010a,
 682	};
 683
 684	/* Assume no if something weird is going on with PCI */
 685	if (!early_pci_allowed())
 686		return false;
 687
 688	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 689	if (vendor != 0x8086)
 690		return false;
 691
 692	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 693	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 694		if (devid == snb_ids[i])
 695			return true;
 696#endif
 697
 698	return false;
 699}
 700
 701/*
 702 * Sandy Bridge graphics has trouble with certain ranges, exclude
 703 * them from allocation.
 704 */
 705static void __init trim_snb_memory(void)
 706{
 707	static const __initconst unsigned long bad_pages[] = {
 708		0x20050000,
 709		0x20110000,
 710		0x20130000,
 711		0x20138000,
 712		0x40004000,
 713	};
 714	int i;
 715
 716	if (!snb_gfx_workaround_needed())
 717		return;
 718
 719	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 720
 721	/*
 722	 * Reserve all memory below the 1 MB mark that has not
 723	 * already been reserved.
 724	 */
 725	memblock_reserve(0, 1<<20);
 726	
 727	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 728		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 729			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 730			       bad_pages[i]);
 731	}
 732}
 733
 734/*
 735 * Here we put platform-specific memory range workarounds, i.e.
 736 * memory known to be corrupt or otherwise in need to be reserved on
 737 * specific platforms.
 738 *
 739 * If this gets used more widely it could use a real dispatch mechanism.
 740 */
 741static void __init trim_platform_memory_ranges(void)
 742{
 743	trim_snb_memory();
 744}
 745
 746static void __init trim_bios_range(void)
 747{
 748	/*
 749	 * A special case is the first 4Kb of memory;
 750	 * This is a BIOS owned area, not kernel ram, but generally
 751	 * not listed as such in the E820 table.
 752	 *
 753	 * This typically reserves additional memory (64KiB by default)
 754	 * since some BIOSes are known to corrupt low memory.  See the
 755	 * Kconfig help text for X86_RESERVE_LOW.
 756	 */
 757	e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
 758
 759	/*
 760	 * special case: Some BIOSen report the PC BIOS
 761	 * area (640->1Mb) as ram even though it is not.
 762	 * take them out.
 763	 */
 764	e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
 765
 766	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
 767}
 768
 769/* called before trim_bios_range() to spare extra sanitize */
 770static void __init e820_add_kernel_range(void)
 771{
 772	u64 start = __pa_symbol(_text);
 773	u64 size = __pa_symbol(_end) - start;
 774
 775	/*
 776	 * Complain if .text .data and .bss are not marked as E820_RAM and
 777	 * attempt to fix it by adding the range. We may have a confused BIOS,
 778	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 779	 * exclude kernel range. If we really are running on top non-RAM,
 780	 * we will crash later anyways.
 781	 */
 782	if (e820_all_mapped(start, start + size, E820_RAM))
 783		return;
 784
 785	pr_warn(".text .data .bss are not marked as E820_RAM!\n");
 786	e820_remove_range(start, size, E820_RAM, 0);
 787	e820_add_region(start, size, E820_RAM);
 788}
 789
 790static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 791
 792static int __init parse_reservelow(char *p)
 793{
 794	unsigned long long size;
 795
 796	if (!p)
 797		return -EINVAL;
 798
 799	size = memparse(p, &p);
 800
 801	if (size < 4096)
 802		size = 4096;
 803
 804	if (size > 640*1024)
 805		size = 640*1024;
 806
 807	reserve_low = size;
 808
 809	return 0;
 810}
 811
 812early_param("reservelow", parse_reservelow);
 813
 814static void __init trim_low_memory_range(void)
 815{
 816	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 817}
 818	
 819/*
 820 * Dump out kernel offset information on panic.
 821 */
 822static int
 823dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 824{
 825	if (kaslr_enabled()) {
 826		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 827			 kaslr_offset(),
 828			 __START_KERNEL,
 829			 __START_KERNEL_map,
 830			 MODULES_VADDR-1);
 831	} else {
 832		pr_emerg("Kernel Offset: disabled\n");
 833	}
 834
 835	return 0;
 836}
 837
 838/*
 839 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 840 * passed the efi memmap, systab, etc., so we should use these data structures
 841 * for initialization.  Note, the efi init code path is determined by the
 842 * global efi_enabled. This allows the same kernel image to be used on existing
 843 * systems (with a traditional BIOS) as well as on EFI systems.
 844 */
 845/*
 846 * setup_arch - architecture-specific boot-time initializations
 847 *
 848 * Note: On x86_64, fixmaps are ready for use even before this is called.
 849 */
 850
 851void __init setup_arch(char **cmdline_p)
 852{
 853	memblock_reserve(__pa_symbol(_text),
 854			 (unsigned long)__bss_stop - (unsigned long)_text);
 855
 856	early_reserve_initrd();
 857
 858	/*
 859	 * At this point everything still needed from the boot loader
 860	 * or BIOS or kernel text should be early reserved or marked not
 861	 * RAM in e820. All other memory is free game.
 862	 */
 863
 864#ifdef CONFIG_X86_32
 865	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 866
 867	/*
 868	 * copy kernel address range established so far and switch
 869	 * to the proper swapper page table
 870	 */
 871	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 872			initial_page_table + KERNEL_PGD_BOUNDARY,
 873			KERNEL_PGD_PTRS);
 874
 875	load_cr3(swapper_pg_dir);
 876	/*
 877	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 878	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 879	 * will not flush anything because the cpu quirk which clears
 880	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 881	 * load_cr3() above the TLB has been flushed already. The
 882	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 883	 * so proper operation is guaranteed.
 884	 */
 885	__flush_tlb_all();
 886#else
 887	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 
 888#endif
 889
 890	/*
 891	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 892	 * reserve_top(), so do this before touching the ioremap area.
 893	 */
 894	olpc_ofw_detect();
 895
 896	early_trap_init();
 897	early_cpu_init();
 898	early_ioremap_init();
 899
 900	setup_olpc_ofw_pgd();
 901
 902	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 903	screen_info = boot_params.screen_info;
 904	edid_info = boot_params.edid_info;
 905#ifdef CONFIG_X86_32
 906	apm_info.bios = boot_params.apm_bios_info;
 907	ist_info = boot_params.ist_info;
 908#endif
 909	saved_video_mode = boot_params.hdr.vid_mode;
 910	bootloader_type = boot_params.hdr.type_of_loader;
 911	if ((bootloader_type >> 4) == 0xe) {
 912		bootloader_type &= 0xf;
 913		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 914	}
 915	bootloader_version  = bootloader_type & 0xf;
 916	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 917
 918#ifdef CONFIG_BLK_DEV_RAM
 919	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 920	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 921	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 922#endif
 923#ifdef CONFIG_EFI
 924	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 925		     EFI32_LOADER_SIGNATURE, 4)) {
 926		set_bit(EFI_BOOT, &efi.flags);
 927	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 928		     EFI64_LOADER_SIGNATURE, 4)) {
 929		set_bit(EFI_BOOT, &efi.flags);
 930		set_bit(EFI_64BIT, &efi.flags);
 931	}
 932
 933	if (efi_enabled(EFI_BOOT))
 934		efi_memblock_x86_reserve_range();
 935#endif
 936
 937	x86_init.oem.arch_setup();
 938
 939	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 940	setup_memory_map();
 941	parse_setup_data();
 942
 943	copy_edd();
 944
 945	if (!boot_params.hdr.root_flags)
 946		root_mountflags &= ~MS_RDONLY;
 947	init_mm.start_code = (unsigned long) _text;
 948	init_mm.end_code = (unsigned long) _etext;
 949	init_mm.end_data = (unsigned long) _edata;
 950	init_mm.brk = _brk_end;
 951
 952	mpx_mm_init(&init_mm);
 953
 954	code_resource.start = __pa_symbol(_text);
 955	code_resource.end = __pa_symbol(_etext)-1;
 956	data_resource.start = __pa_symbol(_etext);
 957	data_resource.end = __pa_symbol(_edata)-1;
 958	bss_resource.start = __pa_symbol(__bss_start);
 959	bss_resource.end = __pa_symbol(__bss_stop)-1;
 960
 961#ifdef CONFIG_CMDLINE_BOOL
 962#ifdef CONFIG_CMDLINE_OVERRIDE
 963	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 964#else
 965	if (builtin_cmdline[0]) {
 966		/* append boot loader cmdline to builtin */
 967		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 968		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 969		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 970	}
 971#endif
 972#endif
 973
 974	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 975	*cmdline_p = command_line;
 976
 977	/*
 978	 * x86_configure_nx() is called before parse_early_param() to detect
 979	 * whether hardware doesn't support NX (so that the early EHCI debug
 980	 * console setup can safely call set_fixmap()). It may then be called
 981	 * again from within noexec_setup() during parsing early parameters
 982	 * to honor the respective command line option.
 983	 */
 984	x86_configure_nx();
 985
 986	parse_early_param();
 987
 
 
 988#ifdef CONFIG_MEMORY_HOTPLUG
 989	/*
 990	 * Memory used by the kernel cannot be hot-removed because Linux
 991	 * cannot migrate the kernel pages. When memory hotplug is
 992	 * enabled, we should prevent memblock from allocating memory
 993	 * for the kernel.
 994	 *
 995	 * ACPI SRAT records all hotpluggable memory ranges. But before
 996	 * SRAT is parsed, we don't know about it.
 997	 *
 998	 * The kernel image is loaded into memory at very early time. We
 999	 * cannot prevent this anyway. So on NUMA system, we set any
1000	 * node the kernel resides in as un-hotpluggable.
1001	 *
1002	 * Since on modern servers, one node could have double-digit
1003	 * gigabytes memory, we can assume the memory around the kernel
1004	 * image is also un-hotpluggable. So before SRAT is parsed, just
1005	 * allocate memory near the kernel image to try the best to keep
1006	 * the kernel away from hotpluggable memory.
1007	 */
1008	if (movable_node_is_enabled())
1009		memblock_set_bottom_up(true);
1010#endif
1011
1012	x86_report_nx();
1013
1014	/* after early param, so could get panic from serial */
1015	memblock_x86_reserve_range_setup_data();
1016
1017	if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019		disable_apic = 1;
1020#endif
1021		setup_clear_cpu_cap(X86_FEATURE_APIC);
1022	}
1023
1024#ifdef CONFIG_PCI
1025	if (pci_early_dump_regs)
1026		early_dump_pci_devices();
1027#endif
1028
1029	/* update the e820_saved too */
1030	e820_reserve_setup_data();
1031	finish_e820_parsing();
1032
1033	if (efi_enabled(EFI_BOOT))
1034		efi_init();
1035
1036	dmi_scan_machine();
1037	dmi_memdev_walk();
1038	dmi_set_dump_stack_arch_desc();
1039
1040	/*
1041	 * VMware detection requires dmi to be available, so this
1042	 * needs to be done after dmi_scan_machine, for the BP.
1043	 */
1044	init_hypervisor_platform();
1045
1046	x86_init.resources.probe_roms();
1047
1048	/* after parse_early_param, so could debug it */
1049	insert_resource(&iomem_resource, &code_resource);
1050	insert_resource(&iomem_resource, &data_resource);
1051	insert_resource(&iomem_resource, &bss_resource);
1052
1053	e820_add_kernel_range();
1054	trim_bios_range();
1055#ifdef CONFIG_X86_32
1056	if (ppro_with_ram_bug()) {
1057		e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1058				  E820_RESERVED);
1059		sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
1060		printk(KERN_INFO "fixed physical RAM map:\n");
1061		e820_print_map("bad_ppro");
1062	}
1063#else
1064	early_gart_iommu_check();
1065#endif
1066
1067	/*
1068	 * partially used pages are not usable - thus
1069	 * we are rounding upwards:
1070	 */
1071	max_pfn = e820_end_of_ram_pfn();
1072
1073	/* update e820 for memory not covered by WB MTRRs */
1074	mtrr_bp_init();
1075	if (mtrr_trim_uncached_memory(max_pfn))
1076		max_pfn = e820_end_of_ram_pfn();
1077
1078	max_possible_pfn = max_pfn;
1079
1080	/*
 
 
 
 
 
 
 
1081	 * Define random base addresses for memory sections after max_pfn is
1082	 * defined and before each memory section base is used.
1083	 */
1084	kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087	/* max_low_pfn get updated here */
1088	find_low_pfn_range();
1089#else
1090	check_x2apic();
1091
1092	/* How many end-of-memory variables you have, grandma! */
1093	/* need this before calling reserve_initrd */
1094	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095		max_low_pfn = e820_end_of_low_ram_pfn();
1096	else
1097		max_low_pfn = max_pfn;
1098
1099	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102	/*
1103	 * Find and reserve possible boot-time SMP configuration:
1104	 */
1105	find_smp_config();
1106
1107	reserve_ibft_region();
1108
1109	early_alloc_pgt_buf();
1110
1111	/*
1112	 * Need to conclude brk, before memblock_x86_fill()
1113	 *  it could use memblock_find_in_range, could overlap with
1114	 *  brk area.
1115	 */
1116	reserve_brk();
1117
1118	cleanup_highmap();
1119
1120	memblock_set_current_limit(ISA_END_ADDRESS);
1121	memblock_x86_fill();
1122
1123	reserve_bios_regions();
1124
1125	if (efi_enabled(EFI_MEMMAP)) {
1126		efi_fake_memmap();
1127		efi_find_mirror();
1128		efi_esrt_init();
1129
1130		/*
1131		 * The EFI specification says that boot service code won't be
1132		 * called after ExitBootServices(). This is, in fact, a lie.
1133		 */
1134		efi_reserve_boot_services();
1135	}
1136
1137	/* preallocate 4k for mptable mpc */
1138	early_reserve_e820_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141	setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149	reserve_real_mode();
1150
1151	trim_platform_memory_ranges();
1152	trim_low_memory_range();
1153
1154	init_mem_mapping();
1155
1156	early_trap_pf_init();
1157
1158	/*
1159	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160	 * with the current CR4 value.  This may not be necessary, but
1161	 * auditing all the early-boot CR4 manipulation would be needed to
1162	 * rule it out.
 
 
 
1163	 */
1164	mmu_cr4_features = __read_cr4();
1165
1166	memblock_set_current_limit(get_max_mapped());
1167
1168	/*
1169	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1170	 */
1171
1172#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1173	if (init_ohci1394_dma_early)
1174		init_ohci1394_dma_on_all_controllers();
1175#endif
1176	/* Allocate bigger log buffer */
1177	setup_log_buf(1);
1178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179	reserve_initrd();
1180
1181	acpi_table_upgrade();
1182
1183	vsmp_init();
1184
1185	io_delay_init();
1186
 
 
1187	/*
1188	 * Parse the ACPI tables for possible boot-time SMP configuration.
1189	 */
1190	acpi_boot_table_init();
1191
1192	early_acpi_boot_init();
1193
1194	initmem_init();
1195	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1196
1197	/*
1198	 * Reserve memory for crash kernel after SRAT is parsed so that it
1199	 * won't consume hotpluggable memory.
1200	 */
1201	reserve_crashkernel();
1202
1203	memblock_find_dma_reserve();
1204
1205#ifdef CONFIG_KVM_GUEST
1206	kvmclock_init();
1207#endif
1208
 
 
 
 
1209	x86_init.paging.pagetable_init();
1210
1211	kasan_init();
1212
1213#ifdef CONFIG_X86_32
1214	/* sync back kernel address range */
1215	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1216			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1217			KERNEL_PGD_PTRS);
1218
1219	/*
1220	 * sync back low identity map too.  It is used for example
1221	 * in the 32-bit EFI stub.
 
 
1222	 */
1223	clone_pgd_range(initial_page_table,
1224			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1225			min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1226#endif
1227
1228	tboot_probe();
1229
1230	map_vsyscall();
1231
1232	generic_apic_probe();
1233
1234	early_quirks();
1235
1236	/*
1237	 * Read APIC and some other early information from ACPI tables.
1238	 */
1239	acpi_boot_init();
1240	sfi_init();
1241	x86_dtb_init();
1242
1243	/*
1244	 * get boot-time SMP configuration:
1245	 */
1246	get_smp_config();
1247
1248	/*
1249	 * Systems w/o ACPI and mptables might not have it mapped the local
1250	 * APIC yet, but prefill_possible_map() might need to access it.
1251	 */
1252	init_apic_mappings();
1253
1254	prefill_possible_map();
1255
1256	init_cpu_to_node();
1257
1258	io_apic_init_mappings();
1259
1260	kvm_guest_init();
1261
1262	e820_reserve_resources();
1263	e820_mark_nosave_regions(max_low_pfn);
1264
1265	x86_init.resources.reserve_resources();
1266
1267	e820_setup_gap();
1268
1269#ifdef CONFIG_VT
1270#if defined(CONFIG_VGA_CONSOLE)
1271	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1272		conswitchp = &vga_con;
1273#elif defined(CONFIG_DUMMY_CONSOLE)
1274	conswitchp = &dummy_con;
1275#endif
1276#endif
1277	x86_init.oem.banner();
1278
1279	x86_init.timers.wallclock_init();
1280
1281	mcheck_init();
1282
1283	arch_init_ideal_nops();
1284
1285	register_refined_jiffies(CLOCK_TICK_RATE);
1286
1287#ifdef CONFIG_EFI
1288	if (efi_enabled(EFI_BOOT))
1289		efi_apply_memmap_quirks();
1290#endif
 
 
1291}
1292
1293#ifdef CONFIG_X86_32
1294
1295static struct resource video_ram_resource = {
1296	.name	= "Video RAM area",
1297	.start	= 0xa0000,
1298	.end	= 0xbffff,
1299	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1300};
1301
1302void __init i386_reserve_resources(void)
1303{
1304	request_resource(&iomem_resource, &video_ram_resource);
1305	reserve_standard_io_resources();
1306}
1307
1308#endif /* CONFIG_X86_32 */
1309
1310static struct notifier_block kernel_offset_notifier = {
1311	.notifier_call = dump_kernel_offset
1312};
1313
1314static int __init register_kernel_offset_dumper(void)
1315{
1316	atomic_notifier_chain_register(&panic_notifier_list,
1317					&kernel_offset_notifier);
1318	return 0;
1319}
1320__initcall(register_kernel_offset_dumper);
1321
1322void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1323{
1324	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1325		return;
1326
1327	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1328}