Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_errortag.h"
35#include "xfs_error.h"
36#include "xfs_bmap.h"
37#include "xfs_cksum.h"
38#include "xfs_trans.h"
39#include "xfs_buf_item.h"
40#include "xfs_icreate_item.h"
41#include "xfs_icache.h"
42#include "xfs_trace.h"
43#include "xfs_log.h"
44#include "xfs_rmap.h"
45
46
47/*
48 * Allocation group level functions.
49 */
50int
51xfs_ialloc_cluster_alignment(
52 struct xfs_mount *mp)
53{
54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 return mp->m_sb.sb_inoalignmt;
57 return 1;
58}
59
60/*
61 * Lookup a record by ino in the btree given by cur.
62 */
63int /* error */
64xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
69{
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
76}
77
78/*
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
81 */
82STATIC int /* error */
83xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
85 xfs_inobt_rec_incore_t *irec) /* btree record */
86{
87 union xfs_btree_rec rec;
88
89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
97 }
98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 return xfs_btree_update(cur, &rec);
100}
101
102/* Convert on-disk btree record to incore inobt record. */
103void
104xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
108{
109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
115 /*
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
118 */
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
123 }
124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
125}
126
127/*
128 * Get the data from the pointed-to record.
129 */
130int
131xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
135{
136 union xfs_btree_rec *rec;
137 int error;
138
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
142
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
144
145 return 0;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151STATIC int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
178{
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
185
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
187
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
195 }
196 ASSERT(i == 0);
197
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
205 }
206 ASSERT(i == 1);
207 }
208
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
210
211 return 0;
212}
213
214/*
215 * Verify that the number of free inodes in the AGI is correct.
216 */
217#ifdef DEBUG
218STATIC int
219xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
222{
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
228
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
232
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
237
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
243 }
244 } while (i == 1);
245
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
248 }
249 return 0;
250}
251#else
252#define xfs_check_agi_freecount(cur, agi) 0
253#endif
254
255/*
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
260 */
261int
262xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
271{
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs, blks_per_cluster, inodes_per_cluster;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
279
280 /*
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
284 */
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
288
289 /*
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
295 *
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
301 *
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
307 */
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
312
313 /*
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
320 */
321 if (tp)
322 xfs_icreate_log(tp, agno, agbno, icount,
323 mp->m_sb.sb_inodesize, length, gen);
324 } else
325 version = 2;
326
327 for (j = 0; j < nbufs; j++) {
328 /*
329 * Get the block.
330 */
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
335 if (!fbuf)
336 return -ENOMEM;
337
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf->b_ops = &xfs_inode_buf_ops;
340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 for (i = 0; i < inodes_per_cluster; i++) {
342 int ioffset = i << mp->m_sb.sb_inodelog;
343 uint isize = xfs_dinode_size(version);
344
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
350
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
356 xfs_dinode_calc_crc(mp, free);
357 } else if (tp) {
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
361 }
362 }
363
364 if (tp) {
365 /*
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
372 */
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
375 /*
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
380 */
381 xfs_trans_ordered_buf(tp, fbuf);
382 }
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
387 }
388 }
389 return 0;
390}
391
392/*
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
395 *
396 * Background:
397 *
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
406 *
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
414 */
415STATIC void
416xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
420{
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
424
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
429
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
433
434 /*
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
438 */
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
440}
441
442/*
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
446 */
447STATIC bool
448__xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
451{
452 uint64_t talloc;
453 uint64_t salloc;
454
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
458
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
463
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
467
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
471
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
477
478 return true;
479}
480
481/*
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
484 */
485STATIC void
486__xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
489{
490 ASSERT(trec->ir_startino == srec->ir_startino);
491
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
495
496 /*
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
499 */
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
502}
503
504/*
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
509 *
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
515 *
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
518 */
519STATIC int
520xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
527{
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
534
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
536
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
549
550 goto out;
551 }
552
553 /*
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
556 */
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
565
566 /*
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
569 */
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
572
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
576
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
579
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
582
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
586 }
587
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
591
592out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
598}
599
600/*
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
603 */
604STATIC int /* error code or 0 */
605xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
609{
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
612 xfs_agnumber_t agno;
613 int error;
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
616 int isaligned = 0; /* inode allocation at stripe unit */
617 /* boundary */
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 int do_sparse = 0;
622
623 memset(&args, 0, sizeof(args));
624 args.tp = tp;
625 args.mp = tp->t_mountp;
626 args.fsbno = NULLFSBLOCK;
627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
628
629#ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634#endif
635
636 /*
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
639 */
640 newlen = args.mp->m_ialloc_inos;
641 if (args.mp->m_maxicount &&
642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 args.mp->m_maxicount)
644 return -ENOSPC;
645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
646 /*
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
650 */
651 agi = XFS_BUF_TO_AGI(agbp);
652 newino = be32_to_cpu(agi->agi_newino);
653 agno = be32_to_cpu(agi->agi_seqno);
654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 args.mp->m_ialloc_blks;
656 if (do_sparse)
657 goto sparse_alloc;
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 args.type = XFS_ALLOCTYPE_THIS_BNO;
662 args.prod = 1;
663
664 /*
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
670 *
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
676 */
677 args.alignment = 1;
678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
679
680 /* Allow space for the inode btree to split. */
681 args.minleft = args.mp->m_in_maxlevels - 1;
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
684
685 /*
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
694 */
695 args.minalignslop = 0;
696 }
697
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
699 /*
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
706 */
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
712 } else
713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
714 /*
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
718 */
719 args.agbno = be32_to_cpu(agi->agi_root);
720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
721 /*
722 * Allocate a fixed-size extent of inodes.
723 */
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.prod = 1;
726 /*
727 * Allow space for the inode btree to split.
728 */
729 args.minleft = args.mp->m_in_maxlevels - 1;
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
732 }
733
734 /*
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
737 */
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
745 }
746
747 /*
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
750 */
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
754sparse_alloc:
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
760
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
763
764 /*
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
769 *
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
773 */
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
778
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
782
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
786 }
787
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
791 }
792 ASSERT(args.len == args.minlen);
793
794 /*
795 * Stamp and write the inode buffers.
796 *
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
802 */
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
805
806 if (error)
807 return error;
808 /*
809 * Convert the results.
810 */
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
812
813 if (xfs_inobt_issparse(~allocmask)) {
814 /*
815 * We've allocated a sparse chunk. Align the startino and mask.
816 */
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
818
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
824
825 /*
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
829 */
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
839 }
840 if (error)
841 return error;
842
843 /*
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
848 *
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
853 */
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
860 }
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
867
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
873 }
874 }
875
876 /*
877 * Update AGI counts and newino.
878 */
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
884 agi->agi_newino = cpu_to_be32(newino);
885
886 /*
887 * Log allocation group header fields
888 */
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
891 /*
892 * Modify/log superblock values for inode count and inode free count.
893 */
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
898}
899
900STATIC xfs_agnumber_t
901xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
903{
904 xfs_agnumber_t agno;
905
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
908 if (++mp->m_agirotor >= mp->m_maxagi)
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
911
912 return agno;
913}
914
915/*
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
918 */
919STATIC xfs_agnumber_t
920xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
923 umode_t mode) /* bits set to indicate file type */
924{
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
935
936 /*
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
939 */
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
949 }
950
951 ASSERT(pagno < agcount);
952
953 /*
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
959 */
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
967 }
968
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
973 }
974
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
978 }
979
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
983 goto nextag;
984 }
985
986 /*
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
995 *
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1001 */
1002 ineed = mp->m_ialloc_min_blks;
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1008
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1013 }
1014nextag:
1015 xfs_perag_put(pag);
1016 /*
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1019 */
1020 if (XFS_FORCED_SHUTDOWN(mp))
1021 return NULLAGNUMBER;
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1026 if (flags == 0)
1027 return NULLAGNUMBER;
1028 flags = 0;
1029 }
1030 }
1031}
1032
1033/*
1034 * Try to retrieve the next record to the left/right from the current one.
1035 */
1036STATIC int
1037xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1042{
1043 int error;
1044 int i;
1045
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1050
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1059 }
1060
1061 return 0;
1062}
1063
1064STATIC int
1065xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
1069 int *done)
1070{
1071 int error;
1072 int i;
1073
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1083 }
1084
1085 return 0;
1086}
1087
1088/*
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1092 */
1093STATIC int
1094xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1096{
1097 xfs_inofree_t realfree;
1098
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1102
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1105
1106 return xfs_lowbit64(realfree);
1107}
1108
1109/*
1110 * Allocate an inode using the inobt-only algorithm.
1111 */
1112STATIC int
1113xfs_dialloc_ag_inobt(
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1118{
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
1131 int searchdistance = 10;
1132
1133 pag = xfs_perag_get(mp, agno);
1134
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1138
1139 restart_pagno:
1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1141 /*
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1144 */
1145 if (!pagino)
1146 pagino = be32_to_cpu(agi->agi_newino);
1147
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1151
1152 /*
1153 * If in the same AG as the parent, try to get near the parent.
1154 */
1155 if (pagno == agno) {
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1158
1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1163
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1168
1169 if (rec.ir_freecount > 0) {
1170 /*
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1173 */
1174 goto alloc_inode;
1175 }
1176
1177
1178 /*
1179 * In the same AG as parent, but parent's chunk is full.
1180 */
1181
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1186
1187 /*
1188 * Skip to last blocks looked up if same parent inode.
1189 */
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 &trec, &doneleft);
1196 if (error)
1197 goto error1;
1198
1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 &rec, &doneright);
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1208
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1213 }
1214
1215 /*
1216 * Loop until we find an inode chunk with a free inode.
1217 */
1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 int useleft; /* using left inode chunk this time */
1220
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1228 }
1229
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
1234
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
1238 rec = trec;
1239 goto alloc_inode;
1240 }
1241
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1245
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1250 }
1251
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1259 }
1260 if (error)
1261 goto error1;
1262 }
1263
1264 if (searchdistance <= 0) {
1265 /*
1266 * Not in range - save last search
1267 * location and allocate a new inode
1268 */
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1273
1274 } else {
1275 /*
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1281 */
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1288 }
1289 }
1290
1291 /*
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1294 */
1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
1298 if (error)
1299 goto error0;
1300
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1305
1306 if (j == 1 && rec.ir_freecount > 0) {
1307 /*
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1310 */
1311 goto alloc_inode;
1312 }
1313 }
1314 }
1315
1316 /*
1317 * None left in the last group, search the whole AG
1318 */
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1323
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1335 }
1336
1337alloc_inode:
1338 offset = xfs_inobt_first_free_inode(&rec);
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1352
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1356
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 xfs_perag_put(pag);
1360 *inop = ino;
1361 return 0;
1362error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 xfs_perag_put(pag);
1367 return error;
1368}
1369
1370/*
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1373 */
1374STATIC int
1375xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1379{
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1385
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1389
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1395
1396 /*
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1400 */
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1404 }
1405
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1409
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1418 }
1419
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 if (i == 1 && j == 1) {
1422 /*
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1425 */
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1433 }
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1442 }
1443
1444 return 0;
1445
1446error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1449}
1450
1451/*
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1454 */
1455STATIC int
1456xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1460{
1461 int error;
1462 int i;
1463
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 return 0;
1475 }
1476 }
1477
1478 /*
1479 * Find the first inode available in the AG.
1480 */
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1485
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1490
1491 return 0;
1492}
1493
1494/*
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1497 */
1498STATIC int
1499xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1503{
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1507
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1512
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1519
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1522
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 (rec.ir_freecount == frec->ir_freecount));
1525
1526 return xfs_inobt_update(cur, &rec);
1527}
1528
1529/*
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1532 *
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1535 */
1536STATIC int
1537xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1542{
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1556
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1559
1560 pag = xfs_perag_get(mp, agno);
1561
1562 /*
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1565 */
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1568
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1570
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1574
1575 /*
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1579 */
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1586
1587 offset = xfs_inobt_first_free_inode(&rec);
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1593
1594 /*
1595 * Modify or remove the finobt record.
1596 */
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1605
1606 /*
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1611 */
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1613
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1617
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1621
1622 /*
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1625 */
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1629
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1631
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1638
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1644
1645error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1651}
1652
1653/*
1654 * Allocate an inode on disk.
1655 *
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1658 *
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1669 *
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1673 */
1674int
1675xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
1679 struct xfs_buf **IO_agbp,
1680 xfs_ino_t *inop)
1681{
1682 struct xfs_mount *mp = tp->t_mountp;
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
1688 xfs_agnumber_t start_agno;
1689 struct xfs_perag *pag;
1690 int okalloc = 1;
1691
1692 if (*IO_agbp) {
1693 /*
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1697 */
1698 agbp = *IO_agbp;
1699 goto out_alloc;
1700 }
1701
1702 /*
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1705 */
1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 if (start_agno == NULLAGNUMBER) {
1708 *inop = NULLFSINO;
1709 return 0;
1710 }
1711
1712 /*
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
1716 *
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1719 */
1720 if (mp->m_maxicount &&
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
1723 noroom = 1;
1724 okalloc = 0;
1725 }
1726
1727 /*
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1731 */
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1738 }
1739
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
1744 }
1745
1746 /*
1747 * Do a first racy fast path check if this AG is usable.
1748 */
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1751
1752 /*
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1755 */
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1759
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1763 }
1764
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1767
1768
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1772
1773 if (error != -ENOSPC)
1774 goto out_error;
1775
1776 xfs_perag_put(pag);
1777 *inop = NULLFSINO;
1778 return 0;
1779 }
1780
1781 if (ialloced) {
1782 /*
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1787 */
1788 ASSERT(pag->pagi_freecount > 0);
1789 xfs_perag_put(pag);
1790
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
1794 }
1795
1796nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
1798nextag:
1799 xfs_perag_put(pag);
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
1804 return noroom ? -ENOSPC : 0;
1805 }
1806 }
1807
1808out_alloc:
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
1811out_error:
1812 xfs_perag_put(pag);
1813 return error;
1814}
1815
1816/*
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1820 */
1821STATIC void
1822xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
1826 struct xfs_defer_ops *dfops)
1827{
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
1833 struct xfs_owner_info oinfo;
1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1836
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 mp->m_ialloc_blks, &oinfo);
1841 return;
1842 }
1843
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1847
1848 /*
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1853 */
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1860 /*
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1863 */
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1868 }
1869
1870 /*
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1874 */
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1880
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 contigblk, &oinfo);
1885
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1888
1889next:
1890 nextbit++;
1891 }
1892}
1893
1894STATIC int
1895xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
1900 struct xfs_defer_ops *dfops,
1901 struct xfs_icluster *xic,
1902 struct xfs_inobt_rec_incore *orec)
1903{
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1913
1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1916
1917 /*
1918 * Initialize the cursor.
1919 */
1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1921
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1925
1926 /*
1927 * Look for the entry describing this inode.
1928 */
1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1932 goto error0;
1933 }
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1939 goto error0;
1940 }
1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1942 /*
1943 * Get the offset in the inode chunk.
1944 */
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1948 /*
1949 * Mark the inode free & increment the count.
1950 */
1951 rec.ir_free |= XFS_INOBT_MASK(off);
1952 rec.ir_freecount++;
1953
1954 /*
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1958 */
1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 xic->deleted = true;
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1980
1981 if ((error = xfs_btree_delete(cur, &i))) {
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1984 goto error0;
1985 }
1986
1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 } else {
1989 xic->deleted = false;
1990
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1995 goto error0;
1996 }
1997
1998 /*
1999 * Change the inode free counts and log the ag/sb changes.
2000 */
2001 be32_add_cpu(&agi->agi_freecount, 1);
2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2007 }
2008
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
2012
2013 *orec = rec;
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2016
2017error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2020}
2021
2022/*
2023 * Free an inode in the free inode btree.
2024 */
2025STATIC int
2026xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2032{
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2040
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2042
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2047 /*
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2051 */
2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2053
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2061
2062 goto out;
2063 }
2064
2065 /*
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2071 */
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2076
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2079
2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2083
2084 /*
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2091 *
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
2095 */
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2107 }
2108
2109out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2113
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2116
2117error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2120}
2121
2122/*
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2127 */
2128int
2129xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2132 struct xfs_defer_ops *dfops, /* extents to free */
2133 struct xfs_icluster *xic) /* cluster info if deleted */
2134{
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2143
2144 mp = tp->t_mountp;
2145
2146 /*
2147 * Break up inode number into its components.
2148 */
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2154 return -EINVAL;
2155 }
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2162 return -EINVAL;
2163 }
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2169 return -EINVAL;
2170 }
2171 /*
2172 * Get the allocation group header.
2173 */
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2179 }
2180
2181 /*
2182 * Fix up the inode allocation btree.
2183 */
2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 if (error)
2186 goto error0;
2187
2188 /*
2189 * Fix up the free inode btree.
2190 */
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2195 }
2196
2197 return 0;
2198
2199error0:
2200 return error;
2201}
2202
2203STATIC int
2204xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2213{
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
2217 int error;
2218 int i;
2219
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
2225 return error;
2226 }
2227
2228 /*
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2233 */
2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2240 error = -EINVAL;
2241 }
2242
2243 xfs_trans_brelse(tp, agbp);
2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 if (error)
2246 return error;
2247
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 return -EINVAL;
2252
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags & XFS_IGET_UNTRUSTED) &&
2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 return -EINVAL;
2257
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2261}
2262
2263/*
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2265 */
2266int
2267xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
2270 xfs_ino_t ino, /* inode to locate */
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
2273{
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2280 int error; /* error code */
2281 int offset; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2283
2284 ASSERT(ino != NULLFSINO);
2285
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294#ifdef DEBUG
2295 /*
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2298 */
2299 if (flags & XFS_IGET_UNTRUSTED)
2300 return -EINVAL;
2301 if (agno >= mp->m_sb.sb_agcount) {
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
2305 }
2306 if (agbno >= mp->m_sb.sb_agblocks) {
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
2311 }
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
2317 }
2318 xfs_stack_trace();
2319#endif /* DEBUG */
2320 return -EINVAL;
2321 }
2322
2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2338 }
2339
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
2344 if (blks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 return 0;
2353 }
2354
2355 /*
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2359 */
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
2366 if (error)
2367 return error;
2368 }
2369
2370out_map:
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2376
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2380
2381 /*
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2386 */
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2395 }
2396 return 0;
2397}
2398
2399/*
2400 * Compute and fill in value of m_in_maxlevels.
2401 */
2402void
2403xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2405{
2406 uint inodes;
2407
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp->m_inobt_mnr,
2410 inodes);
2411}
2412
2413/*
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2418 *
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2424 */
2425void
2426xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2430{
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
2448 sizeof(xfs_agi_t)
2449 };
2450#ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2452
2453 agi = XFS_BUF_TO_AGI(bp);
2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455#endif
2456
2457 /*
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
2461 */
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2466 }
2467
2468 /*
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2471 */
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2477 }
2478}
2479
2480#ifdef DEBUG
2481STATIC void
2482xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2484{
2485 int i;
2486
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2489}
2490#else
2491#define xfs_check_agi_unlinked(agi)
2492#endif
2493
2494static xfs_failaddr_t
2495xfs_agi_verify(
2496 struct xfs_buf *bp)
2497{
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2500
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return __this_address;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 return __this_address;
2507 }
2508
2509 /*
2510 * Validate the magic number of the agi block.
2511 */
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return __this_address;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return __this_address;
2516
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 return __this_address;
2520
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 return __this_address;
2525
2526 /*
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2531 */
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return __this_address;
2534
2535 xfs_check_agi_unlinked(agi);
2536 return NULL;
2537}
2538
2539static void
2540xfs_agi_read_verify(
2541 struct xfs_buf *bp)
2542{
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 xfs_failaddr_t fa;
2545
2546 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 else {
2550 fa = xfs_agi_verify(bp);
2551 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 }
2554}
2555
2556static void
2557xfs_agi_write_verify(
2558 struct xfs_buf *bp)
2559{
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_log_item;
2562 xfs_failaddr_t fa;
2563
2564 fa = xfs_agi_verify(bp);
2565 if (fa) {
2566 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 return;
2568 }
2569
2570 if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 return;
2572
2573 if (bip)
2574 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2576}
2577
2578const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 .name = "xfs_agi",
2580 .verify_read = xfs_agi_read_verify,
2581 .verify_write = xfs_agi_write_verify,
2582 .verify_struct = xfs_agi_verify,
2583};
2584
2585/*
2586 * Read in the allocation group header (inode allocation section)
2587 */
2588int
2589xfs_read_agi(
2590 struct xfs_mount *mp, /* file system mount structure */
2591 struct xfs_trans *tp, /* transaction pointer */
2592 xfs_agnumber_t agno, /* allocation group number */
2593 struct xfs_buf **bpp) /* allocation group hdr buf */
2594{
2595 int error;
2596
2597 trace_xfs_read_agi(mp, agno);
2598
2599 ASSERT(agno != NULLAGNUMBER);
2600 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 if (error)
2604 return error;
2605 if (tp)
2606 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2607
2608 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 return 0;
2610}
2611
2612int
2613xfs_ialloc_read_agi(
2614 struct xfs_mount *mp, /* file system mount structure */
2615 struct xfs_trans *tp, /* transaction pointer */
2616 xfs_agnumber_t agno, /* allocation group number */
2617 struct xfs_buf **bpp) /* allocation group hdr buf */
2618{
2619 struct xfs_agi *agi; /* allocation group header */
2620 struct xfs_perag *pag; /* per allocation group data */
2621 int error;
2622
2623 trace_xfs_ialloc_read_agi(mp, agno);
2624
2625 error = xfs_read_agi(mp, tp, agno, bpp);
2626 if (error)
2627 return error;
2628
2629 agi = XFS_BUF_TO_AGI(*bpp);
2630 pag = xfs_perag_get(mp, agno);
2631 if (!pag->pagi_init) {
2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 pag->pagi_init = 1;
2635 }
2636
2637 /*
2638 * It's possible for these to be out of sync if
2639 * we are in the middle of a forced shutdown.
2640 */
2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 XFS_FORCED_SHUTDOWN(mp));
2643 xfs_perag_put(pag);
2644 return 0;
2645}
2646
2647/*
2648 * Read in the agi to initialise the per-ag data in the mount structure
2649 */
2650int
2651xfs_ialloc_pagi_init(
2652 xfs_mount_t *mp, /* file system mount structure */
2653 xfs_trans_t *tp, /* transaction pointer */
2654 xfs_agnumber_t agno) /* allocation group number */
2655{
2656 xfs_buf_t *bp = NULL;
2657 int error;
2658
2659 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 if (error)
2661 return error;
2662 if (bp)
2663 xfs_trans_brelse(tp, bp);
2664 return 0;
2665}
2666
2667/* Calculate the first and last possible inode number in an AG. */
2668void
2669xfs_ialloc_agino_range(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t *first,
2673 xfs_agino_t *last)
2674{
2675 xfs_agblock_t bno;
2676 xfs_agblock_t eoag;
2677
2678 eoag = xfs_ag_block_count(mp, agno);
2679
2680 /*
2681 * Calculate the first inode, which will be in the first
2682 * cluster-aligned block after the AGFL.
2683 */
2684 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 xfs_ialloc_cluster_alignment(mp));
2686 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2687
2688 /*
2689 * Calculate the last inode, which will be at the end of the
2690 * last (aligned) cluster that can be allocated in the AG.
2691 */
2692 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2694}
2695
2696/*
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2699 */
2700bool
2701xfs_verify_agino(
2702 struct xfs_mount *mp,
2703 xfs_agnumber_t agno,
2704 xfs_agino_t agino)
2705{
2706 xfs_agino_t first;
2707 xfs_agino_t last;
2708
2709 xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 return agino >= first && agino <= last;
2711}
2712
2713/*
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2716 */
2717bool
2718xfs_verify_ino(
2719 struct xfs_mount *mp,
2720 xfs_ino_t ino)
2721{
2722 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2723 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2724
2725 if (agno >= mp->m_sb.sb_agcount)
2726 return false;
2727 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 return false;
2729 return xfs_verify_agino(mp, agno, agino);
2730}
2731
2732/* Is this an internal inode number? */
2733bool
2734xfs_internal_inum(
2735 struct xfs_mount *mp,
2736 xfs_ino_t ino)
2737{
2738 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 (xfs_sb_version_hasquota(&mp->m_sb) &&
2740 xfs_is_quota_inode(&mp->m_sb, ino));
2741}
2742
2743/*
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2746 */
2747bool
2748xfs_verify_dir_ino(
2749 struct xfs_mount *mp,
2750 xfs_ino_t ino)
2751{
2752 if (xfs_internal_inum(mp, ino))
2753 return false;
2754 return xfs_verify_ino(mp, ino);
2755}
2756
2757/* Is there an inode record covering a given range of inode numbers? */
2758int
2759xfs_ialloc_has_inode_record(
2760 struct xfs_btree_cur *cur,
2761 xfs_agino_t low,
2762 xfs_agino_t high,
2763 bool *exists)
2764{
2765 struct xfs_inobt_rec_incore irec;
2766 xfs_agino_t agino;
2767 uint16_t holemask;
2768 int has_record;
2769 int i;
2770 int error;
2771
2772 *exists = false;
2773 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 while (error == 0 && has_record) {
2775 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 if (error || irec.ir_startino > high)
2777 break;
2778
2779 agino = irec.ir_startino;
2780 holemask = irec.ir_holemask;
2781 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 if (holemask & 1)
2784 continue;
2785 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 agino <= high) {
2787 *exists = true;
2788 return 0;
2789 }
2790 }
2791
2792 error = xfs_btree_increment(cur, 0, &has_record);
2793 }
2794 return error;
2795}
2796
2797/* Is there an inode record covering a given extent? */
2798int
2799xfs_ialloc_has_inodes_at_extent(
2800 struct xfs_btree_cur *cur,
2801 xfs_agblock_t bno,
2802 xfs_extlen_t len,
2803 bool *exists)
2804{
2805 xfs_agino_t low;
2806 xfs_agino_t high;
2807
2808 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2810
2811 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2812}
2813
2814struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2817};
2818
2819/* Record inode counts across all inobt records. */
2820STATIC int
2821xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 union xfs_btree_rec *rec,
2824 void *priv)
2825{
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2828
2829 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 ci->count += irec.ir_count;
2831 ci->freecount += irec.ir_freecount;
2832
2833 return 0;
2834}
2835
2836/* Count allocated and free inodes under an inobt. */
2837int
2838xfs_ialloc_count_inodes(
2839 struct xfs_btree_cur *cur,
2840 xfs_agino_t *count,
2841 xfs_agino_t *freecount)
2842{
2843 struct xfs_ialloc_count_inodes ci = {0};
2844 int error;
2845
2846 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 if (error)
2849 return error;
2850
2851 *count = ci.count;
2852 *freecount = ci.freecount;
2853 return 0;
2854}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_errortag.h"
20#include "xfs_error.h"
21#include "xfs_bmap.h"
22#include "xfs_trans.h"
23#include "xfs_buf_item.h"
24#include "xfs_icreate_item.h"
25#include "xfs_icache.h"
26#include "xfs_trace.h"
27#include "xfs_log.h"
28#include "xfs_rmap.h"
29#include "xfs_ag.h"
30
31/*
32 * Lookup a record by ino in the btree given by cur.
33 */
34int /* error */
35xfs_inobt_lookup(
36 struct xfs_btree_cur *cur, /* btree cursor */
37 xfs_agino_t ino, /* starting inode of chunk */
38 xfs_lookup_t dir, /* <=, >=, == */
39 int *stat) /* success/failure */
40{
41 cur->bc_rec.i.ir_startino = ino;
42 cur->bc_rec.i.ir_holemask = 0;
43 cur->bc_rec.i.ir_count = 0;
44 cur->bc_rec.i.ir_freecount = 0;
45 cur->bc_rec.i.ir_free = 0;
46 return xfs_btree_lookup(cur, dir, stat);
47}
48
49/*
50 * Update the record referred to by cur to the value given.
51 * This either works (return 0) or gets an EFSCORRUPTED error.
52 */
53STATIC int /* error */
54xfs_inobt_update(
55 struct xfs_btree_cur *cur, /* btree cursor */
56 xfs_inobt_rec_incore_t *irec) /* btree record */
57{
58 union xfs_btree_rec rec;
59
60 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
61 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
62 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
63 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
64 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
65 } else {
66 /* ir_holemask/ir_count not supported on-disk */
67 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
68 }
69 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
70 return xfs_btree_update(cur, &rec);
71}
72
73/* Convert on-disk btree record to incore inobt record. */
74void
75xfs_inobt_btrec_to_irec(
76 struct xfs_mount *mp,
77 union xfs_btree_rec *rec,
78 struct xfs_inobt_rec_incore *irec)
79{
80 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
81 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
82 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
83 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
84 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
85 } else {
86 /*
87 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
88 * values for full inode chunks.
89 */
90 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
91 irec->ir_count = XFS_INODES_PER_CHUNK;
92 irec->ir_freecount =
93 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
94 }
95 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
96}
97
98/*
99 * Get the data from the pointed-to record.
100 */
101int
102xfs_inobt_get_rec(
103 struct xfs_btree_cur *cur,
104 struct xfs_inobt_rec_incore *irec,
105 int *stat)
106{
107 struct xfs_mount *mp = cur->bc_mp;
108 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
109 union xfs_btree_rec *rec;
110 int error;
111 uint64_t realfree;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
114 if (error || *stat == 0)
115 return error;
116
117 xfs_inobt_btrec_to_irec(mp, rec, irec);
118
119 if (!xfs_verify_agino(mp, agno, irec->ir_startino))
120 goto out_bad_rec;
121 if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
122 irec->ir_count > XFS_INODES_PER_CHUNK)
123 goto out_bad_rec;
124 if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
125 goto out_bad_rec;
126
127 /* if there are no holes, return the first available offset */
128 if (!xfs_inobt_issparse(irec->ir_holemask))
129 realfree = irec->ir_free;
130 else
131 realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
132 if (hweight64(realfree) != irec->ir_freecount)
133 goto out_bad_rec;
134
135 return 0;
136
137out_bad_rec:
138 xfs_warn(mp,
139 "%s Inode BTree record corruption in AG %d detected!",
140 cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno);
141 xfs_warn(mp,
142"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
143 irec->ir_startino, irec->ir_count, irec->ir_freecount,
144 irec->ir_free, irec->ir_holemask);
145 return -EFSCORRUPTED;
146}
147
148/*
149 * Insert a single inobt record. Cursor must already point to desired location.
150 */
151int
152xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
159{
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
165}
166
167/*
168 * Insert records describing a newly allocated inode chunk into the inobt.
169 */
170STATIC int
171xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 struct xfs_perag *pag,
176 xfs_agino_t newino,
177 xfs_agino_t newlen,
178 xfs_btnum_t btnum)
179{
180 struct xfs_btree_cur *cur;
181 xfs_agino_t thisino;
182 int i;
183 int error;
184
185 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
186
187 for (thisino = newino;
188 thisino < newino + newlen;
189 thisino += XFS_INODES_PER_CHUNK) {
190 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 0);
196
197 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
198 XFS_INODES_PER_CHUNK,
199 XFS_INODES_PER_CHUNK,
200 XFS_INOBT_ALL_FREE, &i);
201 if (error) {
202 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
203 return error;
204 }
205 ASSERT(i == 1);
206 }
207
208 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
209
210 return 0;
211}
212
213/*
214 * Verify that the number of free inodes in the AGI is correct.
215 */
216#ifdef DEBUG
217static int
218xfs_check_agi_freecount(
219 struct xfs_btree_cur *cur)
220{
221 if (cur->bc_nlevels == 1) {
222 xfs_inobt_rec_incore_t rec;
223 int freecount = 0;
224 int error;
225 int i;
226
227 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
228 if (error)
229 return error;
230
231 do {
232 error = xfs_inobt_get_rec(cur, &rec, &i);
233 if (error)
234 return error;
235
236 if (i) {
237 freecount += rec.ir_freecount;
238 error = xfs_btree_increment(cur, 0, &i);
239 if (error)
240 return error;
241 }
242 } while (i == 1);
243
244 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
245 ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
246 }
247 return 0;
248}
249#else
250#define xfs_check_agi_freecount(cur) 0
251#endif
252
253/*
254 * Initialise a new set of inodes. When called without a transaction context
255 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
256 * than logging them (which in a transaction context puts them into the AIL
257 * for writeback rather than the xfsbufd queue).
258 */
259int
260xfs_ialloc_inode_init(
261 struct xfs_mount *mp,
262 struct xfs_trans *tp,
263 struct list_head *buffer_list,
264 int icount,
265 xfs_agnumber_t agno,
266 xfs_agblock_t agbno,
267 xfs_agblock_t length,
268 unsigned int gen)
269{
270 struct xfs_buf *fbuf;
271 struct xfs_dinode *free;
272 int nbufs;
273 int version;
274 int i, j;
275 xfs_daddr_t d;
276 xfs_ino_t ino = 0;
277 int error;
278
279 /*
280 * Loop over the new block(s), filling in the inodes. For small block
281 * sizes, manipulate the inodes in buffers which are multiples of the
282 * blocks size.
283 */
284 nbufs = length / M_IGEO(mp)->blocks_per_cluster;
285
286 /*
287 * Figure out what version number to use in the inodes we create. If
288 * the superblock version has caught up to the one that supports the new
289 * inode format, then use the new inode version. Otherwise use the old
290 * version so that old kernels will continue to be able to use the file
291 * system.
292 *
293 * For v3 inodes, we also need to write the inode number into the inode,
294 * so calculate the first inode number of the chunk here as
295 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
296 * across multiple filesystem blocks (such as a cluster) and so cannot
297 * be used in the cluster buffer loop below.
298 *
299 * Further, because we are writing the inode directly into the buffer
300 * and calculating a CRC on the entire inode, we have ot log the entire
301 * inode so that the entire range the CRC covers is present in the log.
302 * That means for v3 inode we log the entire buffer rather than just the
303 * inode cores.
304 */
305 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
306 version = 3;
307 ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
308
309 /*
310 * log the initialisation that is about to take place as an
311 * logical operation. This means the transaction does not
312 * need to log the physical changes to the inode buffers as log
313 * recovery will know what initialisation is actually needed.
314 * Hence we only need to log the buffers as "ordered" buffers so
315 * they track in the AIL as if they were physically logged.
316 */
317 if (tp)
318 xfs_icreate_log(tp, agno, agbno, icount,
319 mp->m_sb.sb_inodesize, length, gen);
320 } else
321 version = 2;
322
323 for (j = 0; j < nbufs; j++) {
324 /*
325 * Get the block.
326 */
327 d = XFS_AGB_TO_DADDR(mp, agno, agbno +
328 (j * M_IGEO(mp)->blocks_per_cluster));
329 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
330 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
331 XBF_UNMAPPED, &fbuf);
332 if (error)
333 return error;
334
335 /* Initialize the inode buffers and log them appropriately. */
336 fbuf->b_ops = &xfs_inode_buf_ops;
337 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
338 for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
339 int ioffset = i << mp->m_sb.sb_inodelog;
340 uint isize = XFS_DINODE_SIZE(&mp->m_sb);
341
342 free = xfs_make_iptr(mp, fbuf, i);
343 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
344 free->di_version = version;
345 free->di_gen = cpu_to_be32(gen);
346 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
347
348 if (version == 3) {
349 free->di_ino = cpu_to_be64(ino);
350 ino++;
351 uuid_copy(&free->di_uuid,
352 &mp->m_sb.sb_meta_uuid);
353 xfs_dinode_calc_crc(mp, free);
354 } else if (tp) {
355 /* just log the inode core */
356 xfs_trans_log_buf(tp, fbuf, ioffset,
357 ioffset + isize - 1);
358 }
359 }
360
361 if (tp) {
362 /*
363 * Mark the buffer as an inode allocation buffer so it
364 * sticks in AIL at the point of this allocation
365 * transaction. This ensures the they are on disk before
366 * the tail of the log can be moved past this
367 * transaction (i.e. by preventing relogging from moving
368 * it forward in the log).
369 */
370 xfs_trans_inode_alloc_buf(tp, fbuf);
371 if (version == 3) {
372 /*
373 * Mark the buffer as ordered so that they are
374 * not physically logged in the transaction but
375 * still tracked in the AIL as part of the
376 * transaction and pin the log appropriately.
377 */
378 xfs_trans_ordered_buf(tp, fbuf);
379 }
380 } else {
381 fbuf->b_flags |= XBF_DONE;
382 xfs_buf_delwri_queue(fbuf, buffer_list);
383 xfs_buf_relse(fbuf);
384 }
385 }
386 return 0;
387}
388
389/*
390 * Align startino and allocmask for a recently allocated sparse chunk such that
391 * they are fit for insertion (or merge) into the on-disk inode btrees.
392 *
393 * Background:
394 *
395 * When enabled, sparse inode support increases the inode alignment from cluster
396 * size to inode chunk size. This means that the minimum range between two
397 * non-adjacent inode records in the inobt is large enough for a full inode
398 * record. This allows for cluster sized, cluster aligned block allocation
399 * without need to worry about whether the resulting inode record overlaps with
400 * another record in the tree. Without this basic rule, we would have to deal
401 * with the consequences of overlap by potentially undoing recent allocations in
402 * the inode allocation codepath.
403 *
404 * Because of this alignment rule (which is enforced on mount), there are two
405 * inobt possibilities for newly allocated sparse chunks. One is that the
406 * aligned inode record for the chunk covers a range of inodes not already
407 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
408 * other is that a record already exists at the aligned startino that considers
409 * the newly allocated range as sparse. In the latter case, record content is
410 * merged in hope that sparse inode chunks fill to full chunks over time.
411 */
412STATIC void
413xfs_align_sparse_ino(
414 struct xfs_mount *mp,
415 xfs_agino_t *startino,
416 uint16_t *allocmask)
417{
418 xfs_agblock_t agbno;
419 xfs_agblock_t mod;
420 int offset;
421
422 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
423 mod = agbno % mp->m_sb.sb_inoalignmt;
424 if (!mod)
425 return;
426
427 /* calculate the inode offset and align startino */
428 offset = XFS_AGB_TO_AGINO(mp, mod);
429 *startino -= offset;
430
431 /*
432 * Since startino has been aligned down, left shift allocmask such that
433 * it continues to represent the same physical inodes relative to the
434 * new startino.
435 */
436 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
437}
438
439/*
440 * Determine whether the source inode record can merge into the target. Both
441 * records must be sparse, the inode ranges must match and there must be no
442 * allocation overlap between the records.
443 */
444STATIC bool
445__xfs_inobt_can_merge(
446 struct xfs_inobt_rec_incore *trec, /* tgt record */
447 struct xfs_inobt_rec_incore *srec) /* src record */
448{
449 uint64_t talloc;
450 uint64_t salloc;
451
452 /* records must cover the same inode range */
453 if (trec->ir_startino != srec->ir_startino)
454 return false;
455
456 /* both records must be sparse */
457 if (!xfs_inobt_issparse(trec->ir_holemask) ||
458 !xfs_inobt_issparse(srec->ir_holemask))
459 return false;
460
461 /* both records must track some inodes */
462 if (!trec->ir_count || !srec->ir_count)
463 return false;
464
465 /* can't exceed capacity of a full record */
466 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
467 return false;
468
469 /* verify there is no allocation overlap */
470 talloc = xfs_inobt_irec_to_allocmask(trec);
471 salloc = xfs_inobt_irec_to_allocmask(srec);
472 if (talloc & salloc)
473 return false;
474
475 return true;
476}
477
478/*
479 * Merge the source inode record into the target. The caller must call
480 * __xfs_inobt_can_merge() to ensure the merge is valid.
481 */
482STATIC void
483__xfs_inobt_rec_merge(
484 struct xfs_inobt_rec_incore *trec, /* target */
485 struct xfs_inobt_rec_incore *srec) /* src */
486{
487 ASSERT(trec->ir_startino == srec->ir_startino);
488
489 /* combine the counts */
490 trec->ir_count += srec->ir_count;
491 trec->ir_freecount += srec->ir_freecount;
492
493 /*
494 * Merge the holemask and free mask. For both fields, 0 bits refer to
495 * allocated inodes. We combine the allocated ranges with bitwise AND.
496 */
497 trec->ir_holemask &= srec->ir_holemask;
498 trec->ir_free &= srec->ir_free;
499}
500
501/*
502 * Insert a new sparse inode chunk into the associated inode btree. The inode
503 * record for the sparse chunk is pre-aligned to a startino that should match
504 * any pre-existing sparse inode record in the tree. This allows sparse chunks
505 * to fill over time.
506 *
507 * This function supports two modes of handling preexisting records depending on
508 * the merge flag. If merge is true, the provided record is merged with the
509 * existing record and updated in place. The merged record is returned in nrec.
510 * If merge is false, an existing record is replaced with the provided record.
511 * If no preexisting record exists, the provided record is always inserted.
512 *
513 * It is considered corruption if a merge is requested and not possible. Given
514 * the sparse inode alignment constraints, this should never happen.
515 */
516STATIC int
517xfs_inobt_insert_sprec(
518 struct xfs_mount *mp,
519 struct xfs_trans *tp,
520 struct xfs_buf *agbp,
521 struct xfs_perag *pag,
522 int btnum,
523 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
524 bool merge) /* merge or replace */
525{
526 struct xfs_btree_cur *cur;
527 int error;
528 int i;
529 struct xfs_inobt_rec_incore rec;
530
531 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
532
533 /* the new record is pre-aligned so we know where to look */
534 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
535 if (error)
536 goto error;
537 /* if nothing there, insert a new record and return */
538 if (i == 0) {
539 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
540 nrec->ir_count, nrec->ir_freecount,
541 nrec->ir_free, &i);
542 if (error)
543 goto error;
544 if (XFS_IS_CORRUPT(mp, i != 1)) {
545 error = -EFSCORRUPTED;
546 goto error;
547 }
548
549 goto out;
550 }
551
552 /*
553 * A record exists at this startino. Merge or replace the record
554 * depending on what we've been asked to do.
555 */
556 if (merge) {
557 error = xfs_inobt_get_rec(cur, &rec, &i);
558 if (error)
559 goto error;
560 if (XFS_IS_CORRUPT(mp, i != 1)) {
561 error = -EFSCORRUPTED;
562 goto error;
563 }
564 if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
565 error = -EFSCORRUPTED;
566 goto error;
567 }
568
569 /*
570 * This should never fail. If we have coexisting records that
571 * cannot merge, something is seriously wrong.
572 */
573 if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
574 error = -EFSCORRUPTED;
575 goto error;
576 }
577
578 trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
579 rec.ir_holemask, nrec->ir_startino,
580 nrec->ir_holemask);
581
582 /* merge to nrec to output the updated record */
583 __xfs_inobt_rec_merge(nrec, &rec);
584
585 trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
586 nrec->ir_holemask);
587
588 error = xfs_inobt_rec_check_count(mp, nrec);
589 if (error)
590 goto error;
591 }
592
593 error = xfs_inobt_update(cur, nrec);
594 if (error)
595 goto error;
596
597out:
598 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
599 return 0;
600error:
601 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
602 return error;
603}
604
605/*
606 * Allocate new inodes in the allocation group specified by agbp. Returns 0 if
607 * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
608 * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
609 * inode count threshold, or the usual negative error code for other errors.
610 */
611STATIC int
612xfs_ialloc_ag_alloc(
613 struct xfs_trans *tp,
614 struct xfs_buf *agbp,
615 struct xfs_perag *pag)
616{
617 struct xfs_agi *agi;
618 struct xfs_alloc_arg args;
619 int error;
620 xfs_agino_t newino; /* new first inode's number */
621 xfs_agino_t newlen; /* new number of inodes */
622 int isaligned = 0; /* inode allocation at stripe */
623 /* unit boundary */
624 /* init. to full chunk */
625 struct xfs_inobt_rec_incore rec;
626 struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
627 uint16_t allocmask = (uint16_t) -1;
628 int do_sparse = 0;
629
630 memset(&args, 0, sizeof(args));
631 args.tp = tp;
632 args.mp = tp->t_mountp;
633 args.fsbno = NULLFSBLOCK;
634 args.oinfo = XFS_RMAP_OINFO_INODES;
635
636#ifdef DEBUG
637 /* randomly do sparse inode allocations */
638 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
639 igeo->ialloc_min_blks < igeo->ialloc_blks)
640 do_sparse = prandom_u32() & 1;
641#endif
642
643 /*
644 * Locking will ensure that we don't have two callers in here
645 * at one time.
646 */
647 newlen = igeo->ialloc_inos;
648 if (igeo->maxicount &&
649 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
650 igeo->maxicount)
651 return -ENOSPC;
652 args.minlen = args.maxlen = igeo->ialloc_blks;
653 /*
654 * First try to allocate inodes contiguous with the last-allocated
655 * chunk of inodes. If the filesystem is striped, this will fill
656 * an entire stripe unit with inodes.
657 */
658 agi = agbp->b_addr;
659 newino = be32_to_cpu(agi->agi_newino);
660 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
661 igeo->ialloc_blks;
662 if (do_sparse)
663 goto sparse_alloc;
664 if (likely(newino != NULLAGINO &&
665 (args.agbno < be32_to_cpu(agi->agi_length)))) {
666 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
667 args.type = XFS_ALLOCTYPE_THIS_BNO;
668 args.prod = 1;
669
670 /*
671 * We need to take into account alignment here to ensure that
672 * we don't modify the free list if we fail to have an exact
673 * block. If we don't have an exact match, and every oher
674 * attempt allocation attempt fails, we'll end up cancelling
675 * a dirty transaction and shutting down.
676 *
677 * For an exact allocation, alignment must be 1,
678 * however we need to take cluster alignment into account when
679 * fixing up the freelist. Use the minalignslop field to
680 * indicate that extra blocks might be required for alignment,
681 * but not to use them in the actual exact allocation.
682 */
683 args.alignment = 1;
684 args.minalignslop = igeo->cluster_align - 1;
685
686 /* Allow space for the inode btree to split. */
687 args.minleft = igeo->inobt_maxlevels;
688 if ((error = xfs_alloc_vextent(&args)))
689 return error;
690
691 /*
692 * This request might have dirtied the transaction if the AG can
693 * satisfy the request, but the exact block was not available.
694 * If the allocation did fail, subsequent requests will relax
695 * the exact agbno requirement and increase the alignment
696 * instead. It is critical that the total size of the request
697 * (len + alignment + slop) does not increase from this point
698 * on, so reset minalignslop to ensure it is not included in
699 * subsequent requests.
700 */
701 args.minalignslop = 0;
702 }
703
704 if (unlikely(args.fsbno == NULLFSBLOCK)) {
705 /*
706 * Set the alignment for the allocation.
707 * If stripe alignment is turned on then align at stripe unit
708 * boundary.
709 * If the cluster size is smaller than a filesystem block
710 * then we're doing I/O for inodes in filesystem block size
711 * pieces, so don't need alignment anyway.
712 */
713 isaligned = 0;
714 if (igeo->ialloc_align) {
715 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
716 args.alignment = args.mp->m_dalign;
717 isaligned = 1;
718 } else
719 args.alignment = igeo->cluster_align;
720 /*
721 * Need to figure out where to allocate the inode blocks.
722 * Ideally they should be spaced out through the a.g.
723 * For now, just allocate blocks up front.
724 */
725 args.agbno = be32_to_cpu(agi->agi_root);
726 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
727 /*
728 * Allocate a fixed-size extent of inodes.
729 */
730 args.type = XFS_ALLOCTYPE_NEAR_BNO;
731 args.prod = 1;
732 /*
733 * Allow space for the inode btree to split.
734 */
735 args.minleft = igeo->inobt_maxlevels;
736 if ((error = xfs_alloc_vextent(&args)))
737 return error;
738 }
739
740 /*
741 * If stripe alignment is turned on, then try again with cluster
742 * alignment.
743 */
744 if (isaligned && args.fsbno == NULLFSBLOCK) {
745 args.type = XFS_ALLOCTYPE_NEAR_BNO;
746 args.agbno = be32_to_cpu(agi->agi_root);
747 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
748 args.alignment = igeo->cluster_align;
749 if ((error = xfs_alloc_vextent(&args)))
750 return error;
751 }
752
753 /*
754 * Finally, try a sparse allocation if the filesystem supports it and
755 * the sparse allocation length is smaller than a full chunk.
756 */
757 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
758 igeo->ialloc_min_blks < igeo->ialloc_blks &&
759 args.fsbno == NULLFSBLOCK) {
760sparse_alloc:
761 args.type = XFS_ALLOCTYPE_NEAR_BNO;
762 args.agbno = be32_to_cpu(agi->agi_root);
763 args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
764 args.alignment = args.mp->m_sb.sb_spino_align;
765 args.prod = 1;
766
767 args.minlen = igeo->ialloc_min_blks;
768 args.maxlen = args.minlen;
769
770 /*
771 * The inode record will be aligned to full chunk size. We must
772 * prevent sparse allocation from AG boundaries that result in
773 * invalid inode records, such as records that start at agbno 0
774 * or extend beyond the AG.
775 *
776 * Set min agbno to the first aligned, non-zero agbno and max to
777 * the last aligned agbno that is at least one full chunk from
778 * the end of the AG.
779 */
780 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
781 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
782 args.mp->m_sb.sb_inoalignmt) -
783 igeo->ialloc_blks;
784
785 error = xfs_alloc_vextent(&args);
786 if (error)
787 return error;
788
789 newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
790 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
791 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
792 }
793
794 if (args.fsbno == NULLFSBLOCK)
795 return -EAGAIN;
796
797 ASSERT(args.len == args.minlen);
798
799 /*
800 * Stamp and write the inode buffers.
801 *
802 * Seed the new inode cluster with a random generation number. This
803 * prevents short-term reuse of generation numbers if a chunk is
804 * freed and then immediately reallocated. We use random numbers
805 * rather than a linear progression to prevent the next generation
806 * number from being easily guessable.
807 */
808 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
809 args.agbno, args.len, prandom_u32());
810
811 if (error)
812 return error;
813 /*
814 * Convert the results.
815 */
816 newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
817
818 if (xfs_inobt_issparse(~allocmask)) {
819 /*
820 * We've allocated a sparse chunk. Align the startino and mask.
821 */
822 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
823
824 rec.ir_startino = newino;
825 rec.ir_holemask = ~allocmask;
826 rec.ir_count = newlen;
827 rec.ir_freecount = newlen;
828 rec.ir_free = XFS_INOBT_ALL_FREE;
829
830 /*
831 * Insert the sparse record into the inobt and allow for a merge
832 * if necessary. If a merge does occur, rec is updated to the
833 * merged record.
834 */
835 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
836 XFS_BTNUM_INO, &rec, true);
837 if (error == -EFSCORRUPTED) {
838 xfs_alert(args.mp,
839 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
840 XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
841 rec.ir_startino),
842 rec.ir_holemask, rec.ir_count);
843 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
844 }
845 if (error)
846 return error;
847
848 /*
849 * We can't merge the part we've just allocated as for the inobt
850 * due to finobt semantics. The original record may or may not
851 * exist independent of whether physical inodes exist in this
852 * sparse chunk.
853 *
854 * We must update the finobt record based on the inobt record.
855 * rec contains the fully merged and up to date inobt record
856 * from the previous call. Set merge false to replace any
857 * existing record with this one.
858 */
859 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
860 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
861 XFS_BTNUM_FINO, &rec, false);
862 if (error)
863 return error;
864 }
865 } else {
866 /* full chunk - insert new records to both btrees */
867 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
868 XFS_BTNUM_INO);
869 if (error)
870 return error;
871
872 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
873 error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
874 newlen, XFS_BTNUM_FINO);
875 if (error)
876 return error;
877 }
878 }
879
880 /*
881 * Update AGI counts and newino.
882 */
883 be32_add_cpu(&agi->agi_count, newlen);
884 be32_add_cpu(&agi->agi_freecount, newlen);
885 pag->pagi_freecount += newlen;
886 pag->pagi_count += newlen;
887 agi->agi_newino = cpu_to_be32(newino);
888
889 /*
890 * Log allocation group header fields
891 */
892 xfs_ialloc_log_agi(tp, agbp,
893 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
894 /*
895 * Modify/log superblock values for inode count and inode free count.
896 */
897 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
898 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
899 return 0;
900}
901
902/*
903 * Try to retrieve the next record to the left/right from the current one.
904 */
905STATIC int
906xfs_ialloc_next_rec(
907 struct xfs_btree_cur *cur,
908 xfs_inobt_rec_incore_t *rec,
909 int *done,
910 int left)
911{
912 int error;
913 int i;
914
915 if (left)
916 error = xfs_btree_decrement(cur, 0, &i);
917 else
918 error = xfs_btree_increment(cur, 0, &i);
919
920 if (error)
921 return error;
922 *done = !i;
923 if (i) {
924 error = xfs_inobt_get_rec(cur, rec, &i);
925 if (error)
926 return error;
927 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
928 return -EFSCORRUPTED;
929 }
930
931 return 0;
932}
933
934STATIC int
935xfs_ialloc_get_rec(
936 struct xfs_btree_cur *cur,
937 xfs_agino_t agino,
938 xfs_inobt_rec_incore_t *rec,
939 int *done)
940{
941 int error;
942 int i;
943
944 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
945 if (error)
946 return error;
947 *done = !i;
948 if (i) {
949 error = xfs_inobt_get_rec(cur, rec, &i);
950 if (error)
951 return error;
952 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
953 return -EFSCORRUPTED;
954 }
955
956 return 0;
957}
958
959/*
960 * Return the offset of the first free inode in the record. If the inode chunk
961 * is sparsely allocated, we convert the record holemask to inode granularity
962 * and mask off the unallocated regions from the inode free mask.
963 */
964STATIC int
965xfs_inobt_first_free_inode(
966 struct xfs_inobt_rec_incore *rec)
967{
968 xfs_inofree_t realfree;
969
970 /* if there are no holes, return the first available offset */
971 if (!xfs_inobt_issparse(rec->ir_holemask))
972 return xfs_lowbit64(rec->ir_free);
973
974 realfree = xfs_inobt_irec_to_allocmask(rec);
975 realfree &= rec->ir_free;
976
977 return xfs_lowbit64(realfree);
978}
979
980/*
981 * Allocate an inode using the inobt-only algorithm.
982 */
983STATIC int
984xfs_dialloc_ag_inobt(
985 struct xfs_trans *tp,
986 struct xfs_buf *agbp,
987 struct xfs_perag *pag,
988 xfs_ino_t parent,
989 xfs_ino_t *inop)
990{
991 struct xfs_mount *mp = tp->t_mountp;
992 struct xfs_agi *agi = agbp->b_addr;
993 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
994 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
995 struct xfs_btree_cur *cur, *tcur;
996 struct xfs_inobt_rec_incore rec, trec;
997 xfs_ino_t ino;
998 int error;
999 int offset;
1000 int i, j;
1001 int searchdistance = 10;
1002
1003 ASSERT(pag->pagi_init);
1004 ASSERT(pag->pagi_inodeok);
1005 ASSERT(pag->pagi_freecount > 0);
1006
1007 restart_pagno:
1008 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1009 /*
1010 * If pagino is 0 (this is the root inode allocation) use newino.
1011 * This must work because we've just allocated some.
1012 */
1013 if (!pagino)
1014 pagino = be32_to_cpu(agi->agi_newino);
1015
1016 error = xfs_check_agi_freecount(cur);
1017 if (error)
1018 goto error0;
1019
1020 /*
1021 * If in the same AG as the parent, try to get near the parent.
1022 */
1023 if (pagno == pag->pag_agno) {
1024 int doneleft; /* done, to the left */
1025 int doneright; /* done, to the right */
1026
1027 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1028 if (error)
1029 goto error0;
1030 if (XFS_IS_CORRUPT(mp, i != 1)) {
1031 error = -EFSCORRUPTED;
1032 goto error0;
1033 }
1034
1035 error = xfs_inobt_get_rec(cur, &rec, &j);
1036 if (error)
1037 goto error0;
1038 if (XFS_IS_CORRUPT(mp, j != 1)) {
1039 error = -EFSCORRUPTED;
1040 goto error0;
1041 }
1042
1043 if (rec.ir_freecount > 0) {
1044 /*
1045 * Found a free inode in the same chunk
1046 * as the parent, done.
1047 */
1048 goto alloc_inode;
1049 }
1050
1051
1052 /*
1053 * In the same AG as parent, but parent's chunk is full.
1054 */
1055
1056 /* duplicate the cursor, search left & right simultaneously */
1057 error = xfs_btree_dup_cursor(cur, &tcur);
1058 if (error)
1059 goto error0;
1060
1061 /*
1062 * Skip to last blocks looked up if same parent inode.
1063 */
1064 if (pagino != NULLAGINO &&
1065 pag->pagl_pagino == pagino &&
1066 pag->pagl_leftrec != NULLAGINO &&
1067 pag->pagl_rightrec != NULLAGINO) {
1068 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1069 &trec, &doneleft);
1070 if (error)
1071 goto error1;
1072
1073 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1074 &rec, &doneright);
1075 if (error)
1076 goto error1;
1077 } else {
1078 /* search left with tcur, back up 1 record */
1079 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1080 if (error)
1081 goto error1;
1082
1083 /* search right with cur, go forward 1 record. */
1084 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1085 if (error)
1086 goto error1;
1087 }
1088
1089 /*
1090 * Loop until we find an inode chunk with a free inode.
1091 */
1092 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1093 int useleft; /* using left inode chunk this time */
1094
1095 /* figure out the closer block if both are valid. */
1096 if (!doneleft && !doneright) {
1097 useleft = pagino -
1098 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1099 rec.ir_startino - pagino;
1100 } else {
1101 useleft = !doneleft;
1102 }
1103
1104 /* free inodes to the left? */
1105 if (useleft && trec.ir_freecount) {
1106 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1107 cur = tcur;
1108
1109 pag->pagl_leftrec = trec.ir_startino;
1110 pag->pagl_rightrec = rec.ir_startino;
1111 pag->pagl_pagino = pagino;
1112 rec = trec;
1113 goto alloc_inode;
1114 }
1115
1116 /* free inodes to the right? */
1117 if (!useleft && rec.ir_freecount) {
1118 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1119
1120 pag->pagl_leftrec = trec.ir_startino;
1121 pag->pagl_rightrec = rec.ir_startino;
1122 pag->pagl_pagino = pagino;
1123 goto alloc_inode;
1124 }
1125
1126 /* get next record to check */
1127 if (useleft) {
1128 error = xfs_ialloc_next_rec(tcur, &trec,
1129 &doneleft, 1);
1130 } else {
1131 error = xfs_ialloc_next_rec(cur, &rec,
1132 &doneright, 0);
1133 }
1134 if (error)
1135 goto error1;
1136 }
1137
1138 if (searchdistance <= 0) {
1139 /*
1140 * Not in range - save last search
1141 * location and allocate a new inode
1142 */
1143 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1144 pag->pagl_leftrec = trec.ir_startino;
1145 pag->pagl_rightrec = rec.ir_startino;
1146 pag->pagl_pagino = pagino;
1147
1148 } else {
1149 /*
1150 * We've reached the end of the btree. because
1151 * we are only searching a small chunk of the
1152 * btree each search, there is obviously free
1153 * inodes closer to the parent inode than we
1154 * are now. restart the search again.
1155 */
1156 pag->pagl_pagino = NULLAGINO;
1157 pag->pagl_leftrec = NULLAGINO;
1158 pag->pagl_rightrec = NULLAGINO;
1159 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1160 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1161 goto restart_pagno;
1162 }
1163 }
1164
1165 /*
1166 * In a different AG from the parent.
1167 * See if the most recently allocated block has any free.
1168 */
1169 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1170 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1171 XFS_LOOKUP_EQ, &i);
1172 if (error)
1173 goto error0;
1174
1175 if (i == 1) {
1176 error = xfs_inobt_get_rec(cur, &rec, &j);
1177 if (error)
1178 goto error0;
1179
1180 if (j == 1 && rec.ir_freecount > 0) {
1181 /*
1182 * The last chunk allocated in the group
1183 * still has a free inode.
1184 */
1185 goto alloc_inode;
1186 }
1187 }
1188 }
1189
1190 /*
1191 * None left in the last group, search the whole AG
1192 */
1193 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1194 if (error)
1195 goto error0;
1196 if (XFS_IS_CORRUPT(mp, i != 1)) {
1197 error = -EFSCORRUPTED;
1198 goto error0;
1199 }
1200
1201 for (;;) {
1202 error = xfs_inobt_get_rec(cur, &rec, &i);
1203 if (error)
1204 goto error0;
1205 if (XFS_IS_CORRUPT(mp, i != 1)) {
1206 error = -EFSCORRUPTED;
1207 goto error0;
1208 }
1209 if (rec.ir_freecount > 0)
1210 break;
1211 error = xfs_btree_increment(cur, 0, &i);
1212 if (error)
1213 goto error0;
1214 if (XFS_IS_CORRUPT(mp, i != 1)) {
1215 error = -EFSCORRUPTED;
1216 goto error0;
1217 }
1218 }
1219
1220alloc_inode:
1221 offset = xfs_inobt_first_free_inode(&rec);
1222 ASSERT(offset >= 0);
1223 ASSERT(offset < XFS_INODES_PER_CHUNK);
1224 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1225 XFS_INODES_PER_CHUNK) == 0);
1226 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1227 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1228 rec.ir_freecount--;
1229 error = xfs_inobt_update(cur, &rec);
1230 if (error)
1231 goto error0;
1232 be32_add_cpu(&agi->agi_freecount, -1);
1233 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1234 pag->pagi_freecount--;
1235
1236 error = xfs_check_agi_freecount(cur);
1237 if (error)
1238 goto error0;
1239
1240 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1241 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1242 *inop = ino;
1243 return 0;
1244error1:
1245 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1246error0:
1247 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1248 return error;
1249}
1250
1251/*
1252 * Use the free inode btree to allocate an inode based on distance from the
1253 * parent. Note that the provided cursor may be deleted and replaced.
1254 */
1255STATIC int
1256xfs_dialloc_ag_finobt_near(
1257 xfs_agino_t pagino,
1258 struct xfs_btree_cur **ocur,
1259 struct xfs_inobt_rec_incore *rec)
1260{
1261 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1262 struct xfs_btree_cur *rcur; /* right search cursor */
1263 struct xfs_inobt_rec_incore rrec;
1264 int error;
1265 int i, j;
1266
1267 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1268 if (error)
1269 return error;
1270
1271 if (i == 1) {
1272 error = xfs_inobt_get_rec(lcur, rec, &i);
1273 if (error)
1274 return error;
1275 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1276 return -EFSCORRUPTED;
1277
1278 /*
1279 * See if we've landed in the parent inode record. The finobt
1280 * only tracks chunks with at least one free inode, so record
1281 * existence is enough.
1282 */
1283 if (pagino >= rec->ir_startino &&
1284 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1285 return 0;
1286 }
1287
1288 error = xfs_btree_dup_cursor(lcur, &rcur);
1289 if (error)
1290 return error;
1291
1292 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1293 if (error)
1294 goto error_rcur;
1295 if (j == 1) {
1296 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1297 if (error)
1298 goto error_rcur;
1299 if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1300 error = -EFSCORRUPTED;
1301 goto error_rcur;
1302 }
1303 }
1304
1305 if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1306 error = -EFSCORRUPTED;
1307 goto error_rcur;
1308 }
1309 if (i == 1 && j == 1) {
1310 /*
1311 * Both the left and right records are valid. Choose the closer
1312 * inode chunk to the target.
1313 */
1314 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1315 (rrec.ir_startino - pagino)) {
1316 *rec = rrec;
1317 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1318 *ocur = rcur;
1319 } else {
1320 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1321 }
1322 } else if (j == 1) {
1323 /* only the right record is valid */
1324 *rec = rrec;
1325 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1326 *ocur = rcur;
1327 } else if (i == 1) {
1328 /* only the left record is valid */
1329 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1330 }
1331
1332 return 0;
1333
1334error_rcur:
1335 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1336 return error;
1337}
1338
1339/*
1340 * Use the free inode btree to find a free inode based on a newino hint. If
1341 * the hint is NULL, find the first free inode in the AG.
1342 */
1343STATIC int
1344xfs_dialloc_ag_finobt_newino(
1345 struct xfs_agi *agi,
1346 struct xfs_btree_cur *cur,
1347 struct xfs_inobt_rec_incore *rec)
1348{
1349 int error;
1350 int i;
1351
1352 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1353 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1354 XFS_LOOKUP_EQ, &i);
1355 if (error)
1356 return error;
1357 if (i == 1) {
1358 error = xfs_inobt_get_rec(cur, rec, &i);
1359 if (error)
1360 return error;
1361 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1362 return -EFSCORRUPTED;
1363 return 0;
1364 }
1365 }
1366
1367 /*
1368 * Find the first inode available in the AG.
1369 */
1370 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1371 if (error)
1372 return error;
1373 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1374 return -EFSCORRUPTED;
1375
1376 error = xfs_inobt_get_rec(cur, rec, &i);
1377 if (error)
1378 return error;
1379 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1380 return -EFSCORRUPTED;
1381
1382 return 0;
1383}
1384
1385/*
1386 * Update the inobt based on a modification made to the finobt. Also ensure that
1387 * the records from both trees are equivalent post-modification.
1388 */
1389STATIC int
1390xfs_dialloc_ag_update_inobt(
1391 struct xfs_btree_cur *cur, /* inobt cursor */
1392 struct xfs_inobt_rec_incore *frec, /* finobt record */
1393 int offset) /* inode offset */
1394{
1395 struct xfs_inobt_rec_incore rec;
1396 int error;
1397 int i;
1398
1399 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1400 if (error)
1401 return error;
1402 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1403 return -EFSCORRUPTED;
1404
1405 error = xfs_inobt_get_rec(cur, &rec, &i);
1406 if (error)
1407 return error;
1408 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1409 return -EFSCORRUPTED;
1410 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1411 XFS_INODES_PER_CHUNK) == 0);
1412
1413 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1414 rec.ir_freecount--;
1415
1416 if (XFS_IS_CORRUPT(cur->bc_mp,
1417 rec.ir_free != frec->ir_free ||
1418 rec.ir_freecount != frec->ir_freecount))
1419 return -EFSCORRUPTED;
1420
1421 return xfs_inobt_update(cur, &rec);
1422}
1423
1424/*
1425 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1426 * back to the inobt search algorithm.
1427 *
1428 * The caller selected an AG for us, and made sure that free inodes are
1429 * available.
1430 */
1431static int
1432xfs_dialloc_ag(
1433 struct xfs_trans *tp,
1434 struct xfs_buf *agbp,
1435 struct xfs_perag *pag,
1436 xfs_ino_t parent,
1437 xfs_ino_t *inop)
1438{
1439 struct xfs_mount *mp = tp->t_mountp;
1440 struct xfs_agi *agi = agbp->b_addr;
1441 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1442 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1443 struct xfs_btree_cur *cur; /* finobt cursor */
1444 struct xfs_btree_cur *icur; /* inobt cursor */
1445 struct xfs_inobt_rec_incore rec;
1446 xfs_ino_t ino;
1447 int error;
1448 int offset;
1449 int i;
1450
1451 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1452 return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1453
1454 /*
1455 * If pagino is 0 (this is the root inode allocation) use newino.
1456 * This must work because we've just allocated some.
1457 */
1458 if (!pagino)
1459 pagino = be32_to_cpu(agi->agi_newino);
1460
1461 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1462
1463 error = xfs_check_agi_freecount(cur);
1464 if (error)
1465 goto error_cur;
1466
1467 /*
1468 * The search algorithm depends on whether we're in the same AG as the
1469 * parent. If so, find the closest available inode to the parent. If
1470 * not, consider the agi hint or find the first free inode in the AG.
1471 */
1472 if (pag->pag_agno == pagno)
1473 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1474 else
1475 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1476 if (error)
1477 goto error_cur;
1478
1479 offset = xfs_inobt_first_free_inode(&rec);
1480 ASSERT(offset >= 0);
1481 ASSERT(offset < XFS_INODES_PER_CHUNK);
1482 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1483 XFS_INODES_PER_CHUNK) == 0);
1484 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1485
1486 /*
1487 * Modify or remove the finobt record.
1488 */
1489 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1490 rec.ir_freecount--;
1491 if (rec.ir_freecount)
1492 error = xfs_inobt_update(cur, &rec);
1493 else
1494 error = xfs_btree_delete(cur, &i);
1495 if (error)
1496 goto error_cur;
1497
1498 /*
1499 * The finobt has now been updated appropriately. We haven't updated the
1500 * agi and superblock yet, so we can create an inobt cursor and validate
1501 * the original freecount. If all is well, make the equivalent update to
1502 * the inobt using the finobt record and offset information.
1503 */
1504 icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1505
1506 error = xfs_check_agi_freecount(icur);
1507 if (error)
1508 goto error_icur;
1509
1510 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1511 if (error)
1512 goto error_icur;
1513
1514 /*
1515 * Both trees have now been updated. We must update the perag and
1516 * superblock before we can check the freecount for each btree.
1517 */
1518 be32_add_cpu(&agi->agi_freecount, -1);
1519 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1520 pag->pagi_freecount--;
1521
1522 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1523
1524 error = xfs_check_agi_freecount(icur);
1525 if (error)
1526 goto error_icur;
1527 error = xfs_check_agi_freecount(cur);
1528 if (error)
1529 goto error_icur;
1530
1531 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1532 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1533 *inop = ino;
1534 return 0;
1535
1536error_icur:
1537 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1538error_cur:
1539 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1540 return error;
1541}
1542
1543static int
1544xfs_dialloc_roll(
1545 struct xfs_trans **tpp,
1546 struct xfs_buf *agibp)
1547{
1548 struct xfs_trans *tp = *tpp;
1549 struct xfs_dquot_acct *dqinfo;
1550 int error;
1551
1552 /*
1553 * Hold to on to the agibp across the commit so no other allocation can
1554 * come in and take the free inodes we just allocated for our caller.
1555 */
1556 xfs_trans_bhold(tp, agibp);
1557
1558 /*
1559 * We want the quota changes to be associated with the next transaction,
1560 * NOT this one. So, detach the dqinfo from this and attach it to the
1561 * next transaction.
1562 */
1563 dqinfo = tp->t_dqinfo;
1564 tp->t_dqinfo = NULL;
1565
1566 error = xfs_trans_roll(&tp);
1567
1568 /* Re-attach the quota info that we detached from prev trx. */
1569 tp->t_dqinfo = dqinfo;
1570
1571 /*
1572 * Join the buffer even on commit error so that the buffer is released
1573 * when the caller cancels the transaction and doesn't have to handle
1574 * this error case specially.
1575 */
1576 xfs_trans_bjoin(tp, agibp);
1577 *tpp = tp;
1578 return error;
1579}
1580
1581static xfs_agnumber_t
1582xfs_ialloc_next_ag(
1583 xfs_mount_t *mp)
1584{
1585 xfs_agnumber_t agno;
1586
1587 spin_lock(&mp->m_agirotor_lock);
1588 agno = mp->m_agirotor;
1589 if (++mp->m_agirotor >= mp->m_maxagi)
1590 mp->m_agirotor = 0;
1591 spin_unlock(&mp->m_agirotor_lock);
1592
1593 return agno;
1594}
1595
1596static bool
1597xfs_dialloc_good_ag(
1598 struct xfs_trans *tp,
1599 struct xfs_perag *pag,
1600 umode_t mode,
1601 int flags,
1602 bool ok_alloc)
1603{
1604 struct xfs_mount *mp = tp->t_mountp;
1605 xfs_extlen_t ineed;
1606 xfs_extlen_t longest = 0;
1607 int needspace;
1608 int error;
1609
1610 if (!pag->pagi_inodeok)
1611 return false;
1612
1613 if (!pag->pagi_init) {
1614 error = xfs_ialloc_pagi_init(mp, tp, pag->pag_agno);
1615 if (error)
1616 return false;
1617 }
1618
1619 if (pag->pagi_freecount)
1620 return true;
1621 if (!ok_alloc)
1622 return false;
1623
1624 if (!pag->pagf_init) {
1625 error = xfs_alloc_pagf_init(mp, tp, pag->pag_agno, flags);
1626 if (error)
1627 return false;
1628 }
1629
1630 /*
1631 * Check that there is enough free space for the file plus a chunk of
1632 * inodes if we need to allocate some. If this is the first pass across
1633 * the AGs, take into account the potential space needed for alignment
1634 * of inode chunks when checking the longest contiguous free space in
1635 * the AG - this prevents us from getting ENOSPC because we have free
1636 * space larger than ialloc_blks but alignment constraints prevent us
1637 * from using it.
1638 *
1639 * If we can't find an AG with space for full alignment slack to be
1640 * taken into account, we must be near ENOSPC in all AGs. Hence we
1641 * don't include alignment for the second pass and so if we fail
1642 * allocation due to alignment issues then it is most likely a real
1643 * ENOSPC condition.
1644 *
1645 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1646 * reservations that xfs_alloc_fix_freelist() now does via
1647 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1648 * be more than large enough for the check below to succeed, but
1649 * xfs_alloc_space_available() will fail because of the non-zero
1650 * metadata reservation and hence we won't actually be able to allocate
1651 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1652 * because of this.
1653 */
1654 ineed = M_IGEO(mp)->ialloc_min_blks;
1655 if (flags && ineed > 1)
1656 ineed += M_IGEO(mp)->cluster_align;
1657 longest = pag->pagf_longest;
1658 if (!longest)
1659 longest = pag->pagf_flcount > 0;
1660 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1661
1662 if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1663 return false;
1664 return true;
1665}
1666
1667static int
1668xfs_dialloc_try_ag(
1669 struct xfs_trans **tpp,
1670 struct xfs_perag *pag,
1671 xfs_ino_t parent,
1672 xfs_ino_t *new_ino,
1673 bool ok_alloc)
1674{
1675 struct xfs_buf *agbp;
1676 xfs_ino_t ino;
1677 int error;
1678
1679 /*
1680 * Then read in the AGI buffer and recheck with the AGI buffer
1681 * lock held.
1682 */
1683 error = xfs_ialloc_read_agi(pag->pag_mount, *tpp, pag->pag_agno, &agbp);
1684 if (error)
1685 return error;
1686
1687 if (!pag->pagi_freecount) {
1688 if (!ok_alloc) {
1689 error = -EAGAIN;
1690 goto out_release;
1691 }
1692
1693 error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1694 if (error < 0)
1695 goto out_release;
1696
1697 /*
1698 * We successfully allocated space for an inode cluster in this
1699 * AG. Roll the transaction so that we can allocate one of the
1700 * new inodes.
1701 */
1702 ASSERT(pag->pagi_freecount > 0);
1703 error = xfs_dialloc_roll(tpp, agbp);
1704 if (error)
1705 goto out_release;
1706 }
1707
1708 /* Allocate an inode in the found AG */
1709 error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1710 if (!error)
1711 *new_ino = ino;
1712 return error;
1713
1714out_release:
1715 xfs_trans_brelse(*tpp, agbp);
1716 return error;
1717}
1718
1719/*
1720 * Allocate an on-disk inode.
1721 *
1722 * Mode is used to tell whether the new inode is a directory and hence where to
1723 * locate it. The on-disk inode that is allocated will be returned in @new_ino
1724 * on success, otherwise an error will be set to indicate the failure (e.g.
1725 * -ENOSPC).
1726 */
1727int
1728xfs_dialloc(
1729 struct xfs_trans **tpp,
1730 xfs_ino_t parent,
1731 umode_t mode,
1732 xfs_ino_t *new_ino)
1733{
1734 struct xfs_mount *mp = (*tpp)->t_mountp;
1735 xfs_agnumber_t agno;
1736 int error = 0;
1737 xfs_agnumber_t start_agno;
1738 struct xfs_perag *pag;
1739 struct xfs_ino_geometry *igeo = M_IGEO(mp);
1740 bool ok_alloc = true;
1741 int flags;
1742 xfs_ino_t ino;
1743
1744 /*
1745 * Directories, symlinks, and regular files frequently allocate at least
1746 * one block, so factor that potential expansion when we examine whether
1747 * an AG has enough space for file creation.
1748 */
1749 if (S_ISDIR(mode))
1750 start_agno = xfs_ialloc_next_ag(mp);
1751 else {
1752 start_agno = XFS_INO_TO_AGNO(mp, parent);
1753 if (start_agno >= mp->m_maxagi)
1754 start_agno = 0;
1755 }
1756
1757 /*
1758 * If we have already hit the ceiling of inode blocks then clear
1759 * ok_alloc so we scan all available agi structures for a free
1760 * inode.
1761 *
1762 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1763 * which will sacrifice the preciseness but improve the performance.
1764 */
1765 if (igeo->maxicount &&
1766 percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1767 > igeo->maxicount) {
1768 ok_alloc = false;
1769 }
1770
1771 /*
1772 * Loop until we find an allocation group that either has free inodes
1773 * or in which we can allocate some inodes. Iterate through the
1774 * allocation groups upward, wrapping at the end.
1775 */
1776 agno = start_agno;
1777 flags = XFS_ALLOC_FLAG_TRYLOCK;
1778 for (;;) {
1779 pag = xfs_perag_get(mp, agno);
1780 if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1781 error = xfs_dialloc_try_ag(tpp, pag, parent,
1782 &ino, ok_alloc);
1783 if (error != -EAGAIN)
1784 break;
1785 }
1786
1787 if (XFS_FORCED_SHUTDOWN(mp)) {
1788 error = -EFSCORRUPTED;
1789 break;
1790 }
1791 if (++agno == mp->m_maxagi)
1792 agno = 0;
1793 if (agno == start_agno) {
1794 if (!flags) {
1795 error = -ENOSPC;
1796 break;
1797 }
1798 flags = 0;
1799 }
1800 xfs_perag_put(pag);
1801 }
1802
1803 if (!error)
1804 *new_ino = ino;
1805 xfs_perag_put(pag);
1806 return error;
1807}
1808
1809/*
1810 * Free the blocks of an inode chunk. We must consider that the inode chunk
1811 * might be sparse and only free the regions that are allocated as part of the
1812 * chunk.
1813 */
1814STATIC void
1815xfs_difree_inode_chunk(
1816 struct xfs_trans *tp,
1817 xfs_agnumber_t agno,
1818 struct xfs_inobt_rec_incore *rec)
1819{
1820 struct xfs_mount *mp = tp->t_mountp;
1821 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
1822 rec->ir_startino);
1823 int startidx, endidx;
1824 int nextbit;
1825 xfs_agblock_t agbno;
1826 int contigblk;
1827 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1828
1829 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1830 /* not sparse, calculate extent info directly */
1831 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1832 M_IGEO(mp)->ialloc_blks,
1833 &XFS_RMAP_OINFO_INODES);
1834 return;
1835 }
1836
1837 /* holemask is only 16-bits (fits in an unsigned long) */
1838 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 holemask[0] = rec->ir_holemask;
1840
1841 /*
1842 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 * holemask and convert the start/end index of each range to an extent.
1844 * We start with the start and end index both pointing at the first 0 in
1845 * the mask.
1846 */
1847 startidx = endidx = find_first_zero_bit(holemask,
1848 XFS_INOBT_HOLEMASK_BITS);
1849 nextbit = startidx + 1;
1850 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 nextbit);
1853 /*
1854 * If the next zero bit is contiguous, update the end index of
1855 * the current range and continue.
1856 */
1857 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 nextbit == endidx + 1) {
1859 endidx = nextbit;
1860 goto next;
1861 }
1862
1863 /*
1864 * nextbit is not contiguous with the current end index. Convert
1865 * the current start/end to an extent and add it to the free
1866 * list.
1867 */
1868 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 mp->m_sb.sb_inopblock;
1870 contigblk = ((endidx - startidx + 1) *
1871 XFS_INODES_PER_HOLEMASK_BIT) /
1872 mp->m_sb.sb_inopblock;
1873
1874 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1876 xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1877 contigblk, &XFS_RMAP_OINFO_INODES);
1878
1879 /* reset range to current bit and carry on... */
1880 startidx = endidx = nextbit;
1881
1882next:
1883 nextbit++;
1884 }
1885}
1886
1887STATIC int
1888xfs_difree_inobt(
1889 struct xfs_mount *mp,
1890 struct xfs_trans *tp,
1891 struct xfs_buf *agbp,
1892 struct xfs_perag *pag,
1893 xfs_agino_t agino,
1894 struct xfs_icluster *xic,
1895 struct xfs_inobt_rec_incore *orec)
1896{
1897 struct xfs_agi *agi = agbp->b_addr;
1898 struct xfs_btree_cur *cur;
1899 struct xfs_inobt_rec_incore rec;
1900 int ilen;
1901 int error;
1902 int i;
1903 int off;
1904
1905 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1906 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1907
1908 /*
1909 * Initialize the cursor.
1910 */
1911 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1912
1913 error = xfs_check_agi_freecount(cur);
1914 if (error)
1915 goto error0;
1916
1917 /*
1918 * Look for the entry describing this inode.
1919 */
1920 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1921 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1922 __func__, error);
1923 goto error0;
1924 }
1925 if (XFS_IS_CORRUPT(mp, i != 1)) {
1926 error = -EFSCORRUPTED;
1927 goto error0;
1928 }
1929 error = xfs_inobt_get_rec(cur, &rec, &i);
1930 if (error) {
1931 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1932 __func__, error);
1933 goto error0;
1934 }
1935 if (XFS_IS_CORRUPT(mp, i != 1)) {
1936 error = -EFSCORRUPTED;
1937 goto error0;
1938 }
1939 /*
1940 * Get the offset in the inode chunk.
1941 */
1942 off = agino - rec.ir_startino;
1943 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1944 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1945 /*
1946 * Mark the inode free & increment the count.
1947 */
1948 rec.ir_free |= XFS_INOBT_MASK(off);
1949 rec.ir_freecount++;
1950
1951 /*
1952 * When an inode chunk is free, it becomes eligible for removal. Don't
1953 * remove the chunk if the block size is large enough for multiple inode
1954 * chunks (that might not be free).
1955 */
1956 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1957 rec.ir_free == XFS_INOBT_ALL_FREE &&
1958 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1959 struct xfs_perag *pag = agbp->b_pag;
1960
1961 xic->deleted = true;
1962 xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1963 rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1965
1966 /*
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1970 */
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag->pagi_freecount -= ilen - 1;
1976 pag->pagi_count -= ilen;
1977 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1979
1980 if ((error = xfs_btree_delete(cur, &i))) {
1981 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1982 __func__, error);
1983 goto error0;
1984 }
1985
1986 xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1987 } else {
1988 xic->deleted = false;
1989
1990 error = xfs_inobt_update(cur, &rec);
1991 if (error) {
1992 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1993 __func__, error);
1994 goto error0;
1995 }
1996
1997 /*
1998 * Change the inode free counts and log the ag/sb changes.
1999 */
2000 be32_add_cpu(&agi->agi_freecount, 1);
2001 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2002 pag->pagi_freecount++;
2003 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2004 }
2005
2006 error = xfs_check_agi_freecount(cur);
2007 if (error)
2008 goto error0;
2009
2010 *orec = rec;
2011 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2012 return 0;
2013
2014error0:
2015 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2016 return error;
2017}
2018
2019/*
2020 * Free an inode in the free inode btree.
2021 */
2022STATIC int
2023xfs_difree_finobt(
2024 struct xfs_mount *mp,
2025 struct xfs_trans *tp,
2026 struct xfs_buf *agbp,
2027 struct xfs_perag *pag,
2028 xfs_agino_t agino,
2029 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2030{
2031 struct xfs_btree_cur *cur;
2032 struct xfs_inobt_rec_incore rec;
2033 int offset = agino - ibtrec->ir_startino;
2034 int error;
2035 int i;
2036
2037 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2038
2039 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2040 if (error)
2041 goto error;
2042 if (i == 0) {
2043 /*
2044 * If the record does not exist in the finobt, we must have just
2045 * freed an inode in a previously fully allocated chunk. If not,
2046 * something is out of sync.
2047 */
2048 if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2049 error = -EFSCORRUPTED;
2050 goto error;
2051 }
2052
2053 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2054 ibtrec->ir_count,
2055 ibtrec->ir_freecount,
2056 ibtrec->ir_free, &i);
2057 if (error)
2058 goto error;
2059 ASSERT(i == 1);
2060
2061 goto out;
2062 }
2063
2064 /*
2065 * Read and update the existing record. We could just copy the ibtrec
2066 * across here, but that would defeat the purpose of having redundant
2067 * metadata. By making the modifications independently, we can catch
2068 * corruptions that we wouldn't see if we just copied from one record
2069 * to another.
2070 */
2071 error = xfs_inobt_get_rec(cur, &rec, &i);
2072 if (error)
2073 goto error;
2074 if (XFS_IS_CORRUPT(mp, i != 1)) {
2075 error = -EFSCORRUPTED;
2076 goto error;
2077 }
2078
2079 rec.ir_free |= XFS_INOBT_MASK(offset);
2080 rec.ir_freecount++;
2081
2082 if (XFS_IS_CORRUPT(mp,
2083 rec.ir_free != ibtrec->ir_free ||
2084 rec.ir_freecount != ibtrec->ir_freecount)) {
2085 error = -EFSCORRUPTED;
2086 goto error;
2087 }
2088
2089 /*
2090 * The content of inobt records should always match between the inobt
2091 * and finobt. The lifecycle of records in the finobt is different from
2092 * the inobt in that the finobt only tracks records with at least one
2093 * free inode. Hence, if all of the inodes are free and we aren't
2094 * keeping inode chunks permanently on disk, remove the record.
2095 * Otherwise, update the record with the new information.
2096 *
2097 * Note that we currently can't free chunks when the block size is large
2098 * enough for multiple chunks. Leave the finobt record to remain in sync
2099 * with the inobt.
2100 */
2101 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2102 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2103 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2104 error = xfs_btree_delete(cur, &i);
2105 if (error)
2106 goto error;
2107 ASSERT(i == 1);
2108 } else {
2109 error = xfs_inobt_update(cur, &rec);
2110 if (error)
2111 goto error;
2112 }
2113
2114out:
2115 error = xfs_check_agi_freecount(cur);
2116 if (error)
2117 goto error;
2118
2119 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2120 return 0;
2121
2122error:
2123 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2124 return error;
2125}
2126
2127/*
2128 * Free disk inode. Carefully avoids touching the incore inode, all
2129 * manipulations incore are the caller's responsibility.
2130 * The on-disk inode is not changed by this operation, only the
2131 * btree (free inode mask) is changed.
2132 */
2133int
2134xfs_difree(
2135 struct xfs_trans *tp,
2136 struct xfs_perag *pag,
2137 xfs_ino_t inode,
2138 struct xfs_icluster *xic)
2139{
2140 /* REFERENCED */
2141 xfs_agblock_t agbno; /* block number containing inode */
2142 struct xfs_buf *agbp; /* buffer for allocation group header */
2143 xfs_agino_t agino; /* allocation group inode number */
2144 int error; /* error return value */
2145 struct xfs_mount *mp = tp->t_mountp;
2146 struct xfs_inobt_rec_incore rec;/* btree record */
2147
2148 /*
2149 * Break up inode number into its components.
2150 */
2151 if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2152 xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2153 __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2154 ASSERT(0);
2155 return -EINVAL;
2156 }
2157 agino = XFS_INO_TO_AGINO(mp, inode);
2158 if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2159 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2160 __func__, (unsigned long long)inode,
2161 (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2162 ASSERT(0);
2163 return -EINVAL;
2164 }
2165 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2166 if (agbno >= mp->m_sb.sb_agblocks) {
2167 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2168 __func__, agbno, mp->m_sb.sb_agblocks);
2169 ASSERT(0);
2170 return -EINVAL;
2171 }
2172 /*
2173 * Get the allocation group header.
2174 */
2175 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2176 if (error) {
2177 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2178 __func__, error);
2179 return error;
2180 }
2181
2182 /*
2183 * Fix up the inode allocation btree.
2184 */
2185 error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2186 if (error)
2187 goto error0;
2188
2189 /*
2190 * Fix up the free inode btree.
2191 */
2192 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2193 error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2194 if (error)
2195 goto error0;
2196 }
2197
2198 return 0;
2199
2200error0:
2201 return error;
2202}
2203
2204STATIC int
2205xfs_imap_lookup(
2206 struct xfs_mount *mp,
2207 struct xfs_trans *tp,
2208 struct xfs_perag *pag,
2209 xfs_agino_t agino,
2210 xfs_agblock_t agbno,
2211 xfs_agblock_t *chunk_agbno,
2212 xfs_agblock_t *offset_agbno,
2213 int flags)
2214{
2215 struct xfs_inobt_rec_incore rec;
2216 struct xfs_btree_cur *cur;
2217 struct xfs_buf *agbp;
2218 int error;
2219 int i;
2220
2221 error = xfs_ialloc_read_agi(mp, tp, pag->pag_agno, &agbp);
2222 if (error) {
2223 xfs_alert(mp,
2224 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2225 __func__, error, pag->pag_agno);
2226 return error;
2227 }
2228
2229 /*
2230 * Lookup the inode record for the given agino. If the record cannot be
2231 * found, then it's an invalid inode number and we should abort. Once
2232 * we have a record, we need to ensure it contains the inode number
2233 * we are looking up.
2234 */
2235 cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2236 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2237 if (!error) {
2238 if (i)
2239 error = xfs_inobt_get_rec(cur, &rec, &i);
2240 if (!error && i == 0)
2241 error = -EINVAL;
2242 }
2243
2244 xfs_trans_brelse(tp, agbp);
2245 xfs_btree_del_cursor(cur, error);
2246 if (error)
2247 return error;
2248
2249 /* check that the returned record contains the required inode */
2250 if (rec.ir_startino > agino ||
2251 rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2252 return -EINVAL;
2253
2254 /* for untrusted inodes check it is allocated first */
2255 if ((flags & XFS_IGET_UNTRUSTED) &&
2256 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2257 return -EINVAL;
2258
2259 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2260 *offset_agbno = agbno - *chunk_agbno;
2261 return 0;
2262}
2263
2264/*
2265 * Return the location of the inode in imap, for mapping it into a buffer.
2266 */
2267int
2268xfs_imap(
2269 struct xfs_mount *mp, /* file system mount structure */
2270 struct xfs_trans *tp, /* transaction pointer */
2271 xfs_ino_t ino, /* inode to locate */
2272 struct xfs_imap *imap, /* location map structure */
2273 uint flags) /* flags for inode btree lookup */
2274{
2275 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2276 xfs_agino_t agino; /* inode number within alloc group */
2277 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2278 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2279 int error; /* error code */
2280 int offset; /* index of inode in its buffer */
2281 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2282 struct xfs_perag *pag;
2283
2284 ASSERT(ino != NULLFSINO);
2285
2286 /*
2287 * Split up the inode number into its parts.
2288 */
2289 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2294 error = -EINVAL;
2295#ifdef DEBUG
2296 /*
2297 * Don't output diagnostic information for untrusted inodes
2298 * as they can be invalid without implying corruption.
2299 */
2300 if (flags & XFS_IGET_UNTRUSTED)
2301 goto out_drop;
2302 if (!pag) {
2303 xfs_alert(mp,
2304 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2305 __func__, XFS_INO_TO_AGNO(mp, ino),
2306 mp->m_sb.sb_agcount);
2307 }
2308 if (agbno >= mp->m_sb.sb_agblocks) {
2309 xfs_alert(mp,
2310 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2311 __func__, (unsigned long long)agbno,
2312 (unsigned long)mp->m_sb.sb_agblocks);
2313 }
2314 if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2315 xfs_alert(mp,
2316 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2317 __func__, ino,
2318 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2319 }
2320 xfs_stack_trace();
2321#endif /* DEBUG */
2322 goto out_drop;
2323 }
2324
2325 /*
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2331 */
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 goto out_drop;
2337 goto out_map;
2338 }
2339
2340 /*
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2343 */
2344 if (M_IGEO(mp)->blocks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2347
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 error = 0;
2353 goto out_drop;
2354 }
2355
2356 /*
2357 * If the inode chunks are aligned then use simple maths to
2358 * find the location. Otherwise we have to do a btree
2359 * lookup to find the location.
2360 */
2361 if (M_IGEO(mp)->inoalign_mask) {
2362 offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2363 chunk_agbno = agbno - offset_agbno;
2364 } else {
2365 error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2366 &chunk_agbno, &offset_agbno, flags);
2367 if (error)
2368 goto out_drop;
2369 }
2370
2371out_map:
2372 ASSERT(agbno >= chunk_agbno);
2373 cluster_agbno = chunk_agbno +
2374 ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2375 M_IGEO(mp)->blocks_per_cluster);
2376 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2377 XFS_INO_TO_OFFSET(mp, ino);
2378
2379 imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2380 imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2381 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2382
2383 /*
2384 * If the inode number maps to a block outside the bounds
2385 * of the file system then return NULL rather than calling
2386 * read_buf and panicing when we get an error from the
2387 * driver.
2388 */
2389 if ((imap->im_blkno + imap->im_len) >
2390 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2391 xfs_alert(mp,
2392 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2393 __func__, (unsigned long long) imap->im_blkno,
2394 (unsigned long long) imap->im_len,
2395 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2396 error = -EINVAL;
2397 goto out_drop;
2398 }
2399 error = 0;
2400out_drop:
2401 if (pag)
2402 xfs_perag_put(pag);
2403 return error;
2404}
2405
2406/*
2407 * Log specified fields for the ag hdr (inode section). The growth of the agi
2408 * structure over time requires that we interpret the buffer as two logical
2409 * regions delineated by the end of the unlinked list. This is due to the size
2410 * of the hash table and its location in the middle of the agi.
2411 *
2412 * For example, a request to log a field before agi_unlinked and a field after
2413 * agi_unlinked could cause us to log the entire hash table and use an excessive
2414 * amount of log space. To avoid this behavior, log the region up through
2415 * agi_unlinked in one call and the region after agi_unlinked through the end of
2416 * the structure in another.
2417 */
2418void
2419xfs_ialloc_log_agi(
2420 xfs_trans_t *tp, /* transaction pointer */
2421 struct xfs_buf *bp, /* allocation group header buffer */
2422 int fields) /* bitmask of fields to log */
2423{
2424 int first; /* first byte number */
2425 int last; /* last byte number */
2426 static const short offsets[] = { /* field starting offsets */
2427 /* keep in sync with bit definitions */
2428 offsetof(xfs_agi_t, agi_magicnum),
2429 offsetof(xfs_agi_t, agi_versionnum),
2430 offsetof(xfs_agi_t, agi_seqno),
2431 offsetof(xfs_agi_t, agi_length),
2432 offsetof(xfs_agi_t, agi_count),
2433 offsetof(xfs_agi_t, agi_root),
2434 offsetof(xfs_agi_t, agi_level),
2435 offsetof(xfs_agi_t, agi_freecount),
2436 offsetof(xfs_agi_t, agi_newino),
2437 offsetof(xfs_agi_t, agi_dirino),
2438 offsetof(xfs_agi_t, agi_unlinked),
2439 offsetof(xfs_agi_t, agi_free_root),
2440 offsetof(xfs_agi_t, agi_free_level),
2441 offsetof(xfs_agi_t, agi_iblocks),
2442 sizeof(xfs_agi_t)
2443 };
2444#ifdef DEBUG
2445 struct xfs_agi *agi = bp->b_addr;
2446
2447 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2448#endif
2449
2450 /*
2451 * Compute byte offsets for the first and last fields in the first
2452 * region and log the agi buffer. This only logs up through
2453 * agi_unlinked.
2454 */
2455 if (fields & XFS_AGI_ALL_BITS_R1) {
2456 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2457 &first, &last);
2458 xfs_trans_log_buf(tp, bp, first, last);
2459 }
2460
2461 /*
2462 * Mask off the bits in the first region and calculate the first and
2463 * last field offsets for any bits in the second region.
2464 */
2465 fields &= ~XFS_AGI_ALL_BITS_R1;
2466 if (fields) {
2467 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2468 &first, &last);
2469 xfs_trans_log_buf(tp, bp, first, last);
2470 }
2471}
2472
2473static xfs_failaddr_t
2474xfs_agi_verify(
2475 struct xfs_buf *bp)
2476{
2477 struct xfs_mount *mp = bp->b_mount;
2478 struct xfs_agi *agi = bp->b_addr;
2479 int i;
2480
2481 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2482 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2483 return __this_address;
2484 if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2485 return __this_address;
2486 }
2487
2488 /*
2489 * Validate the magic number of the agi block.
2490 */
2491 if (!xfs_verify_magic(bp, agi->agi_magicnum))
2492 return __this_address;
2493 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2494 return __this_address;
2495
2496 if (be32_to_cpu(agi->agi_level) < 1 ||
2497 be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2498 return __this_address;
2499
2500 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2501 (be32_to_cpu(agi->agi_free_level) < 1 ||
2502 be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2503 return __this_address;
2504
2505 /*
2506 * during growfs operations, the perag is not fully initialised,
2507 * so we can't use it for any useful checking. growfs ensures we can't
2508 * use it by using uncached buffers that don't have the perag attached
2509 * so we can detect and avoid this problem.
2510 */
2511 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2512 return __this_address;
2513
2514 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2515 if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2516 continue;
2517 if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2518 return __this_address;
2519 }
2520
2521 return NULL;
2522}
2523
2524static void
2525xfs_agi_read_verify(
2526 struct xfs_buf *bp)
2527{
2528 struct xfs_mount *mp = bp->b_mount;
2529 xfs_failaddr_t fa;
2530
2531 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2532 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2533 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2534 else {
2535 fa = xfs_agi_verify(bp);
2536 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2537 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2538 }
2539}
2540
2541static void
2542xfs_agi_write_verify(
2543 struct xfs_buf *bp)
2544{
2545 struct xfs_mount *mp = bp->b_mount;
2546 struct xfs_buf_log_item *bip = bp->b_log_item;
2547 struct xfs_agi *agi = bp->b_addr;
2548 xfs_failaddr_t fa;
2549
2550 fa = xfs_agi_verify(bp);
2551 if (fa) {
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2553 return;
2554 }
2555
2556 if (!xfs_sb_version_hascrc(&mp->m_sb))
2557 return;
2558
2559 if (bip)
2560 agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2561 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2562}
2563
2564const struct xfs_buf_ops xfs_agi_buf_ops = {
2565 .name = "xfs_agi",
2566 .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2567 .verify_read = xfs_agi_read_verify,
2568 .verify_write = xfs_agi_write_verify,
2569 .verify_struct = xfs_agi_verify,
2570};
2571
2572/*
2573 * Read in the allocation group header (inode allocation section)
2574 */
2575int
2576xfs_read_agi(
2577 struct xfs_mount *mp, /* file system mount structure */
2578 struct xfs_trans *tp, /* transaction pointer */
2579 xfs_agnumber_t agno, /* allocation group number */
2580 struct xfs_buf **bpp) /* allocation group hdr buf */
2581{
2582 int error;
2583
2584 trace_xfs_read_agi(mp, agno);
2585
2586 ASSERT(agno != NULLAGNUMBER);
2587 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2588 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2589 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2590 if (error)
2591 return error;
2592 if (tp)
2593 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2594
2595 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2596 return 0;
2597}
2598
2599int
2600xfs_ialloc_read_agi(
2601 struct xfs_mount *mp, /* file system mount structure */
2602 struct xfs_trans *tp, /* transaction pointer */
2603 xfs_agnumber_t agno, /* allocation group number */
2604 struct xfs_buf **bpp) /* allocation group hdr buf */
2605{
2606 struct xfs_agi *agi; /* allocation group header */
2607 struct xfs_perag *pag; /* per allocation group data */
2608 int error;
2609
2610 trace_xfs_ialloc_read_agi(mp, agno);
2611
2612 error = xfs_read_agi(mp, tp, agno, bpp);
2613 if (error)
2614 return error;
2615
2616 agi = (*bpp)->b_addr;
2617 pag = (*bpp)->b_pag;
2618 if (!pag->pagi_init) {
2619 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2620 pag->pagi_count = be32_to_cpu(agi->agi_count);
2621 pag->pagi_init = 1;
2622 }
2623
2624 /*
2625 * It's possible for these to be out of sync if
2626 * we are in the middle of a forced shutdown.
2627 */
2628 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2629 XFS_FORCED_SHUTDOWN(mp));
2630 return 0;
2631}
2632
2633/*
2634 * Read in the agi to initialise the per-ag data in the mount structure
2635 */
2636int
2637xfs_ialloc_pagi_init(
2638 xfs_mount_t *mp, /* file system mount structure */
2639 xfs_trans_t *tp, /* transaction pointer */
2640 xfs_agnumber_t agno) /* allocation group number */
2641{
2642 struct xfs_buf *bp = NULL;
2643 int error;
2644
2645 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2646 if (error)
2647 return error;
2648 if (bp)
2649 xfs_trans_brelse(tp, bp);
2650 return 0;
2651}
2652
2653/* Is there an inode record covering a given range of inode numbers? */
2654int
2655xfs_ialloc_has_inode_record(
2656 struct xfs_btree_cur *cur,
2657 xfs_agino_t low,
2658 xfs_agino_t high,
2659 bool *exists)
2660{
2661 struct xfs_inobt_rec_incore irec;
2662 xfs_agino_t agino;
2663 uint16_t holemask;
2664 int has_record;
2665 int i;
2666 int error;
2667
2668 *exists = false;
2669 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2670 while (error == 0 && has_record) {
2671 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2672 if (error || irec.ir_startino > high)
2673 break;
2674
2675 agino = irec.ir_startino;
2676 holemask = irec.ir_holemask;
2677 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2678 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2679 if (holemask & 1)
2680 continue;
2681 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2682 agino <= high) {
2683 *exists = true;
2684 return 0;
2685 }
2686 }
2687
2688 error = xfs_btree_increment(cur, 0, &has_record);
2689 }
2690 return error;
2691}
2692
2693/* Is there an inode record covering a given extent? */
2694int
2695xfs_ialloc_has_inodes_at_extent(
2696 struct xfs_btree_cur *cur,
2697 xfs_agblock_t bno,
2698 xfs_extlen_t len,
2699 bool *exists)
2700{
2701 xfs_agino_t low;
2702 xfs_agino_t high;
2703
2704 low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2705 high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2706
2707 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2708}
2709
2710struct xfs_ialloc_count_inodes {
2711 xfs_agino_t count;
2712 xfs_agino_t freecount;
2713};
2714
2715/* Record inode counts across all inobt records. */
2716STATIC int
2717xfs_ialloc_count_inodes_rec(
2718 struct xfs_btree_cur *cur,
2719 union xfs_btree_rec *rec,
2720 void *priv)
2721{
2722 struct xfs_inobt_rec_incore irec;
2723 struct xfs_ialloc_count_inodes *ci = priv;
2724
2725 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2726 ci->count += irec.ir_count;
2727 ci->freecount += irec.ir_freecount;
2728
2729 return 0;
2730}
2731
2732/* Count allocated and free inodes under an inobt. */
2733int
2734xfs_ialloc_count_inodes(
2735 struct xfs_btree_cur *cur,
2736 xfs_agino_t *count,
2737 xfs_agino_t *freecount)
2738{
2739 struct xfs_ialloc_count_inodes ci = {0};
2740 int error;
2741
2742 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2743 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2744 if (error)
2745 return error;
2746
2747 *count = ci.count;
2748 *freecount = ci.freecount;
2749 return 0;
2750}
2751
2752/*
2753 * Initialize inode-related geometry information.
2754 *
2755 * Compute the inode btree min and max levels and set maxicount.
2756 *
2757 * Set the inode cluster size. This may still be overridden by the file
2758 * system block size if it is larger than the chosen cluster size.
2759 *
2760 * For v5 filesystems, scale the cluster size with the inode size to keep a
2761 * constant ratio of inode per cluster buffer, but only if mkfs has set the
2762 * inode alignment value appropriately for larger cluster sizes.
2763 *
2764 * Then compute the inode cluster alignment information.
2765 */
2766void
2767xfs_ialloc_setup_geometry(
2768 struct xfs_mount *mp)
2769{
2770 struct xfs_sb *sbp = &mp->m_sb;
2771 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2772 uint64_t icount;
2773 uint inodes;
2774
2775 igeo->new_diflags2 = 0;
2776 if (xfs_sb_version_hasbigtime(&mp->m_sb))
2777 igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2778
2779 /* Compute inode btree geometry. */
2780 igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2781 igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2782 igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2783 igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2784 igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2785
2786 igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2787 sbp->sb_inopblock);
2788 igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2789
2790 if (sbp->sb_spino_align)
2791 igeo->ialloc_min_blks = sbp->sb_spino_align;
2792 else
2793 igeo->ialloc_min_blks = igeo->ialloc_blks;
2794
2795 /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2796 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2797 igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2798 inodes);
2799
2800 /*
2801 * Set the maximum inode count for this filesystem, being careful not
2802 * to use obviously garbage sb_inopblog/sb_inopblock values. Regular
2803 * users should never get here due to failing sb verification, but
2804 * certain users (xfs_db) need to be usable even with corrupt metadata.
2805 */
2806 if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2807 /*
2808 * Make sure the maximum inode count is a multiple
2809 * of the units we allocate inodes in.
2810 */
2811 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2812 do_div(icount, 100);
2813 do_div(icount, igeo->ialloc_blks);
2814 igeo->maxicount = XFS_FSB_TO_INO(mp,
2815 icount * igeo->ialloc_blks);
2816 } else {
2817 igeo->maxicount = 0;
2818 }
2819
2820 /*
2821 * Compute the desired size of an inode cluster buffer size, which
2822 * starts at 8K and (on v5 filesystems) scales up with larger inode
2823 * sizes.
2824 *
2825 * Preserve the desired inode cluster size because the sparse inodes
2826 * feature uses that desired size (not the actual size) to compute the
2827 * sparse inode alignment. The mount code validates this value, so we
2828 * cannot change the behavior.
2829 */
2830 igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2831 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
2832 int new_size = igeo->inode_cluster_size_raw;
2833
2834 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2835 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2836 igeo->inode_cluster_size_raw = new_size;
2837 }
2838
2839 /* Calculate inode cluster ratios. */
2840 if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2841 igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2842 igeo->inode_cluster_size_raw);
2843 else
2844 igeo->blocks_per_cluster = 1;
2845 igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2846 igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2847
2848 /* Calculate inode cluster alignment. */
2849 if (xfs_sb_version_hasalign(&mp->m_sb) &&
2850 mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2851 igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2852 else
2853 igeo->cluster_align = 1;
2854 igeo->inoalign_mask = igeo->cluster_align - 1;
2855 igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2856
2857 /*
2858 * If we are using stripe alignment, check whether
2859 * the stripe unit is a multiple of the inode alignment
2860 */
2861 if (mp->m_dalign && igeo->inoalign_mask &&
2862 !(mp->m_dalign & igeo->inoalign_mask))
2863 igeo->ialloc_align = mp->m_dalign;
2864 else
2865 igeo->ialloc_align = 0;
2866}
2867
2868/* Compute the location of the root directory inode that is laid out by mkfs. */
2869xfs_ino_t
2870xfs_ialloc_calc_rootino(
2871 struct xfs_mount *mp,
2872 int sunit)
2873{
2874 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2875 xfs_agblock_t first_bno;
2876
2877 /*
2878 * Pre-calculate the geometry of AG 0. We know what it looks like
2879 * because libxfs knows how to create allocation groups now.
2880 *
2881 * first_bno is the first block in which mkfs could possibly have
2882 * allocated the root directory inode, once we factor in the metadata
2883 * that mkfs formats before it. Namely, the four AG headers...
2884 */
2885 first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2886
2887 /* ...the two free space btree roots... */
2888 first_bno += 2;
2889
2890 /* ...the inode btree root... */
2891 first_bno += 1;
2892
2893 /* ...the initial AGFL... */
2894 first_bno += xfs_alloc_min_freelist(mp, NULL);
2895
2896 /* ...the free inode btree root... */
2897 if (xfs_sb_version_hasfinobt(&mp->m_sb))
2898 first_bno++;
2899
2900 /* ...the reverse mapping btree root... */
2901 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2902 first_bno++;
2903
2904 /* ...the reference count btree... */
2905 if (xfs_sb_version_hasreflink(&mp->m_sb))
2906 first_bno++;
2907
2908 /*
2909 * ...and the log, if it is allocated in the first allocation group.
2910 *
2911 * This can happen with filesystems that only have a single
2912 * allocation group, or very odd geometries created by old mkfs
2913 * versions on very small filesystems.
2914 */
2915 if (mp->m_sb.sb_logstart &&
2916 XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0)
2917 first_bno += mp->m_sb.sb_logblocks;
2918
2919 /*
2920 * Now round first_bno up to whatever allocation alignment is given
2921 * by the filesystem or was passed in.
2922 */
2923 if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0)
2924 first_bno = roundup(first_bno, sunit);
2925 else if (xfs_sb_version_hasalign(&mp->m_sb) &&
2926 mp->m_sb.sb_inoalignmt > 1)
2927 first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2928
2929 return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2930}
2931
2932/*
2933 * Ensure there are not sparse inode clusters that cross the new EOAG.
2934 *
2935 * This is a no-op for non-spinode filesystems since clusters are always fully
2936 * allocated and checking the bnobt suffices. However, a spinode filesystem
2937 * could have a record where the upper inodes are free blocks. If those blocks
2938 * were removed from the filesystem, the inode record would extend beyond EOAG,
2939 * which will be flagged as corruption.
2940 */
2941int
2942xfs_ialloc_check_shrink(
2943 struct xfs_trans *tp,
2944 xfs_agnumber_t agno,
2945 struct xfs_buf *agibp,
2946 xfs_agblock_t new_length)
2947{
2948 struct xfs_inobt_rec_incore rec;
2949 struct xfs_btree_cur *cur;
2950 struct xfs_mount *mp = tp->t_mountp;
2951 struct xfs_perag *pag;
2952 xfs_agino_t agino = XFS_AGB_TO_AGINO(mp, new_length);
2953 int has;
2954 int error;
2955
2956 if (!xfs_sb_version_hassparseinodes(&mp->m_sb))
2957 return 0;
2958
2959 pag = xfs_perag_get(mp, agno);
2960 cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2961
2962 /* Look up the inobt record that would correspond to the new EOFS. */
2963 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2964 if (error || !has)
2965 goto out;
2966
2967 error = xfs_inobt_get_rec(cur, &rec, &has);
2968 if (error)
2969 goto out;
2970
2971 if (!has) {
2972 error = -EFSCORRUPTED;
2973 goto out;
2974 }
2975
2976 /* If the record covers inodes that would be beyond EOFS, bail out. */
2977 if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2978 error = -ENOSPC;
2979 goto out;
2980 }
2981out:
2982 xfs_btree_del_cursor(cur, error);
2983 xfs_perag_put(pag);
2984 return error;
2985}