Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 
 24#include <linux/cpuidle.h>
 25#include <trace/events/power.h>
 26#include <linux/hw_breakpoint.h>
 27#include <asm/cpu.h>
 28#include <asm/apic.h>
 29#include <asm/syscalls.h>
 30#include <linux/uaccess.h>
 31#include <asm/mwait.h>
 32#include <asm/fpu/internal.h>
 33#include <asm/debugreg.h>
 34#include <asm/nmi.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mce.h>
 37#include <asm/vm86.h>
 38#include <asm/switch_to.h>
 39#include <asm/desc.h>
 40#include <asm/prctl.h>
 41#include <asm/spec-ctrl.h>
 42
 43/*
 44 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 45 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 46 * so they are allowed to end up in the .data..cacheline_aligned
 47 * section. Since TSS's are completely CPU-local, we want them
 48 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 49 */
 50__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 51	.x86_tss = {
 52		/*
 53		 * .sp0 is only used when entering ring 0 from a lower
 54		 * privilege level.  Since the init task never runs anything
 55		 * but ring 0 code, there is no need for a valid value here.
 56		 * Poison it.
 57		 */
 58		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 59
 60#ifdef CONFIG_X86_64
 61		/*
 62		 * .sp1 is cpu_current_top_of_stack.  The init task never
 63		 * runs user code, but cpu_current_top_of_stack should still
 64		 * be well defined before the first context switch.
 65		 */
 66		.sp1 = TOP_OF_INIT_STACK,
 67#endif
 68
 69#ifdef CONFIG_X86_32
 70		.ss0 = __KERNEL_DS,
 71		.ss1 = __KERNEL_CS,
 72		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 73#endif
 74	 },
 75#ifdef CONFIG_X86_32
 76	 /*
 77	  * Note that the .io_bitmap member must be extra-big. This is because
 78	  * the CPU will access an additional byte beyond the end of the IO
 79	  * permission bitmap. The extra byte must be all 1 bits, and must
 80	  * be within the limit.
 81	  */
 82	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 83#endif
 
 
 
 84};
 85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 86
 87DEFINE_PER_CPU(bool, __tss_limit_invalid);
 88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 89
 90/*
 91 * this gets called so that we can store lazy state into memory and copy the
 92 * current task into the new thread.
 93 */
 94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 95{
 96	memcpy(dst, src, arch_task_struct_size);
 97#ifdef CONFIG_VM86
 98	dst->thread.vm86 = NULL;
 99#endif
100
101	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102}
103
104/*
105 * Free current thread data structures etc..
106 */
107void exit_thread(struct task_struct *tsk)
108{
109	struct thread_struct *t = &tsk->thread;
110	unsigned long *bp = t->io_bitmap_ptr;
111	struct fpu *fpu = &t->fpu;
112
113	if (bp) {
114		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116		t->io_bitmap_ptr = NULL;
117		clear_thread_flag(TIF_IO_BITMAP);
118		/*
119		 * Careful, clear this in the TSS too:
120		 */
121		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122		t->io_bitmap_max = 0;
123		put_cpu();
124		kfree(bp);
125	}
126
127	free_vm86(t);
128
129	fpu__drop(fpu);
130}
131
132void flush_thread(void)
133{
134	struct task_struct *tsk = current;
135
136	flush_ptrace_hw_breakpoint(tsk);
137	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139	fpu__clear(&tsk->thread.fpu);
140}
141
 
 
 
 
 
142void disable_TSC(void)
143{
144	preempt_disable();
145	if (!test_and_set_thread_flag(TIF_NOTSC))
146		/*
147		 * Must flip the CPU state synchronously with
148		 * TIF_NOTSC in the current running context.
149		 */
150		cr4_set_bits(X86_CR4_TSD);
151	preempt_enable();
152}
153
 
 
 
 
 
154static void enable_TSC(void)
155{
156	preempt_disable();
157	if (test_and_clear_thread_flag(TIF_NOTSC))
158		/*
159		 * Must flip the CPU state synchronously with
160		 * TIF_NOTSC in the current running context.
161		 */
162		cr4_clear_bits(X86_CR4_TSD);
163	preempt_enable();
164}
165
166int get_tsc_mode(unsigned long adr)
167{
168	unsigned int val;
169
170	if (test_thread_flag(TIF_NOTSC))
171		val = PR_TSC_SIGSEGV;
172	else
173		val = PR_TSC_ENABLE;
174
175	return put_user(val, (unsigned int __user *)adr);
176}
177
178int set_tsc_mode(unsigned int val)
179{
180	if (val == PR_TSC_SIGSEGV)
181		disable_TSC();
182	else if (val == PR_TSC_ENABLE)
183		enable_TSC();
184	else
185		return -EINVAL;
186
187	return 0;
188}
189
190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192static void set_cpuid_faulting(bool on)
193{
194	u64 msrval;
195
196	msrval = this_cpu_read(msr_misc_features_shadow);
197	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199	this_cpu_write(msr_misc_features_shadow, msrval);
200	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201}
202
203static void disable_cpuid(void)
204{
205	preempt_disable();
206	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207		/*
208		 * Must flip the CPU state synchronously with
209		 * TIF_NOCPUID in the current running context.
210		 */
211		set_cpuid_faulting(true);
212	}
213	preempt_enable();
214}
215
216static void enable_cpuid(void)
217{
218	preempt_disable();
219	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220		/*
221		 * Must flip the CPU state synchronously with
222		 * TIF_NOCPUID in the current running context.
223		 */
224		set_cpuid_faulting(false);
225	}
226	preempt_enable();
227}
228
229static int get_cpuid_mode(void)
230{
231	return !test_thread_flag(TIF_NOCPUID);
232}
233
234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235{
236	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237		return -ENODEV;
238
239	if (cpuid_enabled)
240		enable_cpuid();
241	else
242		disable_cpuid();
243
244	return 0;
245}
246
247/*
248 * Called immediately after a successful exec.
249 */
250void arch_setup_new_exec(void)
251{
252	/* If cpuid was previously disabled for this task, re-enable it. */
253	if (test_thread_flag(TIF_NOCPUID))
254		enable_cpuid();
255}
256
257static inline void switch_to_bitmap(struct tss_struct *tss,
258				    struct thread_struct *prev,
259				    struct thread_struct *next,
260				    unsigned long tifp, unsigned long tifn)
261{
262	if (tifn & _TIF_IO_BITMAP) {
263		/*
264		 * Copy the relevant range of the IO bitmap.
265		 * Normally this is 128 bytes or less:
266		 */
267		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
268		       max(prev->io_bitmap_max, next->io_bitmap_max));
269		/*
270		 * Make sure that the TSS limit is correct for the CPU
271		 * to notice the IO bitmap.
272		 */
273		refresh_tss_limit();
274	} else if (tifp & _TIF_IO_BITMAP) {
275		/*
276		 * Clear any possible leftover bits:
277		 */
278		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
279	}
280}
281
282#ifdef CONFIG_SMP
283
284struct ssb_state {
285	struct ssb_state	*shared_state;
286	raw_spinlock_t		lock;
287	unsigned int		disable_state;
288	unsigned long		local_state;
289};
290
291#define LSTATE_SSB	0
292
293static DEFINE_PER_CPU(struct ssb_state, ssb_state);
294
295void speculative_store_bypass_ht_init(void)
296{
297	struct ssb_state *st = this_cpu_ptr(&ssb_state);
298	unsigned int this_cpu = smp_processor_id();
299	unsigned int cpu;
300
301	st->local_state = 0;
302
303	/*
304	 * Shared state setup happens once on the first bringup
305	 * of the CPU. It's not destroyed on CPU hotunplug.
306	 */
307	if (st->shared_state)
308		return;
309
310	raw_spin_lock_init(&st->lock);
311
312	/*
313	 * Go over HT siblings and check whether one of them has set up the
314	 * shared state pointer already.
315	 */
316	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
317		if (cpu == this_cpu)
318			continue;
319
320		if (!per_cpu(ssb_state, cpu).shared_state)
321			continue;
322
323		/* Link it to the state of the sibling: */
324		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
325		return;
326	}
327
328	/*
329	 * First HT sibling to come up on the core.  Link shared state of
330	 * the first HT sibling to itself. The siblings on the same core
331	 * which come up later will see the shared state pointer and link
332	 * themself to the state of this CPU.
333	 */
334	st->shared_state = st;
335}
336
337/*
338 * Logic is: First HT sibling enables SSBD for both siblings in the core
339 * and last sibling to disable it, disables it for the whole core. This how
340 * MSR_SPEC_CTRL works in "hardware":
341 *
342 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
343 */
344static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
345{
346	struct ssb_state *st = this_cpu_ptr(&ssb_state);
347	u64 msr = x86_amd_ls_cfg_base;
348
349	if (!static_cpu_has(X86_FEATURE_ZEN)) {
350		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
351		wrmsrl(MSR_AMD64_LS_CFG, msr);
352		return;
353	}
354
355	if (tifn & _TIF_SSBD) {
356		/*
357		 * Since this can race with prctl(), block reentry on the
358		 * same CPU.
359		 */
360		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
361			return;
362
363		msr |= x86_amd_ls_cfg_ssbd_mask;
364
365		raw_spin_lock(&st->shared_state->lock);
366		/* First sibling enables SSBD: */
367		if (!st->shared_state->disable_state)
368			wrmsrl(MSR_AMD64_LS_CFG, msr);
369		st->shared_state->disable_state++;
370		raw_spin_unlock(&st->shared_state->lock);
371	} else {
372		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
373			return;
374
375		raw_spin_lock(&st->shared_state->lock);
376		st->shared_state->disable_state--;
377		if (!st->shared_state->disable_state)
378			wrmsrl(MSR_AMD64_LS_CFG, msr);
379		raw_spin_unlock(&st->shared_state->lock);
380	}
381}
382#else
383static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
384{
385	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
386
387	wrmsrl(MSR_AMD64_LS_CFG, msr);
388}
389#endif
390
391static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
392{
393	/*
394	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
395	 * so ssbd_tif_to_spec_ctrl() just works.
396	 */
397	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
398}
399
400static __always_inline void intel_set_ssb_state(unsigned long tifn)
401{
402	u64 msr = x86_spec_ctrl_base | ssbd_tif_to_spec_ctrl(tifn);
403
404	wrmsrl(MSR_IA32_SPEC_CTRL, msr);
405}
406
407static __always_inline void __speculative_store_bypass_update(unsigned long tifn)
408{
409	if (static_cpu_has(X86_FEATURE_VIRT_SSBD))
410		amd_set_ssb_virt_state(tifn);
411	else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD))
412		amd_set_core_ssb_state(tifn);
413	else
414		intel_set_ssb_state(tifn);
415}
416
417void speculative_store_bypass_update(unsigned long tif)
418{
419	preempt_disable();
420	__speculative_store_bypass_update(tif);
421	preempt_enable();
422}
423
424void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
425		      struct tss_struct *tss)
426{
427	struct thread_struct *prev, *next;
428	unsigned long tifp, tifn;
429
430	prev = &prev_p->thread;
431	next = &next_p->thread;
432
433	tifn = READ_ONCE(task_thread_info(next_p)->flags);
434	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
435	switch_to_bitmap(tss, prev, next, tifp, tifn);
436
437	propagate_user_return_notify(prev_p, next_p);
438
439	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
440	    arch_has_block_step()) {
441		unsigned long debugctl, msk;
442
443		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
444		debugctl &= ~DEBUGCTLMSR_BTF;
445		msk = tifn & _TIF_BLOCKSTEP;
446		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
447		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
448	}
449
450	if ((tifp ^ tifn) & _TIF_NOTSC)
451		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
452
453	if ((tifp ^ tifn) & _TIF_NOCPUID)
454		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
455
456	if ((tifp ^ tifn) & _TIF_SSBD)
457		__speculative_store_bypass_update(tifn);
458}
459
460/*
461 * Idle related variables and functions
462 */
463unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
464EXPORT_SYMBOL(boot_option_idle_override);
465
466static void (*x86_idle)(void);
467
468#ifndef CONFIG_SMP
469static inline void play_dead(void)
470{
471	BUG();
472}
473#endif
474
475void arch_cpu_idle_enter(void)
476{
477	tsc_verify_tsc_adjust(false);
478	local_touch_nmi();
479}
480
481void arch_cpu_idle_dead(void)
482{
483	play_dead();
484}
485
486/*
487 * Called from the generic idle code.
488 */
489void arch_cpu_idle(void)
490{
491	x86_idle();
492}
493
494/*
495 * We use this if we don't have any better idle routine..
496 */
497void __cpuidle default_idle(void)
498{
499	trace_cpu_idle_rcuidle(1, smp_processor_id());
500	safe_halt();
501	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
502}
503#ifdef CONFIG_APM_MODULE
504EXPORT_SYMBOL(default_idle);
505#endif
506
507#ifdef CONFIG_XEN
508bool xen_set_default_idle(void)
509{
510	bool ret = !!x86_idle;
511
512	x86_idle = default_idle;
513
514	return ret;
515}
516#endif
517
518void stop_this_cpu(void *dummy)
519{
520	local_irq_disable();
521	/*
522	 * Remove this CPU:
523	 */
524	set_cpu_online(smp_processor_id(), false);
525	disable_local_APIC();
526	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
527
528	/*
529	 * Use wbinvd on processors that support SME. This provides support
530	 * for performing a successful kexec when going from SME inactive
531	 * to SME active (or vice-versa). The cache must be cleared so that
532	 * if there are entries with the same physical address, both with and
533	 * without the encryption bit, they don't race each other when flushed
534	 * and potentially end up with the wrong entry being committed to
535	 * memory.
536	 */
537	if (boot_cpu_has(X86_FEATURE_SME))
538		native_wbinvd();
539	for (;;) {
540		/*
541		 * Use native_halt() so that memory contents don't change
542		 * (stack usage and variables) after possibly issuing the
543		 * native_wbinvd() above.
544		 */
545		native_halt();
546	}
547}
548
549/*
550 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
551 * states (local apic timer and TSC stop).
552 */
553static void amd_e400_idle(void)
554{
555	/*
556	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
557	 * gets set after static_cpu_has() places have been converted via
558	 * alternatives.
559	 */
560	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
561		default_idle();
562		return;
563	}
564
565	tick_broadcast_enter();
566
567	default_idle();
568
569	/*
570	 * The switch back from broadcast mode needs to be called with
571	 * interrupts disabled.
572	 */
573	local_irq_disable();
574	tick_broadcast_exit();
575	local_irq_enable();
576}
577
578/*
579 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
580 * We can't rely on cpuidle installing MWAIT, because it will not load
581 * on systems that support only C1 -- so the boot default must be MWAIT.
582 *
583 * Some AMD machines are the opposite, they depend on using HALT.
584 *
585 * So for default C1, which is used during boot until cpuidle loads,
586 * use MWAIT-C1 on Intel HW that has it, else use HALT.
587 */
588static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
589{
590	if (c->x86_vendor != X86_VENDOR_INTEL)
591		return 0;
592
593	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
594		return 0;
595
596	return 1;
597}
598
599/*
600 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
601 * with interrupts enabled and no flags, which is backwards compatible with the
602 * original MWAIT implementation.
603 */
604static __cpuidle void mwait_idle(void)
605{
606	if (!current_set_polling_and_test()) {
607		trace_cpu_idle_rcuidle(1, smp_processor_id());
608		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
609			mb(); /* quirk */
610			clflush((void *)&current_thread_info()->flags);
611			mb(); /* quirk */
612		}
613
614		__monitor((void *)&current_thread_info()->flags, 0, 0);
615		if (!need_resched())
616			__sti_mwait(0, 0);
617		else
618			local_irq_enable();
619		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
620	} else {
621		local_irq_enable();
622	}
623	__current_clr_polling();
624}
625
626void select_idle_routine(const struct cpuinfo_x86 *c)
627{
628#ifdef CONFIG_SMP
629	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
630		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
631#endif
632	if (x86_idle || boot_option_idle_override == IDLE_POLL)
633		return;
634
635	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
636		pr_info("using AMD E400 aware idle routine\n");
637		x86_idle = amd_e400_idle;
638	} else if (prefer_mwait_c1_over_halt(c)) {
639		pr_info("using mwait in idle threads\n");
640		x86_idle = mwait_idle;
641	} else
642		x86_idle = default_idle;
643}
644
645void amd_e400_c1e_apic_setup(void)
646{
647	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
648		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
649		local_irq_disable();
650		tick_broadcast_force();
651		local_irq_enable();
652	}
653}
654
655void __init arch_post_acpi_subsys_init(void)
656{
657	u32 lo, hi;
658
659	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
660		return;
661
662	/*
663	 * AMD E400 detection needs to happen after ACPI has been enabled. If
664	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
665	 * MSR_K8_INT_PENDING_MSG.
666	 */
667	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
668	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
669		return;
670
671	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
672
673	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
674		mark_tsc_unstable("TSC halt in AMD C1E");
675	pr_info("System has AMD C1E enabled\n");
676}
677
678static int __init idle_setup(char *str)
679{
680	if (!str)
681		return -EINVAL;
682
683	if (!strcmp(str, "poll")) {
684		pr_info("using polling idle threads\n");
685		boot_option_idle_override = IDLE_POLL;
686		cpu_idle_poll_ctrl(true);
687	} else if (!strcmp(str, "halt")) {
688		/*
689		 * When the boot option of idle=halt is added, halt is
690		 * forced to be used for CPU idle. In such case CPU C2/C3
691		 * won't be used again.
692		 * To continue to load the CPU idle driver, don't touch
693		 * the boot_option_idle_override.
694		 */
695		x86_idle = default_idle;
696		boot_option_idle_override = IDLE_HALT;
697	} else if (!strcmp(str, "nomwait")) {
698		/*
699		 * If the boot option of "idle=nomwait" is added,
700		 * it means that mwait will be disabled for CPU C2/C3
701		 * states. In such case it won't touch the variable
702		 * of boot_option_idle_override.
703		 */
704		boot_option_idle_override = IDLE_NOMWAIT;
705	} else
706		return -1;
707
708	return 0;
709}
710early_param("idle", idle_setup);
711
712unsigned long arch_align_stack(unsigned long sp)
713{
714	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715		sp -= get_random_int() % 8192;
716	return sp & ~0xf;
717}
718
719unsigned long arch_randomize_brk(struct mm_struct *mm)
720{
721	return randomize_page(mm->brk, 0x02000000);
722}
723
724/*
 
 
 
 
 
 
 
 
 
 
 
725 * Called from fs/proc with a reference on @p to find the function
726 * which called into schedule(). This needs to be done carefully
727 * because the task might wake up and we might look at a stack
728 * changing under us.
729 */
730unsigned long get_wchan(struct task_struct *p)
731{
732	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
733	int count = 0;
734
735	if (!p || p == current || p->state == TASK_RUNNING)
736		return 0;
737
738	if (!try_get_task_stack(p))
739		return 0;
740
741	start = (unsigned long)task_stack_page(p);
742	if (!start)
743		goto out;
744
745	/*
746	 * Layout of the stack page:
747	 *
748	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
749	 * PADDING
750	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
751	 * stack
752	 * ----------- bottom = start
753	 *
754	 * The tasks stack pointer points at the location where the
755	 * framepointer is stored. The data on the stack is:
756	 * ... IP FP ... IP FP
757	 *
758	 * We need to read FP and IP, so we need to adjust the upper
759	 * bound by another unsigned long.
760	 */
761	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
762	top -= 2 * sizeof(unsigned long);
763	bottom = start;
764
765	sp = READ_ONCE(p->thread.sp);
766	if (sp < bottom || sp > top)
767		goto out;
768
769	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
770	do {
771		if (fp < bottom || fp > top)
772			goto out;
773		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
774		if (!in_sched_functions(ip)) {
775			ret = ip;
776			goto out;
777		}
778		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
779	} while (count++ < 16 && p->state != TASK_RUNNING);
780
781out:
782	put_task_stack(p);
783	return ret;
784}
785
786long do_arch_prctl_common(struct task_struct *task, int option,
787			  unsigned long cpuid_enabled)
788{
789	switch (option) {
790	case ARCH_GET_CPUID:
791		return get_cpuid_mode();
792	case ARCH_SET_CPUID:
793		return set_cpuid_mode(task, cpuid_enabled);
794	}
795
796	return -EINVAL;
797}
v4.10.11
 
  1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2
  3#include <linux/errno.h>
  4#include <linux/kernel.h>
  5#include <linux/mm.h>
  6#include <linux/smp.h>
  7#include <linux/prctl.h>
  8#include <linux/slab.h>
  9#include <linux/sched.h>
 
 
 
 
 10#include <linux/init.h>
 11#include <linux/export.h>
 12#include <linux/pm.h>
 13#include <linux/tick.h>
 14#include <linux/random.h>
 15#include <linux/user-return-notifier.h>
 16#include <linux/dmi.h>
 17#include <linux/utsname.h>
 18#include <linux/stackprotector.h>
 19#include <linux/tick.h>
 20#include <linux/cpuidle.h>
 21#include <trace/events/power.h>
 22#include <linux/hw_breakpoint.h>
 23#include <asm/cpu.h>
 24#include <asm/apic.h>
 25#include <asm/syscalls.h>
 26#include <linux/uaccess.h>
 27#include <asm/mwait.h>
 28#include <asm/fpu/internal.h>
 29#include <asm/debugreg.h>
 30#include <asm/nmi.h>
 31#include <asm/tlbflush.h>
 32#include <asm/mce.h>
 33#include <asm/vm86.h>
 34#include <asm/switch_to.h>
 
 
 
 35
 36/*
 37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 39 * so they are allowed to end up in the .data..cacheline_aligned
 40 * section. Since TSS's are completely CPU-local, we want them
 41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 42 */
 43__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
 44	.x86_tss = {
 45		.sp0 = TOP_OF_INIT_STACK,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46#ifdef CONFIG_X86_32
 47		.ss0 = __KERNEL_DS,
 48		.ss1 = __KERNEL_CS,
 49		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
 50#endif
 51	 },
 52#ifdef CONFIG_X86_32
 53	 /*
 54	  * Note that the .io_bitmap member must be extra-big. This is because
 55	  * the CPU will access an additional byte beyond the end of the IO
 56	  * permission bitmap. The extra byte must be all 1 bits, and must
 57	  * be within the limit.
 58	  */
 59	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
 60#endif
 61#ifdef CONFIG_X86_32
 62	.SYSENTER_stack_canary	= STACK_END_MAGIC,
 63#endif
 64};
 65EXPORT_PER_CPU_SYMBOL(cpu_tss);
 
 
 
 66
 67/*
 68 * this gets called so that we can store lazy state into memory and copy the
 69 * current task into the new thread.
 70 */
 71int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 72{
 73	memcpy(dst, src, arch_task_struct_size);
 74#ifdef CONFIG_VM86
 75	dst->thread.vm86 = NULL;
 76#endif
 77
 78	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
 79}
 80
 81/*
 82 * Free current thread data structures etc..
 83 */
 84void exit_thread(struct task_struct *tsk)
 85{
 86	struct thread_struct *t = &tsk->thread;
 87	unsigned long *bp = t->io_bitmap_ptr;
 88	struct fpu *fpu = &t->fpu;
 89
 90	if (bp) {
 91		struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 92
 93		t->io_bitmap_ptr = NULL;
 94		clear_thread_flag(TIF_IO_BITMAP);
 95		/*
 96		 * Careful, clear this in the TSS too:
 97		 */
 98		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 99		t->io_bitmap_max = 0;
100		put_cpu();
101		kfree(bp);
102	}
103
104	free_vm86(t);
105
106	fpu__drop(fpu);
107}
108
109void flush_thread(void)
110{
111	struct task_struct *tsk = current;
112
113	flush_ptrace_hw_breakpoint(tsk);
114	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115
116	fpu__clear(&tsk->thread.fpu);
117}
118
119static void hard_disable_TSC(void)
120{
121	cr4_set_bits(X86_CR4_TSD);
122}
123
124void disable_TSC(void)
125{
126	preempt_disable();
127	if (!test_and_set_thread_flag(TIF_NOTSC))
128		/*
129		 * Must flip the CPU state synchronously with
130		 * TIF_NOTSC in the current running context.
131		 */
132		hard_disable_TSC();
133	preempt_enable();
134}
135
136static void hard_enable_TSC(void)
137{
138	cr4_clear_bits(X86_CR4_TSD);
139}
140
141static void enable_TSC(void)
142{
143	preempt_disable();
144	if (test_and_clear_thread_flag(TIF_NOTSC))
145		/*
146		 * Must flip the CPU state synchronously with
147		 * TIF_NOTSC in the current running context.
148		 */
149		hard_enable_TSC();
150	preempt_enable();
151}
152
153int get_tsc_mode(unsigned long adr)
154{
155	unsigned int val;
156
157	if (test_thread_flag(TIF_NOTSC))
158		val = PR_TSC_SIGSEGV;
159	else
160		val = PR_TSC_ENABLE;
161
162	return put_user(val, (unsigned int __user *)adr);
163}
164
165int set_tsc_mode(unsigned int val)
166{
167	if (val == PR_TSC_SIGSEGV)
168		disable_TSC();
169	else if (val == PR_TSC_ENABLE)
170		enable_TSC();
171	else
172		return -EINVAL;
173
174	return 0;
175}
176
177void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178		      struct tss_struct *tss)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179{
180	struct thread_struct *prev, *next;
 
 
 
 
 
 
 
 
 
181
182	prev = &prev_p->thread;
183	next = &next_p->thread;
 
 
184
185	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187		unsigned long debugctl = get_debugctlmsr();
 
188
189		debugctl &= ~DEBUGCTLMSR_BTF;
190		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191			debugctl |= DEBUGCTLMSR_BTF;
 
192
193		update_debugctlmsr(debugctl);
194	}
195
196	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198		/* prev and next are different */
199		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200			hard_disable_TSC();
201		else
202			hard_enable_TSC();
203	}
 
204
205	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
 
 
206		/*
207		 * Copy the relevant range of the IO bitmap.
208		 * Normally this is 128 bytes or less:
209		 */
210		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211		       max(prev->io_bitmap_max, next->io_bitmap_max));
212	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
213		/*
214		 * Clear any possible leftover bits:
215		 */
216		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
217	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219}
220
221/*
222 * Idle related variables and functions
223 */
224unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
225EXPORT_SYMBOL(boot_option_idle_override);
226
227static void (*x86_idle)(void);
228
229#ifndef CONFIG_SMP
230static inline void play_dead(void)
231{
232	BUG();
233}
234#endif
235
236void arch_cpu_idle_enter(void)
237{
238	tsc_verify_tsc_adjust(false);
239	local_touch_nmi();
240}
241
242void arch_cpu_idle_dead(void)
243{
244	play_dead();
245}
246
247/*
248 * Called from the generic idle code.
249 */
250void arch_cpu_idle(void)
251{
252	x86_idle();
253}
254
255/*
256 * We use this if we don't have any better idle routine..
257 */
258void __cpuidle default_idle(void)
259{
260	trace_cpu_idle_rcuidle(1, smp_processor_id());
261	safe_halt();
262	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
263}
264#ifdef CONFIG_APM_MODULE
265EXPORT_SYMBOL(default_idle);
266#endif
267
268#ifdef CONFIG_XEN
269bool xen_set_default_idle(void)
270{
271	bool ret = !!x86_idle;
272
273	x86_idle = default_idle;
274
275	return ret;
276}
277#endif
 
278void stop_this_cpu(void *dummy)
279{
280	local_irq_disable();
281	/*
282	 * Remove this CPU:
283	 */
284	set_cpu_online(smp_processor_id(), false);
285	disable_local_APIC();
286	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
287
288	for (;;)
289		halt();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
291
292/*
293 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294 * states (local apic timer and TSC stop).
295 */
296static void amd_e400_idle(void)
297{
298	/*
299	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300	 * gets set after static_cpu_has() places have been converted via
301	 * alternatives.
302	 */
303	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304		default_idle();
305		return;
306	}
307
308	tick_broadcast_enter();
309
310	default_idle();
311
312	/*
313	 * The switch back from broadcast mode needs to be called with
314	 * interrupts disabled.
315	 */
316	local_irq_disable();
317	tick_broadcast_exit();
318	local_irq_enable();
319}
320
321/*
322 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323 * We can't rely on cpuidle installing MWAIT, because it will not load
324 * on systems that support only C1 -- so the boot default must be MWAIT.
325 *
326 * Some AMD machines are the opposite, they depend on using HALT.
327 *
328 * So for default C1, which is used during boot until cpuidle loads,
329 * use MWAIT-C1 on Intel HW that has it, else use HALT.
330 */
331static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
332{
333	if (c->x86_vendor != X86_VENDOR_INTEL)
334		return 0;
335
336	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
337		return 0;
338
339	return 1;
340}
341
342/*
343 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344 * with interrupts enabled and no flags, which is backwards compatible with the
345 * original MWAIT implementation.
346 */
347static __cpuidle void mwait_idle(void)
348{
349	if (!current_set_polling_and_test()) {
350		trace_cpu_idle_rcuidle(1, smp_processor_id());
351		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
352			mb(); /* quirk */
353			clflush((void *)&current_thread_info()->flags);
354			mb(); /* quirk */
355		}
356
357		__monitor((void *)&current_thread_info()->flags, 0, 0);
358		if (!need_resched())
359			__sti_mwait(0, 0);
360		else
361			local_irq_enable();
362		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
363	} else {
364		local_irq_enable();
365	}
366	__current_clr_polling();
367}
368
369void select_idle_routine(const struct cpuinfo_x86 *c)
370{
371#ifdef CONFIG_SMP
372	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
373		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
374#endif
375	if (x86_idle || boot_option_idle_override == IDLE_POLL)
376		return;
377
378	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
379		pr_info("using AMD E400 aware idle routine\n");
380		x86_idle = amd_e400_idle;
381	} else if (prefer_mwait_c1_over_halt(c)) {
382		pr_info("using mwait in idle threads\n");
383		x86_idle = mwait_idle;
384	} else
385		x86_idle = default_idle;
386}
387
388void amd_e400_c1e_apic_setup(void)
389{
390	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392		local_irq_disable();
393		tick_broadcast_force();
394		local_irq_enable();
395	}
396}
397
398void __init arch_post_acpi_subsys_init(void)
399{
400	u32 lo, hi;
401
402	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403		return;
404
405	/*
406	 * AMD E400 detection needs to happen after ACPI has been enabled. If
407	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408	 * MSR_K8_INT_PENDING_MSG.
409	 */
410	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412		return;
413
414	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
415
416	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417		mark_tsc_unstable("TSC halt in AMD C1E");
418	pr_info("System has AMD C1E enabled\n");
419}
420
421static int __init idle_setup(char *str)
422{
423	if (!str)
424		return -EINVAL;
425
426	if (!strcmp(str, "poll")) {
427		pr_info("using polling idle threads\n");
428		boot_option_idle_override = IDLE_POLL;
429		cpu_idle_poll_ctrl(true);
430	} else if (!strcmp(str, "halt")) {
431		/*
432		 * When the boot option of idle=halt is added, halt is
433		 * forced to be used for CPU idle. In such case CPU C2/C3
434		 * won't be used again.
435		 * To continue to load the CPU idle driver, don't touch
436		 * the boot_option_idle_override.
437		 */
438		x86_idle = default_idle;
439		boot_option_idle_override = IDLE_HALT;
440	} else if (!strcmp(str, "nomwait")) {
441		/*
442		 * If the boot option of "idle=nomwait" is added,
443		 * it means that mwait will be disabled for CPU C2/C3
444		 * states. In such case it won't touch the variable
445		 * of boot_option_idle_override.
446		 */
447		boot_option_idle_override = IDLE_NOMWAIT;
448	} else
449		return -1;
450
451	return 0;
452}
453early_param("idle", idle_setup);
454
455unsigned long arch_align_stack(unsigned long sp)
456{
457	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458		sp -= get_random_int() % 8192;
459	return sp & ~0xf;
460}
461
462unsigned long arch_randomize_brk(struct mm_struct *mm)
463{
464	return randomize_page(mm->brk, 0x02000000);
465}
466
467/*
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
470 */
471unsigned long thread_saved_pc(struct task_struct *tsk)
472{
473	struct inactive_task_frame *frame =
474		(struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475	return READ_ONCE_NOCHECK(frame->ret_addr);
476}
477
478/*
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
483 */
484unsigned long get_wchan(struct task_struct *p)
485{
486	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
487	int count = 0;
488
489	if (!p || p == current || p->state == TASK_RUNNING)
490		return 0;
491
492	if (!try_get_task_stack(p))
493		return 0;
494
495	start = (unsigned long)task_stack_page(p);
496	if (!start)
497		goto out;
498
499	/*
500	 * Layout of the stack page:
501	 *
502	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503	 * PADDING
504	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505	 * stack
506	 * ----------- bottom = start
507	 *
508	 * The tasks stack pointer points at the location where the
509	 * framepointer is stored. The data on the stack is:
510	 * ... IP FP ... IP FP
511	 *
512	 * We need to read FP and IP, so we need to adjust the upper
513	 * bound by another unsigned long.
514	 */
515	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516	top -= 2 * sizeof(unsigned long);
517	bottom = start;
518
519	sp = READ_ONCE(p->thread.sp);
520	if (sp < bottom || sp > top)
521		goto out;
522
523	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
524	do {
525		if (fp < bottom || fp > top)
526			goto out;
527		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
528		if (!in_sched_functions(ip)) {
529			ret = ip;
530			goto out;
531		}
532		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
533	} while (count++ < 16 && p->state != TASK_RUNNING);
534
535out:
536	put_task_stack(p);
537	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
538}