Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 * mm/readahead.c - address_space-level file readahead.
  3 *
  4 * Copyright (C) 2002, Linus Torvalds
  5 *
  6 * 09Apr2002	Andrew Morton
  7 *		Initial version.
  8 */
  9
 10#include <linux/kernel.h>
 11#include <linux/dax.h>
 12#include <linux/gfp.h>
 13#include <linux/export.h>
 14#include <linux/blkdev.h>
 15#include <linux/backing-dev.h>
 16#include <linux/task_io_accounting_ops.h>
 17#include <linux/pagevec.h>
 18#include <linux/pagemap.h>
 19#include <linux/syscalls.h>
 20#include <linux/file.h>
 21#include <linux/mm_inline.h>
 
 
 
 22
 23#include "internal.h"
 24
 25/*
 26 * Initialise a struct file's readahead state.  Assumes that the caller has
 27 * memset *ra to zero.
 28 */
 29void
 30file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 31{
 32	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 33	ra->prev_pos = -1;
 34}
 35EXPORT_SYMBOL_GPL(file_ra_state_init);
 36
 37/*
 38 * see if a page needs releasing upon read_cache_pages() failure
 39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 40 *   before calling, such as the NFS fs marking pages that are cached locally
 41 *   on disk, thus we need to give the fs a chance to clean up in the event of
 42 *   an error
 43 */
 44static void read_cache_pages_invalidate_page(struct address_space *mapping,
 45					     struct page *page)
 46{
 47	if (page_has_private(page)) {
 48		if (!trylock_page(page))
 49			BUG();
 50		page->mapping = mapping;
 51		do_invalidatepage(page, 0, PAGE_SIZE);
 52		page->mapping = NULL;
 53		unlock_page(page);
 54	}
 55	put_page(page);
 56}
 57
 58/*
 59 * release a list of pages, invalidating them first if need be
 60 */
 61static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 62					      struct list_head *pages)
 63{
 64	struct page *victim;
 65
 66	while (!list_empty(pages)) {
 67		victim = lru_to_page(pages);
 68		list_del(&victim->lru);
 69		read_cache_pages_invalidate_page(mapping, victim);
 70	}
 71}
 72
 73/**
 74 * read_cache_pages - populate an address space with some pages & start reads against them
 75 * @mapping: the address_space
 76 * @pages: The address of a list_head which contains the target pages.  These
 77 *   pages have their ->index populated and are otherwise uninitialised.
 78 * @filler: callback routine for filling a single page.
 79 * @data: private data for the callback routine.
 80 *
 81 * Hides the details of the LRU cache etc from the filesystems.
 
 
 82 */
 83int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 84			int (*filler)(void *, struct page *), void *data)
 85{
 86	struct page *page;
 87	int ret = 0;
 88
 89	while (!list_empty(pages)) {
 90		page = lru_to_page(pages);
 91		list_del(&page->lru);
 92		if (add_to_page_cache_lru(page, mapping, page->index,
 93				readahead_gfp_mask(mapping))) {
 94			read_cache_pages_invalidate_page(mapping, page);
 95			continue;
 96		}
 97		put_page(page);
 98
 99		ret = filler(data, page);
100		if (unlikely(ret)) {
101			read_cache_pages_invalidate_pages(mapping, pages);
102			break;
103		}
104		task_io_account_read(PAGE_SIZE);
105	}
106	return ret;
107}
108
109EXPORT_SYMBOL(read_cache_pages);
110
111static int read_pages(struct address_space *mapping, struct file *filp,
112		struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113{
 
 
114	struct blk_plug plug;
115	unsigned page_idx;
116	int ret;
 
117
118	blk_start_plug(&plug);
119
120	if (mapping->a_ops->readpages) {
121		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 
 
 
 
 
 
 
 
122		/* Clean up the remaining pages */
123		put_pages_list(pages);
124		goto out;
125	}
126
127	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128		struct page *page = lru_to_page(pages);
129		list_del(&page->lru);
130		if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
131			mapping->a_ops->readpage(filp, page);
132		put_page(page);
133	}
134	ret = 0;
135
136out:
137	blk_finish_plug(&plug);
138
139	return ret;
 
 
 
 
 
140}
141
142/*
143 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
 
 
 
 
 
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 
149 */
150int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
151			pgoff_t offset, unsigned long nr_to_read,
152			unsigned long lookahead_size)
153{
154	struct inode *inode = mapping->host;
155	struct page *page;
156	unsigned long end_index;	/* The last page we want to read */
157	LIST_HEAD(page_pool);
158	int page_idx;
159	int ret = 0;
160	loff_t isize = i_size_read(inode);
161	gfp_t gfp_mask = readahead_gfp_mask(mapping);
 
162
163	if (isize == 0)
164		goto out;
165
166	end_index = ((isize - 1) >> PAGE_SHIFT);
 
 
 
 
 
 
 
167
168	/*
169	 * Preallocate as many pages as we will need.
170	 */
171	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172		pgoff_t page_offset = offset + page_idx;
173
174		if (page_offset > end_index)
175			break;
176
177		rcu_read_lock();
178		page = radix_tree_lookup(&mapping->i_pages, page_offset);
179		rcu_read_unlock();
180		if (page && !radix_tree_exceptional_entry(page))
 
 
 
 
 
 
 
181			continue;
 
182
183		page = __page_cache_alloc(gfp_mask);
184		if (!page)
185			break;
186		page->index = page_offset;
187		list_add(&page->lru, &page_pool);
188		if (page_idx == nr_to_read - lookahead_size)
 
 
 
 
 
 
 
 
189			SetPageReadahead(page);
190		ret++;
191	}
192
193	/*
194	 * Now start the IO.  We ignore I/O errors - if the page is not
195	 * uptodate then the caller will launch readpage again, and
196	 * will then handle the error.
197	 */
198	if (ret)
199		read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200	BUG_ON(!list_empty(&page_pool));
201out:
202	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203}
204
205/*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210			       pgoff_t offset, unsigned long nr_to_read)
211{
 
 
212	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213	struct file_ra_state *ra = &filp->f_ra;
214	unsigned long max_pages;
215
216	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217		return -EINVAL;
 
218
219	/*
220	 * If the request exceeds the readahead window, allow the read to
221	 * be up to the optimal hardware IO size
222	 */
 
223	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224	nr_to_read = min(nr_to_read, max_pages);
225	while (nr_to_read) {
226		int err;
227
228		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229
230		if (this_chunk > nr_to_read)
231			this_chunk = nr_to_read;
232		err = __do_page_cache_readahead(mapping, filp,
233						offset, this_chunk, 0);
234		if (err < 0)
235			return err;
236
237		offset += this_chunk;
238		nr_to_read -= this_chunk;
239	}
240	return 0;
241}
242
243/*
244 * Set the initial window size, round to next power of 2 and square
245 * for small size, x 4 for medium, and x 2 for large
246 * for 128k (32 page) max ra
247 * 1-8 page = 32k initial, > 8 page = 128k initial
248 */
249static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250{
251	unsigned long newsize = roundup_pow_of_two(size);
252
253	if (newsize <= max / 32)
254		newsize = newsize * 4;
255	else if (newsize <= max / 4)
256		newsize = newsize * 2;
257	else
258		newsize = max;
259
260	return newsize;
261}
262
263/*
264 *  Get the previous window size, ramp it up, and
265 *  return it as the new window size.
266 */
267static unsigned long get_next_ra_size(struct file_ra_state *ra,
268						unsigned long max)
269{
270	unsigned long cur = ra->size;
271	unsigned long newsize;
272
273	if (cur < max / 16)
274		newsize = 4 * cur;
275	else
276		newsize = 2 * cur;
277
278	return min(newsize, max);
279}
280
281/*
282 * On-demand readahead design.
283 *
284 * The fields in struct file_ra_state represent the most-recently-executed
285 * readahead attempt:
286 *
287 *                        |<----- async_size ---------|
288 *     |------------------- size -------------------->|
289 *     |==================#===========================|
290 *     ^start             ^page marked with PG_readahead
291 *
292 * To overlap application thinking time and disk I/O time, we do
293 * `readahead pipelining': Do not wait until the application consumed all
294 * readahead pages and stalled on the missing page at readahead_index;
295 * Instead, submit an asynchronous readahead I/O as soon as there are
296 * only async_size pages left in the readahead window. Normally async_size
297 * will be equal to size, for maximum pipelining.
298 *
299 * In interleaved sequential reads, concurrent streams on the same fd can
300 * be invalidating each other's readahead state. So we flag the new readahead
301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
302 * indicator. The flag won't be set on already cached pages, to avoid the
303 * readahead-for-nothing fuss, saving pointless page cache lookups.
304 *
305 * prev_pos tracks the last visited byte in the _previous_ read request.
306 * It should be maintained by the caller, and will be used for detecting
307 * small random reads. Note that the readahead algorithm checks loosely
308 * for sequential patterns. Hence interleaved reads might be served as
309 * sequential ones.
310 *
311 * There is a special-case: if the first page which the application tries to
312 * read happens to be the first page of the file, it is assumed that a linear
313 * read is about to happen and the window is immediately set to the initial size
314 * based on I/O request size and the max_readahead.
315 *
316 * The code ramps up the readahead size aggressively at first, but slow down as
317 * it approaches max_readhead.
318 */
319
320/*
321 * Count contiguously cached pages from @offset-1 to @offset-@max,
322 * this count is a conservative estimation of
323 * 	- length of the sequential read sequence, or
324 * 	- thrashing threshold in memory tight systems
325 */
326static pgoff_t count_history_pages(struct address_space *mapping,
327				   pgoff_t offset, unsigned long max)
328{
329	pgoff_t head;
330
331	rcu_read_lock();
332	head = page_cache_prev_hole(mapping, offset - 1, max);
333	rcu_read_unlock();
334
335	return offset - 1 - head;
336}
337
338/*
339 * page cache context based read-ahead
340 */
341static int try_context_readahead(struct address_space *mapping,
342				 struct file_ra_state *ra,
343				 pgoff_t offset,
344				 unsigned long req_size,
345				 unsigned long max)
346{
347	pgoff_t size;
348
349	size = count_history_pages(mapping, offset, max);
350
351	/*
352	 * not enough history pages:
353	 * it could be a random read
354	 */
355	if (size <= req_size)
356		return 0;
357
358	/*
359	 * starts from beginning of file:
360	 * it is a strong indication of long-run stream (or whole-file-read)
361	 */
362	if (size >= offset)
363		size *= 2;
364
365	ra->start = offset;
366	ra->size = min(size + req_size, max);
367	ra->async_size = 1;
368
369	return 1;
370}
371
372/*
373 * A minimal readahead algorithm for trivial sequential/random reads.
374 */
375static unsigned long
376ondemand_readahead(struct address_space *mapping,
377		   struct file_ra_state *ra, struct file *filp,
378		   bool hit_readahead_marker, pgoff_t offset,
379		   unsigned long req_size)
380{
381	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 
382	unsigned long max_pages = ra->ra_pages;
383	pgoff_t prev_offset;
 
 
384
385	/*
386	 * If the request exceeds the readahead window, allow the read to
387	 * be up to the optimal hardware IO size
388	 */
389	if (req_size > max_pages && bdi->io_pages > max_pages)
390		max_pages = min(req_size, bdi->io_pages);
391
392	/*
393	 * start of file
394	 */
395	if (!offset)
396		goto initial_readahead;
397
398	/*
399	 * It's the expected callback offset, assume sequential access.
400	 * Ramp up sizes, and push forward the readahead window.
401	 */
402	if ((offset == (ra->start + ra->size - ra->async_size) ||
403	     offset == (ra->start + ra->size))) {
404		ra->start += ra->size;
405		ra->size = get_next_ra_size(ra, max_pages);
406		ra->async_size = ra->size;
407		goto readit;
408	}
409
410	/*
411	 * Hit a marked page without valid readahead state.
412	 * E.g. interleaved reads.
413	 * Query the pagecache for async_size, which normally equals to
414	 * readahead size. Ramp it up and use it as the new readahead size.
415	 */
416	if (hit_readahead_marker) {
417		pgoff_t start;
418
419		rcu_read_lock();
420		start = page_cache_next_hole(mapping, offset + 1, max_pages);
 
421		rcu_read_unlock();
422
423		if (!start || start - offset > max_pages)
424			return 0;
425
426		ra->start = start;
427		ra->size = start - offset;	/* old async_size */
428		ra->size += req_size;
429		ra->size = get_next_ra_size(ra, max_pages);
430		ra->async_size = ra->size;
431		goto readit;
432	}
433
434	/*
435	 * oversize read
436	 */
437	if (req_size > max_pages)
438		goto initial_readahead;
439
440	/*
441	 * sequential cache miss
442	 * trivial case: (offset - prev_offset) == 1
443	 * unaligned reads: (offset - prev_offset) == 0
444	 */
445	prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
446	if (offset - prev_offset <= 1UL)
447		goto initial_readahead;
448
449	/*
450	 * Query the page cache and look for the traces(cached history pages)
451	 * that a sequential stream would leave behind.
452	 */
453	if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 
454		goto readit;
455
456	/*
457	 * standalone, small random read
458	 * Read as is, and do not pollute the readahead state.
459	 */
460	return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 
461
462initial_readahead:
463	ra->start = offset;
464	ra->size = get_init_ra_size(req_size, max_pages);
465	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
466
467readit:
468	/*
469	 * Will this read hit the readahead marker made by itself?
470	 * If so, trigger the readahead marker hit now, and merge
471	 * the resulted next readahead window into the current one.
 
472	 */
473	if (offset == ra->start && ra->size == ra->async_size) {
474		ra->async_size = get_next_ra_size(ra, max_pages);
475		ra->size += ra->async_size;
 
 
 
 
 
 
476	}
477
478	return ra_submit(ra, mapping, filp);
 
479}
480
481/**
482 * page_cache_sync_readahead - generic file readahead
483 * @mapping: address_space which holds the pagecache and I/O vectors
484 * @ra: file_ra_state which holds the readahead state
485 * @filp: passed on to ->readpage() and ->readpages()
486 * @offset: start offset into @mapping, in pagecache page-sized units
487 * @req_size: hint: total size of the read which the caller is performing in
488 *            pagecache pages
489 *
490 * page_cache_sync_readahead() should be called when a cache miss happened:
491 * it will submit the read.  The readahead logic may decide to piggyback more
492 * pages onto the read request if access patterns suggest it will improve
493 * performance.
494 */
495void page_cache_sync_readahead(struct address_space *mapping,
496			       struct file_ra_state *ra, struct file *filp,
497			       pgoff_t offset, unsigned long req_size)
498{
499	/* no read-ahead */
500	if (!ra->ra_pages)
501		return;
 
 
 
 
 
 
 
 
 
 
 
502
503	/* be dumb */
504	if (filp && (filp->f_mode & FMODE_RANDOM)) {
505		force_page_cache_readahead(mapping, filp, offset, req_size);
506		return;
507	}
508
509	/* do read-ahead */
510	ondemand_readahead(mapping, ra, filp, false, offset, req_size);
511}
512EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
513
514/**
515 * page_cache_async_readahead - file readahead for marked pages
516 * @mapping: address_space which holds the pagecache and I/O vectors
517 * @ra: file_ra_state which holds the readahead state
518 * @filp: passed on to ->readpage() and ->readpages()
519 * @page: the page at @offset which has the PG_readahead flag set
520 * @offset: start offset into @mapping, in pagecache page-sized units
521 * @req_size: hint: total size of the read which the caller is performing in
522 *            pagecache pages
523 *
524 * page_cache_async_readahead() should be called when a page is used which
525 * has the PG_readahead flag; this is a marker to suggest that the application
526 * has used up enough of the readahead window that we should start pulling in
527 * more pages.
528 */
529void
530page_cache_async_readahead(struct address_space *mapping,
531			   struct file_ra_state *ra, struct file *filp,
532			   struct page *page, pgoff_t offset,
533			   unsigned long req_size)
534{
535	/* no read-ahead */
536	if (!ra->ra_pages)
537		return;
538
539	/*
540	 * Same bit is used for PG_readahead and PG_reclaim.
541	 */
542	if (PageWriteback(page))
543		return;
544
545	ClearPageReadahead(page);
546
547	/*
548	 * Defer asynchronous read-ahead on IO congestion.
549	 */
550	if (inode_read_congested(mapping->host))
551		return;
552
553	/* do read-ahead */
554	ondemand_readahead(mapping, ra, filp, true, offset, req_size);
555}
556EXPORT_SYMBOL_GPL(page_cache_async_readahead);
557
558static ssize_t
559do_readahead(struct address_space *mapping, struct file *filp,
560	     pgoff_t index, unsigned long nr)
561{
562	if (!mapping || !mapping->a_ops)
563		return -EINVAL;
564
565	/*
566	 * Readahead doesn't make sense for DAX inodes, but we don't want it
567	 * to report a failure either.  Instead, we just return success and
568	 * don't do any work.
569	 */
570	if (dax_mapping(mapping))
571		return 0;
572
573	return force_page_cache_readahead(mapping, filp, index, nr);
 
574}
 
575
576ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
577{
578	ssize_t ret;
579	struct fd f;
580
581	ret = -EBADF;
582	f = fdget(fd);
583	if (f.file) {
584		if (f.file->f_mode & FMODE_READ) {
585			struct address_space *mapping = f.file->f_mapping;
586			pgoff_t start = offset >> PAGE_SHIFT;
587			pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
588			unsigned long len = end - start + 1;
589			ret = do_readahead(mapping, f.file, start, len);
590		}
591		fdput(f);
592	}
 
 
 
 
 
 
593	return ret;
594}
595
596SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
597{
598	return ksys_readahead(fd, offset, count);
599}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * mm/readahead.c - address_space-level file readahead.
  4 *
  5 * Copyright (C) 2002, Linus Torvalds
  6 *
  7 * 09Apr2002	Andrew Morton
  8 *		Initial version.
  9 */
 10
 11#include <linux/kernel.h>
 12#include <linux/dax.h>
 13#include <linux/gfp.h>
 14#include <linux/export.h>
 15#include <linux/blkdev.h>
 16#include <linux/backing-dev.h>
 17#include <linux/task_io_accounting_ops.h>
 18#include <linux/pagevec.h>
 19#include <linux/pagemap.h>
 20#include <linux/syscalls.h>
 21#include <linux/file.h>
 22#include <linux/mm_inline.h>
 23#include <linux/blk-cgroup.h>
 24#include <linux/fadvise.h>
 25#include <linux/sched/mm.h>
 26
 27#include "internal.h"
 28
 29/*
 30 * Initialise a struct file's readahead state.  Assumes that the caller has
 31 * memset *ra to zero.
 32 */
 33void
 34file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
 35{
 36	ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
 37	ra->prev_pos = -1;
 38}
 39EXPORT_SYMBOL_GPL(file_ra_state_init);
 40
 41/*
 42 * see if a page needs releasing upon read_cache_pages() failure
 43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
 44 *   before calling, such as the NFS fs marking pages that are cached locally
 45 *   on disk, thus we need to give the fs a chance to clean up in the event of
 46 *   an error
 47 */
 48static void read_cache_pages_invalidate_page(struct address_space *mapping,
 49					     struct page *page)
 50{
 51	if (page_has_private(page)) {
 52		if (!trylock_page(page))
 53			BUG();
 54		page->mapping = mapping;
 55		do_invalidatepage(page, 0, PAGE_SIZE);
 56		page->mapping = NULL;
 57		unlock_page(page);
 58	}
 59	put_page(page);
 60}
 61
 62/*
 63 * release a list of pages, invalidating them first if need be
 64 */
 65static void read_cache_pages_invalidate_pages(struct address_space *mapping,
 66					      struct list_head *pages)
 67{
 68	struct page *victim;
 69
 70	while (!list_empty(pages)) {
 71		victim = lru_to_page(pages);
 72		list_del(&victim->lru);
 73		read_cache_pages_invalidate_page(mapping, victim);
 74	}
 75}
 76
 77/**
 78 * read_cache_pages - populate an address space with some pages & start reads against them
 79 * @mapping: the address_space
 80 * @pages: The address of a list_head which contains the target pages.  These
 81 *   pages have their ->index populated and are otherwise uninitialised.
 82 * @filler: callback routine for filling a single page.
 83 * @data: private data for the callback routine.
 84 *
 85 * Hides the details of the LRU cache etc from the filesystems.
 86 *
 87 * Returns: %0 on success, error return by @filler otherwise
 88 */
 89int read_cache_pages(struct address_space *mapping, struct list_head *pages,
 90			int (*filler)(void *, struct page *), void *data)
 91{
 92	struct page *page;
 93	int ret = 0;
 94
 95	while (!list_empty(pages)) {
 96		page = lru_to_page(pages);
 97		list_del(&page->lru);
 98		if (add_to_page_cache_lru(page, mapping, page->index,
 99				readahead_gfp_mask(mapping))) {
100			read_cache_pages_invalidate_page(mapping, page);
101			continue;
102		}
103		put_page(page);
104
105		ret = filler(data, page);
106		if (unlikely(ret)) {
107			read_cache_pages_invalidate_pages(mapping, pages);
108			break;
109		}
110		task_io_account_read(PAGE_SIZE);
111	}
112	return ret;
113}
114
115EXPORT_SYMBOL(read_cache_pages);
116
117static void read_pages(struct readahead_control *rac, struct list_head *pages,
118		bool skip_page)
119{
120	const struct address_space_operations *aops = rac->mapping->a_ops;
121	struct page *page;
122	struct blk_plug plug;
123
124	if (!readahead_count(rac))
125		goto out;
126
127	blk_start_plug(&plug);
128
129	if (aops->readahead) {
130		aops->readahead(rac);
131		/* Clean up the remaining pages */
132		while ((page = readahead_page(rac))) {
133			unlock_page(page);
134			put_page(page);
135		}
136	} else if (aops->readpages) {
137		aops->readpages(rac->file, rac->mapping, pages,
138				readahead_count(rac));
139		/* Clean up the remaining pages */
140		put_pages_list(pages);
141		rac->_index += rac->_nr_pages;
142		rac->_nr_pages = 0;
143	} else {
144		while ((page = readahead_page(rac))) {
145			aops->readpage(rac->file, page);
146			put_page(page);
147		}
 
 
148	}
 
149
 
150	blk_finish_plug(&plug);
151
152	BUG_ON(!list_empty(pages));
153	BUG_ON(readahead_count(rac));
154
155out:
156	if (skip_page)
157		rac->_index++;
158}
159
160/**
161 * page_cache_ra_unbounded - Start unchecked readahead.
162 * @ractl: Readahead control.
163 * @nr_to_read: The number of pages to read.
164 * @lookahead_size: Where to start the next readahead.
165 *
166 * This function is for filesystems to call when they want to start
167 * readahead beyond a file's stated i_size.  This is almost certainly
168 * not the function you want to call.  Use page_cache_async_readahead()
169 * or page_cache_sync_readahead() instead.
170 *
171 * Context: File is referenced by caller.  Mutexes may be held by caller.
172 * May sleep, but will not reenter filesystem to reclaim memory.
173 */
174void page_cache_ra_unbounded(struct readahead_control *ractl,
175		unsigned long nr_to_read, unsigned long lookahead_size)
 
176{
177	struct address_space *mapping = ractl->mapping;
178	unsigned long index = readahead_index(ractl);
 
179	LIST_HEAD(page_pool);
 
 
 
180	gfp_t gfp_mask = readahead_gfp_mask(mapping);
181	unsigned long i;
182
183	/*
184	 * Partway through the readahead operation, we will have added
185	 * locked pages to the page cache, but will not yet have submitted
186	 * them for I/O.  Adding another page may need to allocate memory,
187	 * which can trigger memory reclaim.  Telling the VM we're in
188	 * the middle of a filesystem operation will cause it to not
189	 * touch file-backed pages, preventing a deadlock.  Most (all?)
190	 * filesystems already specify __GFP_NOFS in their mapping's
191	 * gfp_mask, but let's be explicit here.
192	 */
193	unsigned int nofs = memalloc_nofs_save();
194
195	/*
196	 * Preallocate as many pages as we will need.
197	 */
198	for (i = 0; i < nr_to_read; i++) {
199		struct page *page = xa_load(&mapping->i_pages, index + i);
 
 
 
200
201		if (page && !xa_is_value(page)) {
202			/*
203			 * Page already present?  Kick off the current batch
204			 * of contiguous pages before continuing with the
205			 * next batch.  This page may be the one we would
206			 * have intended to mark as Readahead, but we don't
207			 * have a stable reference to this page, and it's
208			 * not worth getting one just for that.
209			 */
210			read_pages(ractl, &page_pool, true);
211			i = ractl->_index + ractl->_nr_pages - index - 1;
212			continue;
213		}
214
215		page = __page_cache_alloc(gfp_mask);
216		if (!page)
217			break;
218		if (mapping->a_ops->readpages) {
219			page->index = index + i;
220			list_add(&page->lru, &page_pool);
221		} else if (add_to_page_cache_lru(page, mapping, index + i,
222					gfp_mask) < 0) {
223			put_page(page);
224			read_pages(ractl, &page_pool, true);
225			i = ractl->_index + ractl->_nr_pages - index - 1;
226			continue;
227		}
228		if (i == nr_to_read - lookahead_size)
229			SetPageReadahead(page);
230		ractl->_nr_pages++;
231	}
232
233	/*
234	 * Now start the IO.  We ignore I/O errors - if the page is not
235	 * uptodate then the caller will launch readpage again, and
236	 * will then handle the error.
237	 */
238	read_pages(ractl, &page_pool, false);
239	memalloc_nofs_restore(nofs);
240}
241EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
242
243/*
244 * do_page_cache_ra() actually reads a chunk of disk.  It allocates
245 * the pages first, then submits them for I/O. This avoids the very bad
246 * behaviour which would occur if page allocations are causing VM writeback.
247 * We really don't want to intermingle reads and writes like that.
248 */
249void do_page_cache_ra(struct readahead_control *ractl,
250		unsigned long nr_to_read, unsigned long lookahead_size)
251{
252	struct inode *inode = ractl->mapping->host;
253	unsigned long index = readahead_index(ractl);
254	loff_t isize = i_size_read(inode);
255	pgoff_t end_index;	/* The last page we want to read */
256
257	if (isize == 0)
258		return;
259
260	end_index = (isize - 1) >> PAGE_SHIFT;
261	if (index > end_index)
262		return;
263	/* Don't read past the page containing the last byte of the file */
264	if (nr_to_read > end_index - index)
265		nr_to_read = end_index - index + 1;
266
267	page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
268}
269
270/*
271 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
272 * memory at once.
273 */
274void force_page_cache_ra(struct readahead_control *ractl,
275		unsigned long nr_to_read)
276{
277	struct address_space *mapping = ractl->mapping;
278	struct file_ra_state *ra = ractl->ra;
279	struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
280	unsigned long max_pages, index;
 
281
282	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
283			!mapping->a_ops->readahead))
284		return;
285
286	/*
287	 * If the request exceeds the readahead window, allow the read to
288	 * be up to the optimal hardware IO size
289	 */
290	index = readahead_index(ractl);
291	max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
292	nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
293	while (nr_to_read) {
 
 
294		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
295
296		if (this_chunk > nr_to_read)
297			this_chunk = nr_to_read;
298		ractl->_index = index;
299		do_page_cache_ra(ractl, this_chunk, 0);
 
 
300
301		index += this_chunk;
302		nr_to_read -= this_chunk;
303	}
 
304}
305
306/*
307 * Set the initial window size, round to next power of 2 and square
308 * for small size, x 4 for medium, and x 2 for large
309 * for 128k (32 page) max ra
310 * 1-8 page = 32k initial, > 8 page = 128k initial
311 */
312static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
313{
314	unsigned long newsize = roundup_pow_of_two(size);
315
316	if (newsize <= max / 32)
317		newsize = newsize * 4;
318	else if (newsize <= max / 4)
319		newsize = newsize * 2;
320	else
321		newsize = max;
322
323	return newsize;
324}
325
326/*
327 *  Get the previous window size, ramp it up, and
328 *  return it as the new window size.
329 */
330static unsigned long get_next_ra_size(struct file_ra_state *ra,
331				      unsigned long max)
332{
333	unsigned long cur = ra->size;
 
334
335	if (cur < max / 16)
336		return 4 * cur;
337	if (cur <= max / 2)
338		return 2 * cur;
339	return max;
 
340}
341
342/*
343 * On-demand readahead design.
344 *
345 * The fields in struct file_ra_state represent the most-recently-executed
346 * readahead attempt:
347 *
348 *                        |<----- async_size ---------|
349 *     |------------------- size -------------------->|
350 *     |==================#===========================|
351 *     ^start             ^page marked with PG_readahead
352 *
353 * To overlap application thinking time and disk I/O time, we do
354 * `readahead pipelining': Do not wait until the application consumed all
355 * readahead pages and stalled on the missing page at readahead_index;
356 * Instead, submit an asynchronous readahead I/O as soon as there are
357 * only async_size pages left in the readahead window. Normally async_size
358 * will be equal to size, for maximum pipelining.
359 *
360 * In interleaved sequential reads, concurrent streams on the same fd can
361 * be invalidating each other's readahead state. So we flag the new readahead
362 * page at (start+size-async_size) with PG_readahead, and use it as readahead
363 * indicator. The flag won't be set on already cached pages, to avoid the
364 * readahead-for-nothing fuss, saving pointless page cache lookups.
365 *
366 * prev_pos tracks the last visited byte in the _previous_ read request.
367 * It should be maintained by the caller, and will be used for detecting
368 * small random reads. Note that the readahead algorithm checks loosely
369 * for sequential patterns. Hence interleaved reads might be served as
370 * sequential ones.
371 *
372 * There is a special-case: if the first page which the application tries to
373 * read happens to be the first page of the file, it is assumed that a linear
374 * read is about to happen and the window is immediately set to the initial size
375 * based on I/O request size and the max_readahead.
376 *
377 * The code ramps up the readahead size aggressively at first, but slow down as
378 * it approaches max_readhead.
379 */
380
381/*
382 * Count contiguously cached pages from @index-1 to @index-@max,
383 * this count is a conservative estimation of
384 * 	- length of the sequential read sequence, or
385 * 	- thrashing threshold in memory tight systems
386 */
387static pgoff_t count_history_pages(struct address_space *mapping,
388				   pgoff_t index, unsigned long max)
389{
390	pgoff_t head;
391
392	rcu_read_lock();
393	head = page_cache_prev_miss(mapping, index - 1, max);
394	rcu_read_unlock();
395
396	return index - 1 - head;
397}
398
399/*
400 * page cache context based read-ahead
401 */
402static int try_context_readahead(struct address_space *mapping,
403				 struct file_ra_state *ra,
404				 pgoff_t index,
405				 unsigned long req_size,
406				 unsigned long max)
407{
408	pgoff_t size;
409
410	size = count_history_pages(mapping, index, max);
411
412	/*
413	 * not enough history pages:
414	 * it could be a random read
415	 */
416	if (size <= req_size)
417		return 0;
418
419	/*
420	 * starts from beginning of file:
421	 * it is a strong indication of long-run stream (or whole-file-read)
422	 */
423	if (size >= index)
424		size *= 2;
425
426	ra->start = index;
427	ra->size = min(size + req_size, max);
428	ra->async_size = 1;
429
430	return 1;
431}
432
433/*
434 * A minimal readahead algorithm for trivial sequential/random reads.
435 */
436static void ondemand_readahead(struct readahead_control *ractl,
437		bool hit_readahead_marker, unsigned long req_size)
 
 
 
438{
439	struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
440	struct file_ra_state *ra = ractl->ra;
441	unsigned long max_pages = ra->ra_pages;
442	unsigned long add_pages;
443	unsigned long index = readahead_index(ractl);
444	pgoff_t prev_index;
445
446	/*
447	 * If the request exceeds the readahead window, allow the read to
448	 * be up to the optimal hardware IO size
449	 */
450	if (req_size > max_pages && bdi->io_pages > max_pages)
451		max_pages = min(req_size, bdi->io_pages);
452
453	/*
454	 * start of file
455	 */
456	if (!index)
457		goto initial_readahead;
458
459	/*
460	 * It's the expected callback index, assume sequential access.
461	 * Ramp up sizes, and push forward the readahead window.
462	 */
463	if ((index == (ra->start + ra->size - ra->async_size) ||
464	     index == (ra->start + ra->size))) {
465		ra->start += ra->size;
466		ra->size = get_next_ra_size(ra, max_pages);
467		ra->async_size = ra->size;
468		goto readit;
469	}
470
471	/*
472	 * Hit a marked page without valid readahead state.
473	 * E.g. interleaved reads.
474	 * Query the pagecache for async_size, which normally equals to
475	 * readahead size. Ramp it up and use it as the new readahead size.
476	 */
477	if (hit_readahead_marker) {
478		pgoff_t start;
479
480		rcu_read_lock();
481		start = page_cache_next_miss(ractl->mapping, index + 1,
482				max_pages);
483		rcu_read_unlock();
484
485		if (!start || start - index > max_pages)
486			return;
487
488		ra->start = start;
489		ra->size = start - index;	/* old async_size */
490		ra->size += req_size;
491		ra->size = get_next_ra_size(ra, max_pages);
492		ra->async_size = ra->size;
493		goto readit;
494	}
495
496	/*
497	 * oversize read
498	 */
499	if (req_size > max_pages)
500		goto initial_readahead;
501
502	/*
503	 * sequential cache miss
504	 * trivial case: (index - prev_index) == 1
505	 * unaligned reads: (index - prev_index) == 0
506	 */
507	prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
508	if (index - prev_index <= 1UL)
509		goto initial_readahead;
510
511	/*
512	 * Query the page cache and look for the traces(cached history pages)
513	 * that a sequential stream would leave behind.
514	 */
515	if (try_context_readahead(ractl->mapping, ra, index, req_size,
516			max_pages))
517		goto readit;
518
519	/*
520	 * standalone, small random read
521	 * Read as is, and do not pollute the readahead state.
522	 */
523	do_page_cache_ra(ractl, req_size, 0);
524	return;
525
526initial_readahead:
527	ra->start = index;
528	ra->size = get_init_ra_size(req_size, max_pages);
529	ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
530
531readit:
532	/*
533	 * Will this read hit the readahead marker made by itself?
534	 * If so, trigger the readahead marker hit now, and merge
535	 * the resulted next readahead window into the current one.
536	 * Take care of maximum IO pages as above.
537	 */
538	if (index == ra->start && ra->size == ra->async_size) {
539		add_pages = get_next_ra_size(ra, max_pages);
540		if (ra->size + add_pages <= max_pages) {
541			ra->async_size = add_pages;
542			ra->size += add_pages;
543		} else {
544			ra->size = max_pages;
545			ra->async_size = max_pages >> 1;
546		}
547	}
548
549	ractl->_index = ra->start;
550	do_page_cache_ra(ractl, ra->size, ra->async_size);
551}
552
553void page_cache_sync_ra(struct readahead_control *ractl,
554		unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555{
556	bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
557
558	/*
559	 * Even if read-ahead is disabled, issue this request as read-ahead
560	 * as we'll need it to satisfy the requested range. The forced
561	 * read-ahead will do the right thing and limit the read to just the
562	 * requested range, which we'll set to 1 page for this case.
563	 */
564	if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
565		if (!ractl->file)
566			return;
567		req_count = 1;
568		do_forced_ra = true;
569	}
570
571	/* be dumb */
572	if (do_forced_ra) {
573		force_page_cache_ra(ractl, req_count);
574		return;
575	}
576
577	/* do read-ahead */
578	ondemand_readahead(ractl, false, req_count);
579}
580EXPORT_SYMBOL_GPL(page_cache_sync_ra);
581
582void page_cache_async_ra(struct readahead_control *ractl,
583		struct page *page, unsigned long req_count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584{
585	/* no read-ahead */
586	if (!ractl->ra->ra_pages)
587		return;
588
589	/*
590	 * Same bit is used for PG_readahead and PG_reclaim.
591	 */
592	if (PageWriteback(page))
593		return;
594
595	ClearPageReadahead(page);
596
597	/*
598	 * Defer asynchronous read-ahead on IO congestion.
599	 */
600	if (inode_read_congested(ractl->mapping->host))
601		return;
602
603	if (blk_cgroup_congested())
604		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605
606	/* do read-ahead */
607	ondemand_readahead(ractl, true, req_count);
608}
609EXPORT_SYMBOL_GPL(page_cache_async_ra);
610
611ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
612{
613	ssize_t ret;
614	struct fd f;
615
616	ret = -EBADF;
617	f = fdget(fd);
618	if (!f.file || !(f.file->f_mode & FMODE_READ))
619		goto out;
620
621	/*
622	 * The readahead() syscall is intended to run only on files
623	 * that can execute readahead. If readahead is not possible
624	 * on this file, then we must return -EINVAL.
625	 */
626	ret = -EINVAL;
627	if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
628	    !S_ISREG(file_inode(f.file)->i_mode))
629		goto out;
630
631	ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
632out:
633	fdput(f);
634	return ret;
635}
636
637SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
638{
639	return ksys_readahead(fd, offset, count);
640}
641
642/**
643 * readahead_expand - Expand a readahead request
644 * @ractl: The request to be expanded
645 * @new_start: The revised start
646 * @new_len: The revised size of the request
647 *
648 * Attempt to expand a readahead request outwards from the current size to the
649 * specified size by inserting locked pages before and after the current window
650 * to increase the size to the new window.  This may involve the insertion of
651 * THPs, in which case the window may get expanded even beyond what was
652 * requested.
653 *
654 * The algorithm will stop if it encounters a conflicting page already in the
655 * pagecache and leave a smaller expansion than requested.
656 *
657 * The caller must check for this by examining the revised @ractl object for a
658 * different expansion than was requested.
659 */
660void readahead_expand(struct readahead_control *ractl,
661		      loff_t new_start, size_t new_len)
662{
663	struct address_space *mapping = ractl->mapping;
664	struct file_ra_state *ra = ractl->ra;
665	pgoff_t new_index, new_nr_pages;
666	gfp_t gfp_mask = readahead_gfp_mask(mapping);
667
668	new_index = new_start / PAGE_SIZE;
669
670	/* Expand the leading edge downwards */
671	while (ractl->_index > new_index) {
672		unsigned long index = ractl->_index - 1;
673		struct page *page = xa_load(&mapping->i_pages, index);
674
675		if (page && !xa_is_value(page))
676			return; /* Page apparently present */
677
678		page = __page_cache_alloc(gfp_mask);
679		if (!page)
680			return;
681		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
682			put_page(page);
683			return;
684		}
685
686		ractl->_nr_pages++;
687		ractl->_index = page->index;
688	}
689
690	new_len += new_start - readahead_pos(ractl);
691	new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
692
693	/* Expand the trailing edge upwards */
694	while (ractl->_nr_pages < new_nr_pages) {
695		unsigned long index = ractl->_index + ractl->_nr_pages;
696		struct page *page = xa_load(&mapping->i_pages, index);
697
698		if (page && !xa_is_value(page))
699			return; /* Page apparently present */
700
701		page = __page_cache_alloc(gfp_mask);
702		if (!page)
703			return;
704		if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
705			put_page(page);
706			return;
707		}
708		ractl->_nr_pages++;
709		if (ra) {
710			ra->size++;
711			ra->async_size++;
712		}
713	}
714}
715EXPORT_SYMBOL(readahead_expand);