Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <trace/events/power.h>
 26#include <linux/hw_breakpoint.h>
 27#include <asm/cpu.h>
 
 28#include <asm/apic.h>
 29#include <asm/syscalls.h>
 30#include <linux/uaccess.h>
 31#include <asm/mwait.h>
 32#include <asm/fpu/internal.h>
 33#include <asm/debugreg.h>
 34#include <asm/nmi.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mce.h>
 37#include <asm/vm86.h>
 38#include <asm/switch_to.h>
 39#include <asm/desc.h>
 40#include <asm/prctl.h>
 41#include <asm/spec-ctrl.h>
 42
 43/*
 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 46 * so they are allowed to end up in the .data..cacheline_aligned
 47 * section. Since TSS's are completely CPU-local, we want them
 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 49 */
 50__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 51	.x86_tss = {
 52		/*
 53		 * .sp0 is only used when entering ring 0 from a lower
 54		 * privilege level.  Since the init task never runs anything
 55		 * but ring 0 code, there is no need for a valid value here.
 56		 * Poison it.
 57		 */
 58		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 59
 60#ifdef CONFIG_X86_64
 61		/*
 62		 * .sp1 is cpu_current_top_of_stack.  The init task never
 63		 * runs user code, but cpu_current_top_of_stack should still
 64		 * be well defined before the first context switch.
 65		 */
 66		.sp1 = TOP_OF_INIT_STACK,
 67#endif
 68
 69#ifdef CONFIG_X86_32
 70		.ss0 = __KERNEL_DS,
 71		.ss1 = __KERNEL_CS,
 72		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 73#endif
 74	 },
 75#ifdef CONFIG_X86_32
 76	 /*
 77	  * Note that the .io_bitmap member must be extra-big. This is because
 78	  * the CPU will access an additional byte beyond the end of the IO
 79	  * permission bitmap. The extra byte must be all 1 bits, and must
 80	  * be within the limit.
 81	  */
 82	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 83#endif
 84};
 85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 86
 87DEFINE_PER_CPU(bool, __tss_limit_invalid);
 88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 
 
 
 
 
 
 
 
 89
 90/*
 91 * this gets called so that we can store lazy state into memory and copy the
 92 * current task into the new thread.
 93 */
 94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 95{
 96	memcpy(dst, src, arch_task_struct_size);
 97#ifdef CONFIG_VM86
 98	dst->thread.vm86 = NULL;
 99#endif
100
101	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 
 
 
 
 
 
 
 
 
 
 
102}
103
104/*
105 * Free current thread data structures etc..
106 */
107void exit_thread(struct task_struct *tsk)
108{
109	struct thread_struct *t = &tsk->thread;
 
110	unsigned long *bp = t->io_bitmap_ptr;
111	struct fpu *fpu = &t->fpu;
112
113	if (bp) {
114		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116		t->io_bitmap_ptr = NULL;
117		clear_thread_flag(TIF_IO_BITMAP);
118		/*
119		 * Careful, clear this in the TSS too:
120		 */
121		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122		t->io_bitmap_max = 0;
123		put_cpu();
124		kfree(bp);
125	}
 
126
127	free_vm86(t);
 
 
 
 
128
129	fpu__drop(fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130}
131
132void flush_thread(void)
133{
134	struct task_struct *tsk = current;
135
136	flush_ptrace_hw_breakpoint(tsk);
137	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 
 
 
 
 
 
 
138
139	fpu__clear(&tsk->thread.fpu);
 
 
140}
141
142void disable_TSC(void)
143{
144	preempt_disable();
145	if (!test_and_set_thread_flag(TIF_NOTSC))
146		/*
147		 * Must flip the CPU state synchronously with
148		 * TIF_NOTSC in the current running context.
149		 */
150		cr4_set_bits(X86_CR4_TSD);
151	preempt_enable();
152}
153
 
 
 
 
 
154static void enable_TSC(void)
155{
156	preempt_disable();
157	if (test_and_clear_thread_flag(TIF_NOTSC))
158		/*
159		 * Must flip the CPU state synchronously with
160		 * TIF_NOTSC in the current running context.
161		 */
162		cr4_clear_bits(X86_CR4_TSD);
163	preempt_enable();
164}
165
166int get_tsc_mode(unsigned long adr)
167{
168	unsigned int val;
169
170	if (test_thread_flag(TIF_NOTSC))
171		val = PR_TSC_SIGSEGV;
172	else
173		val = PR_TSC_ENABLE;
174
175	return put_user(val, (unsigned int __user *)adr);
176}
177
178int set_tsc_mode(unsigned int val)
179{
180	if (val == PR_TSC_SIGSEGV)
181		disable_TSC();
182	else if (val == PR_TSC_ENABLE)
183		enable_TSC();
184	else
185		return -EINVAL;
186
187	return 0;
188}
189
190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192static void set_cpuid_faulting(bool on)
193{
194	u64 msrval;
195
196	msrval = this_cpu_read(msr_misc_features_shadow);
197	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199	this_cpu_write(msr_misc_features_shadow, msrval);
200	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201}
202
203static void disable_cpuid(void)
204{
205	preempt_disable();
206	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207		/*
208		 * Must flip the CPU state synchronously with
209		 * TIF_NOCPUID in the current running context.
210		 */
211		set_cpuid_faulting(true);
212	}
213	preempt_enable();
214}
215
216static void enable_cpuid(void)
217{
218	preempt_disable();
219	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220		/*
221		 * Must flip the CPU state synchronously with
222		 * TIF_NOCPUID in the current running context.
223		 */
224		set_cpuid_faulting(false);
225	}
226	preempt_enable();
227}
228
229static int get_cpuid_mode(void)
230{
231	return !test_thread_flag(TIF_NOCPUID);
232}
233
234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235{
236	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237		return -ENODEV;
238
239	if (cpuid_enabled)
240		enable_cpuid();
241	else
242		disable_cpuid();
243
244	return 0;
245}
246
247/*
248 * Called immediately after a successful exec.
249 */
250void arch_setup_new_exec(void)
251{
252	/* If cpuid was previously disabled for this task, re-enable it. */
253	if (test_thread_flag(TIF_NOCPUID))
254		enable_cpuid();
255}
256
257static inline void switch_to_bitmap(struct tss_struct *tss,
258				    struct thread_struct *prev,
259				    struct thread_struct *next,
260				    unsigned long tifp, unsigned long tifn)
261{
262	if (tifn & _TIF_IO_BITMAP) {
263		/*
264		 * Copy the relevant range of the IO bitmap.
265		 * Normally this is 128 bytes or less:
266		 */
267		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268		       max(prev->io_bitmap_max, next->io_bitmap_max));
269		/*
270		 * Make sure that the TSS limit is correct for the CPU
271		 * to notice the IO bitmap.
272		 */
273		refresh_tss_limit();
274	} else if (tifp & _TIF_IO_BITMAP) {
275		/*
276		 * Clear any possible leftover bits:
277		 */
278		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279	}
 
280}
281
282#ifdef CONFIG_SMP
283
284struct ssb_state {
285	struct ssb_state	*shared_state;
286	raw_spinlock_t		lock;
287	unsigned int		disable_state;
288	unsigned long		local_state;
289};
290
291#define LSTATE_SSB	0
292
293static DEFINE_PER_CPU(struct ssb_state, ssb_state);
294
295void speculative_store_bypass_ht_init(void)
296{
297	struct ssb_state *st = this_cpu_ptr(&ssb_state);
298	unsigned int this_cpu = smp_processor_id();
299	unsigned int cpu;
300
301	st->local_state = 0;
302
303	/*
304	 * Shared state setup happens once on the first bringup
305	 * of the CPU. It's not destroyed on CPU hotunplug.
306	 */
307	if (st->shared_state)
308		return;
309
310	raw_spin_lock_init(&st->lock);
311
312	/*
313	 * Go over HT siblings and check whether one of them has set up the
314	 * shared state pointer already.
315	 */
316	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317		if (cpu == this_cpu)
318			continue;
319
320		if (!per_cpu(ssb_state, cpu).shared_state)
321			continue;
322
323		/* Link it to the state of the sibling: */
324		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325		return;
326	}
327
328	/*
329	 * First HT sibling to come up on the core.  Link shared state of
330	 * the first HT sibling to itself. The siblings on the same core
331	 * which come up later will see the shared state pointer and link
332	 * themself to the state of this CPU.
333	 */
334	st->shared_state = st;
335}
336
337/*
338 * Logic is: First HT sibling enables SSBD for both siblings in the core
339 * and last sibling to disable it, disables it for the whole core. This how
340 * MSR_SPEC_CTRL works in "hardware":
341 *
342 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
 
 
 
 
343 */
344static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
345{
346	struct ssb_state *st = this_cpu_ptr(&ssb_state);
347	u64 msr = x86_amd_ls_cfg_base;
348
349	if (!static_cpu_has(X86_FEATURE_ZEN)) {
350		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351		wrmsrl(MSR_AMD64_LS_CFG, msr);
352		return;
353	}
354
355	if (tifn & _TIF_SSBD) {
356		/*
357		 * Since this can race with prctl(), block reentry on the
358		 * same CPU.
359		 */
360		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361			return;
362
363		msr |= x86_amd_ls_cfg_ssbd_mask;
364
365		raw_spin_lock(&st->shared_state->lock);
366		/* First sibling enables SSBD: */
367		if (!st->shared_state->disable_state)
368			wrmsrl(MSR_AMD64_LS_CFG, msr);
369		st->shared_state->disable_state++;
370		raw_spin_unlock(&st->shared_state->lock);
371	} else {
372		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373			return;
374
375		raw_spin_lock(&st->shared_state->lock);
376		st->shared_state->disable_state--;
377		if (!st->shared_state->disable_state)
378			wrmsrl(MSR_AMD64_LS_CFG, msr);
379		raw_spin_unlock(&st->shared_state->lock);
380	}
381}
382#else
383static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
384{
385	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
386
387	wrmsrl(MSR_AMD64_LS_CFG, msr);
388}
389#endif
390
391static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
 
 
392{
393	/*
394	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395	 * so ssbd_tif_to_spec_ctrl() just works.
396	 */
397	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
398}
399
400static __always_inline void intel_set_ssb_state(unsigned long tifn)
401{
402	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
403
404	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
405}
406
407static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
408{
409	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410		amd_set_ssb_virt_state(tifn);
411	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412		amd_set_core_ssb_state(tifn);
413	else
414		intel_set_ssb_state(tifn);
415}
416
417void speculative_store_bypass_update(unsigned long tif)
 
 
 
418{
419	preempt_disable();
420	__speculative_store_bypass_update(tif);
421	preempt_enable();
422}
423
424void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425		      struct tss_struct *tss)
426{
427	struct thread_struct *prev, *next;
428	unsigned long tifp, tifn;
429
430	prev = &prev_p->thread;
431	next = &next_p->thread;
432
433	tifn = READ_ONCE(task_thread_info(next_p)->flags);
434	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435	switch_to_bitmap(tss, prev, next, tifp, tifn);
 
 
 
 
 
436
437	propagate_user_return_notify(prev_p, next_p);
 
 
 
438
439	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440	    arch_has_block_step()) {
441		unsigned long debugctl, msk;
 
442
443		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444		debugctl &= ~DEBUGCTLMSR_BTF;
445		msk = tifn & _TIF_BLOCKSTEP;
446		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
448	}
 
 
 
449
450	if ((tifp ^ tifn) & _TIF_NOTSC)
451		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
 
 
 
452
453	if ((tifp ^ tifn) & _TIF_NOCPUID)
454		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
 
 
 
 
455
456	if ((tifp ^ tifn) & _TIF_SSBD)
457		__speculative_store_bypass_update(tifn);
458}
459
460/*
461 * Idle related variables and functions
462 */
463unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464EXPORT_SYMBOL(boot_option_idle_override);
465
466static void (*x86_idle)(void);
 
 
 
 
 
 
467
468#ifndef CONFIG_SMP
469static inline void play_dead(void)
 
 
 
 
 
470{
471	BUG();
472}
473#endif
474
475void arch_cpu_idle_enter(void)
476{
477	tsc_verify_tsc_adjust(false);
478	local_touch_nmi();
479}
 
480
481void arch_cpu_idle_dead(void)
482{
483	play_dead();
484}
485
486/*
487 * Called from the generic idle code.
488 */
489void arch_cpu_idle(void)
490{
491	x86_idle();
492}
 
493
494/*
495 * We use this if we don't have any better idle routine..
 
496 */
497void __cpuidle default_idle(void)
498{
499	trace_cpu_idle_rcuidle(1, smp_processor_id());
500	safe_halt();
501	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502}
503#ifdef CONFIG_APM_MODULE
504EXPORT_SYMBOL(default_idle);
505#endif
506
507#ifdef CONFIG_XEN
508bool xen_set_default_idle(void)
509{
510	bool ret = !!x86_idle;
511
512	x86_idle = default_idle;
513
514	return ret;
515}
516#endif
517
518void stop_this_cpu(void *dummy)
519{
520	local_irq_disable();
521	/*
522	 * Remove this CPU:
523	 */
524	set_cpu_online(smp_processor_id(), false);
525	disable_local_APIC();
526	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
527
528	/*
529	 * Use wbinvd on processors that support SME. This provides support
530	 * for performing a successful kexec when going from SME inactive
531	 * to SME active (or vice-versa). The cache must be cleared so that
532	 * if there are entries with the same physical address, both with and
533	 * without the encryption bit, they don't race each other when flushed
534	 * and potentially end up with the wrong entry being committed to
535	 * memory.
536	 */
537	if (boot_cpu_has(X86_FEATURE_SME))
538		native_wbinvd();
539	for (;;) {
540		/*
541		 * Use native_halt() so that memory contents don't change
542		 * (stack usage and variables) after possibly issuing the
543		 * native_wbinvd() above.
544		 */
545		native_halt();
546	}
547}
548
 
 
 
 
549/*
550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
551 * states (local apic timer and TSC stop).
 
 
 
 
552 */
553static void amd_e400_idle(void)
554{
555	/*
556	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
557	 * gets set after static_cpu_has() places have been converted via
558	 * alternatives.
559	 */
560	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
561		default_idle();
562		return;
563	}
564
565	tick_broadcast_enter();
 
 
 
 
 
 
 
566
567	default_idle();
 
 
 
 
 
 
 
 
 
 
568
569	/*
570	 * The switch back from broadcast mode needs to be called with
571	 * interrupts disabled.
572	 */
573	local_irq_disable();
574	tick_broadcast_exit();
 
 
 
575	local_irq_enable();
 
 
 
 
576}
577
578/*
579 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
580 * We can't rely on cpuidle installing MWAIT, because it will not load
581 * on systems that support only C1 -- so the boot default must be MWAIT.
582 *
583 * Some AMD machines are the opposite, they depend on using HALT.
 
 
 
 
 
584 *
585 * So for default C1, which is used during boot until cpuidle loads,
586 * use MWAIT-C1 on Intel HW that has it, else use HALT.
587 */
588static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 
 
 
 
 
589{
590	if (c->x86_vendor != X86_VENDOR_INTEL)
591		return 0;
 
 
592
593	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
594		return 0;
595
596	return 1;
 
 
 
 
 
 
 
 
 
597}
598
599/*
600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
601 * with interrupts enabled and no flags, which is backwards compatible with the
602 * original MWAIT implementation.
603 */
604static __cpuidle void mwait_idle(void)
605{
606	if (!current_set_polling_and_test()) {
607		trace_cpu_idle_rcuidle(1, smp_processor_id());
608		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
609			mb(); /* quirk */
610			clflush((void *)&current_thread_info()->flags);
611			mb(); /* quirk */
612		}
613
614		__monitor((void *)&current_thread_info()->flags, 0, 0);
615		if (!need_resched())
616			__sti_mwait(0, 0);
617		else
618			local_irq_enable();
619		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
620	} else {
621		local_irq_enable();
622	}
623	__current_clr_polling();
624}
625
626void select_idle_routine(const struct cpuinfo_x86 *c)
 
 
 
 
 
627{
628#ifdef CONFIG_SMP
629	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
630		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
631#endif
632	if (x86_idle || boot_option_idle_override == IDLE_POLL)
633		return;
634
635	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
636		pr_info("using AMD E400 aware idle routine\n");
637		x86_idle = amd_e400_idle;
638	} else if (prefer_mwait_c1_over_halt(c)) {
639		pr_info("using mwait in idle threads\n");
640		x86_idle = mwait_idle;
641	} else
642		x86_idle = default_idle;
643}
644
645void amd_e400_c1e_apic_setup(void)
646{
647	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
648		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
649		local_irq_disable();
650		tick_broadcast_force();
651		local_irq_enable();
 
652	}
653}
654
655void __init arch_post_acpi_subsys_init(void)
656{
657	u32 lo, hi;
658
659	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
660		return;
 
 
 
 
 
 
 
 
 
661
662	/*
663	 * AMD E400 detection needs to happen after ACPI has been enabled. If
664	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
665	 * MSR_K8_INT_PENDING_MSG.
666	 */
667	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
668	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669		return;
670
671	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
 
 
 
 
 
 
 
 
 
 
 
 
672
673	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
674		mark_tsc_unstable("TSC halt in AMD C1E");
675	pr_info("System has AMD C1E enabled\n");
 
 
676}
677
678static int __init idle_setup(char *str)
679{
680	if (!str)
681		return -EINVAL;
682
683	if (!strcmp(str, "poll")) {
684		pr_info("using polling idle threads\n");
 
685		boot_option_idle_override = IDLE_POLL;
686		cpu_idle_poll_ctrl(true);
 
 
687	} else if (!strcmp(str, "halt")) {
688		/*
689		 * When the boot option of idle=halt is added, halt is
690		 * forced to be used for CPU idle. In such case CPU C2/C3
691		 * won't be used again.
692		 * To continue to load the CPU idle driver, don't touch
693		 * the boot_option_idle_override.
694		 */
695		x86_idle = default_idle;
696		boot_option_idle_override = IDLE_HALT;
697	} else if (!strcmp(str, "nomwait")) {
698		/*
699		 * If the boot option of "idle=nomwait" is added,
700		 * it means that mwait will be disabled for CPU C2/C3
701		 * states. In such case it won't touch the variable
702		 * of boot_option_idle_override.
703		 */
704		boot_option_idle_override = IDLE_NOMWAIT;
705	} else
706		return -1;
707
708	return 0;
709}
710early_param("idle", idle_setup);
711
712unsigned long arch_align_stack(unsigned long sp)
713{
714	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715		sp -= get_random_int() % 8192;
716	return sp & ~0xf;
717}
718
719unsigned long arch_randomize_brk(struct mm_struct *mm)
720{
721	return randomize_page(mm->brk, 0x02000000);
 
722}
723
724/*
725 * Called from fs/proc with a reference on @p to find the function
726 * which called into schedule(). This needs to be done carefully
727 * because the task might wake up and we might look at a stack
728 * changing under us.
729 */
730unsigned long get_wchan(struct task_struct *p)
731{
732	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
733	int count = 0;
734
735	if (!p || p == current || p->state == TASK_RUNNING)
736		return 0;
737
738	if (!try_get_task_stack(p))
739		return 0;
740
741	start = (unsigned long)task_stack_page(p);
742	if (!start)
743		goto out;
744
745	/*
746	 * Layout of the stack page:
747	 *
748	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
749	 * PADDING
750	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
751	 * stack
752	 * ----------- bottom = start
753	 *
754	 * The tasks stack pointer points at the location where the
755	 * framepointer is stored. The data on the stack is:
756	 * ... IP FP ... IP FP
757	 *
758	 * We need to read FP and IP, so we need to adjust the upper
759	 * bound by another unsigned long.
760	 */
761	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
762	top -= 2 * sizeof(unsigned long);
763	bottom = start;
764
765	sp = READ_ONCE(p->thread.sp);
766	if (sp < bottom || sp > top)
767		goto out;
768
769	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
770	do {
771		if (fp < bottom || fp > top)
772			goto out;
773		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
774		if (!in_sched_functions(ip)) {
775			ret = ip;
776			goto out;
777		}
778		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
779	} while (count++ < 16 && p->state != TASK_RUNNING);
780
781out:
782	put_task_stack(p);
783	return ret;
784}
785
786long do_arch_prctl_common(struct task_struct *task, int option,
787			  unsigned long cpuid_enabled)
788{
789	switch (option) {
790	case ARCH_GET_CPUID:
791		return get_cpuid_mode();
792	case ARCH_SET_CPUID:
793		return set_cpuid_mode(task, cpuid_enabled);
794	}
795
796	return -EINVAL;
797}
v3.1
 
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
 
 
 
 
 
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 
 
 15#include <trace/events/power.h>
 16#include <linux/hw_breakpoint.h>
 17#include <asm/cpu.h>
 18#include <asm/system.h>
 19#include <asm/apic.h>
 20#include <asm/syscalls.h>
 21#include <asm/idle.h>
 22#include <asm/uaccess.h>
 23#include <asm/i387.h>
 24#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26struct kmem_cache *task_xstate_cachep;
 27EXPORT_SYMBOL_GPL(task_xstate_cachep);
 
 
 
 
 
 
 28
 29int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 30{
 31	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33	*dst = *src;
 34	if (fpu_allocated(&src->thread.fpu)) {
 35		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 36		ret = fpu_alloc(&dst->thread.fpu);
 37		if (ret)
 38			return ret;
 39		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 40	}
 41	return 0;
 42}
 43
 44void free_thread_xstate(struct task_struct *tsk)
 
 
 
 
 45{
 46	fpu_free(&tsk->thread.fpu);
 47}
 
 
 48
 49void free_thread_info(struct thread_info *ti)
 50{
 51	free_thread_xstate(ti->task);
 52	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
 53}
 54
 55void arch_task_cache_init(void)
 56{
 57        task_xstate_cachep =
 58        	kmem_cache_create("task_xstate", xstate_size,
 59				  __alignof__(union thread_xstate),
 60				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 61}
 62
 63/*
 64 * Free current thread data structures etc..
 65 */
 66void exit_thread(void)
 67{
 68	struct task_struct *me = current;
 69	struct thread_struct *t = &me->thread;
 70	unsigned long *bp = t->io_bitmap_ptr;
 
 71
 72	if (bp) {
 73		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 74
 75		t->io_bitmap_ptr = NULL;
 76		clear_thread_flag(TIF_IO_BITMAP);
 77		/*
 78		 * Careful, clear this in the TSS too:
 79		 */
 80		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 81		t->io_bitmap_max = 0;
 82		put_cpu();
 83		kfree(bp);
 84	}
 85}
 86
 87void show_regs(struct pt_regs *regs)
 88{
 89	show_registers(regs);
 90	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
 91}
 92
 93void show_regs_common(void)
 94{
 95	const char *vendor, *product, *board;
 96
 97	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 98	if (!vendor)
 99		vendor = "";
100	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101	if (!product)
102		product = "";
103
104	/* Board Name is optional */
105	board = dmi_get_system_info(DMI_BOARD_NAME);
106
107	printk(KERN_CONT "\n");
108	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109		current->pid, current->comm, print_tainted(),
110		init_utsname()->release,
111		(int)strcspn(init_utsname()->version, " "),
112		init_utsname()->version);
113	printk(KERN_CONT " %s %s", vendor, product);
114	if (board)
115		printk(KERN_CONT "/%s", board);
116	printk(KERN_CONT "\n");
117}
118
119void flush_thread(void)
120{
121	struct task_struct *tsk = current;
122
123	flush_ptrace_hw_breakpoint(tsk);
124	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125	/*
126	 * Forget coprocessor state..
127	 */
128	tsk->fpu_counter = 0;
129	clear_fpu(tsk);
130	clear_used_math();
131}
132
133static void hard_disable_TSC(void)
134{
135	write_cr4(read_cr4() | X86_CR4_TSD);
136}
137
138void disable_TSC(void)
139{
140	preempt_disable();
141	if (!test_and_set_thread_flag(TIF_NOTSC))
142		/*
143		 * Must flip the CPU state synchronously with
144		 * TIF_NOTSC in the current running context.
145		 */
146		hard_disable_TSC();
147	preempt_enable();
148}
149
150static void hard_enable_TSC(void)
151{
152	write_cr4(read_cr4() & ~X86_CR4_TSD);
153}
154
155static void enable_TSC(void)
156{
157	preempt_disable();
158	if (test_and_clear_thread_flag(TIF_NOTSC))
159		/*
160		 * Must flip the CPU state synchronously with
161		 * TIF_NOTSC in the current running context.
162		 */
163		hard_enable_TSC();
164	preempt_enable();
165}
166
167int get_tsc_mode(unsigned long adr)
168{
169	unsigned int val;
170
171	if (test_thread_flag(TIF_NOTSC))
172		val = PR_TSC_SIGSEGV;
173	else
174		val = PR_TSC_ENABLE;
175
176	return put_user(val, (unsigned int __user *)adr);
177}
178
179int set_tsc_mode(unsigned int val)
180{
181	if (val == PR_TSC_SIGSEGV)
182		disable_TSC();
183	else if (val == PR_TSC_ENABLE)
184		enable_TSC();
185	else
186		return -EINVAL;
187
188	return 0;
189}
190
191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193{
194	struct thread_struct *prev, *next;
 
 
 
 
 
 
 
 
 
195
196	prev = &prev_p->thread;
197	next = &next_p->thread;
 
 
198
199	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201		unsigned long debugctl = get_debugctlmsr();
 
202
203		debugctl &= ~DEBUGCTLMSR_BTF;
204		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205			debugctl |= DEBUGCTLMSR_BTF;
 
206
207		update_debugctlmsr(debugctl);
208	}
209
210	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212		/* prev and next are different */
213		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214			hard_disable_TSC();
215		else
216			hard_enable_TSC();
217	}
 
218
219	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
 
 
220		/*
221		 * Copy the relevant range of the IO bitmap.
222		 * Normally this is 128 bytes or less:
223		 */
224		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225		       max(prev->io_bitmap_max, next->io_bitmap_max));
226	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
227		/*
228		 * Clear any possible leftover bits:
229		 */
230		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231	}
232	propagate_user_return_notify(prev_p, next_p);
233}
234
235int sys_fork(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
236{
237	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238}
239
240/*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
 
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
250int sys_vfork(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251{
252	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253		       NULL, NULL);
 
254}
 
255
256long
257sys_clone(unsigned long clone_flags, unsigned long newsp,
258	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259{
260	if (!newsp)
261		newsp = regs->sp;
262	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 
 
263}
264
265/*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
269 */
270extern void kernel_thread_helper(void);
 
 
 
 
 
 
 
 
 
 
271
272/*
273 * Create a kernel thread
274 */
275int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276{
277	struct pt_regs regs;
 
 
 
278
279	memset(&regs, 0, sizeof(regs));
 
 
 
 
280
281	regs.si = (unsigned long) fn;
282	regs.di = (unsigned long) arg;
283
284#ifdef CONFIG_X86_32
285	regs.ds = __USER_DS;
286	regs.es = __USER_DS;
287	regs.fs = __KERNEL_PERCPU;
288	regs.gs = __KERNEL_STACK_CANARY;
289#else
290	regs.ss = __KERNEL_DS;
291#endif
292
293	regs.orig_ax = -1;
294	regs.ip = (unsigned long) kernel_thread_helper;
295	regs.cs = __KERNEL_CS | get_kernel_rpl();
296	regs.flags = X86_EFLAGS_IF | 0x2;
297
298	/* Ok, create the new process.. */
299	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
300}
301EXPORT_SYMBOL(kernel_thread);
302
303/*
304 * sys_execve() executes a new program.
305 */
306long sys_execve(const char __user *name,
307		const char __user *const __user *argv,
308		const char __user *const __user *envp, struct pt_regs *regs)
309{
310	long error;
311	char *filename;
312
313	filename = getname(name);
314	error = PTR_ERR(filename);
315	if (IS_ERR(filename))
316		return error;
317	error = do_execve(filename, argv, envp, regs);
318
319#ifdef CONFIG_X86_32
320	if (error == 0) {
321		/* Make sure we don't return using sysenter.. */
322                set_thread_flag(TIF_IRET);
323        }
324#endif
325
326	putname(filename);
327	return error;
328}
329
330/*
331 * Idle related variables and functions
332 */
333unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334EXPORT_SYMBOL(boot_option_idle_override);
335
336/*
337 * Powermanagement idle function, if any..
338 */
339void (*pm_idle)(void);
340#ifdef CONFIG_APM_MODULE
341EXPORT_SYMBOL(pm_idle);
342#endif
343
344#ifdef CONFIG_X86_32
345/*
346 * This halt magic was a workaround for ancient floppy DMA
347 * wreckage. It should be safe to remove.
348 */
349static int hlt_counter;
350void disable_hlt(void)
351{
352	hlt_counter++;
353}
354EXPORT_SYMBOL(disable_hlt);
355
356void enable_hlt(void)
357{
358	hlt_counter--;
 
359}
360EXPORT_SYMBOL(enable_hlt);
361
362static inline int hlt_use_halt(void)
363{
364	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
365}
366#else
367static inline int hlt_use_halt(void)
 
 
 
368{
369	return 1;
370}
371#endif
372
373/*
374 * We use this if we don't have any better
375 * idle routine..
376 */
377void default_idle(void)
378{
379	if (hlt_use_halt()) {
380		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381		trace_cpu_idle(1, smp_processor_id());
382		current_thread_info()->status &= ~TS_POLLING;
383		/*
384		 * TS_POLLING-cleared state must be visible before we
385		 * test NEED_RESCHED:
386		 */
387		smp_mb();
388
389		if (!need_resched())
390			safe_halt();	/* enables interrupts racelessly */
391		else
392			local_irq_enable();
393		current_thread_info()->status |= TS_POLLING;
394		trace_power_end(smp_processor_id());
395		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396	} else {
397		local_irq_enable();
398		/* loop is done by the caller */
399		cpu_relax();
400	}
401}
402#ifdef CONFIG_APM_MODULE
403EXPORT_SYMBOL(default_idle);
404#endif
405
 
 
 
 
 
 
 
 
 
 
 
406void stop_this_cpu(void *dummy)
407{
408	local_irq_disable();
409	/*
410	 * Remove this CPU:
411	 */
412	set_cpu_online(smp_processor_id(), false);
413	disable_local_APIC();
 
414
 
 
 
 
 
 
 
 
 
 
 
415	for (;;) {
416		if (hlt_works(smp_processor_id()))
417			halt();
 
 
 
 
418	}
419}
420
421static void do_nothing(void *unused)
422{
423}
424
425/*
426 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
427 * pm_idle and update to new pm_idle value. Required while changing pm_idle
428 * handler on SMP systems.
429 *
430 * Caller must have changed pm_idle to the new value before the call. Old
431 * pm_idle value will not be used by any CPU after the return of this function.
432 */
433void cpu_idle_wait(void)
434{
435	smp_mb();
436	/* kick all the CPUs so that they exit out of pm_idle */
437	smp_call_function(do_nothing, NULL, 1);
438}
439EXPORT_SYMBOL_GPL(cpu_idle_wait);
 
 
 
 
440
441/* Default MONITOR/MWAIT with no hints, used for default C1 state */
442static void mwait_idle(void)
443{
444	if (!need_resched()) {
445		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
446		trace_cpu_idle(1, smp_processor_id());
447		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
448			clflush((void *)&current_thread_info()->flags);
449
450		__monitor((void *)&current_thread_info()->flags, 0, 0);
451		smp_mb();
452		if (!need_resched())
453			__sti_mwait(0, 0);
454		else
455			local_irq_enable();
456		trace_power_end(smp_processor_id());
457		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
458	} else
459		local_irq_enable();
460}
461
462/*
463 * On SMP it's slightly faster (but much more power-consuming!)
464 * to poll the ->work.need_resched flag instead of waiting for the
465 * cross-CPU IPI to arrive. Use this option with caution.
466 */
467static void poll_idle(void)
468{
469	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
470	trace_cpu_idle(0, smp_processor_id());
471	local_irq_enable();
472	while (!need_resched())
473		cpu_relax();
474	trace_power_end(smp_processor_id());
475	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
476}
477
478/*
479 * mwait selection logic:
 
 
480 *
481 * It depends on the CPU. For AMD CPUs that support MWAIT this is
482 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
483 * then depend on a clock divisor and current Pstate of the core. If
484 * all cores of a processor are in halt state (C1) the processor can
485 * enter the C1E (C1 enhanced) state. If mwait is used this will never
486 * happen.
487 *
488 * idle=mwait overrides this decision and forces the usage of mwait.
 
489 */
490
491#define MWAIT_INFO			0x05
492#define MWAIT_ECX_EXTENDED_INFO		0x01
493#define MWAIT_EDX_C1			0xf0
494
495int mwait_usable(const struct cpuinfo_x86 *c)
496{
497	u32 eax, ebx, ecx, edx;
498
499	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
500		return 1;
501
502	if (c->cpuid_level < MWAIT_INFO)
503		return 0;
504
505	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
506	/* Check, whether EDX has extended info about MWAIT */
507	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
508		return 1;
509
510	/*
511	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
512	 * C1  supports MWAIT
513	 */
514	return (edx & MWAIT_EDX_C1);
515}
516
517bool amd_e400_c1e_detected;
518EXPORT_SYMBOL(amd_e400_c1e_detected);
 
 
 
 
 
 
 
 
 
 
 
 
519
520static cpumask_var_t amd_e400_c1e_mask;
521
522void amd_e400_remove_cpu(int cpu)
523{
524	if (amd_e400_c1e_mask != NULL)
525		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 
 
 
 
526}
527
528/*
529 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
530 * pending message MSR. If we detect C1E, then we handle it the same
531 * way as C3 power states (local apic timer and TSC stop)
532 */
533static void amd_e400_idle(void)
534{
535	if (need_resched())
 
 
 
 
536		return;
537
538	if (!amd_e400_c1e_detected) {
539		u32 lo, hi;
 
 
 
 
 
 
 
540
541		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
542
543		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
544			amd_e400_c1e_detected = true;
545			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
546				mark_tsc_unstable("TSC halt in AMD C1E");
547			printk(KERN_INFO "System has AMD C1E enabled\n");
548		}
549	}
 
550
551	if (amd_e400_c1e_detected) {
552		int cpu = smp_processor_id();
 
553
554		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
555			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
556			/*
557			 * Force broadcast so ACPI can not interfere.
558			 */
559			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
560					   &cpu);
561			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
562			       cpu);
563		}
564		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
565
566		default_idle();
567
568		/*
569		 * The switch back from broadcast mode needs to be
570		 * called with interrupts disabled.
571		 */
572		 local_irq_disable();
573		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
574		 local_irq_enable();
575	} else
576		default_idle();
577}
578
579void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
580{
581#ifdef CONFIG_SMP
582	if (pm_idle == poll_idle && smp_num_siblings > 1) {
583		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
584			" performance may degrade.\n");
585	}
586#endif
587	if (pm_idle)
588		return;
589
590	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
591		/*
592		 * One CPU supports mwait => All CPUs supports mwait
593		 */
594		printk(KERN_INFO "using mwait in idle threads.\n");
595		pm_idle = mwait_idle;
596	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
597		/* E400: APIC timer interrupt does not wake up CPU from C1e */
598		printk(KERN_INFO "using AMD E400 aware idle routine\n");
599		pm_idle = amd_e400_idle;
600	} else
601		pm_idle = default_idle;
602}
603
604void __init init_amd_e400_c1e_mask(void)
605{
606	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
607	if (pm_idle == amd_e400_idle)
608		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
609}
610
611static int __init idle_setup(char *str)
612{
613	if (!str)
614		return -EINVAL;
615
616	if (!strcmp(str, "poll")) {
617		printk("using polling idle threads.\n");
618		pm_idle = poll_idle;
619		boot_option_idle_override = IDLE_POLL;
620	} else if (!strcmp(str, "mwait")) {
621		boot_option_idle_override = IDLE_FORCE_MWAIT;
622		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
623	} else if (!strcmp(str, "halt")) {
624		/*
625		 * When the boot option of idle=halt is added, halt is
626		 * forced to be used for CPU idle. In such case CPU C2/C3
627		 * won't be used again.
628		 * To continue to load the CPU idle driver, don't touch
629		 * the boot_option_idle_override.
630		 */
631		pm_idle = default_idle;
632		boot_option_idle_override = IDLE_HALT;
633	} else if (!strcmp(str, "nomwait")) {
634		/*
635		 * If the boot option of "idle=nomwait" is added,
636		 * it means that mwait will be disabled for CPU C2/C3
637		 * states. In such case it won't touch the variable
638		 * of boot_option_idle_override.
639		 */
640		boot_option_idle_override = IDLE_NOMWAIT;
641	} else
642		return -1;
643
644	return 0;
645}
646early_param("idle", idle_setup);
647
648unsigned long arch_align_stack(unsigned long sp)
649{
650	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
651		sp -= get_random_int() % 8192;
652	return sp & ~0xf;
653}
654
655unsigned long arch_randomize_brk(struct mm_struct *mm)
656{
657	unsigned long range_end = mm->brk + 0x02000000;
658	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
659}
660