Linux Audio

Check our new training course

Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 
 
 25#include <trace/events/power.h>
 26#include <linux/hw_breakpoint.h>
 27#include <asm/cpu.h>
 28#include <asm/apic.h>
 29#include <asm/syscalls.h>
 30#include <linux/uaccess.h>
 31#include <asm/mwait.h>
 32#include <asm/fpu/internal.h>
 33#include <asm/debugreg.h>
 34#include <asm/nmi.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mce.h>
 37#include <asm/vm86.h>
 38#include <asm/switch_to.h>
 39#include <asm/desc.h>
 40#include <asm/prctl.h>
 41#include <asm/spec-ctrl.h>
 
 
 
 
 
 42
 43/*
 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 46 * so they are allowed to end up in the .data..cacheline_aligned
 47 * section. Since TSS's are completely CPU-local, we want them
 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 49 */
 50__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 51	.x86_tss = {
 52		/*
 53		 * .sp0 is only used when entering ring 0 from a lower
 54		 * privilege level.  Since the init task never runs anything
 55		 * but ring 0 code, there is no need for a valid value here.
 56		 * Poison it.
 57		 */
 58		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 59
 60#ifdef CONFIG_X86_64
 61		/*
 62		 * .sp1 is cpu_current_top_of_stack.  The init task never
 63		 * runs user code, but cpu_current_top_of_stack should still
 64		 * be well defined before the first context switch.
 65		 */
 66		.sp1 = TOP_OF_INIT_STACK,
 67#endif
 68
 69#ifdef CONFIG_X86_32
 70		.ss0 = __KERNEL_DS,
 71		.ss1 = __KERNEL_CS,
 72		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 73#endif
 
 74	 },
 75#ifdef CONFIG_X86_32
 76	 /*
 77	  * Note that the .io_bitmap member must be extra-big. This is because
 78	  * the CPU will access an additional byte beyond the end of the IO
 79	  * permission bitmap. The extra byte must be all 1 bits, and must
 80	  * be within the limit.
 81	  */
 82	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 83#endif
 84};
 85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 86
 87DEFINE_PER_CPU(bool, __tss_limit_invalid);
 88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 89
 90/*
 91 * this gets called so that we can store lazy state into memory and copy the
 92 * current task into the new thread.
 93 */
 94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 95{
 96	memcpy(dst, src, arch_task_struct_size);
 97#ifdef CONFIG_VM86
 98	dst->thread.vm86 = NULL;
 99#endif
100
101	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102}
103
104/*
105 * Free current thread data structures etc..
106 */
107void exit_thread(struct task_struct *tsk)
108{
109	struct thread_struct *t = &tsk->thread;
110	unsigned long *bp = t->io_bitmap_ptr;
111	struct fpu *fpu = &t->fpu;
112
113	if (bp) {
114		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116		t->io_bitmap_ptr = NULL;
117		clear_thread_flag(TIF_IO_BITMAP);
118		/*
119		 * Careful, clear this in the TSS too:
120		 */
121		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122		t->io_bitmap_max = 0;
123		put_cpu();
124		kfree(bp);
125	}
126
127	free_vm86(t);
128
129	fpu__drop(fpu);
130}
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132void flush_thread(void)
133{
134	struct task_struct *tsk = current;
135
136	flush_ptrace_hw_breakpoint(tsk);
137	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139	fpu__clear(&tsk->thread.fpu);
140}
141
142void disable_TSC(void)
143{
144	preempt_disable();
145	if (!test_and_set_thread_flag(TIF_NOTSC))
146		/*
147		 * Must flip the CPU state synchronously with
148		 * TIF_NOTSC in the current running context.
149		 */
150		cr4_set_bits(X86_CR4_TSD);
151	preempt_enable();
152}
153
154static void enable_TSC(void)
155{
156	preempt_disable();
157	if (test_and_clear_thread_flag(TIF_NOTSC))
158		/*
159		 * Must flip the CPU state synchronously with
160		 * TIF_NOTSC in the current running context.
161		 */
162		cr4_clear_bits(X86_CR4_TSD);
163	preempt_enable();
164}
165
166int get_tsc_mode(unsigned long adr)
167{
168	unsigned int val;
169
170	if (test_thread_flag(TIF_NOTSC))
171		val = PR_TSC_SIGSEGV;
172	else
173		val = PR_TSC_ENABLE;
174
175	return put_user(val, (unsigned int __user *)adr);
176}
177
178int set_tsc_mode(unsigned int val)
179{
180	if (val == PR_TSC_SIGSEGV)
181		disable_TSC();
182	else if (val == PR_TSC_ENABLE)
183		enable_TSC();
184	else
185		return -EINVAL;
186
187	return 0;
188}
189
190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192static void set_cpuid_faulting(bool on)
193{
194	u64 msrval;
195
196	msrval = this_cpu_read(msr_misc_features_shadow);
197	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199	this_cpu_write(msr_misc_features_shadow, msrval);
200	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201}
202
203static void disable_cpuid(void)
204{
205	preempt_disable();
206	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207		/*
208		 * Must flip the CPU state synchronously with
209		 * TIF_NOCPUID in the current running context.
210		 */
211		set_cpuid_faulting(true);
212	}
213	preempt_enable();
214}
215
216static void enable_cpuid(void)
217{
218	preempt_disable();
219	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220		/*
221		 * Must flip the CPU state synchronously with
222		 * TIF_NOCPUID in the current running context.
223		 */
224		set_cpuid_faulting(false);
225	}
226	preempt_enable();
227}
228
229static int get_cpuid_mode(void)
230{
231	return !test_thread_flag(TIF_NOCPUID);
232}
233
234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235{
236	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237		return -ENODEV;
238
239	if (cpuid_enabled)
240		enable_cpuid();
241	else
242		disable_cpuid();
243
244	return 0;
245}
246
247/*
248 * Called immediately after a successful exec.
249 */
250void arch_setup_new_exec(void)
251{
252	/* If cpuid was previously disabled for this task, re-enable it. */
253	if (test_thread_flag(TIF_NOCPUID))
254		enable_cpuid();
 
 
 
 
 
 
 
 
 
 
 
 
255}
256
257static inline void switch_to_bitmap(struct tss_struct *tss,
258				    struct thread_struct *prev,
259				    struct thread_struct *next,
260				    unsigned long tifp, unsigned long tifn)
261{
262	if (tifn & _TIF_IO_BITMAP) {
263		/*
264		 * Copy the relevant range of the IO bitmap.
265		 * Normally this is 128 bytes or less:
266		 */
267		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268		       max(prev->io_bitmap_max, next->io_bitmap_max));
269		/*
270		 * Make sure that the TSS limit is correct for the CPU
271		 * to notice the IO bitmap.
272		 */
273		refresh_tss_limit();
274	} else if (tifp & _TIF_IO_BITMAP) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275		/*
276		 * Clear any possible leftover bits:
 
277		 */
278		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 
 
 
 
279	}
 
 
 
 
 
 
 
 
280}
 
 
 
281
282#ifdef CONFIG_SMP
283
284struct ssb_state {
285	struct ssb_state	*shared_state;
286	raw_spinlock_t		lock;
287	unsigned int		disable_state;
288	unsigned long		local_state;
289};
290
291#define LSTATE_SSB	0
292
293static DEFINE_PER_CPU(struct ssb_state, ssb_state);
294
295void speculative_store_bypass_ht_init(void)
296{
297	struct ssb_state *st = this_cpu_ptr(&ssb_state);
298	unsigned int this_cpu = smp_processor_id();
299	unsigned int cpu;
300
301	st->local_state = 0;
302
303	/*
304	 * Shared state setup happens once on the first bringup
305	 * of the CPU. It's not destroyed on CPU hotunplug.
306	 */
307	if (st->shared_state)
308		return;
309
310	raw_spin_lock_init(&st->lock);
311
312	/*
313	 * Go over HT siblings and check whether one of them has set up the
314	 * shared state pointer already.
315	 */
316	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317		if (cpu == this_cpu)
318			continue;
319
320		if (!per_cpu(ssb_state, cpu).shared_state)
321			continue;
322
323		/* Link it to the state of the sibling: */
324		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325		return;
326	}
327
328	/*
329	 * First HT sibling to come up on the core.  Link shared state of
330	 * the first HT sibling to itself. The siblings on the same core
331	 * which come up later will see the shared state pointer and link
332	 * themself to the state of this CPU.
333	 */
334	st->shared_state = st;
335}
336
337/*
338 * Logic is: First HT sibling enables SSBD for both siblings in the core
339 * and last sibling to disable it, disables it for the whole core. This how
340 * MSR_SPEC_CTRL works in "hardware":
341 *
342 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
343 */
344static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
345{
346	struct ssb_state *st = this_cpu_ptr(&ssb_state);
347	u64 msr = x86_amd_ls_cfg_base;
348
349	if (!static_cpu_has(X86_FEATURE_ZEN)) {
350		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351		wrmsrl(MSR_AMD64_LS_CFG, msr);
352		return;
353	}
354
355	if (tifn & _TIF_SSBD) {
356		/*
357		 * Since this can race with prctl(), block reentry on the
358		 * same CPU.
359		 */
360		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361			return;
362
363		msr |= x86_amd_ls_cfg_ssbd_mask;
364
365		raw_spin_lock(&st->shared_state->lock);
366		/* First sibling enables SSBD: */
367		if (!st->shared_state->disable_state)
368			wrmsrl(MSR_AMD64_LS_CFG, msr);
369		st->shared_state->disable_state++;
370		raw_spin_unlock(&st->shared_state->lock);
371	} else {
372		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373			return;
374
375		raw_spin_lock(&st->shared_state->lock);
376		st->shared_state->disable_state--;
377		if (!st->shared_state->disable_state)
378			wrmsrl(MSR_AMD64_LS_CFG, msr);
379		raw_spin_unlock(&st->shared_state->lock);
380	}
381}
382#else
383static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
384{
385	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
386
387	wrmsrl(MSR_AMD64_LS_CFG, msr);
388}
389#endif
390
391static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
392{
393	/*
394	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395	 * so ssbd_tif_to_spec_ctrl() just works.
396	 */
397	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
398}
399
400static __always_inline void intel_set_ssb_state(unsigned long tifn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401{
402	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
 
 
 
 
403
404	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
 
 
 
 
 
 
405}
406
407static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
408{
409	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410		amd_set_ssb_virt_state(tifn);
411	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412		amd_set_core_ssb_state(tifn);
413	else
414		intel_set_ssb_state(tifn);
415}
416
417void speculative_store_bypass_update(unsigned long tif)
 
418{
419	preempt_disable();
420	__speculative_store_bypass_update(tif);
421	preempt_enable();
422}
423
424void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425		      struct tss_struct *tss)
426{
427	struct thread_struct *prev, *next;
428	unsigned long tifp, tifn;
 
 
 
 
 
 
429
430	prev = &prev_p->thread;
431	next = &next_p->thread;
 
432
433	tifn = READ_ONCE(task_thread_info(next_p)->flags);
434	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435	switch_to_bitmap(tss, prev, next, tifp, tifn);
 
436
437	propagate_user_return_notify(prev_p, next_p);
438
439	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440	    arch_has_block_step()) {
441		unsigned long debugctl, msk;
442
443		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444		debugctl &= ~DEBUGCTLMSR_BTF;
445		msk = tifn & _TIF_BLOCKSTEP;
446		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
448	}
449
450	if ((tifp ^ tifn) & _TIF_NOTSC)
451		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
452
453	if ((tifp ^ tifn) & _TIF_NOCPUID)
454		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
455
456	if ((tifp ^ tifn) & _TIF_SSBD)
457		__speculative_store_bypass_update(tifn);
 
 
 
 
 
 
 
 
 
 
458}
459
460/*
461 * Idle related variables and functions
462 */
463unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464EXPORT_SYMBOL(boot_option_idle_override);
465
466static void (*x86_idle)(void);
467
468#ifndef CONFIG_SMP
469static inline void play_dead(void)
470{
471	BUG();
472}
473#endif
474
475void arch_cpu_idle_enter(void)
476{
477	tsc_verify_tsc_adjust(false);
478	local_touch_nmi();
479}
480
481void arch_cpu_idle_dead(void)
482{
483	play_dead();
484}
485
486/*
487 * Called from the generic idle code.
488 */
489void arch_cpu_idle(void)
490{
491	x86_idle();
492}
493
494/*
495 * We use this if we don't have any better idle routine..
496 */
497void __cpuidle default_idle(void)
498{
499	trace_cpu_idle_rcuidle(1, smp_processor_id());
500	safe_halt();
501	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
502}
503#ifdef CONFIG_APM_MODULE
504EXPORT_SYMBOL(default_idle);
505#endif
506
507#ifdef CONFIG_XEN
508bool xen_set_default_idle(void)
509{
510	bool ret = !!x86_idle;
511
512	x86_idle = default_idle;
513
514	return ret;
515}
516#endif
517
518void stop_this_cpu(void *dummy)
519{
520	local_irq_disable();
521	/*
522	 * Remove this CPU:
523	 */
524	set_cpu_online(smp_processor_id(), false);
525	disable_local_APIC();
526	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
527
528	/*
529	 * Use wbinvd on processors that support SME. This provides support
530	 * for performing a successful kexec when going from SME inactive
531	 * to SME active (or vice-versa). The cache must be cleared so that
532	 * if there are entries with the same physical address, both with and
533	 * without the encryption bit, they don't race each other when flushed
534	 * and potentially end up with the wrong entry being committed to
535	 * memory.
536	 */
537	if (boot_cpu_has(X86_FEATURE_SME))
538		native_wbinvd();
539	for (;;) {
540		/*
541		 * Use native_halt() so that memory contents don't change
542		 * (stack usage and variables) after possibly issuing the
543		 * native_wbinvd() above.
544		 */
545		native_halt();
546	}
547}
548
549/*
550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
551 * states (local apic timer and TSC stop).
552 */
553static void amd_e400_idle(void)
554{
555	/*
556	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
557	 * gets set after static_cpu_has() places have been converted via
558	 * alternatives.
559	 */
560	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
561		default_idle();
562		return;
563	}
564
565	tick_broadcast_enter();
566
567	default_idle();
568
569	/*
570	 * The switch back from broadcast mode needs to be called with
571	 * interrupts disabled.
572	 */
573	local_irq_disable();
574	tick_broadcast_exit();
575	local_irq_enable();
576}
577
578/*
579 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
580 * We can't rely on cpuidle installing MWAIT, because it will not load
581 * on systems that support only C1 -- so the boot default must be MWAIT.
582 *
583 * Some AMD machines are the opposite, they depend on using HALT.
584 *
585 * So for default C1, which is used during boot until cpuidle loads,
586 * use MWAIT-C1 on Intel HW that has it, else use HALT.
587 */
588static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
589{
590	if (c->x86_vendor != X86_VENDOR_INTEL)
591		return 0;
592
593	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
594		return 0;
595
596	return 1;
597}
598
599/*
600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
601 * with interrupts enabled and no flags, which is backwards compatible with the
602 * original MWAIT implementation.
603 */
604static __cpuidle void mwait_idle(void)
605{
606	if (!current_set_polling_and_test()) {
607		trace_cpu_idle_rcuidle(1, smp_processor_id());
608		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
609			mb(); /* quirk */
610			clflush((void *)&current_thread_info()->flags);
611			mb(); /* quirk */
612		}
613
614		__monitor((void *)&current_thread_info()->flags, 0, 0);
615		if (!need_resched())
616			__sti_mwait(0, 0);
617		else
618			local_irq_enable();
619		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
620	} else {
621		local_irq_enable();
622	}
623	__current_clr_polling();
624}
625
626void select_idle_routine(const struct cpuinfo_x86 *c)
627{
628#ifdef CONFIG_SMP
629	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
630		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
631#endif
632	if (x86_idle || boot_option_idle_override == IDLE_POLL)
633		return;
634
635	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
636		pr_info("using AMD E400 aware idle routine\n");
637		x86_idle = amd_e400_idle;
638	} else if (prefer_mwait_c1_over_halt(c)) {
639		pr_info("using mwait in idle threads\n");
640		x86_idle = mwait_idle;
641	} else
642		x86_idle = default_idle;
643}
644
645void amd_e400_c1e_apic_setup(void)
646{
647	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
648		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
649		local_irq_disable();
650		tick_broadcast_force();
651		local_irq_enable();
652	}
653}
654
655void __init arch_post_acpi_subsys_init(void)
656{
657	u32 lo, hi;
658
659	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
660		return;
661
662	/*
663	 * AMD E400 detection needs to happen after ACPI has been enabled. If
664	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
665	 * MSR_K8_INT_PENDING_MSG.
666	 */
667	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
668	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
669		return;
670
671	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
672
673	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
674		mark_tsc_unstable("TSC halt in AMD C1E");
675	pr_info("System has AMD C1E enabled\n");
676}
677
678static int __init idle_setup(char *str)
679{
680	if (!str)
681		return -EINVAL;
682
683	if (!strcmp(str, "poll")) {
684		pr_info("using polling idle threads\n");
685		boot_option_idle_override = IDLE_POLL;
686		cpu_idle_poll_ctrl(true);
687	} else if (!strcmp(str, "halt")) {
688		/*
689		 * When the boot option of idle=halt is added, halt is
690		 * forced to be used for CPU idle. In such case CPU C2/C3
691		 * won't be used again.
692		 * To continue to load the CPU idle driver, don't touch
693		 * the boot_option_idle_override.
694		 */
695		x86_idle = default_idle;
696		boot_option_idle_override = IDLE_HALT;
697	} else if (!strcmp(str, "nomwait")) {
698		/*
699		 * If the boot option of "idle=nomwait" is added,
700		 * it means that mwait will be disabled for CPU C2/C3
701		 * states. In such case it won't touch the variable
702		 * of boot_option_idle_override.
703		 */
704		boot_option_idle_override = IDLE_NOMWAIT;
705	} else
706		return -1;
707
708	return 0;
709}
710early_param("idle", idle_setup);
711
712unsigned long arch_align_stack(unsigned long sp)
713{
714	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715		sp -= get_random_int() % 8192;
716	return sp & ~0xf;
717}
718
719unsigned long arch_randomize_brk(struct mm_struct *mm)
720{
721	return randomize_page(mm->brk, 0x02000000);
722}
723
724/*
725 * Called from fs/proc with a reference on @p to find the function
726 * which called into schedule(). This needs to be done carefully
727 * because the task might wake up and we might look at a stack
728 * changing under us.
729 */
730unsigned long get_wchan(struct task_struct *p)
731{
732	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
733	int count = 0;
734
735	if (!p || p == current || p->state == TASK_RUNNING)
736		return 0;
737
738	if (!try_get_task_stack(p))
739		return 0;
740
741	start = (unsigned long)task_stack_page(p);
742	if (!start)
743		goto out;
744
745	/*
746	 * Layout of the stack page:
747	 *
748	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
749	 * PADDING
750	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
751	 * stack
752	 * ----------- bottom = start
753	 *
754	 * The tasks stack pointer points at the location where the
755	 * framepointer is stored. The data on the stack is:
756	 * ... IP FP ... IP FP
757	 *
758	 * We need to read FP and IP, so we need to adjust the upper
759	 * bound by another unsigned long.
760	 */
761	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
762	top -= 2 * sizeof(unsigned long);
763	bottom = start;
764
765	sp = READ_ONCE(p->thread.sp);
766	if (sp < bottom || sp > top)
767		goto out;
768
769	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
770	do {
771		if (fp < bottom || fp > top)
772			goto out;
773		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
774		if (!in_sched_functions(ip)) {
775			ret = ip;
776			goto out;
777		}
778		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
779	} while (count++ < 16 && p->state != TASK_RUNNING);
780
781out:
782	put_task_stack(p);
783	return ret;
784}
785
786long do_arch_prctl_common(struct task_struct *task, int option,
787			  unsigned long cpuid_enabled)
788{
789	switch (option) {
790	case ARCH_GET_CPUID:
791		return get_cpuid_mode();
792	case ARCH_SET_CPUID:
793		return set_cpuid_mode(task, cpuid_enabled);
794	}
795
796	return -EINVAL;
797}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 30#include <asm/apic.h>
 
 31#include <linux/uaccess.h>
 32#include <asm/mwait.h>
 33#include <asm/fpu/internal.h>
 34#include <asm/debugreg.h>
 35#include <asm/nmi.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mce.h>
 38#include <asm/vm86.h>
 39#include <asm/switch_to.h>
 40#include <asm/desc.h>
 41#include <asm/prctl.h>
 42#include <asm/spec-ctrl.h>
 43#include <asm/io_bitmap.h>
 44#include <asm/proto.h>
 45#include <asm/frame.h>
 46
 47#include "process.h"
 48
 49/*
 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 52 * so they are allowed to end up in the .data..cacheline_aligned
 53 * section. Since TSS's are completely CPU-local, we want them
 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 55 */
 56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 57	.x86_tss = {
 58		/*
 59		 * .sp0 is only used when entering ring 0 from a lower
 60		 * privilege level.  Since the init task never runs anything
 61		 * but ring 0 code, there is no need for a valid value here.
 62		 * Poison it.
 63		 */
 64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 65
 
 66		/*
 67		 * .sp1 is cpu_current_top_of_stack.  The init task never
 68		 * runs user code, but cpu_current_top_of_stack should still
 69		 * be well defined before the first context switch.
 70		 */
 71		.sp1 = TOP_OF_INIT_STACK,
 
 72
 73#ifdef CONFIG_X86_32
 74		.ss0 = __KERNEL_DS,
 75		.ss1 = __KERNEL_CS,
 
 76#endif
 77		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
 78	 },
 
 
 
 
 
 
 
 
 
 79};
 80EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 81
 82DEFINE_PER_CPU(bool, __tss_limit_invalid);
 83EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 84
 85/*
 86 * this gets called so that we can store lazy state into memory and copy the
 87 * current task into the new thread.
 88 */
 89int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 90{
 91	memcpy(dst, src, arch_task_struct_size);
 92#ifdef CONFIG_VM86
 93	dst->thread.vm86 = NULL;
 94#endif
 95
 96	return fpu__copy(dst, src);
 97}
 98
 99/*
100 * Free thread data structures etc..
101 */
102void exit_thread(struct task_struct *tsk)
103{
104	struct thread_struct *t = &tsk->thread;
 
105	struct fpu *fpu = &t->fpu;
106
107	if (test_thread_flag(TIF_IO_BITMAP))
108		io_bitmap_exit(tsk);
 
 
 
 
 
 
 
 
 
 
 
109
110	free_vm86(t);
111
112	fpu__drop(fpu);
113}
114
115static int set_new_tls(struct task_struct *p, unsigned long tls)
116{
117	struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119	if (in_ia32_syscall())
120		return do_set_thread_area(p, -1, utls, 0);
121	else
122		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123}
124
125int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126		struct task_struct *p, unsigned long tls)
127{
128	struct inactive_task_frame *frame;
129	struct fork_frame *fork_frame;
130	struct pt_regs *childregs;
131	int ret = 0;
132
133	childregs = task_pt_regs(p);
134	fork_frame = container_of(childregs, struct fork_frame, regs);
135	frame = &fork_frame->frame;
136
137	frame->bp = encode_frame_pointer(childregs);
138	frame->ret_addr = (unsigned long) ret_from_fork;
139	p->thread.sp = (unsigned long) fork_frame;
140	p->thread.io_bitmap = NULL;
141	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143#ifdef CONFIG_X86_64
144	current_save_fsgs();
145	p->thread.fsindex = current->thread.fsindex;
146	p->thread.fsbase = current->thread.fsbase;
147	p->thread.gsindex = current->thread.gsindex;
148	p->thread.gsbase = current->thread.gsbase;
149
150	savesegment(es, p->thread.es);
151	savesegment(ds, p->thread.ds);
152#else
153	p->thread.sp0 = (unsigned long) (childregs + 1);
154	/*
155	 * Clear all status flags including IF and set fixed bit. 64bit
156	 * does not have this initialization as the frame does not contain
157	 * flags. The flags consistency (especially vs. AC) is there
158	 * ensured via objtool, which lacks 32bit support.
159	 */
160	frame->flags = X86_EFLAGS_FIXED;
161#endif
162
163	/* Kernel thread ? */
164	if (unlikely(p->flags & PF_KTHREAD)) {
165		memset(childregs, 0, sizeof(struct pt_regs));
166		kthread_frame_init(frame, sp, arg);
167		return 0;
168	}
169
170	frame->bx = 0;
171	*childregs = *current_pt_regs();
172	childregs->ax = 0;
173	if (sp)
174		childregs->sp = sp;
175
176#ifdef CONFIG_X86_32
177	task_user_gs(p) = get_user_gs(current_pt_regs());
178#endif
179
180	/* Set a new TLS for the child thread? */
181	if (clone_flags & CLONE_SETTLS)
182		ret = set_new_tls(p, tls);
183
184	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185		io_bitmap_share(p);
186
187	return ret;
188}
189
190void flush_thread(void)
191{
192	struct task_struct *tsk = current;
193
194	flush_ptrace_hw_breakpoint(tsk);
195	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
196
197	fpu__clear_all(&tsk->thread.fpu);
198}
199
200void disable_TSC(void)
201{
202	preempt_disable();
203	if (!test_and_set_thread_flag(TIF_NOTSC))
204		/*
205		 * Must flip the CPU state synchronously with
206		 * TIF_NOTSC in the current running context.
207		 */
208		cr4_set_bits(X86_CR4_TSD);
209	preempt_enable();
210}
211
212static void enable_TSC(void)
213{
214	preempt_disable();
215	if (test_and_clear_thread_flag(TIF_NOTSC))
216		/*
217		 * Must flip the CPU state synchronously with
218		 * TIF_NOTSC in the current running context.
219		 */
220		cr4_clear_bits(X86_CR4_TSD);
221	preempt_enable();
222}
223
224int get_tsc_mode(unsigned long adr)
225{
226	unsigned int val;
227
228	if (test_thread_flag(TIF_NOTSC))
229		val = PR_TSC_SIGSEGV;
230	else
231		val = PR_TSC_ENABLE;
232
233	return put_user(val, (unsigned int __user *)adr);
234}
235
236int set_tsc_mode(unsigned int val)
237{
238	if (val == PR_TSC_SIGSEGV)
239		disable_TSC();
240	else if (val == PR_TSC_ENABLE)
241		enable_TSC();
242	else
243		return -EINVAL;
244
245	return 0;
246}
247
248DEFINE_PER_CPU(u64, msr_misc_features_shadow);
249
250static void set_cpuid_faulting(bool on)
251{
252	u64 msrval;
253
254	msrval = this_cpu_read(msr_misc_features_shadow);
255	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257	this_cpu_write(msr_misc_features_shadow, msrval);
258	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259}
260
261static void disable_cpuid(void)
262{
263	preempt_disable();
264	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265		/*
266		 * Must flip the CPU state synchronously with
267		 * TIF_NOCPUID in the current running context.
268		 */
269		set_cpuid_faulting(true);
270	}
271	preempt_enable();
272}
273
274static void enable_cpuid(void)
275{
276	preempt_disable();
277	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278		/*
279		 * Must flip the CPU state synchronously with
280		 * TIF_NOCPUID in the current running context.
281		 */
282		set_cpuid_faulting(false);
283	}
284	preempt_enable();
285}
286
287static int get_cpuid_mode(void)
288{
289	return !test_thread_flag(TIF_NOCPUID);
290}
291
292static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293{
294	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295		return -ENODEV;
296
297	if (cpuid_enabled)
298		enable_cpuid();
299	else
300		disable_cpuid();
301
302	return 0;
303}
304
305/*
306 * Called immediately after a successful exec.
307 */
308void arch_setup_new_exec(void)
309{
310	/* If cpuid was previously disabled for this task, re-enable it. */
311	if (test_thread_flag(TIF_NOCPUID))
312		enable_cpuid();
313
314	/*
315	 * Don't inherit TIF_SSBD across exec boundary when
316	 * PR_SPEC_DISABLE_NOEXEC is used.
317	 */
318	if (test_thread_flag(TIF_SSBD) &&
319	    task_spec_ssb_noexec(current)) {
320		clear_thread_flag(TIF_SSBD);
321		task_clear_spec_ssb_disable(current);
322		task_clear_spec_ssb_noexec(current);
323		speculation_ctrl_update(task_thread_info(current)->flags);
324	}
325}
326
327#ifdef CONFIG_X86_IOPL_IOPERM
328static inline void switch_to_bitmap(unsigned long tifp)
 
 
329{
330	/*
331	 * Invalidate I/O bitmap if the previous task used it. This prevents
332	 * any possible leakage of an active I/O bitmap.
333	 *
334	 * If the next task has an I/O bitmap it will handle it on exit to
335	 * user mode.
336	 */
337	if (tifp & _TIF_IO_BITMAP)
338		tss_invalidate_io_bitmap();
339}
340
341static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342{
343	/*
344	 * Copy at least the byte range of the incoming tasks bitmap which
345	 * covers the permitted I/O ports.
346	 *
347	 * If the previous task which used an I/O bitmap had more bits
348	 * permitted, then the copy needs to cover those as well so they
349	 * get turned off.
350	 */
351	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352	       max(tss->io_bitmap.prev_max, iobm->max));
353
354	/*
355	 * Store the new max and the sequence number of this bitmap
356	 * and a pointer to the bitmap itself.
357	 */
358	tss->io_bitmap.prev_max = iobm->max;
359	tss->io_bitmap.prev_sequence = iobm->sequence;
360}
361
362/**
363 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364 */
365void native_tss_update_io_bitmap(void)
366{
367	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368	struct thread_struct *t = &current->thread;
369	u16 *base = &tss->x86_tss.io_bitmap_base;
370
371	if (!test_thread_flag(TIF_IO_BITMAP)) {
372		native_tss_invalidate_io_bitmap();
373		return;
374	}
375
376	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377		*base = IO_BITMAP_OFFSET_VALID_ALL;
378	} else {
379		struct io_bitmap *iobm = t->io_bitmap;
380
381		/*
382		 * Only copy bitmap data when the sequence number differs. The
383		 * update time is accounted to the incoming task.
384		 */
385		if (tss->io_bitmap.prev_sequence != iobm->sequence)
386			tss_copy_io_bitmap(tss, iobm);
387
388		/* Enable the bitmap */
389		*base = IO_BITMAP_OFFSET_VALID_MAP;
390	}
391
392	/*
393	 * Make sure that the TSS limit is covering the IO bitmap. It might have
394	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395	 * access from user space to trigger a #GP because tbe bitmap is outside
396	 * the TSS limit.
397	 */
398	refresh_tss_limit();
399}
400#else /* CONFIG_X86_IOPL_IOPERM */
401static inline void switch_to_bitmap(unsigned long tifp) { }
402#endif
403
404#ifdef CONFIG_SMP
405
406struct ssb_state {
407	struct ssb_state	*shared_state;
408	raw_spinlock_t		lock;
409	unsigned int		disable_state;
410	unsigned long		local_state;
411};
412
413#define LSTATE_SSB	0
414
415static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416
417void speculative_store_bypass_ht_init(void)
418{
419	struct ssb_state *st = this_cpu_ptr(&ssb_state);
420	unsigned int this_cpu = smp_processor_id();
421	unsigned int cpu;
422
423	st->local_state = 0;
424
425	/*
426	 * Shared state setup happens once on the first bringup
427	 * of the CPU. It's not destroyed on CPU hotunplug.
428	 */
429	if (st->shared_state)
430		return;
431
432	raw_spin_lock_init(&st->lock);
433
434	/*
435	 * Go over HT siblings and check whether one of them has set up the
436	 * shared state pointer already.
437	 */
438	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439		if (cpu == this_cpu)
440			continue;
441
442		if (!per_cpu(ssb_state, cpu).shared_state)
443			continue;
444
445		/* Link it to the state of the sibling: */
446		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447		return;
448	}
449
450	/*
451	 * First HT sibling to come up on the core.  Link shared state of
452	 * the first HT sibling to itself. The siblings on the same core
453	 * which come up later will see the shared state pointer and link
454	 * themself to the state of this CPU.
455	 */
456	st->shared_state = st;
457}
458
459/*
460 * Logic is: First HT sibling enables SSBD for both siblings in the core
461 * and last sibling to disable it, disables it for the whole core. This how
462 * MSR_SPEC_CTRL works in "hardware":
463 *
464 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465 */
466static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
467{
468	struct ssb_state *st = this_cpu_ptr(&ssb_state);
469	u64 msr = x86_amd_ls_cfg_base;
470
471	if (!static_cpu_has(X86_FEATURE_ZEN)) {
472		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473		wrmsrl(MSR_AMD64_LS_CFG, msr);
474		return;
475	}
476
477	if (tifn & _TIF_SSBD) {
478		/*
479		 * Since this can race with prctl(), block reentry on the
480		 * same CPU.
481		 */
482		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483			return;
484
485		msr |= x86_amd_ls_cfg_ssbd_mask;
486
487		raw_spin_lock(&st->shared_state->lock);
488		/* First sibling enables SSBD: */
489		if (!st->shared_state->disable_state)
490			wrmsrl(MSR_AMD64_LS_CFG, msr);
491		st->shared_state->disable_state++;
492		raw_spin_unlock(&st->shared_state->lock);
493	} else {
494		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495			return;
496
497		raw_spin_lock(&st->shared_state->lock);
498		st->shared_state->disable_state--;
499		if (!st->shared_state->disable_state)
500			wrmsrl(MSR_AMD64_LS_CFG, msr);
501		raw_spin_unlock(&st->shared_state->lock);
502	}
503}
504#else
505static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506{
507	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508
509	wrmsrl(MSR_AMD64_LS_CFG, msr);
510}
511#endif
512
513static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514{
515	/*
516	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517	 * so ssbd_tif_to_spec_ctrl() just works.
518	 */
519	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520}
521
522/*
523 * Update the MSRs managing speculation control, during context switch.
524 *
525 * tifp: Previous task's thread flags
526 * tifn: Next task's thread flags
527 */
528static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529						      unsigned long tifn)
530{
531	unsigned long tif_diff = tifp ^ tifn;
532	u64 msr = x86_spec_ctrl_base;
533	bool updmsr = false;
534
535	lockdep_assert_irqs_disabled();
536
537	/* Handle change of TIF_SSBD depending on the mitigation method. */
538	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539		if (tif_diff & _TIF_SSBD)
540			amd_set_ssb_virt_state(tifn);
541	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542		if (tif_diff & _TIF_SSBD)
543			amd_set_core_ssb_state(tifn);
544	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546		updmsr |= !!(tif_diff & _TIF_SSBD);
547		msr |= ssbd_tif_to_spec_ctrl(tifn);
548	}
549
550	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551	if (IS_ENABLED(CONFIG_SMP) &&
552	    static_branch_unlikely(&switch_to_cond_stibp)) {
553		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554		msr |= stibp_tif_to_spec_ctrl(tifn);
555	}
556
557	if (updmsr)
558		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
559}
560
561static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
562{
563	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564		if (task_spec_ssb_disable(tsk))
565			set_tsk_thread_flag(tsk, TIF_SSBD);
566		else
567			clear_tsk_thread_flag(tsk, TIF_SSBD);
568
569		if (task_spec_ib_disable(tsk))
570			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571		else
572			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573	}
574	/* Return the updated threadinfo flags*/
575	return task_thread_info(tsk)->flags;
576}
577
578void speculation_ctrl_update(unsigned long tif)
579{
580	unsigned long flags;
581
582	/* Forced update. Make sure all relevant TIF flags are different */
583	local_irq_save(flags);
584	__speculation_ctrl_update(~tif, tif);
585	local_irq_restore(flags);
586}
587
588/* Called from seccomp/prctl update */
589void speculation_ctrl_update_current(void)
590{
591	preempt_disable();
592	speculation_ctrl_update(speculation_ctrl_update_tif(current));
593	preempt_enable();
594}
595
596static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 
597{
598	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
599
600	newval = cr4 ^ mask;
601	if (newval != cr4) {
602		this_cpu_write(cpu_tlbstate.cr4, newval);
603		__write_cr4(newval);
604	}
605}
606
607void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
608{
609	unsigned long tifp, tifn;
610
611	tifn = READ_ONCE(task_thread_info(next_p)->flags);
612	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613
614	switch_to_bitmap(tifp);
615
616	propagate_user_return_notify(prev_p, next_p);
617
618	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619	    arch_has_block_step()) {
620		unsigned long debugctl, msk;
621
622		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623		debugctl &= ~DEBUGCTLMSR_BTF;
624		msk = tifn & _TIF_BLOCKSTEP;
625		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627	}
628
629	if ((tifp ^ tifn) & _TIF_NOTSC)
630		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631
632	if ((tifp ^ tifn) & _TIF_NOCPUID)
633		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634
635	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636		__speculation_ctrl_update(tifp, tifn);
637	} else {
638		speculation_ctrl_update_tif(prev_p);
639		tifn = speculation_ctrl_update_tif(next_p);
640
641		/* Enforce MSR update to ensure consistent state */
642		__speculation_ctrl_update(~tifn, tifn);
643	}
644
645	if ((tifp ^ tifn) & _TIF_SLD)
646		switch_to_sld(tifn);
647}
648
649/*
650 * Idle related variables and functions
651 */
652unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653EXPORT_SYMBOL(boot_option_idle_override);
654
655static void (*x86_idle)(void);
656
657#ifndef CONFIG_SMP
658static inline void play_dead(void)
659{
660	BUG();
661}
662#endif
663
664void arch_cpu_idle_enter(void)
665{
666	tsc_verify_tsc_adjust(false);
667	local_touch_nmi();
668}
669
670void arch_cpu_idle_dead(void)
671{
672	play_dead();
673}
674
675/*
676 * Called from the generic idle code.
677 */
678void arch_cpu_idle(void)
679{
680	x86_idle();
681}
682
683/*
684 * We use this if we don't have any better idle routine..
685 */
686void __cpuidle default_idle(void)
687{
 
688	safe_halt();
 
689}
690#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691EXPORT_SYMBOL(default_idle);
692#endif
693
694#ifdef CONFIG_XEN
695bool xen_set_default_idle(void)
696{
697	bool ret = !!x86_idle;
698
699	x86_idle = default_idle;
700
701	return ret;
702}
703#endif
704
705void stop_this_cpu(void *dummy)
706{
707	local_irq_disable();
708	/*
709	 * Remove this CPU:
710	 */
711	set_cpu_online(smp_processor_id(), false);
712	disable_local_APIC();
713	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
714
715	/*
716	 * Use wbinvd on processors that support SME. This provides support
717	 * for performing a successful kexec when going from SME inactive
718	 * to SME active (or vice-versa). The cache must be cleared so that
719	 * if there are entries with the same physical address, both with and
720	 * without the encryption bit, they don't race each other when flushed
721	 * and potentially end up with the wrong entry being committed to
722	 * memory.
723	 */
724	if (boot_cpu_has(X86_FEATURE_SME))
725		native_wbinvd();
726	for (;;) {
727		/*
728		 * Use native_halt() so that memory contents don't change
729		 * (stack usage and variables) after possibly issuing the
730		 * native_wbinvd() above.
731		 */
732		native_halt();
733	}
734}
735
736/*
737 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738 * states (local apic timer and TSC stop).
739 */
740static void amd_e400_idle(void)
741{
742	/*
743	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
744	 * gets set after static_cpu_has() places have been converted via
745	 * alternatives.
746	 */
747	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
748		default_idle();
749		return;
750	}
751
752	tick_broadcast_enter();
753
754	default_idle();
755
756	/*
757	 * The switch back from broadcast mode needs to be called with
758	 * interrupts disabled.
759	 */
760	local_irq_disable();
761	tick_broadcast_exit();
762	local_irq_enable();
763}
764
765/*
766 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
767 * We can't rely on cpuidle installing MWAIT, because it will not load
768 * on systems that support only C1 -- so the boot default must be MWAIT.
769 *
770 * Some AMD machines are the opposite, they depend on using HALT.
771 *
772 * So for default C1, which is used during boot until cpuidle loads,
773 * use MWAIT-C1 on Intel HW that has it, else use HALT.
774 */
775static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
776{
777	if (c->x86_vendor != X86_VENDOR_INTEL)
778		return 0;
779
780	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
781		return 0;
782
783	return 1;
784}
785
786/*
787 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
788 * with interrupts enabled and no flags, which is backwards compatible with the
789 * original MWAIT implementation.
790 */
791static __cpuidle void mwait_idle(void)
792{
793	if (!current_set_polling_and_test()) {
 
794		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
795			mb(); /* quirk */
796			clflush((void *)&current_thread_info()->flags);
797			mb(); /* quirk */
798		}
799
800		__monitor((void *)&current_thread_info()->flags, 0, 0);
801		if (!need_resched())
802			__sti_mwait(0, 0);
803		else
804			local_irq_enable();
 
805	} else {
806		local_irq_enable();
807	}
808	__current_clr_polling();
809}
810
811void select_idle_routine(const struct cpuinfo_x86 *c)
812{
813#ifdef CONFIG_SMP
814	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
815		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
816#endif
817	if (x86_idle || boot_option_idle_override == IDLE_POLL)
818		return;
819
820	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
821		pr_info("using AMD E400 aware idle routine\n");
822		x86_idle = amd_e400_idle;
823	} else if (prefer_mwait_c1_over_halt(c)) {
824		pr_info("using mwait in idle threads\n");
825		x86_idle = mwait_idle;
826	} else
827		x86_idle = default_idle;
828}
829
830void amd_e400_c1e_apic_setup(void)
831{
832	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
833		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
834		local_irq_disable();
835		tick_broadcast_force();
836		local_irq_enable();
837	}
838}
839
840void __init arch_post_acpi_subsys_init(void)
841{
842	u32 lo, hi;
843
844	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
845		return;
846
847	/*
848	 * AMD E400 detection needs to happen after ACPI has been enabled. If
849	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
850	 * MSR_K8_INT_PENDING_MSG.
851	 */
852	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
853	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
854		return;
855
856	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
857
858	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
859		mark_tsc_unstable("TSC halt in AMD C1E");
860	pr_info("System has AMD C1E enabled\n");
861}
862
863static int __init idle_setup(char *str)
864{
865	if (!str)
866		return -EINVAL;
867
868	if (!strcmp(str, "poll")) {
869		pr_info("using polling idle threads\n");
870		boot_option_idle_override = IDLE_POLL;
871		cpu_idle_poll_ctrl(true);
872	} else if (!strcmp(str, "halt")) {
873		/*
874		 * When the boot option of idle=halt is added, halt is
875		 * forced to be used for CPU idle. In such case CPU C2/C3
876		 * won't be used again.
877		 * To continue to load the CPU idle driver, don't touch
878		 * the boot_option_idle_override.
879		 */
880		x86_idle = default_idle;
881		boot_option_idle_override = IDLE_HALT;
882	} else if (!strcmp(str, "nomwait")) {
883		/*
884		 * If the boot option of "idle=nomwait" is added,
885		 * it means that mwait will be disabled for CPU C2/C3
886		 * states. In such case it won't touch the variable
887		 * of boot_option_idle_override.
888		 */
889		boot_option_idle_override = IDLE_NOMWAIT;
890	} else
891		return -1;
892
893	return 0;
894}
895early_param("idle", idle_setup);
896
897unsigned long arch_align_stack(unsigned long sp)
898{
899	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
900		sp -= get_random_int() % 8192;
901	return sp & ~0xf;
902}
903
904unsigned long arch_randomize_brk(struct mm_struct *mm)
905{
906	return randomize_page(mm->brk, 0x02000000);
907}
908
909/*
910 * Called from fs/proc with a reference on @p to find the function
911 * which called into schedule(). This needs to be done carefully
912 * because the task might wake up and we might look at a stack
913 * changing under us.
914 */
915unsigned long get_wchan(struct task_struct *p)
916{
917	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
918	int count = 0;
919
920	if (p == current || p->state == TASK_RUNNING)
921		return 0;
922
923	if (!try_get_task_stack(p))
924		return 0;
925
926	start = (unsigned long)task_stack_page(p);
927	if (!start)
928		goto out;
929
930	/*
931	 * Layout of the stack page:
932	 *
933	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
934	 * PADDING
935	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
936	 * stack
937	 * ----------- bottom = start
938	 *
939	 * The tasks stack pointer points at the location where the
940	 * framepointer is stored. The data on the stack is:
941	 * ... IP FP ... IP FP
942	 *
943	 * We need to read FP and IP, so we need to adjust the upper
944	 * bound by another unsigned long.
945	 */
946	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
947	top -= 2 * sizeof(unsigned long);
948	bottom = start;
949
950	sp = READ_ONCE(p->thread.sp);
951	if (sp < bottom || sp > top)
952		goto out;
953
954	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
955	do {
956		if (fp < bottom || fp > top)
957			goto out;
958		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
959		if (!in_sched_functions(ip)) {
960			ret = ip;
961			goto out;
962		}
963		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
964	} while (count++ < 16 && p->state != TASK_RUNNING);
965
966out:
967	put_task_stack(p);
968	return ret;
969}
970
971long do_arch_prctl_common(struct task_struct *task, int option,
972			  unsigned long cpuid_enabled)
973{
974	switch (option) {
975	case ARCH_GET_CPUID:
976		return get_cpuid_mode();
977	case ARCH_SET_CPUID:
978		return set_cpuid_mode(task, cpuid_enabled);
979	}
980
981	return -EINVAL;
982}