Linux Audio

Check our new training course

Loading...
v4.17
 
  1/*
  2 *  Copyright (C) 1994 Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *  General FPU state handling cleanups
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8#include <asm/fpu/internal.h>
  9#include <asm/fpu/regset.h>
 10#include <asm/fpu/signal.h>
 11#include <asm/fpu/types.h>
 12#include <asm/traps.h>
 
 13
 14#include <linux/hardirq.h>
 15#include <linux/pkeys.h>
 16
 17#define CREATE_TRACE_POINTS
 18#include <asm/trace/fpu.h>
 19
 20/*
 21 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 22 * depending on the FPU hardware format:
 23 */
 24union fpregs_state init_fpstate __read_mostly;
 25
 26/*
 27 * Track whether the kernel is using the FPU state
 28 * currently.
 29 *
 30 * This flag is used:
 31 *
 32 *   - by IRQ context code to potentially use the FPU
 33 *     if it's unused.
 34 *
 35 *   - to debug kernel_fpu_begin()/end() correctness
 36 */
 37static DEFINE_PER_CPU(bool, in_kernel_fpu);
 38
 39/*
 40 * Track which context is using the FPU on the CPU:
 41 */
 42DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 43
 44static void kernel_fpu_disable(void)
 45{
 46	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
 47	this_cpu_write(in_kernel_fpu, true);
 48}
 49
 50static void kernel_fpu_enable(void)
 51{
 52	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
 53	this_cpu_write(in_kernel_fpu, false);
 54}
 55
 56static bool kernel_fpu_disabled(void)
 57{
 58	return this_cpu_read(in_kernel_fpu);
 59}
 60
 61static bool interrupted_kernel_fpu_idle(void)
 62{
 63	return !kernel_fpu_disabled();
 64}
 65
 66/*
 67 * Were we in user mode (or vm86 mode) when we were
 68 * interrupted?
 69 *
 70 * Doing kernel_fpu_begin/end() is ok if we are running
 71 * in an interrupt context from user mode - we'll just
 72 * save the FPU state as required.
 73 */
 74static bool interrupted_user_mode(void)
 75{
 76	struct pt_regs *regs = get_irq_regs();
 77	return regs && user_mode(regs);
 78}
 79
 80/*
 81 * Can we use the FPU in kernel mode with the
 82 * whole "kernel_fpu_begin/end()" sequence?
 83 *
 84 * It's always ok in process context (ie "not interrupt")
 85 * but it is sometimes ok even from an irq.
 86 */
 87bool irq_fpu_usable(void)
 88{
 89	return !in_interrupt() ||
 90		interrupted_user_mode() ||
 91		interrupted_kernel_fpu_idle();
 92}
 93EXPORT_SYMBOL(irq_fpu_usable);
 94
 95void __kernel_fpu_begin(void)
 96{
 97	struct fpu *fpu = &current->thread.fpu;
 98
 99	WARN_ON_FPU(!irq_fpu_usable());
 
100
101	kernel_fpu_disable();
102
103	if (fpu->initialized) {
 
 
104		/*
105		 * Ignore return value -- we don't care if reg state
106		 * is clobbered.
107		 */
108		copy_fpregs_to_fpstate(fpu);
109	} else {
110		__cpu_invalidate_fpregs_state();
111	}
112}
113EXPORT_SYMBOL(__kernel_fpu_begin);
114
115void __kernel_fpu_end(void)
116{
117	struct fpu *fpu = &current->thread.fpu;
118
119	if (fpu->initialized)
120		copy_kernel_to_fpregs(&fpu->state);
121
122	kernel_fpu_enable();
123}
124EXPORT_SYMBOL(__kernel_fpu_end);
125
126void kernel_fpu_begin(void)
127{
128	preempt_disable();
129	__kernel_fpu_begin();
130}
131EXPORT_SYMBOL_GPL(kernel_fpu_begin);
132
133void kernel_fpu_end(void)
134{
135	__kernel_fpu_end();
 
 
136	preempt_enable();
137}
138EXPORT_SYMBOL_GPL(kernel_fpu_end);
139
140/*
141 * Save the FPU state (mark it for reload if necessary):
142 *
143 * This only ever gets called for the current task.
144 */
145void fpu__save(struct fpu *fpu)
146{
147	WARN_ON_FPU(fpu != &current->thread.fpu);
148
149	preempt_disable();
150	trace_x86_fpu_before_save(fpu);
151	if (fpu->initialized) {
 
152		if (!copy_fpregs_to_fpstate(fpu)) {
153			copy_kernel_to_fpregs(&fpu->state);
154		}
155	}
 
156	trace_x86_fpu_after_save(fpu);
157	preempt_enable();
158}
159EXPORT_SYMBOL_GPL(fpu__save);
160
161/*
162 * Legacy x87 fpstate state init:
163 */
164static inline void fpstate_init_fstate(struct fregs_state *fp)
165{
166	fp->cwd = 0xffff037fu;
167	fp->swd = 0xffff0000u;
168	fp->twd = 0xffffffffu;
169	fp->fos = 0xffff0000u;
170}
171
172void fpstate_init(union fpregs_state *state)
173{
174	if (!static_cpu_has(X86_FEATURE_FPU)) {
175		fpstate_init_soft(&state->soft);
176		return;
177	}
178
179	memset(state, 0, fpu_kernel_xstate_size);
180
181	if (static_cpu_has(X86_FEATURE_XSAVES))
182		fpstate_init_xstate(&state->xsave);
183	if (static_cpu_has(X86_FEATURE_FXSR))
184		fpstate_init_fxstate(&state->fxsave);
185	else
186		fpstate_init_fstate(&state->fsave);
187}
188EXPORT_SYMBOL_GPL(fpstate_init);
189
190int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
191{
 
 
 
192	dst_fpu->last_cpu = -1;
193
194	if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
195		return 0;
196
197	WARN_ON_FPU(src_fpu != &current->thread.fpu);
198
199	/*
200	 * Don't let 'init optimized' areas of the XSAVE area
201	 * leak into the child task:
202	 */
203	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
204
205	/*
206	 * Save current FPU registers directly into the child
207	 * FPU context, without any memory-to-memory copying.
 
208	 *
209	 * ( The function 'fails' in the FNSAVE case, which destroys
210	 *   register contents so we have to copy them back. )
211	 */
212	if (!copy_fpregs_to_fpstate(dst_fpu)) {
213		memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
214		copy_kernel_to_fpregs(&src_fpu->state);
215	}
 
 
 
 
 
 
216
217	trace_x86_fpu_copy_src(src_fpu);
218	trace_x86_fpu_copy_dst(dst_fpu);
219
220	return 0;
221}
222
223/*
224 * Activate the current task's in-memory FPU context,
225 * if it has not been used before:
226 */
227void fpu__initialize(struct fpu *fpu)
228{
229	WARN_ON_FPU(fpu != &current->thread.fpu);
230
231	if (!fpu->initialized) {
232		fpstate_init(&fpu->state);
233		trace_x86_fpu_init_state(fpu);
234
235		trace_x86_fpu_activate_state(fpu);
236		/* Safe to do for the current task: */
237		fpu->initialized = 1;
238	}
239}
240EXPORT_SYMBOL_GPL(fpu__initialize);
241
242/*
243 * This function must be called before we read a task's fpstate.
244 *
245 * There's two cases where this gets called:
246 *
247 * - for the current task (when coredumping), in which case we have
248 *   to save the latest FPU registers into the fpstate,
249 *
250 * - or it's called for stopped tasks (ptrace), in which case the
251 *   registers were already saved by the context-switch code when
252 *   the task scheduled out - we only have to initialize the registers
253 *   if they've never been initialized.
254 *
255 * If the task has used the FPU before then save it.
256 */
257void fpu__prepare_read(struct fpu *fpu)
258{
259	if (fpu == &current->thread.fpu) {
260		fpu__save(fpu);
261	} else {
262		if (!fpu->initialized) {
263			fpstate_init(&fpu->state);
264			trace_x86_fpu_init_state(fpu);
265
266			trace_x86_fpu_activate_state(fpu);
267			/* Safe to do for current and for stopped child tasks: */
268			fpu->initialized = 1;
269		}
270	}
271}
272
273/*
274 * This function must be called before we write a task's fpstate.
275 *
276 * If the task has used the FPU before then invalidate any cached FPU registers.
277 * If the task has not used the FPU before then initialize its fpstate.
278 *
279 * After this function call, after registers in the fpstate are
280 * modified and the child task has woken up, the child task will
281 * restore the modified FPU state from the modified context. If we
282 * didn't clear its cached status here then the cached in-registers
283 * state pending on its former CPU could be restored, corrupting
284 * the modifications.
285 */
286void fpu__prepare_write(struct fpu *fpu)
287{
288	/*
289	 * Only stopped child tasks can be used to modify the FPU
290	 * state in the fpstate buffer:
291	 */
292	WARN_ON_FPU(fpu == &current->thread.fpu);
293
294	if (fpu->initialized) {
295		/* Invalidate any cached state: */
296		__fpu_invalidate_fpregs_state(fpu);
297	} else {
298		fpstate_init(&fpu->state);
299		trace_x86_fpu_init_state(fpu);
300
301		trace_x86_fpu_activate_state(fpu);
302		/* Safe to do for stopped child tasks: */
303		fpu->initialized = 1;
304	}
305}
306
307/*
308 * 'fpu__restore()' is called to copy FPU registers from
309 * the FPU fpstate to the live hw registers and to activate
310 * access to the hardware registers, so that FPU instructions
311 * can be used afterwards.
312 *
313 * Must be called with kernel preemption disabled (for example
314 * with local interrupts disabled, as it is in the case of
315 * do_device_not_available()).
316 */
317void fpu__restore(struct fpu *fpu)
318{
319	fpu__initialize(fpu);
320
321	/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
322	kernel_fpu_disable();
323	trace_x86_fpu_before_restore(fpu);
324	fpregs_activate(fpu);
325	copy_kernel_to_fpregs(&fpu->state);
326	trace_x86_fpu_after_restore(fpu);
327	kernel_fpu_enable();
328}
329EXPORT_SYMBOL_GPL(fpu__restore);
330
331/*
332 * Drops current FPU state: deactivates the fpregs and
333 * the fpstate. NOTE: it still leaves previous contents
334 * in the fpregs in the eager-FPU case.
335 *
336 * This function can be used in cases where we know that
337 * a state-restore is coming: either an explicit one,
338 * or a reschedule.
339 */
340void fpu__drop(struct fpu *fpu)
341{
342	preempt_disable();
343
344	if (fpu == &current->thread.fpu) {
345		if (fpu->initialized) {
346			/* Ignore delayed exceptions from user space */
347			asm volatile("1: fwait\n"
348				     "2:\n"
349				     _ASM_EXTABLE(1b, 2b));
350			fpregs_deactivate(fpu);
351		}
352	}
353
354	fpu->initialized = 0;
355
356	trace_x86_fpu_dropped(fpu);
357
358	preempt_enable();
359}
360
361/*
362 * Clear FPU registers by setting them up from
363 * the init fpstate:
364 */
365static inline void copy_init_fpstate_to_fpregs(void)
366{
 
 
367	if (use_xsave())
368		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
369	else if (static_cpu_has(X86_FEATURE_FXSR))
370		copy_kernel_to_fxregs(&init_fpstate.fxsave);
371	else
372		copy_kernel_to_fregs(&init_fpstate.fsave);
373
374	if (boot_cpu_has(X86_FEATURE_OSPKE))
375		copy_init_pkru_to_fpregs();
 
 
 
376}
377
378/*
379 * Clear the FPU state back to init state.
380 *
381 * Called by sys_execve(), by the signal handler code and by various
382 * error paths.
383 */
384void fpu__clear(struct fpu *fpu)
385{
386	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
387
388	fpu__drop(fpu);
389
390	/*
391	 * Make sure fpstate is cleared and initialized.
392	 */
393	if (static_cpu_has(X86_FEATURE_FPU)) {
394		preempt_disable();
395		fpu__initialize(fpu);
396		user_fpu_begin();
397		copy_init_fpstate_to_fpregs();
398		preempt_enable();
399	}
400}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401
402/*
403 * x87 math exception handling:
404 */
405
406int fpu__exception_code(struct fpu *fpu, int trap_nr)
407{
408	int err;
409
410	if (trap_nr == X86_TRAP_MF) {
411		unsigned short cwd, swd;
412		/*
413		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
414		 * status.  0x3f is the exception bits in these regs, 0x200 is the
415		 * C1 reg you need in case of a stack fault, 0x040 is the stack
416		 * fault bit.  We should only be taking one exception at a time,
417		 * so if this combination doesn't produce any single exception,
418		 * then we have a bad program that isn't synchronizing its FPU usage
419		 * and it will suffer the consequences since we won't be able to
420		 * fully reproduce the context of the exception.
421		 */
422		if (boot_cpu_has(X86_FEATURE_FXSR)) {
423			cwd = fpu->state.fxsave.cwd;
424			swd = fpu->state.fxsave.swd;
425		} else {
426			cwd = (unsigned short)fpu->state.fsave.cwd;
427			swd = (unsigned short)fpu->state.fsave.swd;
428		}
429
430		err = swd & ~cwd;
431	} else {
432		/*
433		 * The SIMD FPU exceptions are handled a little differently, as there
434		 * is only a single status/control register.  Thus, to determine which
435		 * unmasked exception was caught we must mask the exception mask bits
436		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
437		 */
438		unsigned short mxcsr = MXCSR_DEFAULT;
439
440		if (boot_cpu_has(X86_FEATURE_XMM))
441			mxcsr = fpu->state.fxsave.mxcsr;
442
443		err = ~(mxcsr >> 7) & mxcsr;
444	}
445
446	if (err & 0x001) {	/* Invalid op */
447		/*
448		 * swd & 0x240 == 0x040: Stack Underflow
449		 * swd & 0x240 == 0x240: Stack Overflow
450		 * User must clear the SF bit (0x40) if set
451		 */
452		return FPE_FLTINV;
453	} else if (err & 0x004) { /* Divide by Zero */
454		return FPE_FLTDIV;
455	} else if (err & 0x008) { /* Overflow */
456		return FPE_FLTOVF;
457	} else if (err & 0x012) { /* Denormal, Underflow */
458		return FPE_FLTUND;
459	} else if (err & 0x020) { /* Precision */
460		return FPE_FLTRES;
461	}
462
463	/*
464	 * If we're using IRQ 13, or supposedly even some trap
465	 * X86_TRAP_MF implementations, it's possible
466	 * we get a spurious trap, which is not an error.
467	 */
468	return 0;
469}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1994 Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *  General FPU state handling cleanups
  7 *	Gareth Hughes <gareth@valinux.com>, May 2000
  8 */
  9#include <asm/fpu/internal.h>
 10#include <asm/fpu/regset.h>
 11#include <asm/fpu/signal.h>
 12#include <asm/fpu/types.h>
 13#include <asm/traps.h>
 14#include <asm/irq_regs.h>
 15
 16#include <linux/hardirq.h>
 17#include <linux/pkeys.h>
 18
 19#define CREATE_TRACE_POINTS
 20#include <asm/trace/fpu.h>
 21
 22/*
 23 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 24 * depending on the FPU hardware format:
 25 */
 26union fpregs_state init_fpstate __read_mostly;
 27
 28/*
 29 * Track whether the kernel is using the FPU state
 30 * currently.
 31 *
 32 * This flag is used:
 33 *
 34 *   - by IRQ context code to potentially use the FPU
 35 *     if it's unused.
 36 *
 37 *   - to debug kernel_fpu_begin()/end() correctness
 38 */
 39static DEFINE_PER_CPU(bool, in_kernel_fpu);
 40
 41/*
 42 * Track which context is using the FPU on the CPU:
 43 */
 44DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
 45
 
 
 
 
 
 
 
 
 
 
 
 
 46static bool kernel_fpu_disabled(void)
 47{
 48	return this_cpu_read(in_kernel_fpu);
 49}
 50
 51static bool interrupted_kernel_fpu_idle(void)
 52{
 53	return !kernel_fpu_disabled();
 54}
 55
 56/*
 57 * Were we in user mode (or vm86 mode) when we were
 58 * interrupted?
 59 *
 60 * Doing kernel_fpu_begin/end() is ok if we are running
 61 * in an interrupt context from user mode - we'll just
 62 * save the FPU state as required.
 63 */
 64static bool interrupted_user_mode(void)
 65{
 66	struct pt_regs *regs = get_irq_regs();
 67	return regs && user_mode(regs);
 68}
 69
 70/*
 71 * Can we use the FPU in kernel mode with the
 72 * whole "kernel_fpu_begin/end()" sequence?
 73 *
 74 * It's always ok in process context (ie "not interrupt")
 75 * but it is sometimes ok even from an irq.
 76 */
 77bool irq_fpu_usable(void)
 78{
 79	return !in_interrupt() ||
 80		interrupted_user_mode() ||
 81		interrupted_kernel_fpu_idle();
 82}
 83EXPORT_SYMBOL(irq_fpu_usable);
 84
 85void kernel_fpu_begin(void)
 86{
 87	preempt_disable();
 88
 89	WARN_ON_FPU(!irq_fpu_usable());
 90	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
 91
 92	this_cpu_write(in_kernel_fpu, true);
 93
 94	if (!(current->flags & PF_KTHREAD) &&
 95	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
 96		set_thread_flag(TIF_NEED_FPU_LOAD);
 97		/*
 98		 * Ignore return value -- we don't care if reg state
 99		 * is clobbered.
100		 */
101		copy_fpregs_to_fpstate(&current->thread.fpu);
 
 
102	}
103	__cpu_invalidate_fpregs_state();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104}
105EXPORT_SYMBOL_GPL(kernel_fpu_begin);
106
107void kernel_fpu_end(void)
108{
109	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
110
111	this_cpu_write(in_kernel_fpu, false);
112	preempt_enable();
113}
114EXPORT_SYMBOL_GPL(kernel_fpu_end);
115
116/*
117 * Save the FPU state (mark it for reload if necessary):
118 *
119 * This only ever gets called for the current task.
120 */
121void fpu__save(struct fpu *fpu)
122{
123	WARN_ON_FPU(fpu != &current->thread.fpu);
124
125	fpregs_lock();
126	trace_x86_fpu_before_save(fpu);
127
128	if (!test_thread_flag(TIF_NEED_FPU_LOAD)) {
129		if (!copy_fpregs_to_fpstate(fpu)) {
130			copy_kernel_to_fpregs(&fpu->state);
131		}
132	}
133
134	trace_x86_fpu_after_save(fpu);
135	fpregs_unlock();
136}
 
137
138/*
139 * Legacy x87 fpstate state init:
140 */
141static inline void fpstate_init_fstate(struct fregs_state *fp)
142{
143	fp->cwd = 0xffff037fu;
144	fp->swd = 0xffff0000u;
145	fp->twd = 0xffffffffu;
146	fp->fos = 0xffff0000u;
147}
148
149void fpstate_init(union fpregs_state *state)
150{
151	if (!static_cpu_has(X86_FEATURE_FPU)) {
152		fpstate_init_soft(&state->soft);
153		return;
154	}
155
156	memset(state, 0, fpu_kernel_xstate_size);
157
158	if (static_cpu_has(X86_FEATURE_XSAVES))
159		fpstate_init_xstate(&state->xsave);
160	if (static_cpu_has(X86_FEATURE_FXSR))
161		fpstate_init_fxstate(&state->fxsave);
162	else
163		fpstate_init_fstate(&state->fsave);
164}
165EXPORT_SYMBOL_GPL(fpstate_init);
166
167int fpu__copy(struct task_struct *dst, struct task_struct *src)
168{
169	struct fpu *dst_fpu = &dst->thread.fpu;
170	struct fpu *src_fpu = &src->thread.fpu;
171
172	dst_fpu->last_cpu = -1;
173
174	if (!static_cpu_has(X86_FEATURE_FPU))
175		return 0;
176
177	WARN_ON_FPU(src_fpu != &current->thread.fpu);
178
179	/*
180	 * Don't let 'init optimized' areas of the XSAVE area
181	 * leak into the child task:
182	 */
183	memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
184
185	/*
186	 * If the FPU registers are not current just memcpy() the state.
187	 * Otherwise save current FPU registers directly into the child's FPU
188	 * context, without any memory-to-memory copying.
189	 *
190	 * ( The function 'fails' in the FNSAVE case, which destroys
191	 *   register contents so we have to load them back. )
192	 */
193	fpregs_lock();
194	if (test_thread_flag(TIF_NEED_FPU_LOAD))
195		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);
196
197	else if (!copy_fpregs_to_fpstate(dst_fpu))
198		copy_kernel_to_fpregs(&dst_fpu->state);
199
200	fpregs_unlock();
201
202	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);
203
204	trace_x86_fpu_copy_src(src_fpu);
205	trace_x86_fpu_copy_dst(dst_fpu);
206
207	return 0;
208}
209
210/*
211 * Activate the current task's in-memory FPU context,
212 * if it has not been used before:
213 */
214static void fpu__initialize(struct fpu *fpu)
215{
216	WARN_ON_FPU(fpu != &current->thread.fpu);
217
218	set_thread_flag(TIF_NEED_FPU_LOAD);
219	fpstate_init(&fpu->state);
220	trace_x86_fpu_init_state(fpu);
 
 
 
 
 
221}
 
222
223/*
224 * This function must be called before we read a task's fpstate.
225 *
226 * There's two cases where this gets called:
227 *
228 * - for the current task (when coredumping), in which case we have
229 *   to save the latest FPU registers into the fpstate,
230 *
231 * - or it's called for stopped tasks (ptrace), in which case the
232 *   registers were already saved by the context-switch code when
233 *   the task scheduled out.
 
234 *
235 * If the task has used the FPU before then save it.
236 */
237void fpu__prepare_read(struct fpu *fpu)
238{
239	if (fpu == &current->thread.fpu)
240		fpu__save(fpu);
 
 
 
 
 
 
 
 
 
 
241}
242
243/*
244 * This function must be called before we write a task's fpstate.
245 *
246 * Invalidate any cached FPU registers.
 
247 *
248 * After this function call, after registers in the fpstate are
249 * modified and the child task has woken up, the child task will
250 * restore the modified FPU state from the modified context. If we
251 * didn't clear its cached status here then the cached in-registers
252 * state pending on its former CPU could be restored, corrupting
253 * the modifications.
254 */
255void fpu__prepare_write(struct fpu *fpu)
256{
257	/*
258	 * Only stopped child tasks can be used to modify the FPU
259	 * state in the fpstate buffer:
260	 */
261	WARN_ON_FPU(fpu == &current->thread.fpu);
262
263	/* Invalidate any cached state: */
264	__fpu_invalidate_fpregs_state(fpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265}
 
266
267/*
268 * Drops current FPU state: deactivates the fpregs and
269 * the fpstate. NOTE: it still leaves previous contents
270 * in the fpregs in the eager-FPU case.
271 *
272 * This function can be used in cases where we know that
273 * a state-restore is coming: either an explicit one,
274 * or a reschedule.
275 */
276void fpu__drop(struct fpu *fpu)
277{
278	preempt_disable();
279
280	if (fpu == &current->thread.fpu) {
281		/* Ignore delayed exceptions from user space */
282		asm volatile("1: fwait\n"
283			     "2:\n"
284			     _ASM_EXTABLE(1b, 2b));
285		fpregs_deactivate(fpu);
 
 
286	}
287
 
 
288	trace_x86_fpu_dropped(fpu);
289
290	preempt_enable();
291}
292
293/*
294 * Clear FPU registers by setting them up from
295 * the init fpstate:
296 */
297static inline void copy_init_fpstate_to_fpregs(void)
298{
299	fpregs_lock();
300
301	if (use_xsave())
302		copy_kernel_to_xregs(&init_fpstate.xsave, -1);
303	else if (static_cpu_has(X86_FEATURE_FXSR))
304		copy_kernel_to_fxregs(&init_fpstate.fxsave);
305	else
306		copy_kernel_to_fregs(&init_fpstate.fsave);
307
308	if (boot_cpu_has(X86_FEATURE_OSPKE))
309		copy_init_pkru_to_fpregs();
310
311	fpregs_mark_activate();
312	fpregs_unlock();
313}
314
315/*
316 * Clear the FPU state back to init state.
317 *
318 * Called by sys_execve(), by the signal handler code and by various
319 * error paths.
320 */
321void fpu__clear(struct fpu *fpu)
322{
323	WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
324
325	fpu__drop(fpu);
326
327	/*
328	 * Make sure fpstate is cleared and initialized.
329	 */
330	fpu__initialize(fpu);
331	if (static_cpu_has(X86_FEATURE_FPU))
 
 
332		copy_init_fpstate_to_fpregs();
 
 
333}
334
335/*
336 * Load FPU context before returning to userspace.
337 */
338void switch_fpu_return(void)
339{
340	if (!static_cpu_has(X86_FEATURE_FPU))
341		return;
342
343	__fpregs_load_activate();
344}
345EXPORT_SYMBOL_GPL(switch_fpu_return);
346
347#ifdef CONFIG_X86_DEBUG_FPU
348/*
349 * If current FPU state according to its tracking (loaded FPU context on this
350 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
351 * loaded on return to userland.
352 */
353void fpregs_assert_state_consistent(void)
354{
355	struct fpu *fpu = &current->thread.fpu;
356
357	if (test_thread_flag(TIF_NEED_FPU_LOAD))
358		return;
359
360	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
361}
362EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
363#endif
364
365void fpregs_mark_activate(void)
366{
367	struct fpu *fpu = &current->thread.fpu;
368
369	fpregs_activate(fpu);
370	fpu->last_cpu = smp_processor_id();
371	clear_thread_flag(TIF_NEED_FPU_LOAD);
372}
373EXPORT_SYMBOL_GPL(fpregs_mark_activate);
374
375/*
376 * x87 math exception handling:
377 */
378
379int fpu__exception_code(struct fpu *fpu, int trap_nr)
380{
381	int err;
382
383	if (trap_nr == X86_TRAP_MF) {
384		unsigned short cwd, swd;
385		/*
386		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
387		 * status.  0x3f is the exception bits in these regs, 0x200 is the
388		 * C1 reg you need in case of a stack fault, 0x040 is the stack
389		 * fault bit.  We should only be taking one exception at a time,
390		 * so if this combination doesn't produce any single exception,
391		 * then we have a bad program that isn't synchronizing its FPU usage
392		 * and it will suffer the consequences since we won't be able to
393		 * fully reproduce the context of the exception.
394		 */
395		if (boot_cpu_has(X86_FEATURE_FXSR)) {
396			cwd = fpu->state.fxsave.cwd;
397			swd = fpu->state.fxsave.swd;
398		} else {
399			cwd = (unsigned short)fpu->state.fsave.cwd;
400			swd = (unsigned short)fpu->state.fsave.swd;
401		}
402
403		err = swd & ~cwd;
404	} else {
405		/*
406		 * The SIMD FPU exceptions are handled a little differently, as there
407		 * is only a single status/control register.  Thus, to determine which
408		 * unmasked exception was caught we must mask the exception mask bits
409		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
410		 */
411		unsigned short mxcsr = MXCSR_DEFAULT;
412
413		if (boot_cpu_has(X86_FEATURE_XMM))
414			mxcsr = fpu->state.fxsave.mxcsr;
415
416		err = ~(mxcsr >> 7) & mxcsr;
417	}
418
419	if (err & 0x001) {	/* Invalid op */
420		/*
421		 * swd & 0x240 == 0x040: Stack Underflow
422		 * swd & 0x240 == 0x240: Stack Overflow
423		 * User must clear the SF bit (0x40) if set
424		 */
425		return FPE_FLTINV;
426	} else if (err & 0x004) { /* Divide by Zero */
427		return FPE_FLTDIV;
428	} else if (err & 0x008) { /* Overflow */
429		return FPE_FLTOVF;
430	} else if (err & 0x012) { /* Denormal, Underflow */
431		return FPE_FLTUND;
432	} else if (err & 0x020) { /* Precision */
433		return FPE_FLTRES;
434	}
435
436	/*
437	 * If we're using IRQ 13, or supposedly even some trap
438	 * X86_TRAP_MF implementations, it's possible
439	 * we get a spurious trap, which is not an error.
440	 */
441	return 0;
442}