Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.15.
  1/*
  2 *  Copyright (C) 1994 Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *  General FPU state handling cleanups
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8#include <asm/fpu/internal.h>
  9#include <asm/fpu/regset.h>
 10#include <asm/fpu/signal.h>
 11#include <asm/fpu/types.h>
 12#include <asm/traps.h>
 13
 14#include <linux/hardirq.h>
 15#include <linux/pkeys.h>
 16
 17#define CREATE_TRACE_POINTS
 18#include <asm/trace/fpu.h>
 19
 20/*
 21 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 22 * depending on the FPU hardware format:
 23 */
 24union fpregs_state init_fpstate __read_mostly;
 25
 26/*
 27 * Track whether the kernel is using the FPU state
 28 * currently.
 29 *
 30 * This flag is used:
 31 *
 32 *   - by IRQ context code to potentially use the FPU
 33 *     if it's unused.
 34 *
 35 *   - to debug kernel_fpu_begin()/end() correctness
 36 */
 37static DEFINE_PER_CPU(bool, in_kernel_fpu);
 38
 39/*
 40 * Track which context is using the FPU on the CPU:
 41 */
 42DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 43
 44static void kernel_fpu_disable(void)
 45{
 46	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
 47	this_cpu_write(in_kernel_fpu, true);
 48}
 49
 50static void kernel_fpu_enable(void)
 51{
 52	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
 53	this_cpu_write(in_kernel_fpu, false);
 54}
 55
 56static bool kernel_fpu_disabled(void)
 57{
 58	return this_cpu_read(in_kernel_fpu);
 59}
 60
 61static bool interrupted_kernel_fpu_idle(void)
 62{
 63	return !kernel_fpu_disabled();
 64}
 65
 66/*
 67 * Were we in user mode (or vm86 mode) when we were
 68 * interrupted?
 69 *
 70 * Doing kernel_fpu_begin/end() is ok if we are running
 71 * in an interrupt context from user mode - we'll just
 72 * save the FPU state as required.
 73 */
 74static bool interrupted_user_mode(void)
 75{
 76	struct pt_regs *regs = get_irq_regs();
 77	return regs && user_mode(regs);
 78}
 79
 80/*
 81 * Can we use the FPU in kernel mode with the
 82 * whole "kernel_fpu_begin/end()" sequence?
 83 *
 84 * It's always ok in process context (ie "not interrupt")
 85 * but it is sometimes ok even from an irq.
 86 */
 87bool irq_fpu_usable(void)
 88{
 89	return !in_interrupt() ||
 90		interrupted_user_mode() ||
 91		interrupted_kernel_fpu_idle();
 92}
 93EXPORT_SYMBOL(irq_fpu_usable);
 94
 95void __kernel_fpu_begin(void)
 96{
 97	struct fpu *fpu = &current->thread.fpu;
 98
 99	WARN_ON_FPU(!irq_fpu_usable());
100
101	kernel_fpu_disable();
102
103	if (fpu->initialized) {
104		/*
105		 * Ignore return value -- we don't care if reg state
106		 * is clobbered.
107		 */
108		copy_fpregs_to_fpstate(fpu);
109	} else {
110		__cpu_invalidate_fpregs_state();
111	}
112}
113EXPORT_SYMBOL(__kernel_fpu_begin);
114
115void __kernel_fpu_end(void)
116{
117	struct fpu *fpu = &current->thread.fpu;
118
119	if (fpu->initialized)
120		copy_kernel_to_fpregs(&fpu->state);
121
122	kernel_fpu_enable();
123}
124EXPORT_SYMBOL(__kernel_fpu_end);
125
126void kernel_fpu_begin(void)
127{
128	preempt_disable();
129	__kernel_fpu_begin();
130}
131EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132
133void kernel_fpu_end(void)
134{
135	__kernel_fpu_end();
136	preempt_enable();
137}
138EXPORT_SYMBOL_GPL(kernel_fpu_end);
139
140/*
141 * Save the FPU state (mark it for reload if necessary):
142 *
143 * This only ever gets called for the current task.
144 */
145void fpu__save(struct fpu *fpu)
146{
147	WARN_ON_FPU(fpu != &current->thread.fpu);
148
149	preempt_disable();
150	trace_x86_fpu_before_save(fpu);
151	if (fpu->initialized) {
152		if (!copy_fpregs_to_fpstate(fpu)) {
153			copy_kernel_to_fpregs(&fpu->state);
154		}
155	}
156	trace_x86_fpu_after_save(fpu);
157	preempt_enable();
158}
159EXPORT_SYMBOL_GPL(fpu__save);
160
161/*
162 * Legacy x87 fpstate state init:
163 */
164static inline void fpstate_init_fstate(struct fregs_state *fp)
165{
166	fp->cwd = 0xffff037fu;
167	fp->swd = 0xffff0000u;
168	fp->twd = 0xffffffffu;
169	fp->fos = 0xffff0000u;
170}
171
172void fpstate_init(union fpregs_state *state)
173{
174	if (!static_cpu_has(X86_FEATURE_FPU)) {
175		fpstate_init_soft(&state->soft);
176		return;
177	}
178
179	memset(state, 0, fpu_kernel_xstate_size);
180
181	if (static_cpu_has(X86_FEATURE_XSAVES))
182		fpstate_init_xstate(&state->xsave);
183	if (static_cpu_has(X86_FEATURE_FXSR))
184		fpstate_init_fxstate(&state->fxsave);
185	else
186		fpstate_init_fstate(&state->fsave);
187}
188EXPORT_SYMBOL_GPL(fpstate_init);
189
190int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
191{
192	dst_fpu->last_cpu = -1;
193
194	if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
195		return 0;
196
197	WARN_ON_FPU(src_fpu != &current->thread.fpu);
198
199	/*
200	 * Don't let 'init optimized' areas of the XSAVE area
201	 * leak into the child task:
202	 */
203	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
204
205	/*
206	 * Save current FPU registers directly into the child
207	 * FPU context, without any memory-to-memory copying.
208	 *
209	 * ( The function 'fails' in the FNSAVE case, which destroys
210	 *   register contents so we have to copy them back. )
211	 */
212	if (!copy_fpregs_to_fpstate(dst_fpu)) {
213		memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
214		copy_kernel_to_fpregs(&src_fpu->state);
215	}
216
217	trace_x86_fpu_copy_src(src_fpu);
218	trace_x86_fpu_copy_dst(dst_fpu);
219
220	return 0;
221}
222
223/*
224 * Activate the current task's in-memory FPU context,
225 * if it has not been used before:
226 */
227void fpu__initialize(struct fpu *fpu)
228{
229	WARN_ON_FPU(fpu != &current->thread.fpu);
230
231	if (!fpu->initialized) {
232		fpstate_init(&fpu->state);
233		trace_x86_fpu_init_state(fpu);
234
235		trace_x86_fpu_activate_state(fpu);
236		/* Safe to do for the current task: */
237		fpu->initialized = 1;
238	}
239}
240EXPORT_SYMBOL_GPL(fpu__initialize);
241
242/*
243 * This function must be called before we read a task's fpstate.
244 *
245 * There's two cases where this gets called:
246 *
247 * - for the current task (when coredumping), in which case we have
248 *   to save the latest FPU registers into the fpstate,
249 *
250 * - or it's called for stopped tasks (ptrace), in which case the
251 *   registers were already saved by the context-switch code when
252 *   the task scheduled out - we only have to initialize the registers
253 *   if they've never been initialized.
254 *
255 * If the task has used the FPU before then save it.
256 */
257void fpu__prepare_read(struct fpu *fpu)
258{
259	if (fpu == &current->thread.fpu) {
260		fpu__save(fpu);
261	} else {
262		if (!fpu->initialized) {
263			fpstate_init(&fpu->state);
264			trace_x86_fpu_init_state(fpu);
265
266			trace_x86_fpu_activate_state(fpu);
267			/* Safe to do for current and for stopped child tasks: */
268			fpu->initialized = 1;
269		}
270	}
271}
272
273/*
274 * This function must be called before we write a task's fpstate.
275 *
276 * If the task has used the FPU before then invalidate any cached FPU registers.
277 * If the task has not used the FPU before then initialize its fpstate.
278 *
279 * After this function call, after registers in the fpstate are
280 * modified and the child task has woken up, the child task will
281 * restore the modified FPU state from the modified context. If we
282 * didn't clear its cached status here then the cached in-registers
283 * state pending on its former CPU could be restored, corrupting
284 * the modifications.
285 */
286void fpu__prepare_write(struct fpu *fpu)
287{
288	/*
289	 * Only stopped child tasks can be used to modify the FPU
290	 * state in the fpstate buffer:
291	 */
292	WARN_ON_FPU(fpu == &current->thread.fpu);
293
294	if (fpu->initialized) {
295		/* Invalidate any cached state: */
296		__fpu_invalidate_fpregs_state(fpu);
297	} else {
298		fpstate_init(&fpu->state);
299		trace_x86_fpu_init_state(fpu);
300
301		trace_x86_fpu_activate_state(fpu);
302		/* Safe to do for stopped child tasks: */
303		fpu->initialized = 1;
304	}
305}
306
307/*
308 * 'fpu__restore()' is called to copy FPU registers from
309 * the FPU fpstate to the live hw registers and to activate
310 * access to the hardware registers, so that FPU instructions
311 * can be used afterwards.
312 *
313 * Must be called with kernel preemption disabled (for example
314 * with local interrupts disabled, as it is in the case of
315 * do_device_not_available()).
316 */
317void fpu__restore(struct fpu *fpu)
318{
319	fpu__initialize(fpu);
320
321	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
322	kernel_fpu_disable();
323	trace_x86_fpu_before_restore(fpu);
324	fpregs_activate(fpu);
325	copy_kernel_to_fpregs(&fpu->state);
326	trace_x86_fpu_after_restore(fpu);
327	kernel_fpu_enable();
328}
329EXPORT_SYMBOL_GPL(fpu__restore);
330
331/*
332 * Drops current FPU state: deactivates the fpregs and
333 * the fpstate. NOTE: it still leaves previous contents
334 * in the fpregs in the eager-FPU case.
335 *
336 * This function can be used in cases where we know that
337 * a state-restore is coming: either an explicit one,
338 * or a reschedule.
339 */
340void fpu__drop(struct fpu *fpu)
341{
342	preempt_disable();
343
344	if (fpu == &current->thread.fpu) {
345		if (fpu->initialized) {
346			/* Ignore delayed exceptions from user space */
347			asm volatile("1: fwait\n"
348				     "2:\n"
349				     _ASM_EXTABLE(1b, 2b));
350			fpregs_deactivate(fpu);
351		}
352	}
353
354	fpu->initialized = 0;
355
356	trace_x86_fpu_dropped(fpu);
357
358	preempt_enable();
359}
360
361/*
362 * Clear FPU registers by setting them up from
363 * the init fpstate:
364 */
365static inline void copy_init_fpstate_to_fpregs(void)
366{
367	if (use_xsave())
368		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
369	else if (static_cpu_has(X86_FEATURE_FXSR))
370		copy_kernel_to_fxregs(&init_fpstate.fxsave);
371	else
372		copy_kernel_to_fregs(&init_fpstate.fsave);
373
374	if (boot_cpu_has(X86_FEATURE_OSPKE))
375		copy_init_pkru_to_fpregs();
376}
377
378/*
379 * Clear the FPU state back to init state.
380 *
381 * Called by sys_execve(), by the signal handler code and by various
382 * error paths.
383 */
384void fpu__clear(struct fpu *fpu)
385{
386	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
387
388	fpu__drop(fpu);
389
390	/*
391	 * Make sure fpstate is cleared and initialized.
392	 */
393	if (static_cpu_has(X86_FEATURE_FPU)) {
394		preempt_disable();
395		fpu__initialize(fpu);
396		user_fpu_begin();
397		copy_init_fpstate_to_fpregs();
398		preempt_enable();
399	}
400}
401
402/*
403 * x87 math exception handling:
404 */
405
406int fpu__exception_code(struct fpu *fpu, int trap_nr)
407{
408	int err;
409
410	if (trap_nr == X86_TRAP_MF) {
411		unsigned short cwd, swd;
412		/*
413		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
414		 * status.  0x3f is the exception bits in these regs, 0x200 is the
415		 * C1 reg you need in case of a stack fault, 0x040 is the stack
416		 * fault bit.  We should only be taking one exception at a time,
417		 * so if this combination doesn't produce any single exception,
418		 * then we have a bad program that isn't synchronizing its FPU usage
419		 * and it will suffer the consequences since we won't be able to
420		 * fully reproduce the context of the exception.
421		 */
422		if (boot_cpu_has(X86_FEATURE_FXSR)) {
423			cwd = fpu->state.fxsave.cwd;
424			swd = fpu->state.fxsave.swd;
425		} else {
426			cwd = (unsigned short)fpu->state.fsave.cwd;
427			swd = (unsigned short)fpu->state.fsave.swd;
428		}
429
430		err = swd & ~cwd;
431	} else {
432		/*
433		 * The SIMD FPU exceptions are handled a little differently, as there
434		 * is only a single status/control register.  Thus, to determine which
435		 * unmasked exception was caught we must mask the exception mask bits
436		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
437		 */
438		unsigned short mxcsr = MXCSR_DEFAULT;
439
440		if (boot_cpu_has(X86_FEATURE_XMM))
441			mxcsr = fpu->state.fxsave.mxcsr;
442
443		err = ~(mxcsr >> 7) & mxcsr;
444	}
445
446	if (err & 0x001) {	/* Invalid op */
447		/*
448		 * swd & 0x240 == 0x040: Stack Underflow
449		 * swd & 0x240 == 0x240: Stack Overflow
450		 * User must clear the SF bit (0x40) if set
451		 */
452		return FPE_FLTINV;
453	} else if (err & 0x004) { /* Divide by Zero */
454		return FPE_FLTDIV;
455	} else if (err & 0x008) { /* Overflow */
456		return FPE_FLTOVF;
457	} else if (err & 0x012) { /* Denormal, Underflow */
458		return FPE_FLTUND;
459	} else if (err & 0x020) { /* Precision */
460		return FPE_FLTRES;
461	}
462
463	/*
464	 * If we're using IRQ 13, or supposedly even some trap
465	 * X86_TRAP_MF implementations, it's possible
466	 * we get a spurious trap, which is not an error.
467	 */
468	return 0;
469}